Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-96-25

1996-01-01

New Results on Generalized Caching

Saied Hosseini-Khayat

We report a number of new results in generalized caching. This problem arises in modern
computer networks in which data objects of various sizes are transmitted frequently. First it is
shown that its optimal solution is NP-complete. Then we explore two methods of obtaining
nearly optimal answers based on the dynamic programming algorithm that we provided in [5].
These methods enable a trade-off between optimality and speed. It is also shown that LFD (the
longest forward distance algorithm which is the optimal policy in the classical case), is no
longer optimal but is competitive. We also prove that LRU... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Hosseini-Khayat, Saied, "New Results on Generalized Caching" Report Number: WUCS-96-25 (1996). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/415

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/415?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/415

New Results on Generalized Caching

Saied Hosseini-Khayat

Complete Abstract:

We report a number of new results in generalized caching. This problem arises in modern computer
networks in which data objects of various sizes are transmitted frequently. First it is shown that its
optimal solution is NP-complete. Then we explore two methods of obtaining nearly optimal answers
based on the dynamic programming algorithm that we provided in [5]. These methods enable a trade-off
between optimality and speed. It is also shown that LFD (the longest forward distance algorithm which is
the optimal policy in the classical case), is no longer optimal but is competitive. We also prove that LRU
remains competitive in the generalized case. This is an extension of a famous results by Sleator and
Tarjan [12] on LRU. Finally, it is confirmed in the general case that prefetch does not reduce the total cost
if "cost" reflects only the number of bytes transmitted.

https://openscholarship.wustl.edu/cse_research/415?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/415?utm_source=openscholarship.wustl.edu%2Fcse_research%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages

New Results on Generalized Caching

Saied Hosseini-Khayat

WUCS-96-25

November 1996

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

New Results on Generalized Caching *

Saied Hosseini-Khayat

Washington University in St. Louis

Abstract. We report a number of new results in generalized caching. This problem
arises in modern computer networks in which data objects of various sizes are transmitted
frequently. First it is shown that ifs optiaml solution is NP-complete. Then we explore
two methods of obtaining nearly optimel answers based on the dynamic programming al-
gorithm that we provided in [5]. These methods enable a trade-off between optimality and
speed. It is also shown that LFD (the longest forward distance algorithm which is the op-
timal policy in the classical case), is no longer optimal but is competitive. We also prove
that LRU remains competitive in the generalized case. This is an eztension of a famous
result by Sleator and Tarjan [12] on LRU. Finally, it is confirmed in the general case that
prefetch does not reduce the total cost if “cost” reflects only the number of bytes transmitted.

Key words: Generalized caching, optimal replacement, replacement algorithm.

1. Introduction

Caching is an effective performance enhancement technique that has been applied in com-
puter systems for decades. A cache, in general, is a fast and small block of storage located
between a consumer and a main store of data, and its purpose is twofold: to provide fast
access to frequently requested data, and to reduce the volume of data transmitted between
the main store and the consumer. To minimize the price/performance ratio, computer sys-
tem designers take advantage of a hierarchy of caches. This hierarchy starts at the top (i.e.
the smallest and fastest) level with CPU registers and includes the on-chip and on-board
caches, the main memory and the hard disk. Cached objects in these levels are uniform-size
chunks of data, e.g. pages and cache words. The clever management of these caches has
been the subject of extensive research in the past decades [13, 14].

The phenomenal growth of the Internet and emergence of distributed information sys-
tems, such as the World Wide Web, has necessitated the extension of the cache hierarchy

*Technical Report WUCS-96-25
t Applied Research Laboratory, Department of Computer Science, ‘Washington University, Campus Box
1045, One Brookings Drive, St. Louis MO 63130-4899. Email: saied@arl.wustl.edu. Tel:(314} 935-4460.

into the computer network. As an example, the hard disk now performs as a client-side
cache holding requested WWW documents for possible future use. Caching proxy servers
form the next level of hierarchy as caches of WW W documents requested by groups of users.
Study of regional and national network caches is also underway [8]. These two levels will
cache frequently transmitted documents on regional and national scales to reduce traffic
load of the network .

The ongoing information revolution is creating new services such as video-on-demand,
distributed image archives and on-line libraries, that will also benefit from caching. For
example, in the area of video-on-demand, caching of video programs in neighborhood servers
is discussed in [9, 11]. Also the use of cache in a distributed image database is discussed in
[15].

