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Chapter 1

Background and Introduction

1.1 Biomembranes

1.1.1 Phospholipid Bilayers

The fundamental structure of biological membranes is provided by amphipathic phospholipids. While mem-

brane phospholipids have a variety of structures, their basic shape and polarity remains the same: a polar or

charged headgroup connected to one or more long hydrophobic tails. The combination of polar and nonpo-

lar regions gives lipids an amphiphilic character that causes them to self-assemble into an ordered structure

when in an aqueous environment. Lipids such as glycophospholipids or sphingomyelin spontaneously form

liposomes or bilayers in aqueous solution, aggregates composed of two stacked layers of lipids. Each layer

orients so that the hydrophobic tails of that layer interact with those of the other layer, while the hydrophilic

headgroups of each layer interact with the aqueous environment. Phospholipid bilayers serve to separate the

inside of the cell from its environment, as well as segregate different organelles within the cell.

The most common lipid components of biological membranes are glycerophospholipids. Glycerophos-

pholipid structure is based on a glycerol core. Two of the glycerol hydroxyl groups form esters with long

chain fatty acids, while the third is attached to a hydrophilic headgroup through a phosphate linker (Fig-

ure 1.2). Variation in structure among different glycerophospholipids comes from different fatty acids and

headgroups. Fatty acids range from 12 to 20 carbons and can be either fully saturated or contain multiple

cis double bonds. Most biologically-relevant phospholipids contain one saturated and one unsaturated fatty

acid [96, 128]. The most common phospholipid headgroup in biological membranes is choline, but other

headgroups such as ethanolamine, serine, and inositol may be present in varying amounts as well [128].

While most membrane lipids are glycerophospholipids, sphingomyelin is also an important component

1



A

B

C

Figure 1.1: Three possible self-assemblies of amphiphilic lipids. Lipids with smaller tails form micelles (A),
while those with larger tails form liposomes (B) or bilayers (C).

Fatty Acid
Chains

Glycerol Core

Phosphate
Linker

Polar
Headgroup

Figure 1.2: A breakdown of the functional groups of glycerophospholipids. The glycerol core is attached to
two variable fatty acid chains and, through a phosphate linker, to a variable polar headgroup.
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of membranes [35, 96]. Unlike glycerophospholipids which are based around a glycerol core, sphingomyelin

is based around a sphingosine core attached to a saturated fatty acid and phosphocholine headgroup. This

gives it a more polar interfacial region containing both an amide and an alcohol, unlike the esters seen in

phosphatidylcholine. These functional groups allow sphingomyelin to donate as well as accept hydrogen

bonds, increasing its ability to form lipid-lipid interactions [96].

Lipid bilayers can exist in several different phases. These phases are distinguished by the behavior of the

component lipids. In the solid or gel phase (so), lipids have low lateral diffusion rates and are highly ordered,

with extended acyl chains [30, 128]. This phase is characterized by strong interactions between neighboring

lipids that restrict lipid movement and constrain acyl chains to ordered conformations [30,128]. In the liquid

crystalline or liquid disordered phase (ld), lipids diffuse rapidly and are less ordered [30, 128]. The liquid

ordered phase (lo) is an intermediate phase with highly ordered lipids but fast lateral diffusion [30, 128].

Non-lamellar phases such as cubic or hexagonal phases may also be important in transient events such as

bilayer fusion, budding, and pore formation [30,128].

Bilayer phase is dependent on temperature and lipid composition of the membrane. Lower temperatures

promote solid phases. Each individual type of bilayer-forming lipid has a characteristic melting temperature

(Tm), denoting the transition temperature between the so and ld phases [12,128]. Melting temperatures are

higher for lipids with saturated fatty acid chains due to improved packing between the flexible saturated

chains [12, 128]. The position of the double bond in unsaturated chains also affects the Tm, with double

bond positions near the center of the chain causing the largest decrease in Tm [82]. This is due to packing

defects caused by the kinks of the cis double bonds. lo phases are not seen in bilayers composed of only

phospholipids. Rather, they are produced through the addition of the steroid lipid cholesterol to phospholipid

membranes. This orders the acyl chains while retaining high levels of lateral lipid diffusion.

1.1.2 Membrane Composition and Regulation

The lipid composition of mammalian membranes varies drastically between different cellular membranes and

even between different leaflets of the same membrane. Endoplasmic reticulum (ER) membranes contain

mostly phosphatidylcholine and phosphatidylethanolamine, with low levels of phosphatidylinositol, phos-

phatidylserine and cholesterol [128]. Plasma membranes contain higher levels of phosphatidylserine, signifi-

cant amounts of sphingomyelin, and may be up to 50% cholesterol [128]. Plasma membranes are also known to

be asymmetric, with most sphingomyelin found in the outer leaflet and phosphatidylserine exclusively found

in the cytosolic leaflet [28,96]. Golgi membranes tend to have compositions intermediate between those of the

ER and plasma membranes [128]. Some compartments may have specifically high levels of other lipids such

3



as cardiolipins, exclusively found in the inner mitochondrial membrane, and bis(monoacylglycero)phosphate,

mostly found in endosomal compartments [128]. These compositions are tightly regulated and are essential

for proper cellular behavior.

Membranes play important roles as regulatory organelles of the cell. The most obvious way in which

membranes regulate cellular behavior is through segregation of separate cellular compartments. Selective

permeability of membranes allows different organelles to contain separately regulated enzymatic activities

and is essential to eukaryotic cell viability. Disruption of this compartmental segregation between the mito-

chondria and the cytosol through membrane permeabilization appears to trigger apoptotic cell death [16].

The regulatory behavior of membranes is generally due to regulation of integral and peripheral membrane

proteins. Many membrane-associated proteins have important enzymatic behavior that is regulated through

the structure and composition of membranes with which they are associated [74]. For example, the activity of

adenylate cyclase is regulated by the fluidity and cholesterol composition of its membrane environment [53],

membrane structure regulates G-protein activity [132], and phospholipid chain length alters the behavior

of diacylglycerol kinase through hydrophobic matching of the membrane to the protein [74]. Membrane

structure also regulates protein sorting and association. Reversible protein association with membranes

to form enzymatically active complexes is controlled in part through the composition and structure of

membranes [89]. Integral membrane protein distribution within cell is regulated by hydrophobic matching

of the protein to membranes of different thicknesses within the cell [79].

Membrane lipids themselves can also play a role as signaling molecules. The best understood lipid

signaling pathways are those involving the phosphatidylinositols PIP2 and PIP3 [19]. These are rare lipids

but function as messengers in a number of signaling pathways. PIP2 can be cleaved to form two different

signaling molecules, diacylglycerol and inositol(1,4,5)P3 [19]. PIP3 regulates large-scale membrane behaviors

such as endocytosis, exocytosis, and membrane-cytoskeletal interactions [19]. Sphingolipids are also known

to act as signaling molecules, involved in the control of apoptosis, the cell cycle, and differentiation [35,43].

The movement of common lipids can also serve as a signal: transfer of phosphatidylserine to the outer leaflet

of the plasma membrane appears to mark apoptotic cells [28] and depletion of cellular cholesterol alters

protein localization and trafficking [57,112].

1.2 Sterols

While phospholipids and sphingolipids are responsible for forming the basic structure of biological mem-

branes, sterols are essential for the proper functioning of membranes. While a wide array of different phos-

4
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Figure 1.3: Chemical structures of some common sterols.

pholipids have been identified in biological membranes, most contain only one dominant sterol. Cholesterol

(Figure 1.3) is the primary sterol found in mammalian cells, while its role is taken by other sterols in fungi

and plants [128]. Cholesterol is required for mammalian cell function and viability.

1.2.1 Sterol Structure

All sterols have a structure based around four rings fused in a trans configuration. These fused rings give

sterols a rigid, planar, and hydrophobic structure. Different sterols decorate this base steroid ring structure

with different functional groups, such as methyl, hydroxyl, iso-octyl, keto, and other groups. Cholesterol

contains a flexible iso-octyl tail attached to one end of the steroid rings, a hydroxyl group attached at the

5



other end, and two methyl groups attached to one face of the steroid rings. While most of the cholesterol

structure is highly hydrophobic, the hydroxyl headgroup gives it an amphiphilic character. Because the

hydroxyl group is so small, cholesterol cannot form bilayers by itself but instead incorporates into existing

phospholipid bilayers, modulating their structure and behavior.

1.2.2 Cholesterol

When incorporated into phospholipid bilayers, cholesterol aligns so that its polar hydroxyl group is near the

interface with the aqueous environment while its hydrophobic body is buried in the bilayer [96, 97]. This

alignment places the rigid steroid ring in close proximity to the acyl chains of nearby phospholipids. Because

the acyl chains are flexible, they tend to align themselves along the surface of the steroid ring, ordering

and extending them [57, 118]. Cholesterol interactions with phospholipids change membrane structure.

The alignment and ordering of nearby phospholipid tails causes a condensation of membranes, decreasing

the area of the membrane and increasing the thickness [96]. Cholesterol also broadens the liquid-to-solid

phase transition, inducing an intermediate liquid-ordered phase that retains lateral mobility while gaining

increased lipid order [30, 118, 128]. These changes result a mechanically stronger membrane with decreased

permeability due to tighter packing among lipids [57, 118]. The effects of cholesterol on membranes are

dependent on the composition of the membrane. The condensation effect on proximal phospholipids is

strongest on lipids with saturated acyl chains [57, 118]. This is because the kinks in unsaturated tails

interfere with packing between the tails and the rigid steroid ring [57,118]. Because of this, in cell membranes,

cholesterol segregates into separate domains with the saturated sphingomyelin lipids away from the mostly

unsaturated glycerophospholipids [57,118].

Cholesterol is asymmetrically distributed between different membranes in the cell [128]. Most cellular

cholesterol is found in the plasma membrane, with much lower concentrations in the ER, Golgi, and endoso-

mal compartments [128]. However, this is not a static distribution; there is constant trafficking of cholesterol

back and forth between the ER and the plasma membrane [57, 96]. This trafficking allows changes in the

concentration of cholesterol at the plasma membrane to cause much larger changes in ER cholesterol lev-

els [57]. When cholesterol is added to the plasma membrane past physiological levels, the excess is quickly

trafficked to the ER where it is processed for storage as cholesterol esters [71,73]. Similarly, when cholesterol

is partially depleted from the plasma membrane, ER cholesterol drops even further, triggering mechanisms

intended to restore cholesterol levels [57,73].
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1.2.3 Oxysterols

While cholesterol is the dominant sterol present in mammalian cells, oxygenated derivatives of cholesterol,

called oxysterols, are present at low concentrations as well. Oxysterols are produced by either the un-

controlled reaction of reactive oxygen species with cholesterol or by controlled enzymatic reactions. The

enzymatic production of oxysterols indicates that they are not simply unwanted side products but rather

serve a useful purpose within the cell. Two major roles of oxysterols in the cell have been identified.

First, oxysterols are involved in important cholesterol excretion pathways. The addition of polar oxygen-

containing groups to cholesterol increases its ability to pass through membranes and is used to transform

excess cholesterol into a more easily removed form [7]. For example, excess cholesterol in cholesterol-loaded

macrophages is converted into 27-hydroxycholesterol and cholestenoic acid for excretion, while excess choles-

terol in the brain is converted to 24S-hydroxycholesterol in order to pass through the blood-brain barrier [7].

Oxysterols are also intermediates in the bile acid synthesis pathway for excretion into the digestive system,

with the liver enzyme cholesterol 7α-hydroxylase being the rate limiting step. Secondly, oxysterols have

strong effects on the regulation of cholesterol homeostasis, in multiple different pathways. They are activa-

tors of the liver X receptor family of transcription factors, upregulating the expression of enzymes involved in

cholesterol efflux [7,60,61]. Oxysterols have also been found to be potent suppressors of cholesterol synthesis,

with some oxysterols having inhibitory activities orders of magnitude stronger than cholesterol itself [6].

Oxysterols can be broadly divided into two classes: those oxygenated on the steroid ring structure, usually

at the 7-position, such as 7-ketocholesterol, 7α-hydroxycholesterol, and 7β-hydroxycholesterol, and those oxy-

genated on the iso-octyl tail, such as 25-hydroxycholesterol, 27-hydroxycholesterol, and 24S-hydroxycholesterol

[10]. Generally the side-chain oxysterols are produced enzymatically while the ring oxysterols are produced

non-enzymatically, although both 25-hydroxycholesterol and 7α-hydroxycholesterol can be produced by both

methods [10]. The different side-chain oxysterols are produced by different enzymes: sterol 27-hydroxylase

is a mitochondrial enzyme highly expressed in liver and macrophage cells where it catalyzes bile acid synthe-

sis [10], cholesterol 24-hydroxylase is found in the ER, mainly expressed in brain cells [10], and cholesterol

25-hydroxylase is is a structurally dissimilar enzyme found in the ER and Golgi [10].

Oxysterols also have significant effects on the physical structure of model membranes. Ring-oxygenated

oxysterols have generally similar but weaker effects as cholesterol, inducing membrane condensation and

increasing phospholipid order [36, 125]. Side-chain oxysterols have quite different effects, expanding rather

than condensing membranes [36, 125], and increasing the permeability of membranes to ions and polar

molecules [49,125]. The mechanisms for these effects have not yet been eludicated.
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1.2.4 Cholesterol Regulation

Because cholesterol is such an essential part of mammalian membranes, cells expend significant amounts

of energy to regulating their cholesterol levels. Cholesterol levels are controlled through multiple different

processes, including de novo synthesis within the cell, transfer of cellular cholesterol to and from circulating

lipoproteins, storage of cholesterol within the cell as cholesterol esters, and excretion of cholesterol as bile

acids [52,98]. The rate-limiting step of cellular cholesterol synthesis is performed by the enzyme 3-hydroxy-3-

methylglutaryl CoA reductase (HMGCoAR) [39]. Cholesterol synthesis is tightly regulated by ER cholesterol

levels through transcriptional and non-transcriptional regulation of HMGCoAR activity [39].

The HMGCoAR gene contains a promoter known as the sterol regulatory element (SRE) [39]. Tran-

scription factors known as sterol regulatory element binding proteins (SREBPs) bind to SREs and activate

transcription from genes containing SRE promoters [11, 52]. SREBPs are transmembrane proteins that are

produced in the ER [11, 52]. When initially synthesized, they are inactive and must mature in order to

become active transcription factors [11,52]. This activation occurs through transport of the transmembrane

SREBP from the ER to the Golgi complex where Golgi-resident proteases cleave the transmembrane domain,

producing an active fragment [11, 52]. This fragment can then enter the nucleus and induce transcription

from cholesterol synthesis and uptake genes including HMGCoAR [11, 52]. Transport of SREBPs from the

ER to the Golgi is done with the aid of the SREBP cleavage-activating protein (Scap) [11,52]. Scap binds to

the regulatory domain of SREBPs, thus forming SREBP-Scap complexes [11,52]. Scap also contains a sterol

sensing domain (SSD), which causes conformational changes in Scap in the presence of cholesterol [11, 52].

When ER cholesterol levels are low, Scap binds to vesicular packaging proteins, initiating the transfer of the

complex to the Golgi [11,52]. Under cholesterol-rich conditions, Scap instead binds to the ER resident Insig

proteins, blocking vesicular transport and SREBP maturation [133]. This pathway provides transcriptional

feedback to help control cholesterol levels. When ER cholesterol is low, SREBP is activated and initiates pro-

duction of HMGCoAR and thus cholesterol synthesis. When ER cholesterol is high, SREBP is not activated

and no cholesterol synthesis is initiated.

While transcriptional regulation of cholesterol synthesis is essential, it occurs on a slow timescale of

several hours. This is not fast enough to quickly shut off cholesterol synthesis when large amounts of new

cholesterol are introduced, either through uptake from lipoproteins or synthesis. For faster response times,

non-transcriptional regulation is required. HMGCoAR is an ER resident transmembrane protein [39]. Like

Scap, HMGCoAR contains a SSD that induces conformational changes in the presence of cholesterol [39,

68]. These conformational changes expose ubiquitination sites on HMGCoAR [37, 68]. Once ubiquitinated,

HMGCoAR is targeted to the proteasome where it is degraded [37, 68]. This sterol-dependent proteolysis
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of HMGCoAR prevents cellular energy from being expended to produce unnecessary cholesterol by shutting

down cholesterol synthesis as soon as enough is present in the ER to bind and activate SSDs.

While cholesterol itself can regulate HMGCoAR synthesis and degradation, side-chain oxysterols have

also been shown to play a role. Side-chain oxysterols are more potent suppressors of SREBP activation than

cholesterol itself when added to cells [40,55]. Oxysterols have been shown to interact with Insig, retaining the

Insig/Scap/SREBP complex in the ER and blocking SREBP maturation [109]. Studies with enantiomeric

25-hydroxycholesterol have shown that oxysterol suppression of SREBP activation is not enantiospecific,

suggesting that its effects are not due to direct protein interactions but instead may be mediated through

membranes [36]. 27-hydroxycholesterol is a potent activator of HMGCoAR degradation [7]. Cells which lack

cholesterol 27-hydroxylase have normal sterol content and respond properly to cholesterol depletion, but do

not suppress HMGCoAR activity upon cholesterol enrichment [7,70]. This suggests that the feedback effects

of cholesterol on these pathways are mediated through cholesterol conversion into oxysterols.

Oxysterols also play a role in the regulation of cholesterol efflux through the liver X receptor family of

transcription proteins. Side-chain oxysterols bind to and activate LXRs at physiological concentrations [7,60,

61]. LXRs in turn activate the expression of a number of genes involved in export of excess cholesterol from

the cell, including bile acid synthesis proteins such as Cyp7A1 [7], the ABCA1 transporter which transfers

excess cholesterol to circulating apolipoproteins [124], and apolipoproteins themselves [124]. Experiments

with enantiomeric 25-hydroxycholesterol demonstrate that LXR activation by oxysterols is enantiospecific,

confirming direct binding between LXR and 25-hydroxycholesterol [36].
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Chapter 2

Examination of Oxysterol Membrane

Effects

Abstract

Cholesterol is essential for proper function and regulation of eukaryotic membranes, and significant

amounts of metabolic energy are dedicated to controlling cellular cholesterol levels. Oxidation products

of cholesterol, the oxysterols, are enzymatically produced molecules that play a major role in mediating

cholesterol homeostasis through mechanisms which have not yet been fully elucidated. Certain oxysterols

are known to have direct effects on membrane permeability and structure; effects that are strikingly dif-

ferent from that of cholesterol. We use molecular dynamics simulations of these oxysterols in 1-palmitoyl

2-oleoyl phosphatidylcholine (POPC) bilayers to explain the structural origins for the differing effects

of cholesterol and 25-hydroxycholesterol on bilayer properties. In particular, we demonstrate that the

source for these differing perturbations is the much wider range of molecular orientations accessible to

25-hydroxycholesterol when compared to cholesterol. This study shows that direct membrane perturba-

tion by side-chain oxysterols is significant, and suggests that these membrane perturbations may play a

role in the oxysterol regulation of cholesterol homeostasis.

2.1 Introduction

While the major components of cellular membranes are phospholipids, sterols are essential for membrane

function [96]. Cholesterol is the most prevalent sterol in mammalian cells, where it is distributed unevenly

among mammalian membranes with the plasma membrane containing significantly more cholesterol than

the mitochondrial or ER membranes [78,96]. Cholesterol is required by all mammalian cells, and can either
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be produced endogenously or taken up from plasma lipoproteins [78, 96]. Its functions in the cell include

binding to sterol-sensing domains to regulate protein function [27,68], participating in the formation of lipid

rafts [23, 59], and serving as a precursor for steroid hormone and bile acid synthesis [15]. Homeostasis of

cholesterol levels is maintained through regulation of de novo synthesis, cholesterol uptake, and cholesterol

efflux [52,98]. Cholesterol influences cellular behavior both directly and indirectly. Conserved sterol-sensing

domains (SSDs) are found in many different membrane proteins and respond to concentrated levels of sterols

in the local membrane by changing their binding affinities and enzymatic activities, allowing sterols to signal

in a number of pathways through these proteins [68]. In particular, both the cholesterol synthesis and

intracellular cholesterol transport pathways contain proteins with SSDs, indicating a role for the SSD in

sterol homeostasis [68]. Cholesterol also alters membrane structure, increasing membrane thickness, bending

modulus, and lipid order while decreasing membrane fluidity [26,56,86,94,108,129]. These physical changes

can affect membrane proteins as demonstrated in membrane protein sorting [79], cellular signaling [23], and

changes in ion channel properties [90].

