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Abstract

‘With recent advances in wireless communication technology, mobile computing is an increasingly
important area of research. A mobile system is one where independently executing components may migrate
through some space during the course of the computation, and where the pattern of connectivity among the
components changes as they move in and out of proximity. Mobile UNITY is a language and logic for
specifying and reasoning about mobile systems, the components of which must operate in a highly decoupled
way. In this paper it is argued that Mobile UNITY contributes to the modular development of system
specifications precisely because of the decoupled and declarative fashion in which coordination among
components is specified. The packet forwarding mechanism which is at the core of the Mobile IP protocol for
routing to mobile hosts is taken as an example, A Mobile UNITY specification of packet forwarding and the
mobile system in which it must operate is developed. Mobile hosts are the components that can disconnect
from one location in the network and reconnect to another at any point during system execution. Finally, the
role of formal program verification in the development of protocols like Mobile IP is discussed.
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1. Introduction

Mobile computing represents a major point of departure from the traditional distributed computing
paradigm. The potentially very large number of independent program units, a decoupled computing style,
frequent disconnections, continuous position changes, and the location-dependent nature of the behavior and
communication patterns present designers with unprecedented challenges in the areas of modularity and
dependability. So far, the literature on mobile computing is dominated by concerns having to do with the
development of protocols and services for this environment. These services are characterized by more
dynamic binding and weaker consistency than traditional distributed applications. For example, the
components needed to carry out a service are often not determined until runtime, as in the location-dependent
services provided by a mobile web browser [12]. Other work has pointed out the importance of context other
than location [9], such as the presence or absence of other components. Weak consistency protocols for
filesystems and databases [8, 10, 11] are motivated by the low bandwidth and frequent disconnections typical
of a wireless network with mobile nodes. These systems trade consistency for availability under the
assumption that in some cases, dealing with the consequences of inconsistencies is cheaper than denying
access to a resource.

Some researchers have focused on toolkits and abstractions for building mobile applications.
Badrinath and Welling [1] describe a C++ abstraction for delivering events such as bandwidth variations,
disconnections, and battery measurements to applications. Noble, Price, and Satyanarayanan [6] present the
Odyssey application library for managing changing resources and emphasize the importance of application-
and data type-specific policies for reacting to changes in the environment. Both emphasize the need to
preseat information about connectivity directly to applications, which violates traditional notions of
abstractions and encapsulation of the network. Such information is necessary, however, to build applications
that behave properly under changing circumstances, such as responding to diminished connectivity by
changing to a lower-resolution video stream.

In this paper we focus on new kinds of abstractions for interprocess communication in the mobile
setting. Mobile UNITY [5] provides a notation for mobile system components and a coordination language for
expressing interactions among the components. Once expressed in our notation, a system can be subjected to
rigorous formal verification against a set of requirements expressed as temporal properties of executions.
Mobile UNITY is based on the UNITY model of Chandy and Misra [2], with extensions to both the notation
and logic to accommodate specification and reasoning about mobile programs. In Mobile UNITY, each
program is a unit of mobility and all variables are locally owned. We capture movement by augmenting the
program state with a location attribute whose change in value is used to represent motion. The new language
supports a declarative style of communication that allows a component program to be written in a modular
fashion, without regard to the identities of the other components with which it must later interact. This is
accomplished with a novel construct, transient variable sharing. This allows mobile programs to share data
when in close proximity, i.e., a variable owned by one program may be shared in a transparent manner with
different programs at different times depending upon their relative location in space, This implies that a value
written to one variable of such a pair must be propagated to the other variable as a side-effect of an
assignment. The basic constructs of Mobile UNITY that allow us to express this idea also allow for other
coordination constructs, such as transient statement synchronization. However in this paper we deal only with
transient sharing, which suffices for the examples presented.

