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ABSTRACT OF THE DISSERTATION
Runx1 in Primitive Hematopoiesis and Characterization of Hematopoietic Stem
Cells in a Mouse Chronic Inflammatory Arthritis Model
by
Yunglin David Ma
Doctor of Philosophy in Biology and Biomedical Sciences
Program in Developmental Biology
Washington University in St. Louis, 2009

Professor Kyunghee Choi, Chairperson

Hematopoietic cells are essential for growth and survival throughout adult life.
Two different aspects of hematopoiesis are addressed in this dissertation.

I. The requlation of primitive hematopoiesis by Runx1 and TGFf signaling.

Primitive hematopoiesis, occurring exclusively in the yolk sac, is characterized
by its transient nature. As the primitive hematopoiesis declines in the yolk sac,
definitive hematopoietic progenitors generated in the yolk sac and/or embryo take
over in blood cell production. Whether the transition from primitive to definitive
hematopoietic program reflects a mere shift in hematopoietic sites or whether it is an
actively regulated process is currently unknown. Runx1 is necessary for the
establishment of definitive hematopoiesis. Most studies on Runx1 have focused on
its role in generating hematopoietic stem cells. Intriguingly, Runx1 expression can be
detected in the yolk sac blood-islands where primitive erythroid (EryP) progenitors
emerge. The function of Runx1 in primitive hematopoiesis has not been carefully

investigated. Herein, we determined if Runx1 plays a role in primitive hematopoiesis

Xi



by utilizing in vitro embryonic stem (ES) cell differentiation system and by examining
EryP development in Runx1 mutant mice. We demonstrated that Runx1 deficient
mice contained a significantly reduced number of EryP progenitors compared to
controls. Nonetheless, Runx1 deficient mice survived until they required definitive
hematopoietic cells. We demonstrated that a high level of enforced Runx1 expression in
the in vitro differentiation model of embryonic stem (ES) cells suppressed EryP
progenitor generation. We also identified TGFB1 as a cooperative signal of Runx1 in
negatively regulating EryP development. Our studies revealed an unexpected role of
Runx1 in both initiation and termination of primitive hematopoiesis.

Il. The relationship between hematopoietic stem cells and bone marrow

microenvironment.

There is an intricate relationship between hematopoiesis and bone homeostasis
in normal physiological states during adulthood. By utilizing mice undergoing chronic
inflammatory arthritis, we investigated the relationship between hematopoiesis and
bone homeostasis in pathological conditions. We demonstrated that mice with
chronic inflammatory arthritis are osteoporotic due to a severe defect in osteoblast
function. Despite the defective osteoblast function, the hematopoietic stem cells from
these mice exhibited normal properties in HSC frequency, cell cycling and long-term
repopulating ability. Therefore, the bone forming capacity of osteoblasts is
disassociated from their ability to maintain HSCs in a chronic inflammatory condition.
These observations suggest other cell types, such as endothelial cells in the bone

marrow, might serve as HSC niches under pathological conditions.
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Chapter 1

Runx1 in Primitive Hematopoiesis



Chapter 1.1

Introduction



Hematopoietic Development during Mouse Embryogenesis

The production of blood cells takes place in several distinct anatomical sites
during mouse embryogenesis. The first blood cells to appear, known as primitive
erythrocytes, are initially detectable in the extraembryonic yolk sac blood islands
at embryonic day E7.5 of gestation and become extinct by E9.0. (Ferkowicz and
Yoder, 2005). Meanwhile, the liver rudiment is colonized by hematopoietic stem
cells by E10.5 and becomes the principal hematopoietic organ during fetal
development (Houssaint, 1981). Beginning at birth, bone marrow (BM) is
colonized by hematopoietic stem cells (HSCs) originating from the fetal liver.
Thereafter, and continuing throughout adult life, all mature blood cells are
produced in the bone marrow. The term primitive hematopoiesis is applied to the
development of the initial yolk sac-derived erythroid cells, while definitive
hematopoiesis refers to all blood cell lineages other than the primitive erythroid
cells (Keller et al., 1999).

The blood islands are composed of both primitive erythroid cells (EryP) and
endothelial cells, which constitute a small fraction of the whole yolk sac vascular
system. The close developmental association of the hematopoietic and
endothelial cell lineages within the yolk sac blood islands of the developing
embryo has led to the hypothesis that they arise from a common precursor,
termed the hemangioblast (Park et al., 2005; Sabin, 1920). Cell tracking studies
indicate that hemangioblast development begins in the primitive streak, after
which they migrate into the yolk sac blood islands (Huber et al., 2004). EryP cells

are generated from a transient wave of progenitors, termed primitive erythroid



colony-forming cells (EryP-CFC), found exclusively in the yolk sac between E7.25
and E9.0 (Palis et al., 1999). Primitive erythrocytes (EryP) are larger than
definitive erythrocytes (EryD). They are initially circulating as nucleated cells, and
mainly express two embryonic forms of B-globin proteins (ey and fH1), as well as
both embryonic and adult forms of a-globin proteins ({ and a, respectively)
(Kingsley et al., 2006). However, recent studies demonstrate that primitive
erythrocytes undergo enucleation between E12.5 and 16.5, producing mature
primitive erythrocytes that are comparable in size to definitive erythrocytes
(Kingsley et al., 2004). In the fetal liver, hematopoietic progenitors generate
definitive erythrocytes, as well as myeloid and lymphoid cells. Definitive erythroid
cells are smaller than EryP, enucleated, and express a range of adult globin
isoforms, namely a1, a2, f1 and B2 (Lensch and Daley, 2004; Palis et al., 1999).

Genetic knock-out mice have provided insight into the functions of various
genes in the generation and maintenance of primitive erythroid cells. Deficiencies
of Scl, Lmo2, or Gata2 in mouse embryos result in mid-gestational embryonic
lethality due to failure of or defective emergence of primitive hematopoiesis
(Porcher et al., 1996; Robb et al., 1995; Shivdasani et al., 1995; Tsai et al., 1994;
Warren et al., 1994; Yamada et al., 1998). The Gata1 transcription factor has an
essential role in the regulation of erythroid-specific genes in both primitive and
definitive erythroid cells. Gata7-deficient mice and differentiated embryonic stem
(ES) cells derived from Gata1-deficient mice cannot generate mature erythroid
cells due to developmental arrest and cell death at the proerythroblast stage

(Fujiwara et al., 1996; Pevny et al., 1991). Mice deficient in erythroid Krupple-like



factor (EkIf) have severe defects in definitive hematopoiesis, and recent studies
show that Eklif is also involved in primitive hematopoiesis (Basu et al., 2007;
Hodge et al., 2006; Nuez et al., 1995; Perkins et al., 1995). However, some
transcription factors have been shown to affect only definitive hematopoiesis
without impacting primitive hematopoiesis. For example, mice lacking c-myb have
normal primitive erythroid cells but die around day E15.0 with a severely anemic
phenotype, due to a failure to generate definitive erythrocytes (Mucenski et al.,
1991). Mice deficient in PU.1 also show normal primitive hematopoiesis, but they
display multiple defects in the development of lymphoid and myeloid cells, dying
by day E18.5 (Scott et al., 1997). These results suggest that the molecular
mechanisms governing primitive and definitive hematopoiesis might be differently
regulated.

Generation of hematopoietic stem cells (HSCs) with the ability to produce all
types of adult blood cells is the key feature of definitive hematopoiesis. The
origins of the HSCs that initially colonize the fetal liver remain controversial. There
are currently two major models concerning the source of HSCs. The first model is
that the HSCs emerge from within the yolk sac and then migrate to the fetal liver,
subsequently populating the bone marrow. The second model is that the HSCs
that enable fetal liver hematopoiesis emerge from within the intraembryoic
para-aortic-splanchnopleure (PAS)/aorta-gonad-mesonephros (AGM) region.

Support for the first model comes from studies showing that the yolk sac
contains multiple definitive hematopoietic progenitors, including T cells, B cells,

and myeloid cells, even before the embryonic circulation starts (Cumano et al.,



1993; Huang and Auerbach, 1993; Liu and Auerbach, 1991; Wong et al., 1986).
Moreover, Lux et al. used Ncx7-null embryos, which lack a heartbeat and, thus,
have no functional circulation, to demonstrate that Ncx1” yolk sacs contain
normal numbers of both primitive and definitive erythroid progenitors (Lux et al.,
2008). There were few definitive erythroid progenitors found within the embryo
proper of the Ncx1”” mice, supporting the hypothesis that all definitive
hematopoietic progenitors are initially generated in the yolk sac and migrate out
into other areas of the embryo with the onset of embryonic circulation. However,
these studies did not demonstrate that cells arising from the yolk sac during early
development have long-term repopulating ability, which is the key feature of HSCs.
Interestingly, when Yoder et al. transplanted E9.0 or E10.0 yolk sac cells into
neonatal mice to show that yolk sac cells contain long-term repopulating
hematopoietic stem cells (Yoder and Hiatt, 1997; Yoder et al., 1997a; Yoder et al.,
1997b). In contrast, transplantation of E10.0 yolk sac cells into adult recipients did
not result in engraftment (Yoder and Hiatt, 1997). These observations suggest
that hematopoietic stem cells do emerge from the yolk sac, they require an
embryonic environment to develop and that the adult microenvironment may not
support the differentiation of the HSCs generated from the yolk sac. Consistent
with this interpretation, yolk sac-derived cells can reconstitute the adult
hematopoietic system when precultured on AGM-derived stromal cells (Matsuoka
et al., 2001). Recently, using a non-invasive, pulse-labeling technique,
Samokhvalov et al. were able to demonstrate that yolk sac cells, marked during

early embryogenesis, can contribute to adult HSC populations that persist for at



least 15 months after birth (Samokhvalov et al., 2007). These studies support the
contention that HSCs arise from within the yolk sac.

There are also studies which support the model that HSCs that colonize the
fetal liver originate from in the PAS/AGM region of the embryo (reviewed in
Cumano and Godin, 2007). Godin et al. surgically removed the PAS/AGM regions
from E8.5-E9.0 embryos and embedded them under the kidney capsules of SCID
mice (Godin et al., 1993). Afterwards, they could detect serum immunoglobulin M
(IgM), IgM-secreting plasma cells, and B cells of the B1a phenotype of donor
origin 3-6 months after the engraftment. Furthermore, when culturing cells from
the PAS/AGM region and from yolk sac isolated prior to the establishment of
circulation, the PAS/AGM cells give rise to much higher numbers of myeloid and
lymphoid cells than do the yolk sac cells (Cumano et al., 1996; Godin et al., 1995).
More importantly, the AGM region contains spleen colony-forming cell (CFU-S)
activity, which measures numbers of definitive hematopoietic progenitors, at a
higher level than that what is seen in the extraembryonic yolk sac (Medvinsky et
al., 1993). Importantly, the PAS region from precirculation stage or the AGM
region from E10.0 embryos contain long-term repopulating HSCs but the yolk
sacs do not (Cumano et al., 2001; Medvinsky and Dzierzak, 1996). It has been
shown that HSCs emerge first from the dorsal aorta of the AGM region (E10.5),
followed by emergence in the vitelline and umbilical arteries (de Bruijn et al.,
2000). These studies demonstrated that HSCs emerge within the embryo proper,
not from the yolk sac, to establish definitive hematopoiesis. In addition, several

studies have suggested that HSCs may also emerge from the placenta



(Alvarez-Silva et al., 2003; Rhodes et al., 2008; Zeigler et al., 2006). Moreover,
endothelial cells from all three tissues, AGM, yolk sac and placenta, have recently
been proposed to be responsible for the generation of hematopoietic stem cells
(Chen et al., 2009; Eilken et al., 2009; Lancrin et al., 2009; Zovein et al., 2008).
Intriguingly, when HSCs emerge and definitive hematopoiesis begins,
primitive erythroid progenitors become extinct in aging yolk sac (Palis et al., 1999).
This raises an interesting question as to what mechanism regulates the transition
from primitive to definitive hematopoiesis. Whether the transition from the
primitive to the definitive hematopoiesis reflects a mere shift in hematopoietic

sites or whether it is an actively regulated process is currently unknown.

In vitro Embryonic Stem Cell Differentiation Systems

To understand the molecular mechanisms regulating early events in the
developing embryo has been of great interest to investigators. Due to the nature
of the rapid developmental sequence during embryogenesis, the difficulties of
accessing embryonic tissues and to the limited availability of cells from early
embryos, the usage of embryonic tissues and cells to study the molecular
regulation of hematopoiesis in developing embryos has proven quite challenging.
Moreover, genetic knock-outs of hematopoiesis-related genes result in embryonic
lethality, precluding further analyses of tissues from knockout animals (Okuda et
al., 1996; Pevny et al., 1991; Shivdasani et al., 1995; Tsai et al., 1994; Wang et al.,
1996a). Therefore, in vitro studies of embryonic stem (ES) cell differentiation have

been utilized as an alternative method to study early events of embryonic



hematopoietic development.

ES cells can divide and differentiate in liquid differentiating media readily to
generate sphere-like, differentiated cells masses call embryoid bodies (EBs,
Figure 1.1-1, reviewed in Choi, 2002; Keller et al., 1999). ES cells can also be
differentiated on layers of stromal cells or in dishes coated with type IV collagen
without forming the EB structure (Nishikawa et al., 1998). EBs contain cells of all
three germ layers (mesoderm, endoderm, and ectoderm) and can be further
differentiated into many different lineages including cardiac, smooth and skeletal
muscle; neuronal; endothelial; and hematopoietic lineages (Choi, 2002; Keller et
al., 1993; Vittet et al., 1996). Among these lineages, the hematopoietic cells have
been the most extensively characterized.

Many molecular and cellular studies have revealed that the sequential
development of early hematopoietic events in differentiated ES cells is similar to
that found in the normal developing embryo (Faloon et al., 2000; Keller et al.,
1993; Palis et al., 1999). For example, as in the developing embryo, the primitive
erythroid progenitors emerge prior to definitive hematopoietic progenitors (Keller
et al., 1993; Palis et al., 1999). Additionally, testing the effects of specific soluble
factors or inhibitors in the ES-EB system enables investigators to develop further
understanding about the roles of different signaling pathways in the development
of various cell types of interest (Lee et al., 2008; Lengerke et al., 2008; Nostro et
al., 2008). For these reasons, among others, the in vitro differentiation model of

ES cells is a powerful system for studying early embryonic development.



Transforming Growth Factor beta (TGFB) Signaling in Embryonic

Hematopoiesis

Numerous studies demonstrate that the transforming growth factor-g (TGFf)
superfamily, including TGF3, bone morphogenetic protein (BMP), and activin, is
critical for hematopoietic and vascular development (Larsson and Karlsson, 2005;
Shi and Massague, 2003). Members of the TGF[ superfamily bind to the
transmembrane heterodimeric complexes of Type | and Type Il serine/threonine
kinase receptors to transduce their signals (Figure 1.1-2, Shi and Massague,
2003). Type Il receptor kinases are constitutively active, while Type | receptors,
also known as activin receptor-like kinases (ALKs), contain an inactive kinase
domain (Shi and Massague, 2003). When the ligands bind to their cognate
receptors as dimers, the constitutively active Type |l receptor transphosphorylates
and activates the kinase domain of type | receptors (Wrana et al., 1994). The
phosphorylated type | receptor will then phosphorylate either
SMAD1/SMAD5/SMADS8 or SMAD2/SMAD3, the receptor-specific SMADs
(R-SMADs, Heldin et al., 1997). The phosphorylated R-SMADs will then partner
with SMAD4, the common SMAD (Co-SMAD), and translocate into the nucleus
where the SMAD complex interact with specific transcription factors to regulate
the transcription of their target genes (Heldin et al., 1997). SMAD6 and SMAD7
are inhibitory SMADs (I-SMADs) and can inhibit the activated R-SMADs. SMADG6
preferentially inhibits the BMP SMADs (SMAD1/5/8) while SMAD7 blocks the
activity of all R-SMADs (Hata et al., 1998; Hayashi et al., 1997; Ishisaki et al.,

1999; Nakao et al., 1997).
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There are three mammalian isoforms of TGFBs: TGFB1, TGFB2,and
TGFB3, of which TGFB1 is the most abundant. During embryogenesis, as early as
E7.5, TGFB1 can be detected in blood islands in the yolk sac, in mesodermal cells
of the allantois, and in the pro-angioblast progenitors within the cardiogenic
mesoderm of the embryo (Akhurst et al., 1990). At later stages of the developing
embryo, TGFB1 expression is detectable in fetal liver, endothelial, epithelial, and
osteogenic tissues (Akhurst et al., 1990; Lehnert and Akhurst, 1988).
TGFB1-deficient mice display severe defects in their yolk sacs, including
abnormal vascular structures and in significantly reduced numbers of erythroid
cells, leading to embryonic lethality in the period between E9.5-E11.5 (Dickson et
al., 1995). Intriguingly, TgfB receptor Il (Tgfrll) expression largely correlates with
the expression patterns of Tgf31 (Lawler et al., 1994), and a homozygous
deficiency of TgfBrll results in embryonic lethality with defects in yolk sac
hematopoiesis and vasculogenesis, which are similar to the defects seen in
homozygous Tgf31 deficient mice (Oshima et al., 1996). Whether the primary
cause of death of TgfB1” or Tgfrll” mice is due to defects in vasculogenesis or in
hematopoiesis is not clear.

Studies have shown that TGF(1 can bind to its cognate receptors TGFfrl
(ALK5) and TGFprll to form a complexes that activate the SMAD2/SMAD3
pathway (Heldin et al., 1997). In addition to signaling through ALKS, TGF(1 can
also bind to ALK1 and TGF@rll to form a complex which activates the SMAD1/5/8
pathway (Lux et al., 1999; Oh et al., 2000). Recent studies demonstrated that the

expression patterns of ALK1 and ALK5 are mutually exclusive in blood vessels
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(Seki et al., 2006). Specifically, ALK1 expression was detected in arterial
endothelium, whereas ALKS expression was detected in mesenchymal tissue and
smooth muscle cells surrounding the aorta, but was undetectable in the
endothelial cells (Seki et al., 2006). These findings suggest that ALK1 and ALK5
might possess distinct biological roles in the developing embryo. Both Alk7 and
Alk5 knock-out mice die at similar mid-gestation stages, the period E9.5-E10.5,
with severe defects in vascular development of the yolk sac and an absence of
circulating red blood cells (Larsson et al., 2001; Oh et al., 2000; Seki et al., 2006).
Intriguingly, in contrast to the severe anemia seen in the yolk sac and in the
embryo proper of these mice, when Alk5™ yolk sac cells were assayed in vitro, a
significant increase, relative to numbers in wild-type mice, of erythroid
colony-forming cells was detected (CFU-Ery), whereas numbers of
granulocyte-macrophage colony-forming cells (CFU-GM) and mixed
colony-forming cells (CFU-Mix) appeared to be normal (Larsson et al., 2001).
These studies suggest that TGF signaling could have an inhibitory effect on the
formation and/or proliferation of erythroid progenitors. Consistent with this
observation, Park et al. showed that TGF[1 inhibits BMP4 and VEGF-mediated
hematopoietic induction in the ES-EB system (Park et al., 2004).

Moreover, inactivation of Smad4 within Flk1-expressing cells, which can
generate both primitive and definitive blood cells, results in a 50% reduction of
various hematopoietic progenitors in the yolk sac (Park et al., 2006). Smad2
knock-out embryos die during early embryonic development due to defective

mesoderm formation, from which the hematopoietic lineages normally arise
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(Nomura and Li, 1998; Waldrip et al., 1998; Weinstein et al., 1998). Inhibition of
Smad5 can neutralize the suppressive effects of TGF3 on adult hematopoietic
progenitors, so the data suggest that, apart from Smad2 and Smad3, Smad5
could also be a mediator of TGF signaling in hematopoietic cells (Bruno et al.,
1998). Deletion of Smad5 in mice results in embryonic lethality around
mid-gestation with reduced numbers of blood cells and defective vascular
structure in the yolk sac, which is similar to what is observed in knock-out animals
for the TGF receptors (Chang et al., 1999; Yang et al., 1999). However, in vitro
replating assays showed that yolk sacs from Smad5'/'embryos had increased
numbers of high-proliferative-potential colony-forming cells (HPP-CFCs) with
enhanced replating potential, and also contained augmented hematopoietic
progenitors (Liu et al., 2003). Intriguingly, differentiated ES cells derived from
Smad5” mice contained an elevated number of blast colony-forming cells
(BL-CFCs), the in vitro equivalents of hemangioblasts, in contrast to reduced
numbers of EryP progenitors (Liu et al., 2003). Collectively, these studies suggest
that TGFp signaling has a regulatory role in hematopoietic development during
embryogenesis, but the detailed mechanism of this regulation is not clear at this

time.

Runx1 in Hematopoietic Development

Runx1, also known as Aml1, belongs to the core binding factor (CBF)
transcription factor family, which consists of three DNA-binding CBFa subunits

(Runx1, Runx2, and Runx3) and a common, non-DNA binding subunit, CBFf
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(Speck and Gilliland, 2002). Runx1 contains a highly conserved domain with
homology to Runt, the Drosophila paired-rule gene and it binds to the TGT/CGGT
DNA sequence (Daga et al., 1992; Meyers et al., 1993). RUNX1 heterodimerizes
with its molecular partner, CBF(3, through the Runt homology domain (RHD) to
carry out its transcriptional activity (Meyers et al., 1993; Ogawa et al., 1993; Wang
et al., 1993).

Runx1 and its partner, CBF, are the most frequent targets of chromosome
translocations in human acute myeloid leukemia (AML)(Liu et al., 1993; Miyoshi et
al., 1991). The importance of Runx1 in hematopoietic development was revealed
from mouse knock-out studies. Runx1-null animals die between E12.5 and E13.5
due to lack of definitive hematopoiesis and hemorrhaging in the central nervous
system (Okada et al., 1998; Okuda et al., 1996; Wang et al., 1996a). Definitive
hematopoietic colonies cannot not be identified in E10.5 or E11.5 Runx1”" yolk
sacs, fetal liver, or Runx1” EB cells (Wang et al., 1996a). Generation of chimeric
animals by injecting Runx1”ES cells into wild-type blastocysts demonstrated that
Runx1” ES cells were unable to produce any hematopoietic tissues while these
cells can contribute to other non-hematopoietic organs (Okuda et al., 1996).
These studies indicate that the defects of the Runx7 knock-out cells are specific to
failures in the hematopoietic lineages, and not to defects in the fetal liver
microenvironment. In addition, knock-out studies of CBFf3 show a parallel
phenotype to Runx1-deficient mice, suggesting that CBFS is essential for RUNX1
function during early embryogenesis (Sasaki et al., 1996; Wang et al., 1996b).

To further understand the role of Runx1 during early embryogenesis,
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Runx 18+

mice and in situ hybridization were used. The expression of Runx1 is
first detectable in extraembryonic mesodermal cells at E7.25 and then in both
primitive erythrocytes and endothelial cells of the yolk sac blood islands at
E8.0-E8.5 (Lacaud et al., 2002; North et al., 1999). Between E8.5-E11.5, Runx1
can be detected in endothelial cells and mesenchymal cells in the yolk sac, in the
vitelline and umbilical arteries, and in the ventral aspect of the dorsal aorta in the
AGM region where hematopoietic stem cells (HSCs) were first identified (North et
al., 1999). Subsequent studies confirmed that Runx1 is required for the
emergence of HSCs during embryonic development (North et al., 1999; North et
al., 2002; Yokomizo et al., 2001). Interestingly, E9.5-E11.5 Runx1*" embryos
show significantly reduced numbers of definitive hematopoietic progenitors in their
livers and yolk sacs, compared to wild-type controls (Cai et al., 2000; Mukouyama
et al., 2000). Additionally, HSCs emerge prematurely in the E10.0 Runx1*" yolk
sacs, and there was a premature termination of HSC activity in the Runx1"~ AGM
explants (Cai et al., 2000; North et al., 2002). These observations indicate that the
degree of RUNX1 activity is critical for temporal and spatial regulation of the
generation of HSCs during hematopoietic development. Although Runx1 starts
being expressed during the period when EryP progenitors are forming, what role
Runx1 plays in murine primitive hematopoiesis is currently unclear.

