
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2018

The Example Guru: Suggesting Examples to Novice Programmers The Example Guru: Suggesting Examples to Novice Programmers

in an Artifact-Based Context in an Artifact-Based Context

Michelle Ichinco
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ichinco, Michelle, "The Example Guru: Suggesting Examples to Novice Programmers in an Artifact-Based
Context" (2018). Engineering and Applied Science Theses & Dissertations. 366.
https://openscholarship.wustl.edu/eng_etds/366

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in Engineering and Applied Science Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

Figure 6.2: In-application API Documentation condition. (A) Users can access documentation
using the ‘?’ button available beside APIs. (B) Examples with different values and the
description. (C) The play button can be used to execute the code. (D) Button to expand or
collapse the parameters information. (E) Users can navigate to other doc using these buttons.

6.3.3 Methods

We created materials in order to measure API information access, API usage, and participant

features that could influence how participants use API information.

API information access and usage

In order to evaluate whether participants accessed suggestions more than documentation,

we needed to ensure two things: 1) that participants were equally familiar with the API

information formats, and 2) that participants actually received suggestions while working

123

on artifact-based programs. In order to familiarize participants with the API information,

we created two training tasks. For the first training task, participants had to make a bunny

walk faster by adding an optional argument value to a ‘walk’ action. For the second, they

had to make a shark swim around an island by adding an optional argument value to a ‘turn’

code block. We provided instructions on a sheet of paper that directed participants to use

the API information provided.

In order to improve the odds that participants would receive suggestions during artifact-based

programming, we created and tested scenes with props and characters for participants to

use in creating their animations. For instance, complex movements and rotations trigger

suggestions, so one scene was designed for a ‘Seaworld’ show animation. This type of scene

enabled novice programmers to try to create complex animations with dolphins. We selected

five scenes for this study based on popular scenes from formative work because children

were most excited to create animations with those scenes. During the study, novices had

the choice to create whatever animation they wanted with any of the scenes, so they could

always choose whether or not they wanted to create complex animations or use suggestions.

Participant features

In designing the Example Guru, we wanted novice programmers to benefit from suggestions

regardless of their age, gender, or programming experience. Because the suggestions are

context-relevant, we hypothesized that the suggestions would interest users with very little

programming experience, as well as novices with more exposure. In order to capture informa-

tion about programming experience, participants filled out a demographic and computing

history survey.

124

We also thought that the way participants like to learn might affect how they use API

documentation and explore new API methods. In order to capture this, participants also

filled out an exploring and learning technology survey on paper before the study (see

section D.4.2), modeled after the survey about trying new technology in [30]. Additionally, to

better understand participants’ motivations in using new API methods, we created dynamic

surveys for participants to fill out on-screen after completing artifact-based programs during

the study. The surveys asked questions about why participants used new API methods for

the first time and why they used or did not use API information during the just-completed

program.

6.3.4 Study procedures

There were three phases of this study: 1) baseline project, 2) training, and 3) supported

project. The study was between subjects with two conditions: suggestions and documentation.

Because work has demonstrated that gender plays into exploration and learning in software

[30], we randomly assigned participants to either use suggestions or documentation keeping

gender balanced. Participants worked individually on all tasks and were allowed to move

onto the next task if they felt they had completed the current one.

Baseline project phase

We wanted to know how participants would use the API without any support, so participants

first created an animation without API support for up to 15 minutes. Because some partici-

pants had no programming experience, the instructions for the first phase gave information

about how to drag blocks into animations and execute the animations (see section D.1).

This phase involved artifact-based programming, which means that there was no correct or

incorrect answer and that participants were allowed to freely create their animations. We

125

assigned participants a specific scene for this task and balanced the assignments of scenes

across participants to limit any effect of specific scenes on API usage. In order to find out

more about why participants added new API methods, participants completed an on-screen

survey at the end of this task that asked about: 1) one new API method participants added

and executed, and 2) one that they added, executed and deleted, if these existed.