Mobile UNITY is designed to accommodate mobile applications and services that exhibit dynamic
reconfiguration and weak consistency, like the ones discussed earlier. Perhaps the most basic service that can
be provided in the mobile setting is simple packet routing. The Mobile IP protocol [7] is designed to deliver
this service to mobile hosts that are transiently connected to the Internet. In this paper we give a formal
description of the packet forwarding mechanism at the core of the Mobile IP protocol and begin to investigate
some of its formal properties. Eventually, we hope to formally describe other packet routing algorithms, such
as those for ad-hoc networks [4], which provide routing services to a group of mobile hosts that may be
completely disconnected from the Internet. Such situations may arise at a conference, for instance, where it
would cost too much to install a fixed routing infrastructure for a short-duration event, or in an urban setting
after a natural disaster had wiped out the fixed infrastructure. These kinds of networks must rely on the
individual hosts for control and routing functions. For now, however, we concentrate on the current version of
Mobile IP, which assumes that mobile hosts connect to the Internet at specific points designated by network
administrators.

Section 2 gives a simple description of a network that allows hosts to disconnect but not to move to
another point of connectivity. This serves as an introduction to the Mobile UNITY notation and offers an
example of how mobile, transiently-connected systems may be specified. Section 3 refines the example to



model packet forwarding inside the fixed network, which allows mobile nodes to migrate from one point of
connectivity to another and to receive packets there. Section 4 shows how UNITY-style program verification
is still feasible in Mobile UNITY. Several correctness properties of the packet forwarding system are stated
and outlines their proof are discussed—the presentation style is accessible to a broad audience. Finally,
conclusions appear in Section 5.

2. A Notation for Mobile Programs

We favor a state-based model, axiomatic reasoning, and explicit representation of space and its
properties. While the choice of underlying model may be a matter of personal taste, we contend that modeling
the space explicitly is desirable when one hopes to take into account the physical reality of moving objects
and its implications on the behavior of the software that they carry. Because the behavior exhibited by a
component is affected by what other components are in its proximity, location is likely to play an important
role in reasoning about mobile computations. This is the reason why we treat mobility as a change in the
location of a component—a mobile program.

In this paper we use the UUNITY [2] notation to express the computation taking place within the mobile
components of a system and the UNITY proof logic to reason about mobile computations—both are extended
appropriately to account for the effects of movement and transient interactions. To introduce the reader to the
UNITY notation we first consider a standard UNITY program which models a network. A picture of the
network is shown in Fig. 1.
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Fig. 1. The simple packet router modeled by the program nefwork, below.

The simplified network consists of NPorts input queues and NPorts output queues. The index of each queue is
a network address that can be assigned to some host. The state of the network is completely defined by the
contents of the queues. Each queue contains one or more packets (the msg type in the program below) which
are assumed to be tuples of the form (4, D}, where A is the destination address of the packet and D is the data
contents. The destination address of a message m can be accessed by writing m.A. Execution of the network
corresponds to taking some packet out of an input queue and delivering it to the appropriate output queue.
Execution of the network continues forever.

The program below expresses these ideas formally. The declare section contains variable
declarations, here the two arrays of queues. The always section defines convenience functions to be used later
in the program text and in proofs, Here it contains the definition of the parameterized function dest(f) which
returns the address of the packet on the head of queue i. The initially section is a set of state predicates
defining the allowed set of initial states. The predicates are separated by the symbol [} which is used as the

quantifier in three-part notation!.

1 The three-part notation { op quantified_variables : range :: expression ) used throughout the text is
defined as follows: The variables from quantified_variables take on all possible values permitted by range. I
range is missing, the first colon is omitted and the domain of the variables is restricted by context. Each such
instantiation of the variables is substituted in expression producing a multiset of values to which op is applied,



program neiwork

declare
in, out : array[NPorts] of queue of msg
always
dest(i) = in[i].head.A
initially
{[1i:0< i< NPorts :: in[i] = InitialPort(i))
assign
{[1i:0<1i< NPorts :: out[dest(i)], in[i] := out[dest(i)]einfi].head, in[i].tail if in[i] = ¢}
end

