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The human brain accounts for 2% of total body weight, though it consumes 20% 

of the body‟s energy supply.  Most of this energy is provided by the complete oxidation 

of glucose to carbon dioxide and water, though some fraction of glucose undergoes 

aerobic glycolysis without concomitant oxidative phosphorylation.  Elevation in neuronal 

activity increases aerobic glycolysis due to the disproportionate increase in blood flow 

and glucose utilization greater than oxygen consumption. Since aerobic glycolysis 

produces significantly less energy than complete oxidation of glucose, its role in cellular 

activities has been overlooked, though its presence in the resting brain has been known 

for several decades. In this thesis, we investigate three aspects of resting aerobic 

glycolysis using positron emission tomography.  First, we characterize the regional 

distribution of aerobic glycolysis in the awake, eyes closed human brain.  We show that 

brain regions with high levels of functional activity in the resting state, including the 

default network and prefrontal cortex, have elevated aerobic glycolysis.  In addition, we 

show that aerobic glycolysis is modulated by prior task performance.  Performance of a 

complex visuomotor rotation learning task increases aerobic glycolysis in premotor 
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cortex for several hours following task completion.  Further, we show that regional brain 

metabolism is correlated to neurotransmitter receptor density.  Aerobic glycolysis is 

highest in regions with a balanced density of excitatory and inhibitory receptors.  Taken 

together, these results demonstrate the functional significance of resting aerobic 

glycolysis and its modulation by transient functional activity. These data provide 

supporting evidence for the synaptic homeostasis hypothesis, indicating elevation in brain 

metabolism, specifically aerobic glycolysis, during wakefulness associated with 

alterations in synaptic strength and receptor density. 
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Chapter 1:  Introduction 

 

“As long as our brain is a mystery, 

the universe, the reflection of the structure 

of the brain, will also be a mystery.” 

-Santiago Ramon y Cajal 

Charlas de Cafe 

 

Much of what we know about neuronal activity is obtained indirectly by the effect 

of brain cells on cerebral energy utilization.  Increased neuronal activity results in an 

elevation in cerebral blood flow (CBF), glucose (CMRGlu), and oxygen (CMRO2) 

utilization to supply the cells with metabolites for energy consumption as well as to 

remove waste products.  The metabolic response to cellular activity, though, is not 

homogenous.  Transient increases in cerebral blood flow and glucose utilization are 

disproportionate to the corresponding changes in oxygen consumption.  The 

disproportionate increase in cerebral blood flow results in an excess of oxyhemoglobin in 

regions of neuronal activity, a physiological marker that can be detected using magnetic 

resonance imaging (MRI).  In addition to this discrepancy, cerebral glucose utilization 

also increases disproportionately to oxygen consumption.  This finding is counterintuitive 

as the primary utility of glucose is to provide energy to cells via its complete oxidation to 

carbon dioxide and water.  But for several decades, researchers have found that some 

fraction of glucose does not undergo complete oxidative metabolism, resulting in the 

presence of aerobic glycolysis in the brain (Raichle, Posner et al. 1970; Blomqvist, Seitz 

et al. 1994; Madsen, Hasselbalch et al. 1995).  Aerobic glycolysis is defined as glycolysis 

occurring in the presence of oxygen but in excess of that required for oxidative 
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phosphorylation.  The primary goal of this research is to begin to understand the possible 

roles for aerobic glycolysis in normal neuronal function. 

The remainder of this chapter will provide relevant background information to 

understand the tenets of this thesis.  (I) First, we will briefly overview the cellular 

physiology of aerobic glycolysis.  (II)  Next, we will discuss how brain metabolism 

changes during and following learning. (III) Then we will present an overview of the 

synaptic homeostasis hypothesis as one possible explanation for learning related changes 

in brain metabolism.  (IV) Finally, this chapter concludes with a brief preview of the set 

of experiments included in this thesis. 

 

Cellular physiology of aerobic glycolysis 

 

Functional neuroimaging techniques detect local changes in energy utilization and 

blood flow.  But what cellular processes are responsible for these alterations?  Early 

experimental work by Schwartz and colleagues provided important technical insights 

(Schwartz, Smith et al. 1979).  In their experiments they measured regional glucose 

metabolism in rats using 2-deoxy-glucose (2DG) autoradiography (Sokoloff 1977).  This 

technique detects the trapped 2DG in cells following the initial phosphorylation of 

glucose as the first step of glycolysis (a similar approach as that taken with positron 

emission tomography as discussed later).  Rats were exposed to an osmotic load to 

stimulate cell bodies in the paraventricular nucleus of the hypothalamus.  These neurons 

were stimulated by the osmotic load and in turn transmitted the signal to their axon 

terminals in the pituitary gland.  Since the cell body and axon terminals are separated 
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spatially by a large distance, the site of energy consumption could be directly assessed.  

They found that glucose metabolism, as measured by 2DG uptake, was significantly 

increased in the axon terminals located near the posterior pituitary, and not measurably 

increased in the cell body itself.  These data indicate that functional imaging techniques 

primarily detect the input and output of neurons, namely activity at the neuronal synapse.  

This is also the case for functional MRI (Logothetis, Pauls et al. 2001; Logothetis 2003).  

Estimates of the cost of brain activity indicate that 60-80% of the energetic cost is 

associated with synaptic activity and fluctuations in membrane potential (Attwell and 

Laughlin 2001; Attwell and Iadecola 2002).  Though measurement of glucose 

metabolism does not allow for the detection of particular subcellular processes, these 

techniques do allow for the in vivo assessment of synaptic activity.  

The initial work with 2DG imaging has subsequently been expanded from animal 

models to humans using positron emission tomography (PET).  Using PET, blood flow, 

glucose and oxygen consumption can be detected noninvasively, providing an indirect 

measure of neuronal activity and allowing for experimental manipulation of behavioral 

state.  While glucose metabolism is measured with radiolabeled fluoro-deoxyglucose, 

blood flow is measured with labeled H2O and oxygen metabolism with labeled O2 (also 

requiring measurement of cerebral blood volume with labeled carbon monoxide to 

account for any oxygen bound to hemoglobin and not removed by brain cells).  

Collection of metabolic data from various modalities provides additional cellular 

specificity to the observed neuronal response, allowing for the quantification of aerobic 

glycolysis.  
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Initial positron emission tomography (PET) studies in humans were used to 

identify functionally specialized cortical regions.  For example, in a classic early 

experimental paradigm, human subjects were asked to view a flickering black and white 

checkerboard stimulus while being scanned via PET.  As a result blood flow and glucose 

utilization in visual cortex significantly increased compared to a baseline state (visual 

fixation or rest).  This approach revealed an apparent coupling between blood flow and 

glucose utilization in regions of increased neuronal activity.  But what happens to oxygen 

consumption in these locations?  Surprisingly, oxygen consumption was only slightly 

increased compared to the baseline state (~5%), significantly less than glucose 

consumption or blood flow measures (~50%) (Fox, Raichle et al. 1988; Blomqvist, Seitz 

et al. 1994).  This finding stimulated research into the possible functional role of aerobic 

glycolysis. 

Traditionally, it has been assumed that the energy needed for brain function is 

entirely provided by the complete oxidation of glucose to carbon dioxide to water.  Both 

glycolysis and oxidative phosphorylation produce energy in the form of ATP, but 

differing amounts.  Glycolysis produces 2 net ATP while oxidative phosphorylation 

produces ~32 net ATP.  In this context, oxidative phosphorylation is much more efficient 

in producing energy.   However, cells may utilize glycolysis preferentially in several 

circumstances, especially during rapid increases in neuronal activity. 

First, glycolysis may be advantageous as it can be performed extremely rapidly 

and does not require the presence of oxygen.  Since glycolysis can produce pyruvate 

much faster than it can be oxidized, ATP can be rapidly produced and the resultant 

pyruvate can be converted to lactate and removed as a waste product with cerebral blood 
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flow (Cerdan, Rodrigues et al. 2006).  Also aerobic glycolysis occurs within the cytosol 

and does not require mitochondrial function, providing rapid energy to subcellular 

locations such as the postsynaptic density (Wu, Aoki et al. 1997). 

In addition, glycolytic intermediates provide carbon fragments necessary for 

production of DNA and RNA via the pentose phosphate shunt (Gaitonde, Jones et al. 

1987).  Some fraction, estimated to be 5-10% of glucose consumed, may be used for 

anabolism and not directly for energy production.  In this context, aerobic glycolysis may 

provide precursors for cellular and synaptic remodeling.  Although the contribution of 

glycolysis to energy metabolism may be relatively small compared to oxidative 

phosphorylation, its contribution may have significant strategic importance. 

The cellular role of glycolysis has been most clearly elucidated in investigation of 

the astrocyte (Pellerin and Magistretti 1994; Pellerin and Magistretti 1996; Kasischke, 

Vishwasrao et al. 2004).  Glycolysis is increased in astrocytes due to the uptake of 

glutamate from the synaptic cleft along with Na
+
 in a co-transport mechanism.  The 

intracellular glutamate is converted to glutamine and the increased intracellular Na
+
 is 

removed by increased activity of Na
+
/K

+
 ATPase.  Both these processes require 

hydrolysis of ATP, which appears to occur by glycolysis alone in the astrocyte 

(Voutsinos-Porche, Bonvento et al. 2003; Magistretti and Chatton 2005).  

Aerobic glycolysis also appears to partially regulate the blood-flow response to an 

increase in cellular activity.  Increases in the plasma lactate/pyruvate ratio (reflecting 

increased aerobic glycolysis) augment the blood flow response to neuronal activity 

(Mintun, Vlassenko et al. 2004; Vlassenko, Rundle et al. 2006).  Since there is a near 

equilibrium in the ratio of lactate/pyruvate and cytosolic NADH/NAD
+
, these results 
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indicate that NADH may sense the circulatory needs of the cell in response to its level of 

aerobic glycolysis.  This mechanism may be essential for neurovascular coupling, 

consistent with recent evidence that astrocytes mediate the vascular response to neuronal 

activity (Petzold, Albeanu et al. 2008).   

So far we have discussed several roles for aerobic glycolysis in cellular activity:  

1) To provide energy for Na
+
/K

+
 ATPase in astrocytes (for removal of glutamate from the 

synaptic cleft); 2) To provide intermediates for the pentose phosphate shunt for 

anabolism in neurons; 3) To regulate the vascular response to neuronal activity by 

modulation of the NADH/NAD
+
 ratio.   

While we have some indications of the possible cellular roles of aerobic 

glycolysis, we do not know its distribution in the resting human brain.  Are particular 

cortical regions primarily glycolytic?  Or does aerobic glycolysis simply recapitulate 

glucose metabolism, reflecting ~10% of the fate of glucose throughout the brain?  The 

brain continues to have a high metabolic rate at rest and regional elevations in aerobic 

glycolysis may indicate functionally relevant networks important for normal brain 

function.  We seek to answer these questions in Chapter 2. 

Given a particular resting distribution of aerobic glycolysis, how is this modulated 

by prior neuronal activity? Does the bioenergetic response to neuronal stimulation change 

over time?  

A sudden increase in neuronal activity is followed by a rapid increase in aerobic 

glycolysis as well as an increase in oxidative phosphorylation if the activity persists.  

This activity appears to be spatially and temporally segregated with aerobic glycolysis 
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within the astrocyte and oxidative metabolism within neurons (Kasischke, Vishwasrao et 

al. 2004), though this remains somewhat controversial (Gjedde and Marrett 2001).   

Acutely, during short periods (~5 minutes) of neuronal activity early positron 

emission tomography experiments did not find any changes in energy requirements (Fox 

and Raichle 1986).  Other studies have found conflicting results, though.  Continuous 

passive visual stimulation with a flickering checkerboard results in a rapid increase in 

blood flow of 39% along with an increase in oxygen consumption of 6%.  Following 25 

minutes of continuous stimulation, though, oxygen consumption increases 14% from the 

initial 6% above control state, and blood flow declines to 24% from the initial value of 

39% above control state.  Following completion of stimulation, all measurements return 

to their control levels (Vlassenko, Rundle et al. 2006). 

The role of glycolysis, though, has not been studied in as much detail.  Work from 

Madsen and colleagues provide some insight (Madsen, Hasselbalch et al. 1995).  They 

measured cerebral blood flow, oxygen, and glucose utilization using the Kety-Schmidt 

technique using arterial and venous blood sampling (Hatazawa, Ito et al. 1988).  They 

asked subjects to perform the cognitively demanding Wisconsin card sorting task and 

measured glycolysis at regular intervals during and following completion of the task.  

During the 20 minute task performance, blood flow and glucose utilization rose 

immediately and remained elevated while oxygen consumption did not change 

significantly.  Surprisingly these alterations in brain metabolism were maintained 

following task completion.  As long as they continued measurements (40 minutes 

following task completion) though blood flow had returned to its original baseline, the 

level of aerobic glycolysis remained elevated.  These results confirm that aerobic 
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glycolysis increases during task performance as previously reported, but also 

demonstrates its persistence in the resting state following completion of task 

performance. 

If the findings of Madsen and colleague accurately reflect changes in resting 

cerebral metabolism, is there any other corroborating evidence for changes in cerebral 

aerobic glycolysis and brain activity following task completion?   

Following a period of wakefulness, whole brain glucose utilization increases by 

almost 20% (Boyle, Scott et al. 1994).  PET studies performed in the early morning after 

a period of sleep reveals a significant reduction in cerebral glucose utilization, though the 

causative factors and regional cerebral distribution of this decrease remains unclear.  

Consistent with this finding, though, is a comparable 20% decrease in cerebral blood 

flow following a night of sleep (Braun, Balkin et al. 1997).  Though these two studies 

were performed in separate groups of subjects, taken together, these data suggest that 

some activity during wakefulness results in a significant increase in brain glucose 

utilization, though no similar changes in oxygen consumption have been found.  Animal 

studies have confirmed this finding, with a significant increase in glucose utilization 

following a period of wakefulness that is attenuated following a period of sleep 

(Vyazovskiy, Cirelli et al. 2008).  These changes in metabolism are paralleled by an 

increase in GluR1 AMPA receptors during wakefulness that likewise decrease during 

sleep, suggesting net synaptic potentiation during wakefulness (Vyazovskiy, Cirelli et al. 

2008).  Taken together, these disparate pieces of evidence suggest that synaptic 

potentiation, possibly associated with learning, may induce increases in aerobic 

glycolysis in the resting brain following task completion.  This theory is partially the 
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focus of this thesis.  Before we discuss the resultant experiments, we must review the 

evidence that changes in synaptic density and strength may be associated with learning. 

 

Changes in brain metabolism following learning 

 

 The human brain is constantly changing as novel stimuli are presented and 

behaviors are learned.  The brain stores this information in the form of new neuronal 

connections and remodeling of existing neuronal synapses.  But how do these changes in 

synaptic strength cause measurable changes in brain metabolism?  

Many studies have shown learning induced alterations in brain structure and 

connectivity using imaging techniques including fMRI, PET, structural and volumetric 

techniques (Simpson, Snyder et al. 2001; Ungerleider, Doyon et al. 2002; Zach, Kanarek 

et al. 2005).  These changes in brain structure and function represent acute and long-term 

changes in cellular activity, though a complete understanding of the time course and 

extent of these changes remains to be elucidated.   

Short-term changes in brain physiology are often detected as altered patterns of 

brain metabolism during the performance of a task.  For example, practice of a verb 

generation task results in changes in the functional anatomy of regions necessary for task 

performance over time (Raichle, Fiez et al. 1994).  Areas initially utilized for naïve task 

performance including anterior cingulate and left prefrontal cortex reduced their activity 

(measured as alterations in cerebral blood flow) following repeated practice.  Similarly, 

practice of a maze tracing task in humans results in alterations in the brain regions needed 
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for accurate task performance (van Mier, Tempel et al. 1998).  There are several possible 

explanations for these changes.   

The site of neuronal plasticity is predominantly the synapse (Martin, Grimwood et 

al. 2000).  This location is also the site of greatest energy utilization in the brain 

reflecting fluctuations in membrane potentials due to neuronal signaling (Magistretti and 

Pellerin 1999).  So a change in energy metabolism may reflect local alterations in the 

efficacy of neurotransmission.  Following learning an individual presynaptic neuron is 

able to more easily induce a postsynaptic action potential, altering the energy 

requirements of both cells as well as the release of glutamate into the synaptic cleft. 

One well characterized cellular mechanism of learning is long-term potentiation 

(LTP) (Bashir, Alford et al. 1991).  LTP causes alterations in synaptic strength and the 

efficacy of synaptic transmission.  In the initial phases of learning, increased glutamate is 

released presynaptically to cause more potent postsynaptic receptor activation.  

Following repeated synaptic potentiation, the synapse is structurally and functionally 

modified.  This occurs via transcription and translation of new postsynaptic receptors as 

well as insertion of already translated receptors into the postsynaptic membrane (Frick, 

Magee et al. 2004).  In addition, the binding potential of glutamate to the postsynaptic 

receptor is altered by modification of the structural conformation of receptors via 

phosphorylation.  LTP alters the ultrastructure of the synapse causing an increase in the 

apposition zones, larger postsynaptic densities (PSD), and enlarged spine profiles (Buchs 

and Muller 1996).  These changes in cellular neurophysiology induced by learning 

remain following task completion.   
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An increase in the strength of a particular synaptic connection requires increased 

energy utilization.  This energy may be provided by elevated aerobic glycolysis, due to 

the role of glycolysis in providing intermediates for synaptic remodeling and DNA and 

RNA production via the pentose phosphate shunt.  Or conversely, synapses that are 

strengthened by the learning process could increase their spontaneous glutamate flux 

(Mao, Hamzei-Sichani et al. 2001), also requiring increased aerobic glycolysis.  Since 

aerobic glycolysis supplies the postsynaptic density with energy (Wu, Aoki et al. 1997; 

Sheng and Hoogenraad 2007) an alteration in synaptic structure could also cause a 

subsequent increase in aerobic glycolysis.  A complete understanding of the metabolic 

consequences of learning at a cellular level remains elusive, though.   

Learning related alterations in brain activity may also extend beyond acute task 

performance.  Recent studies have revealed a replay of spatial memories in hippocampal-

parietal circuits during post-learning sleep in both rats and humans (Kudrimoti, Barnes et 

al. 1999; Louie and Wilson 2001; Ribeiro, Gervasoni et al. 2004).  Task performance 

tends to improve following sleep in a variety of working and procedural memory tasks 

(Marshall, Helgadottir et al. 2006; Orban, Rauchs et al. 2006), suggesting that brain 

activity is somehow modulated after task completion. 

 

Synaptic Homeostasis Hypothesis 

 

One intriguing explanation for the role of ongoing aerobic glycolysis in the 

resting brain is provided by the synaptic homeostasis hypothesis.  This hypothesis 

suggests that ongoing neuronal activity is associated with significant metabolic and 
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functional costs to the brain in the form of increased synaptic density and energy 

utilization (Tononi and Cirelli 2003).  The four components of this hypothesis include: 

 

“1. Wakefulness is associated with synaptic potentiation in several cortical 

circuits; 

 

2. Synaptic potentiation is tied to the homeostatic regulation of slow-wave 

activity; 

 

3. Slow-wave activity is associated with synaptic downscaling; 

 

4. Synaptic downscaling is tied to the beneficial effects of sleep on 

performance. (Tononi and Cirelli 2003; Tononi and Cirelli 2006)” 
 

  

This hypothesis suggests that wakefulness is associated with increases in synaptic 

strength in cortical circuits that were previously activated.  Neuronal activity leads to net 

synaptic potentiation, reflecting increased efficacy of neurotransmission and increased 

density of synaptic connections (Vyazovskiy, Cirelli et al. 2008).  These new and 

modified synapses likely have an energetic cost, as discussed earlier.  Increased 

glutamatergic neurotransmission is associated with alterations in aerobic glycolysis. It 

remains unknown whether this synaptic potentiation is a global or local phenomenon.   

There is some evidence for global changes in gene expression during wakefulness, with 

an increase in genes associated with energy metabolism, growth factors, synaptic 

proteins, neurotransmitter receptors, and transcription factors (Cirelli and Tononi 2000).  

During sleep, these genes decrease their expression, consistent with the hypothesis.  