However, studies of Runx1 in Xenopus and zebrafish indicate important roles
of Runx1 in primitive hematopoiesis in those animals. Runx1 expression is among
the earliest molecular markers for blood in Xenopus, and the introduction of the

Runt domain from the Xenopus Runx1 homologue, Xaml, into Xenopus embryos

15



results in the disruption of normal primitive hematopoiesis (Tracey et al., 1998).
Studies in zebrafish also demonstrate that Runx1 is involved in both primitive and
definitive hematopoiesis (Kalev-Zylinska et al., 2002). These findings suggest that
Runx1 may also function in mouse primitive hematopoietic development.
Previous studies have also demonstrated that RUNX proteins, including
RUNX1, RUNX2 and RUNX3, have cooperative interactions with TGF[3
superfamily signaling in several biological systems (Ito and Miyazono, 2003).
Specifically, both Runx1 and Runx3 expression can be induced by TGFB1, and
they interact with FOXO3 to induce Bim expression to mediate apoptosis in
hepatic (Wildey and Howe, 2009) and gastric epithelial cells (Yano et al., 2006).
Moreover, Runx2 can physically interact with BMPs-specific SMADs, including
SMAD1 and SMADS5, to cooperatively induce osteoblast differentiation of
mesenchymal progenitor cells (Lee et al., 2002; Lee et al., 2000; Zhang et al.,
2000). Taken together, these studies suggest that there is, at the very least,

possible crosstalk between Runx1 and TGF signaling.
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Overall Goals of Chapter One

Hematopoietic development is composed of two waves of hematopoiesis:
primitive and definitive. Primitive hematopoietic progenitors emerge exclusively
and transiently in the yolk sac during embryogenesis. While primitive
hematopoietic progenitors become distinct in aging yolk sac, definitive
hematopoietic progenitors generated in the yolk sac and/or embryo take over
blood cell production in later embryonic development and throughout adult life.
Runx1 is essential for the establishment of definitive hematopoiesis, but its
expression is also detectable in the yolk sac blood islands, where primitive
hematopoiesis occurs. Little is known about the role of Runx7 in primitive
hematopoiesis. Thus, the objective of this chapter was to elucidate the role of
Runx1 in primitive hematopoiesis, using in vitro ES cell differentiation systems
and Runx1 mutant mice. In addition, TGFB1 has been suggested as a regulator of
primitive hematopoiesis. TGFf signaling has been show to function cooperatively
with Runx family in other biological systems. Therefore, the question was
explored of whether TGFB1 and Runx1 have a cooperative relationship in the

regulation of primitive hematopoiesis.

17



References

Akhurst, R. J., Lehnert, S. A., Faissner, A. and Duffie, E. (1990). TGF beta in murine
morphogenetic processes: the early embryo and cardiogenesis. Development 108, 645-56.
Alvarez-Silva, M., Belo-Diabangouaya, P., Salaun, J. and Dieterlen-Lievre, F. (2003).
Mouse placenta is a major hematopoietic organ. Development 130, 5437-44.

Basu, P., Lung, T. K., Lemsaddek, W., Sargent, T. G., Williams, D. C., Jr., Basu, M.,
Redmond, L. C., Lingrel, J. B., Haar, J. L. and Lloyd, J. A. (2007). EKLF and KLF2
have compensatory roles in embryonic beta-globin gene expression and primitive
erythropoiesis. Blood 110, 3417-25.

Bruno, E., Horrigan, S. K., Van Den Berg, D., Rozler, E., Fitting, P. R., Moss, S. T.,
Westbrook, C. and Hoffman, R. (1998). The Smad5 gene is involved in the intracellular
signaling pathways that mediate the inhibitory effects of transforming growth factor-beta
on human hematopoiesis. Blood 91, 1917-23.

Cai, Z., de Bruijn, M., Ma, X., Dortland, B., Luteijn, T., Downing, R. J. and
Dzierzak, E. (2000). Haploinsufficiency of AML1 affects the temporal and spatial
generation of hematopoietic stem cells in the mouse embryo. Immunity 13, 423-31.
Chang, H., Huylebroeck, D., Verschueren, K., Guo, Q., Matzuk, M. M. and Zwijsen,
A. (1999). Smad5 knockout mice die at mid-gestation due to multiple embryonic and
extraembryonic defects. Development 126, 1631-42.

Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. and Speck, N. A. (2009).
Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter.
Nature 457, 887-91.

Choi, K. (2002). The hemangioblast: a common progenitor of hematopoietic and
endothelial cells. J Hematother Stem Cell Res 11, 91-101.

Cumano, A., Dieterlen-Lievre, F. and Godin, L. (1996). Lymphoid potential, probed
before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell
86, 907-16.

Cumano, A., Ferraz, J. C., Klaine, M., Di Santo, J. P. and Godin, 1. (2001).
Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation,
provide long-term multilineage reconstitution. Immunity 15, 477-85.

Cumano, A., Furlonger, C. and Paige, C. J. (1993). Differentiation and
characterization of B-cell precursors detected in the yolk sac and embryo body of
embryos beginning at the 10- to 12-somite stage. Proc Natl Acad Sci U S 4 90, 6429-33.
Cumano, A. and Godin, I. (2007). Ontogeny of the hematopoietic system. Annu Rev
Immunol 25, 745-85.

Daga, A., Tighe, J. E. and Calabi, F. (1992). Leukaemia/Drosophila homology. Nature
356, 484.

de Bruijn, M. F., Speck, N. A., Peeters, M. C. and Dzierzak, E. (2000). Definitive
hematopoietic stem cells first develop within the major arterial regions of the mouse
embryo. Embo J 19, 2465-74.

Dickson, M. C., Martin, J. S., Cousins, F. M., Kulkarni, A. B., Karlsson, S. and
Akhurst, R. J. (1995). Defective haematopoiesis and vasculogenesis in transforming
growth factor-beta 1 knock out mice. Development 121, 1845-54.

Eilken, H. M., Nishikawa, S. and Schroeder, T. (2009). Continuous single-cell imaging
of blood generation from haemogenic endothelium. Nature 457, 896-900.

18



Faloon, P., Arentson, E., Kazarov, A., Deng, C. X., Porcher, C., Orkin, S. and Choli,
K. (2000). Basic fibroblast growth factor positively regulates hematopoietic development.
Development 127, 1931-41.

Ferkowicz, M. J. and Yoder, M. C. (2005). Blood island formation: longstanding
observations and modern interpretations. Exp Hematol 33, 1041-7.

Fujiwara, Y., Browne, C. P., Cunniff, K., Goff, S. C. and Orkin, S. H. (1996).
Arrested development of embryonic red cell precursors in mouse embryos lacking
transcription factor GATA-1. Proc Natl Acad Sci U S 4 93, 12355-8.

Godin, L., Dieterlen-Lievre, F. and Cumano, A. (1995). Emergence of multipotent
hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos,
beginning at 8.5 days postcoitus. Proc Natl Acad Sci U S A 92, 773-7.

Godin, I. E., Garcia-Porrero, J. A., Coutinho, A., Dieterlen-Lievre, F. and Marcos,
M. A. (1993). Para-aortic splanchnopleura from early mouse embryos contains Bla cell
progenitors. Nature 364, 67-70.

Hata, A., Lagna, G., Massague, J. and Hemmati-Brivanlou, A. (1998). Smad6 inhibits
BMP/Smadl signaling by specifically competing with the Smad4 tumor suppressor.
Genes Dev 12, 186-97.

Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y. Y., Grinnell, B. W., Richardson, M.
A., Topper, J. N., Gimbrone, M. A., Jr., Wrana, J. L. et al. (1997). The MAD-related
protein Smad?7 associates with the TGFbeta receptor and functions as an antagonist of
TGFbeta signaling. Cel/ 89, 1165-73.

Heldin, C. H., Miyazono, K. and ten Dijke, P. (1997). TGF-beta signalling from cell
membrane to nucleus through SMAD proteins. Nature 390, 465-71.

Hodge, D., Coghill, E., Keys, J., Maguire, T., Hartmann, B., McDowall, A., Weiss,
M., Grimmond, S. and Perkins, A. (2006). A global role for EKLF in definitive and
primitive erythropoiesis. Blood 107, 3359-70.

Houssaint, E. (1981). Differentiation of the mouse hepatic primordium. II. Extrinsic
origin of the haemopoietic cell line. Cell Differ 10, 243-52.

Huang, H. and Auerbach, R. (1993). Identification and characterization of
hematopoietic stem cells from the yolk sac of the early mouse embryo. Proc Natl Acad
Sci US A 90, 10110-4.

Huber, T. L., Kouskoff, V., Fehling, H. J., Palis, J. and Keller, G. (2004).
Haemangioblast commitment is initiated in the primitive streak of the mouse embryo.
Nature 432, 625-30.

Ishisaki, A., Yamato, K., Hashimoto, S., Nakao, A., Tamaki, K., Nonaka, K., ten
Dijke, P., Sugino, H. and Nishihara, T. (1999). Diftferential inhibition of Smad6 and
Smad7 on bone morphogenetic protein- and activin-mediated growth arrest and apoptosis
in B cells. J Biol Chem 274, 13637-42.

Ito, Y. and Miyazono, K. (2003). RUNX transcription factors as key targets of TGF-beta
superfamily signaling. Curr Opin Genet Dev 13, 43-7.

Kalev-Zylinska, M. L., Horsfield, J. A., Flores, M. V., Postlethwait, J. H., Vitas, M.
R., Baas, A. M., Crosier, P. S. and Crosier, K. E. (2002). Runx1 is required for
zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1
transgene advances a model for studies of leukemogenesis. Development 129, 2015-30.
Keller, G., Kennedy, M., Papayannopoulou, T. and Wiles, M. V. (1993).
Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol

19



Cell Biol 13, 473-86.

Keller, G., Lacaud, G. and Robertson, S. (1999). Development of the hematopoietic
system in the mouse. Exp Hematol 27, 777-87.

Kingsley, P. D., Malik, J., Emerson, R. L., Bushnell, T. P., McGrath, K. E., Bloedorn,
L. A., Bulger, M. and Palis, J. (2006). "Maturational" globin switching in primary
primitive erythroid cells. Blood 107, 1665-72.

Kingsley, P. D., Malik, J., Fantauzzo, K. A. and Palis, J. (2004). Yolk sac-derived
primitive erythroblasts enucleate during mammalian embryogenesis. Blood 104, 19-25.
Lacaud, G., Gore, L., Kennedy, M., Kouskoff, V., Kingsley, P., Hogan, C., Carlsson,
L., Speck, N., Palis, J. and Keller, G. (2002). Runx1 is essential for hematopoietic
commitment at the hemangioblast stage of development in vitro. Blood 100, 458-66.
Lancrin, C., Sroczynska, P., Stephenson, C., Allen, T., Kouskoff, V. and Lacaud, G.
(2009). The haemangioblast generates haematopoietic cells through a haemogenic
endothelium stage. Nature 457, 892-5.

Larsson, J., Goumans, M. J., Sjostrand, L. J., van Rooijen, M. A., Ward, D., Leveen,
P., Xu, X., ten Dijke, P., Mummery, C. L. and Karlsson, S. (2001). Abnormal
angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient
mice. Embo J 20, 1663-73.

Larsson, J. and Karlsson, S. (2005). The role of Smad signaling in hematopoiesis.
Oncogene 24, 5676-92.

Lawler, S., Candia, A. F., Ebner, R., Shum, L., Lopez, A. R., Moses, H. L., Wright,
C. V. and Derynck, R. (1994). The murine type Il TGF-beta receptor has a coincident
embryonic expression and binding preference for TGF-beta 1. Development 120, 165-75.
Lee, D., Park, C., Lee, H., Lugus, J. J., Kim, S. H., Arentson, E., Chung, Y. S.,
Gomez, G., Kyba, M., Lin, S. et al. (2008). ER71 acts downstream of BMP, Notch, and
Whnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2, 497-507.
Lee, K. S., Hong, S. H. and Bae, S. C. (2002). Both the Smad and p38 MAPK pathways
play a crucial role in Runx2 expression following induction by transforming growth
factor-beta and bone morphogenetic protein. Oncogene 21, 7156-63.

Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., Wozney, J. M.,
Kim, E. G., Choi, J. Y., Ryoo, H. M. et al. (2000). Runx2 is a common target of
transforming growth factor betal and bone morphogenetic protein 2, and cooperation
between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent
mesenchymal precursor cell line C2C12. Mol Cell Biol 20, 8783-92.

Lehnert, S. A. and Akhurst, R. J. (1988). Embryonic expression pattern of TGF beta
type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development
104, 263-73.

Lengerke, C., Schmitt, S., Bowman, T. V., Jang, 1. H., Maouche-Chretien, L.,
McKinney-Freeman, S., Davidson, A. J., Hammerschmidt, M., Rentzsch, F., Green,
J. B. et al. (2008). BMP and Wnt specify hematopoietic fate by activation of the
Cdx-Hox pathway. Cell Stem Cell 2, 72-82.

Lensch, M. W. and Daley, G. Q. (2004). Origins of mammalian hematopoiesis: in vivo
paradigms and in vitro models. Curr Top Dev Biol 60, 127-96.

Liu, B., Sun, Y., Jiang, F., Zhang, S., Wu, Y., Lan, Y., Yang, X. and Mao, N. (2003).
Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential
precursors during embryonic hematopoiesis. Blood 101, 124-33.

20



Liu, C. P. and Auerbach, R. (1991). In vitro development of murine T cells from
prethymic and preliver embryonic yolk sac hematopoietic stem cells. Development 113,
1315-23.

Liu, P., Tarle, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., Siciliano,
M. J. and Collins, F. S. (1993). Fusion between transcription factor CBF beta/PEBP2
beta and a myosin heavy chain in acute myeloid leukemia. Science 261, 1041-4.

Lux, A., Attisano, L. and Marchuk, D. A. (1999). Assignment of transforming growth
factor betal and beta3 and a third new ligand to the type I receptor ALK-1. J Biol Chem
274, 9984-92.

Lux, C. T., Yoshimoto, M., McGrath, K., Conway, S. J., Palis, J. and Yoder, M. C.
(2008). All primitive and definitive hematopoietic progenitor cells emerging before E10
in the mouse embryo are products of the yolk sac. Blood 111, 3435-8.

Matsuoka, S., Tsuji, K., Hisakawa, H., Xu, M., Ebihara, Y., Ishii, T., Sugiyama, D.,
Manabe, A., Tanaka, R., Ikeda, Y. et al. (2001). Generation of definitive hematopoietic
stem cells from murine early yolk sac and paraaortic splanchnopleures by
aorta-gonad-mesonephros region-derived stromal cells. Blood 98, 6-12.

Medyvinsky, A. and Dzierzak, E. (1996). Definitive hematopoiesis is autonomously
initiated by the AGM region. Cell 86, 897-906.

Medyvinsky, A. L., Samoylina, N. L., Muller, A. M. and Dzierzak, E. A. (1993). An
early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364,
64-7.

Meyers, S., Downing, J. R. and Hiebert, S. W. (1993). Identification of AML-1 and the
(8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins:
the runt homology domain is required for DNA binding and protein-protein interactions.
Mol Cell Biol 13, 6336-45.

Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y. and Ohki, M. (1991).
t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a
limited region of a single gene, AML1. Proc Natl Acad Sci U S A 88, 10431-4.
Mucenski, M. L., McLain, K., Kier, A. B., Swerdlow, S. H., Schreiner, C. M., Miller,
T. A., Pietryga, D. W., Scott, W. J., Jr. and Potter, S. S. (1991). A functional c-myb
gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677-89.
Mukouyama, Y., Chiba, N., Hara, T., Okada, H., Ito, Y., Kanamaru, R., Miyajima,
A., Satake, M. and Watanabe, T. (2000). The AML1 transcription factor functions to
develop and maintain hematogenic precursor cells in the embryonic
aorta-gonad-mesonephros region. Dev Biol 220, 27-36.

Nakao, A., Afrakhte, M., Moren, A., Nakayama, T., Christian, J. L., Heuchel, R.,
Itoh, S., Kawabata, M., Heldin, N. E., Heldin, C. H. et al. (1997). Identification of
Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389, 631-5.
Nishikawa, S. 1., Nishikawa, S., Hirashima, M., Matsuyoshi, N. and Kodama, H.
(1998). Progressive lineage analysis by cell sorting and culture identifies
FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages.
Development 125, 1747-57.

Nomura, M. and Li, E. (1998). Smad2 role in mesoderm formation, left-right patterning
and craniofacial development. Nature 393, 786-90.

North, T., Gu, T. L., Stacy, T., Wang, Q., Howard, L., Binder, M., Marin-Padilla, M.
and Speck, N. A. (1999). Cbfa2 is required for the formation of intra-aortic

21



hematopoietic clusters. Development 126, 2563-75.

North, T. E., de Bruijn, M. F., Stacy, T., Talebian, L., Lind, E., Robin, C., Binder,
M., Dzierzak, E. and Speck, N. A. (2002). Runx1 expression marks long-term
repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16,
661-72.

Nostro, M. C., Cheng, X., Keller, G. M. and Gadue, P. (2008). Wnt, activin, and BMP
signaling regulate distinct stages in the developmental pathway from embryonic stem
cells to blood. Cell Stem Cell 2, 60-71.

Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R. and Grosveld, F. (1995).
Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene.
Nature 375, 316-8.

Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M.,
Shigesada, K. and Ito, Y. (1993). PEBP2/PEA2 represents a family of transcription
factors homologous to the products of the Drosophila runt gene and the human AML1
gene. Proc Natl Acad Sci U S 4 90, 6859-63.

Oh, S. P., Seki, T., Goss, K. A., Imamura, T., Yi, Y., Donahoe, P. K., Li, L.,
Miyazono, K., ten Dijke, P., Kim, S. et al. (2000). Activin receptor-like kinase 1
modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis.
Proc Natl Acad Sci US A 97, 2626-31.

Okada, H., Watanabe, T., Niki, M., Takano, H., Chiba, N., Yanai, N., Tani, K.,
Hibino, H., Asano, S., Mucenski, M. L. et al. (1998). AML1(-/-) embryos do not
express certain hematopoiesis-related gene transcripts including those of the PU.1 gene.
Oncogene 17, 2287-93.

Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G. and Downing, J. R. (1996).
AMLI1, the target of multiple chromosomal translocations in human leukemia, is essential
for normal fetal liver hematopoiesis. Cell 84, 321-30.

Oshima, M., Oshima, H. and Taketo, M. M. (1996). TGF-beta receptor type I1
deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179,
297-302.

Palis, J., Robertson, S., Kennedy, M., Wall, C. and Keller, G. (1999). Development of
erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse.
Development 126, 5073-84.

Park, C., Afrikanova, 1., Chung, Y. S., Zhang, W. J., Arentson, E., Fong Gh, G.,
Rosendahl, A. and Choi, K. (2004). A hierarchical order of factors in the generation of
FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic
stem cells. Development 131, 2749-62.

Park, C., Lavine, K., Mishina, Y., Deng, C. X., Ornitz, D. M. and Choi, K. (2006).
Bone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic
development but essential for vessel and atrioventricular endocardial cushion formation.
Development 133, 3473-84.

Park, C., Ma, Y. D. and Choi, K. (2005). Evidence for the hemangioblast. Exp Hemato!l
33, 965-70.

Perkins, A. C., Sharpe, A. H. and Orkin, S. H. (1995). Lethal beta-thalassaemia in
mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318-22.
Pevny, L., Simon, M. C., Robertson, E., Klein, W. H., Tsai, S. F., D'Agati, V., Orkin,
S. H. and Costantini, F. (1991). Erythroid differentiation in chimaeric mice blocked by a

22



targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257-60.
Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, F. W. and Orkin, S. H.
(1996). The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all
hematopoietic lineages. Cell 86, 47-57.

Rhodes, K. E., Gekas, C., Wang, Y., Lux, C. T., Francis, C. S., Chan, D. N., Conway,
S., Orkin, S. H., Yoder, M. C. and Mikkola, H. K. (2008). The emergence of
hematopoietic stem cells is initiated in the placental vasculature in the absence of
circulation. Cell Stem Cell 2, 252-63.

Robb, L., Lyons, L., Li, R., Hartley, L., Kontgen, F., Harvey, R. P., Metcalf, D. and
Begley, C. G. (1995). Absence of yolk sac hematopoiesis from mice with a targeted
disruption of the scl gene. Proc Natl Acad Sci U S A 92, 7075-9.

Sabin, F. R. (1920). Studies on the origin of blood vessels and of red corpuscles as seen
in the living blastoderm of the chick during the second day of incubation.
Samokhvalov, I. M., Samokhvalova, N. 1. and Nishikawa, S. (2007). Cell tracing
shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056-61.
Sasaki, K., Yagi, H., Bronson, R. T., Tominaga, K., Matsunashi, T., Deguchi, K.,
Tani, Y., Kishimoto, T. and Komori, T. (1996). Absence of fetal liver hematopoiesis in
mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci
USA493,12359-63.

Scott, E. W., Fisher, R. C., Olson, M. C., Kehrli, E. W., Simon, M. C. and Singh, H.
(1997). PU.1 functions in a cell-autonomous manner to control the differentiation of
multipotential lymphoid-myeloid progenitors. Immunity 6, 437-47.

Seki, T., Hong, K. H. and Oh, S. P. (2006). Nonoverlapping expression patterns of
ALK1 and ALKS reveal distinct roles of each receptor in vascular development. Lab
Invest 86, 116-29.

Shi, Y. and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell
membrane to the nucleus. Cell 113, 685-700.

Shivdasani, R. A., Mayer, E. L. and Orkin, S. H. (1995). Absence of blood formation
in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432-4.

Speck, N. A. and Gilliland, D. G. (2002). Core-binding factors in haematopoiesis and
leukaemia. Nat Rev Cancer 2, 502-13.

Tracey, W. D., Jr., Pepling, M. E., Horb, M. E., Thomsen, G. H. and Gergen, J. P.
(1998). A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms
leading to the formation of embryonic blood. Development 125, 1371-80.

Tsai, F. Y., Keller, G., Kuo, F. C., Weiss, M., Chen, J., Rosenblatt, M., Alt, F. W.
and Orkin, S. H. (1994). An early haematopoietic defect in mice lacking the
transcription factor GATA-2. Nature 371, 221-6.

Vittet, D., Prandini, M. H., Berthier, R., Schweitzer, A., Martin-Sisteron, H., Uzan,
G. and Dejana, E. (1996). Embryonic stem cells differentiate in vitro to endothelial cells
through successive maturation steps. Blood 88, 3424-31.

Waldrip, W. R., Bikoff, E. K., Hoodless, P. A., Wrana, J. L. and Robertson, E. J.
(1998). Smad?2 signaling in extraembryonic tissues determines anterior-posterior polarity
of the early mouse embryo. Cell 92, 797-808.

Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H. and Speck, N. A.
(19964a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central
nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93,

23



3444-9.

Wang, Q., Stacy, T., Miller, J. D., Lewis, A. F., Gu, T. L., Huang, X., Bushweller, J.
H., Bories, J. C., Alt, F. W., Ryan, G. et al. (1996b). The CBFbeta subunit is essential
for CBFalpha2 (AML1) function in vivo. Cell 87, 697-708.

Wang, S., Wang, Q., Crute, B. E., Melnikova, 1. N., Keller, S. R. and Speck, N. A.
(1993). Cloning and characterization of subunits of the T-cell receptor and murine
leukemia virus enhancer core-binding factor. Mol Cell Biol 13, 3324-39.

Warren, A. J., Colledge, W. H., Carlton, M. B., Evans, M. J., Smith, A. J. and
Rabbitts, T. H. (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is
essential for erythroid development. Cel/ 78, 45-57.

Weinstein, M., Yang, X., Li, C., Xu, X., Gotay, J. and Deng, C. X. (1998). Failure of
egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor
suppressor smad2. Proc Natl Acad Sci U S A 95, 9378-83.

Wildey, G. M. and Howe, P. H. (2009). Runx1 is a co-activator with FOXO3 to mediate
Transforming Growth Factor {beta} (TGF {beta})-induced Bim transcription in hepatic
cells. J Biol Chem.

Wong, P. M., Chung, S. W., Chui, D. H. and Eaves, C. J. (1986). Properties of the
earliest clonogenic hemopoietic precursors to appear in the developing murine yolk sac.
Proc Natl Acad Sci U S A 83, 3851-4.

Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. and Massague, J. (1994).
Mechanism of activation of the TGF-beta receptor. Nature 370, 341-7.

Yamada, Y., Warren, A. J., Dobson, C., Forster, A., Pannell, R. and Rabbitts, T. H.
(1998). The T cell leukemia LIM protein Lmo2 is necessary for adult mouse
hematopoiesis. Proc Natl Acad Sci U S A 95, 3890-5.

Yang, X., Castilla, L. H., Xu, X., Li, C., Gotay, J., Weinstein, M., Liu, P. P. and
Deng, C. X. (1999). Angiogenesis defects and mesenchymal apoptosis in mice lacking
SMADS. Development 126, 1571-80.

Yano, T., Ito, K., Fukamachi, H., Chi, X. Z., Wee, H. J., Inoue, K., Ida, H., Bouillet,
P., Strasser, A., Bae, S. C. et al. (2006). The RUNX3 tumor suppressor upregulates Bim
in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis.
Mol Cell Biol 26, 4474-88.

Yoder, M. C. and Hiatt, K. (1997). Engraftment of embryonic hematopoietic cells in
conditioned newborn recipients. Blood 89, 2176-83.

Yoder, M. C., Hiatt, K., Dutt, P., Mukherjee, P., Bodine, D. M. and Orlic, D. (1997a).
Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk
sac. Immunity 7, 335-44.

Yoder, M. C., Hiatt, K. and Mukherjee, P. (1997b). In vivo repopulating
hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc
Natl Acad Sci U S A 94, 6776-80.

Yokomizo, T., Ogawa, M., Osato, M., Kanno, T., Yoshida, H., Fujimoto, T., Fraser,
S., Nishikawa, S., Okada, H., Satake, M. et al. (2001). Requirement of
Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial
cells. Genes Cells 6, 13-23.

Zeigler, B. M., Sugiyama, D., Chen, M., Guo, Y., Downs, K. M. and Speck, N. A.
(2006). The allantois and chorion, when isolated before circulation or chorio-allantoic
fusion, have hematopoietic potential. Development 133, 4183-92.

24



Zhang, Y. W., Yasui, N., Ito, K., Huang, G., Fujii, M., Hanai, J., Nogami, H., Ochi,
T., Miyazono, K. and Ito, Y. (2000). A RUNX2/PEBP2alpha A/CBFA1 mutation
displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc
Natl Acad Sci U S A 97, 10549-54.

Zovein, A. C., Hofmann, J. J., Lynch, M., French, W. J., Turlo, K. A., Yang, Y.,
Becker, M. S., Zanetta, L., Dejana, E., Gasson, J. C. et al. (2008). Fate tracing reveals
the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625-36.

25



Figure 1.1-1.

Self-renewal
i Differentiation @
e® .
G ,
° &2

ES cells

Embryoid Bodies

Hematoponetlc progenitor assays / \ FACS analysis
S

Biochemical analysi

gRT-PCR

26



Figure 1.1-1. In vitro embryonic stem cell differentiation systems.
Schematic diagram of in vitro ES cell differentiation systems. ES cells can be
differentiated in vitro and give rise to differentiated cell masses called embryoid
bodies (EBs). EBs are composed of multiple cell types, as indicated by different
colors. Many cellular and molecular analyses can be performed on EBs such as
hematopoietic colony assay, biochemical analysis, quantitative reverse
transcription polymerase chain reaction (QRT-PCR), or flow cytometry (FACS

analysis).
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Figure 1.1-2. A schematic diagram of TGF superfamily ligands, their type |
and type Il receptors, and downstream SMAD molecules (modified from Shi
and Massague, 2003).

Members of the TGF[3 superfamily bind to the transmembrane heterodimeric
complexes of Type | and Type Il serine/threonine kinase receptors to transduce
their signals. Type Il receptor kinases are constitutively active, while Type |
receptors, also known as activin receptor-like kinases (ALKs), contain an inactive
kinase domain. When the ligands bind to their cognate receptors as dimers, the
constitutively active Type Il receptor transphosphorylates and activates the kinase
domain of type | receptors. The phosphorylated type | receptor will then
phosphorylate either SMAD1/SMAD5/SMADS8 or SMAD2/SMAD3, the
receptor-specific SMADs (R-SMADs). The phosphorylated R-SMADs will then
partner with SMAD4, the common SMAD (Co-SMAD), and translocate into the
nucleus where the SMAD complex interact with specific transcription factors to
regulate the transcription of their target genes. SMAD6 and SMAD?7 are inhibitory

(I-SMADs) and can inhibit the activated R-SMADs.
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Abstract

Primitive hematopoiesis, also known as primitive erythropoiesis, occurs
exclusively in the yolk sac and is characterized by its transient nature. Primitive
erythroid (EryP) progenitors emerge from the yolk sac by the end of gastrulation,
undergo extensive proliferation and differentiation and become extinct by
embryonic day 9. By this time, definitive hematopoietic progenitors generated in
the yolk sac and/or embryo produce blood cells that represent definitive
hematopoiesis. Runx1 is critical for the emergence of definitive hematopoiesis.
Herein, we determined the role of Runx1 in primitive hematopoiesis. We
demonstrate that a high level of enforced Runx1 expression in the in vitro
differentiation model of embryonic stem (ES) cells suppressed EryP progenitor
generation. Unexpectedly, both Runx1 null ES and yolk sacs produced a greatly
reduced number of EryP progenitors. Furthermore, Runx1 DNA and CBFf
binding were required for optimal EryP generation from the yolk sac. In both
Runx1 null and overexpression ES systems, the reduction in EryP progenitor
formation coincided with down regulation of Gata? and EKkIf. Introduction of Gata1
or EkIf partially rescued EryP defects seen in Runx1 null or overexpression
system. TGFB1 treatment led to Runx1 upregulation and suppression of EryP
formation. Alk5, a type-l TGFB1 receptor, was highly expressed in EryP cells and
Alk5 deficient ES cells generated a higher EryP progenitor number. Collectively,
we demonstrate that optimal EryP production is sensitive to Runx1 expression

level.
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Introduction

During mouse development, hematopoietic cells are generated from several
distinct anatomic sites: yolk sac, embryonic blood vessels including the aorta-
gonad-mesonephros region, fetal liver and bone marrow. The first emerging
mature hematopoietic cells, designated as primitive erythrocytes (EryP), are
exclusively produced in the yolk sac. The primitive erythropoiesis is quickly
replaced by adult type hematopoiesis, termed “definitive”. While EryP is believed
to develop from mesodermal progenitors, definitive hematopoiesis is established
by hematopoietic stem cells (HSCs). Whether HSCs originate from the yolk sac,
aorta/genital ridge/mesonephros (AGM) or placenta is an actively investigated
area (Cumano et al., 2001; de Bruijn et al., 2000; Lux et al., 2008; Rhodes et al.,

2008; Samokhvalov et al., 2007).

EryP cells are characterized by the expression of embryonic globin genes. EryP
progenitors in the yolk sac can be detected as early as embryonic day (E) 7.5,
undergo extensive proliferation and differentiation in a synchronous manner and
become extinct by E9.0 (Palis et al., 1999). Recent studies have established that
EryP cells also enucleate, similar to adult globin expressing definitive erythroid
(EryD) cells, during maturation in circulation (Fraser et al., 2007; Kingsley et al.,
2004). It is possible that EryP extinction merely reflects the hematopoietic site
shift from the yolk sac to other organs, such that EryP progenitors are no longer
produced from aging yolk sacs. However, as definitive hematopoiesis ensues

concomitant to the cessation of primitive hematopoiesis in the yolk sac (Kingsley
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et al., 2006; Palis et al., 1999), it is possible that transition from primitive to
definitive hematopoiesis could be an active process, which is molecularly

regulated.

Runx1, also known as AML1, is the most frequent target of chromosome
translocations in human acute myeloid leukemia (AML)(Miyoshi et al., 1991).
Runx1 belongs to the core binding factor (CBF) transcription factor family. This
family contains a common non-DNA binding CBFf subunit and three CBFa
members, Runx1, 2 and 3 (Speck and Gilliland, 2002). The mammalian RUNX
proteins contain a highly conserved Runt domain, which functions in DNA binding,
CBFp subunit interactions, and ATP binding (Crute et al., 1996). By applying site-
directed mutagenesis, Nagata and Werner have identified specific amino acids
for the DNA-binding and heterodimerization of the Runt domain of RUNX1
(Nagata and Werner, 2001). Previous studies have demonstrated that Runx1”
animals die between E11.5 and E13.5 and display lack of definitive
hematopoiesis and hemorrhage in the central nervous system (Okuda et al.,
1996; Wang et al., 1996). The chimeric animals generated between Runx1” ES
cells and wild-type blastocysts showed no contribution of Runx1” ES cells to any
hematopoietic tissues despite their contributions to other tissues (Okuda et al.,
1996). Importantly, Runx1 deficient embryos failed to generate hematopoietic
clusters, which arise from the ventral side of the dorsal aorta in the AGM region
(North et al., 1999). Collectively, these studies have demonstrated that Runx17 is

essential for the emergence of definitive hematopoiesis.
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Accumulating studies indicate that the TGF[3 superfamily of growth factors is
critical for hematopoietic and vascular development (Larsson and Karlsson,
2005). During early embryonic development, TGFB1 expression can be detected
in the yolk sac blood islands, the mesodermal cells of the allantois, and the
cardiac mesoderm of the embryo (Akhurst et al., 1990). Upon binding type Il
receptor, TGFB induces heteromeric receptor complex formation with type |
transmembrane serine-threonine kinases. Activated type | receptors, Alk1 and
Alk5, phosphorylate cytoplasmic receptor-associated SMAD proteins (R-SMADs),
SMAD1/5/8 and SMAD2/3, respectively (Shi and Massague, 2003). Both Tgf31
and TgfBrll deficient mice, which die around E10.5, display anemia with severe
reductions of mature erythrocytes and defective angiogenesis in the yolk sac
(Dickson et al., 1995; Oshima et al., 1996). While Alk5” mice are also anemic,
they have an increased number of presumably definitive erythroid progenitors,
indicating that hematopoietic deficiency seen in these mice are indirect due to
vascular defects (Larsson et al., 2001). We previously reported that TGF1 could
inhibit BMP4 and VEGF mediated hematopoietic induction from in vitro
differentiating ES cells (Park et al., 2004). These studies suggest that TGF{31
signaling is involved in hematopoietic and vascular development and implies that
TGFB1 through ALKS could inhibit the growth and differentiation of erythroid

progenitors.

By utilizing various Runx1 mutant mice as well as an in vitro differentiation model
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of ES cells, we investigated whether Runx1, an essential gene for the generation
of definitive hematopoiesis, could modulate primitive hematopoiesis. Our studies
demonstrate that Runx1 plays a critical role in EryP development. First, Runx1
deficient animals generated greatly reduced number of EryP progenitors. Both
DNA binding and CBFf interaction of RUNX1 were required for EryP progenitor
development. Second, a high dosage of RUNX1 during EB differentiation could
suppress EryP progenitor formation. We also show that TGF(1 could upregulate
Runx1 expression and suppressed EryP progenitor formation. Alk5, a type-I
TGFB1 receptor, was highly expressed in EryP cells and Alk5 deficient ES cells
generated a higher EryP progenitor number. Collectively, Runx1 level could be

important for optimal primitive erythropoiesis.
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Materials and Methods

Cell culture and hematopoietic progenitor assays

We received the Runx1 cDNA (full length mouse Runx1b encoding amino acid
residues 1-451), J1, Runx1™, and Runx1” ES cells from Dr. Nancy Speck, the
Alk1*"and Alk1” ES cells from Dr. Paul Oh, the Alk5”* and Alk5” ES cells from
Dr. Stefan Carlson, and the Tgf871* and Tgf81” ES cells from Dr. Ashok Kulkarni.
The inducible RUNX1 ES (iRUNX1) cell was generated as described previously

(Kyba et al., 2002; Lugus et al., 2007).

Embryonic stem cell culture and in vitro ES differentiation were performed as
described previously (Ma et al., 2008; Park et al., 2004; Zhang et al., 2005).
Exogenous RUNX1 was induced in iRUNX1 EB cells with 1.0 ug/ml or indicated
concentration of doxycycline (Dox; Sigma). The following factors were used in
differentiation: BMP4 (5 ng/ml; R&D Systems), VEGF 65 (10 ng/ml; R&D
Systems), TGFB1 (10 ng/ml; R&D Systems), SB431542 (2 uM; TOCRIS
bioscience), Noggin (50 ng/ml; R&D Systems), DAPT (2 yuM added 2 times/day;

R&D Systems), and Cyclopamine (3 uM; TRC-Canada).

EryP colonies were generated by harvesting EB cells on the indicated day of
differentiation, dissociating them in trypsin, passaging them through a 20G
needle 5-7 times, and plating them in methylcellulose containing 10% plasma-
derived serum (PDS, Animal Technologies, Inc. Texas), 12.5 pg/ml ascorbic acid,

5% protein-free hybridoma medium (PFHM-II; Gibco), L-glutamine (2 mM),
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transferrin (300 ug/ml; Boehringer Mannheim), MTG (4.5x10“M), and Epo (2

units/ml; Amgen). EryP colonies were counted 4-5 days after replating.

Definitive erythroid and myeloid colony assays, day 6 EB cells were replated in
methylcellulose containing 10% plasma-derived serum (PDS, Animal
Technologies, Inc. Texas), 12.5 ug/ml ascorbic acid, 5% protein-free hybridoma
medium (PFHM-II; Gibco), L-glutamine (2 mM), transferrin (200 pug/ml;
Boehringer Mannheim), MTG (4.5x10™*M), and Epo (2 units/ml; Amgen), together
with the following cytokines: kit ligand (KL 1% conditioned media), IL-3 (1%
conditioned media), IL-1 (5 ng/ml), IL-6 (5 ng/ml), IL-11 (5 ng/ml), G-SCF (2
ng/ml), M-CSF (5 ng/ml) and GM-CSF (3 ng/ml). Blast colonies were generated
by replating day 2.75 EB cells in the presence of VEGF (5 ng/ml), kit ligand (1%
conditioned media), and D4T endothelial cell conditioned media (25%). Blast

colonies and hematopoietic colonies were counted 5-8 days after replating.

Biochemical analysis of iRUNX1 cells

To determine the induction of RUNX1 protein in iRUNX1 cells, ES cells were
differentiated in serum with the indicated amount of Dox added on day 3 and
harvested on day 4. Subsequent steps to detect the inducible RUNX1 were
performed as previously described (Park et al., 2004). For generation of the
iIRUNX1 ES cells, FLAG tag was added to the N-terminus of RUNX1. The FLAG

tag antibody (Sigma) was used to detect the induction of exogenous RUNX1.
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Generation of Runx1 mutant knock-in mice

Mouse Runx1 cDNA was digested with Sacll and Clal to obtain a 1.2-kb
fragment of partial coding sequence containing 62bp of exon 4 and exons 5-8
and was cloned into pBluescript Il. The rabbit 8 globin polyadenylation (pA)
cassette was inserted to the Runx1 cDNA. A neomycin-positive selection
cassette, expressed under the control of the herpes simplex virus thymidine
kinase promoter with a 5’ Sacll site, was then inserted in reverse orientation
downstream of the pA cassette. Site-directed mutagenesis was performed to
introduce mutations into the Runx1 cDNA using a QuickChange site-directed
mutagenesis kit (Stratagene, La Jolla, CA) and mutagenic primers for F146S (5’-
GAGCGGTAGAGGCAAGAGCTCCACTCTGACCATCACCGTCT-3'), T149A (5-
AGGCAAGAGCTTCACTCTGGCCATCACCGTCTTTACAAATC-3’), and R174Q
(5’-CACAGTGGACGGCCCCCAAGAACCCCGAAGACATC-3'). Next, the partial
Runx1 cDNA-PA-neo was removed by digestion with Sacll and cloned into a
unique Sacll site in AML-SS-12, which contained a 10-kb Sacl-Spel fragment of
mouse genomic DNA flanking Runx1 exon 4 and a diphtheria toxin-negative
selection cassette that was cloned into the vector pBluescript || SK (Okuda et al.,
1996). The presence of each point mutation and the exon 4-8 sequences in the

targeting construct were confirmed by sequence analysis.

The resulting targeting vector was linearized with Notl, and 25 yg was

transfected into the 129/SVEV ES cells (Specialty Media, Phillipsburg, NJ) by

electroporation. Homologous recombinant clones were identified by Southern
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blot analysis. Blastocyst injection and breeding of chimeras were performed as

described previously (Lorsbach et al., 2004).

Yolk sac isolation

Runx1*", Runx1"F"%S Runx1*7"*4 and Runx1*"""? mice were used for timed
mating. Yolk sacs were isolated at the indicated times and somite pairs were
counted. Yolk sacs were incubated in collagenase (Sigma) with 20% FCS in PBS
for 1.5-2 hours at 37°C, passaged through a 20G needle 4-6 times, and washed
with 10% FSC in PBS twice. The single-cell suspensions of yolk sacs were
subjected to hematopoietic replating as described above. Hematopoietic colonies

were counted 4-7 days after replating.

Retrovirus production and infection of differentiated ES cells

Retroviral infection using the Phoenix packaging cell line was described
previously (Grignani et al., 1998). Briefly, Phoenix packaging cells were
maintained in DMEM with 10% FSC and 1% L-Glutamine. On day 0, 3x10° cells
were plated in one well of a gelatinized 6-well plate. On day 1, Phoenix cells
were transfected with 3 pg of MSCV-IRES-GFP (control), MSCV-RUNX1-IRES-
GFP, MSCV-GATA1-IRES-GFP, or MSCV-EKLF-IRES-GFP using FuGene 6
(Roche). The medium was changed 18-24 hours later. The transfected cells were
then grown at 32°C for 24 hours, and the medium containing viral particles was
collected and filtered through a 0.45 um filter before use. Runx1”" and iRUNX1

ES cells were differentiated on OP9 cells for 3 days and infected with MSCV-

40



IRES-GFP (control), MSCV-RUNX1-IRES-GFP, MSCV-GATA1-IRES-GFP, or
MSCV-EKLF-IRES-GFP viral supernatants in the presence of polybrene (7.5
pg/ml). Dox (1.0 pg/ml) was added to iRUNX1 cells on day 3 of differentiation.

The cells were collected on day 4 by dissociation in trypsin for EryP replating.

Gene expression analysis

RNA preparation and cDNA generation were described previously (Lugus et al.,
2007; Park et al., 2004). qRT-PCR reactions were performed in duplicate or
triplicate. Primer sequences utilized in this study are described in Supplementary

Table 1.

GeneChip analysis

J1, Runx1'/', iIRUNX1, and iRUNX1+Dox EB cells were differentiated in serum.
Dox was added on day 3 of EB formation, and cells were collected on day 4.
Total RNA was purified using TRIzol (Invitrogen, CA), following the
manufacturer’s protocol. Aliquots of 3 ug of total RNA were subjected to
GeneChip® Mouse Genome 430 2.0 Array (Affymetrix). GeneChip results were
analyzed in dChip (Li and Wong, 2001; Zhong et al., 2003). Differences of gene
expression were determined by applying a 90% confidence interval of >1.4-fold

and above and using a baseline to experimental intensity difference of >100.

Flow cytometry
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FACS analysis has been described previously (Ma et al., 2008; Park et al., 2004).
Briefly, EBs were collected and dissociated in 7.5 mM EDTA in PBS for 1 minute
at 37°C. Cells were immediately resuspended in washing/staining buffer (4%
FSC in PBS) and passaged through a 20G needle 5-7 times. 5x10° cells were
incubated with anti-Flk-1-phycoerythrin (FIk-1-PE, Pharmingen, 1:200 dilution) for
15 minutes at 4°C in the dark, washed three times, and analyzed using a Becton-
Dickinson FACS Caliber. FACS data was analyzed with CellQuest software
(Becton-Dickinson). For Ter119 detection in E10.5 embryos, embryo propers and
yolk sacs were incubated for 90 minutes at 37°C in 0.1% collagenase (Sigma-
Aldrich, St Louis, MO) with 20% fetal bovine serum in phosphate-buffered saline
(PBS), and were separated into single-cell suspension by passing through 20-
gauge syringes. The resulting suspension cells were stained with FITC-
conjugated Ter119 antibodies (eBioscience, San Diego, CA), and analyzed by
FACS. The absolute Ter119+ cell number is equal to the total cell number from
the embryo proper or the yolk sac multiplied by the percentage of Ter119+ cells

analyzed by FACS.

Yolk sac benzidine staining

Yolk sacs were fixed in 1 mL 0.2% benzidine solution, which was prepared by
dissolving 100mg of bezidine dihydrochloride (Sigma) in 50mL of 0.5% acetic
acid at room temperature for 15 minutes. Next, 20ul of 30% H,0O, was added to
the tissue and incubated for 5-15 minutes at room temperature. Stained yolk

sacs were photographed by light microscopy.
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Statistics
The results of hematopoietic replating, qRT-PCR, FACS analysis were analyzed

by Student’s t test. P < 0.05 was considered statistically significant.
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Results

Enforced RUNX1 expression in EBs suppresses primitive erythroid
progenitor formation

To assess if Runx1 has a role in EryP development, we first examined EryP
formation and Runx1 expression during ES differentiation. Specifically, A2Lox ES
cells, a derivative of E14Tg2a ES cells (lacovino et al., 2009) were differentiated
in serum-containing media. These in vitro differentiated ES cells, termed
embryoid bodies (EB), were analyzed from day 0 to 7 for EryP progenitors and
Runx1 expression. As in the developing embryo, EryP progenitors appeared
within a very short window of time in the ES/EB system. EryP progenitors were
not detected until day 3 of differentiation, rapidly increased by day 4, and sharply
diminished thereafter (Figure 1.2-1A). Thus, EryP progenitor formation and/or
proliferation occur between days 3 and 4 during EB development. In EBs, Runx1
expression was detected starting from day 3, rapidly increased and reached a
plateau after day 4 (Figure 1.2-1B). Initial analyses suggested that the onset of
Runx1 expression coincided with the EryP emergence and that high levels of
Runx1 expression were sustained when EryP progenitors were no longer

produced in later time points (>days 5) during EB development.

To evaluate the role of Runx1 in primitive erythropoiesis, we employed an
inducible ES cell system (Kyba et al., 2002). To this end, we generated inducible
RUNX1 (iRUNX1) ES cells by targeting the tet-responsive locus of A2Lox ES

cells with the full length mouse Runx1 cDNA (amino acid residues 1-451), which
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was fused to a FLAG tag at the 5" end (Figure 1.2-1C). After the correct targeting
event was validated by a tet-responsive locus/cDNA vector-specific PCR (not
shown), inducible Runx1 expression was verified by adding doxycycline (Dox) to
differentiating ES cells. Specifically, iRUNX1 ES cells were differentiated in
serum and treated with various concentrations of Dox on day 3, at which time
point, EryP progenitors are rapidly emerging. Day 4 EB cells were harvested and
subjected to Western blot analyses using anti-FLAG tag antibody. Exogenous
RUNX1 was detectable in day 4 EBs with Dox concentrations as low as 0.03
pg/ml (Figure 1.2-1D). The protein analyses were corroborated by qRT-PCR of
Runx1 expression, which showed that Dox-treated iRUNX1 EB cells had
approximately 3- fold (0.01 ug/ml Dox) to 11-fold (>1 ug/ml Dox) induction of
Runx1 mRNA expression compared to non-induced cells (Figure 1.2-1E). To
determine the effect of enforced Runx1 expression on EryP, iRUNX1 ES cells
were differentiated in serum. Exogenous RUNX1 was induced from day 3 by
adding Dox, and day 4 EB cells were subjected to EryP replating. The number of
EryP colonies generated was significantly decreased by about 50%-70% when
Dox (>1 ug/ml) was added to EBs compared to -Dox controls or when Dox was
added at low concentrations (<0.03 ug/ml) (Figure 1.2-1F, not shown). No
notable differences were observed in proliferation and/or apoptosis between Dox
treated versus non-treated EB cells, as judged by Annexin V staining or viable
cell count (not shown). Our result showed that high level of Runx1 expression
between days 3 and day 4 during EB differentiation has suppressive effect on

primitive erythroid progenitor formation.

