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Abstract

Design patterns are a topic of great current interest within the object-oriented
programming community. The motivation is both economical and intellectual. On
one hand, there is a need to leverage off past experiences on new projects. On the
other hand, there is the hope of establishing a common culture and language that fos-
ters communication and growth in the software engineering field. While a community
dominated by empiricism is seeking to achieve higher levels of formality by capturing
its experiences in the form of catalogs of design patterns, another community, deeply
rooted in formal thinking, is seeking to make its mark on the every day workings of
the software engineering process. Distributed algorithms and the heuristics used by
program derivation methods represent a large repository of fundamental knowledge
that has been acquired over the years by the distributed computing community. At-
tempts to malke this body of knowledge available to the broader community have been
frustrating to say the least. The main thesis of this paper is that design patterns are a
viable mechanism by which distributed computing know-how can impact the practical
development of dependability-minded distributed applications, We contend, however,
that in order to do so one needs to view design patterns in a new perspective, more
formal and more language-independent than the view adopted by the object-oriented
programming community. The paper provides a possible characterization of the no-
tion of a distributed design pattern and discusses ways by which design patterns can
be transformed into specific applications. An airport baggage delivery system with
distributed control is used for illustration purposes.

*This paper is based upon work supported in part by Siemens AG. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views
of Siemens.
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1 Introduction

The development of distributed systems continues to present the software engineering pro-
fession with exceptional challenges. Large projects frequently fail due to misconceptions
regarding their requirements and due to the intrinsic complexity exhibited by the underly-
ing distributed architecture. Even small projects often exceed estimated costs, fail to meet
schedules, and achieve only limited levels of dependability. Dependability, defined as the
guarantee that software errors are absent, is a very difficult goal to achieve. It requires a
high degree of discipline, considerable expertise, and specialized skills. Some of the most
important work relating to software dependability involves the development of formal ver-
ification techniques, logic verifiers, and model checkers. All these approaches assume the
existence of a program and focus on ways to establish formally whether or not it possesses
certain important properties. Only relatively small programs can be analyzed in this man-
ner. Nevertheless, it is not in the least unreasonable to assume the existence of verified
components and ask the question how one might be able to offer similar guarantees for
larger systems.

‘This is essentially an engineering question. Dependability needs to be buili-in during
design and implementation, i.e., not merely checked at the end of the process. The idea is
not new. Design rules and structured forms have been promoted for their ability to simplify
verification. This very notion was central to the push for wide spread use of structured
programming and block-structured languages[5]. Program derivation technrigues have been
the result of a philosophy which contends that one can deliver programs that are correct
by construction through a process of gradual refinement. The price one must pay involves
finding the right transformation (a highly creative step) and showing that it is correctness
preserving (ideally a merely mechanical step)[8, 4]. Another strategy is to build the system
out of components and, after each step, to compute the properties of the composite from
those of the components. Process algebras follow this particular strategy(7)].

We too are interested in an engineering approach to the development of distributed
systems. Qur investigation is centered on application-specific systems of small to medium
size. The approach we explore in this paper is akin to program derivation. Several forms
of program derivation have been used successfully in both academic exercises and even in
industrial-grade systems[12]. Specification refinement[2] starts with an abstract formulation
of the desired properties of the target program, usually expressed in logic, and gradually
transforms it into an increasingly more concrete representation up to the point that writing
a correct program becomes a trivial exercise. Program refinement[l], on the other hand,
uses a simple but correct program as the starting point for a serious of transformations
that change it into another program which meets the same correctness criteria but it is
more amenable to efficient implementation. Examples of mixed specification and program
refinements can also be found in the literature[10, 11].

The novel elements of the program derivation strategy being explored in this paper are
the use of design patterns and plastic transformations. The design patterns are abstract
distributed algorithms which have been shown to be essential to solutions for important
distributed computing problems and whose correctness has long been established. Plastic
transformations are program transformations which preserve the essential features of the
starting program but add additional details meant to fill the gap between the program as is
and the requirements of the target application. Many of these transformations are borrowed
from the established program derivation literature.

The similarity to program refinement is not accidental. The goal of our work has not
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been one of contributing to the formal foundation of program derivation but more one of
technology transfer. We sought to revisit program derivation from an engineering perspec-
tive. This paper is an attempt to blend the development patterns that can be observed in
traditional engineering organizations with the intellectual tools offered by developments in
program derivation. A central element of our strategy is the selection of an initial design
pattern which represents a dependable skeleton around which we mold the application de-
tails. In contrast to traditional program refinement, the starting point is not an abstract
and correct solution to the problem but a pattern of behavior the designer expects to see
in the ultimate solution. Furthermore, the successive transformations are not focused on
replacing cne computing mechanism by another but rather on attaching additional pieces
without interfering with the essential behavior of the original program. In the long run,
we hope to define a process that leads to dependable and cost-effective distributed systems
design. Using proven {or easy-to-prove) algorithms and a highly disciplined process, we try
to leverage the strengths of the distributed computing field.

The remainder of the paper is organized as follows. Section 2 defines the concept of
design pattern for use in the distributed computing realm and contrasts our definition with
the one recognized by the object-oriented programming literature. Section 3 is concerned
with the process by which patterns are molded into applications. The approach is illustrated
on a simplified, but realistic, airport baggage delivery application in which carts carrying
bags are routed to their destinations. Section 4 discusses the background of this research
and identifies several open questions relating to the design pracess outlined earlier. Critical
among them is the ability to allow industrial designers to apply the technique with minimal
or no verification effort. Conclusions are presented in Section 5.
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2 Design Patterns

Design pattern, as a technical software engineering term, has its origins in the object-oriented
programmning literature[6, 3]. In this paper we attempt to apply the basic concept to the
realities of distributed computing. As used in the object-oriented programming context, a
design pattern (henceforth called OOP patiern) is a “description of communiceting objects
and classes that are customized to solve a general design problem in a particular context” [6].
Bach pattern is characterized by a name, the problem it solves, the solution it embodies,
and the consequences it has on the design, e.g., performance, extensibility, etc. The name
and the problem description are needed in order to facilitate the development of a catalog of
design patterns and simple communication regarding the patterns at design time. An iterator
pattern, for instance, provides a sequential access mechanism for the elements of an aggregate
object without exposing its internal structure. The solution is generally captured in an
abstract template-like form independent of any realization. Possible design consequences
(e.g., performance) are important in helping-the designer understand the trade-offs involved
in the use of the particular pattern. This basic descriptive structure can be refined by
considering a richer set of attributes (e.g., known uses, sample code, related patterns, etc.)
and by offering a taxonomy of the established design patterns (e.g., creational, structural,
and behavioral).

2.1 Issues

The theme underlying the QOP patterns work is the reusability of objects in the context
of modern object-oriented programming languages (mostly C++). Introducing the notion
of design pattern to distributed systems design (henceforth called DC patterns) is more
complicated than one might expect. The emphasis has to shift away from components to
interactions which are the most complex aspect of a distributed systermn. This suggests the
need to revisit the very concept of a design pattern. Distributed computing patterns must be
more abstract, more precise, and more language-independent than their OOP counterparts.
Specificity to distributed computing and sensitivity to the system topology are two other
key requirements.