In many new applications the same scenario occurs again and again: variable-sized data
objects as e whole are requested, transmitted and cached. Also the performance cost of
cache misses are not all identical. For example, if we try to minimize the number of bytes
transmitted, then the cost of a miss is {nearly) proportional to size of the missing object.
The same is true if user-perceived latency is to be minimized. In addition, when other
factors such as the distance an object travels in the network, and the time variation of cost
per byte are taken into account, “cost” can become a complicated function of size, time and
so on. This motivates a fresh study of the page replacement problem when the assumption
of uniformity of size and cost is removed. In this paper, we are interested in the off-line
version of this problem, in which the sequence of requests is known in advance. As in the
classical case, the study of this version is important from a theoretical standpoint because
its optimal solution sets an upper bound on the performance of all other solutions. The
classical page replacement problem was optimally and efficiently solved by Belady [2]. In
this paper after introducing our notations in Section 2 and defining the generalized problem
in Section 3, we show in Section 4 that Belady’s theorem does not apply to the generalized
problem. Then in Section 5 we prove that this is NP-complete. An optimal method that
is based on dynamic programming is presented in Section 6. In Section 7 we propose and
explore two methods of finding nearly optimal solutions that allow considerable savings in
computation time. Section 8 contains a competitive analysis of Belady’s method (LFD).
Section 9 presents an extension of a well-known result on prefetching of items. Finally in
the last section we summarize our contributions.

2. Notations and Assumptions

Given is a finite universe of n cachable objects U identified by {1,2,... ,n}. For each object
i there is a positive size a; and a positive cost ¢;. A cache at any time contains aset BC U

such that

E a; < B ’

i€B
where positive B is the capacity of the cache. Also it is assumed that B > max{q;}. In
practice, size and cost are discrete quantities and hence expressible by integers. However
we do not need that assumption.

A sequence of requests p is denoted by o1, 09, ... ,0m, where oy, € U for all discrete times
k. A sequence p has a mazimum cost

m
Wnaa () £ chrk ,
k=1

which is incurred when caching is not done.

The state of a cache is determined by the set of objects it contains and changes in
response to requests as a result of the caching algorithm . We denote the state of a cache
at time k by B, and the state space of a cache by

B={BCU| > a<B}
i€l

Note that @ € B. The set B; denotes the collection of all states containing element j.
The state sequence By, By, ... , By denotes consecutive states of the cache in response to a
sequence of m requests, where By is the initial state and B,, is the final state.

A caching algorithm (policy) A takes a request sequence p and a cache of size B in
initial state By, produces a state sequence B, Bs,... , By, and incurs a cost W (A4, p, B) or
equivalently W ({B;},p, B) which is defined later. The miss indez {or normalized cost)
defined as
Sy W(4,p, B)

Winaz(p)

is the analog of the classical miss rate (the number of misses divided by the number of
requests). Note that 0 < M < 1.

We consider a single cache with non-modifiable non-dividable cache objects, and assume
that requests to the cache must be served in the order in which they arrive and every missing
item is loaded into cache at the time of request. The penalty of a miss is equal to the cost
of the missing item. A hit has no cost. When a new item is loaded, one or more items may
have to be purged. Purging involves no cost.

M(A,p, B)

Having introduced our notations, now we move on to the statement of problem in the
next section.

3. Problem Statement

Caching is in fact a2 discrete optimization problem in which each problem instance is mapped
to a discrete solution space, and a solution that minimizes an objective function is sought.
Problem Instance: A universe U of items. For each item ¢ € U a positive size a; and a
positive cost ¢;. A cache with size B in initial state By. A sequence p = 0103 . ..oy of items
in U.

Solution Space: All state sequences {B}~; such that

I forall<=1,2,... ,m, we have

ZajSBa

JEB;
II. and for alli = 1,2, ... ,m, we have

B = (B;—1 — &)U {O’i} if o; & B;1
L Bi_1 ifo; € B ’

where & C B;—1.

Objective: Find a state sequence such that its cost W({Bx},p, B} = 3 pei 0k Cop I8
minimized, where

A 0 ifo;eB;

YTl o € By

Condition I reflects the limited capacity of the cache whereas Condition II places re-
striction on the way cache state changes. We have assumed that its state may change only
when a miss occurs. In that case the missing item is loaded and some items may have to be
purged to satisfy the first condition. A state sequence satisfying the objective is an opfimal
state sequence. An opiimal algorithm is one which produces an optimal state sequence for
all problem instances, In general, if an algorithm requires exact information about all future
requests, it called off-line. Alternatively, if it requires no advance knowledge of future, it is
called on-line. The latter category is more useful, because in practice requests are presented
to the algorithm one at a time and an immediate response is expected. However, the former
can also be useful in applications in which requests are scheduled in advance. It is easy to
realize that no on-line algorithm can be optimal in the above-defined sense. We focus on
off-line algorithms in this paper.

4. LFD is not Optimal

A special case of the generalized caching problem (GENCACHE), known as the paging or
page replacement problem, has a well-known optimal solution. If all items have unit size
and cost, then it has been shown {2, 7] that replacing, among all items currently in cache,
the item whose next request comes furthest in future is the optimal policy. We call this the
longest forward distance (LFD) algorithm or policy. Unfortunately, when either the sizes
or costs are nonuniform this policy is not optimal. We demonstrate this by examples.

Case 1. Consider items {1,2,3,4} with uniform sizes and non-uniform costs 1,1, 5,10
respectively. Let the cache capacity be B = 2. Take the request sequence p = 1,4,3,2,1,4
and start with an empty cache. LFD generates the following state sequence:

LFD: #,{1},{1,4},{1,3}, {1,2}, {1,2}, {1,4}
and incurs W(LFD, p, B) = 27. Suppose a different policy A generates the following state

sequence:
A 0,{1},{1,4}, {4,3},{4,2}, {4,1}, {4,1}.