Each initialization predicate makes use of the function InitialPort(i), which simply returns some initial state
for input queue /. The network will execute as a closed system for now, performing routing only for those
packets which are initially in the input queues. The assign section contains the “code” for the program. It
contains a set of assignment statements, one for each port, each guarded with an if. Each assignment is a
multiple assignment, that is, each has an equal number of left and right hand sides. When a statement is
selected for execution, all right hand sides (and left hand side array indices) are completely evaluated before
any assignment takes place. Concurrent execution is modeled as a non-deterministic fair interleaving of the
statements from this set. In the assign section, the notation g.head is used to refer to the element on the front
of queue g, and g.tail refers to a queue formed by removing the first element of g. The operator ‘¢’ appends an
element to a queue; the expression (gee) is equivalent to the queue g with element e added to the end. Thus,
if input port i is non-empty (in[f] # ¢) the assignment takes the packet from the head of input queue i and
places it on the end of the output queue given by the packet’s destination address.

This model of the network has no interaction with the outside world. The initial conditions place
packets on the input links which are routed to the appropriate output link where they remain forever. Once all
packets have been routed, the program is said to have reached Fixed Point, i.e., no further state changes take
place. However, we would like to compose this program with others that model hosts connected to the
network. These hosts would insert packets into input queues and remove packets from output queues. In
standard UNITY, this composition would be accomplished with statically shared variables. Any two variables
with the same name are considered shared, and the relationship is not allowed to change over the course of
execution. However, we would like to model the intermittent types of system relationships characteristic of
mobile computing. The first step towards this goal is to isolate the namespaces of each program. Thus, in
Mobile UNITY variables are not shared unless explicitly allowed to by the circumstances of the current state;
this leads to a less tightly coupled system where relationships between components change dynamically. The
program mobile-node contains two queues, one for input to the node and one for output from the node. The first
two statements in the assign section consume and generate messages on these links. Messages are generated
from the function NextMessage{address) which is simply assumed to return the next message that the host
wants to transmit.

program mobile-node(k) at A
declare
in, out : queue of msg
[ address : integer
initially
address = k
assign
in = in.tail ifin=¢
[l out := out eNextMessage(address)
O A = Move(\)
end

The factors leading to interaction are likely to include location, so we add this as a distinguished variable A
which models the physical placement of the node in space. This program contains one assignment statement
that modifies A, which uses the function Move(A) to determine the new location. Implicit in our notational
conventions is the notion that a program and its variables are co-located and move as a single unit.
Assignments to A are not compiled as assignment statements but instead model physical movement. In this

yielding the value of the three-part expression. If no instantiation of the variables satisfies range, the value of
the three-part expression is the identity element for op, e.g., true when op is V.



case, the statement simply models the fact that the program may move at some point in its execution, most
likely due to a user walking away from the network. Such statements must represent a correct reflection of the
physical world, accurate enough to facilitate reasoning about both functional and mobility aspects of the
program’'s behavior. Even though movement is continuous, the movement statements must be viewed as
atomic state changes associated with the arrival at the new location in order to make them fit with the
interleaved mode! of concurrency used by UNITY. This has interesting implications on the statement
scheduling strategy in the runtime system supporting the execution of Mobile UNITY programs, e.g., a guard
on a movement statement ought not to change during the unit of time it takes to complete the move. In this
paper we simply assume that the implementation maintains the appearance of an interleaved atomic execution
and we use this fact when reasoning about such programs. The type of A was left unspecified. Throughout the
paper we assume the existence of a global declaration for the spatial context in which the programs move.