Evidence cited above from the limited human studies suggests that learning induces 

changes in cortical metabolism following completion of a learning task though its 

regional distribution has not been investigated.   
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Overview of dissertation  

 

To investigate the role of aerobic glycolysis in the resting human brain and to test 

our hypothesis that sustained, task-specific regional increases in resting brain metabolism 

follow learning, we present the following data.  In Chapter 2, we examine the distribution 

of aerobic glycolysis in the human brain during eyes-closed rest.  Previous experiments 

have only assessed global levels of aerobic glycolysis without regard for its local 

distribution.  We hypothesize that cortical networks known to have high levels of 

functional activity in the eyes-closed state, including the default network, would also 

have elevated aerobic glycolysis.  In Chapter 3, we test the core hypothesis of this thesis, 

that aerobic glycolysis is elevated regionally in eyes-closed rest following completion of 

a learning task.  We utilize a visuomotor rotation task that has previously been shown to 

induce increased slow-wave activity in post-learning sleep in regions involved in task 

performance.  In Chapter 4, we compare our resting metabolic data with neurotransmitter 

receptor density data obtained in a separate group of subjects postmortem via 

autoradiography.  We hypothesize that cortical regions with high levels of aerobic 

glycolysis would also have high levels of excitatory receptor density. Finally, in Chapter 

5 we provide our interpretations of these data and discuss implications for normal 

physiology, learning, and disease pathophysiology. 
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Chapter 2: Regional distribution of aerobic glycolysis in the human 

brain 

 

 

Abstract 

 

Transient regional increases in brain activity associated with task performance 

result in elevated glucose metabolism greater than the corresponding increase in oxygen 

consumption (aerobic glycolysis).  Aerobic glycolysis is also present in the resting adult 

brain but neither its regional pattern nor its mission is known.  We studied the distribution 

of aerobic glycolysis in the resting human brain using positron emission tomography to 

measure glucose and oxygen utilization in 33 healthy young adults. The default system 

and dorsolateral prefrontal cortex bilaterally showed metabolic rates significantly above 

the brain mean and had high levels of aerobic glycolysis. However, sensory cortices, 

particularly primary visual cortex, while also exhibiting equally high metabolic rates, did 

not exhibit elevated glycolysis. The cerebellum, whose energy consumption is close to 

the brain mean, had the lowest levels of aerobic glycolysis. Our data demonstrates 

heterogenic distribution of aerobic glycolysis in the human brain and indicate that the 

most pronounced elevation in aerobic glycolysis occurs in regions characterized by high 

functional activity at the resting state. 
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Introduction 

 

The human brain accounts for 2% of total body weight but 20% of total energy 

metabolism (Sokoloff 1977). Estimates are that 60-80% of this ongoing energy 

consumption is devoted to signaling associated with the input and output of neurons 

(Attwell and Laughlin 2001). In the mature brain, the major source of this energy is the 

oxidation of glucose to carbon dioxide and water (Siesjo and Plum 1971).   However, 

following transient increases in neural activity, glucose utilization increases more than 

oxygen consumption (Fox, Raichle et al. 1988; Madsen, Hasselbalch et al. 1995) . 

Because this metabolic response occurs in the presence of adequate oxygen it is usually 

referred to as aerobic glycolysis to differentiate it from glycolysis occurring as the result 

of ischemia or hypoxia.   

The phenomenon of increased levels of aerobic glycolysis following transient 

increases in neural activity has stimulated research on the mechanism by which glutamate 

is moved with sodium into astrocytes from the synapse. Research to date strongly 

implicates membrane-bound, astrocyte Na
+
/K

+ 
ATPase which relies exclusively on 

glycolysis for the energy needed to pump the accumulated sodium from the astrocyte 

(Pellerin and Magistretti 1994; Pellerin and Magistretti 1996). Largely unexplored is the 

possibility that Na
+
/K

+ 
ATPase elsewhere (e.g., in dendrites) might also be relying on 

aerobic glycolysis (Wu, Aoki et al. 1997).     

Aerobic glycolysis is also present at rest. During the past three decades 

researchers have repeatedly demonstrated that the resting whole brain molar ratio of 

oxygen consumed to glucose utilized (the so-called oxygen-to-glucose index or OGI) is 
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less than 6, which indicates that some glucose is used for purposes other than providing 

substrate for oxidative phosphorylation (Raichle, Posner et al. 1970; Powers, Videen et 

al. 2007). Presently, we have no information on how the products of glycolysis are 

allocated among several possible pathways.  For example, it is not known to what extent 

aerobic glycolysis via the pentose phosphate pathway serves as a source of carbon 

fragments and reducing equivalents for the synthesis of RNA, DNA and membrane 

replication.      

The experiments reported herein seek to initiate an expansion of our 

understanding of the role of glycolysis in the resting activity of the adult human brain by 

determining whether regional variations in glycolysis exist and how these regional 

variations might relate to regional variations in overall brain energy consumption.  We 

were particularly interested to determine whether areas thought to play a major role in 

spontaneous or intrinsic activity (e.g., the brain‟s default system (Raichle, MacLeod et al. 

2001; Buckner, Andrews-Hanna et al. 2008)) have increased levels of glycolysis in the 

resting state.   

 

Methods 

 

Participants 

Thirty-three healthy, right-handed neurologically normal participants (19 women) aged 

20 to 33 years (mean 25.4 ± 2.6) were recruited from the Washington University 

community.  Subjects were excluded if they had contraindications to MRI, history of 

mental illness, possible pregnancy, or medication use that could interfere with brain 



17 
 

function.  All experiments were approved by the Human Research Protection Office 

(HRPO) and Radioactive Drug Research Committee (RDRC) at Washington University 

in St. Louis.  Written informed consent was provided by all participants. 

Image Acquisition 

Structural MRI:  MRI scans were obtained in all subjects to guide anatomical 

localization.  High-resolution structural images were acquired using a 3D sagittal T1-

weighted MPRAGE on a Siemens (Siemens, Erlangen, Germany) 3T Allegra 

[TE=3.93ms, TR=1900ms, TI=1100ms, flip angle=20
o
, 256x256 acquisition matrix, 160 

slices, 1x1x1 mm voxels] or 1.5T Sonata scanner [TE=3.93ms, TR=1900ms, TI=1100ms, 

flip angle =15
 o
, 224x256 acquisition matrix, 160 slices, 1x1x1 mm voxels]. 

Resting  fMRI scanning: Twenty normal right-handed subjects (out of 33 PET subjects) 

also underwent resting state fMRI scanning similar to Fox et al., 2005 (Fox, Snyder et al. 

2005).  Two 7.5 minute scans (194 frames) were performed during visual fixation on a 

crosshair.  All imaging was performed on a 3T Siemens Allegra scanner (Erlangen, 

Germany).  Functional data were collected
 

by using a gradient echo, echo-planar 

sequence sensitive
 
to BOLD contrast [echo time (TE) = 25 ms, flip angle = 90°,

 
4 x 4 x 4-

mm isotropic voxels, volume repetition time (TR) =
 
2.16 s]. Whole brain coverage was 

obtained with 32 contiguous slices.
 
The first four frames of each run were not included in 

data analysis.  Additional fMRI processing details are given below. 

PET Scanning:  Studies were performed using a Siemens model 961 ECAT EXACT HR 

47 PET scanner (Siemens/CTI, Knoxville, TN) with 47 slices encompassing an axial field 

of view of 15cm.  Transverse resolution was 3.8-5.0 mm FWHM and axial resolution was 
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4.7-5.7 mm full width at half maximum (FWHM).  Attenuation data was obtained using 

68
Ge-

68
Ga rotating rod sources to enable quantitative reconstruction of subsequent 

emission scans.  Emission data were obtained in the 2D mode (inter-slice septa 

extended).  All PET data was reconstructed using a ramp filter (approximately 6mm 

FWHM) and then blurred to 12 mm FWHM.  Subject head movement during scanning 

was restricted by a thermoplastic mask.  All PET images were acquired in the eyes-closed 

waking state.  No specific instructions were given regarding cognitive activity during 

scanning other than to remain awake.   

All subjects underwent a single PET session including one FDG scan (to measure 

CMRGlu) and either one (13 subjects) or two (20 subjects) replicate sets of three 
15

O 

scans to measure CBV, CBF, and CMRO2, respectively.   In subjects with two replicates 

of 
15

O scans, CBV, CBF, and CMRO2, values were averaged for data analysis. 

PET Measurement of Glucose Metabolism:  
18

F-fluorodeoxygluse (FDG) uptake and 

trapping was used to image CMRGlu(Fox, Raichle et al. 1988).  Measurements of 

CMRGlu were performed after slow intravenous injection of 5mCi of [
18

F]FDG.  

Dynamic acquisition of PET emission data continued for 60 minutes with 25 5-sec 

frames, 9 20-sec frames, 10 1-min frames, and 9 5-min frames. Venous samples for 

plasma glucose determination were obtained just before and at the mid-point of the scan.   

[
15

O]tracer PET scans: 120 second dynamic scans comprised of 2 second frames that 

began with tracer injection (or inhalation) (Raichle, Martin et al. 1983; Mintun, Raichle et 

al. 1984). With this method, the optimum 40 second scan was created from summation of 

the appropriate frames. By reconstructing all frames and then creating a whole brain 
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time-activity curve, the onset of activity in the brain could be judged exactly. CBF Scan: 

Distribution of CBF was measured with a 40-sec emission image (derived from a 120 

second dynamic scan) after rapid injection of 50 mCi [
15

O]water in saline (Raichle, 

Martin et al. 1983).  CBV Scan: Distribution of CBV was measured with a 5-min 

emission scan beginning 2 min after brief inhalation of 75mCi of [
15

O]carbon monoxide 

in room air (Martin, Powers et al. 1987).  CMRO2 Scan: Distribution of CMRO2 was 

measured with a 40-sec emission scan (derived from a 120 second dynamic scan) after 

brief inhalation of 60 mCi of [
15

O]oxygen in room air (Mintun, Raichle et al. 1984).  

Image Analysis 

While previous studies have focused on task-related alterations in regional 

metabolism, we were interested in the relationship between metabolic measurements 

during the resting state.  Specifically, the ratio between CMRO2 and CMRGlu, known as 

the oxygen-to-glucose index (OGI), can be used as a measure of aerobic glycolysis.  

Measurements of OGI in humans using invasive measurements of cerebral arterial and 

venous blood (Kety-Schmidt technique) have estimated a global ratio of ~5.3-5.5.  Thus, 

~5.5 molecules of oxygen are metabolized for each molecule of glucose.  Theoretically, 

this ratio would be six if all glucose were completely oxidized according to the following 

formula: 

 

C6H12O6 + 6O2  6CO2 + 6H2O      (1) 
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Some fraction of glucose, estimated to be 10%, is only partially oxidized.  This 

regional mismatch between glucose and oxygen metabolism represents glucose that 

undergoes aerobic glycolysis.  Our objective was to image regional variations in the 

CMRO2/CMRGlu ratio in a manner independent from whole brain measures. This 

objective differs somewhat from the originally described PET methodology (Mintun, 

Raichle et al. 1984), in which absolute metabolic rates, e.g., CMRO2, in units of 

ml/min/100g tissue, were determined. Absolute metabolic rates can be of interest, but, in 

practice, are rarely measured with variability less than about 10%. The principal source 

of measurement error is the limited precision achievable in determining the arterial input 

function. Accordingly, we modified the original quantitative methodology to image 

regional variations in which we fix rather than measure global (absolute) metabolic rates. 

This approach is analogous to that done for CBF (Mintun, Fox et al. 1989). A derivation 

of the present method follows. 

A short PET collection (e.g. 40 sec) begun soon after inhalation of [
15

O]O2 

provides a PETO2 image in which activity is nearly proportional to oxygen utilization 

except that metabolized O2 also appears in the blood compartment as [
15

O]H2O.  

However, the blood compartment can be directly visualized as labeled hemoglobin in a 

PETCO image (Martin, Powers et al. 1987). Thus, the blood-compartment-corrected, 

relative oxygen utilization image is obtained as 

 

 CMRO2  PETO2 –  · PETCO      (2) 
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where  is a multiplicative factor that represents the proportionality between blood 

volume and tracer activity. From the original CMRO2 equations (Mintun, Raichle et al. 

1984) this factor is a global constant based on measured blood activity values. Eqn (2) is 

the numerator of the oxygen extraction fraction equation (Mintun, Raichle et al. 1984)  

 

 OEF = (PETO2 –  · PETCO) / ( · PETH2O)     (3) 

 

where PETH2O is activity in a short (e.g., 40 sec) acquisition scan after a bolus injection of 

[
15

O]H2O. The  term is a global multiplicative factor that represents the proportionality 

between CBF and tracer uptake. The near-linear relationship between CBF and the tracer 

uptake in a 40 second acquisition [
15

O]H2O image has been well documented (e.g. 

(Raichle, Martin et al. 1983)).  In the original method,   and  were calculated using 

information obtained by arterial blood sampling. However, small errors in the 

measurement of the blood activity used in the calculation of  leads to over or 

underestimations of this vascular contribution, which in turn, leads to high variation in 

the calculated regional CMRO2. This effect is especially prominent in regions of high 

blood volume.  The present method exploits the sensitivity of the OEF image to errors in 

 by incorporating the observation that OEF is highly uniform over the brain compared 

with other metabolic profiles (Raichle, MacLeod et al. 2001). Thus, we estimated  by 

finding the value that minimizes OEF image variability over the brain. Concurrently,  

was adjusted to obtain a whole-brain mean OEF of 0.4. It should be noted, however, that 

computed CMRO2 is nearly independent of the value assigned to  (Mintun, Raichle et 
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al. 1984).  Following estimation of  and , we calculated CMRO2 according to equation 

(2).   

 

General PET Data Analysis:   

Preprocessing:  For each subject, measures of CBF, CBV, CMRO2, and CMRGlu were 

aligned to each other and then to the subject‟s MPRAGE. The re-aligned data was then 

transformed to Talairach space (Lancaster, Glass et al. 1995) using in-house software and 

scaled to a whole-brain mean of one (local-to-global ratio (Raichle, MacLeod et al. 

2001)).   

Oxygen-to-glucose index (OGI):  OGI was computed by a voxelwise division of 

CMRO2 by CMRGlu to compute a local-to-global OGI.  For comparison to traditional 

OGI measures, this ratio was scaled by 5.323 (Raichle, Posner et al. 1970). 

Glycolytic Index:  In order to quantitatively assess aerobic glycolysis, we performed a 

linear regression of CMRGlu on CMRO2.  The residuals were scaled by 1000 to produce 

the glycolytic index (GI).  GI represents glucose consumption above or below that 

predicted by oxygen consumption.   

PET statistics:  To combine results across subjects, we computed a general linear model 

(GLM) which contained metabolic data for CMRO2, CMRGlu, CBF, CBV, OEF, OGI, 

and GI for each subject.  We performed groupwise random effects analysis (one sample t-

test; n=33) to determine regions with significant deviations in their metabolic values from 

the whole brain mean.  Images were thresholded at a Z>4.4 (p<0.0001, cluster >99, 

corrected for multiple comparisons).   
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Surface mapping:  Volumetric statistical results were projected onto the cortical surface 

of the PALS B12 (population-average landmark and surface-based) atlas by multifiducial 

mapping (Van Essen 2005).  Surface mapping was performed using Caret v5.512 

[http://brainmap.wustl.edu/caret]. 

Brodmann Regions:  Brodmann regions were extracted from the PALS B12 atlas (Caret 

v5.512).  Values for CMRO2, CMRGlu, CBF, CBV, OEF, OGI, and GI were extracted 

for each Brodmann region in the brain (41 regions for each hemisphere) from the general 

linear model (GLM) computed for each subject.  Comparison of metabolic values 

between different Brodmann regions involved paired groupwise t-tests (n=33, two-tailed, 

α =0.05). 

Correlations:  Pearson product-moment correlations between metabolic values were 

performed over cortical Brodmann regions.  Correlations were weighted by the size 

(number of voxels) of the Brodmann regions utilized.  Weighted correlation across 

Brodmann regions is equivalent to voxelwise computation of the standard Pearson 

product-moment correlation after assigning to every voxel within a Brodmann region the 

value of its regional mean.  Significance of correlations was computed using α=.05 and 

80 degrees of freedom (df).  Statistical analysis was performed using SPSS for Windows 

v16.0 (SPSS Inc., Chicago, IL). 

Subcortical regions:  As Caret does not provide subcortical parcellations, regions of 

bilateral caudate, putamen, globus pallidus, and thalamus were manually drawn on our 

representative atlas MPRAGE using Analyze v6.1 (Mayo, Rochester, MN). 

General fMRI data analysis: 
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Preprocessing: BOLD processing included compensation of systematic, slice-dependent 

time shifts, systemic odd-even slice intensity differences, and rigid body correction for 

interframe head motion within and across BOLD runs.  Each BOLD run was intensity 

scaled to a whole brain mode of 1000.  Atlas registration was performed by affine 

transforms connecting the first BOLD run frame with the T1W and T2W structural 

images.  Our atlas template includes MPRAGE data from 12 normal individuals from a 

Siemens Allegra 3T scanner and was made to conform to the 1988 Talairach and 

Tournoux atlas (Lancaster, Glass et al. 1995).   

Low-frequency BOLD fluctuation correlations:   Data was temporally band-pass 

filtered (f<0.08) and spatially smoothed (6mm FWHM).  Sources of spurious variance 

and their temporal derivatives were removed from this data through linear regression (see 

(Fox, Snyder et al. 2005)).  Nuisance regressors included signals averaged over ventricle, 

white matter, and whole brain ROIs as well as measures of head movement.  Correlation 

maps were produced by extracting the BOLD time course from the seed region and 

computing the Pearson‟s r between that time course and that of every other voxel in the 

brain.  Distributed seed regions were comprised of 6-mm-radius spheres
 
centered on 

previously published foci.  Default system spheres were placed in medial prefrontal 

cortex (MPF, [-1,
 
47, -4]), posterior cingulate/precuneus (PCC, [-5, -49, 40]), lateral 

parietal cortex (LP, [-45, -67, 36]).  Cognitive control system spheres were placed 

bilaterally in dorsolateral prefrontal cortex (DLPFC, [-34, 51, 12]; [24, 50, 13]) and 

anterior parietal cortex (aIPL, [-43, -55, 42]; [48, -47, 42]).   

BOLD correlation mapping:  To combine results across subjects and compute statistical 

significance, correlation coefficients were converted to a normal distribution by Fischer‟s 
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z transformation.  Fischer z-maps were combined across subjects using a random-effects
 

analysis (one sample t-test, N=20). To prepare for comparison to PET data, the default 

and control system maps were resampled to 2mm cubic voxels and thresholded at Z>3.0 

(p<0.01, cluster > 17 voxels, corrected for multiple comparisons (Forman, Cohen et al. 

1995)).     

Conjunction Analysis:  A conjunction analysis was performed to qualitatively compare 

regions with elevated aerobic glycolysis measured via PET and the default and cognitive 

control systems delineated by correlation mapping.  Z-score maps of aerobic glycolysis 

were thresholded at a Z>4.4 (p<0.0001, cluster > 99 voxels, corrected for multiple 

comparisons).  The conjunction image (Figure 2.3d) was computed by identifying voxels 

showing significantly elevated aerobic glycolysis and being within either default or 

control systems (conjunction = GI significantly high Λ [voxel ∈ default system V voxel ∈ 

cognitive control system]). 

 

Results 

 

Measures of resting oxygen and glucose metabolism 

Relative metabolic rates for oxygen (CMRO2) and glucose (CMRGlu) were 

imaged with positron emission tomography (PET) in 33 normal right handed adults in the 

resting awake state.  Regional CMRGlu was measured using [
18

F]-fluorodeoxyglucose 

(FDG).  Regional CMRO2 was measured using a total of three scans involving the 

administration of [
15

O]H20 (water), [
15

O]CO (carbon monoxide) and [
15

O]O2 (oxygen).  

In each individual, regional CMRO2 and CMRGlu were scaled to a whole brain mean of 

one (local-to-global ratio; see Methods).  The individual results were averaged over 
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subjects in Talairach atlas space.  The obtained mean regional distributions of CMRO2 

and CMRGlu were similar to previously reported results obtained using quantitative 

measurements in normal subjects (Phelps, Huang et al. 1979; Raichle, MacLeod et al. 

