Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-96-28

1996-01-01

An Algorithm for Message Delivery to Mobile Units

Amy L. Murphy, Gruia-Catalin Roman, and George Varghese

With recent advances in wireless communication and the ubiquity of laptops, mobile computing
has become an important research area. An essential problem in mobile computing is the
delivery of a message from a source to either a single mobile node, unicast, or to a group of
mobile nodes, multicast. Standard solutions used in Mobile IP and cellular phones for the
unicast problem rely on tracking the mobile unit. Tracking solutions scale badly when mobile
nodes move frequently, and do not generalize well to multicast delivery. Our paper proposes a
new message delivery algorithm for micromobility based on a modification... Read complete
abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Murphy, Amy L.; Roman, Gruia-Catalin; and Varghese, George, "An Algorithm for Message Delivery to
Mobile Units" Report Number: WUCS-96-28 (1996). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/418

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/418?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/418

An Algorithm for Message Delivery to Mobile Units

Amy L. Murphy, Gruia-Catalin Roman, and George Varghese

Complete Abstract:

With recent advances in wireless communication and the ubiquity of laptops, mobile computing has
become an important research area. An essential problem in mobile computing is the delivery of a
message from a source to either a single mobile node, unicast, or to a group of mobile nodes, multicast.
Standard solutions used in Mobile IP and cellular phones for the unicast problem rely on tracking the
mobile unit. Tracking solutions scale badly when mobile nodes move frequently, and do not generalize
well to multicast delivery. Our paper proposes a new message delivery algorithm for micromobility based
on a modification of classical snapshot algorithms and includes a proof outline using the UNITY logic.
Our algorithm requires no tracking, provides stronger guarantees than existing protocols in micromobility,
and generalizes easily to multicasting. Besides a particular solution to the delivery problem, our approach
offers a new strategy for transferring established results from distributed computing to mobile
computing. The general idea is to treat mobile nodes as messages that roam across the fixed network
structure and to leverage off existing distributed algorithms that compute information about messages.

https://openscholarship.wustl.edu/cse_research/418?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/418?utm_source=openscholarship.wustl.edu%2Fcse_research%2F418&utm_medium=PDF&utm_campaign=PDFCoverPages

£EWashington

WASHINGTON » UNIVERSITY - IN+ST» LOUIS

School of Engineering & Applied Science

An Algorithm for Message Delivery to Mobile Units

Amy L. Murphy
Gruia-Catalin Roman
George Varghese

WUCS-96-28

14 November 1997

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

An Algorithm for Message Delivery to Mobile Units

Amy L. Murphy, Gruia-Catalin Roman, and George Varghese
Washington University in Saint Louis

With recent advances in wireless communication and the ubiquity of laptops, mobile computing has
become an imporlant research area. An essential problem in mobile computing is the delivery of a message from a
source Lo cither a single mobile unit, unicast, or to a group of mobile units, multicast. Standard solutions vsed in
Mobile TP and cellular phones for the unicast problem rely on fracking the mobile unit. Tracking solutions scale
badly when mobile units move frequently, and do not generalize well to multicast delivery. Our paper proposes a
new message delivery algorithm based on a modification of classical snapshot algorithms and includes a proof
outline using the UNITY logic. Our algorithm requires no tracking, provides stronger guarantees than existing
protocols, and generalizes easily to multicasting to mobile units. Besides a parficular solution to the delivery
problem, our approach offers a new strategy for transferring established results from distributed computing to mobile
computing. The general idea is to treat mobile units as messages that roam across the fixed network structure and to
leverage ofl existing distribuied algorithms that compute information about messages.

1. Introduction

Mobile computing reflects a prevailing societal and fechnological trend towards ubiquitous access to
computational and communication resources. Wireless technology and the decreasing size of computer components
allow users Lo travel from office to home and around the country with the computer at their side. Both location-
ransparent and context-dependent services are desired. Decoupled computing is becoming the norm [8]
Disconneclion is no longer a network fault but a common event intentionally caused by the user in order to conserve
power or a consequence of movement.

Nevertheless, the typical model of distributed computing treats a network as a graph in which vertices
represent processing nodes and edges denote communication channels. TFaults may render parts of the network
inoperational either temporarily or permanently. Despite faults, the overall structure is considered to be static. One
way 1o infroduce mobility in this confext is to ireat some of the nodes of a network as mobile support cenlers
(MSC) and to introduce a new breed of nodes, called mobile. The latter type are allowed only to connect to and
disconnect from mobile support centers. The result is a fixed core of static nodes and 2 flnid fringe consisting of
mobile units. This turns out to be the dominant model in mobile computing today.

In this paper we suggest yet another way of thinking about mobility in the context of the traditional fixed
zraph structure. The basic idea is to treat mobile units as roving messages which preserve their identity as they
travel across the network. While operating inside one cell, a cellular phone may be viewed as residing at a node
inside the support network; similarly, the handover protocol (iriggered by the detection of signal degradation) may be
modeled as the waversal of a channel between two nodes representing the individual cells. Voice transmissions
among two phones are also modeled as messages.