In general, restrictions on how such a location variable is accessed and updated must reflect the
mobility characteristics of the computation. In a cellular network, for instance, the location of the mobile unit
is determined by the car or person carrying the computer but constrained to movements from one cell to a
neighboring one (as long as the unit is on). The verification of any hand-off algorithm must rely on this
assumption. Protocols involved in reestablishing connectivity at the time a mobile computer is powered up
may have to assume that initial locations are arbitrary. In some applications a program may have to know its
own location while not in others. In the former case the location is directly accessible by the program while in
the latter the location plays a role only in reasoning about the computation. In a robot application it is also
conceivable that a program may actually have the ability to control the movement of its carrier. In this case,
movement is no longer under the control of the environment but planned by the program which could request
future data delivery at specific locations to be reached along the movement path.

To compose this program with the nefwork program given earlier, we need to formally declare the
components and specify the interactions between them using a specialized abstract coordination language
built on top of three primitive structures not discussed in this paper (see [5) for details). In the following
system specification, we declare one nerwork component, one mobile-node component for each port,
parameterized by the port number, and one sharing interaction for each mobile node input and output queue.

System network-and-nodes
Components
network
0{[}i:0s5i< NPorts :: mobile-node(i} at Aj)
Interactions
{[1i:0< i < NPorts ::
mobile-node(i).in = network.out[i]
when mobile-node(i).A = A,
engage mobile-node(i).in
disengage current, ¢

[ mobile-node(i).out = network,in[i]
when mobile-node(i).A = A,
engage network.in[i]
disengage ¢, current

)

end

Consider the first sharing interaction. It names two variables, mobile-node(i).in and network.out[i}. The first is
a variable from an instance of a parameterized program, while the second is an array element from the fixed
program network. The two variables are treated as shared when the mobile node i is co-located with port i at
A;. By “shared” we mean that any change to one copy is atomically propagated to the other copy, just as if
the variables were statically shared as in standard UNITY. In this system, only node i can be connected to
port i (a node has no connectivity when away from its home port). The engage expression is used to specify
what value the newly shared variable should take when the sharing predicate transitions from false to true. In
this case, we use the value mobile-node(i).in because the shared queue is actually physically located on some
network interface hardware present on the mobile node (we assume that the network interface has on board a
queue of messages that have not yet been processed by the mobile node). We must also specify what values
the shared variables should take when the sharing predicate transitions from true to false. This is the
disengage value, which in this case states that the variable mobile-node(i).in should retain the current shared
value, while the variable nemwork.out[i] should be cleared. Packets might be placed on this output queue



during the period of disconnection, but they will be dropped by the engage specified here once the connection
is re-established. We share the mobile node’s output queue with the appropriate network input queue in a
similar fashion.

The notion of transient shared variables is an interesting generalization of a well established
computing paradigm. The engagement and disengagement protocols are closely tied to the notions of cache
coherence and reconciliation among multiple versions of a database or filesystem. Qur experience to date
indicates that transient data sharing can contribute significantly to decoupling among the components of a
mobile system. Individual programs have no knowledge of the identity of other programs in the system.
Changes in the design of individual components often have effects limited only to the definition of the
interactions. The same programs work in a multitude of configurations using varying numbers of components.
Finally, by hiding the communication behind what amounts to be a set of declarative rules the programming
task is greatly simplified; all communication responsibilities are relegated to the runtime support system.

3. Packet Forwarding in Mobile IP

In the previous section, we modeled the network as a simple packet router, and the hosts were mobile
but could only be connected when present at the home location. In this section, we would like to refine this
abstract program so that it captures important aspects of the Mobile IP protocol [7]. This is an extension to IP
version 4 that attempts to deal with host mobility at a network level by forwarding those packets that arrive at
the mobile node’s home address to the foreign subnetwork on which the host happens to be. The goal of
Mobile IP is to accomplish this without introducing changes to the bulk of the Internet routing fabric or nodes
that want to communicate with mobile hosts. In what is expected to be the most common mode of operation,
implementation of the protocol requires a home agent, which accepts packets on behalf of the mobile node and
performs forwarding, a foreign agent, which receives the forwarded packets and delivers them to the mobile
node, and a mobile node that detects movement and initiates the appropriate registration with the home agent
so that packets can be forwarded. Fig. 2 illustrates a mobile node away from home and the “tunnel” through
which the home agent sends packets. The mobile node is allowed to transmit packets normally as long as it
can find an appropriate outgoing router (often the foreign agent itself).