Training phase

Due to time constraints for a controlled study, we wanted participants to become quickly

comfortable with using either suggestions or documentation. To do this, we had all participants

complete two training tasks. In both cases, the instructions showed how to access the

suggestion or documentation that would help them complete the task. The researchers

checked the participants’ code to make sure they successfully completed the task and helped

participants if needed. If participants completed a task without a suggestion or documentation,

the researcher demonstrated how they could have used it to ensure that all participants were

exposed to suggestions or documentation.

Supported project phase

Finally, we wanted to evaluate how participants used the API information and API methods

when working on their own projects. During the supported project phase, participants created

animation projects with either suggestions or documentation available to them. We first

asked participants to create a program based on the idea of a Seaworld show. The purpose of

providing an idea was to give participants a goal to work towards, but not to constrain what

code they should use. Next, participants were assigned a scene in which they could create

any animation or use a provided story prompt if they did not have an idea. Participants had

up to fifteen minutes to work on each of the two animations. If participants finished early,

126

they could select a scene they had not yet used and create another animation. The template

scenes are all available in section D.2. At the end of each of these animations, participants

also typed answers to questions onscreen about why they added or removed certain API

methods and why they accessed or did not access API information (see section D.4.3).

6.3.5 Data collection and analysis

We logged all actions participants took and survey answers to analyze suggestion, documen-

tation, and API usage.

Time on task

We did not require participants to spend the full amount of time provided on each task, so

some participants spent less than the standard amount of time. Most participants (76%)

spent the full amount of time on the baseline (15 min.) and supported project (30 min.)

phases. We stopped analyzing participants’ data after 30 minutes in supported project. We

will report the results for the set of participants who spent the full amount of time (59

participants), as well as the results for all participants.

of participants who
spent:

Sugges-
tions

Doc. Total

<15 min. (baseline open) 1/39 2/39 3/78
<30 min. (supported open) 6/39 7/39 13/78
<15 and <30 1/39 2/39 3/78
full time 31/39 28/39 59/78

Table 6.3: Time participants spent on the tasks

127

Accessing API information and API usage

We analyzed logs in order to measure which suggestions and documentation items participants

accessed, meaning that they clicked to open the API information. To determine whether

participants used new methods from the API information in their programs, we measured

which API methods participants inserted into their programs for the first time after accessing

related API information. When comparing the number of accesses and API usage, we used

t-tests to compare the aggregate numbers because participants received different numbers of

suggestions. Additionally, participants in the API documentation condition could access docs

many more times than the number of suggestions available. We use Cohen’s d to measure

effect size (small: .3, medium: .5, large: .8). We also report the percentages of participants

who accessed API information and used API methods and compare this using Chi-squared

tests. We use the odds ratio to measure effect size (small: 1.5, medium: 3.5, large: 9).

For both API information access and API usage, we describe the kinds of API methods

participants were accessing information for and inserting into their programs. We believe the

best way to do this is to group the API methods based on how much novice programmers

generally use them. We base the frequency of novice use on the set of 600 non-expert programs

described earlier. We will discuss the API methods in terms of 4 groups: those that the

Example Guru did not suggest, APIs suggested that were used least frequently by novices

(the bottom third of usage frequency), those suggested that were sometimes used (the middle

third), and those suggested that were most often used by novices (the top third of API

method usage frequency).

128

Participant qualities

We analyzed participant qualities to try to understand the types of novice programmers

who will benefit from suggestions or documentation. We collected gender, age, programming

experience, and learning style data from the surveys. We captured programming experience

using two survey questions: ‘Have you programmed before?’ and ‘Have you programmed for

more than 3 hours in your whole life?’ Those who had less than 3 hours of programming

experience likely only programmed once or twice without much instruction or practice. Nine

participants in the suggestion condition (23%) and eight participants in the documentation

condition (21%) had 0-3 hours of programming experience. We also intended to capture

personal preferences about using API documentation using the on-screen end-of-task surveys

for both conditions. Due to a technical error, the survey questions asking participants about

why they did or did not access documentation did not appear for the study participants, so

we report quotes from pilot users who completed the same study and received these questions.

