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ABSTRACT OF THE DISSERTATION 

Runx1 in Primitive Hematopoiesis and Characterization of Hematopoietic Stem 

Cells in a Mouse Chronic Inflammatory Arthritis Model 

by 

Yunglin David Ma 

Doctor of Philosophy in Biology and Biomedical Sciences 

Program in Developmental Biology 

Washington University in St. Louis, 2009 

Professor Kyunghee Choi, Chairperson 

 

Hematopoietic cells are essential for growth and survival throughout adult life. 

Two different aspects of hematopoiesis are addressed in this dissertation. 

I. The regulation of primitive hematopoiesis by Runx1 and TGFβ signaling. 

Primitive hematopoiesis, occurring exclusively in the yolk sac, is characterized 

by its transient nature. As the primitive hematopoiesis declines in the yolk sac, 

definitive hematopoietic progenitors generated in the yolk sac and/or embryo take 

over in blood cell production. Whether the transition from primitive to definitive 

hematopoietic program reflects a mere shift in hematopoietic sites or whether it is an 

actively regulated process is currently unknown. Runx1 is necessary for the 

establishment of definitive hematopoiesis. Most studies on Runx1 have focused on 

its role in generating hematopoietic stem cells. Intriguingly, Runx1 expression can be 

detected in the yolk sac blood-islands where primitive erythroid (EryP) progenitors 

emerge. The function of Runx1 in primitive hematopoiesis has not been carefully 

investigated. Herein, we determined if Runx1 plays a role in primitive hematopoiesis 
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by utilizing in vitro embryonic stem (ES) cell differentiation system and by examining 

EryP development in Runx1 mutant mice. We demonstrated that Runx1 deficient 

mice contained a significantly reduced number of EryP progenitors compared to 

controls. Nonetheless, Runx1 deficient mice survived until they required definitive 

hematopoietic cells. We demonstrated that a high level of enforced Runx1 expression in 

the in vitro differentiation model of embryonic stem (ES) cells suppressed EryP 

progenitor generation. We also identified TGFβ1 as a cooperative signal of Runx1 in 

negatively regulating EryP development. Our studies revealed an unexpected role of 

Runx1 in both initiation and termination of primitive hematopoiesis. 

II. The relationship between hematopoietic stem cells and bone marrow 

microenvironment. 

There is an intricate relationship between hematopoiesis and bone homeostasis 

in normal physiological states during adulthood. By utilizing mice undergoing chronic 

inflammatory arthritis, we investigated the relationship between hematopoiesis and 

bone homeostasis in pathological conditions. We demonstrated that mice with 

chronic inflammatory arthritis are osteoporotic due to a severe defect in osteoblast 

function. Despite the defective osteoblast function, the hematopoietic stem cells from 

these mice exhibited normal properties in HSC frequency, cell cycling and long-term 

repopulating ability. Therefore, the bone forming capacity of osteoblasts is 

disassociated from their ability to maintain HSCs in a chronic inflammatory condition. 

These observations suggest other cell types, such as endothelial cells in the bone 

marrow, might serve as HSC niches under pathological conditions. 
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Hematopoietic Development during Mouse Embryogenesis 

The production of blood cells takes place in several distinct anatomical sites 

during mouse embryogenesis. The first blood cells to appear, known as primitive 

erythrocytes, are initially detectable in the extraembryonic yolk sac blood islands 

at embryonic day E7.5 of gestation and become extinct by E9.0. (Ferkowicz and 

Yoder, 2005). Meanwhile, the liver rudiment is colonized by hematopoietic stem 

cells by E10.5 and becomes the principal hematopoietic organ during fetal 

development (Houssaint, 1981). Beginning at birth, bone marrow (BM) is 

colonized by hematopoietic stem cells (HSCs) originating from the fetal liver. 

Thereafter, and continuing throughout adult life, all mature blood cells are 

produced in the bone marrow. The term primitive hematopoiesis is applied to the 

development of the initial yolk sac-derived erythroid cells, while definitive 

hematopoiesis refers to all blood cell lineages other than the primitive erythroid 

cells (Keller et al., 1999). 

The blood islands are composed of both primitive erythroid cells (EryP) and 

endothelial cells, which constitute a small fraction of the whole yolk sac vascular 

system. The close developmental association of the hematopoietic and 

endothelial cell lineages within the yolk sac blood islands of the developing 

embryo has led to the hypothesis that they arise from a common precursor, 

termed the hemangioblast (Park et al., 2005; Sabin, 1920). Cell tracking studies 

indicate that hemangioblast development begins in the primitive streak, after 

which they migrate into the yolk sac blood islands (Huber et al., 2004). EryP cells 

are generated from a transient wave of progenitors, termed primitive erythroid 



 4 

colony-forming cells (EryP-CFC), found exclusively in the yolk sac between E7.25 

and E9.0 (Palis et al., 1999). Primitive erythrocytes (EryP) are larger than 

definitive erythrocytes (EryD). They are initially circulating as nucleated cells, and 

mainly express two embryonic forms of β-globin proteins (εy and βH1), as well as 

both embryonic and adult forms of α-globin proteins (ζ and α, respectively) 

(Kingsley et al., 2006). However, recent studies demonstrate that primitive 

erythrocytes undergo enucleation between E12.5 and 16.5, producing mature 

primitive erythrocytes that are comparable in size to definitive erythrocytes 

(Kingsley et al., 2004). In the fetal liver, hematopoietic progenitors generate 

definitive erythrocytes, as well as myeloid and lymphoid cells. Definitive erythroid 

cells are smaller than EryP, enucleated, and express a range of adult globin 

isoforms, namely α1, α2, β1 and β2 (Lensch and Daley, 2004; Palis et al., 1999). 

 Genetic knock-out mice have provided insight into the functions of various 

genes in the generation and maintenance of primitive erythroid cells. Deficiencies 

of Scl, Lmo2, or Gata2 in mouse embryos result in mid-gestational embryonic 

lethality due to failure of or defective emergence of primitive hematopoiesis 

(Porcher et al., 1996; Robb et al., 1995; Shivdasani et al., 1995; Tsai et al., 1994; 

Warren et al., 1994; Yamada et al., 1998). The Gata1 transcription factor has an 

essential role in the regulation of erythroid-specific genes in both primitive and 

definitive erythroid cells. Gata1-deficient mice and differentiated embryonic stem 

(ES) cells derived from Gata1-deficient mice cannot generate mature erythroid 

cells due to developmental arrest and cell death at the proerythroblast stage 

(Fujiwara et al., 1996; Pevny et al., 1991). Mice deficient in erythroid Krupple-like 
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factor (Eklf) have severe defects in definitive hematopoiesis, and recent studies 

show that Eklf is also involved in primitive hematopoiesis (Basu et al., 2007; 

Hodge et al., 2006; Nuez et al., 1995; Perkins et al., 1995). However, some 

transcription factors have been shown to affect only definitive hematopoiesis 

without impacting primitive hematopoiesis. For example, mice lacking c-myb have 

normal primitive erythroid cells but die around day E15.0 with a severely anemic 

phenotype, due to a failure to generate definitive erythrocytes (Mucenski et al., 

1991). Mice deficient in PU.1 also show normal primitive hematopoiesis, but they 

display multiple defects in the development of lymphoid and myeloid cells, dying 

by day E18.5 (Scott et al., 1997). These results suggest that the molecular 

mechanisms governing primitive and definitive hematopoiesis might be differently 

regulated. 

 Generation of hematopoietic stem cells (HSCs) with the ability to produce all 

types of adult blood cells is the key feature of definitive hematopoiesis. The 

origins of the HSCs that initially colonize the fetal liver remain controversial. There 

are currently two major models concerning the source of HSCs. The first model is 

that the HSCs emerge from within the yolk sac and then migrate to the fetal liver, 

subsequently populating the bone marrow. The second model is that the HSCs 

that enable fetal liver hematopoiesis emerge from within the intraembryoic 

para-aortic-splanchnopleure (PAS)/aorta-gonad-mesonephros (AGM) region. 

 Support for the first model comes from studies showing that the yolk sac 

contains multiple definitive hematopoietic progenitors, including T cells, B cells, 

and myeloid cells, even before the embryonic circulation starts (Cumano et al., 



 6 

1993; Huang and Auerbach, 1993; Liu and Auerbach, 1991; Wong et al., 1986). 

Moreover, Lux et al. used Ncx1-null embryos, which lack a heartbeat and, thus, 

have no functional circulation, to demonstrate that Ncx1-/- yolk sacs contain 

normal numbers of both primitive and definitive erythroid progenitors (Lux et al., 

2008). There were few definitive erythroid progenitors found within the embryo 

proper of the Ncx1-/- mice, supporting the hypothesis that all definitive 

hematopoietic progenitors are initially generated in the yolk sac and migrate out 

into other areas of the embryo with the onset of embryonic circulation. However, 

these studies did not demonstrate that cells arising from the yolk sac during early 

development have long-term repopulating ability, which is the key feature of HSCs. 

Interestingly, when Yoder et al. transplanted E9.0 or E10.0 yolk sac cells into 

neonatal mice to show that yolk sac cells contain long-term repopulating 

hematopoietic stem cells (Yoder and Hiatt, 1997; Yoder et al., 1997a; Yoder et al., 

1997b). In contrast, transplantation of E10.0 yolk sac cells into adult recipients did 

not result in engraftment (Yoder and Hiatt, 1997). These observations suggest 

that hematopoietic stem cells do emerge from the yolk sac, they require an 

embryonic environment to develop and that the adult microenvironment may not 

support the differentiation of the HSCs generated from the yolk sac. Consistent 

with this interpretation, yolk sac-derived cells can reconstitute the adult 

hematopoietic system when precultured on AGM-derived stromal cells (Matsuoka 

et al., 2001). Recently, using a non-invasive, pulse-labeling technique, 

Samokhvalov et al. were able to demonstrate that yolk sac cells, marked during 

early embryogenesis, can contribute to adult HSC populations that persist for at 
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least 15 months after birth (Samokhvalov et al., 2007). These studies support the 

contention that HSCs arise from within the yolk sac. 

There are also studies which support the model that HSCs that colonize the 

fetal liver originate from in the PAS/AGM region of the embryo (reviewed in 

Cumano and Godin, 2007). Godin et al. surgically removed the PAS/AGM regions 

from E8.5-E9.0 embryos and embedded them under the kidney capsules of SCID 

mice (Godin et al., 1993). Afterwards, they could detect serum immunoglobulin M 

(IgM), IgM-secreting plasma cells, and B cells of the B1a phenotype of donor 

origin 3-6 months after the engraftment. Furthermore, when culturing cells from 

the PAS/AGM region and from yolk sac isolated prior to the establishment of 

circulation, the PAS/AGM cells give rise to much higher numbers of myeloid and 

lymphoid cells than do the yolk sac cells (Cumano et al., 1996; Godin et al., 1995). 

More importantly, the AGM region contains spleen colony-forming cell (CFU-S) 

activity, which measures numbers of definitive hematopoietic progenitors, at a 

higher level than that what is seen in the extraembryonic yolk sac (Medvinsky et 

al., 1993). Importantly, the PAS region from precirculation stage or the AGM 

region from E10.0 embryos contain long-term repopulating HSCs but the yolk 

sacs do not (Cumano et al., 2001; Medvinsky and Dzierzak, 1996). It has been 

shown that HSCs emerge first from the dorsal aorta of the AGM region (E10.5), 

followed by emergence in the vitelline and umbilical arteries (de Bruijn et al., 

2000). These studies demonstrated that HSCs emerge within the embryo proper, 

not from the yolk sac, to establish definitive hematopoiesis. In addition, several 

studies have suggested that HSCs may also emerge from the placenta 
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(Alvarez-Silva et al., 2003; Rhodes et al., 2008; Zeigler et al., 2006). Moreover, 

endothelial cells from all three tissues, AGM, yolk sac and placenta, have recently 

been proposed to be responsible for the generation of hematopoietic stem cells 

(Chen et al., 2009; Eilken et al., 2009; Lancrin et al., 2009; Zovein et al., 2008). 

Intriguingly, when HSCs emerge and definitive hematopoiesis begins, 

primitive erythroid progenitors become extinct in aging yolk sac (Palis et al., 1999). 

This raises an interesting question as to what mechanism regulates the transition 

from primitive to definitive hematopoiesis. Whether the transition from the 

primitive to the definitive hematopoiesis reflects a mere shift in hematopoietic 

sites or whether it is an actively regulated process is currently unknown. 

 

In vitro Embryonic Stem Cell Differentiation Systems 

To understand the molecular mechanisms regulating early events in the 

developing embryo has been of great interest to investigators. Due to the nature 

of the rapid developmental sequence during embryogenesis, the difficulties of 

accessing embryonic tissues and to the limited availability of cells from early 

embryos, the usage of embryonic tissues and cells to study the molecular 

regulation of hematopoiesis in developing embryos has proven quite challenging. 

Moreover, genetic knock-outs of hematopoiesis-related genes result in embryonic 

lethality, precluding further analyses of tissues from knockout animals (Okuda et 

al., 1996; Pevny et al., 1991; Shivdasani et al., 1995; Tsai et al., 1994; Wang et al., 

1996a). Therefore, in vitro studies of embryonic stem (ES) cell differentiation have 

been utilized as an alternative method to study early events of embryonic 
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hematopoietic development. 

ES cells can divide and differentiate in liquid differentiating media readily to 

generate sphere-like, differentiated cells masses call embryoid bodies (EBs, 

Figure 1.1-1, reviewed in Choi, 2002; Keller et al., 1999). ES cells can also be 

differentiated on layers of stromal cells or in dishes coated with type IV collagen 

without forming the EB structure (Nishikawa et al., 1998). EBs contain cells of all 

three germ layers (mesoderm, endoderm, and ectoderm) and can be further 

differentiated into many different lineages including cardiac, smooth and skeletal 

muscle; neuronal; endothelial; and hematopoietic lineages (Choi, 2002; Keller et 

al., 1993; Vittet et al., 1996). Among these lineages, the hematopoietic cells have 

been the most extensively characterized. 

Many molecular and cellular studies have revealed that the sequential 

development of early hematopoietic events in differentiated ES cells is similar to 

that found in the normal developing embryo (Faloon et al., 2000; Keller et al., 

1993; Palis et al., 1999). For example, as in the developing embryo, the primitive 

erythroid progenitors emerge prior to definitive hematopoietic progenitors (Keller 

et al., 1993; Palis et al., 1999). Additionally, testing the effects of specific soluble 

factors or inhibitors in the ES-EB system enables investigators to develop further 

understanding about the roles of different signaling pathways in the development 

of various cell types of interest (Lee et al., 2008; Lengerke et al., 2008; Nostro et 

al., 2008). For these reasons, among others, the in vitro differentiation model of 

ES cells is a powerful system for studying early embryonic development. 
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Transforming Growth Factor beta (TGFβ) Signaling in Embryonic 

Hematopoiesis 

 Numerous studies demonstrate that the transforming growth factor-β (TGFβ) 

superfamily, including TGFβ, bone morphogenetic protein (BMP), and activin, is 

critical for hematopoietic and vascular development (Larsson and Karlsson, 2005; 

Shi and Massague, 2003). Members of the TGFβ superfamily bind to the 

transmembrane heterodimeric complexes of Type I and Type II serine/threonine 

kinase receptors to transduce their signals (Figure 1.1-2, Shi and Massague, 

2003). Type II receptor kinases are constitutively active, while Type I receptors, 

also known as activin receptor-like kinases (ALKs), contain an inactive kinase 

domain (Shi and Massague, 2003). When the ligands bind to their cognate 

receptors as dimers, the constitutively active Type II receptor transphosphorylates 

and activates the kinase domain of type I receptors (Wrana et al., 1994). The 

phosphorylated type I receptor will then phosphorylate either 

SMAD1/SMAD5/SMAD8 or SMAD2/SMAD3, the receptor-specific SMADs 

(R-SMADs, Heldin et al., 1997). The phosphorylated R-SMADs will then partner 

with SMAD4, the common SMAD (Co-SMAD), and translocate into the nucleus 

where the SMAD complex interact with specific transcription factors to regulate 

the transcription of their target genes (Heldin et al., 1997). SMAD6 and SMAD7 

are inhibitory SMADs (I-SMADs) and can inhibit the activated R-SMADs. SMAD6 

preferentially inhibits the BMP SMADs (SMAD1/5/8) while SMAD7 blocks the 

activity of all R-SMADs (Hata et al., 1998; Hayashi et al., 1997; Ishisaki et al., 

1999; Nakao et al., 1997).  
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There are three mammalian isoforms of TGFβs: TGFβ1, TGFβ2,and 

TGFβ3, of which TGFβ1 is the most abundant. During embryogenesis, as early as 

E7.5, TGFβ1 can be detected in blood islands in the yolk sac, in mesodermal cells 

of the allantois, and in the pro-angioblast progenitors within the cardiogenic 

mesoderm of the embryo (Akhurst et al., 1990). At later stages of the developing 

embryo, TGFβ1 expression is detectable in fetal liver, endothelial, epithelial, and 

osteogenic tissues (Akhurst et al., 1990; Lehnert and Akhurst, 1988). 

TGFβ1-deficient mice display severe defects in their yolk sacs, including 

abnormal vascular structures and in significantly reduced numbers of erythroid 

cells, leading to embryonic lethality in the period between E9.5-E11.5 (Dickson et 

al., 1995). Intriguingly, Tgfβ receptor II (TgfrII) expression largely correlates with 

the expression patterns of Tgfβ1 (Lawler et al., 1994), and a homozygous 

deficiency of TgfβrII results in embryonic lethality with defects in yolk sac 

hematopoiesis and vasculogenesis, which are similar to the defects seen in 

homozygous Tgfβ1 deficient mice (Oshima et al., 1996). Whether the primary 

cause of death of Tgfβ1-/- or TgfrII-/- mice is due to defects in vasculogenesis or in 

hematopoiesis is not clear. 

Studies have shown that TGFβ1 can bind to its cognate receptors TGFβrI 

(ALK5) and TGFβrII to form a complexes that activate the SMAD2/SMAD3 

pathway (Heldin et al., 1997). In addition to signaling through ALK5, TGFβ1 can 

also bind to ALK1 and TGFβrII to form a complex which activates the SMAD1/5/8 

pathway (Lux et al., 1999; Oh et al., 2000). Recent studies demonstrated that the 

expression patterns of ALK1 and ALK5 are mutually exclusive in blood vessels 
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(Seki et al., 2006). Specifically, ALK1 expression was detected in arterial 

endothelium, whereas ALK5 expression was detected in mesenchymal tissue and 

smooth muscle cells surrounding the aorta, but was undetectable in the 

endothelial cells (Seki et al., 2006). These findings suggest that ALK1 and ALK5 

might possess distinct biological roles in the developing embryo. Both Alk1 and 

Alk5 knock-out mice die at similar mid-gestation stages, the period E9.5-E10.5, 

with severe defects in vascular development of the yolk sac and an absence of 

circulating red blood cells (Larsson et al., 2001; Oh et al., 2000; Seki et al., 2006). 

Intriguingly, in contrast to the severe anemia seen in the yolk sac and in the 

embryo proper of these mice, when Alk5-/- yolk sac cells were assayed in vitro, a 

significant increase, relative to numbers in wild-type mice, of erythroid 

colony-forming cells was detected (CFU-Ery), whereas numbers of 

granulocyte-macrophage colony-forming cells (CFU-GM) and mixed 

colony-forming cells (CFU-Mix) appeared to be normal (Larsson et al., 2001). 

These studies suggest that TGFβ signaling could have an inhibitory effect on the 

formation and/or proliferation of erythroid progenitors. Consistent with this 

observation, Park et al. showed that TGFβ1 inhibits BMP4 and VEGF-mediated 

hematopoietic induction in the ES-EB system (Park et al., 2004). 

Moreover, inactivation of Smad4 within Flk1-expressing cells, which can 

generate both primitive and definitive blood cells, results in a 50% reduction of 

various hematopoietic progenitors in the yolk sac (Park et al., 2006). Smad2 

knock-out embryos die during early embryonic development due to defective 

mesoderm formation, from which the hematopoietic lineages normally arise 
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(Nomura and Li, 1998; Waldrip et al., 1998; Weinstein et al., 1998). Inhibition of 

Smad5 can neutralize the suppressive effects of TGFβ on adult hematopoietic 

progenitors, so the data suggest that, apart from Smad2 and Smad3, Smad5 

could also be a mediator of TGFβ signaling in hematopoietic cells (Bruno et al., 

1998). Deletion of Smad5 in mice results in embryonic lethality around 

mid-gestation with reduced numbers of blood cells and defective vascular 

structure in the yolk sac, which is similar to what is observed in knock-out animals 

for the TGFβ receptors (Chang et al., 1999; Yang et al., 1999). However, in vitro 

replating assays showed that yolk sacs from Smad5-/- embryos had increased 

numbers of high-proliferative-potential colony-forming cells (HPP-CFCs) with 

enhanced replating potential, and also contained augmented hematopoietic 

progenitors (Liu et al., 2003). Intriguingly, differentiated ES cells derived from 

Smad5-/- mice contained an elevated number of blast colony-forming cells 

(BL-CFCs), the in vitro equivalents of hemangioblasts, in contrast to reduced 

numbers of EryP progenitors (Liu et al., 2003). Collectively, these studies suggest 

that TGFβ signaling has a regulatory role in hematopoietic development during 

embryogenesis, but the detailed mechanism of this regulation is not clear at this 

time. 

 

Runx1 in Hematopoietic Development 

Runx1, also known as Aml1, belongs to the core binding factor (CBF) 

transcription factor family, which consists of three DNA-binding CBFα subunits 

(Runx1, Runx2, and Runx3) and a common, non-DNA binding subunit, CBFβ 
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(Speck and Gilliland, 2002). Runx1 contains a highly conserved domain with 

homology to Runt, the Drosophila paired-rule gene and it binds to the TGT/CGGT 

DNA sequence (Daga et al., 1992; Meyers et al., 1993). RUNX1 heterodimerizes 

with its molecular partner, CBFβ, through the Runt homology domain (RHD) to 

carry out its transcriptional activity (Meyers et al., 1993; Ogawa et al., 1993; Wang 

et al., 1993). 