2001).  Glucose and oxygen metabolism both were greatest in cortical gray matter and 

comparatively less in white matter.  The highest local-to-global ratios of CMRO2 and 

CMRGlu were in primary visual cortex (1.35) and posterior cingulate/precuneus (1.34), 

respectively (Figure 2.1).  While the distributions of CMRO2 and CMRGlu exhibited 

regional variation across the brain, these two measures were highly correlated over all 

(r=0.869, p<0.001).  As well, both CMRO2 (r=0.822, p<0.001) and CMRGlu (r=0.869, 

p<0.001) were highly correlated with cerebral blood flow (CBF).  

Resting aerobic glycolysis 

We used two approaches to assess aerobic glycolysis.  First, an oxygen-to-glucose 

index (OGI) image (Figure 2.4) was computed for each individual by voxelwise division 

of relative CMRO2 by relative CMRGlu; the resulting quotient image was scaled to 

obtain a whole brain molar ratio of 5.323 based upon a prior quantitative human PET 

study (Raichle, Posner et al. 1970).  Lower OGI values represent higher levels of aerobic 

glycolysis. While the OGI is a straightforward measure based on well-established 

metabolic principles, OGI images may be noisy in areas of low metabolism because they 

involve voxelwise division. 

To overcome this limitation, we defined a novel measure of aerobic glycolysis in 

the brain: the glycolytic index (GI).  The GI is obtained by linear regression of CMRGlu 

on CMRO2 (Figure 2.2) and exhibiting the residuals scaled by 1000. Positive GI values 

represent locally increased CMRGlu relative to the line of regression, i.e., excess aerobic 
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glycolysis. Likewise, negative GI values represent less glycolysis than that predicted by 

the line of regression.  

Following computation of GI maps for each subject, significance was assessed at 

the population level by voxelwise t-tests against the null hypothesis of uniformly 

proportional glucose:oxygen metabolism, i.e., no deviation from the line of regression.  

The t-maps were converted to equi-probable Z-maps and thresholded at p<0.0001 (Z>4.4, 

cluster >99 voxels) according to previously described methodology (Forman, Cohen et al. 

1995; McAvoy, Ollinger et al. 2001).  Regions with significantly elevated aerobic 

glycolysis were found bilaterally in prefrontal cortex, lateral parietal cortex, the posterior 

cingulate/precuneus, lateral temporal gyrus, gyrus rectus, and the caudate nuclei (Table 

2.1).  In contrast, significantly low glycolysis was found bilaterally in the inferior 

temporal gyrus and throughout the cerebellum.    

The acquired PET data provided the opportunity to compute statistics at the 

regional level and to examine correlations between multiple metabolic measures.  

Correlations were computed over regions corresponding to Brodmann areas defined using 

Caret software (Van Essen 2005) on relative metabolic measures averaged over subjects.  

Thus, GI was significantly correlated (weighted Pearson‟s product-moment correlation, 

80df; see Methods) with OGI (r= -0.986, p<0.001), CBF (r=0.501, p<0.001), CMRO2 

(r=0.243, p<0.05) and CMRGlu (r=0.690, p<0.001).  While the glycolytic index overall 

tended to scale with various metabolic rates, there were significant regional deviations 

particularly in primary sensory cortices. For example, while primary visual cortex (V1 or 

BA 17) showed the highest CMRO2 in the cerebral cortex, its level of aerobic glycolysis 

was at the brain mean.  Moreover, GI was significantly lower in V1 as compared to BA 
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46 in dorsolateral prefrontal cortex (DLPFC) (p<0.001; paired t-test, n=33; see Methods) 

as well as the posterior midline component of the default system (BA 23, p<0.001; paired 

t-test, n=33).  The cerebellum, as whole, showed low levels of CMRGlu (0.89) but 

relatively high CMRO2 (1.04).  Thus, the mean cerebellar GI was strongly negative 

(p<0.0001; n=33; Ho: cerebellar GI = 0), indicating much lower aerobic glycolysis than 

expected for this region given its CMRO2.  Data for all Brodmann regions are listed in 

Table 2.3 and 2.4.  Data for selected subcortical regions (illustrated in Figure 2.5) are 

listed in Table 2.5. 

Oxygen extraction fraction 

The oxygen extraction fraction (OEF) reflects the CMRO2-to-CBF ratio (see 

Equation (3) in Methods).  Because of the strong correlation between CMRO2 and CBF 

(r=0.822; Table 2.2) presumably based on the constant need of the brain for oxygen, it is 

easy to anticipate a uniform OEF across the brain uncorrelated with either CBF or 

CMRO2. This was not observed (Figure 2.6).  Rather, a significant OEF-CMRO2 

correlation was found (r=0.637) indicating that approximately 40% of the regional 

variation in OEF can be attributed to CMRO2 and not CBF (r=0.086). This arises, in part, 

because of a striking elevation of the OEF in visual cortices (Figure 2.6), an observation 

previously noted by us and others (Raichle, MacLeod et al. 2001).   If aerobic glycolysis 

and oxidative phosphorylation are regarded, to some extent, as competing fates of 

glucose, one might expect a negative OEF-GI correlation.  Such a relation was found, but 

it was weak (r=-0.223).  Thus, the present data demonstrate a substantial, regionally 

independent variation in OEF, GI and CBF indicating not only regional variations in 

metabolic profiles but also complex relationships between CBF and the brain‟s metabolic 

requirements.  
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The default and cognitive control systems 

Examination of the GI map (Figure 2.3a) suggested a correspondence between 

regions showing higher than average glycolysis and two distributed systems previously 

defined on the basis of functional neuroimaging studies, specifically, the default and 

cognitive control systems.  The default system is comprised of brain regions that reliably 

reduce activity during the performance of goal-directed tasks (Raichle, MacLeod et al. 

2001).  More recently, the default system has been delineated by analysis of the blood 

oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal 

acquired in the resting state (Fox, Snyder et al. 2005; Damoiseaux, Rombouts et al. 

2006).  Similarly, the cognitive control system includes a set of regions recruited by the 

performance of complicated cognitive tasks (Braver and Barch 2006) and has also been 

delineated on the basis of resting BOLD imaging (Dosenbach, Fair et al. 2008; Vincent, 

Kahn et al. 2008).  We performed resting BOLD correlation mapping (Fox, Snyder et al. 

2005) in a subset (N=20) of the present subjects.  The default system was mapped by 

correlation against the signal averaged over three nodes (posterior cingulate [-5 -49 40], 

left lateral parietal [-45 -67 36], and medial prefrontal [-1 47 -4] cortex).  Similarly, the 

cognitive control system was mapped using a distributed seed region placed bilaterally in 

prefrontal [-34, 51, 12], [24, 50, 13] and anterior parietal [-43, -55, 42], [48, -47, 42] 

cortex.  Regions of significant BOLD correlations (p<0.01, random effects analysis; 

Z>3.0, cluster>17) within the default and control systems are shown in Figures 2.3b and 

2.3c, respectively.  Figure 2.3d shows the overlap between regions of elevated aerobic 

glycolysis and a mask computed as above threshold in either the default or control 

systems.  These two distributed systems together account for most cortical areas showing 

high levels of aerobic glycolysis at rest.   
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Discussion 

 

The highest levels of aerobic glycolysis appear to reside within two cortical 

systems, the default system (Raichle, MacLeod et al. 2001) (Figure 2.3b) and areas in 

frontal and parietal cortex that have been associated with task control processes 

(Dosenbach, Fair et al. 2008) and working memory (Braver and Barch 2006) (Figure 

2.3c).  However, the distribution of aerobic glycolysis within these two systems is not 

uniform.  Within the default system the highest area of aerobic glycolysis is in the lateral 

parietal lobes followed by the dorsal medial prefrontal cortex, posterior cingulate and 

medial precuneus.  The hippocampal formation, a component of the default system 

(Vincent, Snyder et al. 2006), has a level of aerobic glycolysis significantly below the 

brain mean (Table 2.6; Figure 2.7).  In the other system the highest level of aerobic 

glycolysis resides in DLPFC (Table 2.7; Figure 2.8).   

The level of aerobic glycolysis does not follow the overall metabolic rate of the 

tissue in a simple fashion.  While both CMRGlu and CMRO2 are correlated with aerobic 

glycolysis, aerobic glycolysis, as assessed by the GI, is much more variable in relation to 

CMRO2 (r=0.243) than CMRGlu (r=0.690) when surveyed broadly across the brain 

(Tables 2.2-2.4).  Sensory regions such as V1 (BA17) have high metabolic rates with 

CMRO2 (1.35) and CMRGlu (1.30) both significantly elevated above the brain mean, 

although their level of aerobic glycolysis is at the brain mean.  In contrast, though 

DLPFC and posterior cingulate have CMRO2 and CMRGlu comparable to V1, their level 

of aerobic glycolysis is significantly elevated above the brain mean.  These results point 

to regional differences in the manner in which blood flow is coupled to oxygen 

consumption and glucose utilization.  
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In contrast to many areas of the cerebral cortex, the cerebellum as a whole 

appears to have a level of aerobic glycolysis well below the brain mean despite the 

presence of numerous cells that exhibit elevated resting firing rates (Gruol and Franklin 

1987). While a full explanation for the low level of aerobic glycolysis in the cerebellum 

is not presently at hand several factors should be considered in seeking an explanation. 

Most of the synaptic connections and, hence, most of this ongoing activity in the 

cerebellum is GABAergic rather than glutamatergic (Huang, Di Cristo et al. 2007).   A 

known contributor to aerobic glycolysis in the brain is the cycling of glutamate by 

astrocytes (Chatton, Pellerin et al. 2003).  In vitro studies of cerebellar astrocytes 

(Bergersen, Magistretti et al. 2005) reveal their similarity to the astrocytes of the cerebral 

cortex in responding to glutamate but not GABA with a burst of glycolysis.  But, the ratio 

of neurons to glia is much higher in the cerebellum (~6:1) (Ghandour, Vincendon et al. 

1980) than in the cerebral cortex (1:1.5) (Pelvig, Pakkenberg et al. 2007) possibly 

reflecting the preponderance of GABAergic synapses.  This leads us to posit that the low 

level of aerobic glycolysis in the cerebellum reflects a much reduced role of excitatory 

neurotransmission and, hence, less aerobic glycolysis in the astrocytes.      

However, the level of aerobic glycolysis within the cerebellum does not preclude 

transient task-related alterations in the fMRI BOLD signal (a putative correlate to aerobic 

glycolysis driven by increased glutamatergic neurotransmission (Raichle and Mintun 

2006)); nor a decrease in CBF and CMRGlu greater than CMRO2 when excitatory input 

to the cerebellum from the cerebral cortex is reduced due to a cerebral hemisphere stroke 

(so-called cross cerebellar diaschisis (Shamoto and Chugani 1997)).      
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One factor responsible for ongoing aerobic glycolysis in the brain is likely to be 

the need to support membrane-bound, ATP-dependent processes. Best characterized in 

this regard is the process whereby glutamate is removed from the synapse into astrocytes 

along with sodium. The sodium is returned to the extracellular fluid by Na
+
/K

+
-ATPase.  

The energy needed for the pumping action of Na
+
/K

+
-ATPase is derived from aerobic 

glycolysis (Pellerin and Magistretti 1996; Magistretti and Chatton 2005). The use of 

aerobic glycolysis by Na
+
/K

+
-ATPase is not unique to the astrocyte. It fuels Na

+
/K

+
-

ATPase in all cells that possess this membrane-bound pump (Pellerin and Magistretti 

1996) including neurons (Wu, Aoki et al. 1997).  

The use of aerobic glycolysis as an energy source may seem surprising because it 

is inefficient: glycolysis produces a net 2 ATP versus 32 ATP for complete oxidation to 

carbon dioxide and water.  However, it produces ATP at a rate much faster than oxidative 

phosphorylation making it uniquely suited to accommodate small, rapidly changing 

requirements in energy for Na
+
/K

+
-ATPase. In this regard it is probably not fortuitous 

that brain glycogen, a ready source of glucose, resides exclusively in astrocytes (Brown 

2004) .  

A more extended view of the role of aerobic glycolysis has emerged from the 

observation that glycolytic enzymes are found in the postsynaptic density or PSD (Wu, 

Aoki et al. 1997), a very dynamic protein complex containing various glutamate receptor 

complexes concentrated at the site of contact with the presynaptic terminal (Kennedy and 

Ehlers 2006).  While Na
+
/K

+
-ATPase is likely a consumer of glycolytically-generated 

ATP at the PSD it has been posited that some of this ATP may also be used to fuel 

protein synthesis (Wu, Aoki et al. 1997).   
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A further role for aerobic glycolysis in the PSD has been suggested by the finding 

of a selective co-localization of MCT2, the neuronal monocarboxylate transporter used to 

move lactate, with AMPA receptor GluR2/3 (Bergersen, Magistretti et al. 2005). This 

associates aerobic glycolysis with AMPA receptor trafficking and its role in synaptic 

plasticity raising the possibility that among the causes of high levels of aerobic glycolysis 

may be anabolic processes that require glycolysis for the cycling of cell components in 

the service of processes involved in memory and learning. The presence of MCT2 in the 

PSD provides a means of moving the lactate resulting from aerobic glycolysis to the 

extracellular fluid where it may be further utilized or removed from the brain.   

Glucose makes important contributions to anabolic processes in all organs of the 

body providing needed intermediates for cellular proliferation including NADPH, 

nucleotides for DNA replication, and intermediates for fatty acid synthesis (Gaitonde, 

Jones et al. 1987; DeBerardinis, Mancuso et al. 2007) largely by way of the pentose 

phosphate pathway (PPP).   In the adult brain it is estimated that 5-10% of the glucose 

consumed may enter the PPP. Several lines of research provide a perspective from which 

to evaluate its potential significance. These include brain development and the sleep-

wake cycle in adults.   

In the developing nervous system, aerobic glycolysis appears to play a substantial 

role, consistent with its potential to provide the building blocks for cell development and 

proliferation.  In a study of 9 normal infants (age range 1-12 months) under general 

anesthesia, Settergren and colleagues measured CMRO2 and CMRGlu (Settergren, 

Lindblad et al. 1976).  Their data indicate that fully 35% of the glucose consumed is 

utilized outside of oxidative phosphorylation compared to 10% in the adult.  Combining 
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much more limited data from two studies of preterm infants (Altman, Perlman et al. 

1993; Powers, Rosenbaum et al. 1998) indicates that, prior to birth, glycolysis may 

account for over 90% of the glucose consumed.  Unfortunately, we do not know how 

aerobic glycolysis is apportioned among its several potential roles.     

The developmental trajectory of CMRGlu in the human brain has been best 

characterized in the work of Chugani and colleagues (Chugani, Phelps et al. 1987).  They 

studied a cohort of 29 children ranging in age from 5 days to 15 years.  Measurements 

were performed with 
18

F-fluoro-deoxyglucose and PET.  At birth, values were 

approximately 70% of adult values.  By 2 years of age the CMRGlu had risen to adult 

values but continued to rise through years  3 to 4 achieving levels almost twice that of the 

adult.  These very high levels were maintained until approximately age 9 when they were 

observed to commence a slow decline to adult levels. As they point out, this temporal 

profile of CMRGlu in the human brain corresponds rather well to an initial 

overproduction neuropil components followed by an elimination of excessive cells and 

their processes.  

Missing from these important data (Chugani, Phelps et al. 1987) are measures of 

the level of aerobic glycolysis across development.  One can only speculate from other 

data (Altman, Perlman et al. 1993; Powers, Rosenbaum et al. 1998)  that, in the newborn, 

it is a much higher fraction of the CMRGlu than in the adult. Is the dramatic increase in 

the CMRGlu during the years in which the brain is rapidly developing primarily 

accounted for by an increase in aerobic glycolysis?  Surprisingly, we do not know the 

answer.  Of particular importance would be information on the amount of glucose 

entering the PPP because of the critical role it plays in synthetic processes in the brain. It 
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is reasonable to posit that a major factor driving the increase of glucose consumption in 

the developing brain are the demands associated with synthesizing an expanding 

neuropil. Future research must focus on these critical gaps in our knowledge.   

If, indeed, aerobic glycolysis plays a critical role in the synthesis of brain 

constituents in the developing brain, is there any remnant of that role in the adult brain to 

account for some of its ongoing aerobic glycolysis? Much interest as well as controversy 

has surrounded the possibility that new neurons are produced in the adult brain (Gage, 

Kempermann et al. 1998). Regardless of the resolution of that controversy such cells are 

few in number and have been primarily found in the hippocampus, an area of the brain 

we find to have a low level of aerobic glycolysis (see Table 2.6).  

However, to focus on the creation of new cells as a possible requirement for 

ongoing aerobic glycolysis in the adult brain overlooks the fact that „old‟ cells are 

continually being updated and remodeled.  As Eve Marder has pointed out “…neurons 

can live for up to 100 years” yet “…the ion channels and receptors that underlie electrical 

signaling and synaptic transmission turn over in the membrane in minutes, hours, days or 

weeks” (Marder and Goaillard 2006)  These dynamic processes undoubtedly call upon 

the brain‟s anabolic machinery to which aerobic glycolysis is known to contribute 

significantly. While evidence for the participation of aerobic glycolysis in ongoing 

anabolic activity in the adult brain is limited and, to some extent inferential (see above), it 

is complemented by studies of the sleep-wake cycle in adult humans.   

One attractive hypothesis associates wakefulness with synaptic potentiation and 

sleep with synaptic depression (Tononi and Cirelli 2003), a cycle that facilitates learning 
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and memory through experience while preserving long-term synaptic balance. With 

regard to the metabolic accompaniments of this cycle, evidence exists that learning a 

difficult task is accompanied not only by the expected increase in aerobic glycolysis 

during task performance but also a persistence of aerobic glycolysis long after the task 

has been completed (Madsen, Hasselbalch et al. 1995).  Set in the context of a day‟s 

wakeful experiences, this is consistent with the observation that CMRGlu, CMRO2 

(Boyle, Scott et al. 1994) and CBF (Boyle, Scott et al. 1994; Braun, Balkin et al. 1997) 

all increase over a period of wakefulness but CMRGlu disproportionately so.  As a result 

the level of aerobic glycolysis rises significantly during wakefulness (Boyle, Scott et al. 

1994), returning to normal levels with sleep (Vyazovskiy, Cirelli et al. 2008).  One 

interpretation of these observations is that synaptic potentiation is associated with 

ongoing anabolic activity at synapses supported by increased aerobic glycolysis. Sleep-

induced synaptic depression (Vyazovskiy, Cirelli et al. 2008) reverses this process with 

an attendant reduction in aerobic glycolysis. A clear test of this hypothesis would be the 

demonstration that the wakefulness-induced increase in aerobic glycolysis is accounted 

for by increased activity of the PPP.    

We have assessed regional differences in resting CMRO2, CMRGlu and aerobic 

glycolysis in a manner independent of whole brain quantitative measures.  This strategy 

(see Methods) differs somewhat from that originally described by us (Raichle, Martin et 

al. 1983; Mintun, Raichle et al. 1984; Martin, Powers et al. 1987; Fox, Raichle et al. 

1988) in which absolute rates for CMRGlu and CMRO2 were determined.  The primary 

advantage of the present strategy is its improved accuracy in determining the regional 

variations in CMRO2 and CMRGlu.  This is due to the elimination of rapid arterial blood 
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sampling for the determination of an arterial input function for quantitative measurements 

of CMRO2 and CMRGlu.  Arterial blood sampling of rapidly time-varying radioactivity 

is an inherently noisy measurement which would have significantly compromised our 

ability to accurately assess levels of metabolism regionally. Because our primary interest 

was in regional variations in our measurements and not absolute values we elected to 

forego arterial blood sampling in this study.       

The level of aerobic glycolysis is normally obtained from the molar ratio of 

CMRO2 to CMRGlu.  This ratio, known as the oxygen-glucose index or OGI, is 6 when 

all of the glucose consumed by the brain is oxidized to carbon dioxide and water.   In the 

present study we have assessed variations in the OGI in two ways.  First, we have 

calculated regional variations in the OGI by assuming a mean value for the whole brain 

of 5.323 (Raichle, Posner et al. 1970).  Second, we have estimated the levels of aerobic 

glycolysis in the brain from the residuals of a regression of local-to-global ratios of 

CMRO2 as a function of CMRGlu (Figure 2.2). This provided us with a glycolytic index 

or GI.  This approach has three advantages: first, it is not based on an assumed whole-

brain average value of the OGI; second, it is more intuitive in that it varies directly with 

the level of aerobic glycolysis in contrast with the OGI which varies inversely; and, third, 

it is less sensitive to noise from CMRO2 measurements.   The OGI and GI approaches 

were well correlated (r= -0.986).  

