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Abstract

This is a collection of essays on the macroeconomics of information. The first chapter,

"The Skill Premium, College Enrollment and Education Signals" explores the quantitative

implications of a signaling model of education for the evolution of the skill premium for

young workers in the US since the 1970s. I formalize the idea that as college education

becomes more affordable for a larger fraction of population, not having a college degree

becomes a more precise signal about low ability, increasing the college wage premium.

The model, when calibrated, suggests that about 17 percent of the growth in college

premium is produced through this signaling channel. In light of the recent financial

crisis, in the second essay, I study banks’ incentive to produce public information about

the return to the loans that they sell to risk-averse investors. Risk-averse banks rely

on information production to redistribute risks between themselves and investors. I

show that securitization, by eliminating the idiosyncratic component of risk, promises

a less risky return, diminishing the marginal benefit of information, hence reducing

information production. The third chapter (with Juan Pantano) contributes to the literature

of accommodating unobserved heterogeneity in the Hotz-Miller estimation strategies by

proposing a new two-step fixed-effect estimation approach. We uncover the type of each

observation in the first step by exploiting a consistency requirement of the subjective

assessments of a given type reported in subjective expectations data.
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Chapter 1 The Skill Premium, College Enrollment and Education Signals

1.1 Introduction

The rise in the college wage premium - defined as the differential between the wages

of college and high school graduates - is a well-documented fact. As Card and Lemieux

(2001) have shown, the wage premium has evolved differently for different age groups:

younger workers account for most of the growth of the premium. In line with the

cohort-based perspective, this paper looks at college premium for workers age 23-26 and

asks: how much of this evolution can be reasonably explained by the idea that higher

education is (also) a signal of talent? The answer is motivated by the observation that the

college premium and college enrollment rates have closely tracked each other during the

past four decades (Figure 1). The story I submit is the following: as college education

becomes more accessible, the lack of a college degree becomes an increasingly clear

signal of poor talent; if talent, per se, is useful in the working place but unobservable,

the college degree will be rewarded by an increasing premium relative to the high school

diploma. The paper provides both a signaling model with closed-form solutions and a

robust estimate of the signaling effect for the US economy from 1972 to 2005. Within a

broadly defined class of models, the signaling mechanism accounts for about 17% of the

growth in college premium.

[Figure 1.1 about here.]
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afterwards rises half as quickly as that of college graduates, at 0.8% per year.

[Figure 1.2 about here.]

The model developed below formalizes the intuition for the case of a stationary

economy. When I take the model to data, I interpret the increase in the wage to college

graduates as due partly to capital accumulation and TFP growth, and partly, as an

improvement in college’s talent discrimination technology, summarized by the probability

of graduating from college given talent. If people of all talents choose to go to college,

the discrimination technology boils down to the average college completion rate. If

the technology improves - i.e. it becomes easier to complete college if talented and

harder if not - the average completion rate increases. Thus an improvement in the

discrimination technology leads to a rising wage to college graduates and an increasing

college completion rate, as in the data (see Figure 6).

Because the empirical relevance of my theory requires to be plausible the assumption

that college has become progressively more affordable because financial constraints were

relaxed, I should discuss here the relevant evidence. Baumol and Blackman (1995) and

Archibald and Feldman (2008) are two of the very few papers that address the change of

college affordability over time directly. Both papers recognize the rise of college price

as a cost disease phenomenon. Although the share of income spent on college education

has gone up, the relative price of other goods, which have experienced rapid productivity

growth, fell so much that given income, one could actually afford more college education

and more other goods. Archibald and Feldman (2008) argue that the difference between
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income and college expense is a better measure of affordability than share of income spent

on education. They show that during 1990-2007 the median income left over after paying

for college expense increased for both public and private institutions, with larger gains in

public institutions. Here I re-construct this measure to cover the period from 1975/76 to

2008/09. Figure 3 plots the time series of the difference between the HP-filtered median

household income and the net college price, together with the net college price as a share

of median household income. The net college price is obtained by substracting average

total aids per full-time-equivalent (FTE) student from average tuition, fees, room and

board (TFRB). The total aids include grant aids, federal loans, educaiton tax benefits and

federal work-study. The result is broadly consistent with the aforementioned findings.

The residual income shows an upward sloping trend, indicating an increase in college

affordability, even though the share of income keeps rising too.

[Figure 1.3 about here.]

Micro data tells a similar story. The National Postsecondary Student Aid Study

(NPSAS) contains student-level information on financial aid provided by the federal

government, the states, postsecondary institutions, employers, and private agencies, along

with demographic and enrollment data My sample consists of all students who are

dependent and enrolled in a bachelor’s degree program in NPSAS 87, 90, 93, 96, 00, 04

and 08. Tables 1 shows the difference between the mean of parents’ income and tuition

and fees net grants and federal loans, by household income quintile and type of institution.

The growth in the residual income is more apparent for 4-year public institutions than
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for 4-year non-for-profit private institutions. Notably, the increasing trend holds across

all income groups for public colleges. In so far as the marginally constrained student is

more likely to attend a public school, the evidence is supportive. The case of selective

private colleges is examined by Hill, Winston and Boyd (2005). In their sample of 28

highly selective COFHE1 colleges and universities, the real net price of attending those

institutions as share of income fell for all income groups and the most dramatic decline

was at the lowest quintile income group. The above analysis assumes a constant family

size. If one takes into account that the number of own children under 18 per family

has decreased from 1.28 in 1971 to 0.84 in 20092, the residual income after paying for

children’s college expenses should increase even more.

[Tables 1.1 about here.]

Some more evidence is available from the literature on the effect of aid on college

enrollment. Federal grants and loans have increased dramatically on a per FTE student

basis (Figure 4). The two key questions are how sensitive enrollment is to college price

and how effectively the grants and loans programs are in promoting college access. The

empirical evidence is mixed (for a review, cf. Kane, 2006). Most of the estimations

that exploit cross-sectional variability reach an estimate that $1,000 reduction of college

tuition increased the enrollment rate by three to five percentage points. See for example

Kane (1994), Dynarski (2003), and Winter (2009). However, those studies that look at the

1 Consortium on the Financing of Higher Education. All private institutions.
2 U.S. Census Bureau, Families and Living Arrangements 2009, Table FM-3.
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enrollment of high- and low-income students before and after Pell Grant was launched

in 1973 do not find relative increase in attendance in the low-income group, but those

models are typically not well identified (Kane, 1995 and Leslie and Brinkman, 1983).

Long (2007) finds a positive effect of loans on enrollment for those families who had just

become eligible and the effect was concentrated in full-time enrollment. By and large, the

evidence seems to favor a positive effect from grants and loans programs.

[Figure 1.4 about here.]