Runx1 and its partner, CBFβ, are the most frequent targets of chromosome 

translocations in human acute myeloid leukemia (AML)(Liu et al., 1993; Miyoshi et 

al., 1991). The importance of Runx1 in hematopoietic development was revealed 

from mouse knock-out studies. Runx1-null animals die between E12.5 and E13.5 

due to lack of definitive hematopoiesis and hemorrhaging in the central nervous 

system (Okada et al., 1998; Okuda et al., 1996; Wang et al., 1996a). Definitive 

hematopoietic colonies cannot not be identified in E10.5 or E11.5 Runx1-/- yolk 

sacs, fetal liver, or Runx1-/- EB cells (Wang et al., 1996a). Generation of chimeric 

animals by injecting Runx1-/- ES cells into wild-type blastocysts demonstrated that 

Runx1-/- ES cells were unable to produce any hematopoietic tissues while these 

cells can contribute to other non-hematopoietic organs (Okuda et al., 1996). 

These studies indicate that the defects of the Runx1 knock-out cells are specific to 

failures in the hematopoietic lineages, and not to defects in the fetal liver 

microenvironment. In addition, knock-out studies of CBFβ show a parallel 

phenotype to Runx1-deficient mice, suggesting that CBFβ is essential for RUNX1 

function during early embryogenesis (Sasaki et al., 1996; Wang et al., 1996b). 

To further understand the role of Runx1 during early embryogenesis, 
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Runx1lacZ/+ mice and in situ hybridization were used. The expression of Runx1 is 

first detectable in extraembryonic mesodermal cells at E7.25 and then in both 

primitive erythrocytes and endothelial cells of the yolk sac blood islands at 

E8.0-E8.5 (Lacaud et al., 2002; North et al., 1999). Between E8.5-E11.5, Runx1 

can be detected in endothelial cells and mesenchymal cells in the yolk sac, in the 

vitelline and umbilical arteries, and in the ventral aspect of the dorsal aorta in the 

AGM region where hematopoietic stem cells (HSCs) were first identified (North et 

al., 1999). Subsequent studies confirmed that Runx1 is required for the 

emergence of HSCs during embryonic development (North et al., 1999; North et 

al., 2002; Yokomizo et al., 2001). Interestingly, E9.5-E11.5 Runx1+/- embryos 

show significantly reduced numbers of definitive hematopoietic progenitors in their 

livers and yolk sacs, compared to wild-type controls (Cai et al., 2000; Mukouyama 

et al., 2000). Additionally, HSCs emerge prematurely in the E10.0 Runx1+/− yolk 

sacs, and there was a premature termination of HSC activity in the Runx1+/− AGM 

explants (Cai et al., 2000; North et al., 2002). These observations indicate that the 

degree of RUNX1 activity is critical for temporal and spatial regulation of the 

generation of HSCs during hematopoietic development. Although Runx1 starts 

being expressed during the period when EryP progenitors are forming, what role 

Runx1 plays in murine primitive hematopoiesis is currently unclear. 

However, studies of Runx1 in Xenopus and zebrafish indicate important roles 

of Runx1 in primitive hematopoiesis in those animals. Runx1 expression is among 

the earliest molecular markers for blood in Xenopus, and the introduction of the 

Runt domain from the Xenopus Runx1 homologue, Xaml, into Xenopus embryos 
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results in the disruption of normal primitive hematopoiesis (Tracey et al., 1998). 

Studies in zebrafish also demonstrate that Runx1 is involved in both primitive and 

definitive hematopoiesis (Kalev-Zylinska et al., 2002). These findings suggest that 

Runx1 may also function in mouse primitive hematopoietic development. 

Previous studies have also demonstrated that RUNX proteins, including 

RUNX1, RUNX2 and RUNX3, have cooperative interactions with TGFβ 

superfamily signaling in several biological systems (Ito and Miyazono, 2003). 

Specifically, both Runx1 and Runx3 expression can be induced by TGFβ1, and 

they interact with FOXO3 to induce Bim expression to mediate apoptosis in 

hepatic (Wildey and Howe, 2009) and gastric epithelial cells (Yano et al., 2006). 

Moreover, Runx2 can physically interact with BMPs-specific SMADs, including 

SMAD1 and SMAD5, to cooperatively induce osteoblast differentiation of 

mesenchymal progenitor cells (Lee et al., 2002; Lee et al., 2000; Zhang et al., 

2000). Taken together, these studies suggest that there is, at the very least, 

possible crosstalk between Runx1 and TGFβ signaling. 
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Overall Goals of Chapter One 

  Hematopoietic development is composed of two waves of hematopoiesis: 

primitive and definitive. Primitive hematopoietic progenitors emerge exclusively 

and transiently in the yolk sac during embryogenesis. While primitive 

hematopoietic progenitors become distinct in aging yolk sac, definitive 

hematopoietic progenitors generated in the yolk sac and/or embryo take over 

blood cell production in later embryonic development and throughout adult life. 

Runx1 is essential for the establishment of definitive hematopoiesis, but its 

expression is also detectable in the yolk sac blood islands, where primitive 

hematopoiesis occurs. Little is known about the role of Runx1 in primitive 

hematopoiesis. Thus, the objective of this chapter was to elucidate the role of 

Runx1 in primitive hematopoiesis, using in vitro ES cell differentiation systems 

and Runx1 mutant mice. In addition, TGFβ1 has been suggested as a regulator of 

primitive hematopoiesis. TGFβ signaling has been show to function cooperatively 

with Runx family in other biological systems. Therefore, the question was 

explored of whether TGFβ1 and Runx1 have a cooperative relationship in the 

regulation of primitive hematopoiesis. 
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Figure 1.1-1. In vitro embryonic stem cell differentiation systems. 

Schematic diagram of in vitro ES cell differentiation systems. ES cells can be 

differentiated in vitro and give rise to differentiated cell masses called embryoid 

bodies (EBs). EBs are composed of multiple cell types, as indicated by different 

colors. Many cellular and molecular analyses can be performed on EBs such as 

hematopoietic colony assay, biochemical analysis, quantitative reverse 

transcription polymerase chain reaction (qRT-PCR), or flow cytometry (FACS 

analysis). 
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Figure 1.1-2. 
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Figure 1.1-2. A schematic diagram of TGFβ superfamily ligands, their type I 

and type II receptors, and downstream SMAD molecules (modified from Shi 

and Massague, 2003). 

Members of the TGFβ superfamily bind to the transmembrane heterodimeric 

complexes of Type I and Type II serine/threonine kinase receptors to transduce 

their signals. Type II receptor kinases are constitutively active, while Type I 

receptors, also known as activin receptor-like kinases (ALKs), contain an inactive 

kinase domain. When the ligands bind to their cognate receptors as dimers, the 

constitutively active Type II receptor transphosphorylates and activates the kinase 

domain of type I receptors. The phosphorylated type I receptor will then 

phosphorylate either SMAD1/SMAD5/SMAD8 or SMAD2/SMAD3, the 

receptor-specific SMADs (R-SMADs). The phosphorylated R-SMADs will then 

partner with SMAD4, the common SMAD (Co-SMAD), and translocate into the 

nucleus where the SMAD complex interact with specific transcription factors to 

regulate the transcription of their target genes. SMAD6 and SMAD7 are inhibitory 

(I-SMADs) and can inhibit the activated R-SMADs. 
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Abstract 

Primitive hematopoiesis, also known as primitive erythropoiesis, occurs 

exclusively in the yolk sac and is characterized by its transient nature. Primitive 

erythroid (EryP) progenitors emerge from the yolk sac by the end of gastrulation, 

undergo extensive proliferation and differentiation and become extinct by 

embryonic day 9. By this time, definitive hematopoietic progenitors generated in 

the yolk sac and/or embryo produce blood cells that represent definitive 

hematopoiesis. Runx1 is critical for the emergence of definitive hematopoiesis. 

Herein, we determined the role of Runx1 in primitive hematopoiesis. We 

demonstrate that a high level of enforced Runx1 expression in the in vitro 

differentiation model of embryonic stem (ES) cells suppressed EryP progenitor 

generation. Unexpectedly, both Runx1 null ES and yolk sacs produced a greatly 

reduced number of EryP progenitors. Furthermore, Runx1 DNA and CBFβ 

binding were required for optimal EryP generation from the yolk sac. In both 

Runx1 null and overexpression ES systems, the reduction in EryP progenitor 

formation coincided with down regulation of Gata1 and Eklf. Introduction of Gata1 

or Eklf partially rescued EryP defects seen in Runx1 null or overexpression 

system. TGFβ1 treatment led to Runx1 upregulation and suppression of EryP 

formation. Alk5, a type-I TGFβ1 receptor, was highly expressed in EryP cells and 

Alk5 deficient ES cells generated a higher EryP progenitor number. Collectively, 

we demonstrate that optimal EryP production is sensitive to Runx1 expression 

level. 
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Introduction 

During mouse development, hematopoietic cells are generated from several 

distinct anatomic sites: yolk sac, embryonic blood vessels including the aorta-

gonad-mesonephros region, fetal liver and bone marrow. The first emerging 

mature hematopoietic cells, designated as primitive erythrocytes (EryP), are 

exclusively produced in the yolk sac. The primitive erythropoiesis is quickly 

replaced by adult type hematopoiesis, termed “definitive”. While EryP is believed 

to develop from mesodermal progenitors, definitive hematopoiesis is established 

by hematopoietic stem cells (HSCs). Whether HSCs originate from the yolk sac, 

aorta/genital ridge/mesonephros (AGM) or placenta is an actively investigated 

area (Cumano et al., 2001; de Bruijn et al., 2000; Lux et al., 2008; Rhodes et al., 

2008; Samokhvalov et al., 2007). 

 

EryP cells are characterized by the expression of embryonic globin genes. EryP 

progenitors in the yolk sac can be detected as early as embryonic day (E) 7.5, 

undergo extensive proliferation and differentiation in a synchronous manner and 

become extinct by E9.0 (Palis et al., 1999). Recent studies have established that 

EryP cells also enucleate, similar to adult globin expressing definitive erythroid 

(EryD) cells, during maturation in circulation (Fraser et al., 2007; Kingsley et al., 

2004). It is possible that EryP extinction merely reflects the hematopoietic site 

shift from the yolk sac to other organs, such that EryP progenitors are no longer 

produced from aging yolk sacs. However, as definitive hematopoiesis ensues 

concomitant to the cessation of primitive hematopoiesis in the yolk sac (Kingsley 
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et al., 2006; Palis et al., 1999), it is possible that transition from primitive to 

definitive hematopoiesis could be an active process, which is molecularly 

regulated.  

 

Runx1, also known as AML1, is the most frequent target of chromosome 

translocations in human acute myeloid leukemia (AML)(Miyoshi et al., 1991). 

Runx1 belongs to the core binding factor (CBF) transcription factor family. This 

family contains a common non-DNA binding CBFβ subunit and three CBFα 

members, Runx1, 2 and 3 (Speck and Gilliland, 2002). The mammalian RUNX 

proteins contain a highly conserved Runt domain, which functions in DNA binding, 

CBFβ subunit interactions, and ATP binding (Crute et al., 1996). By applying site-

directed mutagenesis, Nagata and Werner have identified specific amino acids 

for the DNA-binding and heterodimerization of the Runt domain of RUNX1 

(Nagata and Werner, 2001). Previous studies have demonstrated that Runx1-/- 

animals die between E11.5 and E13.5 and display lack of definitive 

hematopoiesis and hemorrhage in the central nervous system (Okuda et al., 

1996; Wang et al., 1996). The chimeric animals generated between Runx1-/- ES 

cells and wild-type blastocysts showed no contribution of Runx1-/- ES cells to any 

hematopoietic tissues despite their contributions to other tissues (Okuda et al., 

1996). Importantly, Runx1 deficient embryos failed to generate hematopoietic 

clusters, which arise from the ventral side of the dorsal aorta in the AGM region 

(North et al., 1999). Collectively, these studies have demonstrated that Runx1 is 

essential for the emergence of definitive hematopoiesis.  
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Accumulating studies indicate that the TGFβ superfamily of growth factors is 

critical for hematopoietic and vascular development (Larsson and Karlsson, 

2005). During early embryonic development, TGFβ1 expression can be detected 

in the yolk sac blood islands, the mesodermal cells of the allantois, and the 

cardiac mesoderm of the embryo (Akhurst et al., 1990). Upon binding type II 

receptor, TGFβ induces heteromeric receptor complex formation with type I 

transmembrane serine-threonine kinases. Activated type I receptors, Alk1 and 

Alk5, phosphorylate cytoplasmic receptor-associated SMAD proteins (R-SMADs), 

SMAD1/5/8 and SMAD2/3, respectively (Shi and Massague, 2003). Both Tgfβ1 

and TgfβrII deficient mice, which die around E10.5, display anemia with severe 

reductions of mature erythrocytes and defective angiogenesis in the yolk sac 

(Dickson et al., 1995; Oshima et al., 1996). While Alk5-/- mice are also anemic, 

they have an increased number of presumably definitive erythroid progenitors, 

indicating that hematopoietic deficiency seen in these mice are indirect due to 

vascular defects (Larsson et al., 2001). We previously reported that TGFβ1 could 

inhibit BMP4 and VEGF mediated hematopoietic induction from in vitro 

differentiating ES cells (Park et al., 2004). These studies suggest that TGFβ1 

signaling is involved in hematopoietic and vascular development and implies that 

TGFβ1 through ALK5 could inhibit the growth and differentiation of erythroid 

progenitors.  

 

By utilizing various Runx1 mutant mice as well as an in vitro differentiation model 
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of ES cells, we investigated whether Runx1, an essential gene for the generation 

of definitive hematopoiesis, could modulate primitive hematopoiesis. Our studies 

demonstrate that Runx1 plays a critical role in EryP development. First, Runx1 

deficient animals generated greatly reduced number of EryP progenitors. Both 

DNA binding and CBFβ interaction of RUNX1 were required for EryP progenitor 

development. Second, a high dosage of RUNX1 during EB differentiation could 

suppress EryP progenitor formation. We also show that TGFβ1 could upregulate 

Runx1 expression and suppressed EryP progenitor formation. Alk5, a type-I 

TGFβ1 receptor, was highly expressed in EryP cells and Alk5 deficient ES cells 

generated a higher EryP progenitor number. Collectively, Runx1 level could be 

important for optimal primitive erythropoiesis. 
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Materials and Methods 

Cell culture and hematopoietic progenitor assays 

We received the Runx1 cDNA (full length mouse Runx1b encoding amino acid 

residues 1-451), J1, Runx1+/-, and Runx1-/- ES cells from Dr. Nancy Speck, the 

Alk1+/- and Alk1-/- ES cells from Dr. Paul Oh, the Alk5+/+ and Alk5-/- ES cells from 

Dr. Stefan Carlson, and the Tgfβ1+/- and Tgfβ1-/- ES cells from Dr. Ashok Kulkarni. 

The inducible RUNX1 ES (iRUNX1) cell was generated as described previously 

(Kyba et al., 2002; Lugus et al., 2007). 

 

Embryonic stem cell culture and in vitro ES differentiation were performed as 

described previously (Ma et al., 2008; Park et al., 2004; Zhang et al., 2005). 

Exogenous RUNX1 was induced in iRUNX1 EB cells with 1.0 μg/ml or indicated 

concentration of doxycycline (Dox; Sigma). The following factors were used in 

differentiation: BMP4 (5 ng/ml; R&D Systems), VEGF165 (10 ng/ml; R&D 

Systems), TGFβ1 (10 ng/ml; R&D Systems), SB431542 (2 μM; TOCRIS 

bioscience), Noggin (50 ng/ml; R&D Systems), DAPT (2 μM added 2 times/day; 

R&D Systems), and Cyclopamine (3 μM; TRC-Canada). 

 

EryP colonies were generated by harvesting EB cells on the indicated day of 

differentiation, dissociating them in trypsin, passaging them through a 20G 

needle 5-7 times, and plating them in methylcellulose containing 10% plasma-

derived serum (PDS, Animal Technologies, Inc. Texas), 12.5 μg/ml ascorbic acid, 

5% protein-free hybridoma medium (PFHM-II; Gibco), L-glutamine (2 mM), 
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transferrin (300 μg/ml; Boehringer Mannheim), MTG (4.5x10-4M), and Epo (2 

units/ml; Amgen). EryP colonies were counted 4-5 days after replating. 

 

Definitive erythroid and myeloid colony assays, day 6 EB cells were replated in 

methylcellulose containing 10% plasma-derived serum (PDS, Animal 

Technologies, Inc. Texas), 12.5 μg/ml ascorbic acid, 5% protein-free hybridoma 

medium (PFHM-II; Gibco), L-glutamine (2 mM), transferrin (200 μg/ml; 

Boehringer Mannheim), MTG (4.5x10-4M), and Epo (2 units/ml; Amgen), together 

with the following cytokines: kit ligand (KL 1% conditioned media), IL-3 (1% 

conditioned media), IL-1 (5 ng/ml), IL-6 (5 ng/ml), IL-11 (5 ng/ml), G-SCF (2 

ng/ml), M-CSF (5 ng/ml) and GM-CSF (3 ng/ml). Blast colonies were generated 

by replating day 2.75 EB cells in the presence of VEGF (5 ng/ml), kit ligand (1% 

conditioned media), and D4T endothelial cell conditioned media (25%). Blast 

colonies and hematopoietic colonies were counted 5-8 days after replating. 

 

Biochemical analysis of iRUNX1 cells 

To determine the induction of RUNX1 protein in iRUNX1 cells, ES cells were 

differentiated in serum with the indicated amount of Dox added on day 3 and 

harvested on day 4. Subsequent steps to detect the inducible RUNX1 were 

performed as previously described (Park et al., 2004). For generation of the 

iRUNX1 ES cells, FLAG tag was added to the N-terminus of RUNX1. The FLAG 

tag antibody (Sigma) was used to detect the induction of exogenous RUNX1. 
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Generation of Runx1 mutant knock-in mice 

Mouse Runx1 cDNA was digested with SacII and ClaI to obtain a 1.2-kb 

fragment of partial coding sequence containing 62bp of exon 4 and exons 5-8 

and was cloned into pBluescript II. The rabbit β globin polyadenylation (pA) 

cassette was inserted to the Runx1 cDNA. A neomycin-positive selection 

cassette, expressed under the control of the herpes simplex virus thymidine 

kinase promoter with a 5’ SacII site, was then inserted in reverse orientation 

downstream of the pA cassette. Site-directed mutagenesis was performed to 

introduce mutations into the Runx1 cDNA using a QuickChange site-directed 

mutagenesis kit (Stratagene, La Jolla, CA) and mutagenic primers for F146S (5’-

GAGCGGTAGAGGCAAGAGCTCCACTCTGACCATCACCGTCT-3’), T149A (5’-

AGGCAAGAGCTTCACTCTGGCCATCACCGTCTTTACAAATC-3’), and R174Q 

(5’-CACAGTGGACGGCCCCCAAGAACCCCGAAGACATC-3’). Next, the partial 

Runx1 cDNA-PA-neo was removed by digestion with SacII and cloned into a 

unique SacII site in AML-SS-12, which contained a 10-kb SacI-SpeI fragment of 

mouse genomic DNA flanking Runx1 exon 4 and a diphtheria toxin-negative 

selection cassette that was cloned into the vector pBluescript II SK (Okuda et al., 

1996). The presence of each point mutation and the exon 4-8 sequences in the 

targeting construct were confirmed by sequence analysis. 

 

The resulting targeting vector was linearized with NotI, and 25 µg was 

transfected into the 129/SVEV ES cells (Specialty Media, Phillipsburg, NJ) by 

electroporation. Homologous recombinant clones were identified by Southern 
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blot analysis. Blastocyst injection and breeding of chimeras were performed as 

described previously (Lorsbach et al., 2004). 

 

Yolk sac isolation 

Runx1+/-, Runx1+/F146S, Runx1+/T149A, and Runx1+/T174Q mice were used for timed 

mating. Yolk sacs were isolated at the indicated times and somite pairs were 

counted. Yolk sacs were incubated in collagenase (Sigma) with 20% FCS in PBS 

for 1.5-2 hours at 37oC, passaged through a 20G needle 4-6 times, and washed 

with 10% FSC in PBS twice. The single-cell suspensions of yolk sacs were 

subjected to hematopoietic replating as described above. Hematopoietic colonies 

were counted 4-7 days after replating. 

 

Retrovirus production and infection of differentiated ES cells 

Retroviral infection using the Phoenix packaging cell line was described 

previously (Grignani et al., 1998). Briefly, Phoenix packaging cells were 

maintained in DMEM with 10% FSC and 1% L-Glutamine. On day 0, 3x105 cells 

were plated in one well of a gelatinized 6-well plate. On day 1, Phoenix cells 

were transfected with 3 μg of MSCV-IRES-GFP (control), MSCV-RUNX1-IRES-

GFP, MSCV-GATA1-IRES-GFP, or MSCV-EKLF-IRES-GFP using FuGene 6 

(Roche). The medium was changed 18-24 hours later. The transfected cells were 

then grown at 32oC for 24 hours, and the medium containing viral particles was 

collected and filtered through a 0.45 μm filter before use. Runx1-/- and iRUNX1 

ES cells were differentiated on OP9 cells for 3 days and infected with MSCV-
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IRES-GFP (control), MSCV-RUNX1-IRES-GFP, MSCV-GATA1-IRES-GFP, or 

MSCV-EKLF-IRES-GFP viral supernatants in the presence of polybrene (7.5 

μg/ml). Dox (1.0 μg/ml) was added to iRUNX1 cells on day 3 of differentiation. 

The cells were collected on day 4 by dissociation in trypsin for EryP replating. 