This is a valid state sequence, satisfies p and incurs a cost W (A4, p, B) = 18 which is less
than that of LFD. This happened because LFD dutifully purged a costly item instead of a
less costly item.

Case 2. Consider items {1, 2, 3,4, 5} with uniform costs and non-uniform sizes 1,1, 1, 3, 3
respectively. Take the request sequence p = 2,1,3,2,4,2,5,5,4,2,1,1, 3. Let the cache ca-
pacity be B = 6 and start with empty cache. LEFD generates the following state sequence:

LED: 6, {2}, {1,2}, {1,2,3},{1,2,3},{1,2,3, 4}, {1,2, 3,4},

{5,4},{5,4}, {5,4},{5,2}, {5, 2,1}, {5,2,1},{5,2,1, 3}

and incurs W(LFD, p, B) = 8. Suppose a different policy A generates the following state

sequence:
A: 0,{2},{1,2},{1,2,3},{1,2,3},{1,2,3,4},{1,2,3,4},

{1,2,3,5},{1,2,3,5},{1,2,3,4},{1,2,3,4}, {1, 2,3,4},{1,2,3,4}

which is a valid state sequence and satisfies p. This policy incurs a cost W({4,p,B) = 6
which is less than that of LFD. This happened because LFD dutifully removed two items
which were farthest in future in favor of one big item.

In both cases it was shown that LFD does not produce the optimal state sequence. The
same statement is obviously true in the more general case of items with non-uniform sizes
and non-uniform costs. It is natural to look for a simple modification of LFD that fixes its
flaws. This, however, turns out to be tremendously difficult. In this paper, we will present
an optimal algorithm that has no similarity to LFD and solves the general case. Although
this sounds good, the simplicity and efficiency of LFD is lost. The following result suggests
that we should not expect to find an efficient algorithm for GENCACHE.

5. Intractability

We showed that LFD does not optimally solves (GENCACHE). It turns out that GENCACHE
is NP-complete. We prove this by reducing from the 0-1 Knapsack Problem which is NP-
complete [4, Problem MP9]. Specifically, we show that if an efficient (i.e. polynomial time)
solution for GENCACHE exists, it can be used to solve the knapsack problem efficiently.

GENCACHE was defined in Section 3. The statement of the knapsack problem is as
follows.

Definition 5.1 (Knapsack) INSTANCE: A set of items A = {1,2,... ,n}, foreachi € A a
size a; > 0 and a cost ¢; > 0. A positive number K (knapsack size) such that K < 3, a;.
PROBLEM: Find a set K C A such that 3 ;. a; < K and 3,4 ¢; is mazimum.

The problem is that of finding items, from a given set, that together can fit in a knapsack
and have the most total value. Generalized caching, on the other hand, is the problem of
finding the best sequence of removals from a cache. The latter can be used to solve the
former problem as shown next.

Theorem 5.1 GENCACHE is NP-complete.

Proof. First it must be shown that GENCACHE is in NP. Recall that a problem should be
stated as a decision problem before it can be said it is or it is not in NP, Therefore we ask
that given an instance of GENCACHE whether there exists a state sequence By, B1,... , Bm
that satisfies Condition I and IT and its cost 3 iw; & ¢; is less than a given number 8. It
is easy to see that this can be verified in polynomial time for any given state sequence.
Therefore GENCACHE is in NP.

Next we need to construct a polynomial time reduction from KNAPSACK to0 GENCACHE.

Any given instance of KNAPSACK can be mapped into an instance of GENCACHE in the
following way: Let U= AU {&} = {1,2,... ,n, £}, where £ is an auxiliary item. Preserve
the size and cost of items. Set the size of £ to ag = } ., a;— K and its cost to 1 (arbitrary).
Set the cache size to B =), a; and let it initially contain 1,2,... ,n. Set the request
sequence to p = ¢,1,2,... ,n. Now suppose algorithm G solves GENCACHE in polynomial
time. The G algorithm on this instance of GENCACHE produces 51, 583,..., 5} ..
Claim: The set K = B} — {£} is a solution of the knapsack problem. Proof: In the first
step G must (by definition of GENCACHE) place { in the cache, i.e. £ € B}. Since the
cache is initially full, it must remove one or more of items 1,2,... ,n. The request sequence
p is such that any item(s) removed from the cache in the first step must be loaded once
again. Also when the first miss after £ occurs, G must remove ¢ because there is no room
for the missing item. (Otherwise it shouldn’t have been removed, because it increases the
total cost, so does removing any item other than £.) Once £ is removed, no other items
need to be removed until the end. Therefore G misses exactly once on any item that it
removes from By and incurs a total cost exactly equal to W =145, & Ci» where &; is the
set of elements removed from By. The first term in W is unavoidable. Therefore ¢ must
minimize Eiesl ¢;. Note that every element in By will be requested once. Therefore this
sum is minimized if and only if the total cost of element carried from By to B is maximized.
Hence G must choose a set K C By to carry to B in such a way that ag + EiEKI a; < B
and };-r ¢; is maximized. Stated equivalently, G must choose X C A in such a way that
2ex® S B—ag = K and),k ¢ is maximized. Therefore G must solve the knapsack
problem in the first step and B} — {¢} is the solution. This proves the claim. Now note that
by assumption, G solves GENCACHE in polynomial time, therefore it solves the knapsack
problem in polynomial time. Since KNAPSACK is NP-complete, then so must be GENCACHE.
O