Oxysterols are also known to exhibit a variety of biological activities. Of particular interest is their effect

on cholesterol synthesis through feedback inhibition [40]. Transcriptional regulation of cholesterol synthesis is

mediated by sterol regulatory-element binding proteins (SREBPs), a family of membrane-bound transcription

factors [40, 52]. SREBPs form a complex with the SREBP cleavage-activating protein (SCAP). When this

complex moves to the Golgi apparatus, SREBP is cleaved by Golgi-resident proteases, and the transcription

factor domain of SREBP is released to activate transcription of cholesterol biosynthetic enzymes [40,52]. High

levels of membrane sterols also induce binding of SCAP to ER-resident Insig proteins, retaining the SREBP-

SCAP complex in the ER and blocking upregulation of cholesterol synthesis [40,52]. While cholesterol alone

is sufficient to induce this feedback inhibition, it has been known for many years that oxysterols, including 25-

hydroxycholesterol, are greater than 50 times more effective at suppressing the expression of sterol synthetic

enzymes such as HMGCoA reductase [40, 55]. In conjunction with the discovery of oxysterol-synthesizing

proteins and oxysterol-binding proteins, this has led to speculation that cholesterol’s feedback inhibition

may be partially mediated through oxysterols [38]. Like cholesterol, the 25-hydroxycholesterol oxysterol

can act through both specific ligand-protein interactions [38, 109] and by altering the structural properties

of membranes. Specifically, 25-hydroxycholesterol has been shown to increase membrane permeability and

monolayer per-lipid area [49,63,125].

The molecular structure of cholesterol (Fig. 2.1A) is based around four fused rings in a trans configuration,

making the ring structure planar and rigid. This rigid ring structure contains two methyl groups protruding

out of one face of the planar ring and is connected to a flexible iso-octyl hydrocarbon chain at carbon 17.
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Figure 2.1: Cholesterol (A) and 25-Hydroxycholesterol (B), with standard carbon numbering schemes.
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Due to the hydroxyl group located at carbon 3, cholesterol is an amphiphile. In the membrane, this tends

to orient cholesterol with the hydroxyl group facing water and the polar regions of nearby phospholipids to

maximize hydrogen-bonding interactions [96]. Another important aspect of cholesterol is that the 3-hydroxyl

group, the iso-octyl hydrocarbon chain, and the two methyl groups are all attached to the same face of the

planar ring, giving it “smooth” and “rough” faces that influence its interactions with other molecules [96].

While cholesterol is the dominant sterol within mammalian cells, oxidation products of cholesterol are formed

at low levels by both reactive oxygen species and enzymatic action on cholesterol [115, 119]. The oxysterol

25-hydroxycholesterol (Figure 2.1B) is one such oxidation product which contains an additional hydroxyl

group at the end of the iso-octyl tail, on the other side of the molecule from the 3-hydroxyl group. Addition

of this 25-hydroxyl group to a non-polar region of the cholesterol structure significantly alters the amphiphilic

characteristics of this molecule.

The molecular-level interactions of cholesterol and 25-hydroxycholesterol with phospholipid membranes

are essential to understanding their dramatically different effects on mammalian cells. Both of these sterols

can perturb the bulk properties of membranes [49,96,125]with significant effects on the behavior of membrane-

bound proteins [23,79,90]. In this study, we use molecular dynamics simulations of mixed sterol/phospholipid

membranes to examine the influence of chemical differences in sterol structure on membrane interactions.

This technique, while limited to very fine details of interactions and simple membrane structures, allows

us to gather atomic-level information about how these small molecules interact with membranes and the

mechanisms by which they can perturb membrane behavior.

2.2 Methods

2.2.1 Parameters and Structures

The initial united atom structure and GROMACS topology for cholesterol modeling were taken from Höltje

et al. [50]. An additional hydroxyl group was added to both the structure and topology to produce 25-

hydroxycholesterol (Fig. 2.1B).

Atomic charges for both cholesterol and 25-hydroxycholesterol molecules were calculated using quantum

mechanical/molecular mechanical (QM/MM) methods. Our starting structures for these calculations were

taken from short MD simulations of a single sterol (cholesterol or 25-hydroxycholesterol) solvated in SPC

water with imprecise atom charges, taken from the original Höltje topology [50]. QM/MM minimization was

performed with the QSite program [58]. The QM/MM methodology has been described elsewhere [92,106].

A solvation sphere of 15 Å around the sterol was retained, and the outer 3 Å of waters were constrained in
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place. Water molecules were modeled using MM methods, using the OPLS-AA force field [62]. The sterol

molecule was converted to an all-atom structure and modeled using density functional QM methods with

the B3LYP functional [2, 122] in combination with the LACVP* basis set [34,45].

Sterol atom charges were obtained from the minimized QM/MM systems by fitting the molecular electro-

static potential (ESP) surface to atomic point charges [9,17,130]. Charges for non-hydroxyl hydrogen atoms

were added onto their attached heavy atom’s charge to prepare united atom charges. These charges were

then adjusted slightly to create net-neutral charge groups for MD simulation and are shown in the Appendix

(Table 6.1).

1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) lipids were simulated using the united atom parameters

of Berger and Lindahl [5], along with SPC water [3] and Straatsma-Berendsen potassium and chloride ion

parameters [123]. Sterol bonded and non-bonded parameters were taken from the GROMOS force-field native

to GROMACS [77]. This combination of force-field parameters has been successfully used in a number of

previous studies [5, 8, 126, 127] and yields good agreement with experimental observables such as area per

lipid headgroup and tail order parameters. While good results have also been obtained using all-atom models

for POPC [31, 54], united atom models allow us to use longer timesteps and simulate larger systems while

still retaining a useful level of molecular detail. An initial bilayer structure of 128 POPC molecules was

obtained from Tieleman and coworkers [127]. This structure was replicated in the bilayer plane and trimmed

to produce a larger, 256 lipid bilayer, with approximate dimensions of 10 nm × 10 nm in the bilayer plane.

To prepare low-concentration mixed sterol/POPC bilayers, the 256 POPC bilayer was solvated with

14260 SPC water molecules along with 30 K+ and Cl− ions for a nominal KCl concentration of 110 mM. A

single molecule of cholesterol or 25-hydroxycholesterol was placed 1-2 nm from the surface of each monolayer

at the start of the low-concentration simulation. This system was then simulated for 40 ns to allow the sterols

to associate with the POPC bilayer. Both cholesterol and 25-hydroxycholesterol inserted themselves into the

bilayer within 10 ns. High-concentration sterol/POPC structures were prepared from the converged portions

of these low-concentration simulations as follows. 7 sterol and 16 POPC molecules were extracted from the

converged low-concentration simulation and arranged in a 5 × 5 array to form an oriented monolayer. This

monolayer was then stacked on an inverted copy of itself to produce a 14 sterol, 32 POPC bilayer. These very

small bilayers were simulated for 10 to 15 ns to allow them to relax. The relaxed structure was then copied

3 × 3 in the plane of the bilayer and 16 POPC and 7 sterols removed from each monolayer of the resulting

structure. This process produced final structures consisting of 256 POPC and 112 sterols, or bilayers of about

30 mole percent of sterols. These structures were solvated with 17541 (cholesterol) or 17325 (oxysterol) SPC

water molecules and 36 K+ and Cl− ions for an approximate molar concentration of 110mM KCl.
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2.2.2 Simulations

All molecular dynamics (MD) simulations were performed using GROMACS version 3.3.1 [4, 77]. All sim-

ulations followed the same molecular dynamics protocol. Conjugate gradient energy minimization was first

performed on the initial structures to relax any unfavorable contacts between molecules. The system was

then gradually warmed with a series of 30 ps constant temperature, constant pressure MD simulations from 0

to 300 K in 15 K increments, with 2 fs time steps. Production simulations were then run for 207 (cholesterol)

or 208 (25-hydroxycholesterol) ns. Anisotropic pressure coupling was applied at 1 atm using the Parrinello-

Rahman method with a time constant of 1 ps [103]. Temperature coupling was applied independently to

lipids and solvent using the Nosé-Hoover algorithm with a time constant of 0.2 ps [51]. Electrostatic interac-

tions were calculated using the particle-mesh Ewald method (PME), with both the direct space PME cutoff

and the Lennard-Jones cutoffs set to 1 nm [20]. Constraints were applied to all bonds [29, 102] using the

LINCS algorithm incorporated in GROMACS to allow 2 fs timesteps [47].

2.2.3 Analytical Methods

Bootstrap Errors

Some time-independent observables, such as bulk membrane properties or hydrogen bonding probability

distributions, are calculated as cumulative properties of an entire stationary trajectory. For such observables,

errors can be estimated using a bootstrap method [24, 107]. In the following description, we assume we

are analyzing a trajectory containing N frames of data f1, f2, . . . , fN and are interested in calculating an

observable property P (f1, f2, . . . , fN ) which depends on multiple frames of this trajectory. Furthermore, we

use the statistical inefficiency method described in the Appendix (Section 6.1.1) to estimate the number

N ′ of trajectory frames that are statistically independent. The main step in the bootstrap method is

the generation of a synthetic trajectory dataset with N ′ frames of data {f1′ , f2′ , . . . , fN ′}. Generation of

this synthetic dataset proceeds by drawing N ′ frames randomly with replacement from the real trajectory.

The observable of interest is then calculated from this synthetic trajectory as P ({f1′ , f2′ , . . . , fN ′}). A

distribution of observable values is produced by repeating this main resampling step over many randomly-

generated synthetic trajectories. The distribution of these synthetic observable values can then be used to

estimate errors in the calculated value by measuring the standard deviation (or other error metrics) from

the bootstrapped distribution of observable values.
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Figure 2.2: The total projected membrane area of the three membrane simulations — pure POPC (cyan),
30% mole fraction cholesterol (blue), and 30% mole fraction 25-hydroxycholesterol (red).

SASA Calculations

Solvent-accessible surface area (SASA) calculations for our systems were performed with APBS version 1.0.0,

using a 1.4 Å radius solvent probe [1]. For these calculations, the systems were stripped of solvent and ion

molecules and replicated 3 × 3 times in the xy plane to reduce edge effects. Only the central image of this

replicated bilayer was used for analysis. The SASA of each atom in the central structure’s lipids in the

replicated system is calculated with APBS, and the contributions from each lipid’s atoms summed to obtain

a molecular surface area for each lipid.

2.3 Results

2.3.1 Equilibration

In order to determine whether a lipid simulation is sufficiently equilibrated (e.g., with observables sampling a

stationary distribution), we would like to examine those properties of the system which are slow to converge

to a steady-state value. For bilayer systems, the total cross-sectional area Atot of the simulation is a useful

metric; it generally drifts more slowly than other properties of the system. Furthermore, the area offers

useful information about the bilayer structure that can be compared with experimental values.

The total system areas of our three simulations are shown in Figure 2.2. For equilibration purposes, it
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is necessary to make an estimation of when the initial drift in the simulations has vanished. The length of

this initial drift phase varies somewhat for each system. For the pure POPC membrane, this drift phase is

relatively short, reaching steady-state values in under 5-10 ns. The cholesterol system relaxes slightly more

slowly, approaching steady-state values after approximately 15 ns, although with a slight change at 70 ns.

Finally, the 25-hydroxycholesterol system converges much more slowly, not approaching steady-state values

until after 40 ns. Based on observation of these areas, as well as additional metrics described in the Appendix

(Section sect:equilib), the first 80 ns of all simulations were removed as an equilibration phase. Subsequent

“production” analyses were performed using only data from the final 128 ns of the 208 ns trajectories.

Statistical inefficiency tests were applied to the “production” 128 ns of these area plots to determine

the relaxation time of our systems. Approximate area relaxation times of 3.0-4.0 ns were obtained. Thus

for all later statistical analyses, each trajectory was conservatively treated as containing 32 independent

bilayer conformations. For analysis of individual molecules, each lipid was treated independently for each

independent frame.

2.3.2 Areas and Volumes

In simple bilayers consisting of only one type of lipid, the total area can be converted to an area per lipid

A by simply dividing the total area by N , the number of lipids per monolayer. For more complex bilayers

composed of a mixture of different lipids, the mean area per lipid will differ for each component, and the

computation of the mean area of each component is not straightforward. Numerous techniques have been

proposed for partitioning the area of a phospholipid/sterol bilayer: allocating all area evenly between the two

components, allocating all area to the phospholipid, assuming a constant mean area for the sterol equal to

that seen in a sterol monolayer [113], assuming a constant mean volume for the sterol equal to that observed

in the crystal structure [48], partitioning the area of a slice through the membrane using VdW radii of the

component atoms [29], among others [18,22,102]. Partial molecular areas have also been used to examine the

effects of cholesterol on membranes [22,101]. However this type of analysis requires multiple simulations with

different molar concentrations of the additional molecule and is beyond the scope of our current focus (or

resources). One may also estimate phospholipid area by structural analysis based on volume and thickness

information [48,105,110].

After removing the equilibration portion of our simulations, we calculated the average area per POPC by

simply dividing the total system area by the number of POPC lipids in a monolayer, resulting in 64.0 ± 0.8

Å2 per POPC for the pure POPC simulation, 67.1 ± 0.4 Å2 for the cholesterol/POPC simulation, and 78.4

± 0.5 Å2 for the 25-hydroxycholesterol/POPC simulation. The pure POPC results agree with simulation
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results of Róg et al.who obtained 63.5 ± 0.5 Å2, while experimental data shows a somewhat larger area

of 68.3 ± 1.5 Å2 [67, 113]. Róg et al.also performed simulations of POPC/cholesterol mixtures, and the

per-POPC area for a 22 mole percent cholesterol simulation can be calculated from their data as 70.2 ± 0.5

Å2 [113].

The change in per-phospholipid area with the addition of small molecules can be partitioned into a direct

increase of area due to additional molecules in the system and an indirect effect of the small molecules

on nearby phospholipids. Cholesterol is known to have an area-decreasing effect on nearby phospholipids,

but in simulations of relatively high cholesterol concentration, the direct increase in system area from the

additional volume of the cholesterol molecules dominates and creates a slight increase in total area per

phospholipid [29, 48, 56]. We observe a 3.1 Å2 increase in area per phospholipid between the 0 and 30 mole

percent cholesterol simulations. This change is consistent with previous results and shows a larger direct than

indirect influence of cholesterol on membrane area. 25-hydroxycholesterol, however, shows a much larger

increase of 14.4 Å2 in per-POPC area between 0 and 30 mole percent 25-hydroxycholesterol simulations.

Together with the solvent-accessible area data (below), this observation suggests that 25-hydroxycholesterol

takes up much more area in the membrane than cholesterol.

In order to decompose the area-altering effect of cholesterol and 25-hydroxycholesterol on system area into

direct and indirect contributions, the solvent-accessible surface area (SASA) of each snapshot from the three

trajectories was calculated and partitioned into molecular SASAs. This decomposition gave distributions of

SASA for each type of molecule, shown in Figure 2.3. This allows assessment of the indirect effect of sterols

on system area through their perturbation of individual POPC area from the direct increase of area due

to the additional molecules. Differences in distributions are compared using the Kolmogorov-Smirnov test,

described in the Appendix (Section 6.1.2). In the cholesterol-containing simulation, the distribution of POPC

molecular SASAs clearly shifts to smaller values by depletion of large area contributions. Conversely, in the

25-hydroxycholesterol-containing simulation, the distribution of POPC surface areas shifts to much larger

areas. Even larger differences between distributions are seen for the cholesterol and 25-hydroxycholesterol

molecule SASAs, where the mean area of cholesterol is much smaller than that of 25-hydroxycholesterol and

the distribution of cholesterol SASA is much more tightly peaked.

The volumes of the membranes were calculated as the product of the system area with the thickness of

the membrane, estimated as the mean phosphate-to-phosphate distance [113]. Volume distributions over the

course of the three simulations are shown in Figure 2.4. We observed a large increase in membrane volume

with the addition of 30% of either sterol, with a slightly larger increase in volume for 25-hydroxycholesterol

as compared to cholesterol. This suggests that the perturbation of total volume by sterols is primarily
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Figure 2.3: Membrane component solvent-accessible areas. (A) Solid colored lines show the probability
distributions of per-POPC solvent-accessible surface area (SASA) in simulations of pure POPC (cyan), 30%
mole fraction cholesterol (blue), and 30% mole fraction 25-hydroxycholesterol (red). The mean SASAs for
these distributions are 150 ± 60, 140 ± 60, and 170 ± 60 Å2, respectively. (B) Solid colored lines show the
probability distributions and means of per-sterol SASA, cholesterol in blue and 25-hydroxycholesterol in red.
Dashed vertical lines show the mean SASA for the whole distribution. Mean SASAs for these distributions
are 10 ± 20 and 17 ± 20 Å2, respectively. p-values for distribution differences are calculated using the
Kolmogorov-Smirnov test (see Appendix, Section 6.1.2), and are all less than 0.1%.
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Figure 2.4: The distributions of total membrane volume for a pure POPC membrane (cyan), 30% mole
fraction cholesterol (blue), and 30% mole fraction 25-hydroxycholesterol (red). Mean membrane volumes are
316± 2, 370± 1, and 373± 2 nm3, respectively. p-values for distribution differences are calculated using the
Kolmogorov-Smirnov test (see Appendix, Section 6.1.2), with the p-values for all distribution differences less
than 0.1%.
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Figure 2.5: Mass density profiles of POPC bilayers. (A) Total electron density profiles for 256 POPC
bilayer systems with 0% sterol (cyan), 30% mole fraction cholesterol (blue), and 30% mole fraction 25-
hydroxycholesterol (red). Errors, calculated using a bootstrap sampling method (Sec. 2.2.3), are shown
as dotted lines. (B), (C), and (D) Component densities for 0% sterol, 30% cholesterol, and 30% 25-
hydroxycholesterol simulations, respectively. Water and ions (cyan), POPC (blue), sterol ring (green),
sterol tail (yellow), and sterol hydroxyl groups (red).

due to the additional volume from the sterols themselves and that the differential effects of cholesterol and

25-hydroxycholesterol on total membrane area are compensated by changes in membrane thickness.

2.3.3 Densities

The cross-sectional mass densities of the simulations were calculated by taking each frame and dividing the

system into slabs approximately 2 Å thick and calculating the mass density of each slab. These densities are

averaged over the 128 ns of equilibrated simulation time. The total mass densities for all three simulations

calculated this way are shown in Figure 2.5A. The general density profile is similar for all simulations: a

symmetric profile where uniform bulk water density gives way to a strong peak, corresponding to the heavy

phospholipid phosphate group, which in turn decays to a value lower than bulk water in the less-populated

hydrophobic interior of the bilayer. The major effect of sterols on the total mass density profiles is seen
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in the peak locations. In particular the peak-to-peak distance between the two largest peaks in the total

mass density is 37 Å in the pure POPC bilayer, 41 Å in the cholesterol/POPC system, and 34 Å in the

oxysterol/POPC system. The increased thickness of the cholesterol-containing bilayer is similar to that

seen experimentally [56]; this increased and the decreased thickness of the oxysterol-containing bilayer are

consistent with our observation of compensatory area and volume changes resulting in small overall volume

differences between the two sterol-containing systems.

We also evaluated the contributions of the membrane components to the total mass density, examining

the mass density profiles of water, POPC, and the sterol ring, tail and hydroxyls (Figures 2.5B, 2.5C,

and 2.5D). Of particular interest is the correlation between the location of sterol density and its effect on

POPC density. While the total density profiles are largely similar (Figure 2.5A), the component profiles

change quite substantially, with shift of POPC density towards the bilayer center when sterols are present.

This phenomenon is pronounced in the oxysterol simulation, and implies a displacement effect of sterols; by

integrating themselves into the bilayer, they shift POPC density into other regions. Information about sterol

organization can also be obtained from these component densities: the cholesterol density is quite ordered,

with hydroxyl density furthest out, followed by ring, then tail density. Oxysterol density, on the other hand,

shows significant overlap and spread, suggesting less ordered orientations.