45



Runx1 is required for optimal primitive hematopoiesis

Previous studies suggested that Runx7 null mice did not have defects in primitive
erythropoiesis. However, quantitative analyses on EryP were not performed in
these studies (Okuda et al., 1996; Wang et al., 1996). In light of the findings that
EryP progenitor formation was sensitive to awe determined if EryP progenitor
number or the kinetics of EryP development could be altered in the absence of
Runx1. To this end, Runx1**, Runx1*", and Runx1” ES cells were differentiated
in serum, collected from day 3 to day 7, and subjected to EryP replating.
Unexpectedly, we saw a great reduction in EryP colony number from Runx1”" EB
cells at all time points (Figure 1.2-2A). When day 2.75 EB cells were collected
and subjected to blast colony replating (Faloon et al., 2000), we observed a
significantly reduced number of blast colonies, compared to Runx1*" and
Runx1*"* controls (Supplementary Figure 1.2-1A). However, we did not detect
any changes in the frequency or kinetic changes in FLK-1 expression in EB
development (Supplementary Figure 1.2-1B). This suggested that Runx1 is
required downstream of Flk1 mesoderm. To verify the essential role of Runx7 in

+/+

definitive hematopoiesis, Runx1™*, Runx1*", and Runx1” ES cells were
differentiated in serum for six days, and day 6 EBs were subjected to definitive
and myeloid progenitor replatings. No hematopoietic colonies were generated
from Runx1” EBs (Supplementary Figure 1.2-2A, B). This result is consistent

with the phenotype of the Runx1 knock-out embryos that have no definitive
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hematopoiesis (Okuda et al., 1996; Wang et al., 1996). Collectively, Runx1

clearly plays a role in regulating normal primitive hematopoiesis.

To further investigate the role of Runx1 in primitive hematopoiesis, we examined
EryP from Runx1” yolk sacs. Runx1*" mice were generated as previously
described and were used for establishing timed matings (Okuda et al., 1996).
Consistent with previous studies, E9.5-E10.5 Runx1” embryos did not display
any overt phenotypic defects and were similar in gross morphology to +/- or wild
type controls (Supplementary Figure 1.2-3A and not shown). Moreover, E10.5
Runx1'/'embryos showed similar benzidine staining pattern compared to +/- or
+/+ embryos (Supplementary Figure 1.2-3B). Ter119+ cells were readily present
within E10.5 Runx1”embryos, although the absolute number of Ter119+ cells
was slightly less compared to +/- or +/+ embryos (Supplementary Figure 1.2-3C).
Despite the seemingly normal presence of EryP cells, when E8.5 Runx1 +/+, +/-
and -/- embryos were analyzed, a significantly reduced number of primitive
erythroid colonies was obtained from E8.5 Runx1” yolk sacs compared to
littermate controls (Figure 1.2-2B). No definitive erythroid or myeloid colonies
were generated when Runx1” yolk sacs from later time points were analyzed,
confirming that Runx1 was required for definitive hematopoietic development
(data not shown). This suggests that even though the generation of EryP
progenitor was greatly compromised in Runx1” embryos, the remaining EryP
progenitors generated were sufficient for maintaining and providing the integrity

of the developing embryo until definitive hematopoiesis is required.
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DNA binding and CBFf interaction of Runx1 is required for normal
primitive hematopoiesis

DNA binding and CBFf interaction are critical for proper RUNX1 function. Based
on the current structural and biochemical studies, mutations of the Runt domain
can be classified into three groups: mutations that interrupt DNA binding ability
(i.e. R174Q), mutations that disrupt CBFf binding (i.e. T149A), and mutations
that cause incorrect folding of the Runt domain (i.e. F146S), resulting in the loss
of DNA and CBF binding (Matheny et al., 2007; Nagata and Werner, 2001). To
determine whether RUNX1 DNA or CBFf binding is required for primitive
hematopoiesis, we examined F146S, T149A and R174Q Runx1 knock-in mutant
mice. When heterozygous mutant mice were brother-sister mated and the
resulting pups analyzed at P21, we did not detect any live homozygous animals
for F146S, T149A, or R174Q Runx1 mutant alleles (Table 1). Next, heterozygous
mutant mice were used for timed matings, and E8.5 yolk sacs of these mutant
embryos were subjected to EryP replating. Somite pairs were counted while
dissecting the embryos to ensure that they were at similar developmental stages.
The number of EryP colonies obtained from Runx 145465 homozygous mutant
animals was significantly less, compared to their littermate controls (Figure 1.2-
2C). The reduction level in the number of EryP colonies from the Runx1"7465F1465

1 T149/T149

yolk sacs was similar to that from the Runx71” yolk sacs. Runx or the

1R1 74Q/R174Q

Runx yolk sacs also produced less EryP progenitors, however, the

number of EryP colonies generated from these animals was higher than that from
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1714651485 or Runx1" yolk sacs (Figure 1.2-2D, E). The results

the Runx
demonstrate that the ability of Runx1 to interact with CBFf3 and bind DNA are
required for its normal role in primitive hematopoiesis, suggesting that

components of the Runx1 transcriptional network are important for the normal

development, proliferation and survival of primitive erythroid cells.

Common erythroid genes are downregulated in Runx1 deficient as well as
in RUNX1 enforced EBs

To understand molecular mechanisms by which Runx1 regulates primitive
hematopoiesis, we performed global gene expression analyses of in vitro

differentiated Runx1™*, Runx1”" and iRUNX1+Dox EBs. Dox was treated from
days 3-4 at 1ug/ml. RNA samples were subjected to Affymetirx GeneChip®
Mouse Genome 430 2.0 microarray analyses. GeneChip results were analyzed
using dChip. We identified that 296 genes were reduced in the Runx1” EBs,

+/+

compared to Runx1”" EBs, by more than 1.4 fold and that 1219 genes were
decreased in Dox treated iRUNX1 EBs compared to -Dox controls. Among the
down-regulated genes in Runx1”~ and RUNX1 enforced EBs, hematopoietic-

related genes were selected and listed in Table 2.

Upon examining the gene expression profile, we noticed several patterns
associated with Runx1 deficiency and Runx1 overexpression. First, there were
genes that were downregulated in Dox treated cells but not in Runx1” EBs.

These included Lmo2 and Scl. Recently, Sc/ has been reported to be upstream
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of Runx1 (Landry et al., 2008; Nottingham et al., 2007). Second, we found genes
that were downregulated in both Runx1” and enforced RUNX1 EB cells. These
included Hbb-y and Hba-a1 as well as several transcription factors including
Gata1, EkIf and cMyb. This category of genes could be Runx1 dosage sensitive
downstream targets. Third, several genes, including Eraf and glycophorin A
(Gypa), were greatly downregulated in Runx1”- EBs, while no significant changes
were observed in Dox treated iRUNX1 EB cells.

To confirm gene chip analyses, we analyzed day 4 EB cells from Runx1*",
Runx1”" and iRunx1+Dox by gRT-PCR analyses. Such analyses confirmed that
Gata1, EkIf and cMyb were downregulated in Runx1”"as well as Runx1
overexpressed EBs (Figure 1.2-3A, B). The results were consistent with the
interpretation that Runx1 deficiency or enforced RUNX1 results in down-
regulation of Gata? and EkIf expression, which in turn affects optimal EryP

progenitor formation.

To establish that Runx1 is upstream of Gata1 and/or EkIf in EryP development,
we first determined whether Runx1 could rescue EryP defects in Runx1” ES
cells. Specifically, Runx1”" ES cells were differentiated on OP9 cells for 3 days
and then infected with MSCV-RUNX1 virus for an additional day. Day 4
differentiated cells were harvested and analyzed for EryP. Runx1” cells infected
with MSCV-RUNX1 virus generated an increased number of EryP colonies

compared to Runx1”" cells infected with GFP control virus (Figure 1.2-3C). Next,
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we tested whether Gata? and/or EkIf could rescue EryP defects observed in
Runx1” or Dox treated iRunx1 EB cells. To this end, Runx1” and iRUNX1 ES
cells were differentiated on OP9 cells for 3 days, infected with MSCV-GATA1
and/or the MSCV-EKLEF virus for an additional day. Dox was added to iRUNX1
differentiating ES cells on day 3. Day 4 differentiated cells were harvested and
analyzed for EryP. Runx1” differentiated cells that were infected with MSCV-
GATA1 or with MSCV-EKLF virus generated an increased number of EryP
colonies compared to control retrovirus-infected cells (Figure 1.2-3C). Moreover,
MSCV-GATA1 or the MSCV-EKLF virus also partially rescued EryP defects
observed in Dox treated iRUNX1 cells (Figure 1.2-3D). We did not observe any

obvious additive effects between Gata? and EKIf.

TGFB1 suppresses primitive hematopoiesis

We previously demonstrated an inhibitory role for TGF31 in hematopoietic
development in the ES/EB system (Park et al., 2004). To further elucidate
signaling pathways that might regulate EryP generation, we tested various
pharmacological inhibitors known to affect hematopoietic differentiation in the
ES/EB system. As the window of time between days 3 and 4 is critical for EryP
progenitor formation and/or expansion, we added various inhibitors on day 3 and
analyzed day 4 EBs for EryP colonies. Of the factors tested, TGFf1 inhibited
EryP progenitor formation. Meanwhile, inhibition of BMP (noggin), Notch (DAPT,
gamma-secretase inhibitor N-S-phenyl-glycine-t-butylester) or Hedgehog

(cyclopamine) signaling did not affect the number of EryP colonies formed
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(Figure 1.2-4A and Supplementary Figure 1.2-4A). As the inhibitory effect of
TGFB1 on EryP could be serum dependent, we also performed ES differentiation
in serum free conditions by adding BMP4 and VEGF (Park et al., 2004). TGF{31
inhibitory role was also observed in serum free conditions (Figure 1.2-4C).
Importantly, Runx1 expression was increased when TGF(1 was added to the
culture (Figure 1.2-4B and 1.2-4D). Runx1 expression was increased even
greater in serum free conditions (Figure 1.2-4D). We did not observe substantial
changes of Runx1 expression among other inhibitor treated EBs (Supplementary

Figure 1.2-4B).

To determine if the potential inverse relationship between TGFB1 and Runx1
expression in EryP formation was relevant, we next analyzed Tgf81” ES cells.
As serum might contain TGFB1, we applied serum free conditions in generating
EryP by adding BMP-4 and VEGF. In serum free conditions, day 5 EB cells
generated prominent number of EryP colonies (Figure 1.2-4E). TgfB1” ES cells
generated a greater number of EryP colonies compared to +/+ or +/- ES cells
(Figure 1.2-4E and not shown). Importantly, Runx1 expression levels in day 4 or
5 Tgf,81'/' EB cells were significantly lower compared to Tgf,81+/' EB cells (Figure

1.2-4F).
TGFB1 suppresses primitive erythropoiesis through ALK5

TGFB1 can bind either type | receptor, ALK1 or ALKS5, to activate down-stream

SMAD1/5/8 or SMADZ2/3, respectively (Goumans et al., 2002; Lux et al., 1999;
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Oh et al., 2000; Shi and Massague, 2003). In order to determine which type |
TGFB1 receptor is responsible for the suppression of EryP, we first examined
Alk1 and Alk5 expression levels in maturing EryP cells. Specifically, wild-type ES
cells were differentiated in serum, and day 4 EB cells were subjected to EryP
replating. EryP colonies were collected two and three days after replating and
subjected to qRT-PCR analysis. Gene expression analyses of day 2 and day 3
EryP cells demonstrated that A/k5, not Alk1, was highly expressed in

differentiating EryP cells (Figure 1.2-5A).

Next, we used the ES/EB system of Alk1 and Alk5 null ES cell lines to further
dissect the axis of the TGFB1 signaling in primitive hematopoiesis (Larsson et al.,
2001; Oh et al., 2000). Specifically, we differentiated Alk1”" and Alk5” ES cells,
along with their controls, in serum for 4 days, and EB cells were subjected to
EryP replating. As shown in Figure 1.2-5B, Alk5” EBs generated a significantly

+/+

higher number of EryP colonies compared to Alk6™" EBs. However, the number
of EryP colonies generated from Alk1*" vs Alk1” was similar (Figure 1.2-5B). To
further examine the TGFB1-ALKS axis in EryP development, we treated wild-type
EBs in serum with SB431542 on day 3 (Inman et al., 2002), which inhibits the
interaction between TGFB1 and ALKS, not ALK1. SB431542 treated EBs
generated more EryP colonies than non-treated EBs (Supplementary Figure 1.2-
5). To eliminate the possibility that TGFB1 could use additional receptors in EryP

suppression, we used serum-free differentiation conditions to test whether EryP

colony numbers could be further decreased with TGFB1 treatment in A/k5” EBs.

53



We subjected Alk1™, Alk1”, AIk5**, and Alk5” ES cells to serum-free
differentiation with BMP4 and VEGF. TGFB1 was added on day 3, and day 4 EB
cells were analyzed for EryP colony formation. The results showed that Alk5”
EBs had similar EryP colonies regardless of TGFB1 treatment, whereas Alk1”"
EBs generated less number of EryP colonies when treated with TGFB31 (Figure
1.2-5C). Runx1 was expressed at much lower levels in day 4 Alk5” EBs
compared to Alk5"* EBs (Figure 1.2-5D). In addition, Runx1 expression levels
were similar in Alk1” and controls. However, both Gata? and Ekif were
downregulated by TGFB1, but upregulated in Alk5” EBs (Supplementary Figure
1.2-6A, B). Collectively, these data indicated that TGF31 through ALKS, rather
than through ALK1, could modulate Runx1 expression to suppress EryP

progenitor development and/or proliferation.
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Discussion

The expression of Runx1 is among the earliest molecular markers for blood
formation in Xenopus, and expression of a truncated Xaml protein can inhibit
primitive hematopoiesis (Tracey et al., 1998). Studies in zebrafish demonstrate
that runx1 is involved in both primitive and definitive hematopoiesis (Kalev-
Zylinska et al., 2002). In mice, Runx1 expression can be first detected in
extraembryonic mesodermal cells at E7.25 and in primitive erythrocytes of the
yolk sac blood islands at E8.0-E8.5 (Lacaud et al., 2002; North et al., 1999).
Herein, we demonstrate that yolk sacs from Runx? mutant mice (Runx1™),
harboring homozygous deletion of the Runt domain encoding exon 4, have
defects in primitive hematopoiesis. The defect was at the progenitor level, as the
number of EryP progenitors was greatly decreased in these mice. However, we
could still detect Ter119+ cells in yolk sacs from the Runx1”~ embryos at E10.5,
at a level, which was similar to that of wild type controls. Benzidine staining levels
were also comparable between wild type and Runx1” embryos at E10.5.
Although we have not examined mature EryP cell morphology, Yokomizo et al.
recently showed that circulating primitive erythrocytes from Runx1” embryos,
which also delete exon 4, were morphologically defective (Yokomizo et al., 2008).
We suggest that the residual EryP precursors present in Runx1”~ embryos could
still produce mature primitive erythroid cells, which could deliver adequate
oxygen to sustain the survival of the knockout embryos during the early
embryogenesis. In adult, only a small fraction of hematopoietic stem cells (HSCs)

generate mature blood cells at a given time. Thus, to guarantee production of
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EryP cells, it is possible that developing embryos reserve a large number of EryP
progenitors, which exceed the amount that the embryo actually requires. Future
studies to determine whether all EryP progenitors participate in generating
mature EryP cells are warranted. Alternatively, Yokomizo et al. showed that the
number of EryP progenitors present within the Runx1™" embryos, was similar to
that from +/- control embryos (Yokomizo et al., 2008). As the authors in this study
used the whole embryo for EryP replating, this study suggests an intra-embryonic
generation of EryP progenitors in the absence of Runx1. Previous studies
support the notion that Runx1 dosage could modulate hematopoietic progenitor
production from different embryonic tissues. Specifically, the spatial and temporal
appearance of hematopoietic stem cells (HSCs) in the yolk sac and AGM is
sensitive to Runx1 dosage, as HSCs appear prematurely in the E10 Runx1*"
yolk sac and there was a premature termination of HSC activity in the Runx1*'~
AGM explant culture (Cai et al., 2000). Studies on whether AGM can generate
EryP progenitors when Runx1 mediated definitive hematopoietic program is

absent are warranted.

Intriguingly, in contrast to Runx1” mice, which delete exon 4, that we used in this
study, another Runx1 mutant mouse line (North et al., 1999), which harbors lacZ
in place of exon 7 and 8, or Runx1-2*“*2Z ES cells do not appear to have EryP
defects (Lacaud et al., 2002). This suggests that a functional Runt domain is
critical for primitive EryP development. Indeed, by utilizing Runx1 mutant mice

homozygous for DNA, CBFf as well as DNA and CBFB-binding domain, we
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show that both DNA and CBF binding are required for optimal EryP

development.

While EryP progenitors in the yolk sac were sub-optimally generated in the
absence of Runx1, we also found that a high level of Runx1 expression in the
ES/EB system was able to repress EryP progenitor formation and/or expansion.
Runx1 can either activate or repress target genes by interacting with co-activator
or co-repressor, respectively (Kitabayashi et al., 1998; Lutterbach et al., 2000).
Although we could not determine the interaction between RUNX1 and mSin3A
co-repressor in the ES/EB system (data not shown), we cannot rule out the
possibility that such RUNX1 suppression of EryP was due to RUNX1 interaction
with other co-repressors. Currently available studies support the notion that
Runx1 dosage is critical for proper hematopoiesis. As discussed, hematopoietic
stem cell and hematopoietic progenitor generation were sensitive to Runx1
dosage (Cai et al., 2000; Mukouyama et al., 2000; North et al., 2002).
Additionally, an extra copy of Runx1 on chromosome 21 could potentially be
responsible for predisposing Down’s syndrome children to increased risk of

developing leukemia (Dufresne-Zacharia et al., 1994; Gurbuxani et al., 2004).

We provide evidence that Gata? and EkIf are genetically downstream of Runx1 in
EryP development. Both genes were downregulated by enforced Runx1
expression and in Runx1” EBs compared to wild type controls. Moreover, both

Gata1 and EkIf could partially rescue EryP defects seen in induced Runx1 and
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Runx1” ES cells. Gata1 plays a critical role in the regulation of erythroid-specific
genes in both primitive and definitive erythroid cells. Gata1 is highly expressed in
both primitive and definitive erythroid progenitors (Whitelaw et al., 1990). Gata1
knockout ES cells fail to generate EryP progenitors. EryD progenitors fail to
mature in the absence of GATA1 (Weiss et al., 1994). Gata1 knockout ES cells
contribute to all non-hematopoietic tissues but fail to give rise to mature red blood
cell in chimaeric mice (Pevny et al., 1991). Moreover, GATA1 has been shown to
bind to the promoters of many erythroid cell-specific genes including the 8 globin
locus control region (BLCR) (Cantor and Orkin, 2002; Palstra et al., 2008; Vakoc
et al., 2005). EkIf was originally thought to mainly regulate the adult 3-globin
genes. However, recent studies have shown that EKLF also regulates embryonic
globin expression (Basu et al., 2007; Hodge et al., 2006). EkIf” embryos have
nucleated primitive erythroid cells with an abnormal morphology (Drissen et al.,
2005). In Runx1” EBs, embryonic globin expression was significantly lower
compared to wild-type controls. However, we failed to show direct binding of
RUNX1 to the Gata1, EkIf, or BLCR region by chromatin immuno-precipitation
(ChlP) analysis (data not shown). We conclude that low embryonic globin
expressions in induced Runx? and Runx1” EBs could be due to the suboptimal

expression of Gata1 and EKIf.
TGFB1™", TgfBriI”, and Alk5" mice all display anemia and severe defects in

angiogenesis in the yolk sac (Dickson et al., 1995; Larsson et al., 2001; Oshima

et al., 1996). Despite the severe anemia, Alk5” yolk sacs contained a higher
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number of erythroid progenitors, demonstrating that anemia seen in these mice is
secondary to the angiogenic defects. Intriguingly, TGFB71" yolk sacs appeared to
contain significant numbers of circulating non-hemoglobinized blood cells
(Dickson et al., 1995). Herein, we demonstrate that TGF1 could up-regulate
Runx1 and suppress EryP progenitor formation. We determined that ALKS5 is the
major TGFf type | receptor in primitive erythroid cells. Both TGFB1”" and Alk5™
ES cells generated a higher number of EryP colonies. It is worth pointing out that
the increase in Runx1 expression level by TGFB31 treatment in serum was at best
1.5-2 fold. In our studies, TGFB1 suppressed a broader range of hematopoietic-
related transcriptional factors, such as Scl, Gata1, Eklf, c-myb and Lmo2.
Therefore, we suggest that TGFB1 could inhibit EryP development through many
genetic pathways, one of which could be Runx1. Alternatively, previous studies
have established that TGF growth factors can modulate RUNX protein stability
and/or activity. Specifically, TGFB/BMP-activated Smads can interact with RUNX
and stimulate transcription of RUNX target genes (Hanai et al., 1999; Ito, 2004;
Miyazono et al., 2004). Moreover, BMP induces differentiation of mesenchymal
cells into osteoblasts by upregulating the expression of Runx2 and its interaction
with BMP-activated SMADs (Ito and Miyazono, 2003; Lee et al., 2000; Zhang et
al., 2000). In hepatic cells (Wildey and Howe, 2009), TGFB induces Runx1, which
in turn interacts with FOXO3 to upregulate Bim expression to mediate apoptosis.
Finally, TGFB/BMP activate a stress-activated protein kinase p38 (SAPKs)
(Gallea et al., 2001; Hanafusa et al., 1999). Both the Smad and MAPK pathways

are essential components of the TGF[3 superfamily signaling during osteoblast
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differentiation (Derynck et al., 2001; Fujii et al., 1999; Gallea et al., 2001;
Nishimura et al., 1998; Yamamoto et al., 1997) and for Runx2 induction (Lee et
al., 2002). We suggest that such interaction between TGFB1 and Runx1 also
regulates primitive hematopoiesis. Collectively, our studies demonstrate that
Runx1 dosage is critical for optimal EryP progenitor generation. Potentially,
TGFB1 family of factors could be upstream, which can modulate Runx1 levels or

activity to achieve optimal primitive hematopoiesis.
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Figure Legends

Figure 1.2-1. Enforced RUNX1 expression during ES cell differentiation
results in reduced EryP progenitors.

(A and B) A2Lox ES cells were differentiated in serum. EB cells were collected at
indicated time points for EryP replating (A) and Runx1 expression analysis (B).
EryP colonies were counted 4-5 days after replating. Runx1 expression was
analyzed and normalized to Gapdh. Values indicate meants.e.m. from three
independent experiments.

(C) Schematic of the inducible RUNX1 (iRUNX1) ES cell lines with indicated loci
containing modifications for production of rtTA and expression of Runx1 cDNA.
(D) Western blot of the iRUNX1 ES cell lines. iRUNX1 ES cells differentiated in
serum for three days were treated with the indicated concentrations of Dox for
one additional day. Cells were collected on day 4 and subjected to SDS-PAGE
followed by blotting with anti-FLAG and anti-B-actin antibodies.

(E) IRUNX1 ES cells were differentiated and treated with the indicated
concentration of Dox on day 3. EB cells were harvested on day 4 for Runx1
expression analysis by qRT-PCR. Runx1 expression was analyzed and
normalized to Gapdh. The expression level of Runx1 in untreated cells was
normalized as 1 and used to determine the Runx1-fold change in Dox-treated
samples. Values indicate meants.e.m. from three independent experiments.
(F) iIRUNX1 ES cells differentiated in serum were treated with Dox at 0.03 pg/ml
or at 1.0 yg/ml on day 3 and harvested on day 4 for EryP replating. Values

indicate meants.e.m. from three independent experiments; ***p<0.001.
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Figure 1.2-2.
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Figure 1.2-2. Runx1 null and Runx1 mutations resulted in decreased
number of EryP progenitors in yolk sac.

(A) J1, Runx1*", and Runx1” ES cells differentiated in serum were harvested for
EryP progenitor assay on the indicated day. Values are meanzts.e.m. of EryP
colonies from four independent experiments.

(B) Primitive erythroid colonies from E8.5 yolk sacs (4-7 somite pair stage) of
Runx1** (n=9), Runx1*" (n=13), and Runx1” (n=13).