CMRO2 and CMRGlu each varied greatly across the brain (Figure 2.1) but were 

highly correlated (r=0.869) over regions (Table 2.2).  These findings are consistent with a 

regional relationship between CMRO2 and CMRGlu which has been assumed for many 

years despite the almost total lack of directly supporting data in vivo.  Cerebral blood 
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flow (CBF; Figure 2.1) exhibited an almost identical variability and, as expected, was 

highly correlated with both CMRO2 (r=0.822) and CMRGlu (r=0.869).  These highly 

correlated relationships among CBF, CMRO2 and CMRGlu have often led investigators 

to assume, we believe incorrectly, that they are equivalent in providing an assessment of 

the regional variability in brain energy metabolism.  Because of the relative ease of 

measuring CBF and CMRGlu as compared to CMRO2, the former two have been the 

most commonly used in this regard.  For a more complete assessment of the brain‟s 

metabolic activity and aerobic glycolysis in particular, however, knowledge of the ratio 

of CMRO2 to CMRGlu is required as demonstrated in the data we report here.  

Summing up, the significant finding of the present study is that ongoing aerobic 

glycolysis in the adult human brain is not uniformly distributed.  The high levels of 

ongoing aerobic glycolysis in systems associated with self-referential processing and 

memory, both working and episodic, suggests that anabolic processes, for which aerobic 

glycolysis is known to play a critical role, may well be particularly active in these 

systems.  Moving forward, research on brain metabolism must distinguish between the 

roles of aerobic glycolysis and oxidative phosphorylation with particular attention to the 

unique contributions of the former in energizing membrane bound processes and 

providing critical building blocks for cellular constituents which, even in the adult 

nervous system, may be turning over rapidly to accommodate memory and learning.  

Understanding these relationships more thoroughly will not only advance our 

understanding of brain function but will also enlighten us with regard to diseases of the 

nervous system such as Alzheimer‟s disease (Li, Nowotny et al. 2004) and Huntington‟s 

disease (Powers, Videen et al. 2007) in which alterations of glycolysis have been 
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implicated in their pathophysiology.  With regard to Alzheimer‟s disease, we note that 

the distribution of pathology in this condition remarkably falls within the brain‟s regions 

of high resting glycolysis (Buckner, Snyder et al. 2005).     
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Figure 2.1: Global maps of cerebral blood flow and metabolism. 

Average maps of oxygen consumption (Upper; CMRO2), glucose consumption (Middle; 

CMRGlu), and cerebral flood flow (Lower; CBF) were computed using data collected in 

the eyes-closed awake state and averaged across 33 subjects.  Because we were interested 

in regional changes, the whole brain mean was set to 1.0.  Note the large deviations in 

oxygen and glucose consumption across the brain, most prominently between gray and 

white matter.  Despite regional variations, CMRO2, CMRGlu and CBF generally are 

matched across most of the brain. 
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Figure 2.2: Voxelwise linear regression of glucose consumption (CMRGlu) on oxygen 

consumption (CMRO2). 

For illustration purposes, data from group average CMRGlu and CMRO2 is shown here.  

However, regression was performed individually for each subject to compute individual 

glycolytic index maps.  Although CMRGlu and CMRO2 were highly correlated 

(r=0.913), voxel clusters that systematically deviate from the line of regression are 

evident.  In particular, the cluster below the line of regression corresponds to regions of 

significantly low GI, found predominantly in the cerebellum and inferior temporal cortex. 
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Figure 2.3: Conjunction analysis between resting aerobic glycolysis (Glycolytic Index; 

GI) and BOLD correlation maps of the default and cognitive control systems. 

 (a): Regions with elevated aerobic glycolysis (n=33, groupwise t-test, Z>4.4, p<0.0001, 

cluster >99, corrected for multiple comparisons).  (b): Default system as delineated by 

BOLD correlation mapping  (n=20, groupwise t-test, Z>3.0, p<0.01, cluster >17, 

corrected for multiple comparisons). (c): Cognitive control system defined as in (b). (d): 

Intersection of voxels showing significantly elevated GI and membership in either the 

default or cognitive control systems.  
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Table 2.1: Regions with elevated aerobic glycolysis. 

Aerobic glycolysis (Glycolytic Index; GI) significantly (p<0.0001) different from the line 

of regression (n=33, groupwise t-test, Z>4.4, cluster >99, corrected for multiple 

comparisons) under the assumption of a homogenous normal bivariate distribution of 

CMRO2 and CMRGlu. Data are shown as mean ± SD. Coordinates represent peak GI Z-

score location in the Talairach system.  GI, glycolytic index; CMRO2, cerebral metabolic 

rate of oxygen; CMRGlu, cerebral metabolic rate of glucose; CBF, cerebral blood flow; 

CBV, cerebral blood volume; OEF, oxygen extraction fraction.   
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Table 2.2: Correlations over Brodmann regions between metabolic variables. 

GI, glycolytic index; OGI, oxygen-to-glucose index; CMRO2, cerebral metabolic rate of 

oxygen; CMRGlu, cerebral metabolic rate of glucose; GI, glycolytic index; CBF, cerebral 

blood flow; CBV, cerebral blood volume; OEF, oxygen extraction fraction.  
a
p<0.001; 

b
p<0.01, 

c
p<0.05. 
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Figure 2.4: Average map of the oxygen-to-glucose index. 

The whole brain mean is set to a molar ratio of 5.323 as derived from Raichle et al., 1970. 

Lower OGI values represent regions with higher levels of aerobic glycolysis.  These 

regions include medial and dorsolateral prefrontal cortex, posterior cingulate, and lateral 

parietal lobes.  Regions with high OGI values include the cerebellum (not shown). 
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Figure 2.5: Subcortical regions of interest. 

Regions were manually defined on our representative Talairach atlas.   
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Figure 2.6: Average map of the oxygen extraction fraction. 

The whole brain mean is set to 1.0.  Note high OEF in occipital cortex, and especially 

primary visual cortex.   
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Figure 2.7: Default system regions of interest. 

Regions were identified by resting state BOLD correlation mapping (n=20, Z>3.0, 

p<0.01, cluster >17, corrected for multiple comparisons). Correlations were computed 

between all voxels in the brain and the signal averaged within a distributed seed region 

comprised of three 6mm radius spheres placed in medial prefrontal cortex (MPF, [-1,
 
47, 

-4]), posterior cingulate/precuneus (PCC, [-5, -49, 40]), and lateral parietal cortex (LP, [-

45, -67, 36]). 

  



49 
 

 

 

Figure 2.8: Cognitive control system regions of interest. 

Regions were identified by resting state BOLD correlation mapping. The distributed seed 

region was comprised of four 6mm radius spheres placed bilaterally in dorsolateral 

prefrontal cortex (DLPFC,[-34, 51, 12], [24, 50, 13]) and anterior parietal cortex (aIPL, [-

43, -55, 42], [48, -47, 42]). 
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Table 2.3: Metabolism (mean ± SD) for each Brodmann region in the left hemisphere. 

Regions from Caret atlas. GI, glycolytic index; OGI, oxygen-to-glucose index; CMRO2, 

cerebral metabolic rate of oxygen; CMRGlu, cerebral metabolic rate of glucose; CBF, 

cerebral blood flow; CBV, cerebral blood volume; OEF, oxygen extraction fraction 
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Table 2.4: Metabolism (mean ± SD) for each Brodmann region in the right hemisphere. 

Regions from Caret atlas. GI, glycolytic index; OGI, oxygen-to-glucose index; CMRO2, 

cerebral metabolic rate of oxygen; CMRGlu, cerebral metabolic rate of glucose; CBF, 

cerebral blood flow; CBV, cerebral blood volume; OEF, oxygen extraction fraction 
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Table 2.5: Metabolism (mean ± SD) for selected subcortical regions. 

Regions were manually defined on our representative Talairach atlas (see Figure 2.5).  

Note elevated glycolysis in bilateral caudate, and low glycolysis in bilateral globus 

pallidus and thalamus.  Abbreviations as in Table 2.3.  
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Table 2.6: Metabolism (mean ± SD) within default system. 

Regions identified by resting state BOLD correlation mapping. Note high levels of 

glycolysis in all regions except bilateral hippocampal formation. MPFC, medial 

prefrontal cortex; PCC, posterior cingulate; additional abbreviations as in Table 2.3.  
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Table 2.7: Metabolism (mean ± SD) within cognitive control system. 

Regions identified by resting state BOLD correlation mapping. Note high levels of 

glycolysis in all regions, including bilateral caudate nuclei.  DLPFC, dorsolateral 

prefrontal cortex; PFC, prefrontal cortex; ACC, anterior cingulate cortex; additional 

abbreviations as in Table 2.3. 
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Chapter 3: Resting brain metabolism is modified by task performance: 

metabolic plasticity of the brain 

 

Abstract 

 

Neuronal activity results in a regional increase in glucose metabolism greater than 

the corresponding increase in oxygen consumption, resulting in elevated aerobic 

glycolysis.  It has been assumed that short-term increases in neuronal activity are 

associated with only transient alterations in brain metabolism, though learning induces 

rapid brain plasticity and alters the metabolic response to task performance.  In order to 

investigate the effect of visuomotor rotation learning on resting cerebral metabolism we 

performed functional MRI (fMRI) during motor task performance (28 subjects) as well as 

positron emission tomography (PET) (18 subjects) and fMRI (40 subjects) during eyes-

closed rest both before and after completion of task performance.  The relative 

distribution of aerobic glycolysis across the resting brain was determined using a 

combination of cerebral blood flow, glucose and oxygen utilization measures derived 

from positron emission tomography.  Brain regions involved in task performance, as 

determined from the fMRI study, including left lateral premotor cortex, had elevated 

aerobic glycolysis in the resting state several hours following task completion, though no 

other changes in cerebral metabolism or spontaneous BOLD correlations were found.  

These data provide supporting evidence to the synaptic homeostasis hypothesis, which 

suggests that learning causes changes in cellular neurophysiology that increase regional 

metabolic demands long after transient neuronal activation.  
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Introduction 

 

In the normal „resting‟ brain, its metabolic needs are supported by the nearly 

complete (>90%) oxidation of glucose to carbon dioxide and water producing 

approximately 36 moles of ATP per mole of glucose consumed (Siesjo 1978).  During 

transient task conditions, when brain activity increases or decreases, blood flow and 

glucose consumption, as measured in humans with PET, faithfully follow (Raichle, 

Posner et al. 1970; Madsen, Hasselbalch et al. 1995). These changes are, surprisingly, not 

associated with proportionate changes in oxygen consumption (Fox, Raichle et al. 1988; 

Blomqvist, Seitz et al. 1994).  Consequently, increases in regional brain activity are 

associated with increases in regional aerobic glycolysis, glycolysis occurring in the 

presence of oxygen but in excess of that required for oxidative phosphorylation (Fox, 

Raichle et al. 1988; Raichle and Mintun 2006). Since aerobic glycolysis produces 

significantly less energy than complete oxidation of glucose, its role in cellular activities 

has been overlooked, though its presence in the resting brain has been known for several 

decades (Raichle, Posner et al. 1970; Magistretti and Pellerin 1999). 

Aerobic glycolysis may have an important role in providing energy and needed 

metabolic intermediates for long-term potentiation (LTP) and learning.  Aerobic 

glycolysis in the normal brain is largely confined to the astrocytes where it is used to 

provide the energy needed to remove the excitatory neurotransmitter glutamate from 

synapses and convert it to glutamine (Pellerin and Magistretti 1994; Chatton, Pellerin et 

al. 2003). Since the largest fraction of the brain‟s energy budget is related to glutamate 

cycling (Sibson, Dhankhar et al. 1997; Attwell and Iadecola 2002), aerobic glycolysis 

may be uniquely positioned to provide energy for synaptic activity and be associated with 
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synaptic strength. Since learning and long term potentiation (Bashir, Alford et al. 1991; 

Richter-Levin, Canevari et al. 1995; Buchs and Muller 1996) lead to increases in 

neuronal firing and synaptic efficacy and increased synaptic glutamate flux then aerobic 

glycolysis may be important for the removal of this glutamate from the synaptic cleft 

(Pellerin and Magistretti 1994; Pellerin and Magistretti 1996). 

In addition, aerobic glycolysis may provide an important window into neuronal 

changes related to memory.   Glutamate and its interactions with the NMDA receptor 

have been at the center of discussions of the cellular basis of memory for some time  

(Sibson, Dhankhar et al. 1998; Lynch 2004).  Recent evidence would suggest that the 

induction of long term potentiation or LTP is accompanied by a local increase in 

dendritic excitability that is dependent upon the activation of NMDA receptors (Martin, 

Grimwood et al. 2000; Frick, Magee et al. 2004). In addition, LTP induces an increase in 

synaptic proteins and alters the ultrastructure of the postsynaptic density (Buchs and 

Muller 1996; Wu, Aoki et al. 1997). This change in dendritic excitability and synaptic 

structure may be locally expressed by changes in brain glycolysis.   

There are several pieces of indirect evidence that would be compatible with such 

a hypothesis. First, the short-term metabolic changes we observe with imaging tasks are 

largely related to events in axon terminals and dendrites (Schwartz, Smith et al. 1979; 

Lauritzen 2001; Lauritzen and Gold 2003; Logothetis 2003; Raichle 2006).  Presumably, 

these same locations are the sites of sustained synaptic plasticity. Second, as just 

discussed, these transient changes are associated with disproportionate increases in 

aerobic glycolysis over oxidative phosphorylation.  However, the changes induced by 

long-term potentiation continue after task completion as synaptic strength increases and 
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new synapses are formed.  Performance of a demanding cognitive task such as the 

Wisconsin card sorting task (Madsen, Hasselbalch et al. 1995) but not a passive visual 

perception task is followed by a persistent increase in global aerobic glycolysis upto forty 

minutes following task completion, though its regional distribution has not been 

investigated.  Other studies have found that a full day of wakefulness is associated with a 

20% global increase in blood flow and glucose utilization when compared with 

measurements made shortly after awakening in the morning (Boyle, Scott et al. 1994; 

Braun, Balkin et al. 1997; Mintun, Vlassenko et al. 2002; Vyazovskiy, Cirelli et al. 

2008).  These changes are specific to activities performed during wakefulness, 

presumably related to experiential learning and neuronal plasticity.  While it is presently 

unknown whether this rather remarkable increase in blood flow and glucose utilization 

over the waking part of the day is associated with an increase in glycolysis, this seems 

more likely than an increase in oxidative phosphorylation simply because a significant 

additional increase in oxidative phosphorylation of this magnitude would be energetically 

awkward.  From these observations one might reasonably posit that experience-induced 

changes in synaptic activity would be reflected in persistent local changes in aerobic 

glycolysis.  While evidence for this assertion is presently very modest it is, nevertheless, 

consistent.   

Taken together these observations cause us to entertain the hypothesis that novel 

experiences during wakefulness are associated with persistent glutamate mediated 

increases in excitatory synaptic activity, expressed as a disproportionate increase in 

aerobic glycolysis within task relevant circuits. To test this hypothesis we performed 

positron emission tomography (PET) to measure resting aerobic glycolysis both before 
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and after completion of a rotational learning task (Ghilardi, Ghez et al. 2000; Huber, 

Ghilardi et al. 2004).  In order to control for effects of kinematic alterations and circadian 

rhythm, we utilized a parallel control group who performed the identical motor task 

without rotational perturbation. We also used task-related fMRI to determine the regions 

involved acutely during task performance and resting BOLD correlation analysis to 

determine whether brain regions involved in task performance altered their functional 

connectivity following learning. 

Methods 

 

Participants 

Fifty-eight healthy, right-handed neurologically normal participants were 

recruited from the Washington University community for one of three experiments: 1) a 

functional MRI (fMRI) study involving an implicit motor learning task; 2) a positron 

emission tomography (PET) experiment performed during the eyes closed awake state; 3) 

a resting fMRI study performed in the eyes closed awake state.  Twenty-eight healthy, 

right-handed subjects (14 women) aged 18 to 28 (mean 24.4 ± 2.0) participated in the 

fMRI study.  Eighteen healthy, right-handed participants (9 women) aged 20 to 29 years 

(mean 25.5 ± 1.8) participated in the PET study.  Fifty-eight subjects participated in the 

resting fMRI study (28 subjects from Experiment 1; 18 subjects from Experiment 2).  

Subjects were excluded if they had contraindications to MRI, history of mental illness, 

possible pregnancy, or medication use that could interfere with brain function.  All 

experiments were approved by the Human Research Protection Office (HRPO) as well as 
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the Radioactive Drug Research Committee (RDRC) for the PET sessions at Washington 

University in St. Louis.  Written informed consent was provided by all participants. 

Motor Learning Task 

The motor learning task was an out-and-back reaching movement task (eTT, 

Verona, Italy) that was performed using a MRI compatible stylus and digitizing tablet 

(Mag Design and Engineering, Sunnyvale, CA). The characteristics of this task have been 

described in detail previously (Ghilardi, Ghez et al. 2000; Krakauer, Pine et al. 2000; 

Ghilardi, Eidelberg et al. 2003; Huber, Ghilardi et al. 2004).  Subjects viewed a computer 

monitor that displayed a central fixation point and eight surrounding circles and on-

screen cursor that was controlled by a hand-held stylus.  When one of the eight 

surrounding circles changed color from white to black (at 0.93Hz), subjects were 

instructed to move the cursor from the central fixation point to that circle and back to the 

central fixation point as quickly and accurately as possible.  Each of the surrounding 

circles was presented in a pseudo-random order. Stimuli blocks included 264 such out-

and-back movements.  Subjects were randomized into two groups: an implicit rotation 

learning group (ROT) and a motor control (CON). Rotation learning (ROT) subjects 

performed the task with a stepwise 15 degree visuomotor rotation.  The initial stimulus 

block (block 1) involved no perturbation in the ROT condition.  Subsequent blocks 

involved the mismatch between movement on the digitizing tablet and the movement of 

the onscreen cursor; cursor movement was rotated 15 degrees counterclockwise causing 

the subjects to compensate with a 15 degree clockwise movement.  Following the initial 

completion of a 15 degree visuomotor rotation, ROT subjects performed stepwise 15 

degree rotation for 3 additional blocks until subjects had adapted to 60 degree visuomotor 
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rotation. Fifteen degree increments were chosen because this allows for implicit learning 

without conscious awareness (Ghilardi, Ghez et al. 2000).  Motor control (CON) subjects 

performed this task without any perturbation (Figure 3.1). 

Experiment 1: fMRI  

 

Experimental Design 

Subjects performed one fMRI session that consisted of nine BOLD runs.  In the 

first two runs (pre-learning), all subjects performed the motor learning task with no 

perturbation.  In the next five runs subjects were assigned to either the CON or ROT 

group and performed the task as described previously while in the scanner.  Following 

completion of learning, the CON group underwent two final runs with no visuomotor 

rotation (CON) and the ROT group performed the two final runs with sixty degrees of 

visuomotor rotation (ROT). fMRI data was collected in block design format with two 

movements per TR interval (2.16s).  In each of the eight-minute pre- and post-learning 

runs, three task blocks included performance of 32 movements (16 frames) interleaved 

with visual fixation (12 frames).  For the motor learning task subjects performed 5 runs 

with one block per run for a total of 264 movements/run (1320 movements).  T1- and T2-

images were collected for alignment. 

Image Acquisition 

Structural MRI: MRI studies were performed on the Siemens 3T Allegra (Erlangen, 

Germany).  Imaging sessions began with acquisition of a three orthogonal slice scout 

scan, followed by a coarse 3D sagittal T1-weighted MPRAGE acquisition for slice pre-
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registration [TE=3.93ms, TR=722ms, TI=380ms, flip angle=8
o
, 128x128 acquisition 

matrix, 1 acquisition, 80 slices, 2x2x2 mm voxels].  High-resolution structural images 

were acquired using a 3D sagittal T1-weighted MPRAGE acquisition optimized for high 

contrast-to-noise ratio and resolution [TE=3.93ms, TR=1.9s, 256x256 acquisition matrix, 

1 acquisition, 160 slices, 1x1x1 mm voxels].  High-resolution 2D multislice oblique axial 

spin density/T2-weighted fast spin echo (TSE) structural images were acquired using 

slice tilts and positions computed by slice pre-registration [TE=98ms, TR=2.1s]. 

fMRI Scanning:  The functional images were collected in serial runs of an asymmetric 

spin-echo echo-planar sequence (same as that used in the BOLD contrast) (TR=2.16s, 

TE=25ms).  One acquisition consisted of 39 transverse slices and 4mm
3
 isotropic voxels.  