Because of this dual role messages can play in this new model, we need to be careful with terminology.
Hencelorth, we will use network to denote a static organization of processing nodes and channels; we will reserve the
term mobile unit for messages that model mobile units; and we will employ the term announcement for any
messages which carry information from one mobile unit to another, Announcements, as just defined, originate with
a mobile unit and are passed among nodes in order to achieve eventual delivery to some other mobile unit. We refer
1o all other kinds of messages simply as messages. Of course, both mobile units and announcements are messages,
however, a mobile unit is a special message that retains an identity as it passes through the network.

Qur interest in this model rests with its ability to facilitate the application of established distributed
algorithins to problems in mobile computing. To illustrate this point, this paper shows how algorithms designed to

1 The work of the first two authors is supported in part by the National Science Foundation under Grant No. CCR-
9217751 and CCR-9624815. The work of the third author was supported in part by an ONR Young Investigator
Award. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors
and do nol necessarily reflect the views of the National Science Foundation or the Office of Naval Research.

11/25/97 6:36 PM

compute distributed global snapshots provide reasonable solutions for the problem of multicasting announcements
among mobile mnits. Furthermore, these results are immediately applicable to the related problems of route
discovery and maintenance among mobile units in the presence of mobile support centers.

The remainder of this paper is organized as follows, In Section 2, we outline the problem of message
delivery in a mobile setting, propose a simple solution, and discuss its shortcomings. Section 3 introduces our
approach 1o announcement delivery using snapshot algorithms and specifies the solution as a UNITY [3] program.
Section 4 ouilines the proof of correctness for our delivery algorithm, In Section 5, we discuss the broader
implications of these results, show some potential shortcomings of our approach and ways to address them. Section
6 consists of some brief concluding remarks.

2. Announcement Delivery to Mobile Units: Problem Statement

The problem we are interested in is the delivery of announcements among pairs of mobile units. A mobile
unit can send and receive announcements only when it is present at some node in the fixed network, a sitvation that
models the exislence of an established connection between a mobile unit and a support station. Whenever a mobile
unit is on a channel, it may be viewed as being temporarily disconnected from the network and, therefore, unable to
commuiticale with any of the nodes,

The announcement delivery problem can now be formulated as follows: Given a fully connected network
with FIFO channels and gnaranteed message delivery, an announcement located at one of its nodes, and a roving
mobile unit for which the announcement is destined, develop a distributed algorithin that guarantees single delivery
of the announcement, and leaves no trace of the announcement, at either a node or a mobile unit, within a bounded
time after delivery. Minimizing storage requirements across the network is another concern.

Standard solutions to unicast announcement delivery {e.g., cellular phones [6] and Mobile IP [12]) rely on
{racking a mobile unit as it moves around a fixed wired network. For example, in cellular systems as a phone P
moves from cell C to adjoining cefl C', the phone detects a stronger signal from the MSC at €' and requests a
handover [rom Cto €. Alter the handover, €’ is now responsible for forwarding voice calls to the phone, and the
cellular system keeps track of this association between €’ and P. Similarly in Mobile IP, a mobile unit M has a
home agent. When M moves Lo another location, M contacts a foreign agent. The home agent is then informed that
M is now reachable through the foreign agent. Once again, Mobile IP attempts to keep track of the current location
ol a mobile unit. Tn Mobile IP with forwarding optimizations, if the mobile unit moves too rapidly and the system
is unable w stabilize, forwarded packets will chase the mobile unit arcund the system without ever being delivered.

While the unicast problem of delivering an announcement to a single recipient is important, in recent years
the multicast problem of delivering an announcement to multiple recipients has also become crucial. Multicast
support through the MBONE has become a standard part of the Internet [5, 13], and is finding wide use for
confercncing (e.g., wols like VIC and VAT [7, 9]) and video distribution. Work has been done to provide reliable
multicast 10 2 mobile community [1], however the members of the community must be known in advance of the
multicast. While multicasting and mobility have been treated as important extensions for the next generation
Internet, the working groups in these areas have largely proceeded separately. An important open problem then is
that of multicasting to mobile units.

Since tracking does not work well with rapidly moving nodes and we wish to support multicasting, our
paper considers solutions to Aunouncement delivery based on search, The idea is to keep no tracking information
but to scarch for the mobile unil(s) whenever they are needed. Clearly, searching the entive Internet for a mobile unit
appears ludicrous. However, the Internet is divided into a number of hierarchical domains and subnets and the intent
is to perform a form of broadcast search within a small local domain. For example, a cable office may wish to
multicast announcements to a number of cable servicemen that are roaming in the metro St. Louis area.

Broadcast search is not quite trivial because the mobile unit may move from node to node, like the Astful
Dodger, one step shead of the broadeast, This seems unlikely in practice, however, because mobile units move
quickly with respect to the propagation of a announcement. The problem returns when the actual propagation
methods employed to perform message delivery arc examined. One such mechanism is to create a spanning tree over
all nodes in the graph, and propagate the announcement along this path. As long as the mobile nnit remains at a
single location, delivery is trivial. However, if the mobile unit is at the border between two cells and about to start
a handover when delivery starts, it is possible for the mobile unit to move from a node farther down in the spanning
tree 1o onc higher in the spanning tree in between the times when the announcement had already propagaled past the
higher node and when it amived at the lower node. This is duc to the fact that a handover is accomplished by

11/25/97 6:36 PM

message passing, and therefore the movement of the maobile unit is now on the same order of magnitude as message
passing. This problem can be solved if nodes keep copies of the Announcement for an indefinite period. However,
Internel routers do not have the storage to keep application messages indefinitely. Announcements must be garbage
collected quickly if the scheme is to have any chance of being practical. Our solution has the attractive property of
guarantecing delivery exactly once (in practice, with unreliable links, delivery would be at most once) while allowing
rapid parbage collection in time proportional to a round trip delay on a single link.