2.3.4 Membrane Mechanical Properties

Mechanical properties of the membrane such as bending modulus, area compressibility, and volume com-

pressibility, were also calculated. Bending moduli are evaluated as previously established [21,76,121]. Briefly,

the height of each lipid is defined by the position of the first phospholipid glycerol carbon. The height of an

evenly spaced grid of ≈5 Å was then fit based on the lipid positions. The undulatory motion of the system

was estimated by taking the average of the top and bottom leaflet heights. The square of the 2-dimensional

Fourier transform of the undulatory height grid was calculated, giving the spectral intensity at a given x-axis

wavenumber m and y-axis wavenumber n. The 1-dimensional undulation mode spectrum was calculated by

reducing m and n into a single wavenumber q:

q = 2π

√(
m

Lx

)2

+
(

n

Ly

)2

. (2.1)

Under conditions where the thickness of a bilayer is significantly smaller than the area, membrane mechanics

can be modeled as an elastic sheet. At the zero surface tension conditions of our simulations, the relationship
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Table 2.1: The results of linear regression on the logarithm of spectral intensity versus the logarithm of
wavenumber (Eq. 2.2). Errors are calculated from the linear regression to the data using standard techniques
[107].

System Slope Intercept Pearson’s R2

No sterol -4.06±0.09 -2.81±0.07 98.5%
Cholesterol -4.09±0.13 -2.85±0.09 97.2%

Oxysterol -4.09±0.14 -2.78±0.09 97.1%

between spectral intensity and wavenumber can be described as

log(〈u2(q)〉) = − log(β〈Abox〉Kbending)− 4 log(〈q〉), (2.2)

where u2(q) is the spectral intensity at a given wavenumber q, β is the inverse thermal energy 1/kBT , and

Abox the system area [21, 76, 121]. By performing a linear regression of log(〈u2(q)〉) and log(〈q〉) over the

trajectories, we can confirm that our system behaves quartically in 〈q〉 and thus that the elastic sheet model

is valid over the scales we simulate. As shown in Table 2.1, these regressions give slopes not significantly

different than -4.00, showing that the undulation intensity scales as expected to ∼ q−4. The bending modulus

can be determined from the total spectral intensity as follows [21,76,121]:

Kbending ≈
〈Abox〉

257β
〈∑

q u2(q)
〉 . (2.3)

The results of these calculations are shown in Figure 2.6A. The experimentally determined bending modulus

for pure POPC membranes is 8.5 × 10−20 J [87], thus our calculated bending moduli are within a factor

of 2 of the experimental values, similar to that seen in previous lipid simulations [121]. We see a small but

significant increase in bending modulus upon the addition of cholesterol to the membrane, consistent with

experimental results [85,86]. 25-hydroxycholesterol, however, has the opposite effect of lowering the bending

modulus These changes in bending modulus mean that 25-hydroxycholesterol-containing bilayers are slightly

easier to bend than pure POPC bilayers, while cholesterol makes the membrane more resistant to bending.

The area and volume compressibilities of a system can be calculated from the fluctuations in the total

system area or volume by [32,44,121]:

Karea =
〈Abox〉
βσ2

A

. (2.4)

Kvolume =
〈Vmembrane〉

βσ2
V

. (2.5)

Using the projected area of the system (Figure 2.2A), the area compressibilities of our systems (Figure 2.6B),

are calculated to be 320 ± 100, 1250 ± 370, and 870 ± 210 mN m−1 for the sterol-free, cholesterol, and
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Figure 2.6: Calculated bulk membrane properties of our pure POPC (cyan), mixed POPC/cholesterol (blue),
and mixed POPC/oxysterol (red) membranes. All errors were calculated using the bootstrap method de-
scribed in Sec. 2.2.3. Box-and-whiskers plots are shown for bootstrapped distributions of calculated bulk
membrane properties. The central box shows the interquartile range and median of the distribution, while
the whiskers show the full range of calculated values. Membrane-to-membrane comparison of calculated
properties are significant with p-values < 0.1% for all properties and membrane comparisons. (A) The bend-
ing modulus of the bilayers, calculated from the total power in the undulation spectrum as described in the
text. (B) The area compressibility of the bilayers, calculated from the size of fluctuations in total system
area. (C) The volume compressibility of the bilayer, calculated from the size of fluctuations in total system
volume.
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oxysterol simulations, respectively. The value for the sterol-free system is reasonably close to the experimental

value for pure POPC membranes of 278 mN m−1 [87]. Cholesterol has been previously shown to increase

the area compressibility modulus [93] in a manner consistent with our results. Compared to cholesterol, 25-

hydroxycholesterol has a smaller but significant effect on the area compressibility. Volume compressibility

moduli can be calculated the same way, from fluctuations in the total system volume as shown in Figure

2.4. Results are shown in Figure 2.6C, and behave similarly to the area compressibility moduli, with sterols

increasing the compressibility modulus and 25-hydroxycholesterol having a smaller effect than cholesterol.

2.3.5 Lipid Structure

The tail order of membrane component lipids can be used to measure the ordering of the lipid acyl chains

in the bilayer and provide a convenient comparison with experimental carbon deuterium order parameters

measured by NMR spectroscopy [116]. Lipid order is normally characterized by the order parameter tensor

for each tail atom i: [25, 104,121]:

Sαβ(i) =
1
2
〈3 cos θα(i) cos θβ(i)− δαβ〉 , (2.6)

where α, β = x, y, z and θα(i) is the angle between the z-axis and the αth axis of the ith atom. In particular,

θz(i) is estimated by the angle between the vector pointing from the (i+1)th atom to the (i−1)th atom and

the z-axis. The experimentally relevant deuterium order parameter is related by SCD(i) = − 1
2Szz and we

present |SCD| for closer comparison with experiment. Larger numbers indicate a more ordered orientation,

with increased alignment of the chain at that position along the bilayer normal axis, while smaller numbers

indicate a more disordered orientation. This analysis was applied to the atoms of the oleoyl unsaturated and

palmitoyl saturated chains of POPC in the three simulations. The average results across all lipids in our

simulations are shown in Figure 2.7. We see, as has been observed in other simulations, an increase in POPC

tail order in the mixed cholesterol/POPC simulation as compared with the pure POPC simulation for all

tail atoms except those directly around the double bond in the unsaturated oleoyl tail [100]. This has been

attributed to packing of the phospholipid tails around the rigid cholesterol ring structure [41]. The effect of

25-hydroxycholesterol on POPC tail order is more ambiguous, with an moderate ordering of tail atoms near

the head group region transitioning to a slight disordering of tail atoms away from the head groups.

Hydrogen bonding patterns among lipids were analyzed as well. Hydrogen bonds were defined based

on geometric criteria among all potential acceptor (A), donor (D), and hydrogen (H) atoms: the acceptor-

donor distance rAD, the acceptor-hydrogen distance rAH , and the angle formed by the hydrogen, donor, and
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Figure 2.7: The mean tail order parameters for atoms in the oleoyl unsaturated chain of POPC (A) and
the palmitoyl saturated chain of POPC (B). Order parameters for the pure POPC bilayer shown in cyan,
the mixed POPC/cholesterol bilayer in blue, and the mixed POPC/oxysterol bilayer in red. Smaller atom
indices are closer to the POPC headgroup. Errors calculated using a bootstrap method.
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Figure 2.8: Hydrogen bonding distributions for sterol hydroxyl groups, shown as a fraction of sterol hydroxyls
bonded to specific hydrogen bond acceptors. Hydrogen bond distributions of cholesterol 3-hydroxyl are shown
in blue, oxycholesterol 3-hydroxyl in red, and oxycholesterol 25-hydroxyl in pink. The non-bonded category
includes hydroxyl groups with no hydrogen bonds at all as well as those only bound to water. Errors are
calculated using the bootstrap method described in Section 2.2.3.
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acceptor atoms θHDA. When rAD < 3.4 Å, rAH < 2.425 Å, and θHDA < 30.0◦, the interaction is defined

as a hydrogen bond [42, 80]. Of the lipids, the only potential hydrogen bond donors are the sterol hydroxyl

groups, while both the sterol hydroxyl groups as well as POPC phosphate and glycerol groups can accept

hydrogen bonds.

Each sterol hydroxyl group was analyzed to determine which of these potential partners it is bonded with,

and total distributions calculated. The equilibrium distributions for the sterol simulations are shown in Figure

2.8. Hydrogen bonds between membrane components and waters were not considered; thus, molecules which

hydrogen bond only to water are counted in the “unbonded” category. The cholesterol hydroxyl group is

mostly bound to POPC, and about twice as likely to be bound to a POPC glycerol oxygen as to a POPC

phosphate oxygen. Only about 10% of cholesterols were unbound or bound to only water. A negligible

fraction of cholesterol hydroxyl groups hydrogen bonded to other cholesterol molecules. The oxycholesterol

3-hydroxyl group shows reduced propensity for POPC bonding. This compound has an increased likelihood

to remain unbound from lipid or to form sterol-sterol hydrogen bonds. The 25-hydroxyl group at the end

of the tail shows similar sterol-sterol hydrogen bond formation. An examination of the bilayer structures

reveals that these sterol-sterol hydrogen bonds are often found as clusters of 2 to 4 sterols in the hydrophobic

center of the bilayer. These clusters may have relevance for the increase in membrane permeability to polar

and charged molecules observed upon addition of 25-hydroxycholesterol [49,125].

We also performed radial distribution function calculations between the C9 atom of the POPC oleoyl

chain and the C18 β-methyl atom of the sterols in a manner similar to Pandit et al. for cholesterol [101].

Plots of these distribution functions are shown in the Appendix, Section 6.1.5. There are two distinct peaks

corresponding to packing of the oleoyl chain around the rough and smooth faces of the sterols. The oleoyl

chains of POPC appear to pack evenly around both faces of cholesterol, while there is a slight bias towards

packing of the unsaturated chains around the smooth rather than the rough face of 25-hydroxycholesterol.

2.3.6 Sterol Orientation and Organization

In order to investigate whether the distributions of sterol orientations within the membrane bilayer are

related to the differential effects of sterols on membrane and lipid properties, we require a method to define

sterol orientation. This is done with a series of Euler angles [69], shown in Figure 2.9. First, molecular axes

are defined. The ring Z axis is defined from carbon 13 to carbon 3, pointing towards the head of the sterol

along the ring structure. The ring X axis is defined from carbon 10 to 19, pointing outwards along the

protruding methyl groups on one face of the ring. Finally, the tail Y axis is defined from carbon 25 to 17,

from the end of the tail to the beginning.
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Figure 2.9: A diagram showing the methods by which individual sterol orientation is defined using Euler
angles relating molecular axes of the sterol to reference axes of the bilayer as a whole. The reference z axis
is defined along the membrane normal, while the reference xy is the plane of the bilayer. A molecular ring
axis Z is defined from carbon 13 to 3 along the length of the ring, and a molecular tail axis Z ′ is defined
from carbon 25 to 17 along the length of the tail. Finally, a ring normal axis X is defined from carbon 10 to
19, outward through the protruding methyl groups. Three Euler angles are then calculated. The sterol ring
tilt β is defined as the angle between the reference z-axis and sterol ring Z-axis, the sterol ring twist γ is
defined as the angle between the intersection N of the reference xy plane and sterol ring XY plane and the
sterol ring X axis, and the sterol tail tilt β′ is defined as the angle between the reference z-axis and sterol
tail Z ′-axis.
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Euler angles defining the orientation of the sterol can be calculated using these molecular axes and their

relationship to the reference bilayer axes (the box axes in the top leaflet, the negative of the box axes in

the bottom leaflet). The ring tilt β is defined as the angle between the reference z axis and the sterol ring

Z axis, and varies from 0◦ to 180◦, where 0◦ indicates a parallel orientation, with the ring aligned so that

the head points out of the bilayer and the tail inside, and 180◦ indicates an antiparallel orientation, with

the head pointing inside the bilayer. The ring twist γ is defined as the angle between the sterol ring X axis

and the reference xy plane, measured along the ring XY plane. This twist varies from -180◦ to 180◦, where

90◦ indicates the sterol lying with the rough face facing out of the bilayer and -90◦ indicates the sterol lying

with the rough face facing into the bilayer. Finally, the sterol tail tilt β; is defined as the angle between the

reference z axis and the sterol tail Z ′-axis, varying, as with the sterol ring tilt, from 0◦ to 180◦. In addition

to these angles, we also calculated an average ring height, as the mean distance of carbon 13 and 3 from the

bilayer center.

The orientation of each sterol in each frame of the equilibrated region of our systems was analyzed and

combined into a multidimensional orientation distribution for both cholesterol and 25-hydroxycholesterol.

Contour plots of 2-dimensional slices through these distributions are shown for cholesterol in Figure 2.10

and for 25-hydroxycholesterol in Figure 2.11.

The cholesterol distribution contours show a relatively tight distribution. All parameters other than the

ring twist are sharply peaked: ring tilt at ≈ 20◦, ring height at ≈ 1.4 Å, and tail tilt at ≈ 20◦. Ring twist

does show a wider distribution, though with a definite peak at -120◦. The main peak of the distribution

corresponds to a sterol fully extended in the bilayer with the tail stretched out along the same angle as the

rigid ring (Figure 2.12A).

The distribution of 25-hydroxycholesterol orientation is much more complicated. To aid with visual-

ization, a variety of representative oxysterol orientations are shown in Figure 2.13. The orientations of

oxysterols depicted in Figure 2.13 are marked on the distribution shown in Figure 2.11. Figure 2.11C plots

height versus ring tilt and shows two distinct populations of molecules, one with ring tilts of about 20◦ to 70◦

and large ring heights of ≈ 1.0 - 1.5 Å, and another smaller population of ring tilts ≈ 150◦ and heights of ≈

0 - 0.5 Å. The first population corresponds to normally-oriented sterols with rings tilted towards the bilayer

interface and tails in the bilayer interior. The second population corresponds to inverted sterols with rings

in the bilayer interior and the tails oriented towards the bilayer interface. Figure 2.11D, shows the relative

orientation of the tail with respect to the ring. This figure includes the same inverted (in the top right

corner) and normal (in the bottom left corner) orientations, but also indicates that the normally-oriented

sterol distribution has a generally-larger tail than the ring tilt. We observe that many of the sterols adopt

29



0  30 60 90 120 150 180
−180
−150
−120
−90 
−60 
−30 

0   
30  
60  
90  
120 
150 
180 

Ring Tilt Angle (degrees)

R
in

g 
T

w
is

t A
ng

le
 (

de
gr

ee
s)

0 0.5 1 1.5 2 2.5
−180
−150
−120
−90 
−60 
−30 

0   
30  
60  
90  
120 
150 
180 

Distance From Ring to Bilayer Center (nm)

R
in

g 
T

w
is

t A
ng

le
 (

de
gr

ee
s)

0  30 60 90 120 150 180
0

0.5

1

1.5

2

2.5

Ring Tilt Angle (degrees)D
is

ta
nc

e 
F

ro
m

 R
in

g 
to

 B
ila

ye
r 

C
en

te
r 

(n
m

)

0  30 60 90 120 150 180
0  

30 

60 

90 

120

150

180

Ring Tilt Angle (degrees)

T
ai

l T
ilt

 A
ng

le
 (

de
gr

ee
s)

a

b b

a

a
b

ab

A B

C D

Figure 2.10: A contour plot showing the distribution of cholesterol orientations in mixed POPC/cholesterol
bilayers. Regions containing the densest 10%, 25%, 50%, 75%, and 90% of the total probability density are
shown by areas of red, orange, yellow, green, and cyan respectively. (A) Ring tilt β vs. ring twist γ. (B)
Ring tilt β vs. ring height, calculated as the average distance of carbons 3 and 13 from the bilayer center.
(C) Ring height vs. ring twist γ. (D) Ring tilt β vs. tail tilt β′. Labelled crosses show the orientations of
the specific sterol molecules depicted in Figure 2.12.
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Figure 2.11: A contour plot as in Figure 2.10 showing the distribution of 25-hydroxycholesterol orientations
in mixed POPC/oxysterol bilayers. Regions containing the densest 10%, 25%, 50%, 75%, and 90% of the
total probability density are shown by areas of red, orange, yellow, green, and cyan respectively. (A) Ring
tilt β vs. ring twist γ. (B) Ring tilt β vs. ring height, calculated as the average distance of carbons 3 and
13 from the bilayer center. (C) Ring height vs. ring twist γ. (D) Ring tilt β vs. tail tilt β′. Labelled crosses
show the orientations of the specific sterol molecules depicted in Figure 2.13.
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Figure 2.12: Depiction of cholesterol molecules from our molecular dynamics simulations. The cholesterol of
interest is shown as a space-filling model, while nearby POPC molecules as ball-and-stick models with a gray
molecular surface and nearby cholesterol molecules shown as ball-and-stick models with a blue molecular
surface. Each subfigure shows a section from a single leaflet of the bilayer, with the lipid/water interface
at the top of the figure. The sterol labels (A) through (B) correspond to the marked orientations shown in
Figure 2.10.

an orientation in which one of their hydroxyl groups is buried in the bilayer interior form hydrogen bond

interactions with other such buried sterol hydroxyl groups, forming clusters of polar hydroxyl groups in the

hydrophobic interior of the membrane.

2.4 Discussion

We observe significant changes in the bulk properties of POPC membranes when relatively high concentra-

tions of cholesterol or 25-hydroxycholesterol are added. Most obviously, the membrane volumes and areas

increase upon the addition of these sterols. However, while the volume increase is similar in both sterol

systems, the area increase is much larger for membranes containing 25-hydroxycholesterol as compared to

cholesterol. We attribute the observed volume increases to the direct effects of additional sterol volume,

which is largely the same between the two sterols. The large difference in area effects by these sterols sug-

gest that they have altered interaction with the POPC lipids, and that indirect effects of sterols on POPC

structure contribute to these changes. Examination of membrane density profiles shows that the choles-
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Figure 2.13: Depiction of 25-hydroxycholesterol molecules from our molecular dynamics simulations. The
25-hydroxycholesterol of interest is shown as a space-filling model, while nearby POPC molecules as ball-
and-stick models with a gray molecular surface and nearby 25-hydroxycholesterol molecules shown as ball-
and-stick models with a red molecular surface. Each subfigure shows a section from a single leaflet of the
bilayer, with the lipid/water interface at the top of the figure. The sterol labels (A) through (F) correspond
to the marked orientations shown in Figure 2.11.
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terol system has thickened with respect to the sterol-free system, while the 25-hydroxycholesterol system has

thinned. Cholesterol, as has been previously observed both in simulation and experiment [29,48,56,108,129],

condenses and thickens membranes. On the other hand, we show 25-hydroxycholesterol to have an opposing

effect, expanding the membrane laterally and thinning it. In addition to changes in gross membrane dimen-

sions, the membrane’s mechanical properties are altered. Sterol-containing systems show less resistance to

bending, with a corresponding increase in membrane undulations. These systems also show increased volume

and area compressibility modulus, making them more difficult to compress and with smaller area and volume

fluctuations. In all of these mechanical properties, oxysterol-containing membranes show a larger deviation

from pure phospholipid membranes than cholesterol-containing membranes.

The bulk membrane changes induced by cholesterol and 25-hydroxycholesterol necessarily have their

roots in the altered molecular structure of the membranes, both through perturbations in POPC structure

as well as addition of new molecules forming sterol-POPC interactions. Solvent-accessible surface area

calculations for POPC show that POPC has a smaller surface area in cholesterol-containing membranes, while

POPC in 25-hydroxycholesterol-containing membranes has a much larger surface area. These differences

suggest a compression of POPC by cholesterol and an expansion by 25-hydroxycholesterol. Calculated

POPC order parameters are consistent with this observation: cholesterol orders POPC acyl tails while

25-hydroxycholesterol has both ordering and disordering effects, with ordering dominant near the head

group, and disordering dominant near the end of the tails. Looking at differences in sterol structure, we

examined hydrogen bonding patterns for the sterol hydroxyl groups. Cholesterol engages in almost no

cholesterol-cholesterol hydrogen bonding, preferring to hydrogen bond to the POPC headgroup. However,

25-hydroxycholesterol shows significant levels of sterol-sterol hydrogen bonding, with reduced sterol-POPC

bonding. These hydrogen bonding patterns are rooted in the different orientations of sterols within the

membrane bilayer.