All subjects completed 2 fMRI runs, each 200 frames (8 minutes) in duration both before 

and after learning task performance.  During each run, sets of 39 contiguous 4mm thick, 

axial images were acquired parallel to the anterior-posterior commissural plane (4 x 4 

mm in plane resolution).  MR data was reconstructed in images and normalized by:  1) 

scaling whole-brain signal intensity to a fixed value; and 2) removing the linear slope on 

a voxel-by-voxel basis to counteract signal drift.  Between-subjects analyses will be 

conducted following transformation of data to a common atlas space and blurring images 

with an 8mm FWHM Gaussian filter.  Registration to a Talairach atlas template was 

achieved by computing linear (affine) transforms connecting the fMRI run first frame 

(averaged over all runs after cross-run realignment) with a T2 and T1-weighted structural 

image.   

General fMRI Data Analysis 

fMRI preprocessing steps included compensation of systematic, slice-dependent 
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time shifts, elimination of systematic odd-even slice intensity differences due to 

interleaved acquisition, and rigid body correction for interframe head motion within and 

across runs. Each fMRI run was intensity scaled to a yield a whole brain mode value of 

1000 (not counting the first four frames). Atlas registration was achieved by computing 

affine transforms connecting the fMRI run first frame (averaged over all runs after 

crossrun realignment) with the T2 and average T1-weighted structural images. Our atlas 

representative template includes MP-RAGE data from 12 normal individuals and was 

made to conform to the 1988 Talairach atlas. To prepare the BOLD data for the present 

main analyses, each fMRI run was transformed to atlas space and resampled to 3 mm 

cubic voxels. For each participant, a General Linear Model (GLM) was used to estimate 

hemodynamic model-independent event related responses over 35-seconds (16 frames).   

Statistics:  Two ANOVA analyses were performed.  First, ANOVA was performed to 

determine regions with increased activity across groups (ROT and CON combined) and 

states (pre and post combined) during motor task performance (main effect of time).  

Images were thresholded at Z>3.0, p<0.01, cluster size >17, Monte Carlo corrected.  

Second, ANOVA was performed to compare pre- and post-learning in both CON and 

ROT groups.  A mixed-effects model was used to determine the (pre x post) X (ROT x 

CON) interaction.  Images were thresholded at Z>3.0, p<0.01, cluster size >17, Monte 

Carlo corrected. 

Experiment 2: PET  

 

Experimental Design 
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Subjects performed two positron emission tomography (PET) sessions during 

eyes-closed rest in a single day, one immediately before (pre-task) and one immediately 

after completion of the motor task (post-task) mentioned above.  Motor task performed 

between the PET sessions took place outside the PET scanner.  

Image Acquisition 

Structural MRI:  MRI scans were obtained in all subjects to guide anatomical 

localization.  High-resolution structural images were acquired using a 3D sagittal T1-

weighted MPRAGE on a Siemens (Siemens, Erlangen, Germany) 3T Allegra 

[TE=3.93ms, TR=1900ms, TI=1100ms, flip angle=20
o
, 256x256 acquisition matrix, 160 

slices, 1x1x1 mm voxels]. 

PET Scanning:  All subjects underwent two duplicate PET session that each included 

one [
18

F]-fluorodeoxyglucose (FDG) scan to measure resting glucose utilization 

(CMRGlu) and two replicate sets of three 
15

O scans: [
15

O]-H20 to measure cerebral blood 

flow and of [
15

O]-CO and [
15

O]-O2 to measure cerebral oxygen utilization (CMRO2).   

The two replicates of 
15

O scans within a scanning session were averaged for data 

analysis.  All PET images were acquired in the eyes-closed waking state.  No specific 

instructions were given regarding cognitive activity during scanning other than to remain 

awake. 

Studies were performed using a Siemens model 961 ECAT EXACT HR 47 PET 

scanner (Siemens/CTI, Knoxville, TN) with 47 slices encompassing an axial field of view 

of 15cm.  Transverse resolution was 3.8-5.0 mm FWHM and axial resolution was 4.7-5.7 

mm full width at half maximum (FWHM).  Attenuation data was obtained using 
68

Ge-
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68
Ga rotating rod sources to enable quantitative reconstruction of subsequent emission 

scans.  Emission data were obtained in the 2D mode (inter-slice septa extended).  All 

PET data was reconstructed using a ramp filter (approximately 6mm FWHM) and then 

blurred to 12 mm FWHM.  Subject head movement during scanning was restricted by a 

thermoplastic mask.   

PET Measurement of Glucose Metabolism:  [
18

F]-fluorodeoxygluse (FDG) uptake and 

trapping was used to image CMRGlu(Fox, Raichle et al. 1988).  Measurements of 

CMRGlu were performed after slow intravenous injection of 5mCi of [
18

F]-FDG.  

Dynamic acquisition of PET emission data continued for 60 minutes with 25 5-sec 

frames, 9 20-sec frames, 10 1-min frames, and 9 5-min frames. Venous samples for 

plasma glucose determination were obtained just before and at the mid-point of the scan.  

The two scanning sessions were approximately 5 hours apart.  In order to account for any 

residual radioactivity from the initial FDG scan, an additional 10 minute background scan 

was performed before the second FDG scan.  

[
15

O]tracer PET scans: 120 second dynamic scans comprised of 2 second frames that 

began with tracer injection (or inhalation) (Raichle, Martin et al. 1983; Mintun, Raichle et 

al. 1984). With this method, the optimum 40 second scan was created from summation of 

the appropriate frames. By reconstructing all frames and then creating a whole brain 

time-activity curve, the onset of activity in the brain could be judged exactly. CBF Scan: 

Distribution of CBF was measured with a 40-sec emission image (derived from a 120 

second dynamic scan) after rapid injection of 50 mCi [
15

O]water in saline (Raichle, 

Martin et al. 1983).  CBV Scan: Distribution of CBV was measured with a 5-min 

emission scan beginning 2 min after brief inhalation of 75mCi of [
15

O]carbon monoxide 
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in room air (Martin, Powers et al. 1987).  CMRO2 Scan: Distribution of CMRO2 was 

measured with a 40-sec emission scan (derived from a 120 second dynamic scan) after 

brief inhalation of 60 mCi of [
15

O]oxygen in room air (Mintun, Raichle et al. 1984).  

General PET Data Analysis:   

Preprocessing:  For each subject, measures of CBF, CBV, CMRO2, and CMRGlu were 

aligned to each other and then to the subject‟s MPRAGE. The re-aligned data was then 

transformed to Talairach space (Lancaster, Glass et al. 1995) using in-house software and 

scaled to a whole-brain mean of one (local-to-global ratio (Raichle, MacLeod et al. 

2001)).   

Glycolytic Index:  In order to quantitatively assess aerobic glycolysis, we performed a 

linear regression of CMRGlu on CMRO2.  The residuals were scaled by 1000 to produce 

the glycolytic index (GI).  GI represents glucose consumption above or below that 

predicted by oxygen consumption.   

PET statistics:  To combine results across subjects, we computed a general linear model 

(GLM) which contained metabolic data for CMRO2, CMRGlu, CBF, and GI for each 

subject in both pre- and post-task PET sessions.  We performed a groupwise mixed-

effects analysis (repeated measures t-test; n=18) to determine any regions that showed 

preferential changes in either ROT or CON groups between pre- and post-task resting 

states.  All analyses were performed on a voxelwise basis.  Images were thresholded at 

Z>4.4 (p<0.00001, cluster > 99). 

Surface mapping:  Volumetric statistical results were projected onto the cortical surface 

of the PALS B12 (population-average landmark and surface-based) atlas by multifiducial 
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mapping (Van Essen 2005).  Surface mapping was performed using Caret v5.512 

[http://brainmap.wustl.edu/caret]. 

Conjunction Analysis 

A conjunction analysis was performed to qualitatively compare regions with increased 

activity during motor task performance (Experiment 1), altered activity during 

visuomotor rotation task performance measured using fMRI (Experiment 1), elevated 

aerobic glycolysis measured via PET (Experiment 2). 

Experiment 3: Resting fMRI  

Experimental Design 

Two groups of subjects were included in this analysis (total N=58). Forty subjects 

(28 subjects from Experiment 1; 26 subjects ROT, 14 subjects CON) performed two 

resting fMRI sessions during eyes-closed rest in a single day, one immediately before 

(pre-task) and one immediately after completion of the motor task (post-task) mentioned 

above.  Motor task performed between the resting fMRI sessions took within the MR 

scanner. In addition, eighteen subjects (from Experiment 2) performed a single resting 

fMRI session during eyes-closed rest on separate day from the PET experiment. 

Image Acquisition 

Structural MRI:  MRI scans were obtained in all subjects to guide anatomical 

localization.  High-resolution structural images were acquired using a 3D sagittal T1-

weighted MPRAGE on a Siemens (Siemens, Erlangen, Germany) 3T Allegra 
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[TE=3.93ms, TR=1900ms, TI=1100ms, flip angle=20
o
, 256x256 acquisition matrix, 160 

slices, 1x1x1 mm voxels]. 

Resting  fMRI scanning: Forty normal right-handed subjects also underwent resting 

state fMRI scanning similar to Fox et al., 2005 (Fox, Snyder et al. 2005).  Two 7.5 

minute scans (194 frames) were performed during visual fixation on a crosshair.  All 

imaging was performed on a 3T Siemens Allegra scanner (Erlangen, Germany).  

Functional data were collected
 
by using a gradient echo, echo-planar sequence sensitive

 

to BOLD contrast [echo time (TE) = 25 ms, flip angle = 90°,
 
4 x 4 x 4-mm isotropic 

voxels, volume repetition time (TR) =
 
2.16 s]. Whole brain coverage was obtained with 

32 contiguous slices.
 
The first four frames of each run were not included in data analysis.  

Additional fMRI processing details are given below. 

General resting fMRI Data Analysis 

Preprocessing: BOLD processing included compensation of systematic, slice-dependent 

time shifts, systemic odd-even slice intensity differences, and rigid body correction for 

interframe head motion within and across BOLD runs.  Each BOLD run was intensity 

scaled to a whole brain mode of 1000.  Atlas registration was performed by affine 

transforms connecting the first BOLD run frame with the T1W and T2W structural 

images.  Our atlas template includes MPRAGE data from 12 normal individuals from a 

Siemens Allegra 3T scanner and was made to conform to the 1988 Talairach and 

Tournoux atlas according to the method described by Lancaster et al (Lancaster, Glass et 

al. 1995).   
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Low-frequency BOLD fluctuation correlations:   Data was temporally band-pass 

filtered (f<0.08) and spatially smoothed (6mm FWHM).  Sources of spurious variance 

and their temporal derivatives were removed from this data through linear regression (see 

(Fox, Snyder et al. 2005)).  Nuisance regressors included signals averaged over ventricle, 

white matter, and whole brain ROIs as well as measures of head movement.  Correlation 

maps were produced by extracting the BOLD time course from the seed region and 

computing the Pearson‟s r between that time course and that of every other voxel in the 

brain.  The seed region was comprised of a 6-mm-radius spheres
 
centered on left lateral 

premotor cortex [-55 3 10] (see experiment 2 PET results).  

BOLD correlation mapping:  To combine results across subjects and compute statistical 

significance, correlation coefficients were converted to a normal distribution by Fischer‟s 

z transformation.  Fischer z-maps were combined across subjects using a random-effects
 

analysis (one sample t-test; N=18 from Experiment 2) and thresholded at Z>3.0 (p<0.01, 

cluster size > 17 voxels, corrected for multiple comparisons (Forman, Cohen et al. 

1995)).    In addition, we performed a groupwise mixed-effects analysis (repeated 

measures t-test; n=40 from Experiment 1 and 3) to determine any regions that showed 

preferential changes in either ROT or CON groups between pre- and post-task resting 

states.  All analyses were performed on a voxelwise basis.  Images were thresholded at 

Z>3.0 (p<0.01, cluster size > 17). 

 

Results 

 

Experiment 1: fMRI 

 



70 
 

Regions that show an increase in activity during performance of the motor task 

 We first performed an ANOVA across twenty-eight subjects to identify brain 

regions with significantly elevated BOLD signal during performance of the motor task 

(utilizing runs 1-2 and 8-9 combining ROT and CON groups) (N=28; Z>3.0, cluster >17, 

monte carlo corrected).  Peak foci were located in left motor, left 

premotor/supplementary motor, visual cortex, and right parietal cortex, consistent with 

performance of a visuomotor task (Figure 3.2). 

Regions that show altered activity following visuomotor rotation 

 We then analyzed changes in rotation learning (ROT) and motor control task 

(CON) BOLD signal over time to identify brain regions that show differential activity 

due to visuomotor learning.  We identified group differences (ROT x CON) in brain 

regions with altered timecourses in post-learning (runs 8-9) compared to pre-learning 

(runs 1-2) (task x time x group ANOVA; Z>3.0; cluster >17; monte carlo corrected).  

Peak foci were located in left premotor (BA6/BA44), bilateral angular gyrus (BA40), 

right medial prefrontal (BA10), and left lateral temporal cortex (Figure 3.3).  

Experiment 2: PET 

 

Behavioral performance 

 Subjects performed either a rotation learning (ROT) or motor control (CON) task.  

Both groups of subjects performed the same number of movements (1320), either with or 

without visuomotor rotation.  Rotation learning subjects significantly decreased 

directional error during task performance (p<0.01) (Figure 3.4).  In contrast, directional 
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error was unchanged in CON subjects (p>0.05).  Subjects learned approximately 80% of 

the imposed visuomotor rotation at each stage of learning, similar to previous studies 

using this task (Ghilardi, Ghez et al. 2000; Huber, Ghilardi et al. 2004).   

Measures of resting oxygen and glucose metabolism 

Relative metabolic rates for blood flow (CBF), oxygen (CMRO2), and glucose 

(CMRGlu) were imaged with positron emission tomography (PET) in both rotation 

learning (ROT; n=9) and motor control (CON; n=9) groups in the resting awake state.  In 

each individual, regional CBF, CMRO2 and CMRGlu were scaled to a whole brain mean 

of one (local-to-global ratio; see Methods).  The individual results were averaged over 

subjects in Talairach atlas space.  The obtained mean regional distributions of CMRO2 

and CMRGlu were similar to previously reported results obtained using quantitative 

measurements in normal subjects (Phelps, Huang et al. 1979; Raichle, MacLeod et al. 

2001).  Of note, the regional distribution of metabolic variables was not significantly 

different in the pre-task state between the two groups (Figure 3.5).  

Measures of resting aerobic glycolysis (GI) 

The glycolytic index (GI) is obtained by linear regression of CMRGlu on CMRO2 

and exhibiting the residuals scaled by 1000. Positive GI values represent locally 

increased CMRGlu relative to the line of regression, i.e., excess aerobic glycolysis. 

Likewise, negative GI values represent less aerobic glycolysis than that predicted by the 

line of regression.  

Following computation of GI maps for each subject, significance was assessed at 

the population level by voxelwise t-tests against the null hypothesis of uniformly 
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proportional glucose:oxygen metabolism, i.e., no deviation from the line of regression.  

The t-maps were converted to equi-probable Z-maps and thresholded at p<0.00001 

(Z>4.4, cluster >99 voxels) according to previously described methodology (Forman, 

Cohen et al. 1995; McAvoy, Ollinger et al. 2001).  Regions with significantly elevated 

aerobic glycolysis were found bilaterally in prefrontal cortex, lateral parietal cortex, and 

the posterior cingulate/precuneus (Figure 3.6).  In contrast, significantly low aerobic 

glycolysis was found bilaterally in the inferior temporal gyrus and throughout the 

cerebellum.    

Effect of task performance on brain metabolism  

             In order to compare resting state metabolism before and after task performance, 

significance was assessed at the population level by a voxelwise repeated measures t-test 

against the null hypothesis of uniformly proportional changes in CBF, CMRO2, 

CMRGlu, and GI in both ROT and CON groups between pre- and post-task states.  The t-

maps were converted to equi-probable Z-maps and thresholded at p<0.0001 (N=18, 

Z>4.4, cluster >99 voxels) according to previously described methodology (Forman, 

Cohen et al. 1995; McAvoy, Ollinger et al. 2001).  Following visuomotor rotation task 

performance, regional aerobic glycolysis was differentially increased during eyes-closed 

rest for several hours following task completion in left lateral premotor cortex (BA6) [-55 

3 10] (Z=5.15, p<0.0001, cluster size = 124 voxels) while no changes in CBF, CMRO2, 

or CMRGlu were observed.  (Figure 3.7) 

Conjunction analysis 
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 We then performed a conjunction analysis to assess the degree of overlap between 

the regions involved in motor task performance (Experiment 1A), regions altered in 

visuomotor rotation (Experiment 1B), and regions with increased aerobic glycolysis in 

the resting state (Experiment 2).  We found significant overlap between left lateral 

premotor regions involved in rotation learning and altered resting state aerobic glycolysis 

(Figure 3.8).  

Experiment 3: resting fMRI 

 

 Correlation mapping of the blood oxygen level dependent (BOLD) functional 

magnetic resonance imaging (fMRI) signal acquired in the resting state (Fox, Snyder et 

al. 2005) has been used to identify brain regions that have similar spontaneous BOLD 

fluctuations and are „functionally connected‟.  

We performed two sets of analyses.  First, we performed a random effects 

analysis (one-sample t-test, N=18 from Experiment 2) to determine regions with 

correlated spontaneous BOLD fluctuations to the premotor cortex region [-55 3 10] found 

with altered aerobic glycolysis in Experiment 2 in the same group of individuals.  

Regions of significant BOLD correlations (p<0.01, random effects analysis; Z>3.0, 

cluster>17) to the left premotor cortex are shown in Figure 3.9.  We found correlations 

between left premotor cortex and bilateral motor and premotor cortex, supplementary 

motor cortex, and bilateral parietal lobe. 

 In addition, we performed a repeated measures t-test comparing pre- and post-

learning spontaneous BOLD correlations to the same premotor cortex region defined 

above.  This analysis was performed on 40 subjects with pre- and post-task fMRI data (26 
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subjects ROT; 14 subjects CON).  We found no significant changes (Z>3.0, p<0.01) in 

premotor cortex  BOLD correlations following learning.  

Discussion 

 

This work reports an extensive investigation of brain metabolism changes 

following visuomotor rotation learning. The main finding is that a specific brain region 

previously activated by task performance and visuomotor learning (Experiment 1) within 

left premotor cortex shows elevated aerobic glycolysis for several hours following task 

completion (Experiment 2; Figure 3.7), though no other changes in metabolism or resting 

BOLD correlations are found (Experiment 3).  Since aerobic glycolysis is most closely 

associated with glutamatergic cycling at the synapse, alterations in resting aerobic 

glycolysis likely represent alterations in synaptic strength following task performance. 

These data are consistent with the synaptic homeostasis hypothesis suggesting increased 

synaptic strength and energy metabolism during wakefulness (Tononi and Cirelli 2003).   

Role of aerobic glycolysis 

 

Because our findings are based upon changes in resting brain metabolism, we 

must first consider the role of ongoing aerobic glycolysis in the brain. Aerobic glycolysis 

is regionally increased in areas of elevated neuronal activity due to an elevation of 

glucose metabolism greater than oxygen metabolism (Fox, Raichle et al. 1988).  This is 

the case during periods of transient neuronal activity, as evidenced by task-related PET 

studies (Baron, Rougemont et al. 1984; Fox, Raichle et al. 1988; Raichle and Mintun 

2006), and is also the case in the eyes-closed awake state (Chapter 2).  It had initially 

been assumed that some fraction of glucose, approximately 10%, is metabolized non-
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oxidatively in the brain, though it‟s distribution was unknown (Raichle and Mintun 

2006).  In Chapter 2 we report that the distribution of aerobic glycolysis in the eyes-

closed awake brain is not homogenous, and in fact closely matches brain regions 

expected to have high levels of functional activity, including the default network and 

prefrontal cortex bilaterally (Figure 3.6).  Given this physiology, an elevation in aerobic 

glycolysis indicates a concurrent increase in the underlying neuronal activity and synaptic 

strength of that region. 