In the line of research that focuses on differential enrollment behaviors across

racial/ethnic groups, Cameron and Heckman (2001), Carneiro and Heckman (2002 and

2003) argue that long-run factors that determine the preparedness for college are more

important than short-term cash constraints in making schooling decision. Their point can

be translated into a high correlation between family income and ability in my model. As

long as the correlation is not1, in which case ability is observable and there is no role for

college as a signal, the signaling mechanism in this paper still works, though the college

premium would be smaller. In fact, recognizing the positive correlation between family

income and talent helps my argument in the sense that the true marginal student, who

can benefit from college and is barely financially constrained, is likely from the middle

income group instead of the lowest one. I have shown in the preceding paragraphs that the

college indeed has become more affordable to the middle income families for both types

of institutions. While my model does not aim to provide a theory of enrollment decision

per se, the only, realistic, assumption that I need is that college enrollment rates have risen
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over the years because a bigger and bigger fraction of the population can go to college

when they choose to.

1.2 A Brief Literature Review

I briefly review the related literature. The evolution of the aggregate skill premium is

described, among others, by Autor, Katz and Kearney (2008). Katz and Murphy (1992)

provide a supply and demand framework to account for the dynamics of wages. Autor,

Katz and Krueger (1998) rely on skill-biased technological change to rationalize the

demand for skilled labor outpacing the supply. While their model involves assumptions on

the unobservable quality of labor, Krusell, Ohanian, Rios-Rull and Violante (2000) show

that the capital-skill complementarity can account for almost all of the growth in aggregate

skill premium without any change in the trend of the unobservable.

While all of the papers above look at wage differentials by education attainment across

all age groups, Card and DiNardo (2002) point out that the skill premium does not grow at

the same rate across age groups. Further, Card and Lemieux (2001) estimate a production

model with imperfect substitution between workers from different age groups and attribute

the rising college premium for younger workers to the slowdown in the rate of growth

of educational attainment starting with the 1950 cohorts. My paper shares with their

work this cohort-based perspective. Guvenen and Kuruscu (2009) calibrate a overlapping

generations model of human capital accumulation with skill-biased technical change and

heterogeneous agents differing in the ability to accumulate human capital. Their model

generate behaviors of the overall wage inequality and college premium for young workers
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that are consistent with the data. This paper differs from all of the above papers in that I

abstract away the technological progress in the production process that change the labor

demand. Instead, I focus on the implication of the signaling effect of education in an

environment in which the suppliers of labor are less and less financially constrained in

their schooling decision.

While the application of signaling theory to the college wage premium is relatively new,

the idea of education-as-a-signal is obviously not: it dates back to Spence (1973). Hendel,

Shapiro and Willen (2005) argue that decreasing interest rates on borrowing or decreasing

tuition has the unintended consequence of widening the wage gap for similar reasons to

the ones in this paper. They develop a model with imperfect capital markets and look at a

separating equilibrium with two types, in which only the high ability type can benefit from

college. The presence of the wedge between the borrowing and lending rates of interest

enriches the dynamics of the skill premium and college attendance and allow them to

discuss policies such as college loans. In contrast, this paper looks at a pooling equilibrium

where all agents having continuously distributed abilities can benefit from college as

long as they can afford it, while shutting down credit markets completely. The change in

affordability, which depends on the availability of financial aids and loans, is governed by

the speed with which the budget constraints are relaxed, a parameter which is calibrated

to match the observed enrollment rates. The convenience of a pooling equilibrium is

technical. The equilibrium dynamics has a closed form which facilitates the calibration.

However, it is plausible to me that a high school graduate believes that he can benefit from

7



college given the option of dropping out. Bedard (2001) lends some support to this by

showing that high school dropout rates are higher in areas with greater university access.

When more high school graduates have access to college, being a high school graduate

without college enrollment is not worthy of the effort to complete the high school. While

both my model and Hendel et al. (2005) predict no variation over time in the wage offer

to college graduates, Balart (2010) specifies conditions on the wealth distribution under

which more access to higher education decreases earnings for all education groups within

the framework of Hendel et. al.

This paper also contributes to the literature which quantifies the relative importance of

college education as a process of human capital enhancement and as a signaling device.

Riley (2001) summarizes a large body of empirical research that tests the educational

screening hypothesis against the human capital accumulation hypothesis, reaching mixed

conclusions. I refer the reader to the references therein. Recognizing both roles of college

education in generating college premium, Fang (2006) estimates a structural static model

of endogenous education choices and wage determination and finds that productivity

enhancement accounts for at least two-thirds of the college wage premium. On the other

hand, Taber (2001) develops a dynamic programming selection model and finds evidence

that the change in college premium in the 1980s was more plausibly driven by increasing

demand for unobservable abilities than for skills acquired at school. While Taber (2001)

suggests that the educational signal was likely to play a big role, he does not model the

education signaling explicitly. He assumes the within-cohort ability differential between

8



college graduates and high school graduates to be constant over time, eliminating the

cohort effect on the evolution of college premium. It is precisely this cohort effect that

is the focus of this paper. More specifically, to borrow from Taber’s terminology, the

change of college premium has three potential sources: the change in the payoff to skills

acquired in college, the change in the payoff to unobservable ability, the change in the

ability differential conditioning on education outcome. Fang (2006) suggests that the first

source is important, because in a static setting the college premium is determined mostly

by the payoff to skills learned in school. Taber’s (2001) argument is that the second source

seems to play a larger role than the first, ignoring the third possibility. In contrast, my

paper argues, roughly, that regardless of the relative importance of the first two roles, the

third source, the cohort effect, accounts for around 17% of the growth in college premium.

The rest of the paper is organized as follows. Section 2 presents the theory, while

Section 3 simulates the model and provides a measurement of the effect of signals on the

growth of skill premium. Section 4 concludes. All proofs are in the Appendix.

1.3 Model

1.3.1 A Static Model: the Working of the Education Signal

A static model may help the reader’s intuition. Assume personal talent is private

information that is nevertheless useful in production. Firms can base their wage offer

only on the observable signal, which consists of having attained, or not, a college degree.

Everyone is born with a high school diploma.

The population has size one, half is endowed with high talent,�; and half with low

9



talent�. Let the distribution of wealth in the population beF (
). College education has a

fixed cost ofQ. Assume that all those with wealth
 > Q go to college, hence, the fraction

of people who goes to college isF (Q). Assume there is randomness in successfully

completing college. The probability of a high (low) talent person to complete college isp

(p), with p > p. The wage offer is simply the expected talent conditional on the signal

received.

With some algebra, we have the wage offer to college graduatesW and to high school

graduatesW;

W =
p

p+ p
� +

p

p+ p
�;

W =
1� p[1� F (Q)]

2� (p+ p)[1� F (Q)]
� +

1� p[1� F (Q)]

2� (p+ p)[1� F (Q)]
�:

WhileW is a constant,W depends on the fraction of people that can afford to go to

college. Writex = 1 � F (Q), we haveW 0(x) < 0; implying that the wage differential

increases together with college attendance. Next we embed this simple mechanism in a

dynamic model of production.