CN
Internet
FA
m““e\
MN
_ HA

Fig. 2. A high-level picture of the Mobile IP protocol. Packets arriving at the home agent (HA) from some correspendent
noc:,gl (Cl;lLar(iﬂt“;lneled using somse form of packet encapsulation to the foreign agent {FA), which then delivers them to the
mobile node (MN).

In this section, we introduce some modifications to the abstract program presented earlier that let it
capture the packet forwarding idea from Mobile IP. To keep the presentation short, the protocol is modeled at
a very high level and we make many simplifying assumptions. We make no modifications to the mobile-node
program; this program corresponds to the interface presented by the operating system to applications. Qur
modifications will thus be confined to the network program and the system declarations. The resulting new
system is named mobile-ip. Because our modifications are to the nefwork program, this is where we are
modeling the functionality provided by home and foreign agents. As before, each port i is considered to be
“at” location A;, and a mobile node can be connected only when it is co-located with some port—any port in
this refined example. The mapping from agenis to ports is not defined; each port could correspond to a
separate mobility agent or one mobility agent could manage several ports. The function of the agents is
completely encapsulated inside the network. Fig. 3 illustrates this away-from-home connectivity.



Fig. 3. A network supporting mobile hosts in the style of Mobile IP. The packet forwarding scheme is modeled as a
modification to the routing functionality so that packets at any input are routed immedialely to the comect output.

Our modified network program is shown below. It now contains two additional arrays, address and
binding.

program network
declare
in, out : array[NPorts] of queue of msg;
address, binding : array[NPorts] of integer
always
dest(i) = binding[in[i].head.A]
initially
{[1i:0<i< NPorts :: binding[i] = i}
0{Mi:0<i<NPorts :: address[i] = i)
assign
{[1i:0<i< NPorts :: out[dest(i)], in[i] := out[dest(i)]ein[i].head, in[i).tail if in[i] # ¢)
0{]i:0<i< NPorts :: binding[address[i]] := i if address[i] 2 0)
end

The value in address[i] is set to the address of the mobile node that is currently connected te port i, or -1 if no
mobile node is present. The system specification given later will accomplish this. The value in binding[i] will
be set to the forwarding address of node i. This will be accomplished by the program network itself when it
detects a mobile node at some port (using the value of address[i]). The code for the network now has two sets
of quantified actions. The first accomplishes routing and is very similar to the routing action of the previous
version, except that it now uses the forwarding address of the destination, instead of the destination itself, to
determine the final endpoint of the communication. This models correct execution of the home agent and
foreign agent as they collaborate to deliver a packet to the mobile node. The second set of actions establishes
a forwarding address for a mobile node when it is connected away from home and also clears this forwarding
address when it is re-connected to the home port. This models registration of the mobile node as it moves from
subnetwork to subnetwork. As the reader can readily observe, the program required very few modifications to
capture the essential nature of the packet forwarding scheme. The basic structure of the program remains the
same. We simply modified the routing to account for forwarding, and added one statement to model remote
registration.

The system mobile-ip is shown below. In it, we rely on interactions given in the system specification
to update the address array. As before, the system is composed of one network program and as many mobile-
nodes as there are ports.