 

Gene expression analysis 

RNA preparation and cDNA generation were described previously (Lugus et al., 

2007; Park et al., 2004). qRT-PCR reactions were performed in duplicate or 

triplicate. Primer sequences utilized in this study are described in Supplementary 

Table 1. 

 

GeneChip analysis 

J1, Runx1-/-, iRUNX1, and iRUNX1+Dox EB cells were differentiated in serum. 

Dox was added on day 3 of EB formation, and cells were collected on day 4. 

Total RNA was purified using TRIzol (Invitrogen, CA), following the 

manufacturer’s protocol. Aliquots of 3 μg of total RNA were subjected to 

GeneChip® Mouse Genome 430 2.0 Array (Affymetrix). GeneChip results were 

analyzed in dChip (Li and Wong, 2001; Zhong et al., 2003). Differences of gene 

expression were determined by applying a 90% confidence interval of >1.4-fold 

and above and using a baseline to experimental intensity difference of >100. 

 

Flow cytometry 
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FACS analysis has been described previously (Ma et al., 2008; Park et al., 2004). 

Briefly, EBs were collected and dissociated in 7.5 mM EDTA in PBS for 1 minute 

at 37oC. Cells were immediately resuspended in washing/staining buffer (4% 

FSC in PBS) and passaged through a 20G needle 5-7 times. 5x105 cells were 

incubated with anti-Flk-1-phycoerythrin (Flk-1-PE, Pharmingen, 1:200 dilution) for 

15 minutes at 4oC in the dark, washed three times, and analyzed using a Becton-

Dickinson FACS Caliber. FACS data was analyzed with CellQuest software 

(Becton-Dickinson). For Ter119 detection in E10.5 embryos, embryo propers and 

yolk sacs were incubated for 90 minutes at 37°C in 0.1% collagenase (Sigma-

Aldrich, St Louis, MO) with 20% fetal bovine serum in phosphate-buffered saline 

(PBS), and were separated into single-cell suspension by passing through 20-

gauge syringes. The resulting suspension cells were stained with FITC-

conjugated Ter119 antibodies (eBioscience, San Diego, CA), and analyzed by 

FACS. The absolute Ter119+ cell number is equal to the total cell number from 

the embryo proper or the yolk sac multiplied by the percentage of Ter119+ cells 

analyzed by FACS. 

 

Yolk sac benzidine staining 

Yolk sacs were fixed in 1 mL 0.2% benzidine solution, which was prepared by 

dissolving 100mg of bezidine dihydrochloride (Sigma) in 50mL of 0.5% acetic 

acid at room temperature for 15 minutes. Next, 20μl of 30% H2O2 was added to 

the tissue and incubated for 5-15 minutes at room temperature. Stained yolk 

sacs were photographed by light microscopy. 
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Statistics 

The results of hematopoietic replating, qRT-PCR, FACS analysis were analyzed 

by Student’s t test. P < 0.05 was considered statistically significant. 
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Results 

Enforced RUNX1 expression in EBs suppresses primitive erythroid 

progenitor formation 

To assess if Runx1 has a role in EryP development, we first examined EryP 

formation and Runx1 expression during ES differentiation. Specifically, A2Lox ES 

cells, a derivative of E14Tg2a ES cells (Iacovino et al., 2009) were differentiated 

in serum-containing media. These in vitro differentiated ES cells, termed 

embryoid bodies (EB), were analyzed from day 0 to 7 for EryP progenitors and 

Runx1 expression. As in the developing embryo, EryP progenitors appeared 

within a very short window of time in the ES/EB system. EryP progenitors were 

not detected until day 3 of differentiation, rapidly increased by day 4, and sharply 

diminished thereafter (Figure 1.2-1A). Thus, EryP progenitor formation and/or 

proliferation occur between days 3 and 4 during EB development. In EBs, Runx1 

expression was detected starting from day 3, rapidly increased and reached a 

plateau after day 4 (Figure 1.2-1B). Initial analyses suggested that the onset of 

Runx1 expression coincided with the EryP emergence and that high levels of 

Runx1 expression were sustained when EryP progenitors were no longer 

produced in later time points (≥days 5) during EB development.  

 

To evaluate the role of Runx1 in primitive erythropoiesis, we employed an 

inducible ES cell system (Kyba et al., 2002). To this end, we generated inducible 

RUNX1 (iRUNX1) ES cells by targeting the tet-responsive locus of A2Lox ES 

cells with the full length mouse Runx1 cDNA (amino acid residues 1-451), which 
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was fused to a FLAG tag at the 5’ end (Figure 1.2-1C). After the correct targeting 

event was validated by a tet-responsive locus/cDNA vector-specific PCR (not 

shown), inducible Runx1 expression was verified by adding doxycycline (Dox) to 

differentiating ES cells. Specifically, iRUNX1 ES cells were differentiated in 

serum and treated with various concentrations of Dox on day 3, at which time 

point, EryP progenitors are rapidly emerging. Day 4 EB cells were harvested and 

subjected to Western blot analyses using anti-FLAG tag antibody. Exogenous 

RUNX1 was detectable in day 4 EBs with Dox concentrations as low as 0.03 

μg/ml (Figure 1.2-1D). The protein analyses were corroborated by qRT-PCR of 

Runx1 expression, which showed that Dox-treated iRUNX1 EB cells had 

approximately 3- fold (0.01 μg/ml Dox) to 11-fold (≥1 μg/ml Dox) induction of 

Runx1 mRNA expression compared to non-induced cells (Figure 1.2-1E). To 

determine the effect of enforced Runx1 expression on EryP, iRUNX1 ES cells 

were differentiated in serum. Exogenous RUNX1 was induced from day 3 by 

adding Dox, and day 4 EB cells were subjected to EryP replating. The number of 

EryP colonies generated was significantly decreased by about 50%-70% when 

Dox (≥1 μg/ml) was added to EBs compared to -Dox controls or when Dox was 

added at low concentrations (≤0.03 μg/ml) (Figure 1.2-1F, not shown). No 

notable differences were observed in proliferation and/or apoptosis between Dox 

treated versus non-treated EB cells, as judged by Annexin V staining or viable 

cell count (not shown). Our result showed that high level of Runx1 expression 

between days 3 and day 4 during EB differentiation has suppressive effect on 

primitive erythroid progenitor formation.  
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Runx1 is required for optimal primitive hematopoiesis 

Previous studies suggested that Runx1 null mice did not have defects in primitive 

erythropoiesis. However, quantitative analyses on EryP were not performed in 

these studies (Okuda et al., 1996; Wang et al., 1996). In light of the findings that 

EryP progenitor formation was sensitive to awe determined if EryP progenitor 

number or the kinetics of EryP development could be altered in the absence of 

Runx1. To this end, Runx1+/+, Runx1+/-, and Runx1-/- ES cells were differentiated 

in serum, collected from day 3 to day 7, and subjected to EryP replating. 

Unexpectedly, we saw a great reduction in EryP colony number from Runx1-/- EB 

cells at all time points (Figure 1.2-2A). When day 2.75 EB cells were collected 

and subjected to blast colony replating (Faloon et al., 2000), we observed a 

significantly reduced number of blast colonies, compared to Runx1+/- and 

Runx1+/+ controls (Supplementary Figure 1.2-1A). However, we did not detect 

any changes in the frequency or kinetic changes in FLK-1 expression in EB 

development (Supplementary Figure 1.2-1B). This suggested that Runx1 is 

required downstream of Flk1 mesoderm. To verify the essential role of Runx1 in 

definitive hematopoiesis, Runx1+/+, Runx1+/-, and Runx1-/- ES cells were 

differentiated in serum for six days, and day 6 EBs were subjected to definitive 

and myeloid progenitor replatings. No hematopoietic colonies were generated 

from Runx1-/- EBs (Supplementary Figure 1.2-2A, B). This result is consistent 

with the phenotype of the Runx1 knock-out embryos that have no definitive 
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hematopoiesis (Okuda et al., 1996; Wang et al., 1996). Collectively, Runx1 

clearly plays a role in regulating normal primitive hematopoiesis.  

 

To further investigate the role of Runx1 in primitive hematopoiesis, we examined 

EryP from Runx1-/- yolk sacs. Runx1+/- mice were generated as previously 

described and were used for establishing timed matings (Okuda et al., 1996). 

Consistent with previous studies, E9.5-E10.5 Runx1-/- embryos did not display 

any overt phenotypic defects and were similar in gross morphology to +/- or wild 

type controls (Supplementary Figure 1.2-3A and not shown). Moreover, E10.5 

Runx1-/- embryos showed similar benzidine staining pattern compared to +/- or 

+/+ embryos (Supplementary Figure 1.2-3B). Ter119+ cells were readily present 

within E10.5 Runx1-/- embryos, although the absolute number of Ter119+ cells 

was slightly less compared to +/- or +/+ embryos (Supplementary Figure 1.2-3C). 

Despite the seemingly normal presence of EryP cells, when E8.5 Runx1 +/+, +/- 

and -/- embryos were analyzed, a significantly reduced number of primitive 

erythroid colonies was obtained from E8.5 Runx1-/- yolk sacs compared to 

littermate controls (Figure 1.2-2B). No definitive erythroid or myeloid colonies 

were generated when Runx1-/- yolk sacs from later time points were analyzed, 

confirming that Runx1 was required for definitive hematopoietic development 

(data not shown). This suggests that even though the generation of EryP 

progenitor was greatly compromised in Runx1-/- embryos, the remaining EryP 

progenitors generated were sufficient for maintaining and providing the integrity 

of the developing embryo until definitive hematopoiesis is required. 
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DNA binding and CBFβ interaction of Runx1 is required for normal 

primitive hematopoiesis 

DNA binding and CBFβ interaction are critical for proper RUNX1 function. Based 

on the current structural and biochemical studies, mutations of the Runt domain 

can be classified into three groups: mutations that interrupt DNA binding ability 

(i.e. R174Q), mutations that disrupt CBFβ binding (i.e. T149A), and mutations 

that cause incorrect folding of the Runt domain (i.e. F146S), resulting in the loss 

of DNA and CBFβ binding (Matheny et al., 2007; Nagata and Werner, 2001). To 

determine whether RUNX1 DNA or CBFβ binding is required for primitive 

hematopoiesis, we examined F146S, T149A and R174Q Runx1 knock-in mutant 

mice. When heterozygous mutant mice were brother-sister mated and the 

resulting pups analyzed at P21, we did not detect any live homozygous animals 

for F146S, T149A, or R174Q Runx1 mutant alleles (Table 1). Next, heterozygous 

mutant mice were used for timed matings, and E8.5 yolk sacs of these mutant 

embryos were subjected to EryP replating. Somite pairs were counted while 

dissecting the embryos to ensure that they were at similar developmental stages. 

The number of EryP colonies obtained from Runx1F146S/F146S homozygous mutant 

animals was significantly less, compared to their littermate controls (Figure 1.2-

2C). The reduction level in the number of EryP colonies from the Runx1F146S/F146S 

yolk sacs was similar to that from the Runx1-/- yolk sacs. Runx1T149/T149 or the 

Runx1R174Q/R174Q yolk sacs also produced less EryP progenitors, however, the 

number of EryP colonies generated from these animals was higher than that from 
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the Runx1F146S/F146S or Runx1-/- yolk sacs (Figure 1.2-2D, E). The results 

demonstrate that the ability of Runx1 to interact with CBFβ and bind DNA are 

required for its normal role in primitive hematopoiesis, suggesting that 

components of the Runx1 transcriptional network are important for the normal 

development, proliferation and survival of primitive erythroid cells.  

 

Common erythroid genes are downregulated in Runx1 deficient as well as 

in RUNX1 enforced EBs  

To understand molecular mechanisms by which Runx1 regulates primitive 

hematopoiesis, we performed global gene expression analyses of in vitro 

differentiated Runx1+/+, Runx1-/- and iRUNX1±Dox EBs. Dox was treated from 

days 3-4 at 1μg/ml. RNA samples were subjected to Affymetirx GeneChip® 

Mouse Genome 430 2.0 microarray analyses. GeneChip results were analyzed 

using dChip. We identified that 296 genes were reduced in the Runx1-/- EBs, 

compared to Runx1+/+ EBs, by more than 1.4 fold and that 1219 genes were 

decreased in Dox treated iRUNX1 EBs compared to -Dox controls. Among the 

down-regulated genes in Runx1-/- and RUNX1 enforced EBs, hematopoietic-

related genes were selected and listed in Table 2.  

 

Upon examining the gene expression profile, we noticed several patterns 

associated with Runx1 deficiency and Runx1 overexpression. First, there were 

genes that were downregulated in Dox treated cells but not in Runx1-/- EBs. 

These included Lmo2 and Scl. Recently, Scl has been reported to be upstream 
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of Runx1 (Landry et al., 2008; Nottingham et al., 2007). Second, we found genes 

that were downregulated in both Runx1-/- and enforced RUNX1 EB cells. These 

included Hbb-y and Hba-a1 as well as several transcription factors including 

Gata1, Eklf and cMyb. This category of genes could be Runx1 dosage sensitive 

downstream targets. Third, several genes, including Eraf and glycophorin A 

(Gypa), were greatly downregulated in Runx1-/- EBs, while no significant changes 

were observed in Dox treated iRUNX1 EB cells.  

 

To confirm gene chip analyses, we analyzed day 4 EB cells from Runx1+/+, 

Runx1-/- and iRunx1±Dox by qRT-PCR analyses. Such analyses confirmed that 

Gata1, Eklf and cMyb were downregulated in Runx1-/- as well as Runx1 

overexpressed EBs (Figure 1.2-3A, B). The results were consistent with the 

interpretation that Runx1 deficiency or enforced RUNX1 results in down-

regulation of Gata1 and Eklf expression, which in turn affects optimal EryP 

progenitor formation.  

 

To establish that Runx1 is upstream of Gata1 and/or Eklf in EryP development, 

we first determined whether Runx1 could rescue EryP defects in Runx1-/- ES 

cells. Specifically, Runx1-/- ES cells were differentiated on OP9 cells for 3 days 

and then infected with MSCV-RUNX1 virus for an additional day. Day 4 

differentiated cells were harvested and analyzed for EryP. Runx1-/- cells infected 

with MSCV-RUNX1 virus generated an increased number of EryP colonies 

compared to Runx1-/- cells infected with GFP control virus (Figure 1.2-3C). Next, 
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we tested whether Gata1 and/or Eklf could rescue EryP defects observed in 

Runx1-/- or Dox treated iRunx1 EB cells. To this end, Runx1-/- and iRUNX1 ES 

cells were differentiated on OP9 cells for 3 days, infected with MSCV-GATA1 

and/or the MSCV-EKLF virus for an additional day. Dox was added to iRUNX1 

differentiating ES cells on day 3. Day 4 differentiated cells were harvested and 

analyzed for EryP. Runx1-/- differentiated cells that were infected with MSCV-

GATA1 or with MSCV-EKLF virus generated an increased number of EryP 

colonies compared to control retrovirus-infected cells (Figure 1.2-3C). Moreover, 

MSCV-GATA1 or the MSCV-EKLF virus also partially rescued EryP defects 

observed in Dox treated iRUNX1 cells (Figure 1.2-3D). We did not observe any 

obvious additive effects between Gata1 and Eklf.  

 

TGFβ1 suppresses primitive hematopoiesis 

We previously demonstrated an inhibitory role for TGFβ1 in hematopoietic 

development in the ES/EB system (Park et al., 2004). To further elucidate 

signaling pathways that might regulate EryP generation, we tested various 

pharmacological inhibitors known to affect hematopoietic differentiation in the 

ES/EB system. As the window of time between days 3 and 4 is critical for EryP 

progenitor formation and/or expansion, we added various inhibitors on day 3 and 

analyzed day 4 EBs for EryP colonies. Of the factors tested, TGFβ1 inhibited 

EryP progenitor formation. Meanwhile, inhibition of BMP (noggin), Notch (DAPT, 

gamma-secretase inhibitor N-S-phenyl-glycine-t-butylester) or Hedgehog 

(cyclopamine) signaling did not affect the number of EryP colonies formed 
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(Figure 1.2-4A and Supplementary Figure 1.2-4A). As the inhibitory effect of 

TGFβ1 on EryP could be serum dependent, we also performed ES differentiation 

in serum free conditions by adding BMP4 and VEGF (Park et al., 2004). TGFβ1 

inhibitory role was also observed in serum free conditions (Figure 1.2-4C). 

Importantly, Runx1 expression was increased when TGFβ1 was added to the 

culture (Figure 1.2-4B and 1.2-4D). Runx1 expression was increased even 

greater in serum free conditions (Figure 1.2-4D). We did not observe substantial 

changes of Runx1 expression among other inhibitor treated EBs (Supplementary 

Figure 1.2-4B).  

 

To determine if the potential inverse relationship between TGFβ1 and Runx1 

expression in EryP formation was relevant, we next analyzed Tgfβ1-/- ES cells. 

As serum might contain TGFβ1, we applied serum free conditions in generating 

EryP by adding BMP-4 and VEGF. In serum free conditions, day 5 EB cells 

generated prominent number of EryP colonies (Figure 1.2-4E). Tgfβ1-/- ES cells 

generated a greater number of EryP colonies compared to +/+ or +/- ES cells 

(Figure 1.2-4E and not shown). Importantly, Runx1 expression levels in day 4 or 

5 Tgfβ1-/- EB cells were significantly lower compared to Tgfβ1+/- EB cells (Figure 

1.2-4F).  

 

TGFβ1 suppresses primitive erythropoiesis through ALK5 

TGFβ1 can bind either type I receptor, ALK1 or ALK5, to activate down-stream 

SMAD1/5/8 or SMAD2/3, respectively (Goumans et al., 2002; Lux et al., 1999; 
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Oh et al., 2000; Shi and Massague, 2003). In order to determine which type I 

TGFβ1 receptor is responsible for the suppression of EryP, we first examined 

Alk1 and Alk5 expression levels in maturing EryP cells. Specifically, wild-type ES 

cells were differentiated in serum, and day 4 EB cells were subjected to EryP 

replating. EryP colonies were collected two and three days after replating and 

subjected to qRT-PCR analysis. Gene expression analyses of day 2 and day 3 

EryP cells demonstrated that Alk5, not Alk1, was highly expressed in 

differentiating EryP cells (Figure 1.2-5A). 

 

Next, we used the ES/EB system of Alk1 and Alk5 null ES cell lines to further 

dissect the axis of the TGFβ1 signaling in primitive hematopoiesis (Larsson et al., 

2001; Oh et al., 2000). Specifically, we differentiated Alk1-/- and Alk5-/- ES cells, 

along with their controls, in serum for 4 days, and EB cells were subjected to 

EryP replating. As shown in Figure 1.2-5B, Alk5-/- EBs generated a significantly 

higher number of EryP colonies compared to Alk5+/+ EBs. However, the number 

of EryP colonies generated from Alk1+/- vs Alk1-/- was similar (Figure 1.2-5B). To 

further examine the TGFβ1-ALK5 axis in EryP development, we treated wild-type 

EBs in serum with SB431542 on day 3 (Inman et al., 2002), which inhibits the 

interaction between TGFβ1 and ALK5, not ALK1. SB431542 treated EBs 

generated more EryP colonies than non-treated EBs (Supplementary Figure 1.2-

5). To eliminate the possibility that TGFβ1 could use additional receptors in EryP 

suppression, we used serum-free differentiation conditions to test whether EryP 

colony numbers could be further decreased with TGFβ1 treatment in Alk5-/- EBs. 
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We subjected Alk1+/-, Alk1-/-, Alk5+/+, and Alk5-/- ES cells to serum-free 

differentiation with BMP4 and VEGF. TGFβ1 was added on day 3, and day 4 EB 

cells were analyzed for EryP colony formation. The results showed that Alk5-/- 

EBs had similar EryP colonies regardless of TGFβ1 treatment, whereas Alk1-/- 

EBs generated less number of EryP colonies when treated with TGFβ1 (Figure 

1.2-5C). Runx1 was expressed at much lower levels in day 4 Alk5-/- EBs 

compared to Alk5+/+ EBs (Figure 1.2-5D). In addition, Runx1 expression levels 

were similar in Alk1-/- and controls. However, both Gata1 and Eklf were 

downregulated by TGFβ1, but upregulated in Alk5-/- EBs (Supplementary Figure 

1.2-6A, B). Collectively, these data indicated that TGFβ1 through ALK5, rather 

than through ALK1, could modulate Runx1 expression to suppress EryP 

progenitor development and/or proliferation. 
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Discussion 

The expression of Runx1 is among the earliest molecular markers for blood 

formation in Xenopus, and expression of a truncated Xaml protein can inhibit 

primitive hematopoiesis (Tracey et al., 1998). Studies in zebrafish demonstrate 

that runx1 is involved in both primitive and definitive hematopoiesis (Kalev-

Zylinska et al., 2002). In mice, Runx1 expression can be first detected in 

extraembryonic mesodermal cells at E7.25 and in primitive erythrocytes of the 

yolk sac blood islands at E8.0-E8.5 (Lacaud et al., 2002; North et al., 1999). 

Herein, we demonstrate that yolk sacs from Runx1 mutant mice (Runx1-/-), 

harboring homozygous deletion of the Runt domain encoding exon 4, have 

defects in primitive hematopoiesis. The defect was at the progenitor level, as the 

number of EryP progenitors was greatly decreased in these mice. However, we 

could still detect Ter119+ cells in yolk sacs from the Runx1-/- embryos at E10.5, 

at a level, which was similar to that of wild type controls. Benzidine staining levels 

were also comparable between wild type and Runx1-/- embryos at E10.5. 

Although we have not examined mature EryP cell morphology, Yokomizo et al. 

recently showed that circulating primitive erythrocytes from Runx1-/- embryos, 

which also delete exon 4, were morphologically defective (Yokomizo et al., 2008). 