1.3.2 Embedding the Signals in a Dynastic Model

This is a continuous time discrete-choice problem. Each agent is indexed by the pair

(�; k0), where� denotes talent, distributed in[0; �] according to a cumulative distribution

functionG(�); andk0 is the initial endowment of capital from a distributionF (k0) over

[0; k0]. The distributionsG(�) andF (�) are independent. Each agent is endowed with 1

unit of labor. In each instant, an agent faces a discrete choice of whether going to college

10



or not. There are two implicit assumptions in this formulation. One, the offspring of the

high (low) type remains high (low); since our main concern is not about social mobility,

this assumption seems innocuous. Two, firms cannot, through repeated interaction with

an agent from the same dynasty, infer her type. Agents save a constant fraction of their

income in each instant. Saving must be positive, i.e. agents cannot borrow against future

income. We will relax this assumption later. College education requires a fixed costQ > 0.

The rest is the same as in the static model, withp(�), a monotone increasing function,

representing the probability of completing college for type�:

1.3.2.1 The Agents’ Problem

At each instant of time, an agent(�; k0) decides whether to go to college or directly to

the labor market. If he decides to go to college, he pays the fixed costQ, after which one

of the two possible states of nature is realized: he either completes college or not. After

finding a job, he works, consumes and saves a fraction� of his income. Agents are risk

neutral and maximize the discounted sum of future consumption taking the rental rate of

capitalR(t) and the wagesW (t); W (t) as given:U(c(t)) =
R1
0
c(t)e�rtdt:

Since there is no disutility from labor, all agents supply 1 unit of labor inelastically.

There is no capital depreciation. For ease of exposition, the time argument is suppressed

when it does not cause confusion.

Lemma 1 If it is optimal for an agent with talent� to go to college att, then it is
optimal for any agent who has talent greater than� to go to college att as long as his
current capital holdingk � Q:

Intuitively, for an agent with talent� attending college is convenient ifp(�)(W �W )�

RQ is positive. Becausep(�) is increasing, this implies the result.

11



1.3.2.2 Production

In each period the representative firm rents capital from the households and hires

workers. I will look at two different classes of production functions. The first class, call it

P1; is

Y (K;LH ; LC) = [�L
�
HE(�jHSG) + �K� + (1� �� �)L�CE(�jCG)]1=�; � � 1; (P1)

whereLH is the number of high school graduates andLC is the number of college

graduates. Here high school graduates and college graduates are perceived as different

inputs, i.e. they are assigned different jobs. The productivity of each group is its average

talent, by Law of Large Numbers. Implicitly, college education here is productive in the

sense that successfully completing college equips the college graduates with a particular

set of skills that allow them to undertake a particular task. The elasticity of substitution

between two types of labor is the same as their elasticity with capital. In contrast, the

second class of production functions only employs aggregate labor and capital as its

inputs, that is, skilled and unskilled labor are perfect substitutes:

Y (K;L) = A[�K� + �(L � E(�))�]1=�: (P2)

In both cases, markets are competitive and the high school (or college) graduates will be

paid by their marginal product conditional on the signal. Later, in the calibration section,

I will explore the different quantitative implications of the two production functions. The

total stock of capital isK(t) =
R k0
0
k(t)dF (k0) and the total labor supplyL(t) = 1;8t.

Following the tradition, skilled labor (or, unskilled) and college graduates (or, high school

graduates) are used interchangeably.
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1.3.2.3 Equilibrium
Definition 1 Equilibrium without credit markets

An equilibrium without credit markets of this economy is a list(c(t); k(t); sh(t))
for each agent(�; k0) and a list of prices(R(t);W (t);W (t)) given initial capital
distributionF (�) and distribution of talentG(�), the exogenous positive saving rate�
and the production technology, so that
(i) Agents optimally make schooling decisionsh(K(t)), givenR(t); W (t); W (t);
(ii) Firm maximizes period profit;
(iii) Factor Markets clear.

To provide an analytically convenient environment, we will look at a special class of

the equilibrium defined above, the pooling equilibria in which all agents optimally go to

college as soon as they can afford it. More discussion on equilibrium selection can be

found at the end of this section. Before proving the existence of the pooling equilibria,

I will prove the monotonicity of the wage differential in enrollment under the proposed

strategy profile, which will be useful in the construction of the equilibrium later. Letx be

the fraction of agents who go to school and we havex = 1�F (Q). The theoretical results

here are presented mainly forP1. An analogous characterization of equilibria withP2 can

be obtained from the author upon request.

Lemma 2 For P1; under the strategy profile that all types of agents go to college
as soon as their current capital holdingsk � Q; for high� and lowQ, ln(W=W ) is
increasing in the fraction,x, of agents going to college.

To facilitate interpretation, the wage differential has the form ofW
W
=

1����
�
(LC
LH
)��1 E[�jCG]

E[�jHSG] : An increase in the attendance will unambiguously lead to

a higher ratio of expected talents,E[�jCG]
E[�jHSG] ; by exactly the same logic as in the static

model. Imagine� = 1, then the wage differential will unambiguously go up. However, for

� < 1, the general equilibrium effect kicks in. Since college graduates become more abun-
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dant, its marginal productivity decreases relative to that of high school graduates, and this

mitigates the effects of the signals. For everyQ, I can find ab� � 1, such that for all� � b�,
this monotonicity property of the wage gap holds. In general, the monotonicity of wage

differential rely also on smallQ and high�. Consider a separating equilibrium, in which

higher types opt for school and lower types don’t. Suppose that college is very expensive,

hence few people can afford it. Then a college degree is more correlated with wealth than

with talent and the signal it contains is weak. The marginal productivity of skilled labor is

high, hence skilled labor would be receiving a high payment, if identifiable. But holding

a college degree is not such a clear signal of talent, as only the rich can afford it. If col-

lege enrollment increases while its cost is constant the signal’s quality does not improve

as the high cost of attending college implies we are scrapping the "bottom of the barrel"

among wealthy people. More generally, this is true also when the cost of attending college

decreases as long as it is high and the distribution of wealth is not concentrated at high

values of wealth. The marginal productivity of skilled labor decreases, though, relative to

that of unskilled labor and, as a result, we may have a range in which increasing college

attendance brings about a decrease of the wage premium.

Proposition 1 Under some assumptions, forQ sufficiently small, there exists a
pooling equilibrium where all types of agents choose to go to college as soon as
k � Q.

To guarantee that the net benefit of college attendance,p(�)(W (t) �W (t)) � R(t)Q

is positive for allt, Q cannot be too high. A sufficient upper bound,bQ; is the solution

(which exists) top(0)(W (0)�W (0)) = �(K(0)� bQ)��1 bQ:
14



Remark 1 The bound of admissibleQ; bQ, is (i) increasing inx0; (ii) increasing in
p(0); necessarilyp(0) > 0; (iii) increasing inK(0):

The above proposition has nice implications about the trends of college enrollment rate

and of skill premium.