We conclude that GENCACHE cannot be solved in polynomial time unless it is proved
that P = NP—a very unlikely event. Proving that a problem is NP-complete, however, is
not the end of the story. It only means that its exact solution is not scalable. This may be
acceptable in applications that only involve small problem instances. In addition, an exact
solution may reveal structure that can be exploited in developing its approximate solution.
Finally, some special cases of the problem may have efficient solutions, in which case it is
better to develop solution for the special case.

We mention that KNAPSACK lends itself to a dynamic programming solution [4, page96].
In technical report [5], we presented an optimal solution dynamic programming for GEN-
CACHE.

6. Approximation

The optimal algorithm in [5] gives an insight on developing approximate methods that are
useful when finding the optimal is too costly. Here we investigate two methods.

6.1. Breadth Limiting Method

Recall from the previous section that the catch in the optimal algorithm is the potentially
huge breadth of its DAG. Intuition tells us that, instead of expanding every node in each
layer, if we expand only up to N best (least cost) nodes and omit the rest, the final result
will be close to optimal. This will shorten running time at the cost of optimality. Thus we
add the following step between step 3 and 4 of the optimal algorithm:

3'. Omit all but N nodes that have the least cost.

We implemented the optimal as well as this modified algorithm and performed a sets of
experiments. A universe of 20 items with sizes 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5,
4, 3, 2, 1 and costs 2, 2, 5, 5, 5, 10, 10, 10, 10, 10, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, respectively,
was picked. The cache size was fixed at B = 30. Two random traces of 1000 requests was
generated in the following ways:

1. Non-localized Trace. For each request a number in {1, 2,... ,20} was picked uniformly
at random. There is no locality of reference in this trace and we call it NLT.

2. Highly Localized Trace. For each request we picked the ith most recent request with

22 26 23 20 19 17 15 10 9 8 5
probablhty i, where p; was, respectlveiy, 30000200200 300200200 °300 200200200

T2 5es s e 520 e s 5ems5emasan- There is a high locality of reference in this trace
(the most recently referenced items have a high probability of being referenced again)
and we call it HLT.

The maximum costs these traces were Wpyon(VLT) = 5593 and Wi (HLT) = 5740.

Then we ran the optimal algorithm and computed the optimal cost of the two traces
and recorded the CPU time for processing each trace. The maximum breadth of the DAG
for NLT and HLT was 10007 and 7871 nodes, respectively. Then the modified approximate
algorithm was run on both traces with values for N ranging in 2, 5, 10, 20, 50, 100, 200, 500,
1000, 2000, 5000. For each run, the (suboptimal) computed cost and the CPU time was
recorded. Finally, the LRU (Least Recently Used) and LFD algorithms were executed on
each trace. The results are shown in Tables 1, 2, 3 and 4, where we have used the following
definitions:

cost — optimal cost

deviation from optimal = -
optimal cost

cpu lime
cpu time for optimal

normalized cpu time =

The CPU times were measured using the Unix’s time command. This method, although
not highly accurate, suits our purpose of comparing relative magnitudes. Also all processes
were run on a 200 MHz Pentium Pro PC with 64 MB memory, 256 KB L2 cache and running
NetBSD, such that the running program was the only active process. While the absolute
values of CPU time can change from machine to machine, we ensured that the normalized
values were almost invariant.

N || Cost | Deviation from Optimal | CPU Time (Sec) | Normalized CPU Time
2 2306 74.8% 0.36 0.00002
3 1883 42.7% 0.55 0.00003
10 1711 29.7% 0.89 0.00005
20 1554 17.8% 1.80 0.00010
50 1404 6.4% 4.86 0.00026
100 || 1350 2.3% 11.59 0.00062
200 || 1327 0.6% 32.35 0.00173
500 | 1322 0.2% 144.42 0.00773
1000 || 1319 0% 476.64 0.02551
2000 | 1319 0% 1763.67 0.09439
5000 || 1319 0% 10286.81 0.65052
00 1319 0% 18685.63 1.00000

Table 1: Results of Breadth Limiting Algorithm on Trace NLT

| N | Cost | Deviation from Optimal | CPU Time (Sec) | Normalized CPU Time
2 2771 78.5% 0.39 0.00003
5 2242 44.5% 0.55 0.00004
10 1965 26.6% 0.86 0.00006
20 1816 17.0% 1.57 0.00011
a0 1613 3.9% 3.97 0.00028
100 || 1583 1.9% 10.99 0.00078
200 || 1565 0.8% 20.27 0.00208
500 || 1552 0% 136.04 (0.00967
1000 || 1552 0% 474.55 0.03374
2000. || 1552 0% 1830.23 0.13014
5000 || 1552 0% 10043.61 0.71417
0o 1552 0% 14063.27 1.00000