We suggest that the residual EryP precursors present in Runx1-/- embryos could 

still produce mature primitive erythroid cells, which could deliver adequate 

oxygen to sustain the survival of the knockout embryos during the early 

embryogenesis. In adult, only a small fraction of hematopoietic stem cells (HSCs) 

generate mature blood cells at a given time. Thus, to guarantee production of 
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EryP cells, it is possible that developing embryos reserve a large number of EryP 

progenitors, which exceed the amount that the embryo actually requires. Future 

studies to determine whether all EryP progenitors participate in generating 

mature EryP cells are warranted.  Alternatively, Yokomizo et al. showed that the 

number of EryP progenitors present within the Runx1-/- embryos, was similar to 

that from +/- control embryos (Yokomizo et al., 2008). As the authors in this study 

used the whole embryo for EryP replating, this study suggests an intra-embryonic 

generation of EryP progenitors in the absence of Runx1. Previous studies 

support the notion that Runx1 dosage could modulate hematopoietic progenitor 

production from different embryonic tissues. Specifically, the spatial and temporal 

appearance of hematopoietic stem cells (HSCs) in the yolk sac and AGM is 

sensitive to Runx1 dosage, as HSCs appear prematurely in the E10 Runx1+/− 

yolk sac and there was a premature termination of HSC activity in the Runx1+/− 

AGM explant culture (Cai et al., 2000). Studies on whether AGM can generate 

EryP progenitors when Runx1 mediated definitive hematopoietic program is 

absent are warranted. 

 

Intriguingly, in contrast to Runx1-/- mice, which delete exon 4, that we used in this 

study, another Runx1 mutant mouse line (North et al., 1999), which harbors lacZ 

in place of exon 7 and 8, or Runx1LacZ/LacZ ES cells do not appear to have EryP 

defects (Lacaud et al., 2002). This suggests that a functional Runt domain is 

critical for primitive EryP development. Indeed, by utilizing Runx1 mutant mice 

homozygous for DNA, CBFβ as well as DNA and CBFβ-binding domain, we 
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show that both DNA and CBFβ binding are required for optimal EryP 

development. 

 

While EryP progenitors in the yolk sac were sub-optimally generated in the 

absence of Runx1, we also found that a high level of Runx1 expression in the 

ES/EB system was able to repress EryP progenitor formation and/or expansion. 

Runx1 can either activate or repress target genes by interacting with co-activator 

or co-repressor, respectively (Kitabayashi et al., 1998; Lutterbach et al., 2000). 

Although we could not determine the interaction between RUNX1 and mSin3A 

co-repressor in the ES/EB system (data not shown), we cannot rule out the 

possibility that such RUNX1 suppression of EryP was due to RUNX1 interaction 

with other co-repressors. Currently available studies support the notion that 

Runx1 dosage is critical for proper hematopoiesis. As discussed, hematopoietic 

stem cell and hematopoietic progenitor generation were sensitive to Runx1 

dosage (Cai et al., 2000; Mukouyama et al., 2000; North et al., 2002). 

Additionally, an extra copy of Runx1 on chromosome 21 could potentially be 

responsible for predisposing Down’s syndrome children to increased risk of 

developing leukemia (Dufresne-Zacharia et al., 1994; Gurbuxani et al., 2004). 

 

We provide evidence that Gata1 and Eklf are genetically downstream of Runx1 in 

EryP development. Both genes were downregulated by enforced Runx1 

expression and in Runx1-/- EBs compared to wild type controls. Moreover, both 

Gata1 and Eklf could partially rescue EryP defects seen in induced Runx1 and 
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Runx1-/- ES cells. Gata1 plays a critical role in the regulation of erythroid-specific 

genes in both primitive and definitive erythroid cells. Gata1 is highly expressed in 

both primitive and definitive erythroid progenitors (Whitelaw et al., 1990). Gata1 

knockout ES cells fail to generate EryP progenitors. EryD progenitors fail to 

mature in the absence of GATA1 (Weiss et al., 1994). Gata1 knockout ES cells 

contribute to all non-hematopoietic tissues but fail to give rise to mature red blood 

cell in chimaeric mice (Pevny et al., 1991). Moreover, GATA1 has been shown to 

bind to the promoters of many erythroid cell-specific genes including the β globin 

locus control region (βLCR) (Cantor and Orkin, 2002; Palstra et al., 2008; Vakoc 

et al., 2005). Eklf was originally thought to mainly regulate the adult β-globin 

genes. However, recent studies have shown that EKLF also regulates embryonic 

globin expression (Basu et al., 2007; Hodge et al., 2006). Eklf-/- embryos have 

nucleated primitive erythroid cells with an abnormal morphology (Drissen et al., 

2005). In Runx1-/- EBs, embryonic globin expression was significantly lower 

compared to wild-type controls. However, we failed to show direct binding of 

RUNX1 to the Gata1, Eklf, or βLCR region by chromatin immuno-precipitation 

(ChIP) analysis (data not shown). We conclude that low embryonic globin 

expressions in induced Runx1 and Runx1-/- EBs could be due to the suboptimal 

expression of Gata1 and Eklf. 

 

TGFβ1-/-, TgfβrII-/-, and Alk5-/- mice all display anemia and severe defects in 

angiogenesis in the yolk sac (Dickson et al., 1995; Larsson et al., 2001; Oshima 

et al., 1996). Despite the severe anemia, Alk5-/- yolk sacs contained a higher 
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number of erythroid progenitors, demonstrating that anemia seen in these mice is 

secondary to the angiogenic defects. Intriguingly, TGFβ1-/- yolk sacs appeared to 

contain significant numbers of circulating non-hemoglobinized blood cells 

(Dickson et al., 1995). Herein, we demonstrate that TGFβ1 could up-regulate 

Runx1 and suppress EryP progenitor formation. We determined that ALK5 is the 

major TGFβ type I receptor in primitive erythroid cells. Both TGFβ1-/- and Alk5-/- 

ES cells generated a higher number of EryP colonies. It is worth pointing out that 

the increase in Runx1 expression level by TGFβ1 treatment in serum was at best 

1.5-2 fold. In our studies, TGFβ1 suppressed a broader range of hematopoietic-

related transcriptional factors, such as Scl, Gata1, Eklf, c-myb and Lmo2. 

Therefore, we suggest that TGFβ1 could inhibit EryP development through many 

genetic pathways, one of which could be Runx1. Alternatively, previous studies 

have established that TGFβ growth factors can modulate RUNX protein stability 

and/or activity. Specifically, TGFβ/BMP-activated Smads can interact with RUNX 

and stimulate transcription of RUNX target genes (Hanai et al., 1999; Ito, 2004; 

Miyazono et al., 2004). Moreover, BMP induces differentiation of mesenchymal 

cells into osteoblasts by upregulating the expression of Runx2 and its interaction 

with BMP-activated SMADs (Ito and Miyazono, 2003; Lee et al., 2000; Zhang et 

al., 2000). In hepatic cells (Wildey and Howe, 2009), TGFβ induces Runx1, which 

in turn interacts with FOXO3 to upregulate Bim expression to mediate apoptosis. 

Finally, TGFβ/BMP activate a stress-activated protein kinase p38 (SAPKs) 

(Gallea et al., 2001; Hanafusa et al., 1999). Both the Smad and MAPK pathways 

are essential components of the TGFβ superfamily signaling during osteoblast 
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differentiation (Derynck et al., 2001; Fujii et al., 1999; Gallea et al., 2001; 

Nishimura et al., 1998; Yamamoto et al., 1997) and for Runx2 induction (Lee et 

al., 2002). We suggest that such interaction between TGFβ1 and Runx1 also 

regulates primitive hematopoiesis. Collectively, our studies demonstrate that 

Runx1 dosage is critical for optimal EryP progenitor generation. Potentially, 

TGFβ1 family of factors could be upstream, which can modulate Runx1 levels or 

activity to achieve optimal primitive hematopoiesis. 
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Figure 1.2-1. 
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Figure Legends 

Figure 1.2-1. Enforced RUNX1 expression during ES cell differentiation 

results in reduced EryP progenitors. 

(A and B) A2Lox ES cells were differentiated in serum. EB cells were collected at 

indicated time points for EryP replating (A) and Runx1 expression analysis (B). 

EryP colonies were counted 4-5 days after replating. Runx1 expression was 

analyzed and normalized to Gapdh. Values indicate mean±s.e.m. from three 

independent experiments. 

(C) Schematic of the inducible RUNX1 (iRUNX1) ES cell lines with indicated loci 

containing modifications for production of rtTA and expression of Runx1 cDNA. 

(D) Western blot of the iRUNX1 ES cell lines. iRUNX1 ES cells differentiated in 

serum for three days were treated with the indicated concentrations of Dox for 

one additional day. Cells were collected on day 4 and subjected to SDS-PAGE 

followed by blotting with anti-FLAG and anti-β-actin antibodies. 

(E) iRUNX1 ES cells were differentiated and treated with the indicated 

concentration of Dox on day 3. EB cells were harvested on day 4 for Runx1 

expression analysis by qRT-PCR. Runx1 expression was analyzed and 

normalized to Gapdh. The expression level of Runx1 in untreated cells was 

normalized as 1 and used to determine the Runx1-fold change in Dox-treated 

samples. Values indicate mean±s.e.m. from three independent experiments. 

(F) iRUNX1 ES cells differentiated in serum were treated with Dox at 0.03 μg/ml 

or at 1.0 μg/ml on day 3 and harvested on day 4 for EryP replating. Values 

indicate mean±s.e.m. from three independent experiments; ***p<0.001. 
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Figure 1.2-2. 
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Figure 1.2-2. Runx1 null and Runx1 mutations resulted in decreased 

number of EryP progenitors in yolk sac. 

(A) J1, Runx1+/-, and Runx1-/- ES cells differentiated in serum were harvested for 

EryP progenitor assay on the indicated day. Values are mean±s.e.m. of EryP 

colonies from four independent experiments. 

(B) Primitive erythroid colonies from E8.5 yolk sacs (4-7 somite pair stage) of 

Runx1+/+ (n=9), Runx1+/- (n=13), and Runx1-/- (n=13). 

(C) EryP colonies of Runx1-F146S E8.5 yolk sacs (3-10 somite pair stage). n+/+ = 

5; n+/F146S = 12; nF146S/F146S = 5. 

(D) EryP colonies of Runx1-T149A E8.5 yolk sacs (3-8 somite pair stage). n+/+ = 

8; n+/T149A = 25; nT149A/T149A = 18. 

(E) EryP colonies of Runx1-R174Q E8.5 yolk sacs (3-9 somite pair stage). n+/+ = 

10; n+/R174Q = 16; nR174Q/R174Q = 8. The results show mean±s.e.m. of EryP 

colonies. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 1.2-3. 
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Figure 1.2-3. Gata1 and Eklf rescue decreased EryP progenitor formation in 

Runx1-/- and iRUNX1 EBs. 

(A) J1 and Runx1-/- ES cells were differentiated in serum, and EB cells were 

harvested on day 4. RNA was utilized for qRT-PCR analysis. Gene expressions 

were normalized against Gapdh, and then the ratio of the gene expression 

(Runx1-/-) to gene expression (J1) was determined to generate normalized fold 

change. Values indicate mean±s.e.m. from three independent experiments. 

(B) iRUNX1 ES cells were differentiated in serum, Dox (1.0 μg/ml) was added on 

day3, and EB cells were collected for qRT-PCR on day 4. Gene expressions 

were normalized against Gapdh, and then the normalized fold change was 

determined by calculating the ratio of the +Dox to -Dox. Values indicate 

mean±s.e.m.from two to three independent experiments. 

(C and D) Runx1-/- (C) and iRUNX1 (D) ES cells were differentiated for three 

days on OP9 cells, and cells were infected with MSCV-RUNX1-IRES-GFP, 

MSCV-GATA1-IRES-GFP, or MSCV-EKLF-IRES-GFP viral supernatants. One 

day later, the cells were collected for primitive erythroid replating. For the 

differentiation of iRUNX1 ES cell, Dox was added on day 3. Cells treated with 

MSCV-IRES-GFP viral supernatant were used as controls. Values are mean of 

EryP colonies±s.e.m. from three independent experiments. *p<0.05, **p<0.01, 

***p<0.001. 
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Figure 1.2-4. 
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Figure 1.2-4. TGFβ1 inhibits EryP progenitor formation and induces Runx1 

expression. 

(A and B) A2Lox ES cells were differentiated in serum, TGFβ1 (10 ng/ml) was 

added on day 3, and EB cells were collected on day 4 for EryP replating (A) and 

qRT-PCR (B). Runx1 expression was normalized against Gapdh, and then the 

normalized fold change was determined by calculating the ratio of +TGFβ1 to -

TGFβ1. Values are mean±s.e.m. from three independent experiments. 

(C) TGFβ1 inhibits the number of EryP progenitors in serum free condition. 

A2Lox ES cells were differentiated in serum free (SR) media with BMP4 (5 ng/ml) 

and VEGF (10 ng/ml). TGFβ1 (10 ng/ml) was added on day 3, and day 4 EBs 

cells were collected for EryP replating. Values are mean±s.e.m. from three 

independent experiments. 

(D) TGFβ1 induces Runx1 expression in serum free conditions. A2Lox ES cells 

were differentiated for 2 days in SR and treated with TGFβ1 (10 ng/ml) for two 

more days. Day 4 EBs were harvested for qRT-PCR analysis. Runx1 expression 

was normalized against Gapdh and the ratio of Runx1 quantity (+TGFβ1) to 

Runx1 quantity (SR) was determined to yield normalized fold change. Values are 

mean±s.e.m. from two independent experiments. 

(E and F) Deficiency in TGFβ1 leads to increased EryP colony formation with 

decreased Runx1 expression. Tgfβ1+/- and Tgfβ1-/- ES cells were differentiated in 

serum free (SR) with BMP4 (5 ng/ml) and VEGF (10 ng/ml). Day 4 and day 5 EB 

cells were harvested for EryP replating (E) and Runx1 expression analysis by 

qRT-PCR (F). Runx1 expression was normalized against Gapdh. Values are 
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mean±s.e.m. from three independent experiments. *p<0.05, **p<0.01, ***p 

<0.001. 
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Figure 1.2-5. 
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Figure 1.2-5. Alk5 deficiency generates increased EryP progenitors. 

(A) ALK5 is the major TGFβ type I receptor in developing EryP colonies. A2Lox 

ES cells were differentiated in serum for 4 days and subjected to EryP colony 

assay. EryP cells harvested from 2 days and 3 days after replating were utilized 

for qRT-PCR analyses. Gene expressions were normalized against Gapdh. 

Values are mean±s.e.m. from two independent experiments. 

(B) Alk5-/- EB cells generate increased EryP colonies. Alk1+/-, Alk1-/-, Alk5+/+, and 

Alk5-/- ES cells differentiated in serum for 4 days were used for EryP progenitor 

assays. Values are mean±s.e.m. of EryP colonies from three independent 

experiments. 

(C) TGFβ1 fails to suppress EryP progenitor formation in Alk5-/- EBs. Alk1+/-, 

Alk1-/-, Alk5+/+, and Alk5-/- ES cells differentiated in serum free (SR) with BMP4 (5 

ng/ml) and VEGF (10 ng/ml) were treated with TGFβ1 (10 ng/ml) on day 3 and 

were collected for EryP progenitor assay on day 4. The number of EryP colonies 

in untreated cells was normalized as 1 and used to determine the ratio of the 

EryP colonies in TGFβ1-treated samples. Values are mean±s.e.m. from three 

independent experiments. 

(D) Alk1+/-, Alk1-/-, Alk5+/+, and Alk5-/- EB cells were harvested on day 4 and RNA 

samples were generated for qRT-PCR analyses. Runx1 expression was 

normalized against Gapdh. Values are mean±s.e.m. from three independent 

experiments. 

*p<0.05, **p<0.01, ***p <0.001. 
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Table 1.2-1. Viability of progeny from intercrosses of Runx1m/+ mice 

 
Biochemical Properties* No. (%) of live mice at P21 

DNA binding CBFβ binding +/+ +/m m/m 

F146S - - 169 (40.8) 245 (59.2) 0 

T149A ++ - 53 (32.1) 112 (67.9) 0 

R174Q - ++ 109 (32.6) 225 (67.4) 0 

 

-, loss of function 

++, equivalent to wild-type 

P: postnatal day 

m: mutant allele 

*(Nagata and Werner, 2001) 
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Table 1.2-2. Common erythroid genes were downregulated in Runx1-/- and 

iRUNX1+Dox EBs. 

Microarrary ID EntrezGene ID gene Fold change of 
Runx1-/-/J1 

Fold change of 
+Dox/-Dox 

1452207_at 17684 Cited2: Cbp/p300-interacting transactivator, with Glu/Asp-rich 
carboxy-terminal domain, 2 - -1.80 

1425400_a_at 56222 Cited4: Cbp/p300-interacting transactivator, with Glu/Asp-rich 
carboxy-terminal domain, 4 - -6.43 

1423344_at 13857 Epor: erythropoietin receptor - -1.87 
1452514_a_at 16590 Kit: kit oncogene - -2.44 

1415855_at 17311 Kitl: kit ligand - -2.68 
1450736_a_at 15132 Hbb-bh1: hemoglobin Z, beta-like embryonic chain - -1.95 
1454086_a_at 16909 Lmo2 : LIM domain only 2 - -3.12 *

1449389_at 21349 Tal1: T-cell acute lymphocytic leukemia 1 - -4.77 *
1449232_at 14460 Gata1: GATA binding protein 1 -1.45 -2.27 *
1418600_at 16596 Klf1: Kruppel-like factor 1 (erythroid) -2.00 -3.80 *

1450194_a_at 17863 Myb: myeloblastosis oncogene -1.59 -2.99 *
1436823_x_at 15135 Hbb-y: hemoglobin Y, beta-like embryonic chain -5.88 -5.61 *
1417714_x_at 15122 Hba-a1: hemoglobin alpha, adult chain 1 -2.72 -1.57 

1425643_at 14934 Gypa: glycophorin A -2.35 - 
1449077_at 170812 Eraf: erythroid associated factor -5.90 - 

 

- indicates not applicable 

* gene expression subjected to qRT-PCR analysis 
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Supplementary Figure 1.2-1. 
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Supplementary Figure 1.2-1. Runx1-/- EBs have reduced blast colonies and 

comparable FLK1+ differentiation kinetics compared to wild type EBs by 

FACS analysis. 

(A) J1, Runx1+/- and Runx1-/- ES cells differentiated in serum were collected on 

day 2.75 for blast colony replating. Values are mean±s.e.m. from three 

independent experiments; **p<0.01. 

(B) FACS analyses for FLK1 expression of J1, Runx1+/-, and Runx1-/- EBs. ES 

cells were differentiated in serum, and cells were collected for FLK1+ detection by 

FACS from day 2 to day 5. Values are mean±s.e.m. from three independent 

experiments. 
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Supplementary Figure 1.2-2. 
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Supplementary Figure 1.2-2. Runx1-/- EB cells have no definitive 

hematopoietic colonies. 

J1, Runx1+/-, and Runx1-/- ES cells were differentiated in serum for six days. EB 

cells were harvested for definitive erythroid and myeloid replating. Colonies of 

EryD (A) and Mac (B) were counted 6-7 days after replating. Values are 

mean±s.e.m..from three independent experiments; **p<0.01. EryD: definitive 

erythroid colony, Mac: macrophage colony. 
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Supplementary Figure 1.2-3. 
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Supplementary Figure 1.2-3. E10.5 Runx1-/- embryos have no gross 

abnormalities in blood cell generation. 

(A) Morphology and (B) Benzidine staining of yolk sacs of Runx1+/+,Runx1+/-, and 

Runx1-/- embryos at E10.5. 

(C) FACS analysis on Ter119+ cells of the embryo proper (left) and the yolk sac 

(right) at E10.5. Values indicate mean±s.e.m. of total Ter119+ cells from Runx1+/+ 

(n=1), Runx1+/– (n=4), and Runx1–/– (n=2) embryos. 
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Supplementary Figure 1.2-4. 
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Supplementary Figure 1.2-4. Noggin, DAPT, and cyclopamine do not affect 

EryP progenitor formation and Runx1 expression. 

(A) A2Lox ES cells were differentiated in serum, Noggin (50 ng/ml), DAPT (2 μM 

added 2 times/day), and Cyclopamine (3 μM) were added on day 3 and EB cells 

were collected on day 4 for EryP replating (A) and qRT-PCR (B). Runx1 

expression was normalized against Gapdh. The quantity of Runx1 expression in 

FSC was normalized as 1 and used to determine the Runx1-fold change in 

inhibitor-treated samples. Values indicate mean±s.e.m. of EryP colonies from 

three independent experiments. 
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Supplementary Figure 1.2-5. 
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Supplementary Figure 1.2-5. SB431542 treated EB cells generate increased 

EryP colonies. 

iRUNX1 ES cells differentiated in serum for 3 days were treated with SB431542 

(2 μM) on day 3. Cells were collected on day 4 for EryP replating. EryP colonies 

were counted, and the numbers of EryP colonies in SB431542-treated samples 

were normalized to that of FSC. Values are mean±s.e.m. from three independent 

experiments; **p<0.01. 
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Supplementary Figure 1.2-6. 
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Supplementary Figure 1.2-6. Gata1 and Eklf expressions were decreased in 

TGFβ1 treated EBs but increased in Alk5-/- EBs. 

(A) A2Lox ES cells differentiated in serum were treated with and without TGFβ1 

(10 ng/ml) on day 3. Cells were harvested on day 4 for qRT-PCR. Gene 

expressions were normalized against Gapdh, and then the normalized fold 

change was determined by calculating the ratio of the gene expression (+TGFβ1) 

to gene expression (-TGFβ1). Values are mean±s.e.m. from two to three 

independent experiments. 

(B) Alk1+/-, Alk1-/-, Alk5+/+, and Alk5-/- EB cells were harvested on day 4 for for 

qRT-PCR analyses. Gene expressions were normalized against Gapdh. Values 

are mean±s.e.m. from three independent experiments; **p<0.01, ***p<0.001. 
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Supplementary Table 1.2-1. Primer sequences for qRT-PCR. 