6.4 Results

We hypothesized that participants who received suggestions would: 1) access suggestions,

and 2) use API methods from the suggestions more frequently than participants would access

and use in-application documentation. In this section, we first explore these two hypotheses

and then delve into how different participants used the API information and the features

they used.

129

6.4.1 Access and use of suggestions and documentation

Ideally, suggestions should encourage API exploration when novice programmers are pursuing

their own projects. We evaluated this through the number of times participants accessed API

information and how many new API methods they used after accessing API information.

Accessing suggestions and documentation

We found that more participants accessed suggestions than accessed documentation: 82% of

suggestion participants and 41% of documentation participants accessed at least one entry.

The difference in the number of participants who accessed suggestions verses documentation

was significant with a medium effect size (χ2(1) = 12.19, p < 0.001, odds ratio = 6.4).

Participants in both conditions described using suggestions and documentation to gain

additional information about API methods that seemed potentially relevant. A participant

in the documentation condition described opening an API method that changed a character’s

appearance because: “... I wondered what it was. It turned out to change Alice.” One

participant in the suggestion condition sought additional information about a new method

based on the tip offered as part of the suggestion: “I opened the tip for ‘setTransparency’

because I thought it was a good way to make an object disappear”.

We found that participants accessed more total suggestions, on average, than documentation.

For all 78 participants, participants accessed significantly more suggestions (M=3.3, SD=2.7)

than documentation (M=1.4, SD=2.7), t(76) = 31, p < 0.01, d = 0.69. Since some partici-

pants spent less than the full task time, we also confirmed that this difference existed for the

set of participants who used the whole task time. The results were very similar: participants

accessed suggestions (M=3.0, SD= 2.7) significantly more than documentation (M= 1.1,

SD = 1.7) with a large effect size (t(50) = 3.3, p < 0.01, d = 0.85). Simply accessing more

130

Figure 6.3: API information accessed and used grouped by frequency of API use by novice
programmers.

suggestions is a potential benefit to novice programmers because the suggestions expose them

to broader range of API methods that may be useful either immediately or in the future. In

this study, we could not measure whether a participant used a suggestion based on reading

the tip without opening it, but survey responses indicate that some participants did this:

Participant S33 did not need to access a suggestion because reading it was enough: “I did not

131

open the tip for Turn to Face because I read the outline for the Tip and used it in my code.”

Similarly, participant S70 said: “I did not open the tip because I saw it from the outside and

felt like I could figure it out and I think I did.”

Our goal was to encourage novice programmers to use API methods they would not necessarily

use on their own. To evaluate this, we analyzed the information access and API use based on

how often novice programmers in our sample set of programs used API methods. We split

the API use based on one group of API methods that the Example Guru did not suggest

and three groups that the Example Guru did suggest: the top third of methods that novices

generally use most frequently, the middle third, the bottom third. The set that was not

suggested includes API methods that novices use more than experts or that experts use in less

than 5% of programs. In all three groups of API methods, the API information was accessed

and used more frequently by participants in the suggestion condition (see Figure 6.3). While

the largest use of suggestions was for API methods novices generally use the most, increasing

use is beneficial because the average percentage of novices using those API methods is less

than 50%. Furthermore, only participants with suggestions accessed information for the least

used API methods.

The survey results provide additional insight into the reasons participants chose to access

or not access API content. Due to a technical failure, participants in the documentation

condition did not receive questions about their documentation access or use. Since questions

about usage might encourage some users to increase their API usage, we looked for an

increase in suggestion access and usage following the survey, which was administered after the

first supported animation project. However, we see little evidence of this. Ten participants

used suggestions only during the first animation project, an additional seventeen accessed

suggestions throughout, and only five participants accessed zero suggestions during the first

132

project task, but one or more in the following animations. Thus, we do not believe that the

survey questions influenced suggestion use.