Investigation of the cellular basis of this response reveals that neuronal activity 

induces an increase in astrocytic glycolysis in close spatiotemporal apposition to neuronal 

activity (Kasischke, Vishwasrao et al. 2004).  Increased neuronal activity, specifically at 

glutamatergic synapses, result in an elevation of glutamate in the synaptic cleft.  

Astrocytes then remove glutamate from the synaptic cleft via a Na
+
/glutamate 

cotransporter that causes an increase in Na
+
/K

+
 ATPase activity (Pellerin and Magistretti 

1996). The energy needed for the pumping action of Na
+
/K

+
-ATPase is derived from 

aerobic glycolysis (Pellerin and Magistretti 1996; Magistretti and Chatton 2005). The use 

of aerobic glycolysis by Na
+
/K

+
-ATPase is not unique to the astrocyte. It fuels Na

+
/K

+
-

ATPase in all cells that possess this membrane-bound pump (Pellerin and Magistretti 

1996) including neurons (Wu, Aoki et al. 1997).  This is especially important in 

subcellular regions of the neuron far removed from the mitochondria, such as the post-

synaptic density (PSD) (Wu, Aoki et al. 1997), though the fraction of energy derived 

from neuronal glycolysis remains unclear (Sheng and Hoogenraad 2007). Aerobic 

glycolysis provides a rapid source of energy that is utilized by both astrocytes and 
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neurons to subserve neuronal signaling, the primary usage of energy in the brain (Attwell 

and Laughlin 2001). 

In addition to its role in energy production, aerobic glycolysis provides necessary 

precursors for anabolic processes in the cell.  Glycolytic intermediates are necessary for 

the production of precursors for RNA and DNA synthesis via the pentose-phosphate 

pathway (PPP) (Gaitonde, Jones et al. 1987; Larrabee 1989).  In the adult brain it is 

estimated that 5-10% of the glucose consumed may enter the PPP (Gaitonde, Jones et al. 

1987).  Though a complete understanding of the role of aerobic glycolysis in anabolic 

processes is lacking, there are several intriguing pieces of data that suggest that aerobic 

glycolysis levels are closely associated with synaptic density.  Extrapolating from data 

collected during early-life synaptic development in infants, glycolytic flux appears to 

closely parallel overall synaptic density (Chugani, Phelps et al. 1987; Altman, Perlman et 

al. 1993) with an overabundance of synapses and aerobic glycolysis in early life that 

peaks around the age of nine with a subsequent decrease to adult levels during 

adolescence (Andersen 2003).  This association may be due to to an increase in the 

bioenergetic needs of regions with high synaptic density, or it may be due to the non-

energetic and anabolic utilization of glycolytic intermediates.  Consistent with the latter 

hypothesis, flux through the PPP increases following traumatic brain injury, though 

overall glucose utilization does not change (Dusick, Glenn et al. 2007).  

 

Changes in cellular neurophysiology following learning 
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We find an increase in aerobic glycolysis in left premotor cortex following 

visuomotor learning (Figure 3.7).  There are several possible explanations for this 

regional change in brain metabolism. 

A regional increase in aerobic glycolysis may be due to a regional increase in 

glutamatergic activity in the eyes-closed awake state.  Aerobic glycolysis is closely 

associated with glutamatergic flux at the synapse (see discussion above), and a pre-

synaptic increase in glutamate release or post-synaptic increase in glutamate flux may 

partially result in the observed changes in aerobic glycolysis.  Since most functional 

imaging studies focus upon changes in metabolism during task performance, the role of 

spontaneous glutamatergic flux at the synapse remains to be completely elucidated.  

There is evidence, though, that learning can cause changes in glutamate receptor 

concentration and activity.  

Learning tasks induce long-term changes in cellular neurophysiology via 

mechanisms such as long-term potentiation (LTP).  Spatial learning tasks that induce 

LTP are associated with increased extracellular glutamate concentrations (Richter-Levin, 

Canevari et al. 1995), indicating an elevation in pre-synaptic glutamate release prior to a 

post-synaptic change in receptor activity and affinity.   An elevation in local 

glutamatergic activity also occurs following experiential learning during wakefulness.  

Local glucose utilization and cerebral blood flow both increase during wakefulness  

(Vyazovskiy, Cirelli et al. 2008) in parallel with increases in AMPA receptor density 

(Vyazovskiy, Cirelli et al. 2008), suggesting that increases in synaptic strength induce 

changes in aerobic glycolysis, the hypothesis tested directly in this experiment.    
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The changes in cellular neurophysiology induced by learning remain long 

following task completion.  LTP alters the ultrastructure of the synapse causing an 

increase in the apposition zones, larger postsynaptic densities (PSD), and enlarged spine 

profiles (Buchs and Muller 1996).  Since aerobic glycolysis supplies the PSD with energy 

(Wu, Aoki et al. 1997; Sheng and Hoogenraad 2007), an alteration in synaptic structure  

could also cause a subsequent increase in aerobic glycolysis.   

In addition, transient neuronal activity results in the temporary increase of glucose 

transporter density (GLUT1 and GLUT3) associated with changes in local rates of 

glucose metabolism (Koehler-Stec, Li et al. 2000).  Though increased glucose transporter 

density can be seen in the first few minutes of task performance, it remains unknown how 

long these changes persist. A residual increase in glucose transport may result in a net 

increase in aerobic glycolysis given a constant cerebral blood flow and oxygen 

metabolism (as was found in our data).   

Increased spontaneous glutamatergic neurotransmission, observed as an increase 

in aerobic glycolysis, following task performance is surprising, though prior studies have 

observed a replay of neuronal activity following task performance, most often in post-

learning sleep (Peigneux, Laureys et al. 2004).  Replay of synaptic activity by ensembles 

of hippocampal cells during REM sleep (Skaggs and McNaughton 1996; Kali and Dayan 

2004) occurs, though its role appears limited to sleep.  These findings are consistent with 

our assertion that task performance induces long-term changes in cellular 

neurophysiology, though we are the first to report, to our knowledge, alterations in 

activity patterns during wakefulness following task performance. 
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In addition to supporting increased glutamate activity, it is possible that some of 

the glucose being metabolized glycolytically is being used to develop precursors for new 

synapses or alter existing synapses, as often occurs in long-term potentiation (Buchs and 

Muller 1996; Chen and Tonegawa 1997).  Elevation of aerobic glycolysis following task 

performance may represent an increase in synaptic density in brain regions involved in 

task performance, consistent with long-term potentiation alterations in post-synaptic 

NMDA and AMPA receptor density and efficacy (Bashir, Alford et al. 1991; Buchs and 

Muller 1996).  An increase in anabolic utilization of glucose may result in increased 

density of dendritic spines and remodeling of the post-synaptic density, findings 

consistent with long-term potentiation and learning.  Unfortunately the fraction of 

glucose used for anabolic processes compared to energy production remains unclear.     

Regional changes in aerobic glycolysis 

 

Using a combination of fMRI and PET (Experiment 1 and 2), we report that 

visuomotor rotation causes altered activity within left premotor cortex during task 

performance that corresponds to regions with elevated aerobic glycolysis in the post-

learning resting state (Figure 3.8). 

  Premotor cortex activity has been traditionally associated with the planning of 

motor actions.  Its activity is increased during numerous visuomotor and motor tasks 

transiently (Petersen, van Mier et al. 1998; Halsband and Lange 2006).  At the individual 

neuron level, learning a visuomotor task can alter premotor cortex activity in the monkey 

(Mitz, Godschalk et al. 1991), signifying a learning-related change in neuronal firing, 

though it remains unclear how long these changes last following task completion. 



80 
 

Changes in visuospatial information, such as visuomotor rotation, influence premotor 

cortex activity and cause altered activity within lateral premotor cortex region during task 

performance (Experiment 1; Figure 3.3).  In order for subjects to perform the visuomotor 

rotation task accurately, they have to integrate visuospatial cues (provided by lateral 

parietal cortex) with motor and sensory cues (provided by motor cortex) to compute a 

movement plan and trajectory (Experiment 1) (di Pellegrino and Wise 1993).  

Altered activity within premotor cortex likely reflects a change in synaptic 

activity due to learning.  Alternately, the change in resting aerobic glycolysis may be 

simply due to kinematic effects of prior movements.  In order to control for this possible 

confound, we compared rotation learning with performance of an identical motor task 

without visuomotor rotation.  Subjects had no conscious awareness of the applied 

visuomotor rotation and performed the identical number of movements, making it 

unlikely that kinematic change due to hand and arms movements differed between 

rotation learning and motor control groups.  Subjects were more accurate in performance 

of the motor control task, providing another possible explanation for our task-related 

differences in metabolism, though our data was collected over the span of three hours and 

it is unlikely that activity within premotor cortex would differ between rotation learning 

and motor task participants in this timeframe.   

In addition to changes in premotor cortex, performance of a rotation learning task 

has been previously reported to result in a transient increase in cerebral blood flow and 

slow wave EEG activity in right parietal cortex (Ghilardi, Ghez et al. 2000; Huber, 

Ghilardi et al. 2004), though no corollary change in BOLD signal or metabolism was 
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found in this study (Experiment 1; Experiment 2).  There are several possible 

explanations for these differences.   

First, previous studies compared visuomotor rotation to a pre-learned sequence of 

target stimuli, resulting in minimal alterations in premotor cortex and increases in right 

parietal cortex, presumably because the control task also utilized premotor cortex for 

movement planning (Donoghue, Sanes et al. 1998) but did not utilize right parietal cortex 

for visuospatial integration (Honda, Deiber et al. 1998; Ghilardi, Ghez et al. 2000).  

Further, these studies were performed in the acute stage of task performance or in post-

learning sleep, though practice related reorganization following visuomotor tasks (van 

Mier, Tempel et al. 1998; Della-Maggiore and McIntosh 2005) result in increased activity 

in prefrontal and premotor areas and a decrease in primary motor and parietal cortex 

activity.  

Second, changes in aerobic glycolysis within premotor cortex may induce 

electrical changes in parietal cortex, consistent with prior observations using this task.  

We performed resting-state functional connectivity analysis on a resting fMRI dataset 

collected on the same individuals from the PET study (Experiment 3).  Connectivity 

analysis revealed a network of cortical regions correlated in their spontaneous activity to 

left premotor cortex [-55 3 10], including bilateral premotor, motor, and parietal cortex as 

well as insula (Figure 3.9).  Changes in aerobic glycolysis, reflecting mostly pre-synaptic 

inputs (Jueptner and Weiller 1995) may induce changes in post-synaptic electrical 

activity within parietal cortex, as detected via EEG.  Consistent with this hypothesis, 

transcranial magnetic stimulation of functionally connected cortical regions induce 

alterations in the electrical and BOLD signal in distant locations (Munchau, Bloem et al. 
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2002; Logothetis 2003; Ruff, Bestmann et al. 2008; Ruff, Blankenburg et al. 2008), 

indicating parallel changes in activity patterns across functionally coupled regions. 

Synaptic Homeostasis Hypothesis 

 

One intriguing explanation for this alteration in energy metabolism in the eyes 

closed awake state following task performance is provided by the synaptic homeostasis 

hypothesis.  This hypothesis associates wakefulness with synaptic potentiation 

(Vyazovskiy, Cirelli et al. 2008) and sleep with synaptic depression (Tononi and Cirelli 

2003), a homeostatic process that facilitates continual learning and memory through 

experience while preserving long-term synaptic balance and energy utilization.  

Supporting data for this hypothesis is provided by evidence that CMRGlu, CMRO2  

(Boyle, Scott et al. 1994) and CBF (Boyle, Scott et al. 1994; Braun, Balkin et al. 1997) 

all increase during wakefulness, but CMRGlu disproportionately so, resulting in putative 

increases in aerobic glycolysis.  We provide the first evidence, to our knowledge, that 

learning a difficult task is accompanied not only by the expected regional increase in 

aerobic glycolysis during task performance but also a persistence of this aerobic 

glycolysis long after the task has been completed.   

The human brain has a tremendous capacity to store information.  This 

information, coded at the level of neurons as alterations in synaptic strength and 

structure, induces regional increases in aerobic glycolysis during task performance (Fox, 

Raichle et al. 1988; Wu, Aoki et al. 1997; Raichle and Mintun 2006).  But, though we no 

longer are performing the task, residual changes in neurophysiology remain (Buchs and 
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Muller 1996), though our understanding of these changes at the cellular level remains 

incomplete.   

We posit that brain plasticity induces alterations in synaptic strength and aerobic 

glycolysis following completion of task performance.  These changes in neurophysiology 

are likely correlated to the degree of synaptic alteration and difficulty of task 

performance, with overlearned, rote behaviors causing minimal residual changes in 

aerobic glycolysis while novel, difficult paradigms cause significant changes in resting 

metabolism.  Our data is consistent with this hypothesis, with elevation of aerobic 

glycolysis following performance of the difficult visuomotor rotation task.  In addition, 

data collected following performance of a difficult cognitive paradigm, the Wisconsin 

card sorting task, has revealed residual global increases in aerobic glycolysis following 

task completion, though its regional distribution was not investigated (Madsen, 

Hasselbalch et al. 1995).  

Since changes in synaptic strength have a metabolic cost, there has to be some 

mechanism whereby the capacity of the brain to store new information is restored.  

Extrapolating from extant data, given the 20% increase in blood flow and glucose 

metabolism during a day, the body‟s total energy demand would double in four days 

without a process to subsequently decrease energy metabolism. There are several possible 

mechanisms to account for these changes.  The synaptic homeostasis hypothesis suggests 

that slow-wave sleep may provide the brain an opportunity to downregulate synaptic 

strength, resulting in decreased aerobic glycolysis.  Previous studies have found sleep to 

have a beneficial effect on performance of cognitive and motor tasks (Jha, Jones et al. 

2005; Orban, Rauchs et al. 2006; Gais, Albouy et al. 2007), including the visuomotor 
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rotation task utilized in this experiment (Huber, Ghilardi et al. 2004).  In contrast, an 

alternative hypothesis would be that synaptic strength decays slowly over time 

irrespective of sleep, though evidence for this alternate hypothesis is lacking and sleep 

deprivation experiments suggest that a temporal decay in synaptic strength is unlikely 

(Braun, Balkin et al. 1997; Yoo, Hu et al. 2007).  From these findings, we postulate that 

the regional increase in aerobic glycolysis that we have described will revert to the 

region‟s pre-task levels following a night of sleep allowing for renewed synaptic 

plasticity, an empirical question that will be addressed in future experiments.   

Stability of cerebral blood flow and metabolism 

 

While we find changes in aerobic glycolysis following task performance, we find 

no corresponding alterations in blood flow, glucose, or oxygen metabolism following 

task completion.  These data suggest that the local-to-global ratio of these metabolic 

variables is unchanged by task performance, though we cannot discount additional 

changes in global metabolism (Boyle, Scott et al. 1994; Braun, Balkin et al. 1997).  

Previous studies have found that overall cerebral blood flow and glucose utilization both 

decrease by approximately 20% following a night of sleep (Boyle, Scott et al. 1994; 

Buysse, Nofzinger et al. 2004). We surmise that these global measures of blood flow and 

metabolism may reflect an integration of regionally specific changes, namely regions 

with increased activity drive whole-brain alterations.  Future studies will have to address 

the possible role of global changes in cerebral metabolism in addition to the regional 

changes reported in this experiment.  Of note, though, is that even if global metabolism 

increases over the course of the day, the observed changes in glycolysis would exceed the 
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global changes, consistent with the interpretation of the data presented herein 

(Borghammer, Jonsdottir et al. 2008). 

Stability of functional connectivity measures 

 

 We found no changes in resting BOLD correlations to premotor cortex following 

visuomotor learning (Experiment 3).  There are several possible explanations.  First, 

given the high degree of variance in the spontaneous BOLD signal, this analysis may not 

have enough power to detect subtle alterations caused by learning.  Few studies have 

found acute changes in resting state networks identified with BOLD correlations within 

individuals, though long-term training may cause some subtle alterations (Sun, Miller et 

al. 2007). Networks identified using resting BOLD fluctuations are closely associated 

with anatomical connectivity, with high correlation between structural diffusion tensor 

imaging measures and resting BOLD correlations (Greicius, Supekar et al. 2008).  

Anatomical disconnection of networks does significantly alter resting BOLD correlations 

(Johnston, Vaishnavi et al. 2008), though learning induced changes may be more subtle.  

Following parietal stroke, resting BOLD correlations are initially weakened in attentional 

networks, but these connections are partially restored in parallel to behavioral 

improvement, though their roles in normal physiology remains unclear (He, Snyder et al. 

2007).  Longitudinal studies of BOLD connectivity have revealed changes during 

development with increasing myelination and coupling of functionally separate cortical 

regions into a cohesive network (Fair, Cohen et al. 2008), though again these changes 

occur over a period of years and it remains unclear how quickly these changes appear 

following changes in cellular neurophysiology.  Future studies will have to assess the 
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sensitivity of BOLD correlation analysis to assess changes in brain physiology following 

intensive learning. 

 The stability of resting BOLD correlation networks in the span of several hours 

following learning is reassuring given its increasing use in studying disease 

pathophysiology.  Changes in functional connectivity (Fox and Raichle 2007) found in 

stroke, Alzheimer‟s, schizophrenia, and depression likely reflect long-term changes in 

cellular neurophysiology that are not simply transient task-related effects. 

Conclusion 

 

In conclusion, we find changes in resting brain metabolism, specifically aerobic 

glycolysis, following a brief period of visuomotor learning.  These metabolic alterations 

likely reflect changes in underlying synaptic structure and activity.  These findings 

support the synaptic homeostasis hypothesis, and suggest that regional metabolic 

alterations may persist in the resting state following task performance. Future studies will 

determine whether the regional increase in aerobic glycolysis following task performance 

is subsequently reset after a night of sleep, possibly accounting for some of the beneficial 

effects of sleep upon task performance. 
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Figure 3.1: Rotation (ROT) and motor control (CON) paradigms used for all 

experiments. 

Subjects performed an equivalent number of movements in both groups either with or 

without visuomotor rotation. 
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Figure 3.2:  Change in BOLD during motor task performance. 

Regions with elevated BOLD signal during performance of the motor task (n=28, 

groupwise t-test, Z>3.0, p<0.01, cluster >17, corrected for multiple comparisons). 
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Figure 3.3: Change in BOLD signal following visuomotor rotation. 

Regions with altered BOLD signal following visuomotor learning (n=28, task x time x 

group ANOVA; Z>3.0, p<0.01, cluster >17, corrected for multiple comparisons). 
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Figure 3.4: Behavioral performance of visuomotor rotation task.  

Subjects performed out-and-back reaching movements to circular targets that changed 

colors at random at 0.93Hz.  Performance on the visuomotor rotation task significantly 

improved (p<0.05) both within and across levels of rotation.  For visualization purposes, 

directional error was normalized by the imposed visuomotor rotation. 
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Figure 3.5: Global maps of cerebral blood flow and metabolism in rotation learning 

(ROT) and motor control (CON) subjects prior to task performance.   

Average maps of cerebral blood flow (Upper; CBF), oxygen consumption (Middle; 

CMRO2), and glucose consumption (Lower; CMRGlu) were computed using data 

collected in the initial (pre-task) eyes-closed awake state and averaged across 18 subjects.  

Because we were interested in regional changes, the whole brain mean was set to 1.0.  

Note the large deviations in oxygen and glucose consumption across the brain, most 

prominently between gray and white matter.  Despite regional variations, CMRO2, 

CMRGlu and CBF generally are matched across most of the brain.  Of note, the regional 

distribution of metabolic variables was not significantly different in the pre-task state 

between the two groups. 
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Figure 3.6: Elevated aerobic glycolysis. 

Regions of the brain are shown with aerobic glycolysis (Glycolytic Index; GI) 

significantly elevated compared to the line of regression (n=18, groupwise t-test, |Z|>4.4, 

p<0.0001, cluster size >99).   
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Figure 3.7: Residual increase in aerobic glycolysis in the resting state after task 

completion. 

Significant increase in glycolysis (GI) within left premotor cortex following visuomotor 

rotation. Repeated measures t-test (n=18, repeated measures t-test, Z>4.4, p<0.001, 

cluster size >99). 
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Figure 3.8: Conjunction analysis between visuomotor rotation fMRI and resting aerobic 

glycolysis. 