We defined these sterol orientations with respect to the membrane normal axis and found that, while

cholesterol was overwhelmingly found in a single orientation roughly parallel to the phospholipid tails, 25-

hydroxycholesterol was found in a very wide range of orientations. Cholesterol adopts an orientation with its

steroid ring at a slight tilt to the membrane normal axis and its iso-octyl tail fully extended into the center

of the bilayer (Fig. 2.10 a and b). While this orientation is accessible to 25-hydroxycholesterol (Fig. 2.11c),

only a small fraction of 25-hydroxycholesterol molecules are found in that orientation. This cholesterol-like

orientation is presumably disfavored for the oxysterol because the 25-hydroxyl group would then be buried

in the non-polar center of the bilayer with few hydrogen bonding partners. The preferred orientation for

25-hydroxycholesterol is, instead, with a relatively deep ring tilt of about 60◦ and the iso-octyl tail with its
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hydroxyl group bent up towards the hydrophilic interfacial layer (Fig. 2.11 a and b). This orientation allows

both hydroxyl groups to avoid the hydrophobic bilayer interior. Also accessible are inverted orientations,

with the steroid rings buried in the bilayer interior and the iso-octyl tails extending into the interfacial layer

(Fig. 2.11 d, e, and f).

The orientations of cholesterol and 25-hydroxycholesterol are relevant to the effects observed on bulk

membrane and phospholipid properties. The parallel alignment of the rigid cholesterol ring in bilayer has

been thought to order nearby phospholipid tails by inducing them to stretch out along its rigid structure [41].

This effect can not only produce the increased POPC order parameters we observe but also changes the

thickness, density, and melting point of cholesterol-containing bilayers [56, 108, 129]. 25-hydroxycholesterol

however, does not align neatly in the bilayer, but instead adopts a diverse array of orientations which cause

it to have a more chaotic, disordering effect.

Given the varied responses of cells to oxysterols it seems appropriate to consider the possible consequences

for oxysterol addition to membranes on membrane proteins. The change in membrane thickness and the

disorder of the aliphatic chains are prominent effects observed in our simulations. Hydrophobic matching is

a major mechanism of protein-membrane interaction and this has been proposed as one important role for

cholesterols in biological membranes [83,91]. The difference we see between the cholesterol membrane and the

oxysterol membrane represents a dramatic change in the hydrophobic matching region for many proteins [84,

88]. In addition, oxysterol-related changes in aliphatic chain order would be expected to influence the mobility

of transmembrane portions of membrane transporters, channels and transmembrane receptors/signaling

complexes [75,134].

2.5 Conclusions

The change in cholesterol from an amphiphilic to bisamphiphilic character by the addition of the 25-hydroxyl

group changes the energy landscape of orientational space. Specific regions of the space are disfavored,

including the aligned cholesterol orientation, while other regions are favored, shifting the distribution of

molecular orientations. We predict that the occupancy of these different regions of orientational space is

what drives the biophysical effects observed on phospholipid membranes. In particular, the 25-hydroxyl

group preferentially biases the molecule towards regions of orientational space that increase bilayer area and

affect lipid order.

We can make predictions about how these sterols may interact with membranes of different lipid com-

position as well. Saturated lipids such as DPPC have more ordered lipid chains and thus the presence of
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these lipids should promote more ordered and extended orientations of sterols, similar to those preferred by

cholesterol. Unsaturated lipids or polyunsaturated lipids such as DOPC, however, have more disordered tail

chains that will disfavor ordered sterol orientations and shift the equilibrium towards the tilted and clustered

orientations observed in our 25-hydroxycholesterol simulation. These expected changes in the energies of

various orientations would then show their effects in the perturbation of membrane structure by sterols, with

cholesterol having stronger condensing effects on unsaturated lipids and 25-hydroxycholesterol conversely

showing stronger expansive effects on saturated lipids. These different lipid sensitivities have been observed

in a recent study examining the area expansive effects of 25-hydroxycholesterol on lipid bilayers [36]. Un-

saturated DOPC membranes showed a larger area increase than POPC membranes upon the addition of

25-hydroxycholesterol, while DPPC membranes showed relatively little change.

25-hydroxycholesterol has previously been shown to increase the permeability of membranes to ions and

small osmolytes [49,63,125]. Our understanding of how this sterol perturbs membrane structure suggests two

potential mechanisms for this permeability. Firstly, the oxysterol directly thins the membrane. Secondly,

the orientations of these sterols produces clusters of hydrogen-bonded hydroxyl groups in the hydrophobic

interior of the bilayer. These hydroxyl clusters would allow limited hydrogen bonding interactions with polar

molecules traversing the membrane, lowering the energy barrier to permeation. This mechanism is currently

being tested in ongoing simulations.

These structural effects of 25-hydroxycholesterol on lipid membranes have biological relevance. A re-

cent study has shown that the effects of 25-hydroxycholesterol on cellular cholesterol homeostasis are not

enantioselective; the enantiomer of 25-hydroxycholesterol has identical effects on membrane biophysical prop-

erties and suppression of the cholesterol synthetic pathway [36]. This lack of stereospecificity suggests that

25-hydroxycholesterol does not act in this pathway through protein binding but rather that the signal is

transduced through perturbation of the membrane, potentially through some of the mechanisms we have

observed. This result reveals the role of the membrane in mediating signal cascades, and suggests that the

biological effects of not only 25-hydroxycholesterol but potentially other signaling molecules as well may be

effected through their perturbation of membrane structure.
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Chapter 3

Interactions Between

25-Hydroxycholesterol and

Cholesterol in POPC Bilayers

Abstract

Oxysterols are oxidation products of cholesterol that play major roles in mediating cholesterol home-

ostasis. Recent work has shown that oxysterols can change membrane structure in very different ways

from cholesterol, suggesting a possible mechanism for how oxysterols regulate cholesterol homeostasis.

Here we extend our previous work, using molecular dynamics simulations of 25-hydroxycholesterol (25-

HC) and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine

interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing

membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free

membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-

HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water

interface and making it more available to external acceptors. This is consistent with experimental results

showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the ER. These

interactions provide a potential mechanism for 25-HC regulation of cholesterol trafficking and homeostasis

through direct modulation of cholesterol availability.

37



3.1 Introduction

Biological membranes are primarily composed of phospholipids, which provide the membrane’s basic physical

structure. However, other molecules, most notably proteins and sterols, serve to modulate membrane behav-

ior. Cholesterol is the most prominent sterol in mammalian membranes, with some membranes containing

up to 50% cholesterol [96,128]. Cholesterol is distributed asymmetrically within cells, with the plasma mem-

brane containing a much higher concentration than internal membranes such as the endoplasmic reticulum

(ER) and Golgi [78,96,128]. Cholesterol is required by all mammalian cells, and serves multiple functions: it

regulates protein behavior through direct binding to sterol-sensing domains [13,27,68], it serves as a precur-

sor for steroid hormone and bile acid synthesis [15], and it promotes the formation of lipid rafts [23, 59]. In

addition to the direct effects of cholesterol, it is also known to alter the structure and behavior of membranes

themselves. Biophysical and simulation studies have shown that, even without forming distinct domains,

the addition of cholesterol to membranes decreases membrane fluidity while increasing membrane thickness,

bending modulus, and lipid order [26, 56, 86, 94, 108, 129]. These indirect effects are also known to influence

cellular behavior: increases in membrane thickness caused by high levels of cholesterol are thought to help

sort membrane proteins between the plasma membrane and the ER [79], and membrane structural changes

can alter ion channel properties [90] as well as influence protein signaling [23].

Because of its importance to cellular function, the levels of cholesterol in cellular membranes must be

tightly controlled through a process known as cholesterol homeostasis. Control over cholesterol levels is

achieved through regulating de novo cholesterol synthesis, cholesterol uptake from and efflux to circulating

lipoproteins, and esterification of cholesterol through long-term storage [13, 14, 96, 124]. Transcriptional

regulation has been shown to act through the sterol regulatory element (SRE), a promoter that can up-

regulate transcription from a number of genes involved in cholesterol homeostasis, including HMGCoA

reductase, the enzyme which performs the rate-limiting step in cholesterol synthesis [39, 117]. Activation of

the SRE is triggered by cholesterol depletion through a complex series of protein activation events. SREs are

activated by a family of transcription factors called SRE binding proteins (SREBPs) [11, 52]. SREBPs are

transmembrane proteins and, under cholesterol-rich conditions, they are located in the ER, where they form

a complex with another transmembrane protein, the SREBP cleavage-activating protein (SCAP) [11, 52].

SCAP also binds to ER-resident Insig proteins, and the complete complex is retained in the ER [131, 133].

When cholesterol is depleted, the SCAP/Insig complex is disrupted, and the SREBP/SCAP complex migrates

to the Golgi [131,133]. In the Golgi, two specific proteases cleave the transcription factor domain of SREBP

from its transmembrane domain, freeing it to move to the nucleus and activate transcription [11,52,131,133].

While cholesterol alone can block SREBP maturation, oxysterols such as 25-hydroxycholesterol (25-HC)
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and 27-hydroxycholesterol (27-HC) are over 50 times more effective at suppression of SRE activation than

cholesterol itself [40, 55]. These oxysterols are also binding partners and activators of the liver X receptor

(LXR) transcription factors, which in turn up-regulate the expression of genes involved in cholesterol efflux,

offering another role for oxysterols in cholesterol homeostasis [60, 61]. Recent work has shown that, while

enantiomeric oxysterols do not activate LXR-responsive elements as natural oxysterols do, they do suppress

SRE activation just as effectively as natural oxysterols [36]. Because protein-small molecule interactions are

enantiospecific, this suggests that, while oxysterol activation of LXRs is clearly protein-dependent, oxysterol

suppression of SREBP cleavage likely does not occur through stereospecific protein-binding events.

Much like cholesterol, oxysterols have biological effects not only through direct protein binding, but also

through membrane property changes. However, oxysterols affect membranes very differently than cholesterol.

While cholesterol orders phospholipids and condenses membranes, reducing membrane area and permeability,

oxysterols increase membrane permeability and area [49, 63, 125]. Recent computational work from our

group has shown that molecular dynamics simulations can recapitulate experimentally observed effects of

cholesterol and 25-HC on membrane structure [97]. We found that cholesterol and 25-HC orient themselves

very differently within membranes, and proposed that these different distributions of orientations were the

drivers of sterol effects on membranes [97]. However, the simulations from which we drew these conclusions

were necessarily limited, containing membranes composed of only single sterol and phospholipid species. This

limits the applicability of these conclusions to biological systems, as 25-HC does not act on single-phospholipid

membranes but rather on more complex mixtures. In particular, because 25-HC is enzymatically produced

from cholesterol, membranes that contain 25-HC will always contain cholesterol as well. The presence of this

cholesterol may change 25-HC behavior by altering the initial structure of the membrane and component

phospholipids. Therefore, we chose to extend our earlier work by examining how the presence of cholesterol

changes the effect of 25-HC on membranes using membrane mixtures composed of POPC, cholesterol, and

25-HC.

3.2 Methods

3.2.1 Parameters and Structures

Sterol and phospholipid parameters and charges were described in our previous work [97]. To prepare our

mixed sterol simulations, four structures were taken from the converged regions of our previously described

256 POPC/112 cholesterol and 256 POPC/112 25-HC simulations: two from the 30% cholesterol system and

two from the 30% 25-HC system [97]. Water and ions were first removed from these structures. Next, half
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of the cholesterol or 25-HC was removed from each leaflet of all structures. 25-HC or cholesterol molecules,

with conformations randomly sampled from the converged simulations, were then inserted into the newly

created empty positions, resulting in four bilayers which contained 256 POPC, 56 cholesterol, and 56 25-HC

molecules, evenly distributed between leaflets.

These structures could not be used as starting points for simulations because of steric clashes between

the newly-inserted molecules and the existing phospholipids and sterols. In order to resolve these clashes,

the bilayer was expanded laterally by approximately a factor of 3, resulting in very widely spaced sterols

and lipids. This expansion was followed by serial iteration of conjugate-gradient energy minimization and

compression in the plane of the bilayer to bring the structures back to near their original sizes but with steric

clashes resolved. These final bilayer structures were solvated with 17426 SPC water molecules and 36 K+

and Cl− for an approximate molar concentration of 115mM KCl, and used as the starting structures for the

256 POPC and 112 mixed sterol systems.

Low concentration sterol systems with 256 POPC lipids and 56 sterols were prepared as controls. These

low concentration systems allow us to directly compare the effect of 56 cholesterol or 56 25-HC in the

presence and absence of other sterols. Two structures from the converged region of our previously described

256 POPC/112 cholesterol and 256 POPC/112 25-HC simulations were taken, one from the 30% cholesterol

system and one from the 30% 25-HC system, and non-lipid (water and ion) molecules removed. Half of

the sterols in each system were randomly removed from each leaflet, resulting in final compositions of 256

POPC lipids and 56 sterols. These bilayers were re-solvated with 15850 SPC water molecules and 33 K+

and Cl− for an approximate molar concentration of 115mM KCl, and used as the starting structures for the

256 POPC, 56 sterol systems.

Previously published 256 POPC, 256 POPC/112 cholesterol, and 256 POPC/112 25-HC simulations were

also extended to provide further controls for our mixed sterol simulations [97]. A full list of simulations is

summarized in Table 3.1.

3.2.2 Simulations

All molecular dynamics (MD) simulations were performed using GROMACS version 3.3.1 or 4.0 [4, 77].

All simulations followed the same molecular dynamics protocol. Conjugate gradient energy minimization

was first performed on the initial structures to relax any unfavorable contacts between molecules. The

systems were then gradually warmed with a series of 30 ps constant temperature, constant pressure MD

simulations from 0 to 300 K in 15 K increments. Production systems were then run from the warmed

structures. Anisotropic pressure coupling was applied at 1 bar using the Parrinello-Rahman method with
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Table 3.1: A summary of all simulations performed and analyzed in this work.

Composition
# of Initial Sim-
ulations

# of Replica
Simulations

Cumulative
Simulation
Time (ns)

256 POPC 1 4 1200
256 POPC, 56
Cholesterol

1 4 1200

256 POPC, 112
Cholesterol

1 4 1200

256 POPC, 56
25-HC

1 4 1200

256 POPC, 112
25-HC

1 4 1200

256 POPC, 56
Cholesterol, 56
25-HC

4 16 4800

a time constant of 1 ps [103]. Temperature coupling was applied independently to lipids and solvent using

the Nosé-Hoover algorithm with a time constant of 0.2 ps [51]. Electrostatic interactions were calculated

using the particle-mesh Ewald method (PME), with both the direct space PME cutoff and the Lennard-

Jones cutoffs set to 1 nm [20]. Constraints were applied to all bonds [29, 102] using the LINCS algorithm

incorporated in GROMACS to allow 2 fs timesteps [47]. Initial production simulations were run for 400

ns of total simulation time, as summarized in Table 3.1. In order to obtain better sampling and statistical

confidence, replica simulations for each initial simulation were prepared by first taking snapshots from the

initial simulations at 150, 200, 250, and 300 ns. These snapshots were taken as the starting point for

new systems after resampling particle velocities from a 300K Maxwell-Boltzmann distribution, resulting in

independently evolving systems. Each of these replica simulations was run for 200 ns of total simulation

time. Snapshots of each simulation were taken every 100 ps for analysis.

3.2.3 Analysis Methods

SASA Calculations

Solvent-accessible surface area (SASA) calculations for our systems were performed with APBS version 1.0.0,

using a 1.4 Å radius solvent probe [1]. For these calculations, the systems were stripped of solvent and ion

molecules and replicated 3 × 3 times in the xy plane. To remove edge effects, only the central image of

this replicated bilayer was used for analysis. The SASA of each atom in the central structure’s lipids in the

replicated system was calculated with APBS, and the contributions from each lipid’s atoms were summed

to obtain a molecular surface area for each lipid.
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Density and Depth Calculations

Cross-sectional mass density profiles for our simulations were calculated by first taking each frame of the

simulation and centering the center of mass of the bilayer in the middle of the periodic box. The box was

then divided into approximately 2Å thick slabs, the mass of all atoms within each slab summed, and the

local mass density calculated. This was done for multiple subsets of atoms to obtain separate profiles for

phospholipids, solvent, and sterols. Solvent mass density profiles were also used to calculate the positions of

the water/bilayer interfaces. The solvent mass density profile for each frame of the simulation was calculated

as above and smoothed using a local moving average. The water/bilayer interfaces were considered to be the

two points at which the solvent mass density reached 50% of the bulk density value. The interface positions

were then used to calculate bilayer thicknesses as the distance between the two interfaces and atomic depths

as the distance between an atom and the closest interface.

Hydrogen Bonding Calculations

Hydrogen bonds were calculated using geometric criteria. First all potential acceptor (A), donor (D), and

donor hydrogen (H) atoms were identified in solvent and lipid molecules in the simulations. Hydrogen bonds

were considered to be present when an acceptor-donor distance was less than 3.4Å, the acceptor-hydrogen

distance was less than 2.425Å, and the hydrogen-donor-acceptor angle was less than 30.0◦. Of the molecules

present in our simulations, the only potential hydrogen bond donors are the sterol hydroxyl groups and

solvent molecules, while solvent molecules, sterol hydroxyl groups, as well as POPC phosphate and glycerol

groups can accept hydrogen bonds.

Sterol Orientation Calculations

Sterol orientations were calculated by defining molecular axes through the rigid sterol ring and evaluating

angles of these molecular axes with respect to reference axes defined by the bilayer plane and normal axis.

The molecular Z axis was defined from carbon 13 to carbon 3, thus pointing from the tail towards the head

of the sterol through the sterol ring. The molecular X axis was defined from carbon 10 to carbon 19, pointing

outwards along the protruding methyl groups on the rough face of the ring, and then orthonormalized with

respect to the molecular Z axis. Finally, the molecular Y axis was calculated as the cross product of the

orthonormal Z and X axes. Reference axes were taken as either the normalized system axes, for sterols

in the top leaflet of the bilayer, or the negative of the system axes, for sterols in the bottom leaflet of the

bilayer. This ensures that the reference z axis points out of the leaflet in which the sterol to be analyzed

is located. Two angles were calculated to define a sterol orientation. The sterol tilt β was defined as the
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angle between the reference z axis and the sterol ring Z axis, and varies from 0 to 180◦, where 0◦ indicates a

parallel orientation, with the ring aligned so that the head points out of the bilayer and the tail inside, and

180◦ indicates an antiparallel orientation, with the head pointing inside the bilayer. The sterol twist γ was

defined as the angle between the sterol ring X axis and the reference xy plane, measured along the ring XY

plane. The twist varies from -180◦ to 180◦, where 90◦ indicates the sterol lying with the rough face facing

out of the bilayer and -90◦ indicates the sterol lying with the rough face facing into the bilayer.

Significance Tests

The Kolmogorov-Smirnov (K-S) test is used to compare continuous univariate distributions, such as the

distributions of surface areas for a molecule in two different molecular dynamics simulations [107]. These

distributions can be converted into cumulative distribution functions SN (x), where SN (x) is the fraction

of the total distribution that has a value less than x. These SN (x) are monotonically increasing functions

which vary from zero to one over the range of the data. The K-S statistic is simply the `∞ norm of the

difference between two cumulative distribution functions:

D = max
−∞<x<∞

|SN1(x)− SN2(x)| . (3.1)

The significance statistic for this test requires calculation of the effective number of data points, Ne:

Ne =
N1N2

N1 + N2
, (3.2)

where N1 and N2 are the number of independent data points in each distribution.

The p-value for significance is [107]:

pKS = 2
∞∑

j=1

(−1)j−1e−2j2λ2
, (3.3)

where

λ = D

(√
Ne + 0.12 +

0.11√
Ne

)
. (3.4)

Replica simulations were used to calculate the number of independent data points. For evaluating the

statistical significance of differences in whole-membrane properties, each replica simulation was treated as a

single independent bilayer conformation, giving 4 independent conformations for all one- and two-component

systems and 20 independent conformations for the three-component system. For examining differences in

lipid properties, each lipid was treated independently for each simulation.
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3.3 Results

3.3.1 Equilibration

Based on examination of the total projected area of each system over time, as well as other metrics including

total system energy, we chose to discard the first 100 ns of each initial simulation as “equilibration” time,

leaving 300 ns of steady-state simulation time for analysis. Based on similar analyses, 50 ns of each replica

simulation was discarded, leaving 150 ns of steady-state simulation time. Therefore, each initial structure

produced 900 ns of equilibrium simulation.

3.3.2 Membrane Effects

We began our analyses by examining how cholesterol and 25-HC change membrane structure, individually

and in mixtures. We are particularly interested in knowing whether the effects of cholesterol and 25-HC on

membranes are independent of each other. In other words, we wish to examine whether the changes induced

upon addition of a given amount of 25-HC are the same in membranes containing and lacking cholesterol.