Table 2: Results of Breadth Limiting Algorithm on Trace HLT

Tables 1 and 2 show a remarkable tradeoff between accuracy and run time that is
possible with our approximation algorithm. As IV is increased the cost approaches rather
abruptly to the optimal value. The bottom row reflects the values for the optimal algorithm
(which does not limit the breadth, i.e. N = c0). (The breadth of the DAG when running

” Cost I Deviation from Optimal | CPU Time (Sec) | Normalized CPU Time ”
Optimal || 1319 0% 18685.63 1.000000
LRU 2283 73.8% 0.00 0.000000
LFD 1486 12.7% 0.01 0.000000

Table 3: Results of LRU and LFD Algorithms on Trace NLT

“ “ Cost | Deviation from Optimal | CPU Time (Sec) | Normalized CPU Time ”
Optimal || 1552 0% 14063.27 1.000000
LRU 2653 70.9% 0.00 0.000000
LFD 1742 12.2% 0.01 0.000000

Table 4: Results of LRU and LFD Algorithms on Trace HLT

the optimal algorithm actually hits a maximum of 10007 and 7871 respectively for NLT
and HLT.) As shown in the two table, if we set N = 100, the algorithm runs 1612 and
1232 times faster on NLT and HLT, respectively, than the optimal while attaining a cost
only about 2% higher than the optimal. Surprisingly, the corresponding figures for both
traces are close despite the fundamental difference in their models. This is visualized in
Fig. 1. Tables 3 and 4 show the results of running LRU and LFD on the NLT and HLT
traces, respectively. The first row reports the figures for the optimal algorithm from Tables
1 and 2 for convenience. Both algorithms, although very fast compared to the optimal and
approximation algorithms, produce large deviations from optimal. LFD is closer to the
optimal than LRU because it looks ahead in the sequence.

6.2. Periodic Omission Method

Another way to trade optimality for speed, is to let the DAG of the optimal method grow
without restriction, but periodically omit all nodes except the best (least cost) one. Thus
we modify the optimal algorithm by adding the following step between step 3 and 4:

3. If k mod T = 0, then omit all nodes except one with the least cost, where k is the
discrete time, and T is the period of omissions. We picked the same set of items and the
same traces NLT and HLT and performed this modified algorithm with parameter 7" ranging
in 2,5, 10, 20, 50, 100, 200, 500, and tabulated the results in Tables 5 and 6. Again the same
definitions are used for deviation from optimal and normalized cpu time.

We observe that the same tradeoff appears again (Fig. 2). As period T is increased, the
normalized CPU time goes up while the deviation from falls sharply.

Our traces are not in any way unique and the above observations can be repeated with
arbitrary traces and items. However, we suspect that it is possible, though not easy, to come
up with pathological examples for which both approximation algorithms perform poorly.
For this to happen a trace must be deliberately generated such that all globally optimal
and nearly optimal paths perform very badly in the beginning (so that they are omitted in

10

1.0 SR ‘ i Beh
L "
| ; H
i Y
s e
0.9 P
. N
. ;oI
u]
5 '
o8 L G—O HLT: Deviation from optimal T
b = ~ -0 HLT: Normalized CPU time H !]
C &—< NLT: Deviation from optimal P
0.7 2 - —A NLT: Normalized CPU time PR
[T
1 P
0.6) 4
L p ! J
. g
[S
2 r
0.5 | :' [
B []
- ! !
A v]
0.4 o I 7]
L I 1
- 1] 4
L T E
0.3 | i N
| N]
[N]
3 1! 4
L el 1
1
0.2 N 7
N]
- ,r
[o
7
0.1 - /’A 7
- E/’z,’ E
00 L = NS S SV S A &
10 100 1000 10000
ax breadth size) ..
Breadth Limiting

1
ed Tradeoff by

. oy, N (m
Figure 1: Optimality-Spe

Step 3) and the surviving paths in the beginning accumulate a high cost towards the end.

However, our numerous experiments show that this is not likely when a trace is generated

randomly. Finally, we have no way of prescribing specific values of N or T so that the

resulting final cost falls within a given distance of the optimal.

7. LFD is Competitive

Although the approximation algorithms discussed above are orders of magnitude faster
than the optimal algorithin, they are yet too slow for majority of interesting applications.
Therefore effective heuristics are needed. In Section 4 we showed that LFD is not optimal,
now we question whether it is a good heuristic. Competitive analysis, pioneered by Sleator
and Tarjan [12], is a well-known way of comparing heuristic solutions. In particular it has
been used for on-line algorithms (see for example [3, 6, 10]) and studies whether the cost
of an algorithm lies within a constant factor of the optimal cost for every sequence. The

constant factor, if any, is then used as a measure for comparing algorithms.