 (a): Regions with elevated BOLD signal during performance of the motor task (n=28, 

groupwise t-test, Z>3.0, p<0.01, cluster >17, corrected for multiple comparisons).  (b): 

Regions with altered BOLD signal following visuomotor learning (task x time x group; 

Z>3.0, p<0.01, cluster >17, corrected for multiple comparisons). (c): Regions with 

elevated aerobic glycolysis following visuomotor rotation (n=18, repeated measures t-

test, Z>4.4, p<0.00001, cluster >99, corrected for multiple comparisons. (d): Intersection 

of voxels showing significantly elevated GI following visuomotor learning and elevated 

BOLD during task performance and altered BOLD during visuomotor rotation. 
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Figure 3.9: Resting BOLD correlation mapping with left premotor cortex seed. 

Functional connectivity analysis (n=18, groupwise t-test, Z>3.0, p<0.01, cluster >17, 

corrected for multiple comparisons) using a 6mm radius spherical seed region placed in 

left premotor cortex [-55 3 10].   
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Chapter 4: Aerobic glycolysis is elevated in cortical networks with 

balanced excitation and inhibition 

 

 

Abstract 

 

 Neuronal activity results in a regional increase in cerebral blood flow and glucose 

metabolism disproportionate to the increase in oxygen metabolism, resulting in local 

increases in aerobic glycolysis.  In the eyes closed resting state, the brain continues to 

metabolize energy inhomogeneously across the brain reflecting ongoing neuronal 

activity.  The relationship between cerebral energy utilization and local neurochemistry 

remains unclear, though it has been assumed that excitatory neurotransmission 

predominates in the energetic cost of brain function.  In order to assess the correlation 

between cerebral metabolism and neurochemistry, we compared resting positron 

emission tomography data from 33 healthy young adults studied in the eyes-closed awake 

state with postmortem autoradiography data from two older neurologically normal adults.  

Cerebral blood flow, glucose, and oxygen metabolism were negatively correlated with 

excitatory neurotransmitter receptor density while oxygen extraction fraction was 

positively correlated with inhibitory receptor density.  Aerobic glycolysis was nonlinearly 

correlated to the ratio of excitation to inhibition (E/I) and was highest in regions of 

balanced E/I.  Brain regions with high levels of aerobic glycolysis in the resting state, 

including the default network, differ in their underlying neurochemistry, suggesting that 

in addition to differential response to stimuli, cortical networks also differ in their 

subcellular constituents.  Our results provide an important bridge between distributed 
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brain networks revealed using functional neuroimaging and their underlying 

neurochemistry. 

 

Introduction 

 

 

The human brain uses energy to support neuronal activity, primarily associated 

with the input and output of neurons at the neuronal synapse (Attwell and Laughlin 

2001).  In the adult human brain, most of this energy is provided by the oxidation of 

glucose to carbon dioxide and water (Sokoloff 1977).  However, following transient 

increases in neuronal activity, glucose utilization increases more than oxygen 

consumption, resulting in an elevation in aerobic glycolysis (Fox, Raichle et al. 1988). 

The cellular processes reliant upon aerobic glycolysis include astrocytic Na
+
/K

+
 ATPase 

associated with the cycling of glutamate from the synaptic cleft  (Pellerin and Magistretti 

1994; Pellerin and Magistretti 1996).  But in addition to transient task related alterations 

in energy metabolism, the brain continues to utilize energy while at rest (Raichle and 

Mintun 2006).  In fact, for many years researchers have known some fraction of glucose 

is used for purposes other than providing substrate for oxidative phosphorylation 

(Raichle, Posner et al. 1970; Madsen, Hasselbalch et al. 1995), though its role has 

remained unclear. 

The relationship between cerebral energy utilization and the underlying 

neurochemical processes at the synapse have largely been unexplored to date.  It is 

assumed that since glutamatergic neurotransmission predominates in the brain, most 

cerebral energy utilization is devoted to excitatory neurotransmission (Sibson, Dhankhar 
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et al. 1998; Attwell and Laughlin 2001), though inhibitory and neuromodulatory 

neurotransmitters may also have an energetic cost (Patel, de Graaf et al. 2005; Buzsaki, 

Kaila et al. 2007).  

We hypothesized those cortical regions with a high density of glutamatergic 

receptors would have high metabolic rates, specifically high levels of glucose 

metabolism, cerebral blood flow, and aerobic glycolysis.  To test this hypothesis, we 

compared resting positron emission tomography data from 33 healthy young adults 

studied in the eyes-closed awake state with postmortem autoradiography data from two 

older neurologically normal adults.   

 

Methods 

 

Positron Emission Tomography 

Participants 

 Positron emission tomography (PET) was performed in thirty-three healthy, right-

handed neurologically normal participants (19 women) aged 20 to 33 years (mean 25.4 ± 

2.6) recruited from the Washington University community. Subjects were excluded if 

they had contraindications to MRI, history of mental illness, possible pregnancy, or 

medication use that could interfere with brain function.  All experiments were approved 

by the Human Research Protection Office (HRPO) and Radioactive Drug Research 

Committee (RDRC) at Washington University in St. Louis.  Written informed consent 

was provided by all participants. 

Image Acquisition 
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Structural MRI:  MRI scans were obtained in all subjects to guide anatomical 

localization.  High-resolution structural images were acquired using a 3D sagittal T1-

weighted MPRAGE on a Siemens (Siemens, Erlangen, Germany) 3T Allegra 

[TE=3.93ms, TR=1900ms, TI=1100ms, flip angle=20
o
, 256x256 acquisition matrix, 160 

slices, 1x1x1 mm voxels] or 1.5T Sonata scanner [TE=3.93ms, TR=1900ms, TI=1100ms, 

flip angle =15
 o
, 224x256 acquisition matrix, 160 slices, 1x1x1 mm voxels]. 

PET Scanning:  Studies were performed using a Siemens model 961 ECAT EXACT HR 

47 PET scanner (Siemens/CTI, Knoxville, TN) with 47 slices encompassing an axial field 

of view of 15cm.  Transverse resolution was 3.8-5.0 mm FWHM and axial resolution was 

4.7-5.7 mm full width at half maximum (FWHM).  Attenuation data was obtained using 

68
Ge-

68
Ga rotating rod sources to enable quantitative reconstruction of subsequent 

emission scans.  Emission data were obtained in the 2D mode (inter-slice septa 

extended).  All PET data was reconstructed using a ramp filter (approximately 6mm 

FWHM) and then blurred to 12 mm FWHM.  Subject head movement during scanning 

was restricted by a thermoplastic mask.  All PET images were acquired in the eyes-closed 

waking state.  No specific instructions were given regarding cognitive activity during 

scanning other than to remain awake.   

All subjects underwent a single PET session including one FDG scan (to measure 

CMRGlu) and either one (13 subjects) or two (20 subjects) replicate sets of three 
15

O 

scans to measure CBV, CBF, and CMRO2, respectively.   In subjects with two replicates 

of 
15

O scans, CBV, CBF, and CMRO2, values were averaged for data analysis. 

PET Measurement of Glucose Metabolism:  
18

F-fluorodeoxygluse (FDG) uptake and 

trapping was used to image CMRGlu(Fox, Raichle et al. 1988).  Measurements of 
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CMRGlu were performed after slow intravenous injection of 5mCi of [
18

F] FDG.  

Dynamic acquisition of PET emission data continued for 60 minutes with 25 5-sec 

frames, 9 20-sec frames, 10 1-min frames, and 9 5-min frames. Venous samples for 

plasma glucose determination were obtained just before and at the mid-point of the scan.   

[
15

O]tracer PET scans: 120 second dynamic scans comprised of 2 second frames that 

began with tracer injection (or inhalation) (Raichle, Martin et al. 1983; Mintun, Raichle et 

al. 1984). With this method, the optimum 40 second scan was created from summation of 

the appropriate frames. By reconstructing all frames and then creating a whole brain 

time-activity curve, the onset of activity in the brain could be judged exactly. CBF Scan: 

Distribution of CBF was measured with a 40-sec emission image (derived from a 120 

second dynamic scan) after rapid injection of 50 mCi [
15

O]water in saline (Raichle, 

Martin et al. 1983).  CBV Scan: Distribution of CBV was measured with a 5-min 

emission scan beginning 2 min after brief inhalation of 75mCi of [
15

O]carbon monoxide 

in room air (Martin, Powers et al. 1987).  CMRO2 Scan: Distribution of CMRO2 was 

measured with a 40-sec emission scan (derived from a 120 second dynamic scan) after 

brief inhalation of 60 mCi of [
15

O]oxygen in room air (Mintun, Raichle et al. 1984).  

General PET Data Analysis:   

Preprocessing:  For each subject, measures of CBF, CBV, CMRO2, and CMRGlu were 

aligned to each other and then to the subject‟s MPRAGE. The re-aligned data was then 

transformed to Talairach space (Lancaster, Glass et al. 1995) using in-house software and 

scaled to a whole-brain mean of one (local-to-global ratio (Raichle, MacLeod et al. 

2001)).   
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Glycolytic Index:  In order to quantitatively assess aerobic glycolysis, we performed a 

linear regression of CMRGlu on CMRO2.  The residuals were scaled by 1000 to produce 

the glycolytic index (GI).  GI represents glucose consumption above or below that 

predicted by oxygen consumption.   

PET statistics:  To combine results across subjects, we computed a general linear model 

(GLM) which contained metabolic data for CMRO2, CMRGlu, CBF, CBV, OEF, OGI, 

and GI for each subject.   

Surface mapping:  Volumetric statistical results were projected onto the cortical surface 

of the PALS B12 (population-average landmark and surface-based) atlas by multifiducial 

mapping  (Van Essen 2005).  Surface mapping was performed using Caret v5.512 

[http://brainmap.wustl.edu/caret]. 

Brodmann Regions:  Brodmann regions were extracted from the PALS B12 atlas (Caret 

v5.512).  Values for CMRO2, CMRGlu, CBF, CBV, OEF, OGI, and GI were extracted 

for each Brodmann region in the brain (41 regions for each hemisphere) from the general 

linear model (GLM) computed for each subject.   

 

Receptor density measurements 

Participants:  Neurotransmitter receptor density was assessed in two neurologically 

normal postmortem human brains using quantitative autoradiography (Eickhoff, 

Schleicher et al. 2007).   

Autoradiography:  Briefly, excitatory receptor density was assessed by measurement of 

AMPA ([
3
H]AMPA), Kainate ([

3
H]Kainate), and NMDA ([

3
H]MK801).  Inhibitory 
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receptor density was assessed by measurement of GABAA ([
3
H]Muscimol and 

[
3
H]Flumazenil) and GABAB ([

3
H]CGP).   

Excitatory/Inhibitory receptor ratio: A ratio was computed of excitatory to inhibitory 

receptor density and scaled to a whole brain mean of one (E/I > 1, greater excitation; E/I 

< 1, greater inhibition).  

Correlation statistics: Pair-wise correlations were computed over regions corresponding 

to Brodmann areas defined using Caret software (Van Essen 2005)on relative metabolic 

measures averaged over subjects and neurotransmitter receptor density (weighted 

Pearson‟s product-moment correlation, 35 df, α=0.05).  

 

Results 

 

 We compared positron emission tomography (PET) data (cerebral blood flow, 

oxygen metabolism, glucose metabolism, oxygen extraction fraction, and aerobic 

glycolysis) from 33 young neurologically normal subjects with postmortem 

autoradiography data (excitatory, inhibitory, and excitatory/inhibitory receptor density) 

from two neurologically normal older individuals.  Data was compared in a standardized 

Talaraich space using 37 pre-defined regions of interest comprising of Brodmann regions 

on the cortical surface from the Caret atlas (Table 4.1).    

Excitatory receptor density was negatively correlated to cerebral blood flow 

(CBF; r= -0.348, p<0.05), cerebral metabolic rate of oxygen (CMRO2; r= -0.509, 

p<0.01), cerebral metabolic rate of glucose (CMRGlu; r= -0.470, p<0.01) and oxygen 

extraction fraction (OEF; r= -0.423, p<0.01) (Figure 4.1).  In contrast, inhibitory receptor 
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density was positively correlated to OEF (r=0.406, P<0.05), though no significant 

correlations were found with CBF, CMRO2, or CMRGlu (Figure 4.2) 

The ratio of excitatory to inhibitory receptors (E/I) was negatively correlated to 

CBF (r= -0.332, p<0.05), CMRO2 (r= -0.608. p<0.001), CMRGlu (r = -0.537, p<0.001), 

and OEF (r = -0.641, p<0.001) (Figure 4.3).  The ratio of excitation to inhibition (E/I), 

though, was not linearly correlated to the amount of aerobic glycolysis (glycolytic index, 

GI).  Surprisingly, regions with a balanced density of excitatory and inhibitory receptors 

had the highest glycolysis and regions with either excessive excitatory or inhibitory 

receptor density had low GI (quadratic r=0.727, p<0.001) (Figure 4.4). 

 

Discussion 

 

We have assessed regional differences in cortical receptor density in postmortem 

human brain and found significant correlations to resting cerebral metabolism from a 

separate group of individuals.  Our results can be summarized in three main findings.  

First, cortical regions with a higher density of AMPA, Kainate, and NMDA receptors 

have lower metabolic rates (CBF, CMRO2, CMRGlu).  Second, cortical regions with 

higher density of GABAA and GABAB have a higher oxygen extraction fraction.  Third, 

aerobic glycolysis is highest in cortical regions with a balanced ratio of excitatory and 

inhibitory receptors. 

Our results stand in sharp contrast with a hypothesized positive correlation 

between excitatory receptor density and metabolism that underlies most estimates of 

cerebral energy utilization (Sibson, Dhankhar et al. 1998; Ames 2000; Attwell and 

Laughlin 2001).  One possible explanation for this unexpected finding is that receptor 
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density may be an inaccurate reflection of ongoing excitatory activity.  Ineffectual or 

silent synapses exist in the developing nervous system, suggesting that some 

glutamatergic receptors may be inactive without appropriate modulatory priming 

(Renger, Egles et al. 2001). This hypothesis, though, is inconsistent with a wide range of 

evidence suggesting a correlation between receptor density and neuronal activity 

(Kennedy 2000; Eickhoff, Schleicher et al. 2007; Sheng and Hoogenraad 2007). In 

addition, increased neuronal activity following long-term potentiation is associated with 

an increase in glutamatergic receptor density (Buchs and Muller 1996; Jacob, Moss et al. 

2008), suggesting that receptor density may be a reasonable surrogate measure for 

neuronal activity.  Elevation of excitatory neurotransmission in epileptiform cortex is 

associated with focal increases in cerebral blood flow (Kahane, Merlet et al. 1999) and 

significant increases in the density of AMPA and NMDA mRNA (Mathern, Pretorius et 

al. 1997).   These data suggest that the observed negative correlation between cerebral 

metabolism and excitatory receptor density likely reflects neuronal physiology. 

An alternate explanation of these data is that cortical regions with a 

disproportionately higher density of glutamatergic receptors may, in fact, utilize less 

energy than regions that have to compensate for inhibitory tone at the dendrite.  If we 

assume that all cortical regions have similar levels of excitability, cortical regions with 

greater inhibitory receptor density require greater pre-synaptic firing in order to induce a 

postsynaptic response.  Though we assume that the post-synaptic response is the main 

energetic cost in the brain, spiking activity itself is only a minor contributor to total 

energy consumption (Ames 2000; Attwell and Laughlin 2001).  Increased fluctuations of 

the postsynaptic membrane potential in cortical regions with inhibitory tone may be 
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responsible for these observed correlations.  Previous modeling studies have estimated 

the cost of inhibitory neurotransmission to reflect approximately 10-15% of total cerebral 

energy consumption (Shulman, Rothman et al. 2004; Patel, de Graaf et al. 2005; Buzsaki, 

Kaila et al. 2007).   This estimation of energy cost is likely an underestimate as it does 

not account for the compensatory excitatory neurotransmission required to counteract 

inhibitory input to the postsynaptic neuron  (Buzsaki, Kaila et al. 2007).  Brain regions 

with higher levels of inhibitory receptor density (lower E/I) may therefore require 

increased blood flow and energy metabolism in order for an equivalent neuronal response 

(synaptic output).  Unfortunately, direct data to support this hypothesis is lacking as the 

energetic costs of the integration of numerous excitatory and inhibitory inputs at the 

dendrite remains unknown.  

Our finding of a positive correlation between inhibitory receptor density and 

oxygen extraction fraction suggests that postsynaptic GABAergic activity may primarily 

induce increases in oxidative metabolism.  The OEF is relatively homogenous across the 

brain, though an elevation in visual cortex has been previously reported (Lebrun-Grandie, 

Baron et al. 1983; Raichle, MacLeod et al. 2001) and is paralleled by disproportionate 

inhibitory receptor density.  Visual cortex receives significant excitatory inputs from the 

LGN, though local horizontal inhibitory circuits are vital for development and 

maintenance of receptor field properties (Gabbott and Somogyi 1986).  These data 

indicate that cortical regions with high inhibitory tone are likely to increase oxygen 

extraction before inducing changes in blood flow to increase oxygen supply.  

In contrast to other metabolic measures, aerobic glycolysis is highest in regions 

with a balanced ratio between excitation and inhibition (E/I) (Figure 4.4).  The role of 
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glycolysis is most closely associated with astrocytic uptake and cycling of glutamate 

(Pellerin and Magistretti 1996; Voutsinos-Porche, Bonvento et al. 2003; Kasischke, 

Vishwasrao et al. 2004).  The discrepancy between the CMRGlu and aerobic glycolysis 

as it relates to neurochemistry warrants further discussion.  While CMRGlu primarily 

reflects neuronal energy utilization (since most glucose is fated for complete oxidation 

associated with neuronal membrane potential fluctuations), aerobic glycolysis reflects 

astrocytic energy utilization (primarily due to glutamate cycling).  Regions with balanced 

E/I have elevations in aerobic glycolysis disproportionate to its elevation in CMRGlu 

(which is highest in regions with low E/I) indicating an unexpected shift in the fate of 

glucose depending on the neurochemical profile of the region.  We unfortunately do not 

have a complete explanation for this finding.  A balanced E/I suggests that cortical 

regions may receive significant excitatory and inhibitory inputs that must by integrated at 

the dendrite in order to compute the postsynaptic response.  These regions likely have 

greater glutamate flux than regions with high concentrations of either excitatory or 

inhibitory receptors alone due to the presence of local inhibitory feedback circuits 

preventing postsynaptic firing.  Future studies will have to assess the concentration of 

glutamate in the synaptic cleft directly in relation to local neurochemistry.   

Conversely, an alternate explanation for the observed E/I: aerobic glycolysis 

correlation is that regions with balanced E/I are utilizing a larger fraction of glucose for 

non-energetic or anabolic processes.  Glucose is a source of carbon fragments needed for 

production of DNA and RNA via the pentose phosphate pathway (Gaitonde, Jones et al. 

1987).  Cortical regions with balanced E/I may require greater membrane turnover and 

undergo greater oxidative stress as a result.  In addition to producing five-carbon 
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fragments, the pentose phosphate shunt also produces NADPH that may help compensate 

for local oxidative stress (Palmer 1999). These findings are surprising and merit further 

investigation using in vitro and modeling experiments.  

Our data indicates that in addition to their differential response to stimuli, cortical 

networks differ in their innate neurochemical profile (Figure 4.5).  The brain can be 

subdivided into functional units by clustering of Brodmann regions in Figure 4.4.  

Regions with high levels of inhibition (low E/I) and low levels of glycolysis include 

visual cortex (BA17/18/19).  In contrast, the default and cognitive control networks 

(Raichle, MacLeod et al. 2001; Dosenbach, Fair et al. 2007; Buckner, Andrews-Hanna et 

al. 2008) have a balanced distribution of excitatory and inhibitory receptors and high 

levels of glycolysis.  Sensory regions including primary motor and somatosensory cortex 

(BA1/2/3/4) have a similar balanced distribution of excitatory and inhibitory receptors, 

but minimal elevation in glycolysis.  Temporal lobe, including primary auditory cortex, 

hippocampus, and parahippocampal gyrus, has predominantly excitatory receptor density 

and has low levels of aerobic glycolysis.  These correlations indicate that cortical 

networks differ innately in their energy utilization independent of task state.   