Areas

The simplest membrane structural property to examine is the total membrane area. The projected area of

each system is calculated from the periodic system box, taking the product of its size along the x and y

axes at each frame of the simulation. Changes in the projected area induced by addition of small molecules

can be divided into two effects. First, the added small molecules must take up some area themselves, thus

increasing the projected membrane area. Secondly, the added small molecules can alter the structure of the

membrane, either through changing the configuration of membrane phospholipids or changing the amount of

empty area in the bilayer. This second effect can either increase or decrease the membrane area, depending

on the actual effect of the small molecule.

Figure 3.1 shows the range of projected areas obtained for membranes of six different compositions.

These are shown as box-and-whisker plots. The central box shows the interquartile range and median of

the area distributions, while the whiskers show the minimum and maximum area reached. We first note

how concentration changes the marginal effects of cholesterol and 25-HC on projected membrane area. The

addition of 56 cholesterol molecules to a 256 POPC bilayer decreases the projected membrane area by

0.2 nm2, while an additional 56 cholesterol molecules increases it by 2.8 nm2. Cholesterol is well known

[56, 129] to cause condensation of nearby phospholipids, decreasing their per-lipid area. When comparing a

pure POPC bilayer with one containing a low concentration of cholesterol, we see an approximate balance
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Figure 3.1: Box-and-whisker plots showing the distributions of projected system areas for each set of sim-
ulations. Differences between all pairs of distributions are significant at 1% except for those between the
pure POPC and 18% cholesterol simulations (not significant) and between the pure POPC and 30% choles-
terol simulations (significant at 2%). Median membrane areas are 82.0 nm2 (pure POPC), 81.9 nm2 (18%
cholesterol), 84.7 nm2 (30% cholesterol), 88.5 nm2 (18% 25-HC), 99.5 nm2 (30% 25-HC), and 91.0 nm2 (30%
mixed sterols).
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between this condensation effect and the direct area taken up by the cholesterol molecules themselves,

resulting in a small net decrease in projected area. When comparing bilayers containing low and high

concentrations of cholesterol, the indirect area-decreasing effect is limited because the phospholipids are

already partially condensed in the low cholesterol system and therefore the direct area taken up by the

additional cholesterol dominates, resulting in a net increase in projected area. The observed saturation of

phospholipid condensation at cholesterol concentrations between 18% and 30% is consistent with previous

experimental and simulation results [18, 36, 101]. In the case of 25-HC, we see a more linear response

of membrane expansion with increasing oxysterol concentration. The addition of 56 25-HC molecules to

the 256 POPC bilayer increases projected membrane area by 6.4 nm2 and 56 additional 25-HC molecules

increases projected membrane area further by 11.0 nm2. Unlike cholesterol, 25-HC causes area expansion of

nearby phospholipids [63, 97]. Therefore the direct and indirect effects of 25-HC on membrane area are not

opposed. Instead, both effects increase projected membrane area, resulting in a more linear response.

The mixed sterol simulations show how cholesterol and 25-HC interact. By comparing the mixed sterol

system to the 18% 25-HC system, we see that the addition of cholesterol increases projected membrane area

by 2.5 nm2. However, comparing the pure POPC system to the 18% cholesterol system shows that in the

absence of 25-HC, the same amount of cholesterol causes a decrease in projected membrane area of 0.2 nm2.

This demonstrates that the presence of 25-HC alters the marginal effect of cholesterol, reducing its ability to

condense membrane bilayers. Using similar comparisons to compare the marginal effect of 25-HC, we find

that in the absence of cholesterol, 56 25-HC molecules increase projected membrane area by 6.4 nm2, while

adding the same amount of 25-HC in the presence of cholesterol results in an even larger projected area

increase of 9.1 nm2. In other words, 25-HC shows larger effects on projected membrane area in the presence

of cholesterol. A potential mechanism for this increased expansion could be that phospholipids condensed by

the presence of cholesterol can be expanded more than phospholipids which are already partially disordered.

A better understanding of interactions between the two sterols can be obtained by breaking down the total

membrane areas into areas associated with each membrane component using solvent-accessible surface area

(SASA) calculations. This deconvolution allows us to attribute changes in total membrane area to changes

in the areas of specific membrane components. The SASA for each lipid in the bilayer was calculated and

the total SASA due to POPC, cholesterol, or 25-HC was summed for each type of lipid in each snapshot

of the systems. These cumulative SASA contributions were divided by two to obtain the mean per-leaflet

SASA of POPC, cholesterol, and 25-HC. Results are shown in Figure 3.2 as bar plots, with the height of

each bar denoting the mean contribution of POPC, cholesterol, and 25-HC to membrane SASA.

Both the 18% and 30% concentrations of cholesterol reduce the POPC contribution to surface area by

46



Pure POPC 18% Chol. 30% Chol. 18% 25!HC 30% 25!HC 30% Mixed
0

5

10

175

185

195

205

215

Simulation

M
ea

n 
Le

af
le

t S
A

SA
, b

y 
M

ol
ec

ul
e 

(n
m

2 )

 

 
POPC
Cholesterol
25!HC

Figure 3.2: Bar plots showing the total mean per-leaflet solvent-accessible surface area for each set of
simulations, divided into contributions from POPC (black), cholesterol (white), and 25-HC (gray).

11-12 nm2; the difference between the area of POPC in the two different cholesterol concentrations is not

statistically significant. Because no further decrease in POPC SASA is observed at the higher concentration

of cholesterol, a limit in phospholipid condensation by cholesterol must be reached between 0 and 30%

cholesterol [18, 101]. The contribution of cholesterol itself to leaflet surface area doubles from 1.5 nm2 in

the 18% cholesterol system to 2.9 nm2 in the 30% system. Because the number of cholesterol molecules

doubles as well, this indicates that cholesterol in POPC/cholesterol bilayers has a constant molecular SASA,

regardless of concentration.

The solvent-accessible surface area does not necessarily change in the same way as the projected area,

because the surface has varying degrees of “roughness” as its composition is varied. Changes in membrane

structure that create bumps or pockets in the membrane surface can increase the SASA for a given projected

area. This roughness can be quantified by examining the ratio of leaflet SASA to membrane projected area.

The ratio is a dimensionless number greater than one. A perfectly flat surface would have an identical SASA

and projected area, giving a ratio of one, while rougher surfaces would have larger SASAs than projected

areas, giving ratios greater than one. Cholesterol decreases the roughness of the membrane. The pure POPC

systems show a roughness ratio of 2.29, while the 18 and 30% cholesterol systems have roughnesses of 2.17

and 2.11, respectively.
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The addition of 25-HC to a POPC bilayer causes significant increases in the POPC solvent exposure.

The 128 POPC molecules in each leaflet take up 7.3 nm2 more surface area in the presence of 18% 25-HC

and 26.3 nm2 more in the presence of 30% 25-HC. Unlike cholesterol, the effect of 25-HC does not saturate at

higher concentrations. Rather, the expansion of POPC induced by 25-HC continues up to 30% 25-HC. Unlike

cholesterol, 25-HC appears to not have a consistent mean molecular SASA over the range of concentrations

examined. The contribution of 25-HC to leaflet surface area increases by a factor 2.8, significantly greater

than two, indicating that at higher concentrations of 25-HC, the sterol becomes more exposed to solvent.

The mixed system SASA analysis shows the same synergy between cholesterol and 25-HC that is observed

in projected areas. Adding both cholesterol and 25-HC to a POPC membrane results in larger POPC leaflet

SASA than would be expected from their independent effects on POPC membranes. As with projected

areas, this interaction can be ascribed to 25-HC disrupting the cholesterol-induced condensation of POPC.

Examining membrane SASA shows that the effects of this interaction are driven by changes in phospholipid

structure rather than by changes in direct area contributions by sterols.

Densities

Membrane density profiles show membrane thickness and how mass is distributed within the membrane.

Mass density profiles for all simulations were calculated as described in Section 3.2.3, and the densities

for all simulations of the same composition were averaged. These total mass density profiles are shown in

Figure 3.3. The general shape of all the profiles is indicative of phospholipid membranes. Further than

approximately 3 nm from the bilayer center, we see bulk water density of 975 kg/m3. Major peaks occur at

1.7-2.2 nm from the bilayer center, showing the position of the heavy phosphorus atom of the phospholipids.

The density then drops to a minimum at the bilayer center, with densities 30-40% lower than that of bulk

water, where the acyl chains of the phospholipids interact.

While the general shape of the profile for all membrane compositions is similar, some differences are

seen that give insight into how the membrane structure is changed. Cholesterol thickens the membrane in a

dose-dependent manner, shifting the major phosphate peak further from the bilayer center. It also narrows

the phosphate peak, indicating more homogeneity in the position of the phosphate and thus a more ordered

membrane. At the same time, the minimum at the center of the bilayer deepens, showing less intercalation

between acyl chains of the two separate leaflets. On the other hand, 25-HC thins the membrane, widens the

major phosphate peak, and raises the minimum at the center of the bilayer. These changes show membrane

collapse, a disordering of the phospholipid headgroups, and an increase in acyl chain intercalation. The

simulations containing both cholesterol and 25-HC show a mixture of these effects. The bilayer thickens
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Figure 3.3: Mean mass density profiles for all POPC bilayer simulations.

slightly while the phosphate peak is widening, and the opposing effects of 25-HC and cholesterol on acyl

chain intercalation results in no change with respect to the pure POPC bilayer.

Membrane thicknesses were calculated using solvent density profiles, as the distance between the half bulk

water density positions in each leaflet. These thicknesses were then multiplied by projected areas to estimate

membrane volume over the course of each simulation (data not shown). Both 18% sterol systems show

identical increases in volume as compared to the pure POPC system, and the 30% 25-HC, 30% cholesterol,

and 30% mixed sterol all show identical increases as well. This independence to sterol structure demonstrates

that cholesterol and 25-HC have approximately the same molecular volume, as one would expect from their

molecular structures.

3.3.3 Molecular Effects

In addition to looking at how 25-HC and cholesterol affect total membrane structure, we also wished to

examine how the behavior of individual cholesterol molecules changes in membranes of different compositions.

49



10 30 50
0

0.05

0.1

0.15

0.2

0.25

Cholesterol SASA (A2)

Fr
ac

tio
n 

of
 C

ho
le

ste
ro

ls 
A

bo
ve

 V
al

ue
(In

ve
rs

e 
Cu

m
ul

at
iv

e 
D

ist
rib

ut
io

n)

 

 
18% Cholesterol
30% Cholesterol
30% Mixed Sterols

189% Increase

80% Increase

33% Increase

Figure 3.4: Inverse cumulative probability distributions for cholesterol solvent-accessible surface area in
the 18% cholesterol (dotted), 30% cholesterol (dashed) and 30% mixed sterol (solid) simulations. For each
solvent-accessible surface area, the plot shows the fraction of cholesterol molecules with an area greater than
that value.

Molecular SASA

Solvent-accessible surface area calculations can be used to calculate individual molecular areas as well as total

membrane areas. We calculated the SASA for each cholesterol molecule in every snapshot of our simulations.

Cholesterol SASAs cluster around zero, making the probability of finding cholesterol molecules with very

high surface areas quite low. To best compare SASA distributions for cholesterol in membranes of different

composition, we used an inverse cumulative probability distribution. At a range of threshold SASAs, this

distribution shows the fraction of all cholesterol molecules with SASAs larger than the threshold. Inverse

cumulative probability distributions for cholesterol in 18% cholesterol, 30% cholesterol, and 30% mixed sterol

simulations are shown in Figure 3.4.

There is no significant difference in the solvent exposure of cholesterol in the 18% and 30% cholesterol

simulations. In the 30% mixed sterol simulation, cholesterol becomes significantly more exposed to solvent,

with over 20% of cholesterols having SASAs greater than 10 Å2. While the fraction of cholesterols with high

SASAs is still not large, it becomes significantly larger when cholesterol is exposed to 25-HC. We see a 33%,

80%, and 189% increase in the fraction of cholesterols with SASAs above thresholds of 10, 30, and 50 Å2,

respectively.
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Figure 3.5: Histograms showing the number of cholesterol-water hydrogen bonds for cholesterol molecules
in the 18% cholesterol (white), 30% cholesterol (gray), and 30% mixed sterol (black) simulations.

Hydrogen Bonding and Solvation

SASA results show that the presence of 25-HC causes cholesterol to become more exposed to solvent. We

wished to examine how this increased exposure to solvent changed the distribution of cholesterol-solvent

interactions. Hydrogen bonds were calculated between cholesterol hydroxyl groups and all solvent molecules,

with hydrogen bonds defined geometrically as described earlier. The total number of cholesterol-solvent

hydrogen bonds was calculated for each individual cholesterol and pooled to find the fraction of all cholesterols

forming each number of solvent hydrogen bonds was calculated for all three cholesterol-containing system

compositions. Histograms showing probabilities of cholesterol-solvent hydrogen bonds are shown in Figure

3.5.

As with cholesterol SASA, we find no significant differences in cholesterol-solvent hydrogen-bonding

between in the 18% and 30% cholesterol. Cholesterol in these cholesterol/POPC simulations prefers to mostly

hydrogen bond with a single water molecule, with less than 5% forming no solvent hydrogen bonds and only

about 15% forming more than one. In the 30% mixed sterol simulations, cholesterol forms significantly more

hydrogen bonds with water. In the presence of 25-HC, most cholesterol molecules prefer to hydrogen bond

with multiple water molecules, rather than only one in the absence of 25-HC. This demonstrates that the
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Figure 3.6: Probability distributions for finding the oxygen of the cholesterol hydroxyl at a given position
with respect to the water/bilayer interface. Shown for cholesterol in the 18% cholesterol (thin solid), 30%
cholesterol (thick solid), and 30% mixed sterol (dashed) simulations.

increase in cholesterol solvent-accessible surface area observed in the presence of 25-HC is accompanied by

increased interactions with solvent molecules.

Sterol Positions

While examination of individual cholesterol SASA and hydrogen bonding shows that cholesterol becomes

more exposed to solvent in the presence of 25-HC, it does not reveal how this increased exposure occurs.

Increased exposure may be due to movement of cholesterol out of the bilayer into the solvent, or it may be due

to an opening of the bilayer structure allowing solvent to penetrate. In order to examine this, the positions

of cholesterol molecules were calculated with respect to the interface between solvent and the bilayer. The

interface positions were calculated as the two positions along the normal axis at which the water density is

50% of the bulk water density. The probability distributions for cholesterol hydroxyl positions with respect

to the interface are shown in Figure 3.6.

Much like our other cholesterol analyses, we find that the distributions of cholesterol positions in the

18% and 30% simulations are not significantly different. Cholesterol prefers to position its hydroxyl group in

the bilayer somewhere between 2.5 and 5 Åbelow the water interface, with a median depth of 3.6 Åfor both

18% and 30% cholesterol systems. In the 30% mixed sterol simulations, cholesterol shifts significantly closer

to the water interface, with a median depth of 2.8 Å. While the shift is small compared to the width of the
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distributions, it results in a large change in the fraction of cholesterol molecules positioned above the water

interface, with only 3-4% of cholesterols in the 18% and 30% cholesterol simulations that exposed but over

8% in the 30% mixed sterol simulations. The cholesterol position results show that the increased exposure

of cholesterol to solvent induced by 25-HC, as shown in the cholesterol SASA and hydrogen bonding data,

is due to movement of cholesterol out of the bilayer rather than a change in bilayer structure that allows

increased solvent penetration.

Sterol Orientations

In previous work examining the differential effects of 25-HC and cholesterol on membrane behavior, we

found significant differences in the orientations of the two sterols within bilayers and suggested that these

differential orientations may be responsible for their effects on membrane structure [97]. In particular, we

suggested that the interfacial orientations adopted by 25-HC could be responsible for the drastic increase

in membrane area observed in 25-HC-containing membranes. In order to examine this further, we have

calculated distributions of the orientations of both cholesterol and 25-HC in the 18% single sterol, 30% single

sterol, and 30% mixed sterol simulations. We calculated sterol tilt and twist for each sterol molecule in these

simulations, as described in Section 3.2.3. These tilt and twist angles were projected onto a spherical surface,

using sterol tilt angle as the spherical inclination and sterol twist angle as the spherical azimuth. This puts

parallel and anti-parallel orientations at two opposite poles of the sphere, with perpendicular orientations

with different facings along the equator. Contour plots of these spherical distributions are shown in Figure

3.7 for cholesterol and Figure 3.8 for 25-HC, as viewed from the “parallel” pole of the sphere. The radiating

circles from the center denote 30◦, 60◦, and 90◦ sterol tilt angles, and the radiating lines denote sterol twist

angles.

Examination of cholesterol results shows few differences in cholesterol orientations among the three sets

of simulations. In all cases, cholesterol prefers parallel orientations, with over 60% of cholesterol molecules

having ring tilts of less than 30◦. There is a slight shift towards a tighter distribution around the preferred

parallel orientation at higher sterol concentrations. At the lower cholesterol concentration, only 65% of

cholesterol molecules have ring tilts of less than 30◦, while 78% and 77% of cholesterol molecules in the 30%

cholesterol and 30% mixed sterol simulations, respectively, occupy this region. Because this shift is seen in

both the 30% cholesterol simulations as well as the 30% mixed sterol simulations, it appears to be caused

by general sterol concentration and is not dependent on sterol identity.

Examination of 25-HC orientations shows significant differences. At the low 18% concentration, 25-HC

prefers to adopt primarily interfacial orientations. The dominant orientation has a sterol tilt of 60◦ with a
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Figure 3.7: Spherical distribution plots of cholesterol orientations in the 18% cholesterol, 30% cholesterol,
and 30% mixed sterol simulations. Regions containing the densest 10%, 25%, 50%, 75%, and 90% of the
total probability density are shown by areas of red, orange, yellow, green, and cyan respectively. Parallel
orientations are found at the center pole, and perpendicular orientations with different facings are found
along the perimeter.

Figure 3.8: Spherical distribution plots of 25-HC orientations in the 18% 25-HC, 30% 25-HC, and 30% mixed
sterol simulations. Regions containing the densest 10%, 25%, 50%, 75%, and 90% of the total probability
density are shown by areas of red, orange, yellow, green, and cyan respectively. Parallel orientations are
found at the center pole, and perpendicular orientations with different facings are found along the perimeter.
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sterol twist such that the edge of the ring containing the hydroxylated tail faces towards the water interface.

This orientation allows both hydroxyl groups to interact with solvent. While this interfacial orientation is

dominant, the distribution is broad, with a wide variety of other available orientations, including (data not

shown) inverted orientations with the sterol tail at the water interface and the steroid ring buried in the

bilayer. If we define a parallel orientation as one with a ring tilt of less than 30◦ and an interfacial orientation

with a ring tilt between 40◦ and 80◦ and a ring twist between -45◦ and 60◦, then we find that only 13% of

25-HC molecules are found in parallel orientations, while 35% are found in interfacial orientations, with the

remainder in these alternative conformations. At the higher 30% 25-HC concentration, there is a shift from

alternative to parallel conformations, with 19% of 25-HC molecules adopting parallel orientations similar

to that of cholesterol, while the fraction in interfacial orientations does not significantly change. This may

be due to saturation of possible occupancy sites that prevents further alternative orientations, and leading

excess 25-HC to adopt alternative orientations. In the 30% mixed sterol simulation, we find a larger shift

towards parallel conformations, with 31% of 25-HC molecules adopting parallel orientations. In this case,

the increase in parallel orientations is compensated by a decrease in interfacial orientations, with only 24%

of oxysterols adopting interfacial orientations.

Based on our earlier work, we expected the presence of 25-HC interfacial orientations to correlate with

membrane expansion. This appears to be the case in the absence of cholesterol: in the 18% and 30% 25-HC

simulations, the fraction of oxysterols in interfacial orientations is approximately the same. Thus, at the

low concentration, roughly a third of 56 total oxysterols are in interfacial orientations, while at the higher

concentration, a third of 112 total oxysterols are in interfacial orientations. This increase in total interfacial

oxysterols correlates with the increase in membrane expansion between the low and high 25-HC concentration

simulations. In the presence of cholesterol, this correlation is no longer seen. Roughly a quarter of the 56

total oxysterols in the mixed sterol simulations are found in interfacial orientations, while these oxysterols

cause a larger increase in membrane area than they would in the absence of cholesterol. The reasons for the

shift in 25-HC orientations in the presence of cholesterol are still unclear. The loss of correlation between

interfacial oxysterol concentration and membrane expansion in the presence of cholesterol suggests that either

interfacial oxysterols do not cause area expansion but are instead signals of it or that cholesterol increases

the ability of interfacial oxysterols to induce area expansion.
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3.4 Discussion

We have found that adding both cholesterol and 25-HC to POPC membranes results in membrane effects

that are significantly different from what would be expected in the absence of interactions between the two

sterols. When added to POPC bilayers at low concentrations, 25-HC expands bilayers, increasing the solvent

exposure of nearby phospholipids. However, when the same concentration was added to POPC bilayers that

already contain cholesterol, an even larger increase in POPC expansion was seen. Results from phospholipid

surface area calculations clarify this by demonstrating that the addition of cholesterol causes a much smaller

decrease in phospholipid surface area in membranes containing 25-HC than in membranes without 25-HC,

suggesting that the interaction between 25-HC and cholesterol interferes with the ability of cholesterol to

condense bilayers. A better understanding of this effect could be gained by further simulations comparing

the effect of cholesterol on 25-HC-induced membrane expansion over a range of cholesterol concentrations.