Our solution is based on the classical notion of a snapshot. In particular, our preferred embodiment is based
on the original Chandy-Lamport snapshot algorithm [2]. In doing so, we bring together the two concemns of the
paper: applying techniques from distributed algorithms to mobile computing, and the problem of announcement
delivery. ‘The use of snapshots is based on the intuitive notion that a mobile unit cannot avoid a snapshot: the
mobile unit(s) must show up in the snapshot at some node or link in some local snapshot. We can therefore modify
the local snapshot algorithms to effect announcement delivery. A snapshot, thus, plays the role of a rather thorough
posse.

3. An Algorithm Based on Snapshots

The solulion we propose combines the ideas of tracking and broadcast by noting that only one node will
aciually deliver the announcement, but without restricting this node to a single home agent as in Mobile 1P and
addressing the memory concerns of broadeast. The problem now becomes uniquely identifying this processing node
in a changing system, and allowing all other nodes to locally distinguish that they are not the delivery node and
therefore do not need to retain a copy of the announcement for delivery.

To identily the single processing node that will deliver the announcement, we propose modifications to
global snapshol algorithms. Although snapshot algorithms were developed to detect stable properties such as
termination or deadlock by creating and analyzing a consistent view of the distributed state, minor adjustments allow
them 1o perform announcement delivery in the dynamic, mobile environment. A traditional global snapshot is a
collection of the local snapshots for the individual processing nodes consisting of the local stale plus all messages in
transit. In the mobile seiting, a local snapshot contains information about the mobile units in current
communication with the node, as well as the mobile units and announcements in transit to that node. Every mobile
unit appears cxactly once either at a node or on a channel. Because of the way varions snapshot algerithms worl,
and the mobility inherent in the system, by the time the snapshot is analyzed to locate the destination mobile unit,
any announcement sent directly to that location may miss the mobile unit. For this reason, the computation of the
snapshol iself must be modified to perform announcement delivery. Specifically, we note that because each mobile
unit must appear only once in the global snapshot, and the announcement can only be delivered once, the node that
records the destination mobile unit is responsible for delivering the announcement.

In general, snapshot algorithms proceed across a network by passing the knowledge that the snapshot is
occurring Lo neighboring nodes. We assnme throughout that all channels are FIFO. We append to this knowledge
the actual announcement. When the announcement arrives at a node, it is stored and the local snapshot begins. As
the snapshol proceeds, the node watches for the destination mobile unit to arrive. If the local snapshot completes
without recording the destination mobile unit as part of its state, the processing node deletes its copy of the
announcement, assured that the destination mobile unit will appear in some other processing node's local snapshot.
However, if the destination node is part of the snapshot, either in communication or on an incoming channel, this
node is responsible for delivery. Because the nodes watch for the arrival of the mobile unit, as soon as it arrives,
delivery occurs. 'When the local snapshot completes, the message can be deleted because the node has aleady
delivered the message. In this manner, as the local snapshots complete, the announcement copies are removed from
the processing nodes, meeting the requirement that no copies remain in the system.

We capture the essence of our solution in the form of a UNITY program shown in Figure 1. UNITY [3]
provides a stale transilion model for concurtent programming in which progress and safety properties can be cleanly
defined and proven from the program text. We utilize the UNITY proof logic in the next section where we formally
verify the correctness of the algorithm. In the UNITY program, each channel is defined as an element of an array,
Chan(}, of message queues. (See the declare seclion consisting of Pascal-like declarations.) The quecues ae
restricied 1o holding only announcements and mobile units. Actually, since we are interested in the behavior of the
algorithm solely with respect to a particular mobile unit and one announcement assumed to be destined for it, these
are the only two kinds of messages that can appear anywhere in the system, i.e., the channel queue can contain only
the constants announcement and mobile. The state of the individual nodes is captured by three arrays: MobileAtNode

11/25/97 6:36 PM

Program SnapDeliver

declare

Chan@Q : array [Channels] of Queuelmobile U announcement];
MobileAiNode, AnnouncementAtNode : array[Nodes] of Boolean;
InChanFlush : array[Channels] of Boolean;

notified : array [Nodes] of Boolean;

found : Boolean;

flushed : array[Channels] of Boolean;

location : Nodes U Channels;

initially
I xy:(xy)e Channels :: Xy 15 the inifial location of the announcement
AnnouncemeniAtNode(x), not i fied (x), MobileANode(x)
= (X=Xy), {X=%,), {location=x)
[l InChanFlush(x.,y), flushed (x, y) = false, false
| ;if the mobile unit is at the initial location of the announcement, delivery is complete
found = {location=x)
[[rset up initial channel state based on mobile unit location and announcement location
ChanQ(x,y) = enqueue(gmobile) if location=(x,v) A X#Xg
I ChanQ(x,y) = enqueve(enqueuve(g,mobile ,announcement) if Location= (%, y) A X=X,
| ChanQ(x,y) = enquene(g,announcement) if location={x, v) A X=X,
I ChanQ(x,y)=¢ if location#(x, v) A X#Xg
)
assign
{1 xy:(xy)e Channels ::