2.1.0.1 Abstractness. Properties important in distributed computing applications are
global in nature (e.g., sum m available in account p is eventually transferred into account
¢) and the mechanisms that implement them cut across many processes and interactions.
Abstraction is the only way to control the inherent complexity of distributed systems. Ab-
stract solutions are likely to be compact, reusable, understandable and easy to analyze. A
higher level of abstraction leads to fewer details and a greater distance between a pattern
and the application code constructed from it. The result is an increased need to consider
the mechanics of transforming patterns into applications, by contrast with merely “using”
existing patterns in new applications.

2.1.0.2 Precision. The description of QOP patterns is usually informal in style and
includes no formal guarantees. In disiributed computing, dependability relies on formal
verification possible only when the description is exact. A design pattern must be operational
in nature, i.e., an abstract program, and must include guarantees derived from formatl proofs.
The proofs, however, need not be of concern to the designer making use of the pattern. The
idea is to achieve dependability by exploiting proven components.
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2.1.0.3 Language-independence. Language details do not seem to play an important
role in the design of distributed systems. While OQP patterns rely heavily on the availability
of certain specific language capabilities common among object-oriented programming lan-
guages, this should not be the case for DC patterns. This is in concert with the requirement
for a more abstract treatment of the solution.

2.1.0.4 Specificity to distribution. The underlying model of computation, however,
does affect the correctness, feasibility, and performance characteristics of the resulting sys-
tem. Shared memory, message passing, remote procedure call, synchrony, atomicity, fairness,
failure characteristics, etc., shape fundamental features of the solution space. A designer
must be able to tell from the pattern its implications for the target architecture intended
to support the desired application. The computational model is an important attribute of
a design pattern.

2.1.0.5 Sensitivity to topology. Many solutions to distributed computing problems
rely on assumptions about the connectivity among the components. Linear graphs are
important in pipeline problems, ring structures lead to specialized solutions, etc.

for k,j such that j =2,4,...,22 A1< k<2 A kmod j =0

program Sum(k, j)

declare . o

zlk, 51, 5[k, £],2[k — %, %] ¢ integer
initially

:c[k,j] =1
0 aki] = A[k] if =2 ~ L otherwise
[i ) sk~ %,%] =Ak-%] ifj=2~ L otherwise
assign _ o ' o

4 zlk, 5] = wlk, §] 4wl = &, §1 if [k, &f 4=l — £, L] £ L

en

Figure 1: A parallel summation algorithm in UNITY.

2.2 Definition

Even though we have been discussing what are some of the important attributes of a de-
sign pattern in distributed computing, we have been skirting the central question. What
is a design pattern? As in object-oriented programming, the answer is somewhat subjec-
tive. The goal of this paper ig to explore possible answers to this very question. A good
starting point is to treat a design pattern as “a verified distributed algorithm thai solves a
sufficiently general and formally stated problem frequently encountered within some broad
design context.” The algorithm, the problem specification, the assumptions regarding the
underlying computational model, and the connectivity among processes form the core of the
design pattern as it might be entered in a catalog of useful patterns. This definition rules
out software architectures, schemas, packages, and computational models. Qur perspective
is clearly biased in favor of exploiting the vast knowledge that the research community has
already acquired in this area and reflects the view that certain algorithms have been studied
extensively precisely because they are central to a very broad range of problems. Moreover,
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correctness proofs, complexity analysis, and impossibility results contribute to an increased
level of trust on the side of a practicing designer. This perspective does not rule out the
development of pattern catalogs specific to a particular application domain or even product
line. Actually, we believe that successful application of design patterns is most likely to take
place in specialized software development domains.

While every design pattern has at its core a distributed algorithm, the converse is not
true. Algorithms that solve very specific tasks are generally not good candidates for con-
sideration. Take, for instance, an algorithm that does parallel array summation (Figure 1),
expressed here using the UNITY notation.

In this algorithm, a constant array A of size 2P is summed up by a tree of processes with
the final sum being left in the array element z[27, 27] (illustrated in Figure 2). The specific

S

A

ol

1
2
.
4
5
8

]
—

Figure 2: Visualization of the summation program, where A has size 23.

use of addition and the reliance on testing for undefined values to control the ordering of
operations argue against considering this algorithm as a candidate design pattern. At the
same time, tree based processing is general and widely used. This suggests that we may
want to consider this program as an instantiation of a more general design pattern such as
the one captured by the program shown in Figure 3, where the tree structure is preserved
but each process computes its own specific function. The final result is the fixpoint of the
process community. The proof that the fixpoint is reached relies on the fact that, once the
arguments of the function Fj ; become stable, the value in z[k, ] eventually becomes stable
as well.

As already indicated, a full description of the pattern is much more involved and a catalog
of such patterns is akin to a textbook on distributed algorithms. Actually, many classical
distributed algorithms such as leader election, consensus, reliable broadcast, snapshots, ete.
are immediate candidates for inclusion in a catalog of general purpose design patterns.
It should be noted, however, that a design pattern perspective changes both the manner
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for k,j such that j =2,4,..., 22 A1<k<2? Akmodj=0

program S(k, j)

declare )

wlk, 31, 2{k, $1, z(k — g—, %] : same-type-as-A
initially

ok, ] =AK] ifj=2
il a:[k---%,%] =A[k—%] ifj=2
assign . o

E["‘7!-7.] = Fk.j (Z[k’ %],.’B[k - '?2'$ ';'])
end

Figure 3: An abstract program that is a suitable design pattern candidate.

in which algorithms are formulated and the way they are documented. The focus is no
longer on presenting and analyzing the solution to a specific problem but on structuring
the algorithm and its properties for reusability. We experienced this first hand recently
as part of an investigation into the application of established distributed . algorithms to
problems in mobile computing[9]. Our ostensible goal was to show how algorithms designed
to compute distributed global snapshots provide reasonable solutions for the problem of
delivering messages among mobile nodes; we also showed that the results are immediately
applicable to the related problems of route discovery and maintenance among mobile agents
both in the presence of mobile support stations and in ad-ho¢ networks. A by product of
this study was an abstract description of a class of snapshots algorithms that can be easily
transformed into any one of the variants published in the literature. Exercises of this kind
will help us develop a better understanding of how to extract and formalize design patterns.

[ T ]

[FH ]
[ =]
[P ]

Figure 4: Processors form a grid; dormant processors are shown in a lighter color.

More research is needed to establish standards for the development and documentation
of distributed computing design patterns, a process fairly well understood when it comes to
OOP patterns. Carrying out this task for many general purpose algorithms may entail an
effort comparable to that of developing a dictionary or cataloging the plants growing in the
rain forests. A more manageable task, however, might be to build such catalogs for specific
application domains such as transportation systems, embedded controllers, power control,
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etc. The desirability of such an undertaking is reinforced by the frequently made observation
that many systems being developed by the same organization are simply variants of older
ones. We believe that the task is both manageable and profitable.

2.3 An illustration

Assuming the availability of a catalog of design patterns, the key issues we must consider
next are: how to select the right pattern for the task at hand, how to transform the pattern
into an application, and how to handle the situation when multiple patterns are needed to
construct the application. These are important research questions for which we have only
partial answers at this time. They are discussed and illustrated in the next section. We
provide here a brief preview by way of a simpler illustration.