If the increase in oxysterol membrane expansion is caused by a disruption of the ability of cholesterol to

condense bilayers, then the increase should be proportional to cholesterol concentration.

In our earlier work, we predicted this effect and hypothesized that it would be driven by conforma-

tional shifts in 25-HC [97]. We proposed that 25-HC causes membrane expansion through its adoption of

interfacial conformations, and that the presence of cholesterol would cause 25-HC to favor these interfacial

conformations, thus increasing its expansive effect. We suggested that membranes contain a limited number

of available occupancy sites for upright sterols, and that cholesterol would compete with 25-HC for access

to these sites, driving 25-HC towards interfacial orientations. However, we find that this predicted con-

formational shift does not occur. Instead, 25-HC shifts away from interfacial orientations in the presence

of cholesterol. This suggests that at the sterol concentrations studied, the number of available occupancy

sites for upright sterols is not limiting. Thus, rather than competing with 25-HC for access to these sites,

cholesterol alters membrane structure in such a way as to energetically favor upright conformations.

A potential consequence of these shifts in 25-HC orientation may be a change in oxysterol-induced

membrane permeability. We have previously speculated that the hydrogen bonded oxysterol clusters formed

by upright 25-HC molecules are the cause of oxysterol-induced increases in membrane permeability [97].

The clusters of oxysterol hydroxyl groups in the center of the bilayer would lower the desolvation penalty

of passing small polar molecules through the bilayer by offering alternative hydrogen bonding sites. The

shift in oxysterol orientations from interfacial to upright conformations we have observed in the presence of

cholesterol would also cause an increase in the number of available hydrogen bonding sites in the interior of

the bilayer, further lowering the barrier to small molecule permeation of the bilayer. Thus we hypothesize that

the observed increase in membrane permeability induced by 25-HC will be larger in membranes containing
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cholesterol than in those without.

We have proposed that the oxysterol-induced expansion of membrane bilayers may be a biologically-

relevant signaling mechanism [97]. While 25-HC is only present at low concentrations in the cell, in the

direct region around 25-HC-producing enzymes, it may be present at locally high concentrations similar to

what we have simulated here. Locally elevated concentrations of 25-HC could cause changes in membrane

structure sufficient to alter membrane protein structure and activity. The ability of cholesterol to increase

the expansive effect of side-chain oxysterols on membranes may be biologically relevant. The concentration

of cholesterol in the ER would then control not only the local concentration of 25-HC but also the local

expansion caused by 25-HC, increasing the signaling capacity of a given concentration of 25-HC.

We also examined cholesterol behavior in mixed membranes and found significant changes when compared

to cholesterol in the absence of 25-HC. In the absence of 25-HC, the cholesterol hydroxyl group has a mean

position slightly below the bilayer/water interface. The addition of 25-HC to the membrane shifts this

position towards the interface by nearly an angstrom. This shift suggests that cholesterol is less tightly bound

to nearby phospholipids and may be linked to the reduced ability of cholesterol to condense bilayers. The

change in cholesterol position is accompanied by an increased exposure of cholesterol to solvent, as measured

by cholesterol solvent-accessible surface area and cholesterol-solvent hydrogen bonding. This demonstrates

a reduction in the shielding of the largely hydrophobic cholesterol by surrounding phospholipid headgroups.

It has been hypothesized that cholesterol in membranes exists in both complexed and free or activated

forms [71]. While the complexed cholesterol is tightly bound to phospholipids and unavailable to enzymes

or binding partners, activated cholesterol is available to partners such as cholesterol oxidase, cyclodextrin,

and lipoproteins [71]. Under normal conditions, the availability of cholesterol is determined by the capacity

of membrane phospholipids to form complexes with cholesterol. Addition of cholesterol past membrane

capacity leaves a pool of uncomplexed free cholesterol with higher activity [71]. A wide range of amphipaths

including alcohols, fatty acids, and ketones have been shown to increase the fraction of activated cholesterol

when added to membranes [72].

We suggest that the shifts in cholesterol position and exposure induced by the presence of 25-HC are

consistent with an activation of membrane cholesterol. Oxysterol-induced cholesterol activation provides

another potential mechanism through which 25-HC can signal in a non-enantioselective manner. Increases in

activated cholesterol may be responsible for the increased trafficking of cholesterol from the plasma membrane

to the ER that has been observed when large amounts of 25-HC are added externally to cells [71]. Under

physiological conditions, 25-HC is largely present in the ER, where its effect on cholesterol activity could

increase cholesterol’s availability to proteins such as ACAT, HMGCoAR, and SREBP. Based on this signaling
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model, we predict that 25-HC activation of SREBP should be dependent on the presence of cholesterol, and

be greatly diminished in cholesterol-starved cells. We would also anticipate that 25-HC should increase the

availability of cholesterol to cholesterol oxidase and cyclodextrin in a dose-dependent manner.
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Chapter 4

Influence of Phospholipid Acyl Chains

on 25-Hydroxycholesterol Membrane

Interactions

Abstract

Oxysterols are oxidation products of cholesterol that help regulate cholesterol homeostasis. Recent

work has shown that oxysterols alter membrane behavior and structure in very different ways than choles-

terol, and that oxysterol-induced changes in membrane structure may be important for the regulatory

behavior of oxysterols. We have extended our previous work to examine how phospholipid structure alters

oxysterol interactions with membranes using molecular dynamics simulations of 25-hydroxycholesterol

and cholesterol in DMPC, DPPC, POPC, and DOPC bilayers. We have identified novel binding modes of

25-HC within DMPC bilayers. A small fraction of oxysterols in DMPC bilayers stretch across the entire

bilayer, and drive membrane expansion. We have further found significant differences in interactions of

oxysterols with saturated and unsaturated lipids, finding that oxysterols cause larger changes in mem-

brane properties in unsaturated than saturated lipids. Finally, we have identified correlations between

structural properties of both oxysterols and phospholipids and the magnitude of oxysterol-induced mem-

brane expansion that provide insight into the mechanisms of 25-HC modulation of membrane structure.
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4.1 Introduction

While the basic building blocks of biological membranes are phospholipids, sterols and proteins regulate

membrane structure and behavior. Cholesterol is the most common sterol, and is essential to the proper

functioning of mammalian cells. Cholesterol regulates cell behavior both through binding to sterol-sensing

domains of membrane proteins [13,27,68] and through modulation of membrane structure and behavior. The

addition of cholesterol to membranes broadens the liquid-disordered to gel phase transition, and can induce

the formation of cholesterol-dependent liquid ordered phases [30,128]. Both biophysical and simulation stud-

ies have shown that the addition of cholesterol to membranes decreases membrane fluidity while increasing

membrane thickness, bending modulus, and lipid order [26, 56, 86, 94, 108, 129]. The effect of cholesterol on

membrane structure influences cellular behavior. Increases in membrane thickness caused by cholesterol are

thought to help sort membrane proteins between the plasma membrane and the ER [79]. Membrane phase

and structure can also alter signaling and behavior in proteins such as adenylate cyclase, G-proteins, and

diacylglycerol kinase [53,74,132].

Cellular cholesterol levels are tightly regulated by a number of feedback pathways. One of the best un-

derstood feedback pathways involves the regulation of the rate-limiting enzyme in the cholesterol synthesis

pathway, HMGCoA reductase [39]. Transcription of HMGCoAR is triggered by cholesterol depletion, pro-

moting cholesterol synthesis to restore cholesterol levels. A drop in ER cholesterol levels disrupts binding

between the ER membrane proteins Insig and Scap, freeing Scap to translocate into the Golgi, carrying

the transcription factor SREBP along with it [11, 52, 133]. Once in the Golgi, endogenous proteases cleave

SREBP, releasing an active transcription factor that induces the production of HMGCoAR [11,52].

While cholesterol itself can suppress SREBP activation, it has been known for over 30 years that

oxysterols, oxygenated derivatives of cholesterol, can suppress SREBP activation more than 50 times as

strongly [40, 55]. Oxysterols have also been found to be activators of the liver X receptor (LXR) transcrip-

tion factors, which up-regulate expression of cholesterol efflux proteins [60, 61]. While oxysterols play a

role in regulation of both the SREBP and LXR feedback pathways, the mechanisms of interaction are dis-

tinct. Recent work using enantiomers of natural oxysterols has shown that while the ent-oxysterols suppress

SREBP activation as effectively as natural oxysterols, they are unable to activate LXRs [36]. Protein-small

molecule interactions are enantiospecific, suggesting that while oxysterol directly binds and activates LXRs,

oxysterol suppression of SREBP activation is mediated through some non protein-dependent pathway.

Like cholesterol, oxysterols perturb membrane structure and behavior, although the changes oxysterols

make are very different. While cholesterol orders and condenses membranes, reducing their area and perme-

ability, oxysterols instead increase membrane area and permeability [49,63,125]. Our previous computational
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work has shown that molecular dynamics simulations of cholesterol and 25-HC in phospholipid membranes

can capture experimentally observed changes in membrane structure induced by these sterols [97]. The

atomic detail of molecular dynamics simulations allowed us to see molecular differences in how cholesterol

and 25-HC orient themselves within membranes and correlate those orientations with their mesoscopic ef-

fects on membrane structure [97]. Specifically, we found that while cholesterol prefers to orient upright in

POPC membranes, 25-HC adopts interfacial orientations that avoid the desolvation penalty of burying the

additional 25-hydroxyl group in the hydrophobic interior of the bilayer [97].

Experimental work from our collaborators has demonstrated that the effects of 25-HC on membrane

behavior is highly dependent on the structure of its component phospholipids. They found that while 25-

HC causes significant expansion in monolayers composed of fully or partially unsaturated phospholipids, its

effects on membranes composed of saturated phospholipids are much smaller [36]. We would like to examine

how the phospholipid composition of bilayers alters its interactions with 25-HC. In order to do this, we

have prepared simulations of cholesterol and 25-HC in bilayers of four different phospholipids. We chose two

different saturated phospholipids, the short-chain dimyristoylphosphatidylcholine (Figure 4.1A) and the long-

chain dipalmitoylphosphatidylcholine (Figure 4.1B). While both of these lipids are fully saturated, they have

different chain lengths, allowing us to observe the effect of chain length on 25-HC/membrane interactions.

We also chose a partially unsaturated lipid, 1-palmitoyl-2-oleoyl-phosphatidylcholine (Figure 4.1C), and a

fully unsaturated lipid, dioleoylphosphatidylcholine (Figure 4.1D).

4.2 Methods

4.2.1 Parameters and Structures

Cholesterol and 25-hydroxycholesterol parameters and charges were used as described in our previous work

[97]. 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), di-palmitoyl-phosphatidylcholine (DPPC), di-oleoyl-

phosphatidylcholine (DOPC), and di-myristoyl-phosphatidylcholine (DMPC) lipids were simulated using the

united atom parameters of Berger and Lindahl [5], along with SPC water [3] and Straatsma-Berendsen

potassium and chloride ion parameters [123]. Lipid topologies and initial bilayer structures with 128 DPPC,

DMPC, or DOPC phospholipids were obtained from Tieleman and coworkers [127]. These 128 lipid bilayers

were replicated in the bilayer plane and trimmed to produce larger 256 lipid bilayers with approximate

dimensions of 10 × 10 nm in the bilayer plane. These 256 lipid bilayers prepared above were solvated with

14276 SPC water molecules and 30 K+ and Cl− ions for an approximate KCl concentration of 110 mM.

The solvated DPPC, DMPC, and DOPC bilayers were then used as starting structures for the sterol-free
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A DCB

Figure 4.1: Structures of the four simulated phospholipids. A) DMPC b) DPPC c) POPC d) DOPC.

simulations.

To obtain cholesterol and 25-hydroxycholesterol configurations, a single molecule of cholesterol or 25-

hydroxycholesterol was placed 1-2 nm from the surface of each monolayer in the solvated structures. These

systems were simulated for 50 ns to allow the sterols to associate with the lipid bilayers. All sterols inserted

themselves in the lipid bilayers in the first 25 ns of the simulation. The last 25 ns of these simulations were

used to provide configurations of sterols for preparation of 30 mole percent sterol structures.

92 DMPC, DPPC, and DOPC lipid bilayers were prepared from the 256 lipid bilayers described above

by selecting an appropriate rectangular patch of membrane and excluding lipids outside the patch. 14

phospholipids in each leaflet of the 92 lipid bilayers were then removed and replaced with cholesterol or 25-

hydroxycholesterol structures taken from the 256 lipid/2 sterol simulations, resulting in bilayers containing 64

phospholipids and 28 sterols evenly divided between the two leaflets. These structures could not yet be used

as starting points for simulations due to steric clashes between the newly-inserted sterols and the existing

phospholipids. In order to resolve these clashes, the bilayer was expanded laterally by approximately a factor

of 3, resulting in very widely spaced sterols and lipids. This expansion was followed by serial iteration of

conjugate-gradient energy minimization and compression in the plane of the bilayer to bring the structures

back to near their original size, but with steric clashes resolved. These minimized structures were then

replicated 2 × 2 in the bilayer plane to produce 256 phospholipid, 112 sterol systems, or bilayers containing
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approximately 30 mole percent sterols. The final bilayer structures were solvated with 17414 SPC water

molecules and 36 K+ and Cl− ions for an approximate KCl concentration of 115 mM and used as starting

structures for the 30% sterol simulations.

Previously published 256 POPC, 256 POPC/112 cholesterol, and 256 POPC/112 25-hydroxycholesterol

simulations were extended to provide additional controls to the newly prepared DMPC, DOPC, and DPPC

systems.

4.2.2 Simulations

All molecular dynamics (MD) simulations were performed using GROMACS version 3.3.1 or 4.0 [4,77]. All

simulations followed the same molecular dynamics protocol. Conjugate gradient energy minimization was

first performed on the initial structures to relax any unfavorable contacts between molecules. The system

was then gradually warmed with a series of 30 ps constant temperature, constant pressure MD simulations

from 0 to 300 K in 15 K increments, with 2 fs time steps. Production simulations were then run from the

warmed structures. Anisotropic pressure coupling was applied at 1 atm using the Parrinello-Rahman method

with a time constant of 1 ps [103]. Temperature coupling was applied independently to lipids and solvent

using the Nosé-Hoover algorithm with a time constant of 0.2 ps [51]. DMPC, DOPC, and POPC bilayers

were simulated at a temperature of 300K, while DPPC bilayers were simulated at 323K in order to maintain

the DPPC bilayer in a fluid phase. Electrostatic interactions were calculated using the particle-mesh Ewald

method (PME), with both the direct space PME cutoff and the Lennard-Jones cutoffs set to 1 nm [20].

Constraints were applied to all bonds [29, 102] using the LINCS algorithm incorporated in GROMACS to

allow 2 fs timesteps [47].

Twelve different system compositions were simulated: bilayers composed of 256 DMPC, DOPC, POPC, or

DPPC phospholipids with no added sterols, added 112 cholesterol molecules, or added 112 25-HC molecules.

Initial production simulations for each of these systems were run for 400 ns. In order to obtain better

sampling and statistical confidence, replica simulations for each initial simulation were prepared by first

taking snapshots from the initial simulations at 150, 200, 250, and 300 ns. These snapshots were taken as

the starting point for new systems after resampling particle velocities from a 300K (for DMPC, DOPC, and

POPC bilayers) or 323K (for DPPC bilayers) Maxwell-Boltzmann distribution, resulting in independently

evolving systems. Each of these replica simulations was run for 200 ns of total simulation time. Snapshots

of each simulation were taken ever 100 ps for analysis.
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4.3 Results

4.3.1 Membrane Effects

Projected Areas

The most straightforward membrane property to examine is the total membrane area. The projected mem-

brane area of each system is simply calculated as the area of the periodic box containing the system along

the xy axis. This is calculated for each frame of the simulation, and replica simulations pooled to produce

a distribution for each system composition. These distributions are shown in Figure 4.2.

We would first like to examine whether the pure phospholipid systems accurately capture the experimen-

tally observed area per lipid. First examining only the simulations performed at 300K (the DOPC, POPC,

and DMPC simulations) to avoid the complicating effect of temperature, we note that area per lipid increases

in progressively more unsaturated lipids, with DMPC having a smaller projected area than POPC which in

turn is smaller than DOPC. By dividing the total projected area of the pure phospholipid bilayer by the

number of phospholipids in each leaflet, we can calculate an area per lipid comparable with experimental

results. The mean area per lipid for our DOPC bilayers is 65.0 Å2. While earlier experimental results for

DOPC gives a much larger area of 72.4 Å2 [67], new methods have revised the area per lipid downward to

67.4 Å2, closer to our results [65]. As discussed in our previous work, our simulated POPC bilayers give

an area per lipid, 64.1 Å2, smaller than the experimental value of 68.3 Å2 [67]. However, this result has

not been updated using the new methods as for DOPC, and we are hopeful that the experimental result

for POPC will similarly shift towards our simulation results when updated. Our DMPC simulation gives an

area per lipid of 62.9 Å2, which is slightly larger than the experimental value of 60.6 Å2 [64]. Finally, the

DPPC simulation is run at a higher temperature of 323K. This is done in order to keep it above the gel to

liquid transition temperature and in the liquid disordered phase. Here we find an area per lipid of 65.2 Å2,

somewhat larger than the experimental value of 63.0 Å2 [65]. Our simulation results are reasonably close to

experimental results, with what appears to be a slight underestimate of the area of unsaturated lipids and

a slight overestimate of the area of saturated lipids.

We next turn to examining the effects of cholesterol on projected membrane area. Membrane area changes

due to the addition of cholesterol can be divided into the direct area increase caused by the addition of new

molecules and the indirect area decrease caused by the cholesterol-induced condensation of phospholipids.

While the direct area increase should be roughly similar for the same concentration of cholesterol in mem-

branes of different phospholipid composition, the phospholipid condensation effect will be dependent on lipid

saturation and tail length. In all phospholipids, we see that the addition of 30% cholesterol causes either an
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Figure 4.2: Box and whisker plots showing projected area distributions for phospholipid/sterol bilayers. The
central box shows the median and interquartile range of the area distribution while the whiskers show the
minimum and maximum. The phospholipid composition of each bilayer is given on the x axis, and for each
phospholipid we show the distributions for three different systems: the 256 phospholipid bilayer (white), the
256 phospholipid/112 cholesterol bilayer (cyan), and the 256 phospholipid/112 25-HC bilayer (pink).
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increase or no change in total membrane area. This indicates that the condensation effect of cholesterol at

a 30% concentration is smaller or equal to the direct area effect in all four phospholipids.

First comparing the effects of lipid tail length, we see that the addition of 30% cholesterol to DPPC

bilayers causes no change in the mean projected membrane area of 83.6 nm2, while the same addition to

DMPC bilayers causes an increase of 2.5 nm2 from 80.5 nm2 to 83.0 nm2. This suggests that cholesterol

has a stronger condensation effect on DPPC phospholipids than on DMPC phospholipids, in agreement

with other simulation and experimental results [66,111,114]. This difference has been attributed to relative

lengths of phospholipid acyl chains and cholesterol causing intercalation of cholesterol between leaflets in the

shorter-chain DMPC bilayers but not in longer-chain DPPC bilayers [114].