Gene  Primer Sequence (5’-3’) Source 

Gapdh 
Forward TGGCAAAGTGGAGATTGTTGCC 

Lugus et al., 2007. 
Reverse AAGATGGTGATGGGCTTCCCG 

Runx1 
Forward CTTCCTCTGCTCCGTGCTA 

#Primer 3 
Reverse CTGCCGAGTAGTTTTCATCG 

Gata1 
Forward ATGGAATCCAGACGAGGAAC 

Lugus et al., 2007. 
Reverse CTCCCCACAATTCCCACTAC 

Scl 
Forward CAGCCTGATGCTAAGGCAAG 

Lugus et al., 2007. 
Reverse AGCCAACCTACCATGCACAC 

Eklf 
Forward ATGGGCTGCTGTCGGGATA 

&PrimerBank ID: 6754454a3 
Reverse TCTTAGGTGCCAAAGTTCGCC 

c-myb 
Forward GAGCACCCAACTGTTCTCG 

PrimerBank ID: 19526473a1 
Reverse CACCAGGGGCCTGTTCTTAG 

Lmo2 
Forward AGGAGAGACTATCTCAGGCTTTT

PrimerBank ID: 6678702a3 
Reverse TTGAAACACTCCAGGTGATACAC

Hbb-Y 
Forward TGGCCTGTGGAGTAAGGTCAA 

PrimerBank ID: 6680177a1 
Reverse GAAGCAGAGGACAAGTTCCCA 

Alk1 
Forward GGGCCTTTTGATGCTGTCG 

PrimerBank ID: 6752958a1 
Reverse TGGCAGAATGGTCTCTTGCAG 

Alk5 
Forward TCTGCATTGCACTTATGCTGA 

PrimerBank ID: 2853637a1 
Reverse AAAGGGCGATCTAGTGATGGA 

 

#Primer 3: http://biotools.umassmed.edu/bioapps/primer3_www.cgi 

&Primerbank: http://pga.mgh.harvard.edu/primerbank/ 

 

http://biotools.umassmed.edu/bioapps/primer3_www.cgi
http://pga.mgh.harvard.edu/primerbank/


 

 

 

 

 

 

 

Chapter 1.3 

Conclusion and Future Directions 
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Summary of Chapter One 

 During embryonic development, the appearance of red blood cells in the 

yolk sac marks the onset of hematopoiesis, known as primitive hematopoiesis. 

Primitive hematopoietic progenitors emerge exclusively in the yolk sac and are 

characterized by their transient nature. While the primitive hematopoiesis in the 

yolk sac declines, definitive hematopoiesis will begin to emerge in the yolk sac 

and/or in the embryo proper to take over blood cell production. The mechanisms 

regulating the transition from primitive to definitive hematopoiesis remain unclear. 

Runx1 has been reported to be essential for the establishment of definitive 

hematopoiesis, but its expression can also be detected in the yolk sac blood 

islands where primitive erythroid (EryP) progenitors emerge, suggesting that 

Runx1 might also play a role in primitive hematopoiesis. In chapter one, we have 

revealed novel roles of Runx1 in primitive hematopoietic development, based on 

studies utilizing the embryonic stem (ES) cell differentiation system and Runx1 

mutant mice. We have found that inducing Runx1 expression in the in vitro 

differentiation model of embryonic stem (ES) cells results in a decrease in EryP 

progenitor formation. A possible mechanism for this is related to the activity of 

transforming growth factor beta-1 (TGFβ1). We have demonstrated that TGFβ1 

inhibits EryP progenitor formation and upregulates Runx1 expression. Tgfβ1-/- ES 

cells generate increased numbers of EryP progenitors with decreased Runx1 

expression levels. In addition, it was determined that ALK5 is the major type-I 

TGFβ1 receptor in EryP cells and Alk5-deficient ES cells produce higher 

numbers of EryP progenitors, relative to wild-type. Surprisingly, both Runx1 null 
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animals and Runx1-deficient ES cells give rise to reduced numbers of EryP 

progenitors. However, despite generating fewer EryP progenitors during primitive 

hematopoiesis, Runx1-deficient mice can still survive during development until 

definitive hematopoiesis takes over blood formation. DNA binding and CBFβ 

interaction of RUNX1 are needed for optimal generation of EryP progenitors in 

vivo. The decreased EryP progenitors in both Runx1 null and overexpression 

systems coincide with decreased expressions of the transcription factors, Gata1 

and Eklf, and introduction of Gata1 or Eklf partially rescue the EryP defects in 

both systems. Taken together, these studies suggest that RUNX1, likely in 

concert with TGFβ1, plays a critical role in the regulation of primitive 

hematopoiesis. 

 

Possible Mechanisms for Runx1-Mediated Suppression of EryP 

Development 

Our studies have demonstrated that overexpression of Runx1 between day 

3 and day 4 of EB differentiation suppresses primitive erythroid progenitor 

formation in a dose-dependent manner. This observation leads to the intriguing 

question of how Runx1 inhibits EryP generation. One possibility is that RUNX1 

could directly modulate the expression of genes that are critical for EryP 

formation or development. The reduction of EryP progenitors coincides with the 

downregulation of multiple hematopoietic-related genes. One of the most 

downregulated genes is Hbb-y-globin (hemoglobin Y, beta-like embryonic chain), 

which reflects significantly reduced EryP levels. The β locus control region (βLCR) 
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is the most important regulatory element in the regulation of the expression of β-

globin proteins (Noordermeer and de Laat, 2008). One hypothesis is that RUNX1 

can regulate Hbb-y-globin expression by directly binding to the βLCR locus. 

However, RUNX1 binding to the βLCR region has not been detected by 

chromatin immunoprecipitation (ChIP) analysis (not shown). Therefore, the data 

suggest that RUNX1 more likely inhibits Hbb-y-globin expression through an 

indirect mechanism.   

Gata1 and Eklf have been shown to be involved in both primitive and 

definitive erythropoiesis. Both Gata1 and Eklf expression are decreased by 

induced Runx1 expression. Rescue of either Gata1 or Eklf by retroviral infection 

can partially reverse EryP defects seen in induced Runx1 EB cells, suggesting 

that Gata1 and Eklf might be directly regulated by Runx1. We have identified two 

conserved Runx1 binding sites upstream of the transcriptional start sites of 

Gata1 and one binging site upstream from the start site of Eklf. ChIP analysis did 

not reveal any direct binding of RUNX1 to these predicted sites (not shown) but 

these computationally-predicted binding sites may not include all of the biological 

RUNX1 binding sites in Gata1 and Eklf locus. Based on this possibility, a 

genome-wide screening of RUNX1 binding targets in induced Runx1 EBs is 

warranted. Chromatin immunoprecipitation-sequencing (ChIP-Seq) technology is 

well-suited for this purpose (Mikkelsen et al., 2007). Comparing the microarray 

data that is already on hand with the results from ChIP-Seq would provide 

valuable information about how RUNX1 carries out its inhibitory role in EryP 

progenitor formation.  
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 Another possible mechanism by which RUNX1 may negatively regulate 

EryP generation would involve binding partners of RUNX1. RUNX1 can inhibit or 

activate target genes by interacting with transcriptional co-repressors or co-

activators. For example, RUNX1 can interact cooperatively with p300, a 

transcriptional co-activator, to promote differentiation of a myeloid precursor cell 

line into mature neutrophils in response to granulocyte colony-stimulating factor 

(Kitabayashi et al., 1998). Conversely, RUNX1 interacts with the mSin3A co-

repressor to repress p21Waf1/Cip11 promoter activity in NIH3T3 cells or to repress 

c-Mpl expression in hematopoietic progenitor cells (Lutterbach et al., 2000; Satoh 

et al., 2008). We have tested whether RUNX1 can interact with mSin3A to 

suppress EryP progenitor formation. We could not co-immunoprecipitate RUNX1 

and mSin3A from induced Runx1 EB cells, suggesting that Runx1 suppression of 

EryP progenitors may be not due to the interaction of RUNX1 and mSin3A in the 

ES/EB system. The suppression could, however, be due to RUNX1 interaction 

with other co-repressors such as Groucho/TLE and HDAC (histone 

deacetylase)(Durst and Hiebert, 2004; Durst et al., 2003; Imai et al., 1998). In 

support of this possibility, RUNX2, another member of the RUNX family, has 

been shown to interact with HDAC6, and the deacetylase activity of HDAC6 has 

been shown to repress RUNX2 target genes in osteoblast lineage cell lines 

(Westendorf et al., 2002). Additional studies, based on proteomics, designed to 

identify specific binding partners or co-repressors of RUNX1 in the ES/EB system 

should be undertaken in the future to clarify this mechanism. 
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The Relationship between TGFβ1 and Runx1 in Primitive Hematopoiesis 

 TGFβ acts as a negative regulator of the proliferation of adult 

hematopoietic progenitor cells in vitro (Keller et al., 1990; Ottmann and Pelus, 

1988). Previous studies found that Alk5-/- yolk sac cells generate significant 

increased number of erythroid colony-forming cells, suggesting TGFβ signaling 

could have an inhibitory effect on the formation and/or proliferation of erythroid 

progenitors in vivo (Larsson et al., 2001). Our results indicate that TGFβ1 inhibits 

EryP progenitor formation during ES cell differentiation. Importantly, TGFβ1-

treated EBs also show increased Runx1 expression. Tgfβ1-/- and Alk5-/- EB cells 

display larger EryP populations and decreased Runx1 expression, relative to 

wild-type. These results suggest that TGFβ1 signaling negatively regulates EryP 

development, possibly through upregulation of Runx1. In agreement with this, 

overexpression of Runx1 suppresses increased EryP production caused by 

inhibition of the interaction between TGFβ and ALK5.  Based on these 

observations, generating inducible RUNX1 in Alk5-/- ES cells would be a way to 

examine the negative role of the ALK5-RUNX1 axis in EryP development.  

Examining ectopic expression of Runx1 in Alk5+ cells by generating Alk5-cre; 

Rosa26 loxP-stop-loxP Runx1 mice would also provide important information. 

 It is worthwhile to note that when TGFβ1 was added to both wild-type, 

Runx1+/- and Runx1-/- EB cells, followed by EryP replating, a comparable 

reduction of EryP colonies was observed in both groups. It is likely, therefore, that 

TGFβ1 inhibits EryP development through other mechanisms, in addition to the 

Runx1-dependent pathway. This likelihood is supported by other recent studies. 
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TGFβ1 has, for instance, been shown to induce an epithelial-to-mesenchymal 

transition (EMT) by directly upregulating Snail1 in cultured hepatocytes (Kaimori 

et al., 2007) or by indirectly upregulating Zeb1 through a mechanism mediated by 

Ets1 in epithelial cells (Shirakihara et al., 2007). Comparing the gene-expression 

profiles of wild-type and Runx1-/- EBs after treatment with TGFβ1 would provide 

additional insight into the roles of other possible mediators of TGFβ signaling in 

the suppression of EryP progenitor development, independent of Runx1. 
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Chapter 2 

Characterization of Hematopoietic Stem Cells in a Mouse Chronic 

Inflammatory Arthritis Model 
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Introduction 
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Hematopoietic Stem Cell Niche 

 Hematopoietic stem cells (HSCs) are responsible for production of all 

blood cells. The bone marrow is the major site of hematopoiesis throughout adult 

life. HSCs reside mainly in the bone marrow and undergo well-controlled cell 

division to regenerate themselves while also producing progenitor cells that give 

rise to all types of mature blood cells. The maintenance of the identity and 

function of HSCs in vivo is thought to depend on a specific microenvironment of 

surrounding cells in the bone marrow known as the HSC niche (Wilson and 

Trumpp, 2006). The HSC niche microenvironment is thought to supply necessary 

factors that support specific aspects of hematopoiesis, such as HSC survival, 

self-renewal, and differentiation. The identification of the cellular components and 

mechanisms that comprise the HSC niche is an area of active investigation. 

 The endosteum is a thin layer of connective tissue that is located at the 

interface between bone and bone marrow. The endosteum surface, covered by 

bone-lining cells, contains a population of cells that can differentiate into bone-

forming osteoblasts. A number of studies have shown that HSCs are commonly 

found at or near the endosteum in the bone marrow, in close proximity to 

osteoblasts, suggesting osteoblasts may serve as part of the HSC niche (Arai et 

al., 2004; Kiel et al., 2005; Nilsson et al., 2001; Suzuki et al., 2006; Zhang et al., 

2003).  Additionally, in vitro studies have demonstrated that human osteoblasts 

have the ability to produce important hematopoietic cytokines, such as 

granulocyte colony-stimulating factor (G-CSF) and hepatocyte growth factor 

(HGF), that support the proliferation of human hematopoietic progenitor cells 



 105 

(CD34+ bone marrow cells) that were enriched in HSCs (Taichman et al., 2001; 

Taichman and Emerson, 1994; Taichman et al., 1996).  

Parathyroid hormone (PTH) is a major regulator of calcium homeostasis, 

playing an important role in both the formation and resorption of bone. In a study 

by Calvi et al., transgenic mice (col1-caPPR) were generated which expressed 

constitutively activated PTH or the PTH-related protein (PTHrP) receptor (PPR) 

under control of the type-1 collagen α1 (Col1α1) promoter, which is active in 

osteoblastic cells (Calvi et al., 2003; Calvi et al., 2001). These transgenic mice 

displayed significant increases in the numbers of osteoblasts and functional 

HSCs in the bone marrow. PTH administered directly to wild-type animals also 

expanded the populations of both osteoblasts and HSCs (Calvi et al., 2003). In a 

separate study, mice engineered with a conditional inactivation of bone 

morphogenic protein receptor 1A (Bmpr1a), which is normally expressed in 

osteoblast cells but not in HSCs, showed a positive correlation between the 

number of osteoblasts and functional HSCs (Zhang et al., 2003). In the same 

study, it was also reported that HSCs were found in close contact with spindle-

shaped, N-cadherin-positive osteoblasts on the endosteal surface (Zhang et al., 

2003). Conversely, by using a transgenic mouse which allowed for the 

conditional destruction of osteoblasts, Visnjic et al. demonstrated that ablation of 

osteoblasts led to a decrease in the absolute number of HSCs in the bone 

marrow and a transfer of a substantial proportion of hematopoietic activity to the 

spleen and liver (Visnjic et al., 2004). These studies show that the number of 

osteoblasts in the bone marrow microenvironment is directly related to the 
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number of functional HSCs or hematopoietic progenitors, indicating that 

osteoblasts, or a subset of osteoblast cells, serve as important components of 

the HSC niche cells. 

 Bone homeostasis is tightly regulated not only by osteoblasts, but also by 

osteoclasts, which are specialized bone resorbing cells of hematopoietic origin. 

Osteoclasts have also been suggested to be components of the HSC 

microenvironment. Specifically, activation of osteoclasts promotes the 

mobilization of hematopoietic progenitors into circulation, suggesting that 

osteoclast activity may play a part in the regulation of the endosteal HSC niche 

(Kollet et al., 2006). Many studies have also proposed that osteoblasts and 

osteoclasts express a variety of factors, including osteopontin, angiopoietin-1, 

matrix metalloproteinase 9 (MMP9), and cathepsin K, which regulate the 

maintenance and localization of HSCs in the bone marrow (Arai et al., 2004; 

Kollet et al., 2006; Nilsson et al., 2005; Stier et al., 2005). In addition to the 

critical role of osteoblasts in supporting the maintenance of HSCs, osteoblasts 

have also been shown to influence B-lymphocyte commitment and differentiation 

(Visnjic et al., 2004; Wu et al., 2008; Zhu et al., 2007). Collectively, these studies 

suggest that there is a close relationship between bone homeostasis and 

hematopoiesis. 

 Other cellular components in the bone marrow have also been suggested 

to function in HSCs maintenance during adulthood. In vivo and tissue section 

images have shown HSCs are also located in close proximity to endothelial cells 

in the bone marrow, indicating that endothelial cells may also serve as important 
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components in the HSC niche (Kiel et al., 2005; Sipkins et al., 2005). In vitro 

experiments showed that vascular endothelial cells that were isolated either from 

embryonic tissues or from some adult non-hematopoietic tissues maintain the 

repopulating capacity of HSCs or support the expansion of hematopoietic 

progenitors (Li et al., 2003; Li et al., 2004; Ohneda et al., 1998). These studies 

suggest that endothelial cells express factors that promote the maintenance of 

HSCs in vitro. Moreover, perivascular reticular cells with high expression of 

CXCL12, a cytokine required for the maintenance of HSCs, have also been 

found in close contact with HSCs in the bone marrow suggesting a possible role 

of reticular cells in supporting HSCs (Sugiyama et al., 2006). Recently, Naveiras 

et al. demonstrated that bone-marrow adipocytes act as negative regulators in 

HSC maintenance (Naveiras et al., 2009). Together, these studies demonstrated 

that, in addition to the important role of bone homeostasis in HSC maintenance, 

the HSC niche in bone marrow could be influenced by multiple cell types found 

either at or near the endosteum, each of which may have different functions in 

the regulation or maintenance of HSCs. 

 However, the correlation between bone homeostasis and HSC 

maintenance were found in physiological states; whether the relationship 

between these two systems in pathological conditions would be disturbed 

remains uncertain. 

 

The K/BxN Mouse Model of Inflammatory Arthritis 

Rheumatoid arthritis (RA) is a chronic inflammatory disease which affects 
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approximately 1% of the world’s population (Weinblatt and Kuritzky, 2007). A 

hallmark of this disease is the progressive destruction of peri-articular bone 

(bone near the joints) which leads to bone erosion and functional disability. In 

addition to join destruction, human RA patients also display systemic 

osteoporosis (Haugeberg et al., 2000; Spector et al., 1993). The etiology and 

pathogenesis of RA remain poorly understood. In RA research, animal models 

have been used as important tools for studying pathways and mechanisms 

involved in inflammatory arthritis. One of the most-studied models is the 

KRNxNOD (herein K/BxN) mouse model. K/BxN mice develop an inflammatory 

joint disease that is very similar to human rheumatoid and inflammatory arthritis 

(reviewed in Mandik-Nayak and Allen, 2005). 

 This model was developed as follows: the KRN-C57BL/6 (herein KRN) 

transgenic mouse was originally designed to study the specificity of T-cell 

receptors (TCRs) recognizing an epitope of bovine RNase (Kouskoff et al., 1996; 

Kouskoff et al., 1995). KRN transgenic mice display a normal phenotype under 

the C57BL/6 background. Intriguingly, when those KRN mice are crossed with 

non-obese, diabetic (NOD) mice, all of the F1 progeny (K/BxN) spontaneously 

exhibit a rapid, symmetrical onset of joint inflammation, primarily restricted to the 

joints of the front and rear limbs at around 30±5 days of age (Kouskoff et al., 

1996). Many characteristics of the inflammation in K/BxN mice are similar to 

human rheumatoid arthritis, including pannus formation, synovial hyperplasia, 

increased synovial volume, massive leukocyte infiltration, cartilage destruction, 

and bone erosion, followed by remodeling in the distal joints in the later stages 
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(Kouskoff et al., 1996). When KRN mice and C57BL/6 mice that were congenic 

for the NOD MHC H-2g7 (C57BL/6.H-2g7; herein G7) were crossed, the offspring 

(KRNxG7) all developed inflammatory symptoms which were indistinguishable 

from those seen in K/BxN mice, indicating that MHC class II molecule I-Ag7 was 

responsible for promoting arthritis in K/BxN mice (Kouskoff et al., 1996). 

 Subsequent studies found that the autoimmune response that is 

responsible for the inflammation seen in K/BxN mice is initiated by TCR 

recognition of a ubiquitously-expressed self-peptide derived from the glycolytic 

enzyme glucose-6-phosphate isomerase (GPI) presented by the I-Ag7  MHC 

molecule on B-cells, resulting in production of high titers of autoantibodies 

against GPI (Matsumoto et al., 1999). Arthritic symptoms can be transferred to 

wild-type recipients by injecting them with serum from K/BxN or KRNxG7 mice, 

which contains a high level of GPI autoantibodies (serum-transfer model), but the 

serum-induced disease resolves within a few weeks (Korganow et al., 1999; 

Maccioni et al., 2002; Matsumoto et al., 1999). Thus, the serum-transfer model 

serves as an acute inflammation model, whereas the K/BxN transgenic mice 

serve as a chronic inflammatory model. 

 Many studies have demonstrated that joint destruction in rheumatoid 

arthritis in humans is linked to the activation of osteoclasts in the joints 

(Gravallese et al., 1998; Gravallese et al., 2000; Shigeyama et al., 2000). 

Receptor activator of nuclear factor-κB ligand (RANKL) is a cytokine that  

regulates the completion of the final steps of osteoclast differentiation, as well as 

for their bone resorbing activity (Kong et al., 1999; Lacey et al., 1998). Several 
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pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-17 and especially 

tumor necrosis factor (TNF)-α, can induce and enhance RANKL expression 

(Kotake et al., 1999; Lam et al., 2000; Wei et al., 2005; Wong et al., 2006). It has 

been demonstrated that RA patients produce excessive TNF-α and RANKL (Chu 

et al., 1991; Gravallese et al., 2000; Takayanagi et al., 2000). K/BxN mice also 

display high levels of TNF-α and IL-6 in their joints (Kouskoff et al., 1996). Mice 

with defective osteoclasts or limited osteoclastogenesis are resistant to both 

K/BxN serum-induced and TNF-α-mediated joint destruction (Pettit et al., 2001; 

Redlich et al., 2002). 