Corollary 1 There is a cut-off level of the initial wealth for a givent; k0(t); so that
for all agents whose endowmentk0 � k0(t); they will choose college education att.
That is, the college enrollment rate is increasing over time.

Observe that all agents who haven’t attended college accumulate capital in

exactly the same fashion:
�
ki = �[R(t)ki + W (t)]: Therefore,k0(t) satisfies

k0(t) = Q �
R t
0

�
k(s)ds;where the evolution ofk(s) follows

�
k = �[R(s)k(s) +W (s)];

0 � s � t: Obviously,k0(t) is decreasing over time along the equilibrium path.

Corollary 2 The wage gap is widening over time along the equilibrium path.

The equilibrium path is completely characterized in terms of the aggregate capital,

K(t), and the cut-off wealth level,k0(t):� �
K(t) = �Y (K(t)� x(t)Q; 1� x(t)

R
pdG; x(t)

R
pdG)

�
k0(t) = ��[R(t)Q+W (t)]

(1)

s:t: k0(t) � 0

with K(0) =
Z k0

0

k0dF (k0) andk0(0) = Q;

whereY (K;LH ; LC) is given by (P1),R(t) given by (A1),W (t) given by (A2) and

x(t) = 1� F (k0(t));

I will use this dynamic system to simulate the model in Section 1.4.

ForP2, W
W
= E(�jCG)

E(�jHSG) : I can establish the existence of the pooling equilibrium under

even weaker assumptions.

Lemma 2’ For P2; under the strategy profile that all types of agents go to college as
soon as their current capital holdingsk � Q; ln(W=W ) is increasing in the fraction,
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x, of agents going to college.
Proposition 1’ For P2; under the assumption thatQ < K(0), for Q sufficiently

small, there exists a pooling equilibrium where all types of agents choose to go to
college as soon ask � Q.

The two corollaries continue to hold and the dynamic system that characterizes the

equilibrium path remains valid with modified production technology and prices.

In general, there may exist separating equilibria in the sense that only a fraction of

agents who can benefit from college self-select to attend college. In this case, Lemma 1

continues to hold, so the college-goers are those whose talent is above some threshold

and who are not financially constrained. I discuss conditions for the existence of a

separating equilibrium in the Appendix. The equilibrium evolution of the enrollment

rates, the cut-off values of talent or the college premium is not necessarily monotonic.

Furthermore, the actual enrollment rates and college completion rates imply that under

mild conditions, the college premium is increasing in the cut-off value of talent. This

means for a given enrollment rate, the lower the cut-off the smaller the wage gap. In other

words, if we interpret the rising college premium as attracting less talented high school

graduates to go to college, the decreasing minimum talent level tends to dampen the

college premium. Intuitively, as we move to the extreme case of a pooling equilibrium,

the effect of changes in the budget constraint on the college premium is smallest. Since

talent is unobservable, the data is silent on the equilibirum selection. I restrict my attention

to the pooling equilibrium for the following reasons: (1) the solution is closed-form and

has nice properties; (2) the signaling effect brought by relaxing budget constraints in a
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separating equilibrium is likely to be even greater than that in a pooling equilibrium; (3)

if we think empirically the talent cut-off in the separating equilibrium is decreasing, then

the pooling equilibrium can be seen as a limiting case; (4) since our starting point is high

school graduates, it is reasonable to assume that someone who can successfully complete

the high school curriculum is prepared for college.

1.3.2.4 A Theoretical Bound of the Effect of the Signals

The next question ishow muchthis story can account for the growth in the skill

premium. This is of course an empirical question, but here I will derive a theoretical

bound of the force of the signals. A widely held opinion is that compositional change in

the labor force has little effect on the distribution of wage. This exercise addresses this

concern theoretically and hopefully sheds some light on the kind of environment in which

the force of signals tends to be strong.

Following Krusell et al. (2000), the growth rate in skill premium can be decomposed

into two effects for the model withP1, the relative quantity effect and the relative

efficiency effect,

g
ln W

W

' (1� �)(ghu � ghs) + �(g s � g u);

wheregx =
dx=dt
x
; hs = x

R
pdG; hu = 1�x

R
pdG; s = E[�jCG] and u = E[�jHSG]:

The change in the distribution of signals leads to a change in the average talent given

a signal, which amounts to a change in the efficiency of skilled labor relative to that of

unskilled labor. To maximize the effect of the signals, we must choose the underlying
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parameters to maximize the relative efficiency effectg s � g u :

sup
Gt(�)
pt(�)

R �
0
�p(�)dG�

R �
0
p(�)dG

R �
0
�dG

(1� x(t)
R �
0
p(�)dG)(

R �
0
�dG� x(t)

R �
0
�p(�)dG)

�
x(t):

Remark 2 (1) x(t) and
�

x(t) are conveniently taken as given at each t. Though they
are endogenous variables, I calibrate the enrollment rates to replicate those in data. So
we may well take it as exogenous here.
(2) We allowGt(�) andpt(�) to be time-dependent. This maximizes the possible
explanatory power of the signals and makes per period problem exactly the same.
From now on, we will suppress the time subscriptt.

Proposition 2 The effect of signals is bounded by the negative growth rate of the
fraction of people that don’t attend college (if finite):

g s � g u �
�
x

1� x
= �g1�x:

This result suggests that the signals work most effectively when the education can

perfectly sort out the highest talents. Consider the following example in which there are

only two talents, 1 or 0.

Example 1 There is a fraction of" (close to 0) of people with talent of 1 and the remaining
are of talent 0. As a result,E(�) = ". Suppose people with high talent can pass the
exam almost surely, while people with low talent have the probability of success decreasing
overtime in the following fashion:

pt(0) =
1

1 + x(t)
:

Note that at each instant of time the probability of success is still weakly increasing in the
talents. The exam costs nothing. Then, one can verify that

E(�jwith degree)
E(�jwithout degree)

! 1

1� x
; as "! 0:

g s � g u =
d

dt
ln

E(�jwith degree)
E(�jwithout degree)

! �g1�x; as "! 0:

Note that in this example, the sorting mechanism becomes more and more efficient

overtime, which also contributes to the growth of skill premium. This example shows
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that the suggested bound can be achieved in the limit. However, in the setting where the

probabilities of success are constant overtime, we would expect in general slower growth

in skill premium. The bottom line is that in an economy in which the distribution of

degrees is highly upward skewed, the education signal has a bigger force.

Now we do a simple counterfactual calculation. Take the college enrollment rates from

1969 to 2005 and computeg1�x3. Then, I take the skill premium in 1969, and let it grow

at the maximum theoretical bound�g1�x; whereby I get the fictitious wage gap in the

dashed line contrasted with the real data, as is illustrated in Figure 1.5.

[Figure 1.5 about here.]

The signals, theoretically, have the potential to generate all of the growth in skill

premium. But as will be clear in Section 1.4, our hands are tied significantly by the

specification and parameterization of the model.