Overall, participants described accessing suggestions to gain additional information about

API methods that seemed potentially relevant (see the top section of Table 6.4). Often,

this was because participants thought the suggestion could improve their animation (50%

of statements), like one participant who received a suggestion about setting the color of

the sky. They said: “The dark sky was sooo boring, so I looked at the tip and used it.”

Other participants wanted to learn about the information for their general knowledge (21%

of statements), like one participant who stated “... I did not have a need for it in my current

animation, but wanted to know how to use it in the future.”

Participants often accessed suggestions but did not use the API methods or did not access

suggestions at all because the suggestions did not fit with their vision of their animation (see

the third section of Table 6.4). This was the largest reason for not using API methods from

suggestions, explaining 53% of statements about not using API methods. This was also a

major reason why participants did not access suggestions in the first place- they read the

description and already knew that the API method would not fit in their animation (29%

of statements about not accessing suggestions). The other major reason participants did

not access suggestions was that they claimed that they already knew how to do what was

suggested (23% of statements about not accessing suggestions). Since the Example Guru only

suggested new API methods, this may indicate that the titles did not effectively communicate

the features of the API methods. In other cases, participants wanted to access all of the

suggestions, but ran out of time, like one participant: “I didn’t open all of the tips yet.”

Finally, some participants were focused on other suggestions and missed ones that would

have been of interest. One participant described missing a suggestion “because I was looking

at other tips and didn’t realize there was a tip [to] make only [the] alien’s head turn.”

133

Label: description or example Accessed,
used

Accessed,
did not
use

Did not
access

Wanted to learn: they wanted to learn or that they wanted to see
what it would do 7 (21%) 5 (16%) 0

It improved the animation: description of how they used it to
improve their animation 17 (50%) 0 0

As a reminder: explicit statements of using it as a reminder or
talking about having forgotten how to do something 3 (9%) 0 0

Experimenting: experimenting, testing, or trying things out 1 (3%) 1 (3%) 1 (2%)
Could figure it out from the suggestion title: ‘... I read the
outline for the Tip and used it in my code.’ 0 0 1(2%)

Wanted to figure it out on their own: wanted to or did figure
out how to do it by themselves 0 0 4 (6%)

Did not fit with animation: why the suggestion did not improve
their animation 0 17 (53%) 19 (29%)

Already knew how: participants already knew that API method 0 0 15 (23%)
Animation already had it: their animation already used that type
of animation 0 1(3%) 0

Could not figure it out: ‘I couldn’t figure it out.’ 0 0 1 (2%)
Accidentally opened: ‘because i acidentally opened it’ 0 1 (3%) 0
Meant to: planned to open tip or use code 0 1(3%) 1 (2%)
Ran out of time: they would have accessed or used if there had
been more time 0 3 (9%) 1 (2%)

Did not notice it: did not notice it or pay attention to hints 0 0 8 (12%)
No reason: did not give a reason or the reason did not answer the
question 6 (18%) 3 (9%) 14 (22%)

Table 6.4: Categories of responses from suggestion participants about why they accessed and
used, accessed and did not use or did not access suggestions.

Participants in the documentation condition similarly described a desire for additional

information as a motivation for opening documentation: “I wanted to know what it was

and I used it because I thought it would be pretty cool to begin and end abruptly.” We

unfortunately cannot report on their decisions around documentation they did not access.

Using suggestions and documentation

Since increased access to API information may help to support the use of a new API method,

we also wanted to explore the use of new API methods after information access. We found

that more participants used new API methods after accessing suggestions than after accessing

134

documentation. About three times as many participants in the suggestions condition used

an API method after accessing the API information as in the documentation condition,

38% vs. 12.8% (χ2(1) = 5.4466, p < 0.05, odds ratio = 4.17). Additionally, participants

added more new API methods after accessing the suggestions (M= .59, SD=.82) than after

accessing the documentation (M= 0.15, SD = 0.43). This was significant for all 78 participants

(t(57.6) = 2.94p < 0.01, d = 0.67) and for the 59 participants who used the full task time

(t(49.3) = 2.2, p < 0.05, d = 0.55).