System mobile-ip
Components
network
0{[)i: 0% i< NPorts :: mobile-node(i) at Aj)
Interactions
([1i,j:0=<i<NPorts A 0< j< NPorts ::
mobile-node(i).address = network.address[j]
when mobile-node(i).A =A; A Alone(d;)
engage mobile-node(i).address
disengage current, -1

[} mobile-node(i).in = network.out[j]
when mobile-node(i).A = A, A Alone(d;)
engage mobile-node(i}.in
disengage current, ¢

[0 mobile-node(i}.out = network.in{j)
when mobile-node(i)A =& A Alone();)
engage network.in[j]
disengage ¢, current

)

end

The transient sharing conditions now support away-from-home interaction, however, so there are now O(NPorts
X NPorts) interactions. For each pairing of mobile node to port, there are three interactions. The first shares
the mobile node’s address with the appropriate network port when connected. This models the acquisition of a
foreign agent upon entering a new subnetwork. The actual registration with the home agent was modeled by
assignment to the binding array given previously, based on this address. The second and third interactions are
the same as the ones given earlier that share the input and output queues of the current port with the mobile
node. As before, the actual state of any queue is considered to reside on the receiving side, as reflected by the
engage values. Because a mobile node can now be connected to any port, not just the port with the same
index, we must be careful that no two nodes are connected to the same port. This would lead to undefined
behavior of the queues as both nodes tried to access them. We can think of the locations as corresponding to
physical network connections that can accommodate only one node at a time. Therefore, even if two mobile
nodes are co-located, neither has connectivity to the port at that location, This is reflected in the semantics of
the Alone predicate which is true if and only if there is only one node at the given location. This system is an
abstract program that ignores many of the details of the Mobile IP protocol. However, it does capture the
essence of the protocol at a similar level of abstraction to the single point of connectivity example presented
earlier. The modifications did not affect the mobile-node program in the least, which is indicative of the
amount of decoupling among components provided by our notation.

Throughout the examples, the manner in which we have modeled the links among programs (as shared
message queues) is an abstraction from the physical reality of a wired or wireless data link between hardware
devices where each receiver maintains a queue of unprocessed messages. In reality, each program has
“append-only” access to a remote queue. This restriction is in fact satisfied by the above programs as they are
composed here, but our notation does not explicitly protect the queues from remote access. Mobile UNITY is
intended to be a general model helpful in the design, modeling, and verification of mobile computations and
not a programming language supporting implementation. Consequently, it allows one to model undesirable
structures and subject them to analysis,

In the next section we discuss the appropriateness of the level of abstraction presented so far and the
role of formal verification in the design process.

4. Verification Strategy and Issues

The brevity of this paper does not allow us to give a complete description of the Mobile UNITY
notation or its proof logic, e.g., we omitted the transient action synchronization mechanism among others.
Neither can we provide a complete formal verification of the Mobile IP protocol, even at this abstract level.
The purpose of this section is to show how one might approach this task and the benefits one can expect from
such an exercise. We hope to convince the reader that Mobile UNITY makes the task manageable even for



programs involving mobility. Formally, the key to accomplishing this is the fact that Mobile UNITY inherits
most of the proof logic of UNITY, along with its inference rules. This is because we were able 1o encapsulate
the impact of mobility to very few low level axioms, e.g., a reformulation of the Hoare triple and of the
concept of basic progress.

Typically, a designer starts out with informal expectations for what a protocol is expected to
accomplish, and then proposes an operational solution (a program) to meet those goals. The process of
protocol verification entails formalizing the correctness criteria and verifying that the proposed program meets
these conditions. The program that is verified is usually an abstraction of the actual implementation—it
contains fewer details than a running implementation would. This simplifies the verification process and does
not adversely affect the correctness of a final implementation, as long as a correctness-preserving mechanical
transformation of the abstract program into an implementation can be performed. Of course, the abstract
program must contain enough detail so that all interesting and difficult aspects of the protocol are captured
within it.

The Mobile UNITY program notation offers a simple means to specify operational solutions, provides
a means to verify properties of such programs, and is sufficiently abstract so as to be compatible with many
implementation architectures. In formalizing the correctness expectations of a protocol, the UNITY logic can
be used to write down properties that will later be proven of a specific program. These properties are called
assertions. They are of two kinds, safety and liveness properties. In the UNITY logic, which is based on a
restricted form of temporal logic, an assertion must hold in every state along every execution sequence. This
allows uvs to distance ourselves from reasoning about execution sequences explicitly, Basic properties are
derived from the program text and are combined using a battery of inference rules.