Definition 7.1 An algorithm is a-competitive if ifs cost is within a constant factor o of
optimum on any sequence of requests (up to an additive constant). An algorithm is com-
petitive if it is q-competitive for some constant o. The constant o is called the competitive

11

1.0 ; . £
l, "
i S f’
oo | s
A o K
E C i
[G—O HLT: Deviation from optimal [.
0.8 - & - -0 HLT: Normalized CPU time | o
- <&—< NLT: Deviation from optimal | N
A & — =& NLT: Normalized CPU time !
0.7 | ! ! "
t i J
L. i ! 4
- ! ! -
0-6 . : ‘.' E
- 1 I
b { b
C PP]
0.5 - ! ; .
L t + p
| ! ! 4
- ! ’ -
0.4 | ;o 5
1 I]
T g 1
P 1
A Do]
03 F P -
02 [.
o1 | .
= £ gy - ;
1 0 100 1000
(omission period

0.0 !
1
Figure 2: Optimahty~Speed Tradeoft by Perxodlc Omissions

factor. An algorithm is strongly competitive if it achieves the smallest possible competitive

factor.
The following theorem is a competitive analysis of the LFD algorithm in the case of

uniform size and nonuniform cost items
Theorem 7.1 Given a set U of items with unit size and nonuniform cost ¢1,62,... ,Cn,
and a cache of size B in initial state By, the following holds for all sequences p

Cmazx

W(Alfdsp:B) <
= Cmin

W(AOpt: P B)

where Cmin = min{c¢;} and cper = max{c;}
icl ic
Proof. Pick a request sequence p. An optimal algorithm Agpt on p produces a state sequence
m

{B{}ix from which we can determine the sequence {d}}7-,. Thus we have:

m
Zékcgk <Z‘5L0maﬂ= .

m
Z 6; Crmin S W(Aopt: P,
k=1 k=1

| T | Cost | Deviation from Optimal | CPU Time (Sec) | Normalized CPU Time
2 2684 103.5% 0.69 0.00004
5 2059 56.1% 1.36 0.00007
10 1715 30.0% 3.83 0.00020
20 1523 15.5% 18.40 0.00098
50 1422 7.8% 139.67 0.00747
100 || 1373 4.1% 562.63 0.03011
200 | 1336 1.3% 1958.36 0.10481
500 | 1323 0.3% 10026.21 0.53657
1000 || 1319 0% 18685.63 1.00000

Table 5: Results of Periodic Omission Algorithm on Trace NLT

T Cost | Deviation from Optimal I CPU Time (Sec) l Normalized CPU Time ”
2 2858 84.1% 0.51 0.00004
5 2466 58.9% 1.77 0.00013
10 2067 33.2% 6.07 0.00043
20 1818 17.1% 22.65 0.00161
50 1620 4.4% 139.94 0.00995
100 1595 2.8% 693.50 0.04931
200 1568 1.0% 3257.17 0.23161
500 1558 0.4% 12292.84 0.87411
1000 || 1552 0% 14063.27 1.00000

12

Table 6: Results of Periodic Omission Algorithm on Trace NLT

On the other hand, LFD on p produces possibly another state sequence {B}}7., with
corresponding {d}.}7-,, and we have:

W(Ags, 0 B) = 8 co, <Y Ok Cmaz -
k=1 k=1

Also we have: W{(Agpt, p, B) < W(Ayy,p,B) . Now suppose ¢; = ¢z = ... = ¢ = Crox
(i.e. a problem with uniform size and uniform cost items) and notice that the same state
sequences {B;}7, and {B}}7; are still valid state sequences for p. Also notice that the
latter state sequence is the result of LFD on p for the new problem and hence it is optimal

[2]. Therefore: > 1*; 6 Cmaz < 2 peq O Cmax - Hence

wm m
D 6% emin < W(Aopt,p, B) < W(Ayg, 0,B) <D 8 ez »
k=1 k=1
¢Cmin < W(Aopi:p} B) < W(Alfdi Py B) < GCmex »
where ¢ = 7, 0. Therefore

W(Alfd7 2 B) < gcmaz

13

W(Aapta P B) 2 GCmin,
and the desired conclusion follows. O

This result implies that LFD is at least m-competztlve We do not know that, for a
get of items with given sizes and costs, Whether this factor is the least possible for LFD.
However it implies that for all possible sequences its cost is no more than a constant multiple
of the optimal. There are policies, e.g. LFU (Least Frequently Used), for which this is not
true [12].

8. LRU is Competitive

LRU is a widely-used heuristic that performs well in memory paging. Sleator and Tarjan [12]
showed that for uniform size and cost items, LRU is strongly competitive with a competitive
factor of B, where B is the size of the cache. The following theorem states that it is
competitive in the generalized case.