In addition to frequency of use, it is interesting to explore the diversity of methods participants

choose to use. In particular, we designed our rules and suggestions with the goal of introducing

API methods that experts use more frequently than novices. Participants in both conditions

used more new API methods from the group of API methods that are most commonly used

by novices than the other groups. However, we note that participants using suggestions

used more new methods from the middle and low use categories combined (see Figure 6.3).

Finally, we looked at API methods for which we did not create suggestions. While some

participants in the documentation group accessed information about these methods, only two

were actually added. This provides some support for our method of selecting API methods

for suggestions.

Our survey results suggest that participants in the suggestions condition decided to use an

API method based on its potential to improve their animation. One participant explained “I

just thought that changing the posture of the dolphins created a more natural feel than just

moving its entire body.” In contrast, participants in the documentation condition more often

cited goals of understanding. For example, one participant using documentation stated, “I

opened it and chose to use it so I could see what it looked like.” We see a similar dichotomy

around participants’ explanations for non-use. A participant in the suggestions condition

chose not to use an accessed suggestion because it did not mesh with her vision for her story:

135

“I wanted to have the dolphin to go different distances showing they each do a little more

than the last dolphin.” A participant in the documentation condition explained accessing but

not using documentation for a duration parameter because “...I wanted to see how it worked.”

Con-
di-
tion

Action <3 hours prog. 3+ hours prog. p Male Female p

Suggestions
Accessed 100% 77% 86% 78%

M=3.8 SD=2.3 M=3.2 SD=2.9 M=4.3 SD=3.0 M=2.2 SD=1.8 <.05

Added API call 44% 40% 48% 33 %
M=.56 SD=.72 M=.6 SD=.86 M=.67 SD=.86 M=.5 SD=.79

Documentation
Accessed 75% 32% .07 30% 56%

M=3.4 SD=4.0 M=.94 SD
=2.0

M=1.05
SD=2.8 M=1.9 SD=2.7

Added API call 38% 6.5% .08 10% 17%
M=.5 SD=.76 M=.06 SD=.25 M=0.1 SD=.31 M=0.22 SD=.5

Table 6.5: Participant characteristics and information access and API usage.

6.4.2 Do participants’ demographics affect how they used sugges-

tions and documentation?

In the design of the Example Guru, we hoped to support participants regardless of age,

programming experience, and gender. By having suggestions relate to the context of the

program and API methods that the programmer had not yet used, we hypothesized that

the suggestions should continue to be relevant to programmers as they become familiar with

more of the API. Previous studies have found a correlation between age and programming

success with the same age range of children [78]. These differences in performance could result

from the developmental changes that impact children’s abilities to understand abstraction

around the ages of 11-12 [164]. We hoped that the context-relevant approach would support

novice programmers of differing ages. We also hypothesized that suggestions might better

support participants who liked to learn by accessing information, rather than by tinkering,

136

since suggestions do not require the user to seek out new API methods and documentation.

Since females have been shown to be less likely to learn through exploration in some cases

[18], it seemed as though the suggestions might provide better support for female novice

programmers. Overall, we found no difference in suggestions usage by age. However, while

females accessed suggestions more frequently than documentation, they did so significantly

less frequently than males.

Age and programming experience

Our results did not show a relationship between age and accessing and using either suggestions

or documentation. Specifically, we found no significant correlation between age and suggestion

access(t(37) = −0.5, p = 0.62, r = −0.08) nor between age and documentation access

(t(37) = 0.37, p = 0.71, r = 0.06). Similarly, we found no significant correlation between age

and the number of API methods used after accessing suggestions (t(37) = −0.92, p = 0.36, r =

−0.15), nor between age and the number of API methods used after accessing documentation

(t(37) = −0.22, p = 0.83, r = −0.04). These results suggest that both documentation and

suggestions are used similarly by children ranging in age from ten to fifteen.