end

A(Stmt 1) Duplicate announcement arrives at a node,
InChanFlush(x,y), £lushed (x, y), ChanQ(x,y) = true, t rue, tail. ChanQ(x,y)
it head.ChanQ{x,y)=announcement A AnnouncementAtNode(y)
il
J(8tmt 2) New announcement propagates on all outgoing channels.
(I : head.ChanQ(x,y)=announcement A ~AnnouncementAtNode(y) ::
found = true if MobileAtNode(y)
I AnnouncementAtNode(y), InChanFlush(x,y), fiushed (%, y) = true, tiue, true
I {lu:{yu)e Channels :: ChanQ(y,u) := enqueue(ChanQ(y,u),anrouncement))
I ChanQ(x,y), notified (v} :=tail.ChanQ(x,y), true)
Il
J(Stmit 3) Mobile unit arrives at a node with no delivery.
location, ChanQ(x,y), MobileAtNode(y) = v, tail.ChanQ(x,y), true
it head.ChanQ(x.y)=mobile » (InChanFlush(x,y) v —~AnnouncementAtNode(y))
[l
H{(Stmi 4) Mobile unit arrives at a node with delivery
found, locat ion, ChanQ(x.y), MobileAtNode(y) := true, y, tail.ChanQ(x,y), true
it head ChanQ(x,y)=mobile A —InChanFlush{x,y) A AnnouncementAtNode(y)
Il
J(Stmt 5) Mobile unit moves from a node to a channel
location, ChanQ(x,y), MobileAtNode(x) := (x, v), enqueue(ChanQ(x,y), mokile), false
if MobileAtNode(x)
I
A(Simt 6) Local snapshot complete at a node and all traces of announcement removed
(- {¥ u: (u,y) & Channels :: InChanFlush{u,y)} ::
AnnouncementAtNode(y) := [alse
I (Hu:(uy) e Channels :: InChanFlush(n,y) = false))

Figure 1. Snapshot Delivery Program for FIFO Channels

11/25/97 6:36 PM

is indexed by node identifiers and holds a boolean valoe which is true whenever the mobile unit is present at that |
node and false otherwise; AnnouncementAtNode is defined in the same manner but denotes the fact that the node is
holding a copy of the announcement; finally, InChanFlush, indexed by channels, allows a node to keep track of
which channels have been flushed. Basically, InChanFlush will be used to indicate that a local snapshot of the
chamnel is complele.

Tn addition to these algorithm variables, we include in the declare section several auxiliary variables. Tor
easy discrimination, they appear in the courier font and in lower case. These variables do not affect the execution
of the program, but are convenient to have when constructing the proofs. The amay notified, indexed by node
identiflters, records the fact that a node has seen the annonncement. The variable found becomes true when the
announcement is delivered to the mobile unit, while locat ion records the identity of the last channel or node to
receive the mobile unit.

Constraints on the range of acceplable initial values for the program variables are stated by a set of
cquations appearing in the initially section of the program. Most initial values ae straightforward. We place the
announcement at an arbittary node, X,. This node is marked as holding the announcement, i.e.,
AmnouncementAiNode is true for node %, and in no other place; notified is initialized accordingly. The contents
of the channels are initialized with respect to the location of the mobile unit (reflected by the arbitrary initial value
for Llocation) and x, and the announcement All outgoing channels of x, receive a copy of the announcement and
if the mobile unit is on the same channel with the announcement it must precede the announcement in the channel.
If the mobile unit is at the node x,, i.e., the mobile unit is at the location where the announcement was dropped off,
the announcement is delivered to start with {found is initialized to true),

T'he algorithm appears in the assign section of the program. It consists of & set of multiple conditional
assignment statements which are selected for execution one at a time subject to a weak faimess assumption. All
executions are assumed to be infinite with finite executions being characterized by the fact that they reach a fixed
point. Before continuing our discussions of the algorithm we need to take a brief detour and explain the notation we
use. Individual statements are written either in terms of matching lists of variables and expressions subject to the
same condition as in

n.y=yvxifx<y
which sorts the values of x and y or by using the parallel bar construction as in the equivalent formulation

x=yifx<ylly=xifx<y
The box symbol is used as a separator between assignment statements. The only unusual notation is a very general
three-part construct used o, among many other purposes, build both composite statements and sefs of statements.
For inslance,

{1i: 1<i=N = Af] == 0)
defines a set of statements that zero the elements of the array A, one for each value of i in the range I to N, while

{l'i: 1<isN :: Afi] = 0)
consirucls one composite statement which performs the same task in a single atomic step.