(C) EryP colonies of Runx1-F146S EB8.5 yolk sacs (3-10 somite pair stage). N+ =
5; NyF1aes = 12; NF1a6s/F146s = 5.

(D) EryP colonies of Runx1-T149A E8.5 yolk sacs (3-8 somite pair stage). n. =
8; N+/T140A = 25; NT1a0a/T140A = 18.

(E) EryP colonies of Runx1-R174Q E8.5 yolk sacs (3-9 somite pair stage). n.+ =
10; nyr174q = 16; Nr174aqr174q = 8. The results show meants.e.m. of EryP

colonies. *p<0.05, **p<0.01, ***p<0.001.
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Figure 1.2-3.
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Figure 1.2-3. Gatal and EkIf rescue decreased EryP progenitor formation in
Runx1” and iRUNX1 EBs.

(A) J1 and Runx1” ES cells were differentiated in serum, and EB cells were
harvested on day 4. RNA was utilized for gqRT-PCR analysis. Gene expressions
were normalized against Gapdh, and then the ratio of the gene expression
(Runx1”") to gene expression (J1) was determined to generate normalized fold
change. Values indicate meants.e.m. from three independent experiments.

(B) iIRUNX1 ES cells were differentiated in serum, Dox (1.0 ug/ml) was added on
day3, and EB cells were collected for gRT-PCR on day 4. Gene expressions
were normalized against Gapdh, and then the normalized fold change was
determined by calculating the ratio of the +Dox to -Dox. Values indicate
meanzts.e.m.from two to three independent experiments.

(C and D) Runx1” (C) and iRUNX1 (D) ES cells were differentiated for three
days on OP9 cells, and cells were infected with MSCV-RUNX1-IRES-GFP,
MSCV-GATA1-IRES-GFP, or MSCV-EKLF-IRES-GFP viral supernatants. One
day later, the cells were collected for primitive erythroid replating. For the
differentiation of iIRUNX1 ES cell, Dox was added on day 3. Cells treated with
MSCV-IRES-GFP viral supernatant were used as controls. Values are mean of
EryP coloniests.e.m. from three independent experiments. *p<0.05, **p<0.01,

*+%<0.001.

73



Figure 1.2-4.
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Figure 1.2-4. TGFB1 inhibits EryP progenitor formation and induces Runx1
expression.

(A and B) A2Lox ES cells were differentiated in serum, TGFB1 (10 ng/ml) was
added on day 3, and EB cells were collected on day 4 for EryP replating (A) and
gRT-PCR (B). Runx1 expression was normalized against Gapdh, and then the
normalized fold change was determined by calculating the ratio of +TGF31 to -
TGFB1. Values are meants.e.m. from three independent experiments.

(C) TGFB1 inhibits the number of EryP progenitors in serum free condition.
A2Lox ES cells were differentiated in serum free (SR) media with BMP4 (5 ng/ml)
and VEGF (10 ng/ml). TGFB1 (10 ng/ml) was added on day 3, and day 4 EBs
cells were collected for EryP replating. Values are meants.e.m. from three
independent experiments.

(D) TGFB1 induces Runx1 expression in serum free conditions. A2Lox ES cells
were differentiated for 2 days in SR and treated with TGFB1 (10 ng/ml) for two
more days. Day 4 EBs were harvested for gqRT-PCR analysis. Runx1 expression
was normalized against Gapdh and the ratio of Runx1 quantity (+TGFp1) to
Runx1 quantity (SR) was determined to yield normalized fold change. Values are
meants.e.m. from two independent experiments.

(E and F) Deficiency in TGFB1 leads to increased EryP colony formation with
decreased Runx1 expression. Tgf31"" and TgfB1” ES cells were differentiated in
serum free (SR) with BMP4 (5 ng/ml) and VEGF (10 ng/ml). Day 4 and day 5 EB
cells were harvested for EryP replating (E) and Runx1 expression analysis by

gRT-PCR (F). Runx1 expression was normalized against Gapdh. Values are
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meanzts.e.m. from three independent experiments. *p<0.05, **p<0.01, ***p

<0.001.
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Figure 1.2-5.
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Figure 1.2-5. Alk5 deficiency generates increased EryP progenitors.

(A) ALKS5 is the major TGF type | receptor in developing EryP colonies. A2Lox
ES cells were differentiated in serum for 4 days and subjected to EryP colony
assay. EryP cells harvested from 2 days and 3 days after replating were utilized
for gqRT-PCR analyses. Gene expressions were normalized against Gapdh.
Values are meanzs.e.m. from two independent experiments.

(B) Alk5” EB cells generate increased EryP colonies. Alk1*", Alk1”", Alk5"*, and
Alk5” ES cells differentiated in serum for 4 days were used for EryP progenitor
assays. Values are meanzs.e.m. of EryP colonies from three independent
experiments.

(C) TGFPB1 fails to suppress EryP progenitor formation in Alk5” EBs. Alk1™,
Alk1”, Alk5*"*, and Alk5” ES cells differentiated in serum free (SR) with BMP4 (5
ng/ml) and VEGF (10 ng/ml) were treated with TGF@1 (10 ng/ml) on day 3 and
were collected for EryP progenitor assay on day 4. The number of EryP colonies
in untreated cells was normalized as 1 and used to determine the ratio of the
EryP colonies in TGFB1-treated samples. Values are meants.e.m. from three
independent experiments.

(D) Alk1*™", Alk1”, Alk5*"*, and Alk5” EB cells were harvested on day 4 and RNA
samples were generated for gqRT-PCR analyses. Runx1 expression was
normalized against Gapdh. Values are meants.e.m. from three independent
experiments.

*p<0.05, **p<0.01, ***p <0.001.
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Table 1.2-1. Viability of progeny from intercrosses of Runx1™"* mice

Biochemical Properties* No. (%) of live mice at P21
DNA binding | CBF binding +/+ +/m m/m
F146S - - 169 (40.8) | 245 (59.2) 0
T149A ++ - 53 (32.1) |112(67.9) 0
R174Q - ++ 109 (32.6) |225 (67.4) 0

-, loss of function

++, equivalent to wild-type
P: postnatal day

m: mutant allele

*(Nagata and Werner, 2001)
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Table 1.2-2. Common erythroid genes were downregulated in Runx1”~ and

iRUNX1+Dox EBs.

Fold change of

Fold change of

Microarrary ID |EntrezGene ID gene Runx1™1J1 +Dox/-Dox
1452207 at 17684 S;tli(iziyil;%;‘);(;?ggt:::ﬁfl;g transactivator, with Glu/Asp-rich ) 1.80
1425400_a_at 56222 S;tﬁoityﬁtfﬂig?ﬂ:;ﬁ?zg transactivator, with Glu/Asp-rich } 6.43
1423344 _at 13857 Epor: erythropoietin receptor - -1.87
1452514_a_at 16590 Kit: kit oncogene - -2.44
1415855_at 17311 Kitl: kit ligand - -2.68
1450736_a_at 15132 Hbb-bh1: hemoglobin Z, beta-like embryonic chain - -1.95
1454086_a_at 16909 Lmo2 : LIM domain only 2 - -3.12
1449389_at 21349 Tall: T-cell acute lymphocytic leukemia 1 - -4.77
1449232_at 14460 Gatal: GATA binding protein 1 -1.45 -2.27
1418600_at 16596 KIf1: Kruppel-like factor 1 (erythroid) -2.00 -3.80
1450194_a_at 17863 Myb: myeloblastosis oncogene -1.59 -2.99
1436823_x_at 15135 Hbb-y: hemoglobin Y, beta-like embryonic chain -5.88 -5.61
1417714_x_at 15122 Hba-al: hemoglobin alpha, adult chain 1 -2.72 -1.57
1425643_at 14934 Gypa: glycophorin A -2.35 -
1449077_at 170812 Eraf: erythroid associated factor -5.90 -

- indicates not applicable

* gene expression subjected to qRT-PCR analysis
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Supplementary Figure 1.2-1.
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Supplementary Figure 1.2-1. Runx1” EBs have reduced blast colonies and
comparable FLK1" differentiation kinetics compared to wild type EBs by
FACS analysis.

(A) J1, Runx1*" and Runx1” ES cells differentiated in serum were collected on
day 2.75 for blast colony replating. Values are meants.e.m. from three
independent experiments; **p<0.01.

(B) FACS analyses for FLK1 expression of J1, Runx1™, and Runx1” EBs. ES
cells were differentiated in serum, and cells were collected for FLK1" detection by
FACS from day 2 to day 5. Values are meants.e.m. from three independent

experiments.
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Supplementary Figure 1.2-2.
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Supplementary Figure 1.2-2. Runx1” EB cells have no definitive
hematopoietic colonies.

J1, Runx1*, and Runx1” ES cells were differentiated in serum for six days. EB
cells were harvested for definitive erythroid and myeloid replating. Colonies of
EryD (A) and Mac (B) were counted 6-7 days after replating. Values are
meanzts.e.m..from three independent experiments; **p<0.01. EryD: definitive

erythroid colony, Mac: macrophage colony.
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Supplementary Figure 1.2-3.
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Supplementary Figure 1.2-3. E10.5 Runx1” embryos have no gross
abnormalities in blood cell generation.

+/+

(A) Morphology and (B) Benzidine staining of yolk sacs of Runx1**,Runx1*", and
Runx1” embryos at E10.5.

(C) FACS analysis on Ter119+ cells of the embryo proper (left) and the yolk sac
+/+

(right) at E10.5. Values indicate meants.e.m. of total Ter119+ cells from Runx1

(n=1), Runx1*"~ (n=4), and Runx17~ (n=2) embryos.
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Supplementary Figure 1.2-4.
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Supplementary Figure 1.2-4. Noggin, DAPT, and cyclopamine do not affect
EryP progenitor formation and Runx1 expression.

(A) A2Lox ES cells were differentiated in serum, Noggin (50 ng/ml), DAPT (2 uM
added 2 times/day), and Cyclopamine (3 uM) were added on day 3 and EB cells
were collected on day 4 for EryP replating (A) and gRT-PCR (B). Runx1
expression was normalized against Gapdh. The quantity of Runx1 expression in
FSC was normalized as 1 and used to determine the Runx1-fold change in
inhibitor-treated samples. Values indicate meanzs.e.m. of EryP colonies from

three independent experiments.
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Supplementary Figure 1.2-5.

%

2.5

2.0

1.5 1

1.0+

0.5+

Normalized EryP colonies

FSC +SB431542

89



Supplementary Figure 1.2-5. SB431542 treated EB cells generate increased
EryP colonies.

iIRUNX1 ES cells differentiated in serum for 3 days were treated with SB431542
(2 uM) on day 3. Cells were collected on day 4 for EryP replating. EryP colonies
were counted, and the numbers of EryP colonies in SB431542-treated samples
were normalized to that of FSC. Values are meants.e.m. from three independent

experiments; **p<0.01.
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Supplementary Figure 1.2-6.
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Supplementary Figure 1.2-6. Gatal and EkIf expressions were decreased in
TGFB1 treated EBs but increased in Alk5" EBs.

(A) A2Lox ES cells differentiated in serum were treated with and without TGF[31
(10 ng/ml) on day 3. Cells were harvested on day 4 for qRT-PCR. Gene
expressions were normalized against Gapdh, and then the normalized fold
change was determined by calculating the ratio of the gene expression (+TGF(31)
to gene expression (-TGFB1). Values are meants.e.m. from two to three
independent experiments.

(B) Alk1*", Alk1”, Alk5™", and Alk5” EB cells were harvested on day 4 for for
gRT-PCR analyses. Gene expressions were normalized against Gapdh. Values

are meanzs.e.m. from three independent experiments; **p<0.01, ***p<0.001.

92



Supplementary Table 1.2-1. Primer sequences for qRT-PCR.

Gene Primer Sequence (5’-3’) Source
Forward TGGCAAAGTGGAGATTGTTGCC

Gapdh Lugus et al., 2007.
Reverse AAGATGGTGATGGGCTTCCCG
Forward CTTCCTCTGCTCCGTGCTA

Runx1 *Primer 3
Reverse CTGCCGAGTAGTTTTCATCG
Forward ATGGAATCCAGACGAGGAAC

Gatat Lugus et al., 2007.
Reverse CTCCCCACAATTCCCACTAC
Forward CAGCCTGATGCTAAGGCAAG

Scl Lugus et al., 2007.
Reverse AGCCAACCTACCATGCACAC
Forward ATGGGCTGCTGTCGGGATA

EKIf 4PrimerBank ID: 6754454a3
Reverse TCTTAGGTGCCAAAGTTCGCC
Forward GAGCACCCAACTGTTCTCG

c-myb PrimerBank ID: 19526473a1
Reverse CACCAGGGGCCTGTTCTTAG
Forward AGGAGAGACTATCTCAGGCTTTT

Lmo2 PrimerBank ID: 6678702a3
Reverse TTGAAACACTCCAGGTGATACAC
Forward TGGCCTGTGGAGTAAGGTCAA

Hbb-Y PrimerBank ID: 6680177a1
Reverse GAAGCAGAGGACAAGTTCCCA
Forward GGGCCTTTTGATGCTGTCG

Alk1 PrimerBank ID: 6752958a1
Reverse TGGCAGAATGGTCTCTTGCAG
Forward TCTGCATTGCACTTATGCTGA

Alk5 PrimerBank ID: 2853637a1
Reverse AAAGGGCGATCTAGTGATGGA

#Primer 3: http://biotools.umassmed.edu/bioapps/primer3 www.cgi

&Primerbank: http://[pga.mgh.harvard.edu/primerbank/
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Chapter 1.3

Conclusion and Future Directions
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Summary of Chapter One

During embryonic development, the appearance of red blood cells in the
yolk sac marks the onset of hematopoiesis, known as primitive hematopoiesis.
Primitive hematopoietic progenitors emerge exclusively in the yolk sac and are
characterized by their transient nature. While the primitive hematopoiesis in the
yolk sac declines, definitive hematopoiesis will begin to emerge in the yolk sac
and/or in the embryo proper to take over blood cell production. The mechanisms
regulating the transition from primitive to definitive hematopoiesis remain unclear.
Runx1 has been reported to be essential for the establishment of definitive
hematopoiesis, but its expression can also be detected in the yolk sac blood
islands where primitive erythroid (EryP) progenitors emerge, suggesting that
Runx1 might also play a role in primitive hematopoiesis. In chapter one, we have
revealed novel roles of Runx1 in primitive hematopoietic development, based on
studies utilizing the embryonic stem (ES) cell differentiation system and Runx1
mutant mice. We have found that inducing Runx1 expression in the in vitro
differentiation model of embryonic stem (ES) cells results in a decrease in EryP
progenitor formation. A possible mechanism for this is related to the activity of
transforming growth factor beta-1 (TGFB1). We have demonstrated that TGF[31
inhibits EryP progenitor formation and upregulates Runx1 expression. Tgf,81'/' ES
cells generate increased numbers of EryP progenitors with decreased Runx1
expression levels. In addition, it was determined that ALKS is the major type-I
TGFB1 receptor in EryP cells and Alk5-deficient ES cells produce higher

numbers of EryP progenitors, relative to wild-type. Surprisingly, both Runx1 null
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animals and Runx1-deficient ES cells give rise to reduced numbers of EryP
progenitors. However, despite generating fewer EryP progenitors during primitive
hematopoiesis, Runx1-deficient mice can still survive during development until
definitive hematopoiesis takes over blood formation. DNA binding and CBFf3
interaction of RUNX1 are needed for optimal generation of EryP progenitors in
vivo. The decreased EryP progenitors in both Runx1 null and overexpression
systems coincide with decreased expressions of the transcription factors, Gata1
and Eklf, and introduction of Gata1 or EKkIf partially rescue the EryP defects in
both systems. Taken together, these studies suggest that RUNX1, likely in
concert with TGF1, plays a critical role in the regulation of primitive

hematopoiesis.

Possible Mechanisms for Runx1-Mediated Suppression of EryP
Development

Our studies have demonstrated that overexpression of Runx1 between day
3 and day 4 of EB differentiation suppresses primitive erythroid progenitor
formation in a dose-dependent manner. This observation leads to the intriguing
question of how Runx1 inhibits EryP generation. One possibility is that RUNX1
could directly modulate the expression of genes that are critical for EryP
formation or development. The reduction of EryP progenitors coincides with the
downregulation of multiple hematopoietic-related genes. One of the most
downregulated genes is Hbb-y-globin (hemoglobin Y, beta-like embryonic chain),

which reflects significantly reduced EryP levels. The 8 locus control region (BLCR)
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is the most important regulatory element in the regulation of the expression of -
globin proteins (Noordermeer and de Laat, 2008). One hypothesis is that RUNX1
can regulate Hbb-y-globin expression by directly binding to the BLCR locus.
However, RUNX1 binding to the BLCR region has not been detected by
chromatin immunoprecipitation (ChlP) analysis (not shown). Therefore, the data
suggest that RUNX1 more likely inhibits Hbb-y-globin expression through an
indirect mechanism.

Gata1 and EkIf have been shown to be involved in both primitive and
definitive erythropoiesis. Both Gata1 and EkIf expression are decreased by
induced Runx1 expression. Rescue of either Gata? or EkIf by retroviral infection
can partially reverse EryP defects seen in induced Runx1 EB cells, suggesting
that Gata1 and EkIf might be directly regulated by Runx1. We have identified two
conserved Runx1 binding sites upstream of the transcriptional start sites of
Gata1 and one binging site upstream from the start site of EkIf. ChIP analysis did
not reveal any direct binding of RUNX1 to these predicted sites (not shown) but
these computationally-predicted binding sites may not include all of the biological
RUNX1 binding sites in Gata? and EkIif locus. Based on this possibility, a
genome-wide screening of RUNX1 binding targets in induced Runx1 EBs is
warranted. Chromatin immunoprecipitation-sequencing (ChlP-Seq) technology is
well-suited for this purpose (Mikkelsen et al., 2007). Comparing the microarray
data that is already on hand with the results from ChlP-Seq would provide
valuable information about how RUNX1 carries out its inhibitory role in EryP

progenitor formation.
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Another possible mechanism by which RUNX1 may negatively regulate
EryP generation would involve binding partners of RUNX1. RUNX1 can inhibit or
activate target genes by interacting with transcriptional co-repressors or co-
activators. For example, RUNX1 can interact cooperatively with p300, a
transcriptional co-activator, to promote differentiation of a myeloid precursor cell
line into mature neutrophils in response to granulocyte colony-stimulating factor
(Kitabayashi et al., 1998). Conversely, RUNX1 interacts with the mSin3A co-

repressor to repress p21Va/cP11

promoter activity in NIH3T3 cells or to repress
c-Mpl expression in hematopoietic progenitor cells (Lutterbach et al., 2000; Satoh
et al., 2008). We have tested whether RUNX1 can interact with mSin3A to
suppress EryP progenitor formation. We could not co-immunoprecipitate RUNX1
and mSin3A from induced Runx1 EB cells, suggesting that Runx1 suppression of
EryP progenitors may be not due to the interaction of RUNX1 and mSin3A in the
ES/EB system. The suppression could, however, be due to RUNX1 interaction
with other co-repressors such as Groucho/TLE and HDAC (histone
deacetylase)(Durst and Hiebert, 2004; Durst et al., 2003; Imai et al., 1998). In
support of this possibility, RUNX2, another member of the RUNX family, has
been shown to interact with HDACG, and the deacetylase activity of HDAC6 has
been shown to repress RUNX2 target genes in osteoblast lineage cell lines
(Westendorf et al., 2002). Additional studies, based on proteomics, designed to

identify specific binding partners or co-repressors of RUNX1 in the ES/EB system

should be undertaken in the future to clarify this mechanism.
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The Relationship between TGFB1 and Runx1 in Primitive Hematopoiesis

TGF acts as a negative regulator of the proliferation of adult
hematopoietic progenitor cells in vitro (Keller et al., 1990; Ottmann and Pelus,
1988). Previous studies found that Alk5” yolk sac cells generate significant
increased number of erythroid colony-forming cells, suggesting TGFf signaling
could have an inhibitory effect on the formation and/or proliferation of erythroid
progenitors in vivo (Larsson et al., 2001). Our results indicate that TGF1 inhibits
EryP progenitor formation during ES cell differentiation. Importantly, TGFp1-
treated EBs also show increased Runx1 expression. Tgf31” and Alk5” EB cells
display larger EryP populations and decreased Runx1 expression, relative to
wild-type. These results suggest that TGFB1 signaling negatively regulates EryP
development, possibly through upregulation of Runx1. In agreement with this,
overexpression of Runx1 suppresses increased EryP production caused by
inhibition of the interaction between TGF[(3 and ALK5. Based on these
observations, generating inducible RUNX1 in Alk5” ES cells would be a way to
examine the negative role of the ALK5-RUNX1 axis in EryP development.
Examining ectopic expression of Runx1 in Alk5" cells by generating Alk5-cre;
RosaZ26 loxP-stop-loxP Runx1 mice would also provide important information.

It is worthwhile to note that when TGF(31 was added to both wild-type,
Runx1*"and Runx1” EB cells, followed by EryP replating, a comparable
reduction of EryP colonies was observed in both groups. It is likely, therefore, that
TGFB1 inhibits EryP development through other mechanisms, in addition to the

Runx1-dependent pathway. This likelihood is supported by other recent studies.

99



TGFB1 has, for instance, been shown to induce an epithelial-to-mesenchymal
transition (EMT) by directly upregulating Snail1 in cultured hepatocytes (Kaimori
et al., 2007) or by indirectly upregulating Zeb1 through a mechanism mediated by
Ets1 in epithelial cells (Shirakihara et al., 2007). Comparing the gene-expression
profiles of wild-type and Runx1”" EBs after treatment with TGFB1 would provide
additional insight into the roles of other possible mediators of TGFf3 signaling in

the suppression of EryP progenitor development, independent of Runx1.
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Chapter 2
Characterization of Hematopoietic Stem Cells in a Mouse Chronic

Inflammatory Arthritis Model
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Chapter 2.1

Introduction
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Hematopoietic Stem Cell Niche

Hematopoietic stem cells (HSCs) are responsible for production of all
blood cells. The bone marrow is the major site of hematopoiesis throughout adult
life. HSCs reside mainly in the bone marrow and undergo well-controlled cell
division to regenerate themselves while also producing progenitor cells that give
rise to all types of mature blood cells. The maintenance of the identity and
function of HSCs in vivo is thought to depend on a specific microenvironment of
surrounding cells in the bone marrow known as the HSC niche (Wilson and
Trumpp, 2006). The HSC niche microenvironment is thought to supply necessary
factors that support specific aspects of hematopoiesis, such as HSC survival,
self-renewal, and differentiation. The identification of the cellular components and
mechanisms that comprise the HSC niche is an area of active investigation.

The endosteum is a thin layer of connective tissue that is located at the
interface between bone and bone marrow. The endosteum surface, covered by
bone-lining cells, contains a population of cells that can differentiate into bone-
forming osteoblasts. A number of studies have shown that HSCs are commonly
found at or near the endosteum in the bone marrow, in close proximity to
osteoblasts, suggesting osteoblasts may serve as part of the HSC niche (Arai et
al., 2004; Kiel et al., 2005; Nilsson et al., 2001; Suzuki et al., 2006; Zhang et al.,
2003). Additionally, in vitro studies have demonstrated that human osteoblasts
have the ability to produce important hematopoietic cytokines, such as
granulocyte colony-stimulating factor (G-CSF) and hepatocyte growth factor

(HGF), that support the proliferation of human hematopoietic progenitor cells
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(CD34" bone marrow cells) that were enriched in HSCs (Taichman et al., 2001;
Taichman and Emerson, 1994; Taichman et al., 1996).