Simple program properties are built from state predicates and simple relations on them. A state
predicate is constructed using boolean algebra, the names of variables from the program text, quantification,
and ordinary relational operators, as in

network.address[3] = 5 A network.binding[5] =3

which states that the program variable nerwork.address[3] (the third element of the address array from program
network) has the value 5, and the variable network.binding[5] (the fifth element of the binding array from
program network) has the value 3. For any given state (an assignment of values to the program variables),
this predicate might be true or false, Those states for which the predicate is true are said to be the set of all
states that “satisfy” the predicate. Note that there are many such states that satisfy the above predicate,
because it fixes only two of the program variables, while the others can take on any value.

An execution is a sequence of states the program passes through starting from an acceptable initial
state. All executions are assumed to be infinte in length and weakly fair. Relations over predicates can be
used to express properties of executions. For example, the relation co (short for constrains)

peog

asserts that if a state satisfying p occurs anywhere in the execution, the next state must satisfy g. This
expression is now a predicate over state sequences {executions) and defines a set of executions that satisfy it.
This kind of property is called a safety property because if it is not true, there is a finite place in the execution
where it breaks down. A safety property states that “bad things do not happen.” The co relation for two
predicates p and ¢ with respect to some program F can be proven by considering all the statements of F and
showing that if each is executed in a state satisfying p, it will terminate and leave the program in a state
satisfying g. Well known methods from sequential programming can be used to carry out this proof [3].
Invariant properties, those that are true throughout execution, can be expressed simply as

invariant p =Init=p A pcop

which states that the initial conditions satisfy p and also every action preserves p if executed from a state
satisfying p.

For example, consider one desirable property of the Mobile-IP protocol, NO-MISDELIVERY, which
states that a message (A,D) is never delivered to the wrong node, i.e., to a node i different from the address A.
We can express this property as a predicate over the input queue for node i, stating that the queue can only
contain messages addressed to node i.

NO-MISDELIVERY =
invariant (A, D) € mobile-node(i).in = A=1i

By convention, all free variables (i.e., A, D and /) are assumed to be universally quantified over the
appropriate ranges.



In a standard UNITY program, we would prove the above by showing first that it was satisfied by the
initial conditions, and then that every statement preserved it. In Mobile UNITY, we follow the same basic
procedure, except that some of the statements have side-effects due to the variable sharing. These side-effects
propagate changes to variables that are currently shared and also establish enmgage and disengage values
whenever a state change causes a transition in the value of a sharing predicate. A formal proof logic for the
transient sharing construct as well as other coordination constructs can be found in [5]. For the purposes of this
short paper, we reason about the packet forwarding system somewhat informally, at a level that might be
undertaken by a system designer while thinking about the code presented so far. This is done by enumerating
the system transitions that may affect the truth of the invariant and proving that the invariant is preserved in
each case. There are two actions that could potentially modify the variable mobile-node(i).in. The easiest to
consider is the statement inside mobile-node that removes messages from the queue. Clearly, this statement
preserves the invariant, because if no errant messages are in the queue before a removal there will be none
afterwards.

The other statement that modifies the queue is the routing statement inside network, under the
condition that the mobile node is attached and the queue is shared. Note that we cannot prove that this action
preserves the above invariant: the routing statement might be directing packets meant for another node j
(which hasn’t yet updated its binding address binding[j]), to the outgoing queue currently shared with node i.
To prevent this from happening, we need to strengthen the guard on the routing statement so that the network
checks to see that the right node is currently attached. That is, we should change the statement to read

out[dest(i)], in[i] := out[dest(i)]ein[i].head, in[i].tail if in[i] # ¢ A address[dest(i)] = in[i].head. A

This is an example of how formal thinking helps reveal program error even when proof outlines are substituted
for the actual formal treatment.