Let us consider next the actions performed by the algorithm. Each of the statements can be seen in the
diagrams of Figure 2. When the announcement arrives at a node, by definition, the channel it amrived on becomes
ftushed. Il the node was already marked when the announcement arrived, no further action is taken (Stmt 1). This is
one of the cases where redelivery to a stationary mobile unit must be avoided. However, if the node was not
previously marked, the arrival of the announcement triggers a delivery to the mobile unit when the latter is in
communicalion with the node, and a dispersion of the announcement on all outgoing channels (Stmt 2. Through
this fanning oul of the announcement and the connectivity assumptions, every node eventually processes one
announcement from every incoming channel. When a mobile unit arrives at a processing node, the node must
determine whether or not to attempt to deliver the announcement. Trivially, if the node does not have a copy of the
announcenient, the decision not to deliver is made (Stmt 3). However, if the node is marked and the mobile unit
arrives on a {lushed channel, it is known that the mobile unit has already received a copy of the announcement, and
we musl not redeliver it (Stmt 3). If the node is marked and the mobile unit arrives on an unflushed channel,
delivery is attempted (Stmt 4).

“I'he processing of a mobile unit from the head of a channel models mobile unit movement from a channel
10 a node. We must also allow movement from a node to a channel. We add one statement to the program allowing
a mobile unit which is located at a node to move onto any of its outgoing channels (Stmt 5). Because of the weak
[aimess provided by UNITY, the statement is eventually selected and the mobile unit moves on, thus modeling its
random movement. In most real sitnations, the movement will be controlled by a user, however this could be coded

11/25/97 6:36 PM

flushed

before
| L | o ® o
Hushed {lushe flusheft
after
flushad Hirshed {lushad
B anncuncement
neltilied
. mobile uni

o) aen-nolified
Strt 1 Stmt 2 Simt 3 Stmt 4 Simt 5 Simt 6

mabile unit

Figure 2. State transiiion associated with each program statement.

into the program as a predefined path for the mobile unit to follow. Again, for simplicity, we focus on random
movemenl.

The final statement of the program addresses the requirement that no trace of the announcement remain in
the system when the algorithm terminates (Stmt 6), To do this, the announcement must be deleted from every node,
and the channels must return to their original, unflushed, state. We use the local snapshot property of global
snapshots o detect this, The local snapshot terminates when all incoming channels are flushed, and the final
statement is enabled for execution, and when it is selected, the cleanup is completed,

4. Proof Qutline

In Section 3, we presented a global snapshot algorithm modified to perform message delivery in a mobile
system. We now exploit the formal power of UNITY to present a proof outline of the correctess of the
SnapDeliver algorithm. Our obligations include showing that (A) there is no residual storage in the system at some
point alter the algorithm begins execution, (B) the announcement is delivered to the intended recipient, and (C) the
announcement is delivered only once. 'We approach these obligations one at a time.

4.1 No Hesidual Storage

‘To show that eventually all information concerning the announcement is removed from the system, we
prove that [rom the initial conditions, the program will eventually reach a state where there are no announcements at
any nodcs, there are no announcements in any channels, and the chammel variable reverses to its original cleared
value. ‘This can be caplured by the following leads-to property:

INIT — {¥n,m:: -AnnouncementAtNode(n) A —anmnouncemente ChanQ(n,m) A —InChanFlush{n,m)} (A)

In addition, we must show that the right hand side is stable. In other words, once all the system variables have been
cleared, the algorithm does not become active again. Stability is proven directly from the program text, Because
announcements are not generated within the program, once all copies of the announcement are gone, there will never
he any more announcemments in any channels or at any nodes.

Progress is proven using transitivity and several simpler properties. The first step in proving the property
A involves showing that from the initial conditions, the program reaches a state where all nodes have received a copy
of the announncement and have therefore been nolified of its existence; hence the use of the auxiliary variable
notified which becomes true when the announcement arrives at the node and is never set back to false. Once all
nodes have been notified, we examine the channels. Tt is possible for a nofified nede to have multiple incoming
channcls and have only received the annonncement on a subset of those channels. In order to clear the network, we
must show that a copy of the announcement arrives on all incoming channels. This property is tracked on a per
channel basis using the boolean variable £lushed. Therefore, the second step in the proof shows that once all
nodes are notified, eventually all channels will be £1ushed. The stability of notified allows us to include
all nodes notified in the right hand side. The final stage of the proof uses the not i £ied status of all nodes and the

L1/25/97 6:36 PM

flushed slaws of all channels to prove the copy of the announcement at all nodes is deleted, the channels do not
have copies of the announcement, and all channel variables have been reset.

INIT — (¥n:notified(m)) (A
{(¥Yninotified(n)) — (¥Vnm:notified(n) A £lushed(n,m)) (A2
(Vi.am:netified(n) A £lushed(n,m)) (A3)

~3 {¥n,m:: ~AmouncementAtNode(n) A —InChanFlush(n,m) A —announcemente ChanQ(n,m))

To show that eventually all nodes are notified (A.1), we introduce a metric to count the number of nodes
which have nol yet been notified. In the initial configuration, only the node originating the announcement has a
copy, & copy is enquened on all outgoing channels of that node, and the metric is initialized to the total number of
nodes minus one. We can show that from this point, the metric decreases to zero. If the metric is greater than zero,
by the connectivity of the graph, there must be a channel from a notified to an unnotified node and there must be an
announceinent on that channel. We then show that the metric decieases either by some announcement in another
region ol the graph being processed by an unnotified node, or the identified announcement moving to the head of the
channc! and being processed by the previously unnotified node, implicitly decreasing the number of unnotified nodes.
We iteratively apply this reasoning to show that eventually all nodes are notified and the metric has decreased to zero.