Parathyroid hormone (PTH) is a major regulator of calcium homeostasis,
playing an important role in both the formation and resorption of bone. In a study
by Calvi et al., transgenic mice (col1-caPPR) were generated which expressed
constitutively activated PTH or the PTH-related protein (PTHrP) receptor (PPR)
under control of the type-1 collagen a1 (Col7a7) promoter, which is active in
osteoblastic cells (Calvi et al., 2003; Calvi et al., 2001). These transgenic mice
displayed significant increases in the numbers of osteoblasts and functional
HSCs in the bone marrow. PTH administered directly to wild-type animals also
expanded the populations of both osteoblasts and HSCs (Calvi et al., 2003). In a
separate study, mice engineered with a conditional inactivation of bone
morphogenic protein receptor 1A (Bmpr1a), which is normally expressed in
osteoblast cells but not in HSCs, showed a positive correlation between the
number of osteoblasts and functional HSCs (Zhang et al., 2003). In the same
study, it was also reported that HSCs were found in close contact with spindle-
shaped, N-cadherin-positive osteoblasts on the endosteal surface (Zhang et al.,
2003). Conversely, by using a transgenic mouse which allowed for the
conditional destruction of osteoblasts, Visnjic et al. demonstrated that ablation of
osteoblasts led to a decrease in the absolute number of HSCs in the bone
marrow and a transfer of a substantial proportion of hematopoietic activity to the
spleen and liver (Visnijic et al., 2004). These studies show that the number of

osteoblasts in the bone marrow microenvironment is directly related to the
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number of functional HSCs or hematopoietic progenitors, indicating that
osteoblasts, or a subset of osteoblast cells, serve as important components of
the HSC niche cells.

Bone homeostasis is tightly regulated not only by osteoblasts, but also by
osteoclasts, which are specialized bone resorbing cells of hematopoietic origin.
Osteoclasts have also been suggested to be components of the HSC
microenvironment. Specifically, activation of osteoclasts promotes the
mobilization of hematopoietic progenitors into circulation, suggesting that
osteoclast activity may play a part in the regulation of the endosteal HSC niche
(Kollet et al., 2006). Many studies have also proposed that osteoblasts and
osteoclasts express a variety of factors, including osteopontin, angiopoietin-1,
matrix metalloproteinase 9 (MMP9), and cathepsin K, which regulate the
maintenance and localization of HSCs in the bone marrow (Arai et al., 2004;
Kollet et al., 2006; Nilsson et al., 2005; Stier et al., 2005). In addition to the
critical role of osteoblasts in supporting the maintenance of HSCs, osteoblasts
have also been shown to influence B-lymphocyte commitment and differentiation
(Visnjic et al., 2004; Wu et al., 2008; Zhu et al., 2007). Collectively, these studies
suggest that there is a close relationship between bone homeostasis and
hematopoiesis.

Other cellular components in the bone marrow have also been suggested
to function in HSCs maintenance during adulthood. /n vivo and tissue section
images have shown HSCs are also located in close proximity to endothelial cells

in the bone marrow, indicating that endothelial cells may also serve as important
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components in the HSC niche (Kiel et al., 2005; Sipkins et al., 2005). In vitro
experiments showed that vascular endothelial cells that were isolated either from
embryonic tissues or from some adult non-hematopoietic tissues maintain the
repopulating capacity of HSCs or support the expansion of hematopoietic
progenitors (Li et al., 2003; Li et al., 2004; Ohneda et al., 1998). These studies
suggest that endothelial cells express factors that promote the maintenance of
HSCs in vitro. Moreover, perivascular reticular cells with high expression of
CXCL12, a cytokine required for the maintenance of HSCs, have also been
found in close contact with HSCs in the bone marrow suggesting a possible role
of reticular cells in supporting HSCs (Sugiyama et al., 2006). Recently, Naveiras
et al. demonstrated that bone-marrow adipocytes act as negative regulators in
HSC maintenance (Naveiras et al., 2009). Together, these studies demonstrated
that, in addition to the important role of bone homeostasis in HSC maintenance,
the HSC niche in bone marrow could be influenced by multiple cell types found
either at or near the endosteum, each of which may have different functions in
the regulation or maintenance of HSCs.

However, the correlation between bone homeostasis and HSC
maintenance were found in physiological states; whether the relationship
between these two systems in pathological conditions would be disturbed

remains uncertain.

The K/BxN Mouse Model of Inflammatory Arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory disease which affects

107



approximately 1% of the world’s population (Weinblatt and Kuritzky, 2007). A
hallmark of this disease is the progressive destruction of peri-articular bone
(bone near the joints) which leads to bone erosion and functional disability. In
addition to join destruction, human RA patients also display systemic
osteoporosis (Haugeberg et al., 2000; Spector et al., 1993). The etiology and
pathogenesis of RA remain poorly understood. In RA research, animal models
have been used as important tools for studying pathways and mechanisms
involved in inflammatory arthritis. One of the most-studied models is the
KRNxNOD (herein K/BxN) mouse model. K/BxN mice develop an inflammatory
joint disease that is very similar to human rheumatoid and inflammatory arthritis
(reviewed in Mandik-Nayak and Allen, 2005).

This model was developed as follows: the KRN-C57BL/6 (herein KRN)
transgenic mouse was originally designed to study the specificity of T-cell
receptors (TCRs) recognizing an epitope of bovine RNase (Kouskoff et al., 1996;
Kouskoff et al., 1995). KRN transgenic mice display a normal phenotype under
the C57BL/6 background. Intriguingly, when those KRN mice are crossed with
non-obese, diabetic (NOD) mice, all of the F1 progeny (K/BxN) spontaneously
exhibit a rapid, symmetrical onset of joint inflammation, primarily restricted to the
joints of the front and rear limbs at around 3015 days of age (Kouskoff et al.,
1996). Many characteristics of the inflammation in K/BxN mice are similar to
human rheumatoid arthritis, including pannus formation, synovial hyperplasia,
increased synovial volume, massive leukocyte infiltration, cartilage destruction,

and bone erosion, followed by remodeling in the distal joints in the later stages
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(Kouskoff et al., 1996). When KRN mice and C57BL/6 mice that were congenic
for the NOD MHC H-29" (C57BL/6.H-29"; herein G7) were crossed, the offspring
(KRNxG?7) all developed inflammatory symptoms which were indistinguishable
from those seen in K/BxN mice, indicating that MHC class Il molecule 1-A%” was
responsible for promoting arthritis in K/BxN mice (Kouskoff et al., 1996).

Subsequent studies found that the autoimmune response that is
responsible for the inflammation seen in K/BxN mice is initiated by TCR
recognition of a ubiquitously-expressed self-peptide derived from the glycolytic
enzyme glucose-6-phosphate isomerase (GPI) presented by the I-A%” MHC
molecule on B-cells, resulting in production of high titers of autoantibodies
against GPI (Matsumoto et al., 1999). Arthritic symptoms can be transferred to
wild-type recipients by injecting them with serum from K/BxN or KRNxG7 mice,
which contains a high level of GPI autoantibodies (serum-transfer model), but the
serum-induced disease resolves within a few weeks (Korganow et al., 1999;
Maccioni et al., 2002; Matsumoto et al., 1999). Thus, the serum-transfer model
serves as an acute inflammation model, whereas the K/BxN transgenic mice
serve as a chronic inflammatory model.

Many studies have demonstrated that joint destruction in rheumatoid
arthritis in humans is linked to the activation of osteoclasts in the joints
(Gravallese et al., 1998; Gravallese et al., 2000; Shigeyama et al., 2000).
Receptor activator of nuclear factor-kB ligand (RANKL) is a cytokine that
regulates the completion of the final steps of osteoclast differentiation, as well as

for their bone resorbing activity (Kong et al., 1999; Lacey et al., 1998). Several
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pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-17 and especially
tumor necrosis factor (TNF)-a, can induce and enhance RANKL expression
(Kotake et al., 1999; Lam et al., 2000; Wei et al., 2005; Wong et al., 2006). It has
been demonstrated that RA patients produce excessive TNF-a and RANKL (Chu
et al., 1991; Gravallese et al., 2000; Takayanagi et al., 2000). K/BxN mice also
display high levels of TNF-a and IL-6 in their joints (Kouskoff et al., 1996). Mice
with defective osteoclasts or limited osteoclastogenesis are resistant to both
K/BxN serum-induced and TNF-a-mediated joint destruction (Pettit et al., 2001;
Redlich et al., 2002).

Most studies using K/BxN mouse model have focused on identifying
cellular components and pathogenic mechanisms involved in the initiation of
joint-specific inflammation and destruction of joints (Akilesh et al., 2004; Corr and
Crain, 2002; Ji et al., 2002a; Ji et al., 2002b; Lee et al., 2002; Pettit et al., 2001;
Watts et al., 2005; Wipke and Allen, 2001), whereas associated conditions, such
as systemic osteoporosis, have not been carefully characterized in the mouse

model.

110



Overall Goals of Chapter Two

Hematopoietic stem cells (HSCs) reside mainly in the bone marrow and
undergo well-controlled cell division to regenerate themselves while also
producing progenitor cells that differentiate to all types of mature blood cells
throughout adult life. The maintenance of HSCs in the bone marrow has been
suggested to have a close association with bone homeostasis in normal
physiological states, but little is known about their relationship in pathological
conditions. The objective of chapter two is to investigate the relationship between
hematopoiesis and bone homeostasis in pathological conditions using a mouse

model of chronic inflammatory arthritis.
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Abstract

Recent studies support the notion that there is an intricate relationship between
hematopoiesis and bone homeostasis in normal steady states. By utilizing mice
undergoing chronic inflammatory arthritis, we investigated the relationship
between hematopoiesis and bone homeostasis in pathologic conditions. We
demonstrate that mice undergoing chronic inflammatory arthritis displayed
osteoporosis due to a severe defect in osteoblast function. Despite the defective
osteoblast function, however, the hematopoietic stem cells from these mice
exhibited normal properties in either long-term repopulation or cell cycling.
Therefore, the bone forming capacity of osteoblasts is distinct from their ability to

maintain hematopoietic stem cells in chronic inflammatory conditions.
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Introduction

Under normal physiologic conditions, hematopoietic stem cells (HSCs) residing
within the specialized bone marrow (BM) niche maintain a balance between self-
renewal and differentiation and provide continuous supply of circulating mature
immune cells with a limited life span. An intricate relationship exits between
hematopoiesis and bone homeostasis. As such, osteoblasts serve as a HSC
niche, while osteoclasts mediate HSC and progenitor egress from the BM (Kollet
et al., 2007; Purton and Scadden, 2006). Specifically, an increase in osteoblast
number and/or activation through conditional Alk3 deletion or parathyroid
hormone administration augments the HSC frequency in BM (Calvi et al., 2003;
Zhang et al., 2003). Conversely, ablation of osteoblasts results in a decrease in
absolute number of phenotypic primitive hematopoietic progenitors (Visnjic et al.,

2004).

Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune
disease of unknown etiology afflicting 1% of the population. It leads to
destruction of cartilage and bone at multiple joints with a distal to proximal
preference. RA is also attended by systemic osteoporosis. However, the
mechanisms of RA-associated osteoporosis are less appreciated than how joints
are destroyed. The KRNxNOD (herein K/BxN) mouse model of inflammatory
arthritis recapitulates many of the features of human RA (Kyburz and Corr, 2003;
Monach et al., 2007). These mice were generated fortuitously when mice

transgenic for a T cell receptor recognizing an epitope of bovine RNase
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(C57BL/6.KRN, herein KRN) were bred onto a NOD background (Kouskoff et al.,
1996). They developed spontaneous chronic and severely destructive arthritis
with 100% penetrance that resembled human RA (Kouskoff et al., 1996). KRN
with a C57BL/6 line congenic for the NOD MHC H-2% (C57BL/6.H-2%"; herein G7)
was used to distinguish the contribution of MHC from non-MHC NOD-derived
genes to disease development. The KRNxC57BL/6.H-2¢" (herein KRNxG7)
offspring all develop overt joint swelling and the histological hallmarks of arthritis
of K/BxN mice, indicating that H-297 is sufficient for RA development (Kouskoff et

al., 1996).

By utilizing a KRNxG7 mouse model, we investigated the relationship between
HSCs and bone homeostasis in chronic inflammatory conditions. We
demonstrate that similar to patients with RA, mice with inflammatory arthritis
develop osteoporosis. However, unlike the osteolyisis of inflamed joints, which
reflects accelerated osteoclast activity, the systemic bone loss of arthritic mice is
the result of arrested osteoblast function. This conclusion is consistent with the
decrease in generation of mature osteoclasts in vivo. Unexpectedly, the
osteoblast deficiency in bone formation did not affect the long term repopulating
potential of HSCs in these arthritic mice. Collectively, we provide evidence that
marrow HSCs can be maintained in the absence of functional osteoblasts in

chronic inflammatory environments.
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Materials and Methods

Mice

KRN (TCR transgenic) mice on a C57BL/6 background were crossed with G7 (I-
A% to generate KRNxG7 mice. C57BL/6J (CD45.2 allele) and B6.SJL-
Ptprc®Pep3°/BoyJ (CD45.1 allele) mice were obtained from The Jackson
Laboratory (Bar Harbor, ME). All animals were housed in accordance with
National Institutes of Health and American Association for Accreditation of
Laboratory Animal Care regulations, and animal protocols were reviewed and

approved by the Washington University animal studies committee.

Cell preparation and Flow Cytometric Analyses (FACS)

Bone marrow cells were prepared by vigorously flushing femur and tibia 6-8
times. Peripheral blood was obtained by retro-orbital collection. Spleen cells were
prepared by gently crushing the tissue and filtering through a 40um cell strainer
(BD Falcon). Liver cells were obtained by gently crushing the tissue and filtering
through a 70um cell strainer (BD Falcon). All collected cells were treated with

RBC lysis buffer (Roche) before analyses.

FACS analyses were performed as described previously (Park et al., 2004). For
KSL analysis we used FITC-conjugated antibodies against CD4, CD8, Mac-1,
Gr-1, Ter119, and B220 (lineage marker antibodies, BD Biosciences or
eBioscience), PE-conjugated anti-Sca-1, PerCP/Cy5.5-conjugated anti-CD45,

and APC-conjugated anti-c-Kit (eBioscience). For some experiments anti-CD45
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APC-Alexa 750 (eBioscience) or anti-c-Kit PerCP/Cy5.5 (Biolegend) were used.
SLAM analysis was performed using anti-CD150 PE (Biolegend), anti-CD48
FITC (eBioscience) and anti-CD41 FITC (BD Biosciences). Mature lineage
analysis was performed with FITC and PE conjugated antibodies to the lineage
markers mentioned above as well as Alexa 647 conjugated anti-Mac-1 (BD

Biosciences) and APC conjugated F4/80 (eBioscience).

LMPP (Lymphoid Primed Multipotential Progenitor; Kit+Sca1+Lin-FIk2hiCD34+)
and CLP (Common Lymphoid Progenitor; Lin-FIk2+IL-7Ra+) analyses were
performed with the following fluorophore conjugated antibodies: a-Sca1-FITC, a-
IL-7Ra-biotin, a-cKit-APC-Alexa 750 (eBioscience), a-FIk2-PE, a-CD34-
Alexa647, a-Lineage-APC cocktail, Streptavidin-PerCP/Cy5.5 (BD Biosciences)
and a-Lineage-biotin cocktail (Miltenyi). PreproB analysis was performed with o-
IgM-FITC, a-CD43-PE, a-NK1.1 PerCP/Cy5.5, a-CD11¢c PE-Cy7, a-B220-biotin
(BD Bioscience), a-CD19-Alexa647, Streptavidin APC-eFluor 708 (eBioscience).
Other antibodies used for B cell precursor analysis were a-B220-PerCP/Cy5.5
(eBioscience) and a-AA4.1-FITC (BD Bioscience). Cells were analyzed using a

Facscalibur (4-color), a FACScan adapted for 5 color analysis, or FACScanto (6

color) and data analyzed with Cell Quest (BD) or Flow Jo softwares (Tree Star).

BrdU labeling
KRNxG7 and control mice (6-8 week old) were injected with a single dose (1mg

per 6g of body mass) of sterile-filtered BrdU (Sigma) dissolved in PBS. Mice
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were sacrificed 2-3 hours later and bone marrow cells harvested as described
earlier. Harvested bone marrow cells were subjected to lineage cell depletion by
magnetic separation using the lineage cell depletion kit (Miltenyi). Lineage
depleted cells were stained with a-cKit-FITC (eBioscience), a-Sca1-PE and
Streptavidin-PerCP-Cy5.5 (BD Pharmingen). Cells were subsequently fixed and
intracellularly stained with APC conjugated a-BrdU antibody using the APC-BrdU
flow kit (BD Pharmingen). Cells were analyzed using the BD FACScalibur and

data analyzed using BD Cell Quest software.

Ki67/Hoechst Analysis

Lin* cells were depleted from bone marrow by magnetic sorting as described
above using biotin-conjugated anti-Lin antibodies (Miltenyi). Cells were surface
stained with a-Sca1 PE, Streptavidin PerCP/Cy5.5 (BD Bioscience) and a-cKit
APC (eBioscience). Ki67/Hoechst staining has previously been used to assess
KSL cycling and our method was adapted from this previous study (Wilson et al.,
2004). Surface stained cells were fixed and permeabilized using BD
Cytofix/Cytoperm buffer followed by intracellular staining with a-Ki67 FITC for 30
minutes followed by a 5 minute Hoechst incubation (20ug/ml). 5-color flow
cytometry was performed with a MoFlo (Dako), which has UV excitation
capability. Data analysis was performed with Summit or FlowJo softwares.
Doublets were excluded in the gated populations that were analyzed for Ki67

expression. The Ki67 negative population was defined based on staining a
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control population of cells with a FITC conjugated isotype control antibody (BD

Biosciences).

Progenitor assay
Cells from bone marrow and spleen were replated in Methocult M3434 (Stemcell

Tech, CA). Colonies were counted 7-10 days later.

Cell transplantation

For serial bone marrow transplantation, lethally irradiated (1,000Rads) B6xG7
(CD45.1xCD45.2) recipients were injected (i.v.) with unfractionated 1x10° BM
cells from 6 week old KRNxG7 (CD45.2xCD45.2) or B6xG7 (CD45.2xCD45.2)
mice (five recipients for each group). PB samples were analyzed for CD45.1 and
CD45.2 every 4 weeks. Seven months after transplantation, bone marrow
suspensions were prepared from primary recipients and 1x10° nucleated cells
were injected into new lethally irradiated B6xG7 (CD45.1xCD45.2) recipient mice
(8 for control and 9 for KRNxG7). The tertiary transplantation was performed
seven months after secondary transplantation (7 for control and 9 for KRNxG7).
The recipients of serial bone marrow transplantation were subjected to lineage

analyses for donor contributions 6 or 7 months after transplantations.
Competitive repopulation assay has been described previously (Stier et al., 2005).

Briefly, 6-week old B6xG7 (CD45.2xCD45.2) or KRNxG7 (CD45.2xCD45.2) bone

marrow cells, 2x10°, were mixed with 2x10° B6xG7 (CD45.1xCD45.2) competitor
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bone marrow cells and injected (i.v.) into lethally irradiated (1000 Rads) B6xG7
(CD45.1xCD45.2) recipient mice. Peripheral blood (PB) samples were collected
retro-orbitally three and five months after transplantation and analyzed for

CD45.1 and CD45.2.

Lineage negative (Lin") spleen cells from 6-week old B6xG7 (CD45.2xCD45.2) or
KRNxG7 (CD45.2xCD45.2) mice were isolated using MACS Lineage Cell
Depletion Kit (Miltenyi Biotec). Onex10° sorted Lin™ cells were injected into
lethally irradiated (1,000Rads) B6xG7 (CD45.1xCD45.2) recipients.
Reconstitution of donor-derived cells (CD45.2) was monitored by staining retro-
orbitally obtained peripheral blood cells with monoclonal antibodies against

CD45.2 and CD45.1 (eBioscience) followed by FACS analysis.

Serum TRAP5b activity and serum osteocalcin activity

Blood was collected retro-orbitally under anesthesia prior to sacrifice. The serum
TRACPS5b activities of 6 week old G7 and KRNxG7 mice were measured by
MouseTRAP™ Assay ELISA kit (Immunodiagnostic Systems Inc.). Serum
Osteocalcin levels of 6 week old G7 and KRNxG7 mice were measured by

Mouse Osteocalcin ELISA kit (Biomedical Technologies Inc.).
Histology and Histomorphometry

The tibiae of 6-week old B6xG7 and KRNxG7 mice were fixed with 70% ethanol

followed by plastic embedding and Goldner staining, or with 10% neutral buffered
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formalin followed by the decalcification in 14% EDTA for 4-5 days, paraffin
embedding, and TRAP staining. Calcein (Sigma) (7.5 mg/kg, i.p) was injected on
day 7 and 12. Mice were sacrificed on day 14. Osteoclastic and osteoblastic
perimeters were measured and analyzed using Osteomeasure (OsteoMetrics,

Atlanta, GA) in a blinded fashion.

uCT

The trabecular volume in the distal femoral metaphysic was measured using a
Scanco uCT40 scanner (Scanco Medical AG, Basserdorf, Switzerland). A
threshold of 300 was used for evaluation of all scans. 30 slices were analyzed,
starting with the first slice in which condyles and primary spongiosa were no

longer visible.

gRT-PCR
RNA preparation and cDNA synthesis were previously described (Lee et al.,

2008). Primer sequences used in this study are provided in supplementary Table

2.21.

Statistical Analyses

Statistical significance was assessed by two-tailed Student’s t test. Values of

P<0.05 were considered statistically significant.

Total bone marrow cell isolation
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Bone marrow isolation by crushing and enzymatic digestion was performed as
done previously (Haylock et al., 2007) using the Hematopoietic Stem Cell
Isolation Kit (Millipore). Briefly, one femur and one tibia were collected and
ground in a mortar and pestle in PBS with 4% FCS. The cells and small bone
fragments were washed with PBS with 4% FCS and filtered through a 40 um cell
strainer. Small bone fragments were incubated with 3 mg/ml Collagenase | and 4
mg/ml Dispase Il (Stem Cell Isolation Kit, Millipore) for 5 minutes at 37°C in an
orbital shaker. The fragments were washed and cells were collected by filtered
through 40 um cell strainer. Bone marrow from the contralateral femur and tibia
were obtained by vigorous flushing as described in Methods. Cells retrieved by
both isolation methods were RBC lysed, count on a hemocytometer and FACS

analysed for KSL frequency.

Alkaline Phosphatase (AP) expression assay

The details of AP expression assay on bone marrow stromal cells (BMSCs) are
previously described (Tu et al., 2007). Briefly, Cells were harvested 3 days later
after 100% confluence and tested by a biochemical assay using p-nitrophenyl
phosphate (Sigma, St. Louis, MO) as a substrate; for mineralization assays, cells
were switched to mineralization medium containing 50 ug/ml ascorbic acid + 50
mM B-glycerophosphate for 2 weeks and changed medium every 3 days. The

nodule formation was verified by von Kossa staining.

Osteoblast differentiation assays
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Mineralization assays on BMSCs were performed as previously described (Tu et
al., 2007) with a slight modification. Basically, femurs and tibia were aseptically
removed from 6-weeks-old G7 and KRNxG7 mice. After the ephiphyseal ends of
each bone were cut off, bone marrow was flushed out with 1 ml of alpha-MEM
using a 25-gauge needle. Cells were treated with 1 ml of red blood cell lysis
buffer (Roche, Indianapolis, IN) for 5 min at room temperature, rinsed and
resuspended in alpha-MEM containing 20% fetal bovine serum. After filtered
through a 70 pm cell strainer, the cells were seeded at 2x10°%well in 12-well

plates. Half of medium was changed at day 3 and all medium at day 6.
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Results

KRNxG7 mice are osteoporotic due to diminished bone formation

K/BxN and KRNxG7 mice develop arthritic symptoms including ankle swelling
shortly after 3 weeks of age (Kouskoff et al., 1996). The ankle thickness
increases up to 5-6 weeks of age reaching a maximum of 4-5mm and remaining
constant at a slightly lower level thereafter (Kouskoff et al., 1996). Typically, 6
week-old KRNxG7 mice in C57BL/6 genetic background were used in this study,
as they show overt inflammation at this time point. As expected, KRNxG7 mice
develop rheumatoid joint pannus and lysis of peri-articular bone (Figure 2.2-1A,
B). Since human inflammatory arthritis is also attended by systemic bone loss,
we asked if the same holds true in this murine model. Radiographs of KRNxG7
tibiae showed destruction of epiphyseal bone as well as metaphyseal
demineralization. Histomorphometric and uCT analysis of the same bones
established a marked reduction of trabecular bone volume and consequently
increased trabecular spacing (Figure 2.2-1C,D, F). A DEXA analysis exhibited
decreased bone mineral density in arthritic mice (Figure 2.2-1E). Despite the
profound metaphyseal osteoporosis, however, the number of mature resorptive
cells was decreased in the marrow of endosteal bone (Figure 2.2-1G). This
observation was confirmed by diminished serum levels of the global osteoclast
marker TRAPSb (Figure 2.2-1H) and impaired expression of osteoclast specific

genes in whole bone marrow (Figure 2.2-11).
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The chemokine SDF-1 plays a critical role in osteoclastogenesis by promoting
osteoclast differentiation and the cell’s longevity (Wright et al., 2005; Zannettino
et al., 2005). In addition, inhibition of BM SDF-1 expression promotes osteoclast
progenitor cell mobilization to the periphery (Zhang et al., 2008). We found that
SDF-1 BM mRNA levels were decreased in KRNxG7 mice and thus its
suppression likely mediates, at least in part, the noted in vivo arrest of terminal
osteoclast differentiation (Figure 2.2-1J). Because TNF-a, which accelerates
osteoclast progenitor mobilization in inflammatory erosive arthritis, also
suppresses SDF-1 expression (Zhang et al., 2008), we posited that TNF-a level
is increased in KRNxG7 mice. We indeed found that TNF-oo mRNA and protein
are increased in KRNxG7 BM and serum, respectively (Figure 2.2-1J & data not
shown). Thus, although a direct link between TNF-a and SDF-1 in KRNxG7 mice
needs to be established, in face of suppressed Sdf-1 expression, osteoclast
progenitor cells most likely do not readily assume the full resorptive phenotype
but are mobilized to the periphery and migrate to the inflamed joint, which they

degrade upon maturation.