The movement statements might also affect the value of the variable mobile-node(i).in, because it is
a transiently shared variable that could be affected by engagement and disengagement. Careful inspection of
the Imteractions section reveals that the input queue is always preserved intact for both engagement and
disengagement.

In most cases, safety properties are not sufficient to fully specify the desired behavior of a program. In
addition to not doing a bad thing, a program is usvally expected to accomplish some good thing. Without a
liveness property as part of the specification, the empty program would trivially satisfy the correctness criteria.
In UNITY, we can express basic liveness properties using ensures. Again, this is a relation over state
predicates:;

p ensures g

is written to mean that if a state satisfying p occurs anywhere in the execution, and g is not also satisfied in
this state, then p will continue to be true from that state forward until a state satisfying g occurs. In addition,
there is some statement that is guaranteed to establish g if selected for execution. Due to the weak fairness
assumption of the UNITY statement scheduler, this statement cannot be denied forever and will eventually
establish g. More complicated progress properties such as leads-to can also be expressed. The property

p leads-to ¢

means that if a state satisfying p occurs, then eventually a state satisfying g will occur. Here there is no
requirement that p is maintained until g is established. This property is usually proven using induction on a
well-founded integer metric that is shown to eventually decrease (by inductive use of ensures or another

leads-to) to zero, at which point ¢ is established.
For example, consider the property EVENTUAL-DELIVERY, which states that a message on an
output queue of some node is eventually delivered to the input queue of the node to which it was addressed.

EVENTUAL-DELIVERY =
(A, D) € mobile-node(i).out leads-to (A, D) € mobile-node(A).in

where again, free variables are quantified over the appropriate ranges. To prove this property, we might break
it up into separate leads-to conditions and then chain these together using the standard transitivity rule for

leads-to which states
p leads-to g A q leads-to r

p leads-to r
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We can take p to be (4, D) € mobile-node(i).out, r to be (A, D) € mobile-node(A).in, and q to express the
property (A, D) = mobile-node(i).out.head. Then, we have broken the overall property into two parts. The first
part says that any message in the output queue of a mobile node eventually reaches the head, and the second
part says that a message on the head of an output queue is eventually delivered to the cormrect mobile node.

Note that we can prove neither of these from the text of the program as it was given. If a mobile node
becomes disconnected, its output queue is not shared with the network and any packets placed there will be
lost. Similarly, if the destination mobile node becomes disconnected, it will miss packets directed towards it.
The protocol satisfies EVENTUAL-DELIVERY only with very strong guarantees on the movement patterns and
connectivity of nodes, e.g., if mobile nodes are connected to the same foreign agent for “long enough.” A
UNITY mechanism called conditional property allows us to formalize such assumptions and to carry out the
necesssary proofs. This illustrates another benefit of formal reasoning, the identification and formal
characterization of the assumptions made by the protocol.

5. Conclusions

Mobile UNITY consists of a notation for specifying abstract programs and an assertional style proof
logic, both aimed at the specification and verification of mobile computations. Coordination among
components is specified separately from the components involved. This can be viewed as a way to manage
connectivity changes in a declarative fashion. Our transient sharing abstraction is closely related to weak
consistency policies in filesystems and databases, and allows explicit specification of re-integration values for
disconnected variables. By adding location explicitly to the formal model (but not constraining the semantics
or type of this location except on an as-needed basis) we can reason about context-dependent applications as
well. Despite its stylized treatment, the packet forwarding example is representative of the verification
strategies we inherited from UNITY and of the decoupled style of programming promoted by Mobile UNITY.
Using Mobile UNITY, abstract programs that provide an operational characterization of some mobile
computing task can be verified against formally stated assertions. We hope that, after further evaluation of the
approach, some of the lessons we learned so far will make their way into the programming practice in the form
of packages supporting high level coordination languages for mobile systems. The potential is here to simplify
the application development effort by providing the right programming abstractions along side a semantic
model supportive of formal verification.
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