"T'o show that once all the nodes are notified, all channels will eventually be flushed (A.2), we use a similar
mechanism as above. We introduce a metric to count the number of channels which have not been flushed and show
it decreases to zero. As before, we note that because all nodes are notified, any channel ¢ which has not been flushed
must be belween two notified nodes, and in this case there must be a copy of the announcement on ¢. The metric
cither decreases by some other channel ¢’ being flushed, or the identified announcement arriving at the head of ¢ and
being processed. Because both auxiliary variables flushed and notified are stable, we have shown that
eventually all channels are flushed and all nodes remain notified.

Proving the final progress property involves examining each node and its incoming channels. TFirst, we
note the difference beiween the anxiliary variable £1ushed and the traditional variable InChanFlush. When the
announcement arrives from a channel, both variables are set to true. The primary difference is that InChanlFlush is
set back 1o false when the channel’s destinatton node is cleared, while flushed remains true. This allows us 0
reason aboul channels which have been taversed by the announcement, but have been reset. This is valuable
because the lefl hand side of A.3 only states that all channels have, in the past, had InChanFlush set to true but
nothing about the current value of InChanFlush. We know that if InChanFlush is false but £1ushed is true, then
the destination node has been cleared, and all other incoming channels have been cleared. This can be shown to be
stable. However, if InChanFlush is true and £1lushed is tue throughout, then all other incoming channels must
be in the same state, and the announcement must be at the node. These properties enable Stmt 6 of the program
which, when executed, will clear the nodes and channels. This reasoning can be carried out at all nodes of the system
and eventually the announcement copies will be removed from nodes and channels, and all InChanFlush variables
will be reset 1o false.

4.2 Eventual Announcement Delivery

‘The next property we must prove is that the announcement is eventually delivered, i.e., the auxiliary
variable found is eventunally set to troe:

INIT — found ®)

Properly B can be proven by using wransitivity and conjunction from the following properties:

INIT - (¥n:notified(n)) B.1D
{¥n:notified(n) A found)— found B.2)
(Vinunotified(n) A -found) = found (B.3)

The first (B.1) was proved earlier in A.1, the second (B.2) is a consequence of the implication, and the third
(13.3) remains to be proven. To prove this property, we must consider the possible locations for a mobile unit
which has not been [ound. IT all nodes are nolified, it must be true that the unfound mobile unit is on an unflushed
channel, and the mobile unit is ahead of the announcement, i.e., the following invariant holds:

inv {¥Vn:notified(n) A ~found) (B.3.1)

11/25/97 6:36 PM

= (In,m:: mobilee ChanQ(n,m) A —=£1lushed(n,m) A mobile.preceeds.anne ChanQ(n,m))

where mobile.preceeds.anne ChanQ(n,m) denotes the fact that, if both the announcement and the mobile unit are in
the channel, the mobile unit is closer to the head of channel (n,m). If only the mobile unit is in the channel, this
predicate is true by definition. Invariant B.3.1 can be combined with 3.3 to give an equivalent property that the
right hand side of B.3.1 l[eads to the mobile unit being found. DBecause the mobile unit is in front of the
announcement, the mobile unit arrives at the node before the channel is flushed, and an announcement copy must
stifl be at the node, Therefore, when the mobile unit moves onto the node, delivery must occar,

4.3 Single Delivery

ITaving shown delivery, it remains to be proven that the announcement is only delivered one time. To do
this, we counl the number of times the found variable is set to true. This is accomplished by incrementing an
auxiliary variable num_deliveries each time delivery occurs. To show multiple deliveries do not occur, we
must prove that the number of deliveries never exceeds one.

inv num_deliveries <1 (&)

Initially this property holds. If num_deliveries is zero, no statement can violate C because a single
statemenl can only increase num_deliveries by one. Once the announcement has been delivered and
num_deliveries is one, we focus on the two statements which can increment num_deliveries again: Stmt
2 and Stmt 4. In Simt 2, the announcement arrives at a node which has not yet received a copy of the
announcement. If the mobile unit is present at this node, delivery occurs. In Stmt 4, the mobile unit arrives along
an unflushed channel at a node with a copy of the announcement. Therefore, delivery occurs. To show that multiple
delivery is not possible, it is sufficient to show that once found is set to true, neither of the two conditions
described above occurs, This is refated 1o C because the definition of num_deliveries gives us the fact that
when the number of deliveries exceeds zero, the found variable must be true. The following properties caplure
these stalcments:

inv found (C.1)
= —(MobileAtNode(n} A —AnnouncementAtNode(n) A head.ChanQ{m,n)=announcement)

inv found (C.2)
= —(head.ChanQ(n,m)=mobile A mInChanFlush(n,m) A AnnouncementAtNode(m))

inv num_deliveries>0 = found (€C3)

"T'o prove properties C.I and C.2, we characterize a region of the graph called will-be-notified, and define it
as the set of all nodes which are —not i fied, the channels which are —£1lushed and do not have announcements
on them, and the channel segments between an annomcement and a node. Because C.1 and C.2 describe situations
where a mobiie unit is in Lhis region, a complementary properly to C.1 and C.2 is that a found mobile unit must
nol be in will-be-notified.