Let us consider a rectangular grid of processors, some of which may be active while
others may be dormant, and let’s assume that at the start of the computation one needs to
take a count of the number of active processors (Figure 4). The traditional way of attacking
such a problem is to devise an algorithm from scratch and to code it. When working with
patterns the starting point is the catalog. We are locking for a pattern useful in computing
a function over a set of values distributed across some graph structure which in our problem
appears to take the form of a sparse rectangular grid. Our search might be rewarded by
finding an entry that might look as follows:

Problem Assign to each node of a binary tree a value that depends only upon itself and
its descendents.
Algorithm
program Btree(k)
assign
z(k] :=  Fp{(z[RightChild{k)], z[LeftChild(k)]) if —Leaf(k)
~  F.0 if Leaf{k}
end
Specification
3 = () if Leaf(k)
let F(k) = { Fu(z[RightChild (%)}, {LeftChild(k)]) otherwise
true — zk] = F{k)
stable z[k] = F(k}
Complexity O(log(n)) time and O(n) communications,
where n is the number of nodes in the tree.
Communication Shared variables.
Topology Complete binary tree.

Table 1: A binary tree design pattern.

Even though our problem involves a sparse grid, we could build a binary spanning tree
(Figure 5), let the leaf nodes compute the constant one and for the non-leaf nodes instantiate
Fy, such that Fi(a,b) = e+ b+ 1. Having made these observations, the next step is to start
modifying the algorithm above until it fits the problem at hand. Along the way we will need
to consider variable renaming, the data exchange protocol among the processors, the fact
that we do not actually have a complete binary tree, and the possibility of using another
pattern to construct the spanning tree in the first place. The simple one-line solution above
will grow into a much larger program. The key is to make sure that its defining properties
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are preserved at every step. In the next section we examine this process in a more realistic
setting.

[ ]
[ ] f L]
L] T L]

Figure 5: A spanning tree embedding designed to facilitate the use of the tree processing
design pattern; the root node is shaded.
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3 Sample design process

This section presents a design methodology that relies on the gradual refinement of preex-
isting design patterns. The approach is illustrated on an application involving automated
baggage delivery in an airport setting. The type of design solution being sought out is
highly distributed. Each system component is expected to be "smart” and amenable to use
in many system configurations without redesign. The design methodology is presented in-
formally in a manner that mimics the way a designer might apply it in an industrial setting.
The presentation is divided into three parts: an overview of the application domain, an
analysis of the target application leading to the identification of one or more useful design
patterns, and the actual derivation of the application code from the initial design patterns.

3.1 Application Overview

A baggage cart system is made up of carts, tracks, and stations. Each cart has an electric
mofor which can be energized by the underlying track and a platform which carries a single
bag. Information about each bag, e.g., destination and identification, appears on a bar-
coded label placed on the bag at the time it is loaded. Stations are places where baggage
is removed from and placed into baggage carts. For the sake of brevity, we will ignore the
mechanics of loading and unloading and focus strictly on the control of the cart movement.
Consequently, there is no need to differentiate among tracks that are between stations and
those that are located directly at a station. All tracks are unidirectional. Some of the
tracks are straight pieces while others represent merge or switch pieces. We generalize these
configurations and treat each track as consisting of three parts: an n-way join, a straight
piece, and an m-way switch, in order. The controls associated with each ”smart” track can
set the switch position and can energize the track thus allowing a cart to move forward.
Entry and exit sensors are used to determine the presence of carts on individual tracks but
the join and switch pieces extend outside the two sensors, i.e., a departure signal is not a
guarantee that the cart actually left the track. Only one cart is allowed to be present at a
time on any given track. An optional scanner is used to read the baggage label in order to
assess its destination. We use track identifiers for bag destinations. An abstract illustration
of a cart on & track is shown in Figure 6.

incom ing track cart cutgoing track
select sw itch select sw itch

|| |
baggage entry pow er exit
destination sensor actuator Senser
scanner plate plate

Figure 6: Abstract view of a baggage cart system.

The precise layout of the track is unknown but we assume that every track is reachable
from any other track. The number of carts is assumed to be much smaller than the number of
tracks in the layout. Our design goal is to build a dependable control system that guarantees
that each piece of baggage gets to its destination safely. This requirement translates into
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ensuring that all carts make progress toward their respective destinations, avoiding track
collisions and maintaining accurate information about the identity of the bags in transit.

3.2 Problem Analysis

In this section we concentrate on identifying the design patterns that will form the starting
point for the design process. We begin by considering the key formal properties the system
must satisfy. Next we outline a general design solution for the system as a whole. It is this
solution that provides the insights into which patterns are most appropriate for the job. The
heuristics are reminiscent of object-oriented design methods in which tentative sclutions are
first developed in order to identify candidate objects and later redefined once the objects
are specified formally.

3.2.1 System properties

Even though this presentation is informal, some of the terminology we will employ to describe
it is technical and belongs to the program verification vocabulary. For instance, system
properties are divided into safety and progress conditions. The only progress property of
interest to us is the requirement that each bag eventually reaches its destination. Safety
properties dealing with the cars focus on their movement, e.g., carts cannot share the same
track, can only move forward, must follow the track layout, must obey switch positions,
cannot move without power, etc. Safety properties regarding the bags ensure that a bag
remains on its cart until the destination is reached and that it does not change its destination
along the way. A more precise and formal specification of the problem can be developed
but it is not really needed in this section.

3.2.2 Solution outline

We plan to structure the system in accordance with the topology of the layouf. Each
track will have its own controller which will be able to communicate with the controllers
associated with each of the adjoining tracks. The advantage of such an approach is that new
systems can be put together out of smart components without redesign. This kind of highly
distributed solution is likely to become important in applications that involve large sets of
possible configurations. Once designed and verified, application engineers should be able
to put together new systems by following a simple set of prescribed assembly rules which
guarantee system correctness by construction.

The typical behavior of a track controller can be described by considering what happens
when a single cart moves over the track. The controller receives a reservation request from
one of its neighbors. The track is reserved and energized and the request is acknowledged if
the controller has not made any other commitments. Once the cart arrives and its presence
is detected by the entry sensor, the controller must inform the origin of the cart and must
attempt to reserve the next section of track. If the reservation is acknowledged before the
cart is ready to leave, the cart is allowed to depart and an acknowledgment is expected when
the cart enters the next track. Otherwise, the power is temporarily cut off waiting for the
next track to become available.

The selection of an outgoing track and the corresponding switch position is determined by
the bag destination. This may be supplied by the controller making the reservation request
or may be read by the scanner just prior to the arrival on the track. Since scanners are
optional, controllers do not rely on them to detect cart arrival. Also, for a track involved
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in loading and unloading we assume that these actions take place before the scanner is
encountered. This way we ensure that the destination is current. Whenever a destination
is read, the entire path from the current track to the destination is recomputed. This is
accomplished dynamically through a forward search. The shortest path is saved and passed
along with the cart to the next controller.

nl} cut[1l]

incom ing track cart outgoing track
select sw ikch select sw itch

ml2} outf2]
SN -
baggage exit
destination SENnsor
scanmer out[3}

Figure 7: The baggage cart system components with controller and ports.

Our tentative design sketch relies on the notion that polling sensors is orders of magnitude
faster than the movement of carts. As a result, we make the following operational assumption
about the sensors. Once activated, the sensor stays in the set position until the system
resets it and the cart does not move any meaningful distance in the interim. In essence,
this assumption captures certain real-time behavioral aspects of the system without the
complexity of actually having to model time itself.