Next, we compare the effects of cholesterol on DPPC, POPC, and DOPC bilayers to see how acyl chain

saturation affects phospholipid condensation. The addition of 30% cholesterol to saturated DPPC bilayers

causes no change in mean projected membrane area of 83.6 nm2. The same addition to partially unsaturated

POPC bilayers increases projected membrane area by 2.7 nm2, from 82.1 nm2 to 84.8 nm2, and cholesterol

addition to fully unsaturated DOPC bilayers increases projected membrane area by 3.9 nm2, from 83.3

nm2 to 87.2 nm2. Thus we see a progression of membrane response, with cholesterol having the strongest

condensation effect on saturated phospholipids, intermediate levels of condensation on partially unsaturated

phospholipids, and the weakest condensation on fully unsaturated phospholipids. This is in good agreement

with experimental results showing that cholesterol interacts more strongly with and has larger effects on

unsaturated lipids [99].

25-hydroxycholesterol, like cholesterol, has both indirect and direct effects on membrane area. Unlike

cholesterol, it does not condense nearby phospholipids but instead expands them [49,63,125]. Because both

its direct and indirect effects on membrane area tend towards membrane expansion, addition of 25-HC to

membranes causes much larger increases in total projected area than cholesterol. Comparing the effects of

25-HC on DMPC and DPPC bilayers, we find that the addition of 30% 25-HC to DPPC bilayers increases

projected membrane area by 13.6 nm2 from 83.6 nm2 to 97.2 nm2, while in DMPC bilayers 25-HC increases

projected membrane area by 20.9 nm2 from 80.5 nm2 to 101.4 nm2. This suggests that the expansive effect

of 25-HC on DMPC bilayers is significantly larger than its effect on DPPC bilayers. Comparing the effects on

saturated versus unsaturated bilayers, we see smaller effects in fully saturated and fully unsaturated bilayers,

with the largest projected area increase in the partially saturated POPC bilayers. While 30% 25-HC increases

the projected area of DPPC bilayers by 13.6 nm2, it increases the projected area of DOPC bilayers from

83.3 nm2 to 98.0 nm2, a difference of 14.7 nm2. The effect of 25-HC on POPC bilayers is significantly larger,

increasing projected membrane area from 82.1 nm2 to 99.5 nm2, an increase of 17.4 nm2. These differences
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Figure 4.3: Stacked bar plots showing the mean leaflet solvent-accessible surface area and division into
contributions from phospholipid (gray), cholesterol (cyan), and 25-HC (red).

demonstrate that oxysterol/membrane interactions are not purely driven by lipid saturation. First, we find

significant differences in 25-HC interactions with two saturated lipids of different length. Secondly, we do

not see increases in oxysterol-induced membrane expansion in fully saturated DOPC bilayers as compared

with partially unsaturated POPC bilayers.

Leaflet SASA

In order to more closely examine the effects of sterols on membrane area, we break down the changes in total

membrane area into changes associated with each membrane component. We do this using solvent-accessible

surface area (SASA) calculations. The SASA of each molecule in the bilayer was calculated and the total

SASA attributed to phospholipid, cholesterol, or 25-HC summed for each type of lipid in each snapshot of all

systems. These contributions are divided by two and averaged over all equilibrated frames of the simulations

to give mean per-leaflet SASAs, partitioned between phospholipid, cholesterol, and 25-HC. Results can be

seen in Figure 4.3 as stacked bar plots. These areas are significantly larger than the projected areas shown

in Figure 4.2 because they take into account the roughness of the surface, with rougher surfaces producing

a larger SASA for a given projected area.

First examining the SASAs in the cholesterol-containing bilayers, we find that the differences in area

attributed to cholesterol in the four different phospholipid bilayers are not significant, with SASA values

from 2.9 to 3.4 nm2. Differences in cumulative phospholipid SASAs are significant between the different
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phospholipids. We see the largest decrease in cumulative phospholipid SASA in DPPC, which decreases

from 194.7 to 172.3 nm2. Progressively smaller decreases are seen in POPC, which decreases from 187.5

to 176.0 nm2 and in DOPC, which drops from 191.7 to 183.9 nm2. We also find differences due to acyl

chain length, with DMPC showing less condensation than DPPC, dropping in area from 184.4 to 171.8 nm2.

These SASA results are consistent with the projected area results, showing that cholesterol condensation is

stronger in saturated than unsaturated lipids and is dependent on chain length.

Examining 25-HC SASAs, we first note that the surface area of 25-HC in DMPC bilayers is significantly

larger than in DPPC, POPC, or DOPC bilayers. While the mean cumulative SASA for 25-HC in DMPC

is 12.3 nm2, it ranges from 8.3 to 8.7 nm2 in the other three phospholipids. This suggests that oxysterols

may have significantly different conformations when present in DMPC bilayers that exposes them to sol-

vent. Examining cumulative phospholipid area demonstrates that in all bilayers, 25-HC causes expansion of

phospholipids. However, the size of this effect varies greatly between phospholipids. The largest expansion

is seen in DMPC bilayers, where phospholipid SASA increases from 184.4 to 217.1 nm2, a 17.7% increase in

surface area. The smallest expansion is found in DPPC bilayers, with an increase of only 6.8%. This again

demonstrates that acyl chain length has a significant effect on how oxysterols interact with phospholipids.

The fully saturated DOPC shows intermediate levels of expansion, increasing in surface area by 10.9%, while

the partially unsaturated POPC increases by 14.0%.

Membrane Density

Membrane density profiles show membrane thickness and how mass is distributed within the membrane.

Mass density profiles for all simulations were calculated, obtaining results for phospholipid, sterol, and

solvent densities. The mass density profiles for bilayers, i.e. all non-solvent molecules, are shown in Figure

4.4. The general shape is similar across all bilayer compositions, and is indicative of phospholipid membranes.

The peaks of the distributions lie at 1.5-2.0 nm from the bilayer center, where the heavy phosphate groups

lie. The distributions then taper off to zero as we get further from the bilayer and begin entering the bulk

solvent region. The density drops to a local minimum at the bilayer center, with densities 30-40% lower than

that of the peak region, where the acyl chains of the phospholipids of each leaflet interact with each other.

The effects of cholesterol and 25-HC on membranes are qualitatively similar in membranes of different

phospholipid compositions. Cholesterol tends to thicken the membrane, pushing the main phosphate peak

further from the bilayer center. It also lowers the density in the center of the membrane, likely due to a

decrease in acyl chain interdigitation. 25-HC has the opposite effect, thinning the membrane and increasing

the density in the membrane interior. While these effects are broadly similar across different phospholipid
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Figure 4.4: Bilayer mass density profiles for DMPC, DPPC, POPC, and DOPC bilayers. Consists of both
phospholipid and sterol mass densities. Pure phospholipid bilayers in black, 30% 25-HC bilayers in red, and
30% cholesterol bilayers in blue.

69



membranes, there are quantitative differences. In particular, the effects of 25-HC on density profiles are

correlated with its effects on membrane area. While in all bilayers, 25-HC causes membrane thinning, the

thinning can be distinguished as to whether it is caused by a general shift in the density profile towards the

bilayer center or whether it is caused by an independent increase in density closer to the bilayer center. In the

case of DPPC, we see almost complete overlap between the pure DMPC and DMPC/25-HC density profiles

at the solvent interface, and the bulk of the membrane thinning is caused by an increase in interior density.

We see progressively larger shifts in DOPC, POPC, and DMPC bilayers, tracking their progressively larger

effects on phospholipid surface area. These effects are likely due to conservation of membrane volume in

these highly incompressible systems. The addition of sterols to membranes necessarily increases membrane

volume, and this increased volume can take the form of increases in membrane area or increases in membrane

thickness. In the case of cholesterol, the condensation of membrane area is compensated by large increases in

membrane thickness. For 25-HC, membrane lateral expansion is compensated by membrane thinning, with

larger amounts of thinning necessary to compensate for larger area expansions.

4.3.2 Lipid Effects

Order Parameters

Order parameters for the acyl chains of DMPC, DPPC, POPC, and DOPC phospholipids in our simulations

were calculated as in our previous work [97]. Order parameters are calculated for each carbon in the acyl

chain. Larger numbers indicate a more ordered orientation, with increased alignment of the chain at that

position along the bilayer normal axis, while smaller numbers indicate a more disordered orientation. Tails

are ordered near the headgroup and become increasingly disordered towards the end of the tail, indicating

less conformational freedom near the attachment site to the glycerol backbone and increased freedom further

away. The large drop in tail order seen at carbon 10 in the POPC sn2 chain and both DOPC chains is due

to the oleoyl cis double bond causing a kink in the chain and interfering with its ability to align along the

bilayer normal axis.

Examining the effects of sterols, we see that cholesterol causes an increase in tail order in both chains

of all phospholipid bilayers. This is consistent with experiment, and has been attributed to packing of

the phospholipid tails around the rigid sterol ring structure. 25-HC, however, causes significant amounts of

ordering near the headgroup and differential effects near the end of the tails in the four different phospholipid

bilayers. These effects appear to correlate well with 25-HC-induced phospholipid expansion. DPPC bilayers,

which show the least expansion in the presence of 25-HC, also have some slight ordering or no change in acyl

chain order in carbons 10-15 near the tail end upon the addition of 25-HC. DOPC bilayers, with slightly
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Figure 4.5: Order parameters for the SN1 (solid) and SN2 (dashed) acyl chains of DMPC, DPPC, POPC,
and DOPC bilayers. Pure phospholipid results in black, phospholipid/cholesterol results in blue, and
phospholipid/25-HC results in red.
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more expansion, show almost no change in chain order in carbons 10-17 near the tail end. POPC and DMPC

bilayers, which have the largest amounts of expansion, both show significant disordering of acyl chains near

the end of the tail in the presence of 25-HC. This suggests that high levels of oxysterol-induced membrane

expansion is linked with a disordering of the ends of phospholipid acyl chains.

Sterol Orientations

We have calculated distributions of the orientations of both cholesterol and 25-HC in DMPC, DPPC, POPC,

and DOPC bilayers. We calculated sterol tilt and twist for each sterol molecule in these simulations, as

described in our earlier work [97]. These tilt and twist angles were projected onto a spherical surface,

using sterol tilt angle as the spherical inclination and sterol twist angle as the spherical azimuth. This puts

parallel and anti-parallel orientations at two opposite poles of the sphere, with perpendicular orientations

with different facings along the equator. No significant differences in cholesterol orientations were found

between the four cholesterol/phospholipid simulations (data not shown). Contour plots of the spherical

distributions are shown Figure 4.6 for 25-HC in all four bilayers. Lines of latitude and longitude are taken

at 30◦ increments.

The distributions for oxysterol orientations are quite broad, but two major centers can be seen: parallel

orientations, with ring tilts less than 30◦, and interfacial orientations, with ring tilts between 40◦ and 80◦

and ring twists between -45◦ and 60◦. While the parallel orientations are similar to the preferred orientation

of cholesterol, the interfacial orientations are specific to 25-HC, and allow the polar hydroxylated tail access

to the hydrophilic bilayer/water interface, preventing energetically costly desolvation of the 25-hydroxyl

group. We have quantified the fraction of 25-HC molecules in the parallel and interfacial orientations,

using the angles described above. A bar graph showing these results can be seen in Figure 4.7. There are

significant differences in oxysterol distribution between the four different phospholipids. DMPC and POPC

favor interfacial over parallel orientations for 25-HC, while DOPC and DPPC favor parallel orientations. In

DMPC, 36% of oxysterols are found in interfacial orientations, while only 21% are in parallel orientations.

POPC shows a similar distribution, with 33% interfacial oxysterols and 19% parallel oxysterols. DPPC

has a slight bias towards parallel orientations, with 30% in parallel and 27% in interfacial orientations,

while DOPC is strongly biased towards parallel orientations, with 37% in parallel and 18% in interfacial

orientations. These results correlate with oxysterol-induced membrane expansion, with larger membrane

expansions correlating with a higher fraction of interfacial oxysterol orientations. This suggests that either

interfacial oxysterols are partially responsible for membrane expansion or that membrane expansion and

thinning drives oxysterols towards interfacial orientations.
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Figure 4.6: Spherical distribution plots of 25-HC orientations in DMPC, DPPC, POPC, and POPC bilayers.
Regions containing the densest 10%, 25%, 50%, 75%, and 90% of the total probability density are shown by
areas of red, orange, yellow, green, and cyan respectively. Parallel orientations are found at the top pole,
and perpendicular orientations with different facings are found along the equator.
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Figure 4.7: A bar graph showing the fractions of 25-hydroxycholesterol molecules found in parallel and
interfacial orientations, as described in the text.

25-HC in DMPC

The very large differences in how 25-HC perturbs DMPC and DPPC bilayers was initially somewhat sur-

prising. The expansion induced in DMPC bilayers was the largest observed, while that induced in DPPC

bilayers was the smallest. This was surprising because the acyl chains of the two phospholipids differ by

only 2 carbons, and that change was not expected to cause major changes in oxysterol arrangements within

the bilayer. In order to understand this, we investigated the interactions between 25-HC and phospholipids

in DMPC bilayers and found approximately 1-5% of 25-HC molecules forming “bridges” between the two

leaflets of the bilayer. These bridges are formed by a single 25-HC molecule stretching across the hydrophobic

interior of the bilayer, such that the 3-hydroxyl group hydrogen bonds with phospholipids of one leaflet while

the 25-hydroxyl group bonds with those of the other, as seen in Figure 4.8. We believe that these bridges are

the cause of the unexpected expansion induced by 25-HC. By pulling the two leaflets of the bilayer together

through hydrogen bonding interactions, they directly thin the bilayer and indirectly drive area expansion.

4.4 Discussion

We have found that the effects of both cholesterol and 25-hydroxycholesterol on membrane bilayers are highly

dependent on the structure of the phospholipid acyl chains. Cholesterol induces condensation of phospho-

lipids when incorporated into bilayers, with saturated lipids showing more condensation than unsaturated
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Figure 4.8: A representative structure of 25-HC bridging DMPC bilayers by forming hydrogen bonds to
DMPC headgroups in both leaflets of the bilayer. Taken from a snapshot of the DMPC/25-HC simulations.
DMPC molecules are shown as sticks, while 25-HC is shown as space-filling VdW atoms.
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lipids, in agreement with experimental results [99]. We also see that cholesterol has a stronger condensation

effect on DPPC phospholipids than on DMPC phospholipids, in agreement with other simulation and exper-

imental results [66, 111, 114]. This is likely due to the relative lengths of cholesterol versus the palmitoyl or

myristoyl chains of the phospholipid, with the shorter myristoyl chains causing intercalation of cholesterol

between leaflets [114].

25-hydroxycholesterol, in turn, causes expansion of membrane bilayers. The largest expansion is seen in

DMPC bilayers. This appears to be caused by a small number of 25-HC molecules bridging DMPC bilayers,

forming hydrogen bonds to DMPC headgroups in both leaflets of the bilayer. These bridges then pull the

leaflets of the bilayer together, thinning the bilayer and driving lateral expansion. Oxysterol bridges are not

seen in DPPC bilayers, which show the least expansion of the four phospholipids tested. This presumably

is because DPPC bilayers are thick enough that oxysterols can no longer bridge the entire bilayer, but are

constrained to either bury a hydroxyl group in the bilayer center or form interactions with only one leaflet.

This mechanism of oxysterol bridges driving membrane expansion could be experimentally tested using

DMPC monolayers. Because there is no second leaflet with polar headgroups in a monolayer geometry, we

would expect to find no oxysterol bridges in DMPC monolayers thus predict that DMPC monolayers would

show only small amounts of expansion, comparable to what has been seen in DPPC monolayers [36].

In 25-HC/phospholipid bilayers with no oxysterol bridges, we find that while unsaturated lipids expand

the least, the most expansion is seen not in fully saturated bilayers but in partially saturated bilayers. This

result may have biological relevance as partially unsaturated lipids are the most common within biological

membranes, suggesting that the 25-HC structure is tuned to elicit maximum effect from biological membranes

[96, 128]. This is not in agreement with monolayer experiments, where 25-HC was found to cause slightly

more expansion in DOPC monolayers than in POPC bilayers [36]. Differences between our simulation

results and these monolayer experiments may be due to the altered geometry in monolayers versus bilayers.

In particular, monolayer geometries may alter the favorability of parallel oxysterol orientations and internal

hydrogen bonding between 25-HC molecules, causing slight changes in monolayer expansion relative to bilayer

expansion.

We have identified correlations between lipid and oxysterol structure and behavior and membrane ex-

pansion. Membrane expansion is correlated with 1) disordering of the ends of phospholipid acyl chains and

2) oxysterol adopting interfacial orientations. The underlying mechanism of these correlations is not yet

clear. We have hypothesized in previous work that oxysterol interfacial orientations directly drive mem-

brane expansion [97]. An alternative hypothesis is that the adoption of interfacial orientations is instead

driven by membrane expansion: the expansion exposes additional interfacial sites that can be occupied by
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the 25-hydroxyl groups of the oxysterols. The hypothesis that interfacial orientations are secondary rather

than primary effects is particularly compelling in the case of DMPC bilayers, where expansion appears to be

primarily driven by bilayer compression due to oxysterol bridging. Acyl chain disordering in turn is likely

secondary as well. It appears to be due either to thinning of the bilayer forcing acyl chain interdigitation or

splaying or to oxysterols predominantly locating near the water interface, leaving free space in the bilayer

center and allowing more flexibility in acyl chains. These mechanisms will be tested in future simulation and

experimental work.
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Chapter 5

Conclusions

5.1 Summary of Simulations

We have demonstrated that we can replicate experimentally observed effects of cholesterol and 25-hydroxycholesterol

on phospholipid membranes using molecular dynamics simulations. We have run multiple simulations of

cholesterol and 25-hydroxycholesterol in phospholipid bilayers, examining 15 different membrane composi-

tions using a cumulative 21.6 microseconds of simulation time. These simulations give us dynamic atomic-

level details of membrane structure that are currently inaccessible through any experimental procedure.

However, the simulations are necessarily limited: the accuracy of the structural details is dependent on the

parameters used for the simulations, and we are limited to examining membranes over relatively small length

and time scales. We thus use simulations to calculate observables that can be compared with experimental

results in order to validate our simulations as accurate representations of the modeled system.

In agreement with previous experimental and simulation experiments, we find that phospholipid mem-

branes condense when exposed to cholesterol. The amount of condensation is concentration dependent. 30%

cholesterol causes more condensation than 18% cholesterol in POPC membranes. However, the dependence

is not linear; the marginal effect of a given amount of cholesterol is greater when added to membrane without

cholesterol than when added to a membrane already containing 18% cholesterol. These results are similar

to those obtained by Pandit et al., who found that the condensing effect of cholesterol on phospholipid

area is strongest up until approximately 20% cholesterol in POPC bilayers [101]. We also found significant

differences in cholesterol interactions with membranes of different phospholipid compositions. The most con-

densation was found in fully saturated DPPC membranes, intermediate levels in partially saturated POPC

membranes, and the least amount in unsaturated DOPC membranes. Our observation that saturated lipids
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are more condensed by cholesterol than unsaturated lipids is in agreement with experimental results [99].

We also find differences due to lipid acyl chain length, with DMPC being less susceptible to condensation

than DPPC, which we attribute to hydrophobic mismatching between the myristoyl chains of DMPC and

cholesterol [66, 111, 114]. The source of cholesterol-induced membrane condensation was examined using

solvent-accessible surface area calculations. This allows us to separate the direct increase in area due to the

added cholesterol taking up space in the membrane from the indirect decrease in area due to phospholipid

condensation. We found that per-cholesterol surface area is constant across all system compositions, with

all variation in membrane area coming from changes in phospholipid surface area.

The hydroxylation of cholesterol at the 25 position causes major changes in both its effects on mem-

branes and its conformation and interactions within membranes. Experimental studies have shown that

25-hydroxycholesterol increases the permeability of membranes to polar and charged molecules [49, 125] as

well as expanding both monolayers and bilayers laterally [36]. We have replicated the oxysterol-induced

expansion of membranes in our simulated bilayers. Like cholesterol, the effects of oxysterols are dependent

on both oxysterol concentration and membrane composition. Unlike cholesterol, oxysterol concentration ap-

pears to be proportional to bilayer expansion over the range of oxysterol concentrations examined. Insofar as

we see deviations from a linear dose response, oxysterols appear to have larger marginal effects when added

to membranes which already contain 25-hydroxycholesterol. Oxysterol effects are also highly dependent on

phospholipid structure: DMPC bilayers show the largest expansion, DPPC bilayers the least, with POPC

and DOPC bilayers intermediate. The very large expansion of DMPC bilayers by 25-HC appears to be

driven by the short myristoyl chains. The thin DMPC bilayers allow oxysterols to adopt bridging conforma-

tions, forming hydrogen bonds with phospholipids in both leaflets of the bilayer. This bridging then further

thins the bilayer, inducing membrane expansion. In thicker bilayer which prevent the formation of oxysterol

bridges, we find only small effects in saturated lipids and larger effects in partially or fully unsaturated lipids.