Programming experience played a larger role in how much participants accessed and used

API information. Those with less than three hours of programming experience were the most

likely to access both suggestions (100%) and documentation (75%). Participants with little

programming in both conditions added new API methods after accessing them at similar rates:

44% of those in the suggestions condition and 38% of those in the documentation condition

added API methods. However, among those with more than three hours of programming

experience, we see a trend towards more use of suggestions. Of the participants in the

suggestions condition, 77% accessed a suggestion and 40% added a new API method after

accessing its suggestion. For participants in the documentation condition, only 32% accessed

137

API information and 6.5% used a new API method after accessing its documentation. This

trend suggests significant promise in the use of context-relevant API suggestions to help

programmers continue to explore new API methods.

Gender and learning style

When considering how gender might relate to participants’ use of API information, we

explored use by reported gender, as well as learning style based on a survey.

We found that both males and females accessed and used the suggestions at higher rates than

the documentation. However, male participants accessed suggestions more often than female

participants: males accessed an average of 4.3 suggestions as compared to 2.2 suggestions

for females (t(33.5) = −2.7, p < 0.05, d = .83). Male participants also accessed a larger

percentage of the suggestions they received, so the larger number of suggestions accessed by

males was not due to a larger number of suggestions received (t(34.3) = −2.7, p < 0.05, d =

0.84). While not significant, we note that female participants accessed documentation more

often than male participants, averaging 1.9 documentation accesses as compared to 1.05 for

males, as shown in Table 6.5. Overall, male participants opened more suggestions, but both

genders accessed suggestions. The significant difference in terms of the number of suggestions

accessed represents an important avenue for additional research. While suggestions performed

better than documentation for both male and female participants, the lower usage by female

participants has the potential to create an educational inequity.

One of the main personality traits that often correlates with gender differences in programming

is the programmer’s learning style: whether they like to learn by tinkering and exploring or

using a step-by-step approach, so we also wanted to compare the way participants desired

to learn and their behaviors. We created a survey based on the survey in [30] in order to

138

try to determine whether participants were more likely to explore and tinker as a way of

exploring the API or whether they were more reliant on information like tutorials or books.

Unfortunately, the survey only had a reliability of α = 0.65 for the questions about learning

through exploring, and α = 0.5 for the questions about learning using process-oriented

information, both of which are less than the accepted reliability for surveys (0.7), so we will

not report results for the survey.

6.4.3 Do participants take advantage of API information features?

This section presents results on how participants used features in the suggestions and

documentation. Due to the structure of this study, we cannot evaluate the impact of specific

features, so instead we explore three questions about feature use to provide insight into the

value of the system design: 1) how did participants access information, 2) how much did they

execute examples, and 3) how much do they use contrasting examples and the ‘show me’

button?

We expected participants to access the suggestions and documentation using all of the

mechanisms provided, which we found to be true, as shown in Table 6.6. For the most part,

participants accessed suggestions from the suggestion list (see Figure 6.1-A) and ‘?’ buttons

(see Figure 6.2-A), which were both in or near the palette where users drag code blocks

from. The list of suggestions was designed to help participants return to suggestions, which

participants did: “I opened the tip [suggestion] because I had forgotten how to do it.”

We found that the majority of participants who accessed API information also executed

examples in both conditions, but did so more with suggestions: 81.3% of participants who

accessed suggestions executed an example at least once, while 68.8 % of participants who

accessed documentation executed at least one example. Executing examples may suggest

139

that participants wanted to engage more deeply with the information in order to find out

more about it. Participants who executed examples from suggestions executed on average

4.7 examples (SD = 3.5), while participants executed examples an average of 9.7 times from

documentation (SD= 9). This may be because suggestions only provided two examples, while

documentation often showed eight examples.

Because we designed suggestions specifically to provide contrasting examples and a button

to help novices find code blocks, we measured how much they used those features. 44% of

participants who accessed suggestions used contrasting examples and accessed the contrasting

example for 1.8 suggestions on average (SD= 1.2). 38% of participants who accessed

suggestions used the ‘show me’ button, and on average, clicked it 3.2 times (SD= 2.5). Since

participants likely will not need these features for every suggestion, having over 30% usage

and having participants return to use these features multiple times seems to indicate that

participants found the features useful.