3.2.3 Search for patterns

Without having made much of an investment in the system design, certain features of a
possible design solution are emerging already. First, tracks are being used as resources and
allocated to carts. In our solution, only two tracks are allocated at a time — it is conceivable
that other designs might allocate the entire path before the cart proceeds. A number
of patterns deal with resource allocation. Dining and drinking philosophers are two that
might come to mind immediately. It is important to notice, however, that the allocations
shift along the graph following its connectivity in a manner that resembles a token passing
pattern. It is this latter option that we will focus our attention on. Second, the path followed
by a cart is computed dynamically. The rational behind the approach has to do with the
added flexibility of being able to modify the track layout dynamically without changing the
control logic. Path discovery involves search and the immediate choices are depth-first and
breadth-first. The design, however, suggests the notion of a parallel search in which the
first response is selected for immediate use and the rest are discarded. This becomes our
second pattern. Assuming that we do have access to a catalog of design patterns (or a boak
on distributed algorithms for the time being) we will try to use available code samples as
the starting point for the application development. Because pattern composition is an issue
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we have not addressed yet, we will follow a conservative strategy in which we develop one
pattern first and later bring the other into the picture. The token passing pattern will be
considered first.

3.3 Solution Development

Throughout this paper we will be using the UNITY programming notation to describe the
evolving design. Programs consist of sets of conditional multiple-assignment statements
(see the assign section). Statement selection satisfies a weak fairness constraint. Each
statement, once selected, executes atomically. All program variables are declared using a
Pascal-like notation (see the declare section). Macro-like definitions for expressions over the
program variables appear in the always section while constraints over the set of initial values
are defined in the initially section. In order to facilitate modularity and conciseness, we
take some liberties with the basic UNITY notation. A separate variable declaration section
has been added for those variables which are shared with other programs. We associate a
separate program with each smart component of the system and allow them to communicate
via shared variables-in UNITY, by convention, variables having the same name are shared
among all the programs. It is more convenient for us to assume that all the variables are
local unless declared as shared. Additional notation is provided to define explicitly which
variables are the same in distinct programs, i.e., even the names of the shared variables are
treated as local. Finally, we introduce a define section that provides for arbitrary macro
definitions. The notation will become clear as we introduce the first version of the token
passing design pattern below.

3.3.1 Token passing

Token passing algorithms have been used in a number of settings and for various purposes
including fair access to communication buses. The version we use in this section is highly
stylized and very easy to understand. This is precisely the kind of expectations we have from
a collection of ready-to-use design patterns. This enhances the designer’s level of confidence
and reduces the chance of introducing errors during the design process.
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3.3.1.1 Token passing on a ring. In our target design, each track has associated with
it a smart controller. We assume that each controller runs one or more programs. For
starters, we place a piece of the token passing protocol on each controller @. The UNITY
code for the program appears in Figure 8. The variables in and ouf represent the input and
output communication channels, respectively, while the variable foken encodes the holding
of the token. We assume that initially there are no tokens in transit, i.e., in and out hold
undefined values. Some of the programs are initialized as holding a token as defined by the
function Tokenfnit. The only assumption we make here is that the number of programs
which hold a token initially is much smaller than the total number of components. The ring
structure is made evident in the way the output channel of one program is matched with
the input channel of the next-the CONNECTIVITY specification defines the ties among
programs in a system. The definition of the function nezt ensures that the configuration is
a ring, a situation that will have to be rectified later on in the design.

We assume that the pattern allows for multiple tokens because such a generalization
does not increase the complexity of the program or the difficulty of the proof. The proof
itself is not difficult and could be readily communicated even to practitioners not initiated
in formal verification. One subtle point is the fact that the proof requires auxiliary variables
to distinguish among tokens when verifying properties such as ”each token eventually passes
through each processor.”

ALGORITHM
program TokenPass0(c}
share
in,out : boolean
declare
token : boolean
initially

in,out = false,false
[I  token = TokenInit(ca}

assign
token,in := in,false if ~(tokenvout) A in
[  tokenm,out := false,token if token
end
CONNECTIVITY

TokenPass0{a).out = TokenPassO(next(a}).in, where next™(a} = o

Figure 8; Generic token passing design pattern.

December 19, 1996



Building Distributed Applications with Design Patterns 15

3.3.1.2 Tokens with identifiers. Because the token is being used as a place holder for
a cart, it makes sense to associate with each token an identifier that relates directly to the
cart. Unfortunately, in our design sketch there is no unique identifier for carts, only for the
bags they carry-we assume that the cart always carries a bag or pretends to do so by having
a bar-coded label painted on its platform. Therefore, the token must acquire the label of
the associated bag. Since all bags have distinct labels, the token identities will change over
time but no two tokens will have the same identifier. This latter property will allow us,
in most cases, to avoid the introduction of auxiliary variables that keep track of the token
identity.

In all other respects the proof is not affected by this first refinement. The code changes
are also minor. We generalize the type of the token away from a boolean. As can be seen
in Figure 9, there is no explicit mention of a token identity. The token type becomes foken-
type. The identity of the token can be obtained by employing a function id.t which returns
the identifier for token ¢. A property stating that each token identifier is unique within
this system is added to the list of proof obligations. It affects mostly the definition of the
initialization function TokenInit.

program TokenPassl{a)

share
in,out : token-type
declare
token : token-type
always
IsToken = (tokenz#L1) [} Isln = (in¥L) [] IsOut = {out#L)
initially
inout = 1,1
[ token = TokenInit{c)
assign
token,in == in, L if ~(IsTokenvIsOQut} A Isln

[ tokemout := Ltoken if IsToken
end

Figure 9: Token passing with token identity.
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3.3.1.3 Tokens with a destination. In continuing to bring tokens closer to carts, one
important attribute of the cart is that it has a particular destination station. Once reached,
this destination is reassigned. Since we have a generic type for tokens now, adding this to
the token itself is trivial. However, the statements of the system need a slight rewrite now,
in order to compute the new destinations once the original destination has been completed.
This refinement is depicted in Figure 10.

The program utilizes a function NewDest, to create a new destination for a token when
needed. This is turn is used by NewToken which forms a new token if one is needed. It
otherwise returns the original token back.

We have found the use of such functions to be very helpful in maintaining the clarity
of the refined program. A more direct approach would be to add a new statement to the
program which checked when the token had entered its destination, and at that point assign
a new destination. In this case, and perhaps in others, it is clearer to abstract the notion
of constructing a new token when it is being sent to the neighboring process, and let the
constructor handle the different situations that may arise.

program TokenPass2(o)
share
in,out : token-type
declare
token : token-type
always

IsToken = (token#.L) [] Isln = (in#L1) [] IsOut = {outztLl)
[ NewToken{k)
= k[dest/NewDest{e,k)} if dest.k=a
~ k otherwise

initially

injout = 1,1
[[ token = TokenInit{c)
assign

token,in := in, if ~{IsTokenvIsOut) A IsIn
[ token,out := .L,NewToken{token)

if IsToken
end

Figure 10: Token passing with token destination.
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3.3.1.4 Token passing on a graph. The alterations to the token passing algorithm
have thus far been small and simple. This is intentional, as it simplifies the proof obligations.
However, the baggage cart system has a graph topology, while the token passing algorithm
has thus far remained on a ring. Here, we extend the control process of the token passing
algorithm to handle multiple inputs and outputs. The key is to note that the changes do
nat alter the fundamental safety properties, such as permitting at most one token to enter,
nor the fundamental progress properties, that a waiting token will eventually be admitted
and a token will eventually be released to the next control process. The program in Figure
11 takes on a decidedly different look from the previous programs. The in and out variables
have now become arrays. The function LineQOut determines which index into the out to
send the token onto given the current destination. Lineln is used to fairly receive tokens
waiting to be accepted. To accomplish this, Lineln has side effects—every time it is invoked
the value of s is incremented by one modulo n.