1.3.3 Optimality

In the current environment, there are two potential sources of inefficiency: the

information problem represented by the private information of talents and the problem of

missing credit market. We will investigate the consequences of these two problems one by

one. In both cases, the objective of the social planner is to maximize period total output.

1.3.3.1 Benchmark One: Complete Information

Assume a social planner observes the individual talents. ForP1, the social planner

3 Since in the proof of the above proposition,
�
x is assumed to be positive. I simply replace any negative

growth in the data with zero.
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simply chooses�� so that all agents with talent above�� are educated at a costQ:

�(��) = max
��
f�(1�

Z �

��
pdG)��1(

Z �

0

�dG�
Z �

��
�pdG) + �[K � (1�G(��))Q]�

+(1� �� �)(

Z �

��
pdG)��1

Z �

��
�pdGg1=�

s:t: 0 � ����:

This is not a concave problem and the solution is messy. Let� = 1 for tractability:

Proposition 3 Consider� = 1 with P1: In cases in which2� � 1� � holds or both
2� < 1� � and(1� 2�� �)�p(�) < �Q hold; it is optimal not to provide education
at all. If 2� < 1� � and(1� 2�� �)�p(�) � �Q, the optimal cut-off in talent�� is
given by(1� 2�� �)��p(��) = �Q:

In cases where production relies more on unskilled labor than on skilled labor, or in

cases where the opportunity cost of investing in education is high, it may be optimal not

to provide education at all. But with incomplete information, there may still exist pooling

equilibria defined in Section 1.3.2.3. The individual incentive to self-signal the talent

causes both misallocation of factors and a waste of resources. More generally, in all those

pooling equilibria, after some finite length of time, the economy will always over-invest in

education, even though it may never reach the optimal amount of skilled labor even in the

limit.

With P2, the degrees are irrelevant since talents are perfectly substitutable and the

social planner simply uses all available resources.

Proposition 3’ For P2, the social planner employs all labor and capital and the
period output isA[�K� + �(E(�))�]1=�:

In the case withP2; there is no need to invest in education if education serves purely as

a signal.
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1.3.3.2 Benchmark Two: Relaxing Borrowing Constraints

In this section, agents of the same generation are allowed to borrow from each other.

Let b(t) be the amount of debt (or credit) that the agent acquires before he receives his

income, which has to be paid back at the end of that period.

Definition 2 Equilibrium with within-generation credit markets

An equilibrium of this economy is a list(c(t); k(t); sh(t); b(t); R(t);W (t);W (t)) for

each agent(�; k0); given initial capital distributionF (�) and distribution of talentG(�) and

the exogenous positive saving rate� and the production technology; so that

(i) Agents optimally choosesh(K(t)) andb(t), givenR(t); W (t); W (t);

(ii) Firm maximizes period profit;

(iii) Factor markets clear;

(iv) Credit markets clear:
R �
�

R k0
0
b(t; �; k0)dG(�)dF (k0) = 0:

Notice thatLemma 1still holds. It is easy to construct an equilibrium in which all

agents go to college from day 1.

Proposition 4 Under Assumptions 1- 3 andP1, for Q sufficiently small, there exists
an equilibrium in which all agents go to college from day 1.

In this equilibrium, the college attendance rate is always 1 and the wage gap remains

constant

W

W
=
1� �� �

�
(

R
pdG

1�
R
pdG

)��1
R
�pdGR
pdG

1�
R
pdGR

�dG�
R
�pdG

:

Furthermore, for all economies that have an equilibrium with borrowing constraints

as is defined inDefinition 1, there is also an equilibrium with with-in generation credit

markets as is defined inDefinition 2,in which there is full attendance. The equilibrium
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with within generation credit markets is easier to support: it exists for even higher cost of

education. Now the evolution of the aggregate capital is described by

�
K(t) = �[�(K(t)�Q)� +�]

1
� 4:

For the same set of parameters, the equilibrium with within generation credit markets

has more skilled labor, less unskilled labor and less capital. Hence, only in an economy

where skilled labor is very productive, the relaxation of borrowing constraint may bring

about more output. More generally, from a social planner’s point of view, relaxing

borrowing constraint does not necessarily lead to a Pareto improvement with transfers,

since this allows for more competition through unproductive signals. The equilibrium

without credit markets converges to the benchmark equilibrium in the limit.

1.4 Calibration

1.4.1 Data

The relevant data series are the log wage gap between college graduates and high school

graduates, the college enrollment rate and the college completion rate.

Skill premium. To be consistent with the theoretic prediction that cohorts born more

recently when the signaling effect of a degree is stronger face higher premium than

what earlier cohorts face, the calculation of college premium should be cohort-based. I

computed the wage series using the CPS March data from 1969 to 2005 by age groups and

focus on the age group 23-6. The construction process is essentially the same as Autor,

Katz and Kearney (2008).

4 � = �(1�
R
pdG)��1(

R
�dG�

R
�pdG) + (1� �� �)(

R
pdG)��1

R
�pdG:
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College enrollment rate. The college enrollment rate is available from 1960 to 2006

from the American College Testing Program on NCES website. The enrollment rate is

obtained by dividing the total number of college enrollment in a given year by the total

number of high school completers, who graduated from high school and completed GED

within the preceding 12 months.

College completion rate.Take the number of bachelor’s degrees conferred by

degree-granting institutions each year and divide it by the total college enrollment four

years before. The degree data are available by year from 1970 to 2006 from NCES. The

model counterpart is
R �
0
p(�)dG(�), the average passing rate of college-goers. I plot the

series of college completion rates in Figure 1.6.

[Figure 1.6 about here.]

Initial income distribution in 1972. I take the wage/salary income distribution of the

fulltime-fullyear-employed 40-50 years old in 1972 from CPS March. These people were

likely to have children around 20-year-old in the same year. CPS sampling weights are

used.

Cost of college. The cost of college in the model is the tuition, fees, room and board

(TFBR) net grants and aids. The TFBR is available from 1976 to 2005 from College

Board and the Grants and Aids are available from 1986 to 2006 on selected years. After

interpolating the missing observations linearly, the real net cost is almost constant from

1986 to 2006, averaged at5467 in 2006 dollars.
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1.4.2 Calibration Strategy

The data is structured as follows. The model year refers to the year for which the

skill premium is calculated. Within the same period in the model, the enrollment rate six

years and college completion rate two years before the model year are used. This is to

accommodate the fact that the skill premium is calculated for the age group 23-26. Since

the annual degree data starts in 1970 and the skill premium series ends in 2005, the first

period in the model is 1972, while the last is 2005.

In order to introduce more variability to the model, I allow the average talent given a

college degree to grow and transform the formulae of wage gap to make use of the data of

college completion rate. More specifically, let the average talent given a college degree

follow a linear trend

ht � E[�jCG] =
R �
0
�pt(�)dGR �

0
pt(�)dG

= h0 + 
t:

The model is silent about the change inht; since the signaling effect from increasing

enrollment works through a deteriorating wage offer to unskilled labor. In reality, there

are reasons to believe that the average talent of a college graduate grows over time: better

screening mechanism in college admission, or better college financing to the talented, or

improving human capital accumulation through college, among others. Permittinght to

grow over time in this reduced form of course increases the overall fit of our model to data,

but we will see that the magnitude of the signaling effect modeled in this paper doesnot

hinge much on the growth rate ofht.