Theorem 8.1 Given a set U of items of size a1,09,... ,a, and of cost ¢1,cg,... ,cp, and
a cache of size B at initial state By, the following holds for all sequences p:
WAy, p, B) L W(Aoptsp? B)+83,
where & and (3 are constants independent of p.
Proof. Pick a sequence p. LRU on p produces a sequence of hits and misses indicated by

{0x}7-,. Let us divide p into phases separated by a sequence of times t;,ta,..., starting
with the first miss time,

P=01,..., Ut1 ;O't1+1,---,at2;0t2+15---:0-t3:---
N PN - 2] . — 3,
first miss first phase second phase

such that
J
tiy1 =min ¢ J ! z 5]‘75"'0116 > B —amin ¢
k=t;+1
where anin = I‘%%}.{ai} . During each phase, the total size of items entering the cache equals
1

or slightly exceeds the cache size. We claim that an optimal algorithm must incur at least
one miss on each phase. Consider the two cases that can happen during a phase.

Case 1: LRU misses on distinct items.
We have two sub-cases depending on the last miss (say on i) which happened before the
beginning of current phase. (Note: Each phase ends with a miss.)

Case fg: There is a miss to 7 in a current phase.
ey Oy =1 ,th_;_l,...,ak:z,...,atj+1,...

S—— - e
last miss before current phase current phase

14

Notice that at time ¢; item ¢ is brought into cache and is later pushed out by some other
items only if ¢ becomes the least recently used item in cache. Therefore if there is another
miss on %, it means that all other items that are resident in cache at time &k came after time
t; but before time %, and their total size added to a; is equal to or greater than B. This
implies that an optimal algorithm must miss at least one of these items which are all in the
current phase.

Case 1b: There is no miss to ¢ in a current phase.

\A,_/

last miss before current phase current, phase
An optimal algorithm at time ¢; + 1 contains item ¢ and during the current phase more
items arrive none of which is ¢. Since their total size is greater than B, at least one of the
new items must be out of cache at time £; forcing the optimal algorithm to incur a miss in
the current phase.

.y . =1 PO+l e 30809y
g —

Case 2: Two misses happen on the same item ¢ in a current phase.

Oy O =0y 01 Ty Oty e
A > g

currenrphase
Notice that after the first miss at time ¢; item ¢ is brought into the cache and must be
pushed out by new items before the second miss at time ¢; + 1 happens. Therefore, the
total size of items that arrived after £; and before time ¢; + 1, added to a; must exceed the
cache size B. This forces the optimal algorithm to miss at least one item.

Thus we proved that on every phase of LRU an optimal algorithm misses at least one
item. The factor « is found by maximizing the cost incurred by LRU on a phase divided
by the cost incurred by an optimal algorithm on the same phase , i.e.

a=max{&ig—5"l|jegand ZaigB} .

Gcu cj Py

Now notice that p has a start-up period (before the first miss) on which both LRU and
an optimal algorithm incur zero cost. Also notice that p may terminate with an incomplete
phase. On an incomplete phase, an optimal algorithm may incur zero cost while LRU can
incur a non-zero finite cost 5. In the worst case, § is equal to the maximum cost that an
incomplete phase can have, i.e.

ﬁzgica% {Zcz! ZaiSB_amin} .

ieg i€g

Now we can conclude that since every sequence can be divided into a start-up period,
a number of complete phases and a final incomplete phase, then the cost of LRU on any
sequence is upper-bounded by oW (Agpt,p,B) + 4. O

We showed that LRU is a-competitive. However, it remains a question whether « is the
least competitive factor for LRU or whether LRU is strongly competitive.

15

9. Does prefetch help?

Our definition of generalized caching does not leave room for prefetch. In this section
we discuss whether there is a benefit in prefetching of items. The answer to this question
depends on when costs are actually incurred. If the purpose of caching is merely to minimize
retransmissions, then costs are incurred when a transmission occurs—whether due to a miss
or because of a prefetch. On the other hand, if the purpose is only to minimize the waiting
time of users when requesting items, then costs are incurred when requests are made. (In
practice, both goals are desirable and hence the actual cost is a weighted combination of
both types of costs.) We show that in the former case, there is no advantage in prefetch.

A prefetch at time k is defined as a transition from Bp to By such that Bryy =
(Br — &)U {0} where ! > k, and we assume it occurs only if o, € 5. This type of transition
was not allowed in our definition of the problem. Now we prove that if it is allowed, it will
not improve performance.

Theorem 9.1 Given o universe set U, a cache of size B, a request sequence p, and a state
sequence {Bi} on p that contains prefetches, there ezists another state sequence {B}} that
contains no prefetch and its cost is no more than the cost of the former, i.e. W({B.},p,B) <

W({Bk}:p’ B)
Proof. Set By = By. Define {B}}7*, as follows:

1. If oy € By, then set B}, = B}._;.

2. If oy & B;,_, and oy, € Bj_1, then set B, = (B}, — £') U {o}, where £’ is the same
set {By} purged when it last prefetched oy.

3. If o, € B},_, and oy & By_1, then set B}, = (Bj,_; — £) U {o}}, where £’ is equal to
the same set purged by {8y} at this time.