 Most studies using K/BxN mouse model have focused on identifying 

cellular components and pathogenic mechanisms involved in the initiation of 

joint-specific inflammation and destruction of joints (Akilesh et al., 2004; Corr and 

Crain, 2002; Ji et al., 2002a; Ji et al., 2002b; Lee et al., 2002; Pettit et al., 2001; 

Watts et al., 2005; Wipke and Allen, 2001), whereas associated conditions, such 

as systemic osteoporosis, have not been carefully characterized in the mouse 

model.  
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Overall Goals of Chapter Two 

 Hematopoietic stem cells (HSCs) reside mainly in the bone marrow and 

undergo well-controlled cell division to regenerate themselves while also 

producing progenitor cells that differentiate to all types of mature blood cells 

throughout adult life. The maintenance of HSCs in the bone marrow has been 

suggested to have a close association with bone homeostasis in normal 

physiological states, but little is known about their relationship in pathological 

conditions. The objective of chapter two is to investigate the relationship between 

hematopoiesis and bone homeostasis in pathological conditions using a mouse 

model of chronic inflammatory arthritis. 
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Abstract 

Recent studies support the notion that there is an intricate relationship between 

hematopoiesis and bone homeostasis in normal steady states. By utilizing mice 

undergoing chronic inflammatory arthritis, we investigated the relationship 

between hematopoiesis and bone homeostasis in pathologic conditions. We 

demonstrate that mice undergoing chronic inflammatory arthritis displayed 

osteoporosis due to a severe defect in osteoblast function. Despite the defective 

osteoblast function, however, the hematopoietic stem cells from these mice 

exhibited normal properties in either long-term repopulation or cell cycling. 

Therefore, the bone forming capacity of osteoblasts is distinct from their ability to 

maintain hematopoietic stem cells in chronic inflammatory conditions.  
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Introduction 

Under normal physiologic conditions, hematopoietic stem cells (HSCs) residing 

within the specialized bone marrow (BM) niche maintain a balance between self-

renewal and differentiation and provide continuous supply of circulating mature 

immune cells with a limited life span. An intricate relationship exits between 

hematopoiesis and bone homeostasis. As such, osteoblasts serve as a HSC 

niche, while osteoclasts mediate HSC and progenitor egress from the BM (Kollet 

et al., 2007; Purton and Scadden, 2006). Specifically, an increase in osteoblast 

number and/or activation through conditional Alk3 deletion or parathyroid 

hormone administration augments the HSC frequency in BM (Calvi et al., 2003; 

Zhang et al., 2003). Conversely, ablation of osteoblasts results in a decrease in 

absolute number of phenotypic primitive hematopoietic progenitors (Visnjic et al., 

2004). 

 

Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune 

disease of unknown etiology afflicting 1% of the population.  It leads to 

destruction of cartilage and bone at multiple joints with a distal to proximal 

preference. RA is also attended by systemic osteoporosis. However, the 

mechanisms of RA-associated osteoporosis are less appreciated than how joints 

are destroyed. The KRNxNOD (herein K/BxN) mouse model of inflammatory 

arthritis recapitulates many of the features of human RA (Kyburz and Corr, 2003; 

Monach et al., 2007). These mice were generated fortuitously when mice 

transgenic for a T cell receptor recognizing an epitope of bovine RNase 

 119 



(C57BL/6.KRN, herein KRN) were bred onto a NOD background (Kouskoff et al., 

1996). They developed spontaneous chronic and severely destructive arthritis 

with 100% penetrance that resembled human RA (Kouskoff et al., 1996). KRN 

with a C57BL/6 line congenic for the NOD MHC H-2g7 (C57BL/6.H-2g7; herein G7) 

was used to distinguish the contribution of MHC from non-MHC NOD-derived 

genes to disease development. The KRNxC57BL/6.H-2g7 (herein KRNxG7) 

offspring all develop overt joint swelling and the histological hallmarks of arthritis 

of K/BxN mice, indicating that H-2g7 is sufficient for RA development (Kouskoff et 

al., 1996). 

 

By utilizing a KRNxG7 mouse model, we investigated the relationship between 

HSCs and bone homeostasis in chronic inflammatory conditions. We 

demonstrate that similar to patients with RA, mice with inflammatory arthritis 

develop osteoporosis. However, unlike the osteolyisis of inflamed joints, which 

reflects accelerated osteoclast activity, the systemic bone loss of arthritic mice is 

the result of arrested osteoblast function. This conclusion is consistent with the 

decrease in generation of mature osteoclasts in vivo. Unexpectedly, the 

osteoblast deficiency in bone formation did not affect the long term repopulating 

potential of HSCs in these arthritic mice. Collectively, we provide evidence that 

marrow HSCs can be maintained in the absence of functional osteoblasts in 

chronic inflammatory environments. 
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Materials and Methods 

Mice  

KRN (TCR transgenic) mice on a C57BL/6 background were crossed with G7 (I-

Ag7) to generate KRNxG7 mice. C57BL/6J (CD45.2 allele) and B6.SJL-

PtprcaPep3b/BoyJ (CD45.1 allele) mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME).  All animals were housed in accordance with 

National Institutes of Health and American Association for Accreditation of 

Laboratory Animal Care regulations, and animal protocols were reviewed and 

approved by the Washington University animal studies committee. 

 

Cell preparation and Flow Cytometric Analyses (FACS) 

Bone marrow cells were prepared by vigorously flushing femur and tibia 6-8 

times. Peripheral blood was obtained by retro-orbital collection. Spleen cells were 

prepared by gently crushing the tissue and filtering through a 40μm cell strainer 

(BD Falcon). Liver cells were obtained by gently crushing the tissue and filtering 

through a 70μm cell strainer (BD Falcon). All collected cells were treated with 

RBC lysis buffer (Roche) before analyses.  

 

FACS analyses were performed as described previously (Park et al., 2004). For 

KSL analysis we used FITC-conjugated antibodies against CD4, CD8, Mac-1, 

Gr-1, Ter119, and B220 (lineage marker antibodies, BD Biosciences or 

eBioscience), PE-conjugated anti-Sca-1, PerCP/Cy5.5-conjugated anti-CD45, 

and APC-conjugated anti-c-Kit (eBioscience). For some experiments anti-CD45 
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APC-Alexa 750 (eBioscience) or anti-c-Kit PerCP/Cy5.5 (Biolegend) were used. 

SLAM analysis was performed using anti-CD150 PE (Biolegend), anti-CD48 

FITC (eBioscience) and anti-CD41 FITC (BD Biosciences). Mature lineage 

analysis was performed with FITC and PE conjugated antibodies to the lineage 

markers mentioned above as well as Alexa 647 conjugated anti-Mac-1 (BD 

Biosciences) and APC conjugated F4/80 (eBioscience).  

 

LMPP (Lymphoid Primed Multipotential Progenitor; Kit+Sca1+Lin-Flk2hiCD34+) 

and CLP (Common Lymphoid Progenitor; Lin-Flk2+IL-7Rα+) analyses were 

performed with the following fluorophore conjugated antibodies: α-Sca1-FITC, α-

IL-7Rα-biotin, α-cKit-APC-Alexa 750 (eBioscience), α-Flk2-PE, α-CD34-

Alexa647, α-Lineage-APC cocktail, Streptavidin-PerCP/Cy5.5 (BD Biosciences) 

and α-Lineage-biotin cocktail (Miltenyi). PreproB analysis was performed with α-

IgM-FITC, α-CD43-PE, α-NK1.1 PerCP/Cy5.5, α-CD11c PE-Cy7, α-B220-biotin 

(BD Bioscience), α-CD19-Alexa647, Streptavidin APC-eFluor 708 (eBioscience). 

Other antibodies used for B cell precursor analysis were α-B220-PerCP/Cy5.5 

(eBioscience) and α-AA4.1-FITC (BD Bioscience). Cells were analyzed using a 

Facscalibur (4-color), a FACScan adapted for 5 color analysis, or FACScanto (6 

color) and data analyzed with Cell Quest (BD) or Flow Jo softwares (Tree Star). 

 

BrdU labeling 

KRNxG7 and control mice (6-8 week old) were injected with a single dose (1mg 

per 6g of body mass) of sterile-filtered BrdU (Sigma) dissolved in PBS. Mice 
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were sacrificed 2-3 hours later and bone marrow cells harvested as described 

earlier.  Harvested bone marrow cells were subjected to lineage cell depletion by 

magnetic separation using the lineage cell depletion kit (Miltenyi). Lineage 

depleted cells were stained with α-cKit-FITC (eBioscience), α-Sca1-PE and 

Streptavidin-PerCP-Cy5.5 (BD Pharmingen).  Cells were subsequently fixed and 

intracellularly stained with APC conjugated α-BrdU antibody using the APC-BrdU 

flow kit (BD Pharmingen).  Cells were analyzed using the BD FACScalibur and 

data analyzed using BD Cell Quest software. 

 

Ki67/Hoechst Analysis 

Lin+ cells were depleted from bone marrow by magnetic sorting as described 

above using biotin-conjugated anti-Lin antibodies (Miltenyi). Cells were surface 

stained with α-Sca1 PE, Streptavidin PerCP/Cy5.5 (BD Bioscience) and α-cKit 

APC (eBioscience). Ki67/Hoechst staining has previously been used to assess 

KSL cycling and our method was adapted from this previous study (Wilson et al., 

2004). Surface stained cells were fixed and permeabilized using BD 

Cytofix/Cytoperm buffer followed by intracellular staining with α-Ki67 FITC for 30 

minutes followed by a 5 minute Hoechst incubation (20μg/ml). 5-color flow 

cytometry was performed with a MoFlo (Dako), which has UV excitation 

capability. Data analysis was performed with Summit or FlowJo softwares. 

Doublets were excluded in the gated populations that were analyzed for Ki67 

expression. The Ki67 negative population was defined based on staining a 
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control population of cells with a FITC conjugated isotype control antibody (BD 

Biosciences). 

 

Progenitor assay 

Cells from bone marrow and spleen were replated in Methocult M3434 (Stemcell 

Tech, CA).  Colonies were counted 7-10 days later.  

 

Cell transplantation 

For serial bone marrow transplantation, lethally irradiated (1,000Rads) B6xG7 

(CD45.1xCD45.2) recipients were injected (i.v.) with unfractionated 1x106 BM 

cells from 6 week old KRNxG7 (CD45.2xCD45.2) or B6xG7 (CD45.2xCD45.2) 

mice (five recipients for each group). PB samples were analyzed for CD45.1 and 

CD45.2 every 4 weeks. Seven months after transplantation, bone marrow 

suspensions were prepared from primary recipients and 1x106 nucleated cells 

were injected into new lethally irradiated B6xG7 (CD45.1xCD45.2) recipient mice 

(8 for control and 9 for KRNxG7). The tertiary transplantation was performed 

seven months after secondary transplantation (7 for control and 9 for KRNxG7). 

The recipients of serial bone marrow transplantation were subjected to lineage 

analyses for donor contributions 6 or 7 months after transplantations. 

 

Competitive repopulation assay has been described previously (Stier et al., 2005).  

Briefly, 6-week old B6xG7 (CD45.2xCD45.2) or KRNxG7 (CD45.2xCD45.2) bone 

marrow cells, 2x105, were mixed with 2x105 B6xG7 (CD45.1xCD45.2) competitor 
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bone marrow cells and injected (i.v.) into lethally irradiated (1000 Rads) B6xG7 

(CD45.1xCD45.2) recipient mice. Peripheral blood (PB) samples were collected 

retro-orbitally three and five months after transplantation and analyzed for 

CD45.1 and CD45.2. 

 

Lineage negative (Lin-) spleen cells from 6-week old B6xG7 (CD45.2xCD45.2) or 

KRNxG7 (CD45.2xCD45.2) mice were isolated using MACS Lineage Cell 

Depletion Kit (Miltenyi Biotec). Onex105 sorted Lin- cells were injected into 

lethally irradiated (1,000Rads) B6xG7 (CD45.1xCD45.2) recipients. 

Reconstitution of donor-derived cells (CD45.2) was monitored by staining retro-

orbitally obtained peripheral blood cells with monoclonal antibodies against 

CD45.2 and CD45.1 (eBioscience) followed by FACS analysis.  

 

Serum TRAP5b activity and serum osteocalcin activity 

Blood was collected retro-orbitally under anesthesia prior to sacrifice.  The serum 

TRACP5b activities of 6 week old G7 and KRNxG7 mice were measured by 

MouseTRAPTM Assay ELISA kit (Immunodiagnostic Systems Inc.).  Serum 

Osteocalcin levels of 6 week old G7 and KRNxG7 mice were measured by 

Mouse Osteocalcin ELISA kit (Biomedical Technologies Inc.). 

 

Histology and Histomorphometry 

The tibiae of 6-week old B6xG7 and KRNxG7 mice were fixed with 70% ethanol 

followed by plastic embedding and Goldner staining, or with 10% neutral buffered 
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formalin followed by the decalcification in 14% EDTA for 4-5 days, paraffin 

embedding, and TRAP staining. Calcein (Sigma) (7.5 mg/kg, i.p) was injected on 

day 7 and 12. Mice were sacrificed on day 14. Osteoclastic and osteoblastic 

perimeters were measured and analyzed using Osteomeasure (OsteoMetrics, 

Atlanta, GA) in a blinded fashion. 

 

μCT 

The trabecular volume in the distal femoral metaphysic was measured using a 

Scanco μCT40 scanner (Scanco Medical AG, Basserdorf, Switzerland).  A 

threshold of 300 was used for evaluation of all scans. 30 slices were analyzed, 

starting with the first slice in which condyles and primary spongiosa were no 

longer visible. 

 

qRT-PCR 

RNA preparation and cDNA synthesis were previously described (Lee et al., 

2008). Primer sequences used in this study are provided in supplementary Table 

2.2-1.  

 

Statistical Analyses  

Statistical significance was assessed by two-tailed Student’s t test.  Values of 

P<0.05 were considered statistically significant. 

 

Total bone marrow cell isolation 
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Bone marrow isolation by crushing and enzymatic digestion was performed as 

done previously (Haylock et al., 2007) using the Hematopoietic Stem Cell 

Isolation Kit (Millipore). Briefly, one femur and one tibia were collected and 

ground in a mortar and pestle in PBS with 4% FCS. The cells and small bone 

fragments were washed with PBS with 4% FCS and filtered through a 40 μm cell 

strainer. Small bone fragments were incubated with 3 mg/ml Collagenase Ι and 4 

mg/ml Dispase ΙΙ (Stem Cell Isolation Kit, Millipore) for 5 minutes at 37oC in an 

orbital shaker. The fragments were washed and cells were collected by filtered 

through 40 μm cell strainer. Bone marrow from the contralateral femur and tibia 

were obtained by vigorous flushing as described in Methods. Cells retrieved by 

both isolation methods were RBC lysed, count on a hemocytometer and FACS 

analysed for KSL frequency. 

 

Alkaline Phosphatase (AP) expression assay 

The details of AP expression assay on bone marrow stromal cells (BMSCs) are 

previously described (Tu et al., 2007). Briefly, Cells were harvested 3 days later 

after 100% confluence and tested by a biochemical assay using p-nitrophenyl 

phosphate (Sigma, St. Louis, MO) as a substrate; for mineralization assays, cells 

were switched to mineralization medium containing 50 ug/ml ascorbic acid + 50 

mM β-glycerophosphate for 2 weeks and changed medium every 3 days. The 

nodule formation was verified by von Kossa staining. 

 

Osteoblast differentiation assays 
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Mineralization assays on BMSCs were performed as previously described (Tu et 

al., 2007) with a slight modification. Basically, femurs and tibia were aseptically 

removed from 6-weeks-old G7 and KRNxG7 mice. After the ephiphyseal ends of 

each bone were cut off, bone marrow was flushed out with 1 ml of alpha-MEM 

using a 25-gauge needle. Cells were treated with 1 ml of red blood cell lysis 

buffer (Roche, Indianapolis, IN) for 5 min at room temperature, rinsed and 

resuspended in alpha-MEM containing 20% fetal bovine serum. After filtered 

through a 70 µm cell strainer, the cells were seeded at 2x106/well in 12-well 

plates. Half of medium was changed at day 3 and all medium at day 6. 
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Results  

KRNxG7 mice are osteoporotic due to diminished bone formation  

K/BxN and KRNxG7 mice develop arthritic symptoms including ankle swelling 

shortly after 3 weeks of age (Kouskoff et al., 1996). The ankle thickness 

increases up to 5-6 weeks of age reaching a maximum of 4-5mm and remaining 

constant at a slightly lower level thereafter (Kouskoff et al., 1996). Typically, 6 

week-old KRNxG7 mice in C57BL/6 genetic background were used in this study, 

as they show overt inflammation at this time point. As expected, KRNxG7 mice 

develop rheumatoid joint pannus and lysis of peri-articular bone (Figure 2.2-1A, 

B). Since human inflammatory arthritis is also attended by systemic bone loss, 

we asked if the same holds true in this murine model. Radiographs of KRNxG7 

tibiae showed destruction of epiphyseal bone as well as metaphyseal 

demineralization. Histomorphometric and µCT analysis of the same bones 

established a marked reduction of trabecular bone volume and consequently 

increased trabecular spacing (Figure 2.2-1C,D, F). A DEXA analysis exhibited 

decreased bone mineral density in arthritic mice (Figure 2.2-1E). Despite the 

profound metaphyseal osteoporosis, however, the number of mature resorptive 

cells was decreased in the marrow of endosteal bone (Figure 2.2-1G). This 

observation was confirmed by diminished serum levels of the global osteoclast 

marker TRAP5b (Figure 2.2-1H) and impaired expression of osteoclast specific 

genes in whole bone marrow (Figure 2.2-1I).  
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The chemokine SDF-1 plays a critical role in osteoclastogenesis by promoting 

osteoclast differentiation and the cell’s longevity (Wright et al., 2005; Zannettino 

et al., 2005). In addition, inhibition of BM SDF-1 expression promotes osteoclast 

progenitor cell mobilization to the periphery (Zhang et al., 2008). We found that 

SDF-1 BM mRNA levels were decreased in KRNxG7 mice and thus its 

suppression likely mediates, at least in part, the noted in vivo arrest of terminal 

osteoclast differentiation (Figure 2.2-1J). Because TNF-α, which accelerates 

osteoclast progenitor mobilization in inflammatory erosive arthritis, also 

suppresses SDF-1 expression (Zhang et al., 2008), we posited that TNF-α level 

is increased in KRNxG7 mice. We indeed found that TNF-α mRNA and protein 

are increased in KRNxG7 BM and serum, respectively (Figure 2.2-1J & data not 

shown). Thus, although a direct link between TNF-α and SDF-1 in KRNxG7 mice 

needs to be established, in face of suppressed Sdf-1 expression, osteoclast 

progenitor cells most likely do not readily assume the full resorptive phenotype 

but are mobilized to the periphery and migrate to the inflamed joint, which they 

degrade upon maturation. 

 

Osteoporosis may reflect stimulated osteoclast or diminished osteoblast activity. 

KRNxG7 mice have reduced marrow osteoclasts in face of systemic 

osteoporosis suggesting that the paucity of bone extant in these animals reflects 

suppressed bone formation. To address this issue, we first histomorphometrically 

determined the number of trabecular osteoblasts/mm bone surface, which we 

found indistinguishable in KRNxG7 and G7 mice (Figure 2.2-2A). Moreover, in 
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vitro osteoblast formation and bone nodule formation assessed by alkaline 

phosphatase activity and mineralization assays, respectively, were 

indistinguishable between KRNxG7 and controls (Supplementary Figure 2.2-1a, 

b). However, the percentage of metapyhseal bone surface covered by osteoid 

was reduced in the arthritic mice suggesting that the bone synthesizing 

population was diminished (Figure 2.2-2B). This posture was confirmed by 

dynamic histomorphometry, which established that the rate of metaphyseal bone 

formation is less than 1/3 of control (Figure 2.2-2C). Similarly, serum Osteocalcin 

as well as Osteocalcin mRNA, a marker of global bone formation, was reduced in 

KRNxG7 mice (Figure 2.2-2D, E). Additionally, mRNA expression of osteoblast 

specific genes, receptor activator of NFkappaB ligand (Rankl), Osteoprotegerin 

and Runx2 was all markedly diminished (Figure 2.2-2E). Thus, the systemic 

osteoporosis attending the inflammatory arthritis of KRNxG7 mice reflects 

diminished bone formation and not accelerated bone resorption. 

 

Systemic increase in Gr1+ cells and decrease in B220+ cells accompanied 

by impaired KRNxG7 marrow B lymphopoiesis  

Our data so far shows that osteoblasts are functionally defective in KRNxG7 

mice. In addition to bone formation, osteoblasts have been reported to play 

crucial roles in hematopoiesis by providing a niche to maintain HSCs and 

supporting B lymphopoiesis (Arai et al., 2004; Calvi et al., 2003; Visnjic et al., 

2004; Wu et al., 2008; Zhang et al., 2003; Zhu et al., 2007). We noticed that 

KRNxG7 bone marrow cellularity was higher (~50% more) compared to that of 
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controls irrespective of the method of bone marrow collection (Supplementary 

Figure 2.2-2a). To investigate the specific hematopoietic changes occurring in 

chronic inflammation, we examined mature hematopoietic cell lineages in BM, 

spleen, liver and peripheral blood (Figure 2.2-3A). There was an increase in 

myeloid cells, specifically Gr1+, cells in all KRNxG7 tissues analyzed. Myeloid 

cells including neutrophils are abundant in the joint inflammation of human RA 

patients (Haynes, 2007) and are critical for the disease, as depletion of 

neutrophils or macrophages ameliorates inflammatory joint disease in a serum 

transfer model of RA (Solomon et al., 2005; Wipke and Allen, 2001). In KRNxG7 

mice, T cells (detected by CD3, CD4 or CD8) bearing T cell receptor (TCR) 

transgene undergo negative selection (Kouskoff et al., 1996). Thus, as expected, 

T cells were reduced.  