The intuition behind this refinement has to do with the fact that, despite the graph
structure, the path followed by the token to its destination is still a linear one. The proof
of the token eventually reaching the destination remains unchanged in its essential features.
The same decreasing metric, distance to destination, can be used to show progress.

program TokenPass3(a)

share
in[0..n-1],0ut[0..m-1] : token-type
declare
s : integer
token : token-type
define
in=in[Lineln(s)} [] out=out{LineOut({dest. NewToken(token))]
always

[ NewToken(k)
= k[dest/NewDest(a,k)] if dest.k=a
~ k otherwise
initially
{fi:0<i<nuinfij=L)||(li:0<F<m:outff]=1)
[ token = TokenInit{a}
assign
in,token := L,in
if token=1 A (V¥ t : outft]=L1}
}  out,token := NewToken(token), L
if tokenz L
end

Figure 11: Token passing algorithm with multiple input and output channels.
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3.3.1.5 Token passing with token path. Up to this point LineOut assumed that
some fixed path existed for every destination and used the latter to select the proper output
line. This increases the storage requirements for the system and undermines flexibility, e.g.,
the ability to reconfigure the track layout without making changes to each smart device
involved in the system configuration. For these reasons, we extend the token definition
to include a precomputed path. It is the function NewPath which is responsible for this
computation while LineQut is subjected only to minor modifications. Once computed, the
path is required to remain fixed until the token reaches the final destination, which is the
last identifier in the path. The computation of the new path will be the tie point between
the two patterns that we employ in this design.

prpgram TokenPassd(a)
share
in[0..n-1],0ut[0..m-1} : token-type
declare
s : integer
token : token-type
define
in=in[Lineln{s)} [] cut=out[LineOut(path.NewToken{token)}]
always
1 NewToken(k)
= k[path/NewPath(NewDest(o,k))] if dest.k=c
~ k otherwise
initially
{li:0<i<nainfl =L} {l7:0<7<mout]f]j=1)
[] token = TokenInit{c)
assign
in,token := L,in
if token=_1 A {¥ { :: out[t]=1)
[ outtoken := NewToken{token),.L
if tokenst 1
end

Figure 12: Token passing algorithm with a token path.
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3.3.1.6 Token passing with explicit modes. It is the state of the controller that
will determine ultimately the behavior of the carts. In this refinement we take a first step
towards shifting the view away from the token perspective imposed by the design pattern and
towards the control states one expects from the application. The changes do not affect the
correctness of the program. The values assumed by the variable mode are simply a reflection
of the current state of the program. The presence of mode in the assignment conditions is
redundant for now but in later refinements we plan to replace predicates involving token
by predicates involving mode. The three values assumed by mode are: idle which indicates
that no token is present; busy which captures the fact that the token is present; and leaving
which addresses the situation in which the token has been passed on but it may not have
arrived to its destination.

program TokenPassb(a)
share
in{0..n-1},0ut[0..m-1] : token-type
declare
5 : integer
token : token-type
mode : (idle,busy,leaving)
define
in=infLineln(s)] | out=out[LineOut({path.NewToken(token))]
always
| NewToken(k)
= k[path/NewPath{NewDest{a,k))] if dest.k=c
~ k otherwise
initially
{(li:0€i<muinfi]l = LYY {f: 0<F<m: outfj]= L}
[ token = TokenInit{c)
[ mode = busy if tokens®t
~ idle otherwise
assign
in,token,mode := L,in,busy
if token=1 A {V t :: outft]=1) A mode=idle
[ out,token,mode ;= NewToken(token),.L,leaving
if token# L A mode=busy
I mode := idie
if (¥t :: out[t]=L} A mode=leaving
end

Figure 13: Token passing algorithm with modes.
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3.3.1.7 Token passing with expanded modes. There are fundamental differences
between the way carts and tokens can be controlled. A token arriving on an input can be
delayed until the controller is ready to pick it up. An arriving cart cannot be allowed to
enter a track that is not empty. Advance knowledge is needed to determine the fact that the
track will be ready to receive the cart. Some sort of advanced reservation is needed. Adding
a reservation mechanism involves receiving a reservation request and acknowledging it only
when the track becomes available. This adds an intermediary state between idle and busy,
we call it reserved. Next, once the cart, represented by a token, arrives it becomes necessary
to send the reservation request and to wait for the acknowledgment—the state reserving is
added. Finally, we need to distinguish between the case when the token is ready to depart
but needs to wait for the reservation acknowledgment—the new state waiting. The revised
program below captures these changes.

program TokenPass6(c)
share
in[0..n-1],0ut[0..m-1] : token-type
declare
5 : integer
token : token-type
mode : (idle,reserved busy,reserving, waiting,leaving)
define
in=in[Lineln(s)} [} out=out[LineOut(path.NewToken{token}}]
always
NewToken(k)
= k([path/NewPath(NewDest(a,k)}] if dest.k=c
~ k otherwise
initialiy
(liz0<i<meinfil=L) [ {lf:0<5<m:outf]=L)
I token = TokenInit{a)
]  mode = busy if tokenz#L
~ idle otherwise
assign
in,mode := L reserved
if in=reserve A mode=idle
in,token,mode := L in busy
if in# L A mode=reserved
out,mode := reserve,reserving
if mode=busy
mode := waiting
if out¥ 1l A mode=reserving
out,token,mode := NewToken(token), L leaving
if out=1 A (mode=reserving V mode=waiting)
mode = idle
if (V t :: outft]=.L) A mode=leaving

s R vun S s B s S s

end

Figure 14: Token passing algorithm with expanded modes.
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3.3.1.8 Token passing with power actuator. Thus far, we ignored the manner in
which the controller interacts with a baggage cart. The algorithm is still concerned only
with the movement of tokens. Intuitively, a cart would simply follow a token around on the
track, and since we can demonstrate that safe passage for tokens is provided by the system,
the safe passage of carts would be assured. In reality, a cart moves about the tracks only
as long as power is supplied to it. The controller of a cart would need to stop a cart if
it attempts to leave the track before the confroller has knowledge that it is safe to do so.
The only state that relates to this situation is waiting. We need to make sure that the cart
cannot advance while the controller is in this state. To capture the interaction between the
controller and the energizing of the track we add a variable power which denotes the actuator
for the power relay. The modified program makes sure that the power is turned off whenever
the controller is waiting for a reply to a reservation request. A further optimization could
be made by observing the fact that in the idle state there is no need for power—we choose
not to make this change.

program TekenPassT{a)
share
in[0..n-1],0ut[0..m-1] : token-type
power : boolean
declare
s : integer
token : token-type
mode : (idle,reserved,busy,reserving,waiting,leaving)
define
in=in[Lineln(s}] [] out=out[LineQut{path.NewToken(token))]
always
NewToken(k)
= k[path/NewPath(NewDest{a k))] if dest.k==c
~ k otherwise
initially
(li:0<i<n il =L) | (I5: 0S5 <m: outli] = L)
| token = TokenInit(c)
[ mode = busy if token#L
~ idle otherwise
] power = true
assign
in,mode := 1 reserved
if in=reserve A mode=idle
in,token,mode := 1 in,busy
if ing2 L A mode=reserved
out,mode := reserve,reserving
if mode=busy
power,mode := false,waiting
if out# L A mode=reserving
out,token,mode := NewToken(token), L leaving
if out=_1 A mode=reserving
out,token,power,mode := NewToken(token), L, true leaving
if out=_1 A mode=waiting
mode = idle
if {¥ t = out{t]=.L) A mode=leaving

s B st S s B o S as S s |

end

Figure 15: Power actuator control.
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3.3.1.9 Token passing with sensor detection. Factoring in the use of sensors and
their interactions with the control system is complicated by the absence of the notion of
time in the model and by the difficuliies related to formal modeling of the environmental
behavior. One can defeat the control system, for instance, by lifting carts off the tracks and
by placing them in random positions on other tracks. One can also run the control system
at such low clock rates that the information received from sensors is always out of date. We
assume that none of these are happening and formalize this fact in terms of two behavioral
assumptions. First, we assume that a cart does not move away from a sensor before the
system resets it, i.e., the software execution speed is orders of magnitude faster than the cart
movement speed. Second, we assume that sensors turn on in a manner that is consistent to
normal cart movement, e.g., the entry sensor is activated before the exit sensor.