Thus By, is determined in the case of all possible events. It is seen that {8} replaces
exactly the same items {85;} does for each request. This implies that corresponding to any
item fetched by {B}} there is a fetch (or prefetch) of the same item by {B;}. Therefore
W({{B},p,B) < W({Bi},p,B). Note that {B}} does not prefetch at all. The proof is
complete. O

Corollary 9.1 For any optimal state sequence {By} we can find a state sequence {BL} that
is optimal and does not prefetch.

Proof. Let {8} be a state sequence derived from {8} according to the rules 1, 2, 3 given
in previous theorem. It does not prefetch and the theorem guarantees that W{({8;},p,B) <
W ({Bx}, p, B). Since {By} is optimal then W ({B}, p, B) < W({B.}, p, B). Therefore {5} }
is optimal. &

Theorem 9.1 establishes that prefetch has no benefit if a prefetch is as costly as the
corresponding fetch. In fact, it is easily seen that prefetch can possibly increase the total

16

cost because either the prefethed item may have to be purged before its anticipated request
happens, or it may purge items that might be requested soon.

Corollary 9.1 implies that we can disallow prefetch without degradation in performance.

10. Conclusion

We studied the generalized caching problem and proved that it is NP-complete. It was shown
that LFD is not optimal but is competitive. We presented two methods for obtaining nearly
optimal answers without expending inordinate amounts of CPU time. It was also shown
that LRU remains competitive in the generalized case, and proved that a classical result
on ineffectiveness of prefetch extends to this case. There are a number of open problems
outstanding. It is not known if the problem remains NP-complete if only either cost or size
is non-umiform. We also do not know if LRU is strongly competitive among generalized on-
line algorithms. Whether the competitive factor of LFD is the minimum among generalized
off-line algorithms remains a question as well.

Acknowledgement. The author expresses gratitude for the helpful comments of Pro-
fessors Jerome R. Cox, Jr., Subhash Suri and George Varghese of Computer Science De-
partment.

References

[1] V. A. Aho, P. J. Denning, J. D. Ullman, “Principles of Optimal Page Replacement,”
Journal of the ACM, Vol. 18, No. 1, 80-93, January 1971.

[2] L. A. Belady, “A Study of Replacement Algorithms for a Virtual-Storage Computer,
IBM System Journal, 5 (2) 78-101, 1966.

[3] Allan Borodin, Nathan Linial, Michael E. Saks “An Optimal On-line Algorithm for
Metrical Task System,” Journal of the Association for Computing Machinery, Vol. 39,
No. 4, October 1992.

[4] Michael R. Garey, David S. Johnson, “Computers and Intractability: A Guide to the
Theory of NP-Completeness,” W.H. Freeman and Company, San Francisco, 1979.

[5] Saied Hosseini-Khayat, Jerome R. Cox, Jr., “Optimal Solution of Off-line and On-
line Generalized Caching,” Technical Report WUCS-96-20, Department of Computer
Science, Washington University.

[6] Mark S. Manasse, Lyle A. McGeoch, Daniel D. Sleator, “Competitive Algorithms for
Server Problems,” Journal of Algorithms, No. 11, pp. 208-230, 1990.

[7] R. L. Mattson, J. Gecsei, D. R. Slutz, L. L. Traiger, “Evaluation Techniques for Storage
Hierarchies,” IBM Systern Journal, 5 (2), 78-117, 1970.

(8]

9]

[10]

[11]

[12]

(13]

(14]

[15]

17

World Wide Web home page of the National Laboratory for Applied Network Research:
hitp:/ fwww.nlanr.net/Cache.

Christos H. Papadimitriou, S. Ramanathan, P. Venkat Rangan, “Information Caching
for Delivery of Personalized Video Programs over Home Entertainment Channels,”
Proceedings of The IEEE International Conference on Multimedia Computing and Sys-
tems, Boston, MA, May 1994.

Prabhakar Raghavan, Marc Snir, “Memory Versus Randomization in On-line Algo-
rithms,” Automate, Languages and Programming : Proceedings of the 16th Interna-
tional Colloquium, Stresa Italy, July 1989, pp. 687-703, Springer-Verlag.

S. Ramanathan, P. Venkat Rangan, “Architectures for Personalized Multimedia,” IEEE
Multimedia, Vol. 1, No. 1, Spring 1994.

D. D. Sleator, R. E. Tarjan, “Amortized Efficiency of List Update and Paging Rules,”
Communications of the ACM Vol. 28, No. 2, pp. 202-208, February 1985.

Allan J. Smith, “Bibliography on Paging and Related Topics,” Operating Systems Re-
view, vol. 12, 39-56, Oct. 1978.

Allan J. Smith, “Second Bibliography for Cache Memories,” Computer Architecture
News, Vol. 19, No. 4, June 1991.

Thomas Stephenson, Harry Voorhees “IMACTS: An Interactive Multiterabyte Image
Archive,” 14** IEEE Symposium on Mass Storage Systems, 1995.

	New Results on Generalized Caching
	Recommended Citation
	New Results on Generalized Caching

	tmp.1439928365.pdf.Rwrbb