The data counterpart of college completion rate�t is
R
p(�)dG, whereby the models of
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wage differential are transformed into

W

W t

=
1� �� �

�
(

xt�t
1� xt�t

)��1
(h0 + 
t)(1� xt�t)R
�dG� xt�t(h0 + 
t)

; (P1)

W

W t

=
(h0 + 
t)(1� xt�t)R
�dG� xt�t(h0 + 
t)

; (P2)

wherext is the college enrollment rate. From the last section, the college completion rates

rose sharply during the period 1985 to 1995. What does this imply? Assume
 = 0. It

is easy to show that withP2, the wage gap is increasing in college completion rate as

long ash0 �
R
�dG. With P1, the wage gap is increasing only ifh0 >

R
�dG and� is

sufficiently close to1. In the calibrated models, it is true for both productions that the

growth in completion rates helps generating some portion of the college premium. This

may be interpreted as a change of the talent distribution over time, or changes in the

college screening technology.

Now we are ready to discuss the measurement of the signaling effect. To facilitate

discussion, I restrict my attention toP2. Recall from Section 1.3.2.4 that in the model,

the growth rate of skill premium has two components, the relative quantity effect and the

relative efficiency effect.P2 only has the relative efficiency effect: there is no general

equilibrium effect of changes in skilled/unskilled labor composition on college premium.

In other words, when I vary the enrollment rate, the variation in the skill premium reflects

solely the relative efficiency effect, which is exactly the signaling effect that I’m interested

in. Hence, the signaling effect can be measured by a counterfactual simulation, in which

I fix the enrollment rate constant at the initial level and simulate the wage gap. In the
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absence of college completion rate data, the wage gap is constant if
 = 0. However, in

the transformed model with the completion rate data, there is some growth in the wage gap

even if
 = 0. The signaling effect is then the residual contribution to the growth in college

premium on top of the prediction of the counterfactual model. I calculate the compound

annual growth rate (CAGR) of the wage gap predicted by a model holding enrollment

fixed and compare it with the CAGR of the wage gap predicted by a calibrated model with

endogenous enrollment rates. The measure of the signaling effect is the percentage of

growth rate that is contributed by varying enrollment rates:

1�
CAGR(ln W

W
jholding enrollment fixed,
)

CAGR(ln W
W
j
)

: (1.2)

Essentially, for any
, I can compute the measure of the signaling effect within a model

parametrized by
 (call it model
) in the above way. As I vary
, the overall fit of the

model varies and can be measured likewise by

CAGR(ln W
W
j
)

CAGR(ln W
W
jdata)

:

This is the percentage of growth explained by model
 with respect to data. Multiplying

the above two measures, I come to a measure of the overall signaling effect of model
.

We will see that this measure is remarkably stable across different values of
.

To tackle the difficult problem brought by the unobservables, I ask the following two

questions: one, what is the contribution of signals given that the unobservable behave in

the most favorable way to me; two, what is the effect of signals as I limit the contribution

of the unobservables. To answer them, I follow three steps.

In the first step, I jointly estimate some key parameters in a non-linear-least-square
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model of wage gap. More specifically, forP1, I normalizeh0 = 1, take� = � = 1
3
,

and jointly estimate
; E� and�; for P2, I take� = 1
3
; � = 2

3
, normalizeh0 = 1, and

estimate
 andE�. But, all I take from this stage is the value of
. I interpret this value

as representing the most favorable term I can get from the unobservables. Details of the

estimation are available upon request.

In the second step, I calibrate the model in the standard fashion, taking
 from the first

step as given. In particular, the saving rate� is pinned down by minimizing the distance

between the model enrollment rates and the data.

In the third step, I calibrate models which correspond to different values of
; ranging

from 0 to the first step estimate. I look at the measurement of the signaling effect and find

it to be quite constant across different
:

1.4.3 Calibration Results

1.4.3.1 P1

The first stage estimation for P1 yields
 = 0:712%. To gain a sense of the magnitude

of 
; the avarage talent of college graduates grows to1:23 times the original level within

33 periods. It turns out that with the first stage estimate of
, the model over-predicts the

growth in college premium. Hence, in the calibration, I pick the
 that matches the model

prediction of college premium in the last period with that in the data.

In the second stage, I calibrate the model as follows.
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Model V alue Source
M 5 45000 Decision rule


 0:5% Match last period model college premium with data

h0 1 Normalization

x0 0:5006 College enrollment rate in 19666

Q 5467 Real TFRB net aids averaged over 1986 and 2006

F (�) �� Income distribution in 1972 timesF�1(1� x0)
K0 20816 Mean ofF (�)
� 0:3 Average capital share of national income in NIPA

� 0:98 Monotonicity of skill premium in enrollment rate

� 0:3283 To match the initial college premium in 1972

� 2:82e� 7 To match model enrollment rate with the data

M requires some explanation.M scales the productivity of talent to a scale comparable

to that of capital, so that in each period the decision rulep(0)(W �W ) � RQ > 0

holds. The value of� implies strong substitutability among the three inputs. Krusell et

al.(2000) estimate the elasticity of substitution between unskilled labor and equipment to

be 1.67 and that between skilled labor and equipment to be 0.67, which suggests some

substitutability between unskilled labor and the combo of skilled labor and capital. In this

model,�must be high enough to guarantee the monotonicity of the wage gap in enrollment

rate. Both the growth rate
 and the trend in college completion rates contribute to the

growth of the college premium. When holding the college enrollment rate fixed at the

initial condition, the model still predicts around 85% of the growth. To be more specific,

the CAGR of college premium in the model is 3.46%, while in the counterfactual with

constant enrollment, it is 2.98%. This suggests that the signaling effect contributes around

14% in the growth of college premium (Panel 1.1).

5 ht =M(h0 + 
t):To guarantee the existence of the pooling equilibrium, I needp(0)(W �W )�RQ > 0:
A sufficient condition is that�(W �W )�RQ > 0: The scale ofht guarantees that.

6 The enrollment rate in 1966 is 0.5011. The difference results from a kernel density estimation of the income
distribution.
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[Panel 1.1 about here.]

1.4.3.2 P2

In the model withP2, the same parameter values apply unless noted below.