In this last refinement we add two sensors, entry and exit. They communicate the cart’s
arrival onto the track and its imminent departure for the next track. Once tested, the
sensor in question is reset. Upon arrival of the cart, the token waiting already on the input
is accepted. Once the cart is ready to depart, the token is put on the output, unless a
confirmation for the reservation request is still pending. In this latter case, the power is
turned off. A cursory look at the resulting program may suggest also the possibility that
the exit sensor is triggered while the controller is still in the busy state. If this happens,
the sensor is not reset unless the state changes to reserving and the cart does not move
away for the sensor before this happens. This is simply a reflection of the fact that the
cart movement allows sufficient time to send the reservation request out before traveling the
entire length of a track.

This completes our derivation of the system except for the manner in which the cart
path is selected whenever a change of destination takes place. This is the subject of the
next section.
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program TokenPass8(a)

end

share
inf{0..n-1],0ut[0..m-1] : token-type
power : boolean
entry,exit : boolean
declare
s : integer
token : token-type
mode : {idle,reserved busy,reserving,waiting,leaving)
define
in=in[Lineln(s)] [] out=out{LineOut({path.NewToken(token))}
always
NewToken(k)
== kipath/NewPath(NewDest(a,k))] if dest.k=c
~ k otherwise
initially
(li:o<i<neinff] =L} {7 0<j<m:outfjj= 1)
[ token = TokenInit(a)
[ mode = busy if token#1t
~ idle otherwise
[ power = true
[ entryexit = false,false
assign
— accept reservation and send confirmation
in,mode ;= L, reserved
if in=reserve A mode=idle
— accept foken upon cort arrival
[ in,token,entry,mode := L,in,false,busy
if in# L A entry A mode=reserved
—~ make reservation request
] out,mode := reserve,reserving
if mode=busy
- cutl power off to deparfing cart while waiting for confirmation
1} power,exit,mode := false,false,waiting
if out#L A exit A mode=reserving
« allow cart to move on to the next track
[I out,token,exit,mode := NewToken(token), L false,leaving
if out=1 A exit A mode=reserving
~ restore power upon recetving confirmation
[[  out,token,power,mode := NewToken(token),.L,true,leaving
if out=1 A mode=waiting
- acecept acknowledgment of the cart’s arrival on the nest track
[ mode:=idle
if {V t 1 out[t]=1} A mode=leaving

Figure 16: Program with cart detection sensors.
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3.3.2 Search

We turn now to the question of how to implement the dynamic selection of the cart path
encapsulated in the function NewPath. We remind the reader that upon receiving a new bag,
a scanner reads its destination. This, in turn, results in a search for a path to be followed
by the cart. By selecting the path dynamically we allow the configuration to change by
adding new sections of track as needed. The removal or closing of tracks is handled in an
indirect manner. Because the closing of a track requires the recomputation of the path,
we simply need to force this recomputation by turning on some scanner in a section of
track that is reached before entering the closed track and by turning off access to the closed
traclk. However, we need to make sure that no carts are on the way along the path between
the scanner and the closed track at the time—we do not actually carry out the example to
this level of detail in this paper. An unpleasant consequence of adding the track removal
mechanics is the fact that the progress proof for reaching the destination breaks. The well-
founded metric used to show that the distance to the destination decreases may be increased
by the track closing. If we do have an upper bound on the number of closings that a cart
may encounter, a new metric can be devised with minimal changes to the proof-a pair of
integers where the first one decreases with each encountered closing and the second one is
the current distance to the destination.

We assume the existence of one search module per track. Each search module communi-
cates with the corresponding controller to receive a destination used to seed the search and
with the search modules on the neighboring tracks. All communications are bi-directional.
Many searches can be carried out simultaneously but, due to the fact that they are treated
as independent activities, we need to concern ourselves only with a single search. The design
pattern that forms the basis for this part of the derivation is a parallel search pattern on a
tree structure. The presentation follows the same style we employed in the previous section
but, for the sake of brevity, occasionally we combine several steps into one.
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3.3.2.1 Parallel search on a tree. The starting point for the derivation is a search
design pattern shown in Figure 17. The pattern we use here was actually derived from a
simpler broadcast and ackrowledgment design pattern but we omit that part of the deriva-
tion since it is reasonable to expect the availability of search patterns in a pattern catalog.
In the search pattern, the network configuration is assumed to be a tree, The request comes
in the form of a node name to the root node and propagates from the root towards the
leaves until either the node in question is reached or a leaf is encountered, i.e., the node has
not been found along that path. An ACK or a NACK is returned to the parent in the tree.
Each parent in the tree combines the answers received from the children and passes a reply
up the tree. When the root receives replies from all its children, it sends a clear request
down the tree. The request propagates in the same manner with a final acknowledgment
arriving at the root.

The root of the tree represents the search module associated with a track that has a
working scanner. When the destination is read, it is placed on the input to the search
module. The leaf nodes represent tracks where the search can stop. They could be defined
statically, but here again we prefer a dynamic solution. The derivation process will seek
to eventually define automatically which nodes should be treated as leaves. At this point,
however, the design pattern assumes that the tree is given.

The mechanics of the message propagation is accomplished in the following manner.
Each module has one back channel b and possibly several forward channels ffi/ These are
the local names used inside a search module and each back channel for one module is the
forward channel of a preceding module. Each channel is bi-directional and consists of a
one-place message buffer that can be written only by the sender and read by the receiver.
A request is placed by the parent in in.b. The child passes on the request on its forward
channels by copying it in out.ffif. The replies fill the buffers in the opposite direction. The
clear message is represented by the removal of requests in the forward direction while the
acknowledgment of the clear is captured by the removal of the replies in the backward
direction. There is one exception to this. The root node does not clear the original request.
The reason for this is that, at this point, there is no connection between this program and
the track controller.
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ALGORITHM

program Searchl (e}
share
f{1..n],b : message-channel
always
{|li :: done(s) = {in.f[2zL1))
{lli u elear(r) = (in.flij=1))
{fit = found(?) = {in.f[{}={ACK))}
DONE = (¥i :: done{s))
FOUND = (3i = found(i))
ARRIVED = (in.b#£ L A dest.in.b=a)
FORWARD = (in.b# 1l A dest.in.b#ea)
RETURN = ((DONE v ARRIVED) A in.b#L A out.b=L)
RETURNED = (DONE A out.b# 1 A (inb=L V {¥y = =&(y,a)))}
CLEARED = (Vi :: clear(i)) Ain.b=L
receipt
= {ACK) if FOUND v ARRIVED
~ (NACK) otherwise
[ {lik: k a message :: new.k = k)
initially
{||Z =2 inf[e}out.fd] = L, L)
|| in.byout.b
= 1,1 if {(Iy = &y, a))
~ Destination{a}, Lotherwise

assign
(jli : FORWARD A (vj :: out.f[j]=L1) : out.f[f] := new.in.b }
out.b = receipt if RETURN
] (lf : RETURNED :: out.fff:=1}
J outb:=.1if CLEARED
end

CONNECTIVITY
wle,) = (3i: Searchl(a).f[¢] = Searchl{/3).b)
&l B) = (Yy:ivFou-w(r,p))

Figure 17: Parallel search pattern.
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3.3.2.2 Parallel tree search with distance computation.