inv found = mobilee will-be-notified (C.1.1)

T'o use this knowledge to prove propertics C.1 and C.2, we define a path to be a sequence of nodes and
channels between a mobile nnit and the will-be-notified region. We state an invariant that once the mobile unit is
found, there must be an announcement in all such paths. This announcement can either be on a channel or at a node.

inv found = (Vp:path:annorncemenic py (C.1.2)

This property can be proven from the inilial conditions and over each program statement. Using this definition of 2
path, it is clear that if the mobile unit is in will-be-notified, then there exists at least one path between the mobile
unit and will-be-notified without an announcement on it. This relates to .1, where the mobile vnit is at a node
without the announcement, because a node without an announcement must be in will-be-notified. But if found
were true, then all paths would have an announcement on them, and there is a trivial path which does not.
Therefore, found cannot be true. In .2, the mobile unit is on an unflushed channel which is also a part of will-
be-notified. [the mobile unit had not been found, then all paths between the mobile unit and will-be-notified would
have an announcement on them, but in C.2, the channel the mobile unit is on is a part of will-be-notified, and the
path between the mobile unit and the channel it is on does not contain an announcement. Therefore, C.1 and C.2
arc truc.

11/725/97 6:36 PM

By combining C.1 and .2 with C.3, we have the desired result that once the number of deliveries is set to
one (i.c., delivery has been accomplished), the mobile unit is never in a location where it will be delivered to again.
Therelore, £ound cannot be set to irue again, and num_deliveries cannotincrease beyond one.

5. Extensions and Reality Check

To deliver multiple announcements simultaneously using this approach, we augment the state information
and storage requirements at each node. Specifically, every node indexes and stores the incoming announcements and
mainiaing a scparate flushed status for each announcement in the system. This information is maintained uniil the
nede locally determines they can be cleared. In the worst case, every node must have storage available for every
potential announcement in the system, as well as maintain the flushed status of each channel with respect to each
announcement, Althongh this appears excessive, we maintain that the nature of the algorithm in a real setting will
not require maximum capacity. In other words, because the nodes are able to locally determine when to delete the
announcements, the nature of the problem will determine how long an anmouncement is stored at a node.

An advaniage to this alporithm is the ability to operate in rapidly changing environments with the same
delivery guaraniees. In Mobile IP, mobile units must remain in one place long enough to send a message with their
current address to their home agent for forwarding purposes, remain at that foreign agent long enough for the
forwarded messages to arrive. With forwarding enhancements added to the foreipn agents, this issue is minimized
because the former location of a mobile unit becomes a kind of packet forwarder, However, even with forwarding, if
the mobile unit moves too rapidly and the system is unable to stabilize, forwarded packets will chase the mobile unit
around the system without ever being delivered. Because snapshots do not maintain a notion of home or route,
movements are immediately accounted for by the delivery scheme.

In more moderately changing environments, route discovery can increase efficiency and decrease overhead.
In these siluations, the snapshot delivery algorithm can be adapted to perform route discovery by having a message
wavel back 1o the original location containing information about the current location of the mobile unit. Because
the snapshot algorithm explicitly cleans np when it is locally complete, we provide stronger guarantees than some
route discovery mechanisms which rely on limeouls and cache swapping.

Another advantage of snapshot algorithms can be seen with broadcast, The IP backbone is based heavily on
the principles of broadeast, and many applications make use of this feature. However, in existing approaches 1o
mobilily much of the work has focused on point Lo point delivery. The snapshot delivery algorithm can be wrivially
extended to support multiple mobile units or a multicast address as destinations, Without changing the algorithrm, it
can be shown that delivery of an announcement is attempted to all mobile units before the algorithm terminates. If
the announcement’s destination address was changed to contain a broadcast or multicast address, delivery could be
cartied out whenever a connection with a mobile unit accepting those addresses was encountered. Unlike [1], the
group of mobile units interested in the multicast need not be known when the message is sent, but we still guarantee
delivery to all mobile units present in the graph for the duration of the delivery process. Imterestingly, even in
broadeast or multicast, the restriction of single delivery of an announcement holds.

Our modified multicast snapshot algorithm has worst-case overhead of one announcement per link in each
direction to multicast. By contrast, the algorithm used in IP DVMRP [4] effectively computes a tree. Its overhead
is the number of links in the tree plus the number of links that have endnodes that participate in this multicast.

Nexl we reexamine assumptions we made to show that they are reasonable. The issues we discuss hese are
non-FIF() channels, base station connectivity, reliable delivery on links, and storage requirements.

Non-FIFO channels: One major objection to using the Chandy-Lamport algorithm is its reliance on FIFO
channcl behavior. More specifically, we modeled both the mobile units and the announcement as traveling on the
same channel. This seems like an unreasonable assumption given that mobile units move much more slowly
through space than messages through a fixed networlk., To further explore this problem, we must adopt a more
specilic model of reality and show how the FIFO assumption can be inlegrated as a simple extension. In [11], we
provide a detailed deseription of the American standard for cellular communication, AMPS, and how adding a simple
message 1o the handover protocol can make the channel FIFO without sacrificing the mobility of the units or the
guaranices of the algorithm. With this extension, we suggest that it is possible 1o reason about FIFO channels in
reality as well as theory.