Model V alue Source
M 100 Decision rule


 0:3435% 1st stage estimation

E� 0:9058 To match the initial college premium in 1972

Q 5467 Real TFRB net aids averaged over 1986 and 2006

� 1=3 NIPA

� 2=3 NIPA

� �1 Empirical estimate, see Antras (2004)

� 4:5239e� 005 To match the model enrollment rate with the data

Now the CAGR of the model college premium is 3.36%, while in the counterfactual

model it is 2.76%. Therefore, the signals contribute about 18% in the growth of college

premium (Panel 1.2). Note that the model, by itself, is not an elaborate model about the

evolution of the college enrollment, therefore it fails to catch the swing in the college

enrollment rates. However, even if I feed the actual enrollment rate into the model, the

prediction of college premium doesn’t change much (Panel 1.3). The counterfactual

prediction accentuates the trough and peak for obvious reasons. But the model is able to

replicate the long-run trends subject to the limited source of variability.

[Panels 1.2 and 1.3 about here.]

1.4.3.3 Measuring the Signaling Effect

Now I restrict my attention toP2. I recalibrate the model for 30 equally spaced values

of 
 ranging from 0 to 0.3435%.
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As is expected, the explanatory power of the model increases as I increase
 (see

Figure 1.7). However, Figure 1.8 shows that the signaling effect of model
 is actually

decreasing in
. Hence, in terms of the overall effect of signaling, the estimate stays fairly

constant within the range of 16-18.5% (see Figure 1.9).

The merit of this exercise is that we can be reasonably confident in saying that around

17% of the growth rate in college premium comes from the signaling mechanism modeled

here. This estimate allows rooms for many other potential explanations to be at play

at the same time, be it demographic change or skill-biased technological change or

capital-skill complementarity, since it is conceptually equivalent to a
 less than the first

step estimate. In general, with productions that allow decreasing return to scale in the

skills, the increasing trend of enrollment rates changes the relative supply of skilled labor,

which will tend to dampen the signaling effect. Hence the measure as defined in (1.2)

tends to underestimate the effect of signaling, since it is a product not only of the signaling

effect but also the general equilibrium effect of increased supply of skilled labor.

[Figures 1.7, 1.8 and 1.9 about here.]

1.5 Conclusion

Though the idea of education as a job market signal is well known, its application to the

evolution of wage distribution hasn’t been well articulated in theory. This paper is such an

attempt. I have developed a model with agents heterogeneous in initial wealth and talent,

who make schooling decisions. The growth in the college enrollment rate due to increased

accessibility to college makes a high school diploma a clearer signal of low talent. If talent
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is useful in production, the college degree will be rewarded a higher premium relative

to the high school diploma. This brings about a growing wage gap between college

graduates and high school graduates. The model is calibrated, with two specifications of

production technologies. The effect of signals on the college premium is estimated to be

around 17% for models that can potentially allow for other explanations of rising college

premium. Simplistic as it seems, the theory has a big potential to explain a wider range of

phenomena. I close the paper with directions for future research.

One immediate extension is to extend the two dimensional choice variable to the

multidimensional choice of getting bachelor’s, master’s or doctor’s degree. Eckstein

and Nagypal (2004) argues that the most important group contributing to the increase in

college wage premium is workers with a postgraduate degree. This is consistent with my

theory. The increase in the number of Bachelor’s degrees issued will demand even higher

degrees to effectively signal one’s talent, which leads to the growing graduate school

premium. It is conceivable that with a continuum of choice of levels of education, that

varies from community colleges to the Ph.D. programs in top universities, the distribution

of the education premium to each will fan out over time as the signals work their way

through the distribution.

The framework can also be easily adapted to explaining the increasingly high premium

of attending elite colleges. By casual observation, the best schools are becoming more and

more accessible to the high talented students, thanks to more effective admission processes

and more generous financial aid. As a result, the degree of elite schools must have become
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more correlated with talent than before. To estimate the fancy college premium and

observe its evolution over time would be an interesting empirical question.

Another direction of research is to model the supply side of the college education.

The key to the growing enrollment rate is the relaxation of household budget constraint

over time through capital accumulation. But in reality there may be other ways that

achieve the same effect. One example is the relaxation of the borrowing constraints, as

is studied in Hendel, Shapiro and Willen (2001). Incorporating a sector of college will

be a first step toward a general equilibrium approach. Colleges maximize some objective

function by choosing costly admission processes. They can either admit students without

much screening or undertake costly selection procedure. Colleges can be endowed with

reputation such that in equilibrium some reputedly good colleges choose to be more

selective, but will be compensated by higher prices they charge the students. Students in

turn will be compensated by the top college premium. The story is more relevant if we

can document the growing tuitions of top-notch schools and the growing returns to elite

education.

Finally, one can conceive a full dynamic model, in which agents optimize over

consumption and saving. Intuitively, this will help us more. Since the skill premium is

growing over time, for subjective discount rate that is not too high, later cohorts will

optimally choose to save more, which will allow their children to go to even fancier

colleges or allow them to pursue postgraduate degrees, that will further enlarge the

associated higher education premium. Combining a full dynamic model with a multiple
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or even continuum choice of levels of education would certainly make an elaborate

model, though possibly analytically intractable. One would want to pay the extra cost

of computation for more precise quantitative and policy-oriented analysis. After all, the

parsimonious model we have here lays out the essential economic intuition just as well.
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Figures and Tables

Figure 1.1: College Enrollment Rate and College Premium: HP-filtered, U.S. 1972-20057

1970 1975 1980 1985 1990 1995 2000 2005
0

0.2

0.4

0.6

C
ol

le
ge

 P
re

m
iu

m

Year
1970 1975 1980 1985 1990 1995 2000 2005

0.4

0.5

0.6

0.7

C
ol

le
ge

 E
nr

ol
lm

en
t R

at
e

College Premium
College Enrollment Rate

7 The college premium is the log weekly wage difference of a college graduate and a high school graduate for the age
group 23-6, constructed from March CPS. Data are filtered by the Hodrick-Prescott Filter to remove the cycle.
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Figure 1.2: HP-Filtered Log Weekly Wage to College Graduates and High School Graduates8
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8 Fitting a linear trend to the HP-filtered log weekly wage series yields: no trend with an average of 6.32 inlogWCG

until 1993 whilelogWHSG = 26:96� 0:011 � Y ear; from 1994 to 2005,
logWCG = �27:2323 + 0:0168 � Y ear andlogWHSG = �10:10 + 0:0081 � Y ear; : All coefficients
significant at 1%. The smoothness paramater in the HP-filter is 6.25.
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Figure 1.3: The Difference of HP-filtered Median Household Income and Net College Price

versus Net College Price as Share of Median Household Income

(in 2008 Dollars) 1975/76-2007/089
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9 Data source: Trends in Student Aid 2009, Table 3; Trends in College Pricing 2009, Figure 5; U.S. Census Bureau, CPS,
Annual Social and Economic Supplements, Tables H-6, H-8.
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Figure 1.4: Average Grants and Federal Loans Per Full-Time-Equivalent Student (in 2008 Dollar) 1970/71-2008/0910
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10 Source:Trends in Student Aid 2009, Table 3.
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Figure 1.5 Real and Fictitious Wage Gap
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Figure 1.6 College Completion Rates11
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Panel 1.1: Model prediction of college premium forP1 : h0= 1; � = 0:98; 
 = 0:5%
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Panel 1.2: Model prediction of college premium for P2:
 = 0:3435%
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Panel 1.3: Prediction of college premium using endogenous enrollment rates vs. data
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Figure 1.7: % of CAGR in College Premium Explained by Model
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Figure 1.8: % of CAGR in College Premium in Model
 Explained by Signaling
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Figure 1.9: % of CAGR in College Premium Explained by Signaling for Model
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Table 1.1