In this refinement, the

message carries a distance field which is updated along the way towards the destination. (See
Figure 18.) An infinite value is used to indicate that the search failed along the particular
branch. The only modifications to the program involve the representation of messages
which results in the redefinition of ACK, NACK, and the action of the function new, which
generates the successful reply or the next message to be sent along the forward direction.

In both cases it adjusts the distance accordingly.

ALGORITHM

program Search2(a)

share

f{1..n],b : message-channel

always
{||£ =z done(s) = (in.gfz}#L))
{J|Z :: clear{z) = (in.flz]=1))
(] iz found(i) = (done(s} A dist.in.f[i]s2c0))
DONE = (Vi :: done(i)}
FOUND = (31 :: found(i)}
ARRIVED = {in.b#.L A dest.in.b=c)
FORWARD = (in.b#.L A dest.in.b#a)

CLEARED = {Vi :: clear(i)} A in.b=1
receipt
= new.in.b if ARRIVED

e e T e s e s s e P e

~ in.bidist/{min< = dist.in.f[Z]})] if FOUND

~ in.bidist/co] otherwise

0 (% : & a message :: new.k = k[dist/{dist+1)])

initially
{|I¢ == in.f[thout.f[3] = £, L}
[ in.bout.b
= L, Lif {3y wly,a))
~ (Destination(c),0),1L otherwise
assign

(|l# : FORWARD A (Vj :: out.f[j]=L1) :: outd{i] := new.inb }

[} out.b := receipt if RETURN
[ (li: RETURNED :: out.ffi:=1 )
] outb:= Lif CLEARED

end

CONNECTIVITY

RETURN = ((DONE v ARRIVED) A in.b#L A out.b=1)
RETURNED = (DONE A out.b#1 A (inb=L1 v {¥y = -x(y,a))))

#la,f) = {Hi: Search2({a)f[f] = Search2{3).b)
(e, By = {(Yrv:ivy#au-s(y,0)

Figure 18: Distance computation during search.
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3.3.2.3 Parallel tree search for a path. The program developed so far does not
provide the path itself. In this next refinement, the search messages are augmented with
information about which nodes were visited along the way. When the destination is found,
this information is returned in the form of a path to the destination. It is convenient for us
to continue to use the infinity symbol to denote a path that failed to find the destination.
We denote path construction using the plus symbol and we introduce the function sre to
return the first node along the path, i.e., the root of the tree. We also extend min so as
to return one of the paths having the shortest length—it allows for the possibility to have
two nodes with the same name even though the tree structure disallows it at this point. As
evident in Figure 19, the assign section continues to be unaffected. All program changes
involve only definitions and the initialization.

program Search3(c)
share
f[1..n],b : message-channel
always
{J}i : done(s) = (in.fl{]£ L))
(% =2 clear(s) = (inf[i}=1)}
{[[ :: found(i) = {done(i) A path.in.f[i]7co))
DONE = (¥i :: done{?))
FOUND = (3 :: found(i})
ARRIVED = (in.b#£ L A dest.in.b=a)}
FORWARD = (in.b# L A dest.in.b#¢a)
RETURN = ((DONE v ARRIVED) A in.b#L A out.b=1)
RETURNED = (DONE A out.b#.L A (in.b=1 V src.out.b=a))
CLEARED = (Vi u: clear{i)} A inb=1
receipt
= new.in.b if ARRIVED
~ in.b[path/{mini : path.in.f[i}}] if FOUND
~ in.b[path/c0] otherwise
1 {|lk: k a message :: new.k = k[path/(path-+a)]}
initially
(|l¢ = in.ffilout.fli = L, 1)
| in.b,out.b
= 1, L if 3y w{y,0))
~ (Destination(a}),u), L otherwise

[ | wwwe | v 2 Bt s ] st e |

assign

1 {z: FORWARD A (¥j :: out.f[j]=L) :: out.f[i} := new.in.b }
J out.b:= receipt if RETURN

(i : RETURNED :: out.flé]:=1 )

[ outb:= L if CLEARED

end

Figure 19: Path searching algorithm.
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3.3.2.4 Searching the graph. While our previous algorithms have been searching
along a tree, the actual search will be performed over a more general directed graph. This
refinement addresses the question of constructing the tree while following the same basic
computation. The idea is to construct a spanning tree by detecting the points where two
or more branches of the search meet and by cutting the search for all but one of them. The
code is modified slightly to account for the processing associated with each of the possible
inputs. Let us consider the case of a node which is neither the root of the search nor the
destination. The first request to arrive on the back channel is propagated along all the
forward channels. A subsequent request can fall into one of two categories. If it arrives
along a path to the root that is longer than the shortest known path so far, it is rejected by
returning a path of infinite length. If the new request has a path which is shorter than the
shortest one, it is kept and rejections are sent on the back channels to the other requests.
The function min is assumed to malke a deterministic choice among multiple paths of equal
minimal length. Once all replies return on the forward channels, the back channel selected
as the minimum receives the best path found down the line. At this point any additional
late requests are simply rejected. Finally, the arrival of the first clear request on one of the
back channels is forwarded and, when acknowledgements are received along all the forward
channels, each back channel is cleared thus passing the acknowledgement up the tree to the
root. Clear requests on channels that received reject messages are acknowledged without
regard to the state of the forward channels in order to avoid possible deadlocks when a node
is present along a path the loops back on itself. In analyzing the solution, it is helpful to
notice that a path that loops through a node cannot be minimal and is always rejected and
that a node which turns out to be the destination does not send out any requests on the
forward channels.