Osteoporosis may reflect stimulated osteoclast or diminished osteoblast activity.
KRNxG7 mice have reduced marrow osteoclasts in face of systemic
osteoporosis suggesting that the paucity of bone extant in these animals reflects
suppressed bone formation. To address this issue, we first histomorphometrically
determined the number of trabecular osteoblasts/mm bone surface, which we

found indistinguishable in KRNxG7 and G7 mice (Figure 2.2-2A). Moreover, in
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vitro osteoblast formation and bone nodule formation assessed by alkaline
phosphatase activity and mineralization assays, respectively, were
indistinguishable between KRNxG7 and controls (Supplementary Figure 2.2-1a,
b). However, the percentage of metapyhseal bone surface covered by osteoid
was reduced in the arthritic mice suggesting that the bone synthesizing
population was diminished (Figure 2.2-2B). This posture was confirmed by
dynamic histomorphometry, which established that the rate of metaphyseal bone
formation is less than 1/3 of control (Figure 2.2-2C). Similarly, serum Osteocalcin
as well as Osteocalcin mRNA, a marker of global bone formation, was reduced in
KRNxG7 mice (Figure 2.2-2D, E). Additionally, mRNA expression of osteoblast
specific genes, receptor activator of NFkappaB ligand (Rankl), Osteoprotegerin
and Runx2 was all markedly diminished (Figure 2.2-2E). Thus, the systemic
osteoporosis attending the inflammatory arthritis of KRNxG7 mice reflects

diminished bone formation and not accelerated bone resorption.

Systemic increase in Grl+ cells and decrease in B220+ cells accompanied
by impaired KRNxG7 marrow B lymphopoiesis

Our data so far shows that osteoblasts are functionally defective in KRNxG7
mice. In addition to bone formation, osteoblasts have been reported to play
crucial roles in hematopoiesis by providing a niche to maintain HSCs and
supporting B lymphopoiesis (Arai et al., 2004; Calvi et al., 2003; Visnjic et al.,
2004; Wu et al., 2008; Zhang et al., 2003; Zhu et al., 2007). We noticed that

KRNxG7 bone marrow cellularity was higher (~50% more) compared to that of
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controls irrespective of the method of bone marrow collection (Supplementary
Figure 2.2-2a). To investigate the specific hematopoietic changes occurring in
chronic inflammation, we examined mature hematopoietic cell lineages in BM,
spleen, liver and peripheral blood (Figure 2.2-3A). There was an increase in
myeloid cells, specifically Gr1+, cells in all KRNxG7 tissues analyzed. Myeloid
cells including neutrophils are abundant in the joint inflammation of human RA
patients (Haynes, 2007) and are critical for the disease, as depletion of
neutrophils or macrophages ameliorates inflammatory joint disease in a serum
transfer model of RA (Solomon et al., 2005; Wipke and Allen, 2001). In KRNxG7
mice, T cells (detected by CD3, CD4 or CD8) bearing T cell receptor (TCR)
transgene undergo negative selection (Kouskoff et al., 1996). Thus, as expected,

T cells were reduced.

A decrease was also seen in B220+ cells in KRNxG7 mice for all tissues
analyzed (Figure 2.2-3A) and this indeed reflects a decrease in B lineage cells
not merely a decrease in B220 expression (Supplementary Figure 2.2-3a). To
determine if defective marrow B lymphopoiesis in KRNxG7 mice could at least in
part explain the diminution in B220+ frequency we examined the frequency of
marrow B cell precursors. We found that a majority of the residual B220+ cells in
KRNxG7 marrow were B cells (B220"IgM+) cells with almost complete depletion
of B cell precursors (8220'°AA4.1+)(Figure 2.2-3B & data not shown)(Hardy et al.,
1991; Li et al., 1996). Further analysis revealed that not only were B cell

committed, pre-proB, proB and preB, precursors absent but common lymphoid
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progenitors (Karsunky et al., 2008) were also absent from KRNxG7 marrow
(Figure 2.2-3C & Supplementary Figure 2.2-3b). Analysis of whole bone marrow
gene expression also revealed a downregulation in several marrow B
lymphopoiesis promoting factors including SDF-1, IL-7 and FIt3-L (Figure 2.2-1J
& 2.2-3D). Therefore, KRNxG7 mice have impaired marrow B lymphopoiesis

attending the defective osteoblasts.

The frequency of c-Kit+Scal+Lin- cells is not changed in KRNxG7 bone
marrow

Based on the current understanding that endosteal osteoblasts serve as a HSC
niche and maintain the quiescence of the HSCs (Arai et al., 2004; Calvi et al.,
2003; Zhang et al., 2003), the impairment of osteoblast bone forming capacity in
KRNxG7 mice raised the possibility that its role in the HSC niche was also
compromised. To determine if HSC and progenitor cell homeostasis was affected
in the absence of functional osteoblasts in chronic inflammatory arthritic
environments, we subjected KRNxG7 and control BM, spleen, liver and
peripheral blood cells to CD45 (pan hematopoietic marker), c-Kit, Sca-1 and
Lineage (Lin) marker staining. The frequency of HSC enriched KSL cells in the
bone marrow was similar between the control and KRNxG7 mice when examined
at 3 weeks of age, just prior to the onset of joint swelling (Figure 2.2-4A). There
was no increase in BM cellularity at this age (not shown). The KSL frequency
was also similar at 6 weeks of age, when all KRNxG7 mice show overt arthritis,

irrespective of the method of marrow isolation (Figure 2.2-4A & Supplementary
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Figure 2.2-2b). The frequency of CD150+CD48-CD41- (SLAM) cells, also
enriched for HSCs (Kiel et al., 2005), in the bone marrow was also similar (Figure
2.2-4A). As the total bone marrow cellularity was increased (Supplementary
Figure 2.2-2a), there was a net increase in absolute KSL number in KRNxG7

bone marrow despite osteoblast deficiency (Supplementary Figure 2.2-2c).

c-Kit+Scal+Lin- cells in KRNxG7 bone marrow cycle normally

It has been suggested that quiescence and restricted proliferation of HSCs is
important in maintaining stem cell properties and that osteoblasts maintain HSCs
by promoting their quiescence (Arai et al., 2004; Orford and Scadden, 2008;
Wilson and Trumpp, 2006). We therefore next investigated if KRNxG7 HSCs
displayed altered proliferation and/or cell cycling. To this end, KRNxG7 arthritic
as well as B6 control mice were subjected to 5-bromodeoxyuridine (BrdU)
incorporation and cell cycle analyses. Specifically, mice were injected with a
single dose of BrdU, sacrificed 2-3 hours later and BM cells were harvested and
subjected to BrdU staining. There was no difference in BrdU labeling in KSL cell
populations between control and KRNxG7 BM at 6-8wks, nor at earlier or later
time points (Figure 2.2-4B & Supplementary Figure 2.2-4). We were also unable
to detect a decrease in quiescence of KSL cells assessed by Ki67 and Hoechst
staining (Ki67"*®Hoechst®”, Figure 2.2-4C & Supplementary Figure 2.2-5). For
unknown reasons, however, more mature progenitor fractions (i.e. Lin-c-
Kit+Sca1- or Lin-) had reduced BrdU positive fraction and increased

Ki67"*®Hoechst®" suggesting an overall decrease in cycling (Figure 2.2-4B, C).
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We also compared the expression of several cell cycle regulators including the
“stemness” gene Bmi in arthritic and control KSL cells but failed to detect any
differences for most genes (Supplementary Figure 2.2-6). Expression of the cell
cycle inhibitors, p21 and p27 (Supplementary Figure 2.2-6), was decreased in
arthritic KSL cells, however, it has previously been shown that complete deletion
of these genes does not alter HSC function and/or pool size or cycling (Cheng et
al., 2000; van Os et al., 2007). KRNxG7 KSL cells did not show any significant
differences in Annexin V staining pattern from controls (not shown), suggesting
that the KRNxG7 KSL cell survival/longevity is not changed. Collectively, these

data suggest that KRNxG7 KSL cell cycle is unaltered.

The long term repopulating potential of KRNxG7 hematopoietic stem cells
is not impaired

To assess if the properties of HSCs are altered in the defective bone forming
osteoblast environments, lethally irradiated B6xG7 (CD45.1xCD45.2) recipients
were transplanted with 1x10° whole BM cells from 6-week old KRNxG7
(CD45.2xCD45.2) mice. Age matched B6xG7 (CD45.2xCD45.2) BM cells served
as controls. The donor contribution from KRNxG7 (CD45.2xCD45.2) BM was
similar to that from B6xG7 (CD45.2xCD45.2) donor cells (Figure 2.2-4D). As
expected, all blood cell lineages of donor origin were found as evidenced by
lineage analyses of peripheral blood at 7 months after transplantation, although T
cell generation was deficient due to negative selection (Supplementary Figure

2.2-7).
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Subsequent secondary and tertiary transplantation studies indicated that
KRNxG7 HSCs displayed no obvious defects in self-renewal potential
(Supplementary Figure 2.2-7). To rule out the possibility that the long-term
repopulation potential of HSCs is diminished in older animals, BM transplantation
from 4 months old KRNxG7 mice was performed. Again, there was no
compromise in hematopoietic reconstitution potential of KRNxG7 HSCs from old

animals (Supplementary Figure 2.2-8).

To further confirm that HSC function was not compromised in these mice, we
next subjected KRNxG7 HSCs to competitive repopulation studies.(Purton and
Scadden, 2007) Specifically, B6xG7 (CD45.2xCD45.2) or KRNxG7
(CD45.2xCD45.2) bone marrow cells were mixed with equal number of B6xG7
(CD45.1xCD45.2) competitor bone marrow cells (2x10° cells each) and injected
(i.v.) into lethally irradiated (1000 Rads) B6xG7 (CD45.1xCD45.2) recipient mice.
Peripheral blood cells were collected and analyzed for CD45.1 and CD45.2. The
contribution from KRNxG7 bone marrow cells was indistinguishable from that of
the controls (Figure 2.2-4E). Collectively, we conclude that despite the severe
defects in osteoblast bone-forming function in KRNxG7 mice, KRNxG7 BM HSC
cycling was similar to controls and long term repopulating potential of these

HSCs was not impaired.

c-Kit+Scal+Lin- cells are maintained in KRNxG7 spleen
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We noticed that most of the KRNxG7 mice had splenomegaly with no obvious
hepatomegaly (Supplementary Figure 2.2-9a,b & data not shown). Intriguingly,
the frequency of KSL cells as well as absolute KSL number was much greater in
KRNxG7 spleen compared to B6xG7 spleen at 6 weeks of age (Figure 2.2-5A,
Supplementary Figure 2.2-9¢ & data not shown). Similar changes in the KSL
frequency also occurred in K/BxN spleen (data not shown). To confirm that the
apparently high frequency of phenotypic hematopoietic stem/progenitors in the
spleen of arthritic mice indeed correlated with an actual increase in functional
hematopoietic stem/progenitor cells, we performed hematopoietic replating and
transplantation studies. Specifically, unfractionated bone marrow or spleen cells
from 6 week old KRNxG7 and KRN controls were cultured in methylcellulose
hematopoietic replating medium. KRNxG7 splenocytes generated a substantially
higher number of hematopoietic colonies (Figure 2.2-5B). We further
transplanted sorted Lin- cells (1x10° cells/mouse) from KRNxG7
(CD45.2xCD45.2) and control B6xG7 (CD45.2xCD45.2) spleens into lethally
irradiated B6xG7 (CD45.1xCD45.2) mice. A majority of the mice that received
Lin- cells from control spleen died within 2 weeks with 100% succumbing within 3
months. However, a significant number of mice that received Lin- cells from
KRNxG7 spleen were still survived past 6 months post transplantation (Figure
2.2-5C, left). A high donor chimerism was obvious when recipients of KRNxG7
splenic Lin- cells were analyzed 3 months after transplantation (Figure 2.2-5C,

right). These replating and transplantation studies corroborate FACS analyses
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showing that functional hematopoietic progenitors are particularly abundant in

KRNxG7 spleen.

The high frequency of hematopoietic stem and/or progenitor cells in the KRNxG7
spleen raised a possibility that hematopoietic stem/progenitor cells readily
mobilized into the periphery in chronic inflammation. However, KSL cells in the
peripheral blood and other organs such as the liver of KRNxG7 mice were hardly
detectable and not significantly different from controls (data not shown).
Moreover, the KSL frequency in B6xG7 and KRNxG7 spleen was similar in
young mice (1-2 weeks of age). While KSL cells were maintained in KRNxG7
spleen (6wks), they decreased greatly in age-matched mice (Figure 2.2-5A). We
suggest that HSCs are sustained in the KRNxG7 spleen, although the possibility
that hematopoietic stem/progenitor cells are continuously mobilized at very low
levels to the spleen in chronic inflammatory environments cannot be ruled out at

this moment.
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Discussion

Inflammatory bone loss is associated with several chronic diseases in humans
including RA (Romas and Gillespie, 2006). Such human inflammatory joint
disease is generally complicated by systemic osteoporosis, which is particularly
severe in KRNxG7 mice. While focal destruction of bone, within the rheumatoid
joint, is the product of aggressive osteoclast recruitment, whether its attendant
osteoporosis is the product of accelerated resorption or attenuated formation is
less clear. Given the abundance of systemic inflammatory cytokines, the
pathogensis of rheumatoid-associated osteoporosis has been assumed to be
primarily osteoclastic. We demonstrate, however, the number of endosteal
osteoclasts and confirmatory markers of bone resorption are diminished.
Although the osteoblast number per bone surface was similar, the absolute
osteoblast number was reduced in KRNxG7 mice due to decreased trabecular
bone volume. Given that osteoblast bone forming activity is also ablated, at least
in the KRNxG7 model of RA, the attendant osteoporosis reflects retarded

osteogenesis.

Our results extend a growing body of work, examining the relationship between
bone homeostasis and hematopoiesis, to a disease model. Our findings that
there was a net increase in absolute number of BM HSCs in osteoblast deficient
KRNxG7 mice compared with controls seem to be at odds with the current view
of the role of osteoblasts as HSC niche cells. Specifically, transgenic mice

expressing a constitutively active PPR (PTH/PTHrP receptors) under the control
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of the type1(l) collagen promoter (col1-caPPR) stimulated osteoblast and
increased their number and stromal cells from these mice supported HSCs in
culture. These transgenic mice as well as parathyroid hormone treatment of wild
type mice also increased the frequency of KSL cells as well as functional HSCs

fx/fx mice

(Calvi et al., 2003). Moreover, poly I:C treatment of Mx1-Cre"Bmprila
resulted in about two fold increase in the percentage of KSL cells, which
correlated with an increase in endosteal osteoblast number (Zhang et al., 2003).
Conversely, ablation of osteoblasts by ganciclovir treatment of transgenic mice
expressing herpesvirus thymidine kinase (TK) gene under the 2.3kb of the rat
collagen a1 type | promoter (Col2.3ATK) resulted in a decrease in absolute
number of KSL cells, although the frequency was increased in these mice due to
reduced BM cellularity (Visnjic et al., 2004). These previous studies will predict

that HSCs in KRNxG7 bones would be reduced which is contrary to what we

observe.

We suggest several possible explanations for the apparent discrepancy. First,
the remaining osteoblasts in the KRNxG7 mice, although reduced in numbers,
may be sufficient to support the HSC maintenance. Second, osteoblast lineage
cells are multifunctional. For example they not only manufacture bone, but
stimulate osteoclastogenesis via expression of RANKL and M-CSF. In fact, there
are circumstances of disassociation of these events as seen in multiple myeloma
in which bone formation is arrested but osteoclastogenesis is exuberant,

presumably reflecting altered Wnt signaling (Oshima et al., 2005). It is therefore
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possible that KRNxG7 osteoblasts still support the HSC maintenance, although
their bone forming ability is impaired. In this regard, it is important to note that
Zhang et al determined histologically that HSCs in BMPR1a conditional knockout
mice were located adjacent to spindle shaped bone lining cells that express N-
cadherin (Zhang et al., 2003). Bone lining cells are classically regarded as
quiescent non-functional osteoblasts (Aubin and Turksen, 1996) or immature
osteoblasts (Zhang et al., 2003) and have distinguished morphology from the
cuboidal osteoblasts that are responsible for bone formation (Aubin and Turksen,
1996). Lymperi et al have shown that increasing total osteoblasts without
increasing N-cadherin® osteoblasts enhances bone formation without increasing
HSCs highlighting the dissociation between bone formation and HSC

maintenance at the cellular level (Lymperi et al., 2008).

Even though HSCs were maintained normally in KRNxG7, B cells were greatly
reduced in these mice. Previous studies have shown that conditional ablation of
osteoblasts in Col2.3ATK transgenic mice resulted in defects in B lymphopoiesis
(Visnjic et al., 2004; Zhu et al., 2007). Furthermore, it has been shown that a cell
autonomous defect of Gsa signaling in osteoblasts also impairs marrow B cell
development (Wu et al., 2008). Our results are more similar to the effects of
osteoblast depletion using the Col2.3 TK transgenic system. We find that similar
to Zhu et al, preproB, proB and pre B precursors are all depleted in KRNxG7
mice in contrast with Wu et al, where preproB cells are intact. This more severe

B cell depletion is also reflected by gene expression analysis which reveals a
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decrease in not just IL-7 as obtained by Wu et al, but also of SDF-1 (which is not
changed in Wu et al.) and of FIt3-L. Intriguingly CLPs are also absent from
arthritic bone marrow, suggesting that importance of osteoblasts in marrow B
lympophopoiesis occurs higher up in the developmental hierarchy than
previously determined, prior to B cell commitment. It is possible that the
decreased cycling of Kit+Sca-Lin- cells in KRNxG7 bone marrow is due to
undefined progenitors in the lymphoid lineage. Previous studies have suggested
that immunization, infection and inflammatory cytokines can mobilize B cell
precursors into the periphery (Nagaoka et al., 2000; Ueda et al., 2005; Ueda et
al., 2004). However it is at the moment unclear if and where B lymphopoiesis

might be relocated to in the KRNxG7 mice.

Taken together, osteoblast determinants involved in bone formation vs B
lymphopoiesis vs hematopoietic stem supporting activity could be distinct and
uncoupled. Alternatively, while osteoblasts maybe obligatory for B cell
development and bone formation, additional HSC niche cells, such as endothelial
or reticular cells (Kiel and Morrison, 2006; Sugiyama et al., 2006), could
compensate for the osteoblast defects in maintaining HSC integrity in
inflammatory environments of KRNxG7 mice. To this end, previous studies
demonstrate that endothelial cells of hematopoietic tissues, such as bone
marrow or extramedullary organs, express cell surface molecules including E-
selectin and VCAM-1. Intriguingly, these molecules are not expressed in

quiescent endothelium of non-hematopoietic tissues, but become upregulated in
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inflammation (Mazo et al., 1998; Schweitzer et al., 1996). Thus, it will be
particularly important to know if the accumulation of HSCs and progenitors that
we see in the spleens of arthritic mice is associated with changes in the
endothelial niche in chronic inflammation. Moreover, studies distinguishing the
requirements of osteoblast vs. endothelial niche in HSC maintenance in normal

vs. pathologic conditions should be addressed thoroughly in the future.
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Figure legends

Figure 2.2-1. Severe joint destruction and osteoporosis in KRN/G7 mice.
(A) Radiographs of femurs of 6 week old G7 and KRNxG7 mice. Right panels
are higher magnification images of boxed areas in the left panels. Yellow arrow
and dashed circle in lower right panel denote destroyed articular surface and
secondary ossification center. Red arrow points to trabecular bone region.

Green arrow indicates micro-fractures.

(B) Representative three-dimensional reconstruction of the femur by uCT.

(C) The percentage of trabecular bone volume/tissue volume determined by uCT
(BVITV).

(D) Trabecular separation determined by uCT (Tb. space).

(E) DEXA determined bone mineral density (BMD). Data are presented as mean
+ SD, n=5 in each group of mice.

(F) ) Histomorphometric determination of BV/TV. Trabecular bone volume
normalized to total marrow space (BV/TV).

(G) TRAP (red reaction product) stained histological sections of G7 and KRNxG7
tibia. Data are expressed as % trabecular bone surface covered by osteoclasts.
n=5.

(H) Global osteoclast number, in vivo, was quantified by serum TRAPSb ELISA.
(I Oscar, integrinB3 and cathepsin K expression was analyzed by quantitative
PCR with RNA from G7 and KRNxG7 BM. Shown is the mean expression + SD

for each gene normalized to GAPDH. n=3.
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(J) SDF1 and TNF-a expression was analyzed by quantitative RT-PCR with RNA
from G7 and KRNxG7 BM. Shown is the mean expression = SD for each gene
normalized to GAPDH. n=3.

*p<0.05, **p<0.01, ***p<0.001
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Figure 2.2-2. Impaired bone formation rate in KRN/G7 mice.

(A) Osteoblast number/mm bone perimeter (No. OB/B.mm).

(B) % trabecular surface covered by osteoid (OS.S/B.mm).

(C) Bone formation rate (BFR) histomorphometrically quantitated from double
calcein labeled tibia.

(D) In vivo bone formation was quantified by serum osteocalcin (Osc) level at 6
weeks of age. n=5.

(E) RNA of KRN and KRNxG7 BM was analyzed for gene expression of
osteoblast markers, receptor activator of NFkappaB ligand (Rankl),
Osteoprotegerin (Opg), Runx2 and Osteocalcin by quantitative RT-PCR . Shown
is the mean expression £ SD for each gene normalized to GAPDH.

*p<0.05, **p<0.01, ***p<0.001
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Figure 2.2-3. Characterization of mature cells and B cell development
defect in KRNxG7 mice.

(A) Systemic increase in myeloid cells and decrease in lymphoid cells. BM,
spleen, liver and peripheral Blood (PB) cells were harvested from 6 to 8 week old
KRNxG7 and control (KRN, G7 or B6xG7) mice, stained for the indicated lineage
markers and analyzed by flow cytometry. B220 is a B cell marker, Gr1 stains
granulocytes and monocyte populations, Mac1 and F480 combination stains
macrophages, CD3, CD4 and CD8 stain T cells. Shown is the mean for 3 to 11
mice analyzed per strain for each tissue.

(B) FACS plot for B cell precursors in bone marrow. Bone marrow cells from
KRNxG7 or G7 controls are stained for B220 and AA4.1 (a marker for B cell
precursors). B cell precursors (B220°AA4.1+; red arrow) are virtually depleted in
KRNxG7 bone marrow while most of the residual cells are B220" and IgM+ (IgM
staining not shown).