This is in qualitative agreement with results from 25-HC on DOPC, POPC, and DPPC monolayers [36].

However, we find that POPC is slightly more affected by 25-HC than DOPC, while the monolayer exper-

iments show the reverse. While such discrepancies can always be attributed to the limitations of classical

molecular simulation, it is also possible that monolayer experiments do not fully capture the behavior of

oxysterols in membranes. This is most obvious in the case of DMPC, where oxysterol bridges are necessarily

precluded from forming in monolayers, but is present in other systems as well due to the lack of inter-leaflet

interactions, both between oxysterols and between phospholipids.

We have been able to identify structural metrics for individual cholesterol and oxysterol molecules that

correlate with the effects of sterols on gross membrane behavior. We have quantified the orientation of sterols
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within bilayers, describing sterol orientation in terms of ring tilt and ring twist. Ring tilt defines as the angle

between the long axis of the rigid steroid ring and the normal axis to the bilayer, while ring twist defines the

rotation through the long axis of the ring, and for tilted orientations, describes how the steroid ring faces

into the bilayer. Cholesterol molecules uniformly, in all system compositions examined, orient primarily

along the normal axis, with ring tilts generally less than 30◦. Oxysterol molecules have a much more diverse

distribution of orientations, but two major peaks stand out. One is similar to that of cholesterol, with the

ring aligned along the normal axis. The other, which we call an “interfacial” orientation, is moderately tilted

with a facing such that the hydroxylated tail is pointed towards the bilayer interface. This orientation allows

burial of most of the hydrophobic steroid ring within the bilayer, while also allowing both hydroxyl groups

the ability to hydrogen bond with the phospholipid headgroups.

We have identified a strong correlation between the fraction of oxysterols in interfacial orientations and

the expansive effect of oxysterols on membrane area. This suggests that either interfacial oxysterols drive

membrane expansion or that membrane expansion favors interfacial orientations. Both of these explanations

have plausible physical mechanisms. Interfacial oxysterols could directly push phospholipids apart by com-

peting for access to the water interface. Alternatively, membrane expansion could favor interfacial oxysterols,

either by lowering the free energy of interfacial orientations through increased access to solvent or by raising

the free energy of parallel orientations through hydrophobic mismatching between bilayer and sterol. The

presence of parallel orientations for oxysterols helps explain how they increase membrane permeability. Some

of the increase in permeability is likely due merely to bilayer thinning. However, parallel oriented oxysterol

bury their 25-hydroxyl group in the center of the bilayer. We have found that these buried hydroxyl groups

interact, forming clusters of hydrogen-bonded hydroxyl groups within the normally hydrophobic bilayer.

The presence of these clusters would likely lower the energetic barrier of polar molecules passing through

the bilayer by providing potential hydrogen bonding opportunities.

Examination of mixed phospholipid/cholesterol/oxysterol simulations has provided insights into how

cholesterol and 25-HC interact within the same membrane. In particular, we found that the presence of

25-hydroxycholesterol significantly alters the behavior of cholesterol within the bilayer. In the presence of

25-HC, cholesterol moves away from the bilayer center towards the water interface, increases in solvent-

accessible surface area, and forms more hydrogen bonds with solvent molecules. We interpret these changes

in cholesterol behavior as indicative of cholesterol activation. It has been hypothesized that cholesterol exists

in membranes in both complexed and free or activated forms [71]. Activated cholesterol is more accessible

to enzymes such as ACAT and cholesterol oxidase, and thus activities of these enyzmes as well as transfer of

cholesterol from membranes to acceptors like cyclodextrin and lipoproteins are largely driven by activated
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cholesterol concentration [71].

5.2 Mechanisms of Oxysterol Signaling

The effects of oxysterols on membrane and lipid behavior may have implications for the mechanisms of

oxysterol signaling. While oxysterol activation of LXR transcription factors is mediated through oxys-

terol/LXR binding, oxysterol suppression of the SREBP pathway is not enantioselective, and thus likely

not mediated through protein interactions [36]. We believe that oxysterol/membrane interactions provide

non-enantioselective mechanisms through which oxysterols can alter cellular signaling. There are two mech-

anisms through which we propose oxysterols may signal to membrane proteins. First, oxysterols directly

alter membrane behavior, changing membrane thickness and phospholipid order. Changes in membrane

structure and behavior can in turn alter protein activity and protein sorting, as has been documented for

a number of membrane proteins [53, 74, 132]. 25-hydroxycholesterol also alters cholesterol behavior in ways

consistent with cholesterol activation. If oxysterols activate cholesterol in membranes, this would promote

the interaction of cholesterol with sterol-sensing proteins. In ER membranes, where 25-HC-producing en-

zymes are located, the activation of cholesterol through 25-HC production could increase the binding affinity

of cholesterol with sterol-sensing domain proteins like Scap and HMGCoAR, thus indirectly suppressing

SREBP activation and promoting HMGCoAR degradation. This effect would also explain why application

of large amounts of 25-HC to cells promotes trafficking of cholesterol from the plasma membrane to the

ER [71]. First incorporating into the plasma membrane, 25-HC would activate cholesterol and increase its

accessibility to trafficking enzymes responsible for moving cholesterol from the plasma membrane to the ER.

Although our simulations have been performed at relatively high concentrations of 25-HC compared to

their extremely low concentrations in cells, this does not necessarily mean that these observed effects would

not be observed in cellular systems. First, 25-hydroxycholesterol is normally produced locally by ER resident

enzymes. Although total cellular oxysterol concentration may be low, the local concentration in the vicinity

of productive ER enzymes may be significantly higher, high enough to observe the membrane changes and

cholesterol activation that we have seen in 18% oxysterol simulations. Secondly, oxysterol signalling through

cholesterol activation amplifies signals much more than signalling through protein binding. While production

of one hundred 25-HC molecules can only bind to and activate one hundred LXR proteins, if concentrated

enough to activate cholesterol in its vicinity, the same molecules may promote cholesterol binding to many

more than one hundred SSD-containing proteins.

81



5.3 Future Work

Several experimental studies have been suggested by our work. We have proposed that oxysterol-induced

expansion of DMPC bilayers is driven by oxysterols bridging the full bilayer, hydrogen bonding to phos-

pholipids in both bilayer leaflets, and directly thinning the bilayer. This suggests that expansion in DMPC

bilayers is largely dependent on the bilayer structure and that, unlike DOPC or POPC, monolayers of DMPC

would not show large amounts of expansion. We predict while DMPC monolayers will undergo low levels

of oxysterol-induced expansion similar to DPPC bilayers, while DMPC liposomes would show much larger

levels of expansion.

We have also proposed that oxysterols suppress SREBP activation by activation of cholesterol through

alteration of membrane structure, freeing cholesterol to more efficiently bind to sterol sensing domains of

proteins. This suggests multiple experiments that could be used to test this hypothesis. If oxysterol effects

are mediated by cholesterol activation, then they should be directly dependent on cholesterol concentration.

Therefore, oxysterol effects on SREBP activation should be significantly ablated in cells starved of cholesterol.

It is also possible to directly measure cholesterol activation, using accessibility to cholesterol oxidase or

cyclodextrin as a proxy. We anticipate that low concentrations of 25-HC would cause significant increases

in cholesterol transfer to cyclodextrin in both cells and model membranes. Further, we anticipate that

oxysterol-induced cholesterol activation should be identical between normal 25-HC and enantiomeric 25-HC.

We should also be able to find a correlation between the effectiveness of various side-chain oxysterols at

suppressing SREBP activation and their ability to activate cholesterol.

We are interested in the mechanisms by which oxysterols perturb membrane structure. To date, all of our

simulations have used 25-hydroxycholesterol as a representative side-chain oxysterol. However, there may

be important differences in how different side-chain oxysterols affect membranes, and there are certainly

differences between side-chain oxysterols and main ring oxysterols. In order to examine the impact of

slight changes in oxysterol structure on membrane/oxysterol interactions, examination of a wider range of

oxysterols would be useful. Two important oxysterols would be particularly interesting: 7-ketocholesterol

and 27-hydroxycholesterol. Both are enzymatically produced, as is 25-HC, so their effect on membranes

may have biological significance. Experimental studies have shown that 27-HC has expansive effects on

lipid monolayers similar to that of 25-HC, although there appear to be differences in their comparative

effects on saturated versus unsaturated lipids [36]. 7-ketocholesterol, however, has condensing effects on

lipid monolayers, similar to but smaller in magnitude than that of cholesterol [36]. Based on our simulations

with 25-HC and other groups’ simulations of 6-ketocholesterol [120], we would predict that 27-HC occupies

similar interfacial configurations to that of 25-HC, while 7-ketocholesterol would adopt an intermediate
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position with a tilted ring structure but a buried iso-octyl tail.

We have so far only examined the concentration dependence of cholesterol and 25-HC on POPC mem-

branes. Similarly, studies of 25-HC and cholesterol interactions within bilayers have only been performed

using POPC membranes. Because we have seen that the effects of cholesterol and oxysterols on membrane

behavior and structure are heavily dependent on phospholipid composition, we propose extending the anal-

ysis of mixed sterol interactions to membranes of different phospholipids. Simulations of both cholesterol

and 25-HC in DMPC, DOPC, and DPPC bilayers would allow us to better understand the mechanisms

through which 25-HC expands membrane bilayers and compare its effectiveness at activating cholesterol in

different membranes. We believe that the increased effects of 25-HC in the presence of cholesterol are due

to a disruption of cholesterol-phospholipid interactions which ablate the ability of cholesterol to condense

bilayers, resulting in an increased marginal expansion for a given concentration of 25-HC. This suggests that

bilayers in which cholesterol has stronger condensing effects should show the largest change in 25-HC-induced

expansion between oxysterol only and mixed sterol bilayers.

Experimental results using enantiomeric 25-HC have shown that oxysterol suppression of SREBP acti-

vation is not enantiospecific. This suggests that suppression is not caused by protein-oxysterol interactions

but by some non-enantiospecific mechanism. We have proposed changes in membrane structure as a poten-

tial mechanism for this signaling. However, while phospholipids do not contain as many chiral centers as

proteins, they do contain at least one – the central glycerol carbon. Because we have found that interactions

between oxysterol hydroxyl groups and the sn2 ester group are common, we would like to examine whether

there are chiral effects on oxysterol/phospholipid interactions. In order to do this, simulation of ent-25-

hydroxycholesterol in POPC membranes would be used. We predict that ent-25-HC would cause similar

expansive effects on membranes, as has been seen in monolayer experiments [36]. However, we anticipate

slight differences in hydrogen bonding between 25-HC and ent-25-HC hydroxyl groups in bilayers due to

chiral interactions with the sn2 acyl chain.
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Chapter 6

Appendix

6.1 Supporting Information, Chapter 2

6.1.1 Statistical Inefficiency

When sampling conformational states using molecular dynamics, successive system conformations will be

highly correlated with each other [33,81]. To calculate properties of the trajectory as a whole, it is necessary

to know the relaxation time after which a conformational state is independent of previous states. This allows

estimation of the number of independent states across the trajectory. In order to calculate this relaxation

time, we use a statistical inefficiency method [95].

Given a set of n sequential, evenly spaced data points:

A = {a1, a2, . . . , an} (6.1)

we break A into b blocks A1, A2, . . . , Ab of equal length nb. The block average for some property 〈A〉i for each

block Ai and the average 〈A〉 for all data points contained in the blocks are calculated. We then calculate

the block average for a given block size nb and total variance for all points contained in the blocks:

σ2
nb

=
1

b− 1

b∑
i=1

(〈A〉i − 〈A〉)2 (6.2)

σ2
n =

1
n− 1

n∑
i=1

(ai − 〈A〉)2 (6.3)
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The statistical inefficiency can then be defined as a function of nb:

s(nb) = lim
nb→∞

nbσ
2
nb

σ2
n

(6.4)

We can determine the relaxation time by plotting the statistical inefficiency versus the block size. The

relaxation time is the value of s at which a plateau is asymptotically approached for large values of the block

size nb.

6.1.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) test is used to compare continuous distributions which are functions of a

single variable, such as the distributions of surface areas for a molecule in two different molecular dynamics

simulations [107]. These distributions can be converted into cumulative distribution functions SN (x) where

SN (x) is the fraction of the total distribution that has a value less than x. These are monotonically increasing

functions which range from zero to one over the range of the data. The K-S statistic is simply the maximum

value of the absolute difference between two cumulative distribution functions:

D = max
−∞<x<∞

|SN1(x)− SN2(x)| . (6.5)

The significance statistic for this test requires calculation of the effective number of data points, Ne:

Ne =
N1N2

N1 + N2
, (6.6)

where N1 and N2 are the number of independent data points (as determined by a statistical inefficiency test)

in each distribution.

The p-value for significance is [107]:

pKS = 2
∞∑

j=1

(−1)j−1e−2j2λ2
, (6.7)

λ = D

(√
Ne + 0.12 +

0.11√
Ne

)
. (6.8)

6.1.3 Equilibration

Fig. 6.1 shows simple time series of several different membrane properties with 1ns running averages overlaid

to emphasize general trends. Simulation time from 0 to 80 ns was cut off as equilibration, and the 80 to 208
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Figure 6.1: Time series of membrane properties (dashed lines), overlaid with a 1ns running average (solid
line). The cutoff for equilibration time is shown in dashed black. (A) Total membrane volume. POPC
(cyan), POPC/cholesterol (blue), and POPC/oxysterol (red). (B) Peak-to-peak distance between leaflets of
sterol density. POPC/cholesterol (blue), POPC/oxysterol (red). (C) Mean order parameter of atom 2 in
the oleoyl tail, averaged across all POPC molecules for each frame. POPC (cyan), POPC/cholesterol (blue),
and POPC/oxysterol (red). (D) Fraction of sterol hydroxyl groups hydrogen bonded to the POPC glycerol
group. Cholesterol 3-hydroxyl (blue), oxysterol 3-hydroxyl (red), oxysterol 25-hydroxyl (pink).

ns region was used as the “production” region for all analyses in the body of the paper. Four analyses are

shown. First, membrane volume, calculated as the product of mean phosphate-to-phosphate distance with

projected membrane area. Secondly, the peak-to-peak distance between the peaks of the sterol mass density

in each bilayer leaflet. Third, the mean order parameter of the second methylene group in the oleoyl tail,

averaged across all phospholipids. Fourth, the fraction of sterol hydroxyl groups that form hydrogen bonds

to the phospholipid glycerol oxygens.

6.1.4 Membrane System Construction

High-concentration sterol/POPC structures were prepared from the converged portions of these low-concentration

simulations as follows. 7 sterol and 16 POPC molecules were extracted from the converged low-concentration
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Table 6.1: Structural properties of simulated and experimental membranes.
Bilayer Property PL PL/Cholesterol PL/25-Hydroxycholesterol

Per-PL Area (simulation) (Å2) 64.0 ± 0.8 67.1 ± 0.4 78.4 ± 0.5
(experimental) 68.3 [67], 68.5 (SOPC) [56] 73 (SOPC) [56] —

Bending Modulus (simulation) (10−20 J) 15.5 ± 1.3 16.5 ± 1.2 8.6 ± 0.6
(experimental) 8.5 [87], 15.4 [46] 34.7 [46] —

Area Compressibility (simulation) (mN m−1) 320 ± 100 1250 ± 370 870 ± 210
(experimental) 278 [87], 213 [46] 354 [46] —

Volume Compressibility (simulation) (108 N m−2) 4.8 ± 1.4 8.8 ± 2.6 5.8 ± 1.6
(experimental) — — —

simulation and arranged in a 5 × 5 array to form an oriented monolayer. This monolayer was then stacked on

an inverted copy of itself to produce a 14 sterol, 32 POPC bilayer. These very small bilayers were simulated

for 10 to 15 ns to allow them to relax. The relaxed structure was then copied 3 × 3 in the plane of the

bilayer and 16 POPC and 7 sterols removed from each monolayer of the resulting structure. This process,

illustrated in Fig. 6.2, produced final structures consisting of 256 POPC and 112 sterols, or bilayers of about

30 mole percent of sterols. These structures were solvated with 17541 (cholesterol) or 17325 (oxysterol) SPC

water molecules and 36 K+ and Cl− ions for an approximate molar concentration of 110mM KCl.

6.1.5 Radial Distribution Functions

Radial distribution calculations were performed between the C9 atom of the POPC oleoyl chains and the

C18 β-methyl atom of the sterols. Distances were calculated within the xy-plane (ignoring height differences)

between all POPC and sterol molecules in the same leaflet of the bilayer. Sterol positions were mirrored

into neighboring periodic boxes to avoid edge effects. Distances were binned into 0.01 nm bins, and radial

density was calculated by dividing the population of each bin by π∆r (2r + ∆r), the area of each circular

ring. These density functions were then normalized such that they tail off to 1 at large r. Bootstrapped

errors were calculated using 32 independent frames as described in the text. We see two immediate peaks

corresponding to tail packing around the rough (smaller r) and smooth (larger r) faces of the sterol, followed

by tailing off to bulk density at 3nm. Cholesterol shows no large bias in which face is preferred for tail

packing, while 25-hydroxycholesterol shows a slight bias towards packing around the smooth face, as well as

broader peaks indicating less strong packing.

6.1.6 Bilayer Structural Properties

Table 6.1 lists computed structural properties for our simulated systems along with available experimental

results for comparison.
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a b

c d

e f

Figure 6.2: Conformations for 7 sterols and 16 POPCs were taken from converged low-concentration sim-
ulations (a) and arranged in a 5 × 5 array to form an oriented monolayer (b). This monolayer was then
stacked on an inverted copy of itself to produce a 14 sterol, 32 POPC bilayer (c). These very small bilayers
were simulated for 10 to 15 ns to allow them to relax (d). The relaxed structure was then copied 3 × 3 in
the plane of the bilayer to produce a 126 sterol, 288 POPC bilayer (e). 16 POPC and 7 sterols were removed
from each monolayer of the resulting structure to produce final structures consisting of 256 POPC and 112
sterols (f), or bilayers of about 30 mole percent of sterols.
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Figure 6.3: 2D radial distribution functions for POPC oleoyl chain packing around cholesterol (blue) and
25-hydroxycholesterol(red) rough faces. Densities are 2-dimensional within the plane of the bilayer and
restricted to molecules within the same leaflet of the bilayer. Errors, calculated using a bootstrap sampling
method (see main text), are shown as dotted lines.

89



Table 6.2: United-atom charges used for cholesterol and 25-hydroxycholesterol in our MD simulations.
Atom Cholesterol charge 25-Hydroxycholesterol charge

Carbon 1 0.00 0.00
Carbon 2 -0.08 -0.10
Carbon 3 0.35 0.35
Carbon 4 -0.12 -0.10
Carbon 5 0.00 -0.05
Carbon 6 0.00 0.00
Carbon 7 0.00 0.00
Carbon 8 0.10 0.10
Carbon 9 -0.10 -0.10

Carbon 10 0.35 0.40
Carbon 11 0.00 0.00
Carbon 12 -0.10 -0.08
Carbon 13 0.15 0.20
Carbon 14 0.10 0.08
Carbon 15 -0.10 -0.10
Carbon 16 -0.05 0.00
Carbon 17 0.15 0.00
Carbon 18 -0.15 -0.10
Carbon 19 -0.15 -0.15
Carbon 20 0.10 0.20
Carbon 21 -0.10 -0.12
Carbon 22 -0.05 -0.13
Carbon 23 0.05 0.05
Carbon 24 -0.10 -0.10
Carbon 25 0.40 0.70
Carbon 26 -0.15 -0.15
Carbon 27 -0.15 -0.15
Oxygen 3 -0.85 -0.85

Hydrogen 3 0.50 0.50
Oxygen 25 N/A -0.80

Hydrogen 25 N/A 0.50

6.1.7 Sterol Parameters

An initial united atom structure and GROMACS topology for cholesterol modeling were taken from Höltje

et al. [50], and an additional hydroxyl group was added to both the structure and topology to produce

25-hydroxycholesterol (see figure in main text).

Atomic charges for both cholesterol and 25-hydroxycholesterol molecules were calculated using quantum

mechanical/molecular mechanical (QM/MM) methods as described in the text. These charges are shown in

Table 6.2, with atomic labels as illustrated in the main text.
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