6.4.4 Threats to validity

There are two limitations to this study: the population we picked and the length of the study.

Condition Way of accessing % of accesses

Suggestions
Suggestion Panel 86.5%
Code Annotation 11.1%
Preview from Panel 2.4%

Documentation

‘?’ Button 45.1%
Expanding Parameters 29.4%
‘More Examples’ 17.6%
Next/Previous Buttons 7.8%

Table 6.6: Participants accessed the API information all of the different ways in both
conditions

140

We recruited participants from a mailing list focused on STEM which draws from a sample

of more interested and self-motivated learners than the general population. This may have

meant that participants were more interested in technology and excited to explore the API

than the norm. Furthermore, 94% of participants had programming experience of some form,

including 82% who had been taught programming, which is above the norm for middle school

children in the US.

While the results from this initial study are exciting, it is important to note that this

study focused on a relatively short period of time and on API use, rather than learning.

While the patterns of use suggest the potential for improved longer term learning, it will be

important to explore how novice programmers engage with the Example Guru over a longer

period. We need further studies to understand whether the Example Guru improves novices’

comprehension of the API methods.

6.5 Discussion

Given that programmers across a broad range of skill sets describe learning or attempting

to learn using ‘just-in-time’ strategies, effective situated support for API learning has the

potential to improve programmer success and efficiency, particularly for novices. The results

of our study suggest that the Example Guru approach has the potential to better support

learning of APIs during artifact-based programming. Yet, there are places where further work

is needed. First, our results found that females used fewer suggestions than males, leading to

a potential learning inequity. Second, we hand-coded our rules for this study.

141

6.5.1 Learning APIs

To achieve mastery of a new API, novice programmers must continue to develop their skills

over time. Yet, existing research suggests that novices reach a plateau in which they quickly

learn to use a subset of the available capabilities within the system and then stop learning

new skills [189, 233]. One recent paper [137] found an increase in the number of API methods

used with experience. However, the increase was small after the initial period. Although

measures of API method use cannot tell us whether the novice programmers actually have a

full understanding of how the API methods work, programmers must first gain exposure and

experience with the API methods. Thus, this work begins to address issues in API learning

by improving the number of API methods that novice programmers explore and use.

We believe that some of the plateau effect may be due to a lack of appropriate learning

mechanisms. While users may spend time focused on trying to learn a new system or API,

programmers typically spend more time in artifact-based programming and ‘just-in-time’

learning [23]. In just-in-time learning, programmers seek out information that they know

they need. The Example Guru approach shows promise in introducing novice programmers

to API methods that they may not know exist. Rather than requiring that they know what

methods to search for, the Example Guru observes their code and offers potentially relevant

information. Participants accessed suggestions and used API methods from suggestions

more frequently than documentation, creating more potential learning opportunities. It is

important to note that participants accessed suggestions for API methods novices rarely

use in common practice, but experts typically do include in their programs. Users in the

documentation condition chose to explore API methods more often used by novices. Over a

longer period, the increased exposure to and use of API information could lead to substantial

learning gains.

142

Finally, our results suggest the potential for continued usage by those with varying skill levels.

In both the documentation and suggestion conditions, participants with fewer than three

hours of programming experience accessed and used API information more frequently than

those with more than three hours of experience. The difference is much more dramatic in the

documentation condition where only 32% of participants with more programming experience

accessed the API information at all. In contrast, 77% of those with more than three hours of

programming experience accessed the suggestions. Yet, there is still room for improvement.

While 40% of the more experienced novices in our sample engaged with API methods from

suggestions, 60% did not.