(C) Systematic analysis of bone marrow B cell development. FACS determined
frequency of various B cell precursors from earliest (left) to the latest (right) are
shown. LMPP (Lymphoid Primed Multipotential Progenitor; Kit+Sca1+Lin-
FIk2"'CD34+), CLP (Common Lymphoid Progenitor; Lin-FIk2+IL-7Ro+), PreproB
(B220+IgM-CD19-CD43+NK1.1-CD11c-), ProB (B220+IgM-CD19+CD43+), PreB
(B220+IgM-CD19+CDA43-), B cells (B220+IgM+). We confirmed that Lin-FIk2+IL-
7Ro+ CLPs were almost predominantly Kit°Sca1" (data not shown) as

previously reported.(Karsunky et al., 2008; Kondo et al., 1997)
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(D) Expression of various B lymphopoiesis promoting cytokines in whole marrow.
Expression was determined by quantitative real time PCR, followed by
normalization to GAPDH. IL-7(Interleukin 7), FIt3-L(Ligand for FIk2), TSLP
(Thymic Stromal Lymphopoietin).

*p<0.05, **p<0.01, ***p<0.001.

155



% KSL Cells

Figure 2.2-4.

Sih. © c
. e [ BExGT
02 0.25 . KRNxG7 in 50 N B <RIxGT
B 545 W PRy 5T _
016 02 o a0 & 80 * 70
w 0.
3 Tq 23 30 o
0.12 ©n1s e F30 8 80 &
A in 2 3 Ak
g T, ab 3 0 7 40
0.08 = 01 ; =20 5 W 30
= 215 2 a0
004 005 =2 0y T 20 A
= 5 2 10
F = 10
i, 0 0 0 - k=] u]
awk Bk Tk Lin- Lirr Lirr 0 i Lir Lirr
c-Kit*Scal- c-Kit*Scal* c-Kit*Scal- c-Kit*Scal* c-Kit*Scals
g owks 20 wks
D ~ 1 BExGT E T
& 120 W RN GT W 70 I BEXG7
3 = Oy GT
-+ & ke
& 100 5 60
[ =
— T
£ 804 £ &0
& T 40
£ 60 £
] o a0
m 407 £ oo
E_, 204 g 10
o i
o 0+ o 0
B 12 16 20 Z4wks 3 5 whs

156



Figure 2.2-4. Hematopoietic stem cells are not impaired in KRNxG7 mice.
(A) Immunophenotypic analyses of HSC containing populations. BM from 3, 6
and 7 week old KRN, B6xG7 and KRNxG7 mice were subjected to FACS
analyses for cKit, Sca1 and lineage or CD150, CD48 and CD41 markers. The
frequency + SD of KSL or SLAM is shown on the Y-axis. (n>4).

(B) Cell Cycle analysis of bone marrow sub-populations. 6-8 week old mice
were injected with a single dose of bromodeoxy-uridine (BrdU) proportionate to
body mass for 2-3 hours prior to sacrifice. Different bone marrow fractions were
analyzed for BrdU incorporation by flow cytometry. Shown is the mean + SD of
BrdU positive cells for each population for 2 independent experiments (n=4-5
total mice).

(C) Quiescent Fraction Analysis of Bone Marrow KSL cells. Bone marrow cells
from KRNxG7 and B6xG7 mice (n=4-5) of different ages were lineage depleted,
surface stained for c-Kit and Sca-1 and subjected to intracellular staining for Ki67
and Hoechst (see methods and Supplementary Figure 2.2-5). Quiescent cells do
not express Ki67 (Ki67"®?) and stain low for Hoechst because of their 2N DNA
content (versus 4N DNA content of S/G2/M phase cells). Ki67"*®Hoechst'"
(quiescent cell) fraction of the stem cell enriched Lin-cKit+Sca1+ (KSL)
population and the non-stem cell enriched Lin-cKit+Sca1- population are shown.
As expected KSL cells are more quiescent than Lin-cKit+Sca1- progenitors.
However there is no appreciable difference in quiescent fraction in KRNxG7 KSL

cells compared with B6xG7 KSL cells.
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(D) B6xG7 (CD45.2xCD45.2) or KRNxG7 (CD45.2xCD45.2) BM was
transplanted into lethally irradiated B6xG7 (CD45.1xCD45.2) recipients.
Peripheral blood was analyzed for donor contribution (CD45.2) every 6 weeks
after BM transplantation for 6 months. The percentage + SD of CD45.2"
chimerism is shown on the Y-axis (n=4/genotype).

(E) B6xG7 (CD45.2+) or KRNXG7 (CD45.2+) bone marrow cells (2x10°) were
mixed with B6xG7 (CD45.1+; CD45.2+) competitor bone marrow cells (2x10°)
and injected (i.v.) into lethally irradiated (1000 Rads) B6xG7 (CD45.1xCD45.2)
recipient mice. PB CD45.2+ cells of were analyzed 3 months and 5 months post-
transplantation. Data represent the average percentages peripheral blood
chimerism £ s.e.m.

*p<0.05, **p<0.01
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Figure 2.2-5.
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Figure 2.2-5. Characterization of HSCs and progenitors in KRNxG7 spleen.
(A) Spleen from 1, 2 and 6 week old B6xG7, KRN and KRNxG7 mice were
subjected to FACS analyses for cKit, Sca1 and lineage markers. The frequency +
SD of CD45"KSL  is shown on the Y-axis. (n >5).

(B) BM and spleen cells from 6 week old KRN and KRNxG7 mice were subjected
to hematopoietic replating assay (n = 3). Hematopoietic colonies were counted 7-
10 days after replating.

(C) Lin- spleen cells from B6xG7 (CD45.2xCD45.2) or KRNxG7 (CD45.2xCD45.2)
were transplanted into lethally irradiated B6xG7 (CD45.1xCD45.2) mice. Survival
rate of the recipients is shown on the left. CD45.2+ cells were analyzed 3 months
after transplantation. One representative FASC data is shown on the right.

***0<0.001.
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Supplementary Figures 2.2-1.
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Supplementary Figures 2.2-1. In vitro osteoblasts differentiation from
KRNxG7 bone marrow stromal cells is normal.

(a) AP quantitative assay for high-density BMSC cultures in osteogenic medium.
Data is presented as mean + SD, n=5 in each group of mice.

(b) Detection of bone nodule formation by von Kossa staining. The BMSC cells
were incubated for 14 days in mineralization medium. (arrowhead denotes a

nodule)

162



Supplementary Figures 2.2-2.

Mo, of KSL calls {x10* par 1 femur+1 tibia)

call number (x107/1 famur+1 tibia)

10.0

=
=]

o
[=]1

b
=1

k2
[=]

=
[=]

0.4

0.3 4

0.2

0.1 4

0.0

BM
{6-7 weeks)

BBxGT
W KRNxGT

Flushed BM Crushed and
Digestad Bone

BExGT KRNxGT

b KSL calls

B
Yo

163

010
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.0z
o.M
0.00

Flushed BM Crushed and
Digestad Bona

EEExGT
WKRN=GT



Supplementary Figures 2.2-2. Marrow cellularity and KSL frequency are
independent of harvesting method.

(a) Number of bone marrow cells generated from flushing method and
collagenase/dispase enzymatic digestion method of total bone. One femur and
one tibia from 6 week old B6xG7 and KRNxG7 mice were examined. The values
indicate cell number £ SD from one femur plus one tibia on the Y-axis. n=4 for
each group.

(b) Flushed BM and total BM from 6 week old B6xG7 and KRNxG7 mice were
subjected to KSL FACS analyses. The values indicate frequency £ SD of KSL on
the Y-axis.

(c) Absolute number of KSL cells of one femur and one tibia of B6xG7 and
KRNxG7. The values indicate cell number + SD on the Y-axis. n=4 for each

group, *p<0.05.
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Supplementary Figures 2.2-3.
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Supplementary Figures 2.2-3. Depleted lymphoid cells in KRNxG7 bone
marrow.

(a) Representative FACS plot depicting depleted lymphoid cells and expanded
myeloid cells in KRNxG7 bone marrow. Lymphoid cells have low forward scatter
(FSC) and side scatter (SSC) as a result of the smaller size and less granularity.
In bone marrow majority of lymphoid cells are B220+ (~30% of leukocytes). This
reduced FSC°SSC" frequency in KRNxG7 mice is also reflected in B220+
frequency (see Figure 2.2-3A).

(b) Representative FACS plot depicting depleted CLP in KRNxG7 bone marrow.

CLPs are FIk2+IL-7Ra+Lin-. Indicated fractions are mean CLP frequency in total

marrow * standard deviation.
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Supplementary Figures 2.2-4.
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Supplementary Figures 2.2-4. BrdU analysis of progenitor populations.

(a) Schema for BrdU analysis. Lin+ cells are excluded by magnetic depletion
using biotin conjugated anti-lineage marker antibodies and also by FACS gating
by excluding Streptavidin-PerCP-Cy5.5 positive cells. Various gated progenitor
fractions — Lin-, KSL+, KSL- are subsequently analyzed for BrdU positive cells.
(b) BrdU analysis of bone marrow progenitor cells at early time point (4wks;) and

later time point (16wks). N=2-4, *p<0.05.
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Supplementary Figures 2.2-5.
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Supplementary Figures 2.2-5. Schema for Ki67/Hoechst analysis.

(a) Exclusion of Lin+ cells by magnetic depletion and flow cytometric gating (see
methods & Supplementary Figure 2.2-4a) was performed. Lin- cells were
subjected to doublet discrimination.

(b) c-Kit and Sca-1 expression of doublet free and Lin- gated cells to get KLS
(KLS+) and KLS- populations.

(c) Ki67 and Hoechst analysis of gated KLS+ and KLS- cells. Quiescent cells are
Ki67"*9Hoechst”. The more primitive KLS+ population conspicuously lack Ki67"

cells, which are present in KLS- population that are devoid of HSCs.
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Supplementary Figures 2.2-6. Expression of cell cycle Regulators in BM
derived KSL cells.

CD45+KSL cells were FACS sorted from 6 week old KRNxG7 and KRN control
mice (10-11 mice for each). RNA was extracted and used for quantitative real-
time PCR for various cell cycle regulators: p21 and p27 are cyclin dependent
kinase (Cdk) inhibitors of the Cip/Kip family; p18 and p19 are Cdk inhibitors of
the Ink4 family; Rb, p107 and p130 are retinoblastoma (Rb) family genes; Bmi is
an epigenetic regulator of stem cell self renewal. Shown is the average of 2-4
experiments for each gene with error bars representing standard deviation. Each

experiment was performed in duplicate.
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Supplementary Figures 2.2-7.
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Supplementary Figures 2.2-7. Analyses for donor cell derived
hematopoietic cell lineages in primary, secondary and tertiary recipients.
Peripheral blood was analyzed for the donor cell contribution (CD45.2) to
individual hematopoietic cell lineages. The data shown is the mean percentage
PB chimerism (CD45.2+) + SD of CD3+, CD4+, CD8+ (T cells), B220+ (B cells),

Gr1+ (granulocytes), and Mac-1+ (macrophages) populations. ***p<0.001.
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Supplementary Figures 2.2-8.
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Supplementary Figures 2.2-8. HSCs from 4 month old KRNxG7 mice are not
compromised.

Lethally irradiated B6xG7 (CD45.1xCD45.2) recipient mice were transplanted
with 1x10° BM cells from 4 months old B6xG7 (CD45.2xCD45.2) or KRNxG7
(CD45.2xCD45.2) mice. The figures shown are the mean percentage + SD of
donor-derived cells in the peripheral blood (PB) 6 weeks after transplantation. (a)
The percentage CD45.2+ donor derived cells is shown. (b) Donor derived mature
hematopoietic cell populations are detected as CD4/CD8, B220, and Mac-1

positive populations. n=8, ***p<0.001
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Supplementary Figures 2.2-9. Splenomegaly in KRNxG7 mice.

(a) KRNxG7 mice display splenomegaly. KRNxG7 spleen weight was compared
to that of control mice. Left panel shows quantified mean spleen weight
normalized to total body weight using KRN controls £ SD. n=5. Right panel
shows representative spleens from KRNxG7 and control B6xG7 to illustrate
splenomegaly.

(b) The spleen of 6 week old KRN, B6xG7, and KRNxG7 were collected, treated
with RBS lysis buffer and counted. The values indicate mean cell number + S.D.
n=4.

(c) Absolute number of KSL cells of spleen cells of B6xG7 and KRNxG7. The
values indicate cell number £ SD on the Y-axis. n=8 for each group, **p<0.01,

*+%1<0.001.
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Supplementary Table 2.2-1. Primer sequences used for qRT-PCR.

Gene Forward Primer Reverse Primer Source

B3 Integrin CCACACGAGGCGTGAACTC CTTCAGGTTACATCGGGGTGA | Primerbank 7949057a1
Bmi-1 ATCCCCACTTAATGTGTGTCCT CTTGCTGGTCTCCAAGTAACG | Primerbank 192203a1
Cathepsin K | GAAGAAGACTCACCAGAAGCAG | TCCAGGTTATGGGCAGAGATT | Primerbank 3198243321
FIt3-L AGATGCAAACGCTTCTGGAG AGGTGGGAGATGTTGGTCTG Primer 3

GAPDH TGGCAAAGTGGAGATTGTTGCC | AAGATGGTGATGGGCTTCCCG | Ref (Lugus et al., 2007)
IL-7 TGGAATTCCTCCACTGATCC ACCAGTGTTTGTGTGCCTTG Ref (Ueda et al., 2005)
OPG GGGCGTTACCTGGAGATCG GAGAAGAACCCATCTGGACATTT | Primerbank 3154388242
OSCAR CCTAGCCTCATACCCCCAG CAAACCGCCAGGCAGATTG ek 837682123 or
Osteocalcin | CTGACCTCACAGATCCCAAGC TGGTCTGATAGCTCGTCACAAG | Primerbank 13811695a1
p107 AGCTTCAGCCACTCAAAGTGTAAG | GCTCACTTGGTGCGCTTTTT Ref (Passegue et al., 2005)
p130 TGATGGCAAAGGTCACAAAAGA | GGCCTGTGGCTGAGTCCTGTA | Ref (Passegue et al., 2005)
p18 CGAGCAGCACTCTGGACTAC AGGCTCGGCCATTCTTTAG Primer 3

p19 CTTCTTCACCGGGAGCTG CAAAGCAACTGCTGGACTTC Primer 3

p21 GTGGCCTTGTCGCTGTCTT GCGCTTGGAGTGATAGAAATCTG | Primerbank 6671726a3
p27 TCTCTTCGGCCCGGTCAAT GGGGCTTATGATTCTGAAAGTCG | Primerbank 31542372a2
RANKL CAGCATCGCTCTGTTCCTGTA CTGCGTTTTCATGGAGTCTCA Primerbank 8843823a1

Rb TGACCTGGTAATCTCATTTCAGC | GGGTGTTCGAGGTGAACCAT Primerbank 667767923
Runx2 TGTTCTCTGATCGCCTCAGTG CCTGGGATCTGTAATCTGACTCT | Primerbank 2080653022
TSLP CTCCCCGACAAAACATTTGCC GCCATTTCCTGAGTACCGTCATT | Primerbank 1094669823

» Primerbank: http://pga.mgh.harvard.edu/primerbank/

» Primer 3: http://biotools.umassmed.edu/bioapps/primer3 www.cqi
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Chapter 2.3

Conclusion and Future Directions
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Summary of Chapter Two

During adulthood, hematopoietic stem cells (HSCs) are responsible for the
generation of all blood cells. Under normal physiological conditions, HSCs reside
mainly in specific microenvironments within bone marrow (BM) cavities, known as
BM niches, where they maintain a balance between self-renewal and
differentiation into more mature cells. Bone homeostasis has been proposed to
have important effects on HSC maintenance under physiological states, but little
is known about their relationship in pathological states. In this chapter, the
relationship between HSCs and bone homeostasis in chronic inflammatory
conditions is examined using the KRNxG7 transgenic mouse model. Using this
model, it was found that mice with chronic inflammatory arthritis also develop
osteoporosis. The overall systemic bone loss phenotype of these mice is not due
to increased resorption of bone, but rather to decreased bone formation.
Osteoblasts, bone forming cells, have been proposed to be one of the
components that comprise the BM niches that maintain HSC homeostasis and
supports B lymphopoiesis. In our studies, we have found that these arthritic mice
display defective bone marrow B lymphopoiesis but, intriguingly, HSC frequency,
cell cycling, and long-term functional repopulating ability were all unchanged,
compared to normal mice. Our findings indicate that the bone-forming function of
osteoblasts is disassociated from their ability to maintain HSCs in the bone
marrow in a chronic inflammatory condition. These observations suggest that
other cell types, such as endothelial cells in the bone marrow, might serve as

niche cells to maintain HSC homeostasis under pathological conditions.
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Hematopoietic Stem Cell Niche in KRNxG7 Mouse

We found that KRNxG7 mice, a mouse model to study human RA, exhibit an
osteoporotic phenotype, due to diminished bone formation. The molecular
mechanisms that affect the number and function of osteoblasts in the bone
marrow of KRNxG7 mice remain unclear. Previous in vitro studies demonstrated
that the pro-inflammatory cytokine, TNFa, inhibits the development and activity of
osteoblastic cells by down-regulating bone-formation markers including alkaline
phosphatase, type-I collagen, osteocalcin and Runx2 (Centrella et al., 1988;
Gilbert et al., 2002; Gilbert et al., 2005; Kuroki et al., 1994; Li and Stashenko,
1992; Nakase et al., 1997). We have found that KRNxG7 mice display a high level
of TNF-a mRNA and protein in BM and serum. Thus, it is possible that high level
of TNFa has an impact on the development and function of osteoblasts in the
bone marrow. It will be important to assess the effects of TNFa on the
osteoporotic phenotype in KRNxG7 mice. One experiment would be to use
antibodies against TNFa to KRNxG7 mice before onset of the arthritic symptoms.
For example, injection of antibodies to neonatal KRNxG7 mice or to pregnant
female would determine if they can reduce the osteoblast defects that are seen in
the tibias and femurs of adult KRNxG7 mice. Furthermore, deletion of TNFa
signaling in KRNxG7 mice could give a detailed insight on the TNFa-mediated
osteoporotic phenotype found in these arthritic mice.

Previous studies using genetically modified mice have demonstrated that

osteoblast numbers and activity correlate positively with the number of functional
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HSCs seen in the bone marrow (Calvi et al., 2003; Visnjic et al., 2004; Zhang et
al., 2003). However, we revealed that, while the numbers and activity of
osteoblasts in the bone marrow of KRNxG7 mice were reduced, the maintenance
of the HSC population was intact. Those data do not, therefore, support the
previous notion at least in this model of chronic inflammation. | propose two
possibilities to explain our observations: first, the remaining osteoblasts in arthritic
mice can sufficiently support the HSC maintenance; second, endothelial cells in
the bone marrow could compensate the osteoblast defects and sufficiently
support the HSC maintenance in KRNxG7 mice.

When we tracked green fluorescent protein (GFP) expression under the
control of the osteoblast-specific Col2.3 promoter (Kalajzic et al., 2002), we found
that some GFP+ cells were still present in KRNxG7 bone marrow (unpublished
data). These Col2.3 GFP-expressing osteoblasts might be part of the HSC niche
because conditional ablation of the population leads to a decrease in the total
number of HSCs found in the bone marrow (Visnjic et al., 2004). Thus, it is
possible that a limited population of osteoblast cells that remain active in KRNxG7
mice might still be sufficient to maintain HSC integrity in the bone marrow of
arthritic mice. Another possibility is that osteoblast-lineage cells are
multifunctional. It has been proposed in previous studies that a subset of
osteoblasts, expressing N-cadherin, might serve as HSC niche cells (Arai et al.,
2004; Zhang et al., 2003). Lyperi et al. showed that increasing the activity and
total number of osteoblasts, without increasing the N-cadherin-expressing

osteoblast subpopulation, results in excessive bone formation without increasing
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the number of HSCs (Lymperi et al., 2008). This observation suggests that HSC

number is correlated, not with the total number of osteoblasts, but with a subset of

osteoblasts which may not be involved in bone formation. Therefore, it is possible

that the remaining osteoblasts in KRNxG7 mice, possessing little or no

bone-forming activity, could be sufficient to maintain HSCs in the bone marrow.
To test if the remaining osteoblasts have the ability to maintain HSCs, a

possible experiment would be to cross KRNxG7 mice with Col2.3 A TK transgenic

mice (Visnjic et al., 2004), which allows conditionally ablation of osteoblasts by
ganciclovir. This cross could be used to assess whether or not HSC maintenance
is disturbed by ablation of the remaining osteoblast population seen in KRNxG7

mice. If the functional HSCs are affected in KRNxG7;Col2.3 A TK mice, the result

would suggest that the remaining osteoblasts are sufficient to serve as HSC niche
cells. On the other hand, if HSC maintenance is not affected by the ablation, it
would indicate that other cells play important roles in the HSC maintenance under
conditions of chronic inflammation.

HSCs have been observed to closely attach to the endothelial cells in the BM
and mobilized spleen, suggesting endothelial cells might serve as important
components as HSC niche cells (Kiel et al., 2007; Kiel et al., 2005). It is possible
that inflammatory environment might alter the ability of endothelial cells in the
bone marrow of arthritic mice, and that the endothelial cells could sufficiently
support HSC maintenance, compensating for the osteoblast-related defects in the
KRNxG7 mice. Li et al. showed that endothelial cells, isolated from several adult,

non-hematopoietic organs and co-cultured with various cytokines, supported the
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expansion of hematopoietic progenitors, some of which maintained the
repopulating capacity of HSCs (Li et al., 2004). Cell adhesion molecules (CAMSs),
such as E-selectin and vascular cell adhesion molecule-1 (VCAM-1), are involved
in hematopoietic progenitor cells homing in to and repopulating the new bone
marrow after bone marrow transplantation (Frenette et al., 1998;
Papayannopoulou et al., 1995). These CAMs are constitutively expressed on the
surfaces of endothelial cells in hematopoietically active tissues, such as adult
bone marrow and fetal liver (Schweitzer et al., 1996), but not detectable on the
endothelial cells of non-hematopoietic tissues under normal conditions.
Interestingly, these molecules can be upregulated in conditions of inflammation or
by various inflammatory cytokines (Haraldsen et al., 1996; lademarco et al., 1995;
Schweitzer et al., 1996; Strickland et al., 1997). We have found that KRNxG7
mice have enlarged spleens with accumulations of HSCs and hematopoietic
progenitors, despite the fact that osteoblasts are not found in the spleen.
Therefore, it is critical to examine whether endothelial calls are responsible
for the HSC maintenance in the bone marrow and for the accumulated HSCs in
the spleens of arthritic mice. A possible approach to this question is to examine
histological sections of spleen and tibia/femur from KRNxG7 and control mice (i.e.
G7 or KRN mice), double-staining with HSC markers, such as CD150+CD41-
CD48- (Kiel et al., 2005), and with endothelial cell makers, such as MECA-32 or
VE-cadherin, to determine if HSCs reside in proximity to endothelial cells in these
tissues. If HSCs reside more closely to the endothelial cells comparing to other

cell types in KRNxG7 mice versus control mice, it would provide an insight that
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the endothelial cells might play significant roles for the HSC maintenance in
chronic inflammation conditions. Furthermore, determining the expression levels
of CAMs such as E-selectin and VCAM-1 on the endothelial cells of the spleen
and tibia/femur of KRNxG?7 versus control mice would be warranted. Next, to
disturb the assembly of BM endothelial cells in KRNxG7 and control mice by using
VE-cadherin-specific antibody (Avecilla et al., 2004) followed by HSC analyses
would further elucidate the roles of endothelial cells in HSC maintenance under
normal vs. pathologic conditions. Future analyses comparing gene expressions of
isolated endothelial cells from spleen and bone marrow between KRNxG7 and
control mice would provide further understanding of how chronic inflammation
might affect bone marrow and splenic endothelial cells to support HSC
maintenance molecularly.

Moreover, the bone marrow microenvironment contains diverse populations
of non-hematopoietic cells such as mesenchymal progenitors, osteoblasts,
osteoclasts, fibroblasts, reticular cells, adipocytes, and endothelial cells. Future
studies will require further determining the involvements of these cells or even
unidentified cell types in supporting HSC maintenance in the bone marrow of

KRNxG7 mice.
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