 

A decrease was also seen in B220+ cells in KRNxG7 mice for all tissues 

analyzed (Figure 2.2-3A) and this indeed reflects a decrease in B lineage cells 

not merely a decrease in B220 expression (Supplementary Figure 2.2-3a). To 

determine if defective marrow B lymphopoiesis in KRNxG7 mice could at least in 

part explain the diminution in B220+ frequency we examined the frequency of 

marrow B cell precursors. We found that a majority of the residual B220+ cells in 

KRNxG7 marrow were B cells (B220hiIgM+) cells with almost complete depletion 

of B cell precursors (B220loAA4.1+)(Figure 2.2-3B & data not shown)(Hardy et al., 

1991; Li et al., 1996). Further analysis revealed that not only were B cell 

committed, pre-proB, proB and preB, precursors absent but common lymphoid 
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progenitors (Karsunky et al., 2008) were also absent from KRNxG7 marrow 

(Figure 2.2-3C & Supplementary Figure 2.2-3b). Analysis of whole bone marrow 

gene expression also revealed a downregulation in several marrow B 

lymphopoiesis promoting factors including SDF-1, IL-7 and Flt3-L (Figure 2.2-1J 

& 2.2-3D). Therefore, KRNxG7 mice have impaired marrow B lymphopoiesis 

attending the defective osteoblasts.  

 

The frequency of c-Kit+Sca1+Lin- cells is not changed in KRNxG7 bone 

marrow  

Based on the current understanding that endosteal osteoblasts serve as a HSC 

niche and maintain the quiescence of the HSCs (Arai et al., 2004; Calvi et al., 

2003; Zhang et al., 2003), the impairment of osteoblast bone forming capacity in 

KRNxG7 mice raised the possibility that its role in the HSC niche was also 

compromised. To determine if HSC and progenitor cell homeostasis was affected 

in the absence of functional osteoblasts in chronic inflammatory arthritic 

environments, we subjected KRNxG7 and control BM, spleen, liver and 

peripheral blood cells to CD45 (pan hematopoietic marker), c-Kit, Sca-1 and 

Lineage (Lin) marker staining. The frequency of HSC enriched KSL cells in the 

bone marrow was similar between the control and KRNxG7 mice when examined 

at 3 weeks of age, just prior to the onset of joint swelling (Figure 2.2-4A). There 

was no increase in BM cellularity at this age (not shown). The KSL frequency 

was also similar at 6 weeks of age, when all KRNxG7 mice show overt arthritis, 

irrespective of the method of marrow isolation (Figure 2.2-4A & Supplementary 
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Figure 2.2-2b). The frequency of CD150+CD48-CD41- (SLAM) cells, also 

enriched for HSCs (Kiel et al., 2005), in the bone marrow was also similar (Figure 

2.2-4A). As the total bone marrow cellularity was increased (Supplementary 

Figure 2.2-2a), there was a net increase in absolute KSL number in KRNxG7 

bone marrow despite osteoblast deficiency (Supplementary Figure 2.2-2c). 

 

c-Kit+Sca1+Lin- cells in KRNxG7 bone marrow cycle normally  

It has been suggested that quiescence and restricted proliferation of HSCs is 

important in maintaining stem cell properties and that osteoblasts maintain HSCs 

by promoting their quiescence (Arai et al., 2004; Orford and Scadden, 2008; 

Wilson and Trumpp, 2006). We therefore next investigated if KRNxG7 HSCs 

displayed altered proliferation and/or cell cycling. To this end, KRNxG7 arthritic 

as well as B6 control mice were subjected to 5-bromodeoxyuridine (BrdU) 

incorporation and cell cycle analyses. Specifically, mice were injected with a 

single dose of BrdU, sacrificed 2-3 hours later and BM cells were harvested and 

subjected to BrdU staining. There was no difference in BrdU labeling in KSL cell 

populations between control and KRNxG7 BM at 6-8wks, nor at earlier or later 

time points (Figure 2.2-4B & Supplementary Figure 2.2-4). We were also unable 

to detect a decrease in quiescence of KSL cells assessed by Ki67 and Hoechst 

staining (Ki67negHoechstlow, Figure 2.2-4C & Supplementary Figure 2.2-5). For 

unknown reasons, however, more mature progenitor fractions (i.e. Lin-c-

Kit+Sca1- or Lin-) had reduced BrdU positive fraction and increased 

Ki67negHoechstlow suggesting an overall decrease in cycling (Figure 2.2-4B, C). 
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We also compared the expression of several cell cycle regulators including the 

“stemness” gene Bmi in arthritic and control KSL cells but failed to detect any 

differences for most genes (Supplementary Figure 2.2-6). Expression of the cell 

cycle inhibitors, p21 and p27 (Supplementary Figure 2.2-6), was decreased in 

arthritic KSL cells, however, it has previously been shown that complete deletion 

of these genes does not alter HSC function and/or pool size or cycling (Cheng et 

al., 2000; van Os et al., 2007). KRNxG7 KSL cells did not show any significant 

differences in Annexin V staining pattern from controls (not shown), suggesting 

that the KRNxG7 KSL cell survival/longevity is not changed. Collectively, these 

data suggest that KRNxG7 KSL cell cycle is unaltered. 

 

The long term repopulating potential of KRNxG7 hematopoietic stem cells 

is not impaired  

To assess if the properties of HSCs are altered in the defective bone forming 

osteoblast environments, lethally irradiated B6xG7 (CD45.1xCD45.2) recipients 

were transplanted with 1x106 whole BM cells from 6-week old KRNxG7 

(CD45.2xCD45.2) mice. Age matched B6xG7 (CD45.2xCD45.2) BM cells served 

as controls. The donor contribution from KRNxG7 (CD45.2xCD45.2) BM was 

similar to that from B6xG7 (CD45.2xCD45.2) donor cells (Figure 2.2-4D). As 

expected, all blood cell lineages of donor origin were found as evidenced by 

lineage analyses of peripheral blood at 7 months after transplantation, although T 

cell generation was deficient due to negative selection (Supplementary Figure 

2.2-7).  
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Subsequent secondary and tertiary transplantation studies indicated that 

KRNxG7 HSCs displayed no obvious defects in self-renewal potential 

(Supplementary Figure 2.2-7). To rule out the possibility that the long-term 

repopulation potential of HSCs is diminished in older animals, BM transplantation 

from 4 months old KRNxG7 mice was performed. Again, there was no 

compromise in hematopoietic reconstitution potential of KRNxG7 HSCs from old 

animals (Supplementary Figure 2.2-8). 

 

To further confirm that HSC function was not compromised in these mice, we 

next subjected KRNxG7 HSCs to competitive repopulation studies.(Purton and 

Scadden, 2007) Specifically, B6xG7 (CD45.2xCD45.2) or KRNxG7 

(CD45.2xCD45.2) bone marrow cells were mixed with equal number of B6xG7 

(CD45.1xCD45.2) competitor bone marrow cells (2x105 cells each) and injected 

(i.v.) into lethally irradiated (1000 Rads) B6xG7 (CD45.1xCD45.2) recipient mice. 

Peripheral blood cells were collected and analyzed for CD45.1 and CD45.2. The 

contribution from KRNxG7 bone marrow cells was indistinguishable from that of 

the controls (Figure 2.2-4E). Collectively, we conclude that despite the severe 

defects in osteoblast bone-forming function in KRNxG7 mice, KRNxG7 BM HSC 

cycling was similar to controls and long term repopulating potential of these 

HSCs was not impaired.  

 

c-Kit+Sca1+Lin- cells are maintained in KRNxG7 spleen 
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We noticed that most of the KRNxG7 mice had splenomegaly with no obvious 

hepatomegaly (Supplementary Figure 2.2-9a,b & data not shown). Intriguingly, 

the frequency of KSL cells as well as absolute KSL number was much greater in 

KRNxG7 spleen compared to B6xG7 spleen at 6 weeks of age (Figure 2.2-5A, 

Supplementary Figure 2.2-9c & data not shown). Similar changes in the KSL 

frequency also occurred in K/BxN spleen (data not shown). To confirm that the 

apparently high frequency of phenotypic hematopoietic stem/progenitors in the 

spleen of arthritic mice indeed correlated with an actual increase in functional 

hematopoietic stem/progenitor cells, we performed hematopoietic replating and 

transplantation studies. Specifically, unfractionated bone marrow or spleen cells 

from 6 week old KRNxG7 and KRN controls were cultured in methylcellulose 

hematopoietic replating medium. KRNxG7 splenocytes generated a substantially 

higher number of hematopoietic colonies (Figure 2.2-5B). We further 

transplanted sorted Lin- cells (1x105 cells/mouse) from KRNxG7 

(CD45.2xCD45.2) and control B6xG7 (CD45.2xCD45.2) spleens into lethally 

irradiated B6xG7 (CD45.1xCD45.2) mice. A majority of the mice that received 

Lin- cells from control spleen died within 2 weeks with 100% succumbing within 3 

months. However, a significant number of mice that received Lin- cells from 

KRNxG7 spleen were still survived past 6 months post transplantation (Figure 

2.2-5C, left). A high donor chimerism was obvious when recipients of KRNxG7 

splenic Lin- cells were analyzed 3 months after transplantation (Figure 2.2-5C, 

right). These replating and transplantation studies corroborate FACS analyses 
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showing that functional hematopoietic progenitors are particularly abundant in 

KRNxG7 spleen. 

 

The high frequency of hematopoietic stem and/or progenitor cells in the KRNxG7 

spleen raised a possibility that hematopoietic stem/progenitor cells readily 

mobilized into the periphery in chronic inflammation. However, KSL cells in the 

peripheral blood and other organs such as the liver of KRNxG7 mice were hardly 

detectable and not significantly different from controls (data not shown). 

Moreover, the KSL frequency in B6xG7 and KRNxG7 spleen was similar in 

young mice (1-2 weeks of age). While KSL cells were maintained in KRNxG7 

spleen (6wks), they decreased greatly in age-matched mice (Figure 2.2-5A). We 

suggest that HSCs are sustained in the KRNxG7 spleen, although the possibility 

that hematopoietic stem/progenitor cells are continuously mobilized at very low 

levels to the spleen in chronic inflammatory environments cannot be ruled out at 

this moment.  

 138 



Discussion 

Inflammatory bone loss is associated with several chronic diseases in humans 

including RA (Romas and Gillespie, 2006). Such human inflammatory joint 

disease is generally complicated by systemic osteoporosis, which is particularly 

severe in KRNxG7 mice. While focal destruction of bone, within the rheumatoid 

joint, is the product of aggressive osteoclast recruitment, whether its attendant 

osteoporosis is the product of accelerated resorption or attenuated formation is 

less clear. Given the abundance of systemic inflammatory cytokines, the 

pathogensis of rheumatoid-associated osteoporosis has been assumed to be 

primarily osteoclastic. We demonstrate, however, the number of endosteal 

osteoclasts and confirmatory markers of bone resorption are diminished. 

Although the osteoblast number per bone surface was similar, the absolute 

osteoblast number was reduced in KRNxG7 mice due to decreased trabecular 

bone volume. Given that osteoblast bone forming activity is also ablated, at least 

in the KRNxG7 model of RA, the attendant osteoporosis reflects retarded 

osteogenesis.  

 

Our results extend a growing body of work, examining the relationship between 

bone homeostasis and hematopoiesis, to a disease model. Our findings that 

there was a net increase in absolute number of BM HSCs in osteoblast deficient 

KRNxG7 mice compared with controls seem to be at odds with the current view 

of the role of osteoblasts as HSC niche cells. Specifically, transgenic mice 

expressing a constitutively active PPR (PTH/PTHrP receptors) under the control 
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of the type1(I) collagen promoter (col1-caPPR) stimulated osteoblast and 

increased their number and stromal cells from these mice supported HSCs in 

culture. These transgenic mice as well as parathyroid hormone treatment of wild 

type mice also increased the frequency of KSL cells as well as functional HSCs 

(Calvi et al., 2003). Moreover, poly I:C treatment of Mx1–Cre+Bmpr1a fx/fx mice 

resulted in about two fold increase in the percentage of KSL cells, which 

correlated with an increase in endosteal osteoblast number (Zhang et al., 2003). 

Conversely, ablation of osteoblasts by ganciclovir treatment of transgenic mice 

expressing herpesvirus thymidine kinase (TK) gene under the 2.3kb of the rat 

collagen α1 type I promoter (Col2.3ΔTK) resulted in a decrease in absolute 

number of KSL cells, although the frequency was increased in these mice due to 

reduced BM cellularity (Visnjic et al., 2004). These previous studies will predict 

that HSCs in KRNxG7 bones would be reduced which is contrary to what we 

observe.  

 

We suggest several possible explanations for the apparent discrepancy. First, 

the remaining osteoblasts in the KRNxG7 mice, although reduced in numbers, 

may be sufficient to support the HSC maintenance. Second, osteoblast lineage 

cells are multifunctional. For example they not only manufacture bone, but 

stimulate osteoclastogenesis via expression of RANKL and M-CSF. In fact, there 

are circumstances of disassociation of these events as seen in multiple myeloma 

in which bone formation is arrested but osteoclastogenesis is exuberant, 

presumably reflecting altered Wnt signaling (Oshima et al., 2005). It is therefore 
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possible that KRNxG7 osteoblasts still support the HSC maintenance, although 

their bone forming ability is impaired. In this regard, it is important to note that 

Zhang et al determined histologically that HSCs in BMPR1a conditional knockout 

mice were located adjacent to spindle shaped bone lining cells that express N-

cadherin (Zhang et al., 2003). Bone lining cells are classically regarded as 

quiescent non-functional osteoblasts (Aubin and Turksen, 1996) or immature 

osteoblasts (Zhang et al., 2003) and have distinguished morphology from the 

cuboidal osteoblasts that are responsible for bone formation (Aubin and Turksen, 

1996). Lymperi et al have shown that increasing total osteoblasts without 

increasing N-cadherin+ osteoblasts enhances bone formation without increasing 

HSCs highlighting the dissociation between bone formation and HSC 

maintenance at the cellular level (Lymperi et al., 2008). 

 

Even though HSCs were maintained normally in KRNxG7, B cells were greatly 

reduced in these mice. Previous studies have shown that conditional ablation of 

osteoblasts in Col2.3ΔTK transgenic mice resulted in defects in B lymphopoiesis 

(Visnjic et al., 2004; Zhu et al., 2007). Furthermore, it has been shown that a cell 

autonomous defect of Gsα signaling in osteoblasts also impairs marrow B cell 

development (Wu et al., 2008). Our results are more similar to the effects of 

osteoblast depletion using the Col2.3 TK transgenic system. We find that similar 

to Zhu et al, preproB, proB and pre B precursors are all depleted in KRNxG7 

mice in contrast with Wu et al, where preproB cells are intact. This more severe 

B cell depletion is also reflected by gene expression analysis which reveals a 
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decrease in not just IL-7 as obtained by Wu et al, but also of SDF-1 (which is not 

changed in Wu et al.) and of Flt3-L. Intriguingly CLPs are also absent from 

arthritic bone marrow, suggesting that importance of osteoblasts in marrow B 

lympophopoiesis occurs higher up in the developmental hierarchy than 

previously determined, prior to B cell commitment. It is possible that the 

decreased cycling of Kit+Sca-Lin- cells in KRNxG7 bone marrow is due to 

undefined progenitors in the lymphoid lineage. Previous studies have suggested 

that immunization, infection and inflammatory cytokines can mobilize B cell 

precursors into the periphery (Nagaoka et al., 2000; Ueda et al., 2005; Ueda et 

al., 2004). However it is at the moment unclear if and where B lymphopoiesis 

might be relocated to in the KRNxG7 mice.  

 

Taken together, osteoblast determinants involved in bone formation vs B 

lymphopoiesis vs hematopoietic stem supporting activity could be distinct and 

uncoupled. Alternatively, while osteoblasts maybe obligatory for B cell 

development and bone formation, additional HSC niche cells, such as endothelial 

or reticular cells (Kiel and Morrison, 2006; Sugiyama et al., 2006), could 

compensate for the osteoblast defects in maintaining HSC integrity in 

inflammatory environments of KRNxG7 mice. To this end, previous studies 

demonstrate that endothelial cells of hematopoietic tissues, such as bone 

marrow or extramedullary organs, express cell surface molecules including E-

selectin and VCAM-1. Intriguingly, these molecules are not expressed in 

quiescent endothelium of non-hematopoietic tissues, but become upregulated in 
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inflammation (Mazo et al., 1998; Schweitzer et al., 1996). Thus, it will be 

particularly important to know if the accumulation of HSCs and progenitors that 

we see in the spleens of arthritic mice is associated with changes in the 

endothelial niche in chronic inflammation. Moreover, studies distinguishing the 

requirements of osteoblast vs. endothelial niche in HSC maintenance in normal 

vs. pathologic conditions should be addressed thoroughly in the future.  
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Figure 2.2-1. 
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Figure legends 

Figure 2.2-1. Severe joint destruction and osteoporosis in KRN/G7 mice. 

 (A) Radiographs of femurs of 6 week old G7 and KRNxG7 mice. Right panels 

are higher magnification images of boxed areas in the left panels. Yellow arrow 

and dashed circle in lower right panel denote destroyed articular surface and 

secondary ossification center. Red arrow points to trabecular bone region.  

Green arrow indicates micro-fractures. 

(B) Representative three-dimensional reconstruction of the femur by μCT.   

(C) The percentage of trabecular bone volume/tissue volume determined by μCT 

(BV/TV).  

(D) Trabecular separation determined by μCT (Tb. space).   

(E) DEXA determined bone mineral density (BMD).  Data are presented as mean 

± SD, n=5 in each group of mice.  

(F) ) Histomorphometric determination of BV/TV. Trabecular bone volume 

normalized to total marrow space (BV/TV).  

(G) TRAP (red reaction product) stained histological sections of G7 and KRNxG7 

tibia. Data are expressed as % trabecular bone surface covered by osteoclasts. 

n=5. 

(H) Global osteoclast number, in vivo, was quantified by serum TRAP5b ELISA. 

(I) Oscar, integrinβ3 and cathepsin K expression was analyzed by quantitative 

PCR with RNA from G7 and KRNxG7 BM. Shown is the mean expression ± SD 

for each gene normalized to GAPDH.  n=3. 
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(J) SDF1 and TNF-α expression was analyzed by quantitative RT-PCR with RNA 

from G7 and KRNxG7 BM. Shown is the mean expression ± SD for each gene 

normalized to GAPDH.  n=3. 

*p<0.05, **p<0.01,  ***p<0.001 
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Figure 2.2-2. 
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Figure 2.2-2. Impaired bone formation rate in KRN/G7 mice. 

(A) Osteoblast number/mm bone perimeter (No. OB/B.mm).  

(B) % trabecular surface covered by osteoid (OS.S/B.mm). 

(C) Bone formation rate (BFR) histomorphometrically quantitated from double 

calcein labeled tibia.  

(D) In vivo bone formation was quantified by serum osteocalcin (Osc) level at 6 

weeks of age. n=5. 

(E) RNA of KRN and KRNxG7 BM was analyzed  for gene expression of 

osteoblast markers, receptor activator of NFkappaB ligand (Rankl), 

Osteoprotegerin (Opg), Runx2 and Osteocalcin  by quantitative RT-PCR . Shown 

is the mean expression ± SD for each gene normalized to GAPDH. 

*p<0.05, **p<0.01,  ***p<0.001 
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Figure 2.2-3. 
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Figure 2.2-3. Characterization of mature cells and B cell development 

defect in KRNxG7 mice.  

(A) Systemic increase in myeloid cells and decrease in lymphoid cells. BM, 

spleen, liver and peripheral Blood (PB) cells were harvested from 6 to 8 week old 

KRNxG7 and control (KRN, G7 or B6xG7) mice, stained for the indicated lineage 

markers and analyzed by flow cytometry. B220 is a B cell marker, Gr1 stains 

granulocytes and monocyte populations, Mac1 and F480 combination stains 

macrophages, CD3, CD4 and CD8 stain T cells.   Shown is the mean for 3 to 11 

mice analyzed per strain for each tissue.  

(B) FACS plot for B cell precursors in bone marrow. Bone marrow cells from 

KRNxG7 or G7 controls are stained for B220 and AA4.1 (a marker for B cell 

precursors). B cell precursors (B220loAA4.1+; red arrow) are virtually depleted in 

KRNxG7 bone marrow while most of the residual cells are B220hi and IgM+ (IgM 

staining not shown). 

(C) Systematic analysis of bone marrow B cell development. FACS determined 

frequency of various B cell precursors from earliest (left) to the latest (right) are 

shown. LMPP (Lymphoid Primed Multipotential Progenitor; Kit+Sca1+Lin-

Flk2hiCD34+), CLP (Common Lymphoid Progenitor; Lin-Flk2+IL-7Rα+), PreproB 

(B220+IgM-CD19-CD43+NK1.1-CD11c-), ProB (B220+IgM-CD19+CD43+), PreB 

(B220+IgM-CD19+CD43-), B cells (B220+IgM+). We confirmed that Lin-Flk2+IL-

7Rα+ CLPs were almost predominantly KitloSca1lo (data not shown) as 

previously reported.(Karsunky et al., 2008; Kondo et al., 1997) 
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(D) Expression of various B lymphopoiesis promoting cytokines in whole marrow. 

Expression was determined by quantitative real time PCR, followed by 

normalization to GAPDH. IL-7(Interleukin 7), Flt3-L(Ligand for Flk2), TSLP 

(Thymic Stromal Lymphopoietin). 

*p<0.05, **p<0.01, ***p<0.001. 
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Figure 2.2-4. 
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Figure 2.2-4. Hematopoietic stem cells are not impaired in KRNxG7 mice. 

 (A) Immunophenotypic analyses of HSC containing populations. BM from 3, 6 

and 7 week old KRN, B6xG7 and KRNxG7 mice were subjected to FACS 

analyses for cKit, Sca1 and lineage or CD150, CD48 and CD41 markers. The 

frequency ± SD of KSL or SLAM is shown on the Y-axis. (n≥4). 

 (B) Cell Cycle analysis of bone marrow sub-populations.  6-8 week old mice 

were injected with a single dose of bromodeoxy-uridine (BrdU) proportionate to 

body mass for 2-3 hours prior to sacrifice. Different bone marrow fractions were 

analyzed for BrdU incorporation by flow cytometry.  Shown is the mean ± SD of 

BrdU positive cells for each population for 2 independent experiments (n=4-5 

total mice).   