Base station connectivity: Another possible concern with the model we present is the necessity for physical
conmections between all nodes whose cells border one another. Although this is not practical due to the expense of
such conneclivity, it is possible to medel full connectivity by adding virtual channels between nodes that do not

11/25/97 6:36 PM

10

have physical connections. In addition to the annctncement following these virtual channels, the handover protacol
must also be adapied to guarantee the FIFO channel assumption.

Storage requirements: In snapshot delivery, we assume that the nodes hold a copy of the announcement for
delivery to the mobile units for a bounded period of time limited to the duration of the local snapshot. In a system
with bi-directional channels, because the local snapshot terminates when the announcement artives on all incoming
channels, a local snapshot can be as short as a single round trip delay between the MSCs, One can argue that it is
not the place of these nodes to be maintaining copies of the messages when their primary purpose is routing.
However, in this case, because no routing information is being kept about the mobile units, the system will be
required 1o keep additional state in order to provide delivery guarantees, Therefore, keeping a copy for a short
duration is a reasonable assumption.

Reliable delivery on links: The snapshot delivery algorithm assumes that link delivery is reliable. Most of
the Internet uses unreliable links like Ethernets, {rame relay, and ATM. The probability of error on such links may
be small but packets are indeed dropped. A possible solution is to add acks for multicast messages as is done, for
example, in the intelligent flooding algorithm used in Link State Routing in OS] [14] and OSPF [10]. Another
solution is o only provide best-effort service. Since lost messages can lead to deadlock we need to delete
announcemenis after a timeout even if an announcement is still expected on a link.

6. Conclusions

I this paper we presented an algorithm for multicast and unicast delivery of messages to mobile nnits [13],
provided an assertional-style proof for the algorithm, and offered some evidence of its potential practical use. In
doing so we introduced a new kind of approach to the study of mobility, one based on a model whose mechanics are
borrowed directly form the established literature on distributed computing. Treating mobile units as messages
provides an effective means for transferring results {rom classical distributed algorithms literature to the emerging
field of mobile computing. The next challenge we face is to evalnale the viability of the new model, i.e., the range
of problems for which Irealing the mobile unit as a persistent message is an appropriate abstraction.

7. Bibliography

[I1 A. Acharya and B. R. Badrinath, “Delivering Multicast Messages in Networks with Mobile Hosts,” 13th
International Conference on Distributed Computing Systems, New York, pp. 292-9, 1993.

[2] K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global States of Distributed Systems,”
ACM Transactions on Computing Systems, vol. 3, no. 1, pp. 63-75, 1985.

{31 K. M. Chandy and I. Misra, Parallel Program Design: A Foundation. Addison-Wesley, 1988,

[4] S. E. Deering and D. R. Cheriton, *Multicast Routing in Datagram Internetworks and Extended LANs,”
ACM Trans. on Computer Systems, vol. §, no. 2, pp. 83-110, 1990.

[5] TI. Eriksson, “MBONE: The Multicast Backbone,” Conununications of the ACM, vol. 37, no. 8, pp. 54-60,
1994,

[6] T, loannidis and G. Q. Macguire, Jr., “The Design and Implementation of a Mobile Internetworking
Architecture,” 1992 Winter Usenix, pp. 491-502, 1993.

[7] V. Jacobson and S, McCanne, “Visual Audio Tool,” {tp://fip.ce.lbl.gov/conferencing/vat, Lawrence Berkeley
Laboratory, computer program 3.4, October 1995.

(81 J. I. Kistler and M. Satyanarayanan, “Disconnected Operation in the Coda File System,” ACM Trans.
Computer Systems, vol, 10, no. 1, pp. 3-25, 1992,

01 8. McCanne and V. Jacobson, “vic: A Flexible Framework for Packet Video,” ACM Multintedia '95, San
Francisco, CA, pp. 511-522, 1995,

[10] J. Moy, “OS8PF Version 2,” Internet Engineering Task Force, Internet draft March 1994.

[11] A. L. Murphy, G.-C. Roman, and . Varghese, “An Algorithm for Message Delivery in a Micromobility
Environment,” Washington University in St. Louis, Technical Report WU(CS-97-28, 1997,

{12] €. Perkins, “IP Mobility Support,” Internet Engineering Task Force, ftp://ftp.jetf.cnrireston. va.usf/internet-
drafts/drafi-ietf-mobileip-protocol-16-txt, Internet draft draft-ietf-mobileip-16, April 22 1996.

[13]1 [I. B. Postel, “Internet Protocol,” Network Working Group, Technical Report RFC 791, September 1981.

f14] 11, Zimmerman, “OS81 Reference Model -- The ISO Model of Architecture for Open Systems Interconnection,”
{EEE Transactions on Communication, vol. 28, no. 4, pp. 425-432, 1980.

11/25/97 6:36 PM

	An Algorithm for Message Delivery to Mobile Units
	Recommended Citation
	An Algorithm for Message Delivery to Mobile Units

	tmp.1439928365.pdf.V6n0z