This concludes the main part of the derivation process. What remains to be done next
is the composition of the two separate solutions we have derived so far.
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ALGORITHM

program Search4(a})
share
f{1..n],bfl..m] : message-channel
always
(|l = done(i) = (in.f[i)#L)}
(% = clear(?) = (in.fig]=1))
(jlz = found(i) = (done(s) A dest.in.f[ij2c0)}
DONE(z) = ((Vi :: done(s)) v ~MIN(z) v LATE)
FOUND = (Ji :: found(s))
ARRIVED = (3¢ « in.b[f]# L A dest.in.biij=a)
FORWARD(z) = (in.bfz]# L A dest.in.b[z]#a)
RETURN(z) = {{DONE(z) v ARRIVED) A in.bz]#L A out.b{z]=1)
RETURNED(z) = (DONE{z) A {2 :: out.blil#L A (in.bfij=L V src.out.b[i]=a))
CLEARED(z) = ({(Vi = clear(s)} A {3i = in.b[i]=L A out.bfi]#L))
V (in.blz]=1 A acpath.out.blz])
MIN{x} = (path.in.b[z}j={mini : path.in.bii})}
LATE = (3i :: out.b[i]#.L)
receipt(z)
= new.in.b(z] if ARRIVED A MIN(z) A ~LATE
~ in.b{z][path/{path-+suffix{a,{min ¢ :: path.in.fi]})]
if FOUND A MIN(z) A —-LATE
~ in.b[z][path/co+a] otherwise
I (Il : % a message :: new.k = kipath/(path+-c)]}
initially
(|| == in.f[i],out.fl]] = L, L)
in.b,out.b
= L, Lif 3y = wlr,a))
~ (Destination{a},a},l. otherwise

e v | e s v J s | s § s e s s F i

assign
(o (i : FORWARD(s) A (¥j :: out.f[j]=L) = out.ili] := new.in.b[s] )
[ out.b[s} := receipt(s) if RETURN(s)
[ () : RETURNED(s) : out.flil:=1}
[ out.bls] := L if CLEARED({s}
end )

CONNECTIVITY

w{e, B) = (34,7 :: Search4{a).f[i] = Search4(8).b[j])

Figure 20: Path searching on a graph.
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3.4 Schema composition

At the moment, the token passing and search programs are completely disconnected. The
token passing program allows a cart to safely traverse a path through the graph to its
destination. The search program will find a path to a desired destination. Now comes the
task of integrating these two programs. When the cart receives a new piece of baggage
which is scanned for a destination, the current track automatically receives a request for
a path to it. This initiates the search algorithm. Meanwhile, the cart is moving through
the track. The track does not allow the cart to continue before a path has been computed.
After the path is computed, it is stored in the token, and the cart can continue towards its
destination.

This is achieved is through the definition of the function NewPath. NewPath is the
mechanism by which the token passing algorithm obtains the results from the layer below.
The computation is initialized when the destination scanner retrieves a new destination from
the cart.

This composition requires a slight modification to the token passing program to power
down the cart if the path search is not completed before the cart attempts to move off
the track. Notice that this action occurs also if the reservation request has not yet been
acknowledged. In this situation, a convenient mechanism to utilize is to allow NewPath to
behave as an asynchronous remote procedure call. Its initial invocation is when out is being
computed for the reservation request. The request finishes upon return from the NewPath,
and when the request is acknowledged, the cart is allowed to pass.

This is only one way that we can compose distributed systems. It has the unusual
property that there is a single point of contact and a single synchronization condition. This
scheme would not work, for instance, if the cart picks up the response later down the track.
A more dynamic point of interaction would have to be established between the two systems
being composed. An important issue for further research is to define a repertoire of simple
structured composition rules and to study their formal properties.
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4 Discussion

The ultimate goal of this research is to free the engineer building distributed applications
from the burden of having to verify each new system or any changes to an existing one. The
starting point was the idea of building large distributed systems from small trusted compo-
nents by following application-specific composition rules that guarantee the correctness of
the resulting system by construction; advances in model checking and automatic verification
could be used at the component level while the rules could be verified once and used across
a large class of systems.

Having demonstrated the basic idea in the context of one application, we set out to
develop the formal underpinning of the approach and to formalize a design methodology
that could be employed in other settings. The first strategy we investigated associated with
each application component a program which encapsulated its control logic, generalized its
behavior and structure by comparing the programs associated with diverse types of compo-
nents, and assembled them into a system by using shared variables or message passing. The
investigation suggested that our initial success was primarily the result of careful crafting
of the components and the development of regular composition rules. In other words, the
strategy we followed was application-specific, required a very high degree of creativity, and
entailed standard but complex proofs over generalized system structures. Formal charac-
terization of the process seemed to be very difficult to achieve. Furthermore, issues relating
to the composition rules, while they took advantage of the system topology, did not appear
to be specific to the method being used. Nevertheless, the concept of having an isomorphic
relation between the system’s physical and control topologies continued to be an attractive
desipgn strategy.

The regular nature of the composition led us to investigate possible ways that one might
structure the interactions among programs in order to provide certain strong guarantees
which, in turn, could reduce the complexity of the proofs. We focused our attention on the
potential impact of using various schemas (e.g., communication via variables that have a
single writer). However, we concluded that, even when a particular schema reduces the com-
plexity of the verification, the process by which the system is developed remains unaffected.
We still design individual components and prove properties of a system resulting from their
composition into a single larger program. The approach did raise, however, questions about
the fine-grained nature of the components that are being composed. This naturally brought
about the notion that we ought to compose not processes but distributed systems. The
new idea that emerged was to develop systems which are simple and highly specialized for
a particular subtask (structurally isomorphic) and combine them in some structured way.
While raising some interesting questions about new forms of composition among distributed
systems (rather than concurrent prograrmns), the question of how to develop these specialized
systems remained open and, in some way, brought us back to where we started in the first
place.

The concept of a distributed design pattern emerged out of this context. It is rooted
in the notion that established distributed algorithms provide a rich repository of experi-
ence and analytical studies. Its abstract, language-independent, and formal nature make it
ideal for reuse. They only issue was how to bridge the gap between the generality of the
algorithms and the specificity of the application. Program derivation provided the formal
foundation while the strategy of matching the systemn structure to the physical structure of
the application allowed us to achieve a certain degree of specialization.

The next steps in this research must be a combination of formal and empirical studies.
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First, a more formal treatment of the derivation process must be developed. Frequently
encountered program transformations must be cataloged and formalized. We made extensive
use of data refinement techniques, coupling invariants, and atomic action refinement. We
also provided a simple method for handling the interfaces to the environments, an approach
that masks any references to real time. Other techniques for dealing with the environment
need to be investigated as well. As anyone might have expected, composition techniques are
a central issue in this kind of research. OQur work, however, brings about a new perspective
on this topic. The notion of composing distributed systems having similar topologies does
not seem to have been addressed in the literature at this time. The example used in this
paper employs a very simple composition mechanism with a single point of contact and
a call-return interface. This made verification easy. One system perceived the other as a
simple function call, the other simply reacted to a stimulus and returned a value. Other more
complex interface patterns need to be categorized and their implications on the complexity
of the verification task must be evaluated.

Future formal studies, must be accompanied by the development and evaluation of a cat-
alog of design patterns for a specific application domain. This is the only way that formal
results will be able to have a credible impact on industrial practices. In our presentation, we
atternpted to give the reader a sense of the level of rigor that an engineer using distributed
design patterns will be expected to apply to the design process. Because we started with
a trusted pattern and we modified it in small increments, the proofs were omitted by ac-
cepting a small element of risk. In situations where this is not acceptable the added cost of
verification can still be kept manageable.
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5 Conclusions

Distributed design patterns, as proposed in this paper, own their philosophical underpinning
to object-oriented programming and borrow their methods from program derivation. The
result is a design strategy that is distinct from both. The approach allows us to leverage off
a large body of previous research on distributed algorithms. Distributed applications are
built through the composition of multiple distributed computations that have the topology
of the underlying physical system, can be developed in a systematic manner, and entail
minimal verification efforts. In the paper we used an airport baggage delivery application as
a vehicle for our discussion and relied on standard distributed algorithms to furnish us with
needed design patterns. The extended example we constructed demonstrates the feasibility
of the approach. In addition, it sketched out the essential features associated with this kind
of design process and identified the key research issues requiring further investigation.
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