(C) Quiescent Fraction Analysis of Bone Marrow KSL cells.  Bone marrow cells 

from KRNxG7 and B6xG7 mice (n=4-5) of different ages were lineage depleted, 

surface stained for c-Kit and Sca-1 and subjected to intracellular staining for Ki67 

and Hoechst (see methods and Supplementary Figure 2.2-5). Quiescent cells do 

not express Ki67 (Ki67neg) and stain low for Hoechst because of their 2N DNA 

content (versus 4N DNA content of S/G2/M phase cells). Ki67negHoechstlow 

(quiescent cell) fraction of the stem cell enriched Lin-cKit+Sca1+ (KSL) 

population and the non-stem cell enriched Lin-cKit+Sca1- population are shown. 

As expected KSL cells are more quiescent than Lin-cKit+Sca1- progenitors.  

However there is no appreciable difference in quiescent fraction in KRNxG7 KSL 

cells compared with B6xG7 KSL cells.  
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(D) B6xG7 (CD45.2xCD45.2) or KRNxG7 (CD45.2xCD45.2) BM was 

transplanted into lethally irradiated B6xG7 (CD45.1xCD45.2) recipients. 

Peripheral blood was analyzed for donor contribution (CD45.2) every 6 weeks 

after BM transplantation for 6 months. The percentage ± SD of CD45.2+ 

chimerism is shown on the Y-axis (n=4/genotype). 

(E) B6xG7 (CD45.2+) or KRNxG7 (CD45.2+) bone marrow cells (2x105) were 

mixed with B6xG7 (CD45.1+; CD45.2+) competitor bone marrow cells (2x105) 

and injected (i.v.) into lethally irradiated (1000 Rads) B6xG7 (CD45.1xCD45.2) 

recipient mice. PB CD45.2+ cells of were analyzed 3 months and 5 months post-

transplantation. Data represent the average percentages peripheral blood 

chimerism ± s.e.m.  

*p<0.05, **p<0.01 
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Figure 2.2-5. 
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Figure 2.2-5. Characterization of HSCs and progenitors in KRNxG7 spleen.   

(A) Spleen from 1, 2 and 6 week old B6xG7, KRN and KRNxG7 mice were 

subjected to FACS analyses for cKit, Sca1 and lineage markers. The frequency ± 

SD of CD45+KSL- is shown on the Y-axis. (n ≥5).  

(B) BM and spleen cells from 6 week old KRN and KRNxG7 mice were subjected 

to hematopoietic replating assay (n = 3). Hematopoietic colonies were counted 7-

10 days after replating.   

(C) Lin- spleen cells from B6xG7 (CD45.2xCD45.2) or KRNxG7 (CD45.2xCD45.2) 

were transplanted into lethally irradiated B6xG7 (CD45.1xCD45.2) mice. Survival 

rate of the recipients is shown on the left. CD45.2+ cells were analyzed 3 months 

after transplantation. One representative FASC data is shown on the right.  

***p<0.001. 
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Supplementary Figures 2.2-1. 
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Supplementary Figures 2.2-1. In vitro osteoblasts differentiation from 

KRNxG7 bone marrow stromal cells is normal.   

(a) AP quantitative assay for high-density BMSC cultures in osteogenic medium.  

Data is presented as mean ± SD, n=5 in each group of mice.  

(b) Detection of bone nodule formation by von Kossa staining.  The BMSC cells 

were incubated for 14 days in mineralization medium.  (arrowhead denotes a 

nodule) 
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Supplementary Figures 2.2-2. 
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Supplementary Figures 2.2-2. Marrow cellularity and KSL frequency are 

independent of harvesting method.  

(a) Number of bone marrow cells generated from flushing method and 

collagenase/dispase enzymatic digestion method of total bone. One femur and 

one tibia from 6 week old B6xG7 and KRNxG7 mice were examined. The values 

indicate cell number ± SD from one femur plus one tibia on the Y-axis. n=4 for 

each group. 

(b) Flushed BM and total BM from 6 week old B6xG7 and KRNxG7 mice were 

subjected to KSL FACS analyses. The values indicate frequency ± SD of KSL on 

the Y-axis. 

(c) Absolute number of KSL cells of one femur and one tibia of B6xG7 and 

KRNxG7. The values indicate cell number ± SD on the Y-axis. n=4 for each 

group, *p<0.05. 
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Supplementary Figures 2.2-3. 
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Supplementary Figures 2.2-3. Depleted lymphoid cells in KRNxG7 bone 

marrow. 

(a) Representative FACS plot depicting depleted lymphoid cells and expanded 

myeloid cells in KRNxG7 bone marrow. Lymphoid cells have low forward scatter 

(FSC)  and side scatter (SSC) as a result of the smaller size and less granularity. 

In bone marrow majority of lymphoid cells are B220+ (~30% of leukocytes). This 

reduced FSCloSSClo frequency in KRNxG7 mice is also reflected in B220+ 

frequency (see Figure 2.2-3A). 

(b) Representative FACS plot depicting depleted CLP in KRNxG7 bone marrow. 

CLPs are Flk2+IL-7Rα+Lin-. Indicated fractions are mean CLP frequency in total 

marrow ± standard deviation. 
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Supplementary Figures 2.2-4. 
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Supplementary Figures 2.2-4. BrdU analysis of progenitor populations. 

(a) Schema for BrdU analysis. Lin+ cells are excluded by magnetic depletion 

using biotin conjugated anti-lineage marker antibodies and also by FACS gating 

by excluding Streptavidin-PerCP-Cy5.5 positive cells. Various gated progenitor 

fractions – Lin-, KSL+, KSL- are subsequently analyzed for BrdU positive cells. 

(b) BrdU analysis of bone marrow progenitor cells at early time point (4wks;) and 

later time point (16wks). N=2-4, *p<0.05. 
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Supplementary Figures 2.2-5. 
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Supplementary Figures 2.2-5. Schema for Ki67/Hoechst analysis. 

(a) Exclusion of Lin+ cells by magnetic depletion and flow cytometric gating (see 

methods & Supplementary Figure 2.2-4a) was performed. Lin- cells were 

subjected to doublet discrimination. 

(b) c-Kit and Sca-1 expression of doublet free and Lin- gated cells to get KLS 

(KLS+) and KLS- populations.  

(c) Ki67 and Hoechst analysis of gated KLS+ and KLS- cells. Quiescent cells are 

Ki67negHoechstlo. The more primitive KLS+ population conspicuously lack Ki67hi 

cells, which are present in KLS- population that are devoid of HSCs. 
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Supplementary Figures 2.2-6. 
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Supplementary Figures 2.2-6. Expression of cell cycle Regulators in BM 

derived KSL cells.   

CD45+KSL cells were FACS sorted from 6 week old KRNxG7 and KRN control 

mice (10-11 mice for each). RNA was extracted and used for quantitative real-

time PCR for various cell cycle regulators: p21 and p27 are cyclin dependent 

kinase (Cdk) inhibitors of the Cip/Kip family; p18 and p19 are Cdk inhibitors of 

the Ink4 family; Rb, p107 and p130 are retinoblastoma (Rb) family genes; Bmi is 

an epigenetic regulator of stem cell self renewal.  Shown is the average of 2-4 

experiments for each gene with error bars representing standard deviation.  Each 

experiment was performed in duplicate. 
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Supplementary Figures 2.2-7. 
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Supplementary Figures 2.2-7. Analyses for donor cell derived 

hematopoietic cell lineages in primary, secondary and tertiary recipients. 

Peripheral blood was analyzed for the donor cell contribution (CD45.2) to 

individual hematopoietic cell lineages. The data shown is the mean percentage 

PB chimerism (CD45.2+) ± SD of CD3+, CD4+, CD8+ (T cells), B220+ (B cells), 

Gr1+ (granulocytes), and Mac-1+ (macrophages) populations. ***p<0.001. 
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Supplementary Figures 2.2-8. 

 

 

 175 



Supplementary Figures 2.2-8. HSCs from 4 month old KRNxG7 mice are not 

compromised.   

Lethally irradiated B6xG7 (CD45.1xCD45.2) recipient mice were transplanted 

with 1x106 BM cells from 4 months old B6xG7 (CD45.2xCD45.2) or KRNxG7 

(CD45.2xCD45.2) mice. The figures shown are the mean percentage ± SD of 

donor-derived cells in the peripheral blood (PB) 6 weeks after transplantation. (a) 

The percentage CD45.2+ donor derived cells is shown. (b) Donor derived mature 

hematopoietic cell populations are detected as CD4/CD8, B220, and Mac-1 

positive populations.  n=8, ***p<0.001 
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Supplementary Figures 2.2-9. 
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Supplementary Figures 2.2-9. Splenomegaly in KRNxG7 mice. 

(a) KRNxG7 mice display splenomegaly. KRNxG7 spleen weight was compared 

to that of control mice.  Left panel shows quantified mean spleen weight 

normalized to total body weight using KRN controls ± SD. n=5. Right panel 

shows representative spleens from KRNxG7 and control B6xG7 to illustrate 

splenomegaly. 

(b) The spleen of 6 week old KRN, B6xG7, and KRNxG7 were collected, treated 

with RBS lysis buffer and counted. The values indicate mean cell number ± S.D. 

n≥4. 

(c) Absolute number of KSL cells of spleen cells of B6xG7 and KRNxG7. The 

values indicate cell number ± SD on the Y-axis. n=8 for each group, **p<0.01, 

***p<0.001. 
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Supplementary Table 2.2-1.  Primer sequences used for qRT-PCR.  

 
Gene Forward Primer Reverse Primer Source 
β3 Integrin CCACACGAGGCGTGAACTC CTTCAGGTTACATCGGGGTGA Primerbank 7949057a1 

Bmi-1 ATCCCCACTTAATGTGTGTCCT CTTGCTGGTCTCCAAGTAACG Primerbank 192203a1 

Cathepsin K GAAGAAGACTCACCAGAAGCAG TCCAGGTTATGGGCAGAGATT Primerbank 31982433a1 

Flt3-L AGATGCAAACGCTTCTGGAG AGGTGGGAGATGTTGGTCTG Primer 3 

GAPDH TGGCAAAGTGGAGATTGTTGCC AAGATGGTGATGGGCTTCCCG Ref (Lugus et al., 2007) 

IL-7 TGGAATTCCTCCACTGATCC ACCAGTGTTTGTGTGCCTTG Ref (Ueda et al., 2005) 

OPG GGGCGTTACCTGGAGATCG GAGAAGAACCCATCTGGACATTT Primerbank 31543882a2 

OSCAR CCTAGCCTCATACCCCCAG CAAACCGCCAGGCAGATTG Primerbank 18376821a3 or 
28274692a3 

Osteocalcin CTGACCTCACAGATCCCAAGC TGGTCTGATAGCTCGTCACAAG Primerbank 13811695a1 

p107 AGCTTCAGCCACTCAAAGTGTAAG GCTCACTTGGTGCGCTTTTT Ref (Passegue et al., 2005) 

p130 TGATGGCAAAGGTCACAAAAGA GGCCTGTGGCTGAGTCCTGTA Ref (Passegue et al., 2005) 

p18 CGAGCAGCACTCTGGACTAC AGGCTCGGCCATTCTTTAG Primer 3 

p19 CTTCTTCACCGGGAGCTG CAAAGCAACTGCTGGACTTC Primer 3 

p21 GTGGCCTTGTCGCTGTCTT GCGCTTGGAGTGATAGAAATCTG Primerbank 6671726a3 

p27 TCTCTTCGGCCCGGTCAAT GGGGCTTATGATTCTGAAAGTCG Primerbank 31542372a2 

RANKL CAGCATCGCTCTGTTCCTGTA CTGCGTTTTCATGGAGTCTCA Primerbank 8843823a1 

Rb TGACCTGGTAATCTCATTTCAGC GGGTGTTCGAGGTGAACCAT Primerbank 6677679a3 

Runx2 TGTTCTCTGATCGCCTCAGTG CCTGGGATCTGTAATCTGACTCT Primerbank 20806530a2 

TSLP CTCCCCGACAAAACATTTGCC GCCATTTCCTGAGTACCGTCATT Primerbank 10946698a3 

 

 Primerbank: http://pga.mgh.harvard.edu/primerbank/ 

 Primer 3: http://biotools.umassmed.edu/bioapps/primer3_www.cgi 

 

 

http://pga.mgh.harvard.edu/primerbank/
http://biotools.umassmed.edu/bioapps/primer3_www.cgi
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Chapter 2.3 

Conclusion and Future Directions 
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Summary of Chapter Two 

 During adulthood, hematopoietic stem cells (HSCs) are responsible for the 

generation of all blood cells. Under normal physiological conditions, HSCs reside 

mainly in specific microenvironments within bone marrow (BM) cavities, known as 

BM niches, where they maintain a balance between self-renewal and 

differentiation into more mature cells. Bone homeostasis has been proposed to 

have important effects on HSC maintenance under physiological states, but little 

is known about their relationship in pathological states. In this chapter, the 

relationship between HSCs and bone homeostasis in chronic inflammatory 

conditions is examined using the KRNxG7 transgenic mouse model. Using this 

model, it was found that mice with chronic inflammatory arthritis also develop 

osteoporosis. The overall systemic bone loss phenotype of these mice is not due 

to increased resorption of bone, but rather to decreased bone formation. 

Osteoblasts, bone forming cells, have been proposed to be one of the 

components that comprise the BM niches that maintain HSC homeostasis and 

supports B lymphopoiesis. In our studies, we have found that these arthritic mice 

display defective bone marrow B lymphopoiesis but, intriguingly, HSC frequency, 

cell cycling, and long-term functional repopulating ability were all unchanged, 

compared to normal mice. Our findings indicate that the bone-forming function of 

osteoblasts is disassociated from their ability to maintain HSCs in the bone 

marrow in a chronic inflammatory condition. These observations suggest that 

other cell types, such as endothelial cells in the bone marrow, might serve as 

niche cells to maintain HSC homeostasis under pathological conditions. 
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Hematopoietic Stem Cell Niche in KRNxG7 Mouse 

 We found that KRNxG7 mice, a mouse model to study human RA, exhibit an 

osteoporotic phenotype, due to diminished bone formation. The molecular 

mechanisms that affect the number and function of osteoblasts in the bone 

marrow of KRNxG7 mice remain unclear. Previous in vitro studies demonstrated 

that the pro-inflammatory cytokine, TNFα, inhibits the development and activity of 

osteoblastic cells by down-regulating bone-formation markers including alkaline 

phosphatase, type-I collagen, osteocalcin and Runx2 (Centrella et al., 1988; 

Gilbert et al., 2002; Gilbert et al., 2005; Kuroki et al., 1994; Li and Stashenko, 

1992; Nakase et al., 1997). We have found that KRNxG7 mice display a high level 

of TNF-α mRNA and protein in BM and serum. Thus, it is possible that high level 

of TNFα has an impact on the development and function of osteoblasts in the 

bone marrow. It will be important to assess the effects of TNFα on the 

osteoporotic phenotype in KRNxG7 mice. One experiment would be to use 

antibodies against TNFα to KRNxG7 mice before onset of the arthritic symptoms. 

For example, injection of antibodies to neonatal KRNxG7 mice or to pregnant 

female would determine if they can reduce the osteoblast defects that are seen in 

the tibias and femurs of adult KRNxG7 mice. Furthermore, deletion of TNFα 

signaling in KRNxG7 mice could give a detailed insight on the TNFα-mediated 

osteoporotic phenotype found in these arthritic mice. 

 Previous studies using genetically modified mice have demonstrated that 

osteoblast numbers and activity correlate positively with the number of functional 
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HSCs seen in the bone marrow (Calvi et al., 2003; Visnjic et al., 2004; Zhang et 

al., 2003). However, we revealed that, while the numbers and activity of 

osteoblasts in the bone marrow of KRNxG7 mice were reduced, the maintenance 

of the HSC population was intact. Those data do not, therefore, support the 

previous notion at least in this model of chronic inflammation. I propose two 

possibilities to explain our observations: first, the remaining osteoblasts in arthritic 

mice can sufficiently support the HSC maintenance; second, endothelial cells in 

the bone marrow could compensate the osteoblast defects and sufficiently 

support the HSC maintenance in KRNxG7 mice. 

 When we tracked green fluorescent protein (GFP) expression under the 

control of the osteoblast-specific Col2.3 promoter (Kalajzic et al., 2002), we found 

that some GFP+ cells were still present in KRNxG7 bone marrow (unpublished 

data). These Col2.3 GFP-expressing osteoblasts might be part of the HSC niche 

because conditional ablation of the population leads to a decrease in the total 

number of HSCs found in the bone marrow (Visnjic et al., 2004). Thus, it is 

possible that a limited population of osteoblast cells that remain active in KRNxG7 

mice might still be sufficient to maintain HSC integrity in the bone marrow of 

arthritic mice. Another possibility is that osteoblast-lineage cells are 

multifunctional. It has been proposed in previous studies that a subset of 

osteoblasts, expressing N-cadherin, might serve as HSC niche cells (Arai et al., 

2004; Zhang et al., 2003). Lyperi et al. showed that increasing the activity and 

total number of osteoblasts, without increasing the N-cadherin-expressing 

osteoblast subpopulation, results in excessive bone formation without increasing 
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the number of HSCs (Lymperi et al., 2008). This observation suggests that HSC 

number is correlated, not with the total number of osteoblasts, but with a subset of 

osteoblasts which may not be involved in bone formation. Therefore, it is possible 

that the remaining osteoblasts in KRNxG7 mice, possessing little or no 

bone-forming activity, could be sufficient to maintain HSCs in the bone marrow. 

 To test if the remaining osteoblasts have the ability to maintain HSCs, a 

possible experiment would be to cross KRNxG7 mice with Col2.3ΔTK transgenic 

mice (Visnjic et al., 2004), which allows conditionally ablation of osteoblasts by 

ganciclovir. This cross could be used to assess whether or not HSC maintenance 

is disturbed by ablation of the remaining osteoblast population seen in KRNxG7 

mice. If the functional HSCs are affected in KRNxG7;Col2.3ΔTK mice, the result 

would suggest that the remaining osteoblasts are sufficient to serve as HSC niche 

cells. On the other hand, if HSC maintenance is not affected by the ablation, it 

would indicate that other cells play important roles in the HSC maintenance under 

conditions of chronic inflammation. 

 HSCs have been observed to closely attach to the endothelial cells in the BM 

and mobilized spleen, suggesting endothelial cells might serve as important 

components as HSC niche cells (Kiel et al., 2007; Kiel et al., 2005). It is possible 

that inflammatory environment might alter the ability of endothelial cells in the 

bone marrow of arthritic mice, and that the endothelial cells could sufficiently 

support HSC maintenance, compensating for the osteoblast-related defects in the 

KRNxG7 mice. Li et al. showed that endothelial cells, isolated from several adult, 

non-hematopoietic organs and co-cultured with various cytokines, supported the 
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expansion of hematopoietic progenitors, some of which maintained the 

repopulating capacity of HSCs (Li et al., 2004). Cell adhesion molecules (CAMs), 

such as E-selectin and vascular cell adhesion molecule-1 (VCAM-1), are involved 

in hematopoietic progenitor cells homing in to and repopulating the new bone 

marrow after bone marrow transplantation (Frenette et al., 1998; 

Papayannopoulou et al., 1995). These CAMs are constitutively expressed on the 

surfaces of endothelial cells in hematopoietically active tissues, such as adult 

bone marrow and fetal liver (Schweitzer et al., 1996), but not detectable on the 

endothelial cells of non-hematopoietic tissues under normal conditions. 

Interestingly, these molecules can be upregulated in conditions of inflammation or 

by various inflammatory cytokines (Haraldsen et al., 1996; Iademarco et al., 1995; 

Schweitzer et al., 1996; Strickland et al., 1997). We have found that KRNxG7 

mice have enlarged spleens with accumulations of HSCs and hematopoietic 

progenitors, despite the fact that osteoblasts are not found in the spleen. 

 Therefore, it is critical to examine whether endothelial calls are responsible 

for the HSC maintenance in the bone marrow and for the accumulated HSCs in 

the spleens of arthritic mice. A possible approach to this question is to examine 

histological sections of spleen and tibia/femur from KRNxG7 and control mice (i.e. 

G7 or KRN mice), double-staining with HSC markers, such as CD150+CD41- 

CD48- (Kiel et al., 2005), and with endothelial cell makers, such as MECA-32 or 

VE-cadherin, to determine if HSCs reside in proximity to endothelial cells in these 

tissues. If HSCs reside more closely to the endothelial cells comparing to other 

cell types in KRNxG7 mice versus control mice, it would provide an insight that 
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the endothelial cells might play significant roles for the HSC maintenance in 

chronic inflammation conditions. Furthermore, determining the expression levels 

of CAMs such as E-selectin and VCAM-1 on the endothelial cells of the spleen 

and tibia/femur of KRNxG7 versus control mice would be warranted. Next, to 

disturb the assembly of BM endothelial cells in KRNxG7 and control mice by using 

VE-cadherin-specific antibody (Avecilla et al., 2004) followed by HSC analyses 

would further elucidate the roles of endothelial cells in HSC maintenance under 

normal vs. pathologic conditions. Future analyses comparing gene expressions of 

isolated endothelial cells from spleen and bone marrow between KRNxG7 and 

control mice would provide further understanding of how chronic inflammation 

might affect bone marrow and splenic endothelial cells to support HSC 

maintenance molecularly. 

 Moreover, the bone marrow microenvironment contains diverse populations 

of non-hematopoietic cells such as mesenchymal progenitors, osteoblasts, 

osteoclasts, fibroblasts, reticular cells, adipocytes, and endothelial cells. Future 

studies will require further determining the involvements of these cells or even 

unidentified cell types in supporting HSC maintenance in the bone marrow of 

KRNxG7 mice. 
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