6.5.2 Gender and the Example Guru

Our results showed different usage patterns among male and female participants. Specifically,

male participants accessed more suggestions than female participants, averaging 4.3 versus

2.2 suggestions accessed. This is a potentially troubling difference, as over time this can lead

to an educational inequity. Based on the results of this study, we have little information

about the reasons for this difference. Previous work suggests that females may prefer learning

using step-by-step instructions, rather than through tinkering and exploring [102] and that

females have a tendency toward comprehensive information processing versus males’ tendency

toward selective information processing [144, 145]. However, we note that this difference

occurs based solely on the tip describing the suggestion and before users are in a position to

do much information processing. This is an area where future work is needed in order to

understand and address this difference.

143

6.6 Conclusion

This chapter describes the first design and evaluation of the Example Guru. The Example

Guru leverages the previous exploratory studies of suggestions, rules and examples in order

to address the main goal of this thesis: to encourage novice programmers to explore and

use new programming skills during artifact-based programming through suggested examples.

Specifically, this chapter addresses hypothesis 2, that suggesting example code will increase

the number of new API methods novice programmers add, compared to existing static forms

of support. In this case, novice programmers with suggestions explored and used significantly

more new API methods than novice programmers with documentation. The contribution of

this chapter is a type of system that can encourage novices to explore new API methods. We

implemented the system within an animation context in order to evaluate it, but this system

design is not specific to an animation context. This model of suggesting context-relevant

unused code blocks can apply in other blocks-based artifact-based programming environments.

It could likely also transfer to end-user programming contexts like web development or data

analysis. Investigation of adults’ perceptions of suggestions would likely be necessary to

ensure that adults would prefer suggestions the same way. This chapter however, leaves two

open questions that we will address in the following chapter: whether suggested examples can

help novices to explore abstract programming concepts, and whether we can create content

for this type of system semi-automatically.

144

Chapter 7

Large-Scale Suggestions:

Semi-Automatic Generation

Note: Parts of this chapter will be published in Interaction Design and Children 2018 [93].

This chapter describes an approach for semi-automatically generating content for a suggestion-

based help system. Chapter 6 showed that context-sensitive suggestions can encourage novices

to explore more new API methods than static documentation. If we could create this type

of suggestion with minimal human effort and for abstract concepts, we could generate

suggestions for many systems and large systems without requiring significant expert time.

This chapter addresses hypotheses 2 and 3: that a suggestion system can encourage exploration

or programming concepts, and that we can generate the content for this type of system with

less human effort than hand-creation.

The core idea behind the semi-automatic approach is that a system can generate candidate

suggestions by grouping code examples. For instance, one group of examples might have

several camera movements that happen simultaneously, leading to a suggestion about making

145

the camera zoom out. Another group of examples could include living creatures moving in

multiple directions at the same time, leading to a suggestion about making a character jump

diagonally. For animation code, we group code examples using two main metrics: 1) types of

objects, like characters or props, and 2) types of actions the objects take, such as changing

position or changing size.

To semi-automatically generate suggestions, an expert must first define the types of objects

and types of methods for the programming context. Once they have defined the types, the

system can then generate any number of suggestions through the following steps: 1) system

extracts code example snippets from a code repository, 2) system groups code examples using

heuristics, 3) human moderates, 4) system generates a script that checks whether novice code

should receive the suggestion. This chapter describes each step in detail.

To evaluate our approach for semi-automatically generating suggestions, we perform two

preliminary evaluations: 1) we compare the semi-automatically generated content to a hand-

authored set created previously for a separate study, and 2) we ran a study in which we

compare children who had access to suggestions and children who had access to tutorials for 30

minutes in an artifact-based context. The semi-automatically generated suggestions cover all

but two of the hand-authored set and also generated an original set of suggestions. Children,

on average, received 9 semi-automatically generated suggestions, accessed 2.6 suggestions,

and used 0.8 suggestions in just 30 minutes. They accessed 3.7 times more suggestions than

tutorials.

The contribution of this chapter is a semi-automatic suggestion generation approach that

creates textual suggestions describing a potential change to improve a child’s program,

examples that demonstrate how to implement the suggested change, and rules that determine

when to offer each suggestion. We describe this system within the context of an animation

146