A partial explanation for the relationship between aerobic glycolysis and E/I may 

be provided by investigation of neuronal development.  At birth, the brain is primarily 

glycolytic as the enzymes necessary for complete oxidation metabolism are not produced 

until several weeks postnatal (Chugani, Phelps et al. 1987; Altman, Perlman et al. 1993; 

Powers, Rosenbaum et al. 1998).  But aerobic glycolysis actually continues to increase in 

the infant brain long after birth and peak at the age of six in parallel to increases in 

synaptic density.  Since aerobic glycolysis is most closely associated with glutamate flux 
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(Pellerin and Magistretti 1996), this longitudinal progression may reflect an increase in 

excitatory neurotransmission, consistent with structural imaging data suggesting an 

increase in postsynaptic density in infancy followed by synaptic pruning  (Larsen, Bonde 

Larsen et al. 2006).  What remains unknown is whether inhibitory receptors follow a 

similar longitudinal trajectory.  There is considerable postnatal alteration in 

neurotransmitter receptor density in early life with alterations in both NMDA and GABA 

receptor density seen in the first decade of life in monkeys (Shaw, Cameron et al. 1991; 

Lewis 1997; Andersen 2003), similar to the trajectory of glucose metabolism.  The 

present data suggest that all cortical regions may initially have a balanced ratio of 

excitation to inhibition and be highly glycolytic at birth, but during postnatal 

development, these cortical regions may specialize to predominantly inhibitory or 

excitatory receptor profiles with a concomitant reduction in their utilization of aerobic 

glycolysis.  Future studies will have to determine to what extent changes in cerebral 

metabolism can be accounted for by changes in local receptor density. 

In conclusion, we provide evidence that cerebral blood flow, glucose, and oxygen 

metabolism are negatively correlated with excitatory neurotransmitter receptor density 

while oxygen extraction fraction is positively correlated with inhibitory receptor density.  

Aerobic glycolysis is nonlinearly correlated to the ratio of excitation to inhibition (E/I) 

and is highest in regions of balanced E/I.  While a complete explanation of these findings 

remains to be found, we believe that inhibitory neurotransmission is likely to account for 

a larger fraction of energy utilization than heretofore realized.  We also find that in 

addition to a differential response to stimuli, cortical networks also differ in their 
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subcellular constituents.  Future in vivo and modeling studies are needed to define the 

role of excitatory and inhibitory receptor function in cerebral energy utilization. 
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Figure 4.1: Correlation between excitatory receptor density and cerebral metabolism 

across cortical Brodmann regions.   

Average cerebral blood flow (CBF; upper left), oxygen consumption (CMRO2; upper 

right), glucose consumption (CMRGlu; lower left), and oxygen extraction fraction (OEF; 

lower right).   
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 Figure 4.2: Correlation between inhibitory receptor density and cerebral metabolism 

across cortical Brodmann regions.   

Average cerebral blood flow (CBF; upper left), oxygen consumption (CMRO2; upper 

right), glucose consumption (CMRGlu; lower left), and oxygen extraction fraction (OEF; 

lower right).   
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Figure 4.3: Correlation between excitatory/inhibitory (E/I) receptor density and cerebral 

metabolism across cortical Brodmann regions.   

Average cerebral blood flow (CBF; upper left), oxygen consumption (CMRO2; upper 

right), glucose consumption (CMRGlu; lower left), and oxygen extraction fraction (OEF; 

lower right).   
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Figure 4.4: Correlation between excitatory/inhibitory (E/I) receptor density and aerobic 

glycolysis (GI).  
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Figure 4.5: Correlation between excitatory/inhibitory (E/I) receptor density and aerobic 

glycolysis (GI) labeled by Brodmann regions.    

Note that primary visual cortex has low E/I, default network and primary sensorimotor 

cortex has balanced E/I and temporal lobe and hippocampus has elevated E/I.  In 

conjunction with aerobic glycolysis, several distinct cortical networks can be readily 

ascertained by clustering regions on the GI x E/I axis. 
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Table 4.1:  Metabolism (average; N=33) and neurochemistry (average; N=2) for each 

Brodmann region in the brain.   

Regions from Caret atlas.  GI, glycolytic index; OEF, oxygen extraction fraction; CBF, 

cerebral blood flow; CMRO2, cerebral metabolic rate of oxygen; CMRGlu, cerebral 

metabolic rate of glucose.   
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Chapter 5: Conclusion and future directions 

 

This thesis set out to investigate the regional distribution and functional role of 

aerobic glycolysis in the resting human brain.  This thesis presents several functional and 

methodological insights into resting brain physiology and provides a new framework by 

which researchers can understand diseases of the brain. 

The first experiment, Regional distribution of aerobic glycolysis in the human 

brain (Chapter 2), demonstrates that aerobic glycolysis is not homogenous across the 

cortex.  Brain regions known to have high levels of functional activity, including the 

default and cognitive control networks, have elevated glycolysis in eyes-closed rest. We 

also find that the distribution of aerobic glycolysis does not completely mirror the pattern 

of glucose utilization.  For example, some cortical regions have high levels of glucose 

and oxygen metabolism (including visual cortex), but they have minimal aerobic 

glycolysis.  These data also indicate that aerobic glycolysis may be a more direct marker 

of neuronal activity than glucose utilization or oxygen consumption alone.  

The second experiment, Resting brain metabolism is modified by task 

performance: metabolic plasticity of the brain (Chapter 3), provides evidence that aerobic 

glycolysis is elevated regionally following performance of a rotational learning task.  

These data provide supporting evidence to our hypothesis that local changes in cortical 

physiology cause changes in resting brain metabolism.  Aerobic glycolysis is increased in 

left premotor cortex for several hours following after task completion.  This premotor 

cortex region is activated acutely during motor task performance and alters its activity 
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during visuomotor learning.  These data provide new insights into the mechanisms of 

learning and raise questions about the mechanisms of synaptic homeostasis. 

The final experiment, Aerobic glycolysis is elevated in cortical networks with 

balanced excitation and inhibition (Chapter 4), provides evidence that the distribution of 

aerobic glycolysis is closely related to the underlying neurochemistry of the cortex.  

Brain regions with elevated glycolysis also have a balanced distribution of excitatory and 

inhibitory neurotransmitter receptors, suggesting an association between synaptic 

plasticity and aerobic glycolysis.  Further, we find a surprising negative correlation 

between excitatory receptor density and cerebral blood flow, glucose, and oxygen 

metabolism.  

 

Significance of findings 

 

 The findings emerging from this work provide several important contributions.  

First, we provide the first evidence, to our knowledge, that aerobic glycolysis is elevated 

within two widely distributed cortical networks during eyes-closed rest, the default and 

cognitive control networks.   

The default network is known to be involved in self-referential thought and mind 

wandering, among other putative roles (Gusnard and Raichle 2001; Raichle, MacLeod et 

al. 2001; Buckner, Andrews-Hanna et al. 2008).  Cerebral blood flow within the default 

network decreases during performance of goal-directed tasks, suggesting indirectly that 

this network has a high level of functional activity in the resting state (Shulman, Corbetta 

et al. 1997).  We provide evidence that neuronal activity within this distributed network is 
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in fact elevated during eyes-closed rest, though we did not investigate the network‟s 

behavioral function.  

More surprising, though, is the detection of elevated aerobic glycolysis within 

another distributed cortical network that includes the anterior cingulate, dorsolateral 

prefrontal cortex, and anterior parietal cortex known as the cognitive control network.  

This cortical system is associated with transient task-related activity during switching of 

cognitive sets, for example at the onset and offset of task performance (Braver and Barch 

2006; Dosenbach, Fair et al. 2007; Dosenbach, Fair et al. 2008; Fair, Cohen et al. 2008).  

But this network has not been identified using traditional functional neuroimaging 

techniques to have high levels of resting functional activity.  This may be because task-

related functional neuroimaging experiments rely upon comparison between two states, 

for example an „active‟ task state and a „passive‟ rest or visual fixation state.  Any 

differences between these two states are assessed (via subtraction) and functions are 

attributed to regional differences.  These data suggest that this network has a high level of 

resting activity that does not decrease, unlike the default network.  This theory is 

supported by several pieces of evidence. The putative role for this cortical network is to 

assess changes in brain state (Fox, Snyder et al. 2005).  In order to accurately assess 

block transitions, this region (or some corollary region) needs to continuously observe the 

external world to compare prior and current behavioral inputs to accurately track 

transitions, a function that may be associated with error detection signals arising from 

anterior cingulate (Dosenbach, Fair et al. 2007).  In this context, high levels of activity 

within this network may reflect its continuous activation in eyes-closed rest and other 

task-related states. This network can be seen as meta-network directing other brain 
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regions to increase or decrease their activity in response to task set.  While direct 

evidence for this is not at hand, our data provides the first evidence that functional 

activity may be maintained in these cortical regions at rest.  The activity of this network 

will have to be assessed during various task states for confirmation.   

The cortical networks identified with high levels of glycolysis in eyes-closed rest 

also significantly overlap with brain regions identified by other neuroimaging studies in 

diseases of consciousness.  Experiments performed by Steven Laureys and colleagues 

assessed subjects with varying degrees of impairment in consciousness, including sleep, 

coma, locked in syndrome, and persistent vegetative state (Laureys, Perrin et al. 2005; 

Boly, Phillips et al. 2008; Boly, Phillips et al. 2008).  They found consistent decreases in 

glucose metabolism within a widely distributed network of cortical regions that closely 

resemble those with elevated glycolysis in the resting state (M. Boly, personal 

communication).  While overlap between these networks does not imply causation, it is 

intriguing that regions with high glycolysis while at rest would also be impaired in 

disorders of consciousness.  Consciousness transcends moment to moment changes in 

neuronal activity and likely involves widely distributed cortical and thalamocortical 

networks (Tononi 2004; Boly, Phillips et al. 2008).  Consciousness likely requires 

ongoing neuronal activity for its maintenance, though there is considerable disagreement 

about the magnitude of activity and energy metabolism necessary (Tononi 2004; Laureys 

2005).  Some fraction of the brain‟s ongoing neuronal activity is likely to be devoted to 

activities related to consciousness, though.   Much research has focused on the role of the 

default network and activity within this network has been found to correlate to loss of 

consciousness, though there remains considerable debate about this issue (Boly, Phillips 
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et al. 2008; Greicius, Kiviniemi et al. 2008).  So have we identified a „network‟ for 

consciousness?  Maybe.  But it is just as likely that some small fraction of the cortical or 

subcortical regions with elevated glycolysis is responsible for processes associated with 

consciousness and a majority of the observed network is instead involved in other 

processes.  Future work will have to test this hypothesis by assessing aerobic glycolysis 

in patients with disorders of consciousness. 

The presence of widely distributed networks with elevated glycolysis in itself may 

not be completely surprising given evidence that the ongoing activity of the brain is 

responsible for 95% of the brain‟s energy utilization (Raichle and Mintun 2006).  But 

concurrent evidence from Chapter 4 reveals that these cortical networks not only differ in 

their response to stimulation, but also differ in their innate neurochemical profile.  

Regions with elevated glycolysis also have a balanced ratio of excitatory and inhibitory 

(glutamtergic:GABAergic) postsynaptic receptors.  This has several important 

implications.   

Regions with elevated glycolysis can be identified by their neurochemistry 

without regard to their functional activity.  Neurochemistry data was collected from a 

separate group of subjects postmortem.  This suggests that the activities performed by the 

default and cognitive control networks may lead to long-term changes in cellular 

neurochemistry.  One theory to explain this finding would be that inhibitory and 

excitatory neurotransmission are in competition with each other.  Increased synaptic 

strength results in an increase in excitatory receptor density, but competing inputs also 

result in elevated inhibition.  There is considerable evidence that most synaptic 

connections are highly local, with only a small fraction of inputs from distant cortical 
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regions.  In the visual cortex, less than 5% of the inputs to V1 are from the LGN, though 

these inputs may be highly efficacious and drive cellular activity (Felleman and Van 

Essen 1991).  Visual cortex actually has a low ratio of excitation to inhibition and low 

levels of aerobic glycolysis, suggesting that local inhibitory circuits predominate.  

Conversely, medial temporal lobe, including the hippocampus, has a high ratio of 

excitation to inhibition and low levels of aerobic glycolysis.  These regions are highly 

interconnected with large numbers of glutamatergic cells, consistent with our findings 

(Wieraszko 1982; Ackermann, Finch et al. 1984; Cervos-Navarro and Diemer 1991; Eid, 

Williamson et al. 2008).   

In Chapter 3 we provide evidence that regional aerobic glycolysis is elevated in 

the resting state following task completion.  We confirm and expand upon the work of 

Madsen and colleagues who initially observed an increase in global resting aerobic 

glycolysis following completion of the Wisconsin card sorting task in humans (Madsen, 

Hasselbalch et al. 1995).   

These data suggest that local changes in cellular activity, particularly associated 

with learning, change resting brain metabolism.  We postulate that learning may alter 

brain metabolism by altering the balance of excitatory to inhibitory receptors in the 

postsynaptic membrane.  While direct evidence for this is lacking in our data, synaptic 

efficacy is predominantly increased by alteration of the postsynaptic density by increases 

in receptor density or alteration in the binding potential of neurotransmitters to their 

respective binding sites.  Previous studies have assumed that this functional adaptation 

(e.g. learning) is achieved via an increase in excitatory receptors without alteration in 

inhibitory receptor density.  An increase in both excitatory and inhibitory receptor density 
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may increase the specificity of neuronal signaling, providing an alternate approach to 

induce specific and efficacious synaptic transmission.   

Our data provides several other insights about brain function. The resting brain 

cannot be considered a clean slate upon which researchers simply add an experimental 

manipulation. The human brain is highly dependent on prior activity and experiences.  In 

this framework, simple exposure to information can alter the brain‟s response to a future 

repetition of this information.  This is consistent with the known decrease in neuronal 

activity after repeated practice of simple cognitive and motor tasks (Raichle, Fiez et al. 

1994; Petersen, van Mier et al. 1998).  Experiences cause identifiable metabolic (and 

presumably neurochemical if seen in context of data from Chapter 4) changes in cortical 

regions that are only transiently activated.  This finding raises several intriguing 

questions. 

First, what is the cellular mechanism responsible for these changes?  Increased 

aerobic glycolysis may reflect increased spontaneous glutamate flux, closely associated 

with astrocytic Na
+
/K

+
 ATPase in cellular models (Pellerin and Magistretti 1994; Pellerin 

and Magistretti 1996).  Residual increases in glycolysis may reflect increased utilization 

of glucose for anabolic processes (Gaitonde, Jones et al. 1987).  Unfortunately, we are 

unable to detect the fraction of glucose that enters the pentose phosphate shunt or directly 

image glutamate flux in vivo at this time.   

Second, what is the timeframe of these changes?  We only measured a single time 

point following task completion (spanning 2.5 hours of eyes-closed rest).  There has to be 

some mechanism whereby this elevation in synaptic strength and energy metabolism is 

remediated.  This may occur via slow wave sleep as suggested by the synaptic 
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homeostasis hypothesis or fade over time regardless of sleep (Tononi and Cirelli 2003).  

Sleep appears to be a convenient time for synaptic downregulation given the decrease in 

transcription of proteins involved in energy metabolism and excitatory neurotransmission 

in this state (Cirelli and Tononi 2000; Tononi and Cirelli 2001).  At this time we cannot 

differentiate between these two possible outcomes. 

Third, to what extent can these changes in metabolism accurately reflect prior 

activity patterns?  With a relatively simple motor learning paradigm, we detect increased 

aerobic glycolysis hours following task completion.  Could a similar approach be taken to 

determine if a subject has been performing another difficult activity whose transient 

functional activity pattern is known?  If this approach could be expanded to other tasks 

and behaviors, this method could provide a putative „mind-reader‟ or „lie-detector‟ type 

role.  It appears unlikely that this approach (at least with PET) would have the spatial and 

temporal resolution to accurately reflect prior activity patterns, though that remains to be 

investigated experimentally. 

 

Future experiments 

 

 These data provide several new avenues for future research.  First, future studies 

will have to evaluate the fate of glucose beyond the production of ATP.  An energy-

centric view of glucose utilization is unable to account for regional elevations of aerobic 

glycolysis and its residual increases following learning.  We postulate that protein 

synthesis and DNA replication may be increased regionally following learning, reflecting 

the fate of increased aerobic glycolysis.  New techniques will have to be developed to 
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assess cellular processes such as the pentose phosphate shunt in vivo.  We are severely 

limited in our ability to define cellular processes at the human cortical level beyond 

simple measures of energy metabolism and a few select neurotransmitters (GABA and 

dopamine predominantly) at this time. Development of new radioligands and replication 

in animal models of such experiments will be necessary to determine the cellular 

processes implicated in aerobic glycolysis.   

 To follow up on the learning related changes in glycolysis found in this thesis, a 

series of experiments will have to be performed to assess the role of sleep in synaptic 

homeostasis.  First, in order to confirm that the decreases in blood flow and glucose 

utilization that have been reported following sleep (Boyle, Scott et al. 1994; Braun, 

Balkin et al. 1997) are actually due to changes in aerobic glycolysis and not oxidative 

phosphorylation, aerobic glycolysis will have be assessed both before and immediately 

after sleep in a single group of subjects.  Though such experiments are logistically 

difficult, they can and should be performed to determine the role of sleep in resetting 

cerebral metabolism.  These experiments can provide important insights into the 

beneficial effect of sleep on various behaviors and provide a new avenue to assess sleep 

disorders and memory. 

 In addition, a series of experiments should be performed to assess the longitudinal 

progression of the observed increases in aerobic glycolysis following learning.  It appears 

unlikely that increases in aerobic glycolysis could be maintained for long periods of time 

simply because that would be energetically inefficient.  These changes may slowly decay 

or an active process such as slow wave sleep may mediate their subsequent decrease.  A 

control condition comparing learning before and after sleep with slow wave sleep 
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deprivation would further provide insight into the distinct sleep processes necessary for 

maintenance of synaptic homeostasis.  

 

Implications for disease pathophysiology 

 

 We report an elevation in aerobic glycolysis in widely distributed cortical 

networks during eyes-closed rest.  Surprisingly, these networks have also been implicated 

as regions of high amyloid deposition in Alzheimer‟s disease (Buckner, Snyder et al. 

2005).  Though initial studies focused upon the default network, binding of the amyloid-

specific PET ligand Pittsburgh Compound B (PIB) is better correlated to the network 

identified in Chapter 2 (Vlassenko et al., unpublished observation).  There are several 

possible implications.  First, aerobic glycolysis may predispose cortical regions for 

development of amyloid plaques, though an exact mechanism is unknown.  Since 

Alzheimer‟s is a neurodegenerative disease that strikes late in life, a lifetime of aerobic 

glycolysis could result in local changes in cellular physiology that predispose for amyloid 

deposition.  One intriguing possibility is that glutamate flux itself may be involved with 

amyloid deposition.  Recent studies have found that amyloid deposition is accelerated 

following posttranslational modification with pyroglutamate, a cyclized form of 

glutamate (Schilling, Zeitschel et al. 2008).  Since aerobic glycolysis is associated with 

glutamate flux, it is possible that a lifetime of glutamate flux within the default and 

cognitive control system (or the repeated activation and deactivation of these networks) 

may predispose the cellular cyclization of glutamate via glutaminyl cyclase.  Future 

studies will have to investigate the cellular linkages between aerobic glycolysis and 
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amyloid deposition.  Other possible mechanisms linking these two phenomenons include 

membrane turnover processes, already implicated in amyloid deposition in animal models 

and recently in humans (Brody, Magnoni et al. 2008; Cirrito, Kang et al. 2008).  Since 

the default and cognitive control networks are sites of high levels of synaptic plasticity, 

amyloid may accumulate in these regions as a byproduct of neuronal signaling (Cirrito, 

Kang et al. 2008).  Given the spatial correlation between the regional distribution of 

amyloid deposition and aerobic glycolysis, this research may open a new avenue of 

research to understand the pathophysiology of Alzheimer‟s disease. 

   

Conclusion 

 

Aerobic glycolysis is a functionally relevant marker of neuronal activity that is 

modulated by prior transient task performance and reflects unique cellular 

neurochemistry.   The research presented here provides some insight into the functional 

role of aerobic glycolysis in the resting human brain.  
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