Difference between Mean Parents’ Income and Tuition and Fees net Grants and Federal Loans,

by Income Groups and Types of Intitution, selected years (in 2008 dollars)

Year Lowest 5th Second 5th Third 5th Fourth 5th Highest 5th
Public 4-year Institutions
1985 15; 110:83 36; 668:34 55; 474:54 79; 295:33 145; 075:60
1988 13; 207:92 37; 307:48 58; 180:59 82; 020:43 151; 674:68
1991 16; 125:12 36; 804:96 55; 521:14 80; 999:30 156; 513:43
1994 16; 562:50 36; 218:12 56; 319:46 81; 763:71 155; 444:26
1998 18; 708:25 39; 304:02 60; 786:51 88; 908:78 160; 174:07
2002 18; 574:82 39; 332:83 60; 830:58 89; 701:64 161; 131:78
2006 18; 505:38 39; 554:77 61; 375:99 92; 128:54 168; 814:00

Private Not-for-profit 4-year Institutions
1985 13; 440:63 35; 098:99 53; 755:32 75; 810:07 168; 132:03
1988 10; 037:89 33; 389:80 53; 464:12 76; 961:45 167; 005:24
1991 13; 456:60 33; 829:92 50; 992:03 76; 435:25 153; 830:67
1994 13; 436:82 32; 813:51 52; 238:00 76; 540:80 157; 520:44
1998 15; 863:34 35; 309:56 56; 792:18 82; 824:42 156; 307:34
2002 13; 544:82 34; 069:10 54; 987:60 84; 082:46 156; 285:44
2006 13; 430:70 34; 850:36 54; 063:27 83; 832:11 167; 342:44
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1.6 Appendix

1.6.1 Theoretical Derivation
Lemma 1 Proof The value function isvi(k(t)) = maxfvci(k(t)); vnci(k(t))g, where

rvc(k(t)) = p(�)f(1� �)[R(t)(k(t)�Q) +W (t)] +
dvi

dk
�[R(t)(k(t)�Q) +W (t)]g

+ [1� p(�)]f(1� �)[R(t)(k(t)�Q) +W (t)] +
dvi

dk
�[R(t)(k(t)�Q) +W (t)]g:

s:t:k(t) � Q

rvnc(k(t)) = (1� �)[R(t)k(t) +W (t)] +
dvi

dk
�[R(t)k(t) +W (t)]:

GivenW;W;R; since it is optimal for(k0; �) to go to college,

�(k; �) � vc(k)� vnc(k) = (1� � + �
dv

dk
)[p(�)(W �W )�RQ] > 0

) �(k; �0) = (1� � + �
dv(k; �0; k0)

dk
)[p(�0)(W �W )�RQ]

> 0:8�0 > �

Hence, independent of the state variablek, (k0; �
0) would always prefers collegeas long

asgoing to college is feasible, i.e.k � Q: Q.E.D.

:

Assumption 1 � > 1� (
R �
0 �pdG�

R �
0 pdG

R �
0 �dG)(1�F (Q))R �

0 �dG�(1�F (Q))
R �
0 �pdG

:

Lemma 2 Proof Under the specified strategy profile, the output and factor prices are
R(t) = ��(K(t)� x(t)Q)��1: (A1)

W (t) = (1� �� �)�(x(t)

Z �

0

pdG)��1
R �
0
�pdGR �

0
pdG

: (A2)

W (t) = ��(1� x(t)

Z �

0

pdG)��1
R �
0
�dG� x(t)

R �
0
�pdG

1� x(t)
R �
0
pdG

;

where� = f�(1 � x
R �
0
pdG)�

R �
0 �dG�x

R �
0 �pdG

1�x
R �
0 pdG

+ �(K(t) � xQ)� + (1 � � �

�)(x
R �
0
pdG)�

R �
0 �pdGR �
0 pdG

g
1
�
�1:
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d

dx
(
W

W
) =

1

1� x
R
pdG

(
�� 1
x

+

R
�pdG�

R
pdG

R
�dGR

�dG� x
R
�pdG

)

� 1

1� x
R
pdG

(
�� 1
x0

+

R
�pdG�

R
pdG

R
�dGR

�dG� x0
R
�pdG

)

� 0; by Assumption 1andx0 = 1� F (Q):

This implies thatln(W
W
) is increasing inx. Note that8Q; Assumption 1is not empty.

Q.E.D.

Assumption 2 1����
�

� (1�x0
R
pdG

x0
R
pdG

)��2
R
�dG�x0

R
�pdG

x0
R
�pdG

:

Assumption 2guaranteesW (t) > W (t).

Assumption 3 Q < K(0):
Proposition 1 Proof The key is to verify that in the suggested equilibrium, all agents

optimally make the schooling decision.

By Lemma 1, it is sufficient to look at the agent with the lowest talent and make sure he

prefers to go to college. Suppose the college attendance is growing over time.

p(0)[W (t)�W (t)]�R(t)Q

= �fp(0)[(1� �� �)(x

Z
pdG)��1

R
�pdGR
pdG

��(1� x

Z
pdG)��1

R
�dG� x

R
�pdG

1� x
R
pdG

]� �(K(t)� xQ)��1Qg;

where�, as is defined inLemma 2, is positive. Assumption 2andLemma 2implies
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(1� �� �)(x
R
pdG)��1

R
�pdGR
pdG

� �(1� x
R
pdG)��1

R
�dG�x

R
�pdG

1�x
R
pdG

is increasing inx. Now

p(0)[W (t)�W (t)]�R(t)Q � �fp(0)[(1� �� �)(x0

Z
pdG)��1

R
�pdGR
pdG

��(1� x0

Z
pdG)��1

R
�dG� x0

R
�pdG

1� x0
R
pdG

]� �(K(0)�Q)��1Qg � 0:

) p(0)[(1� �� �)(x0

Z
pdG)��1

R
�pdGR
pdG

� �(1� x0

Z
pdG)��1

R
�dG� x0

R
�pdG

1� x0
R
pdG

]

� �(K(0)�Q)��1Q � 	(Q):

By Assumption 3,d	(Q)
dQ

= [K(0) � Q]��2[K(0) � �Q] > 0;with 	(0) = 0;

limQ!K(0)	(Q) = +1: By Assumption 2,

p(0)[(1� �� �)(x0

Z
pdG)��1

R
�pdGR
pdG

��(1� x0

Z
pdG)��1

R
�dG� x0

R
�pdG

1� x0
R
pdG

] > 0;

then there exists abQ such that

	( bQ) = p(0)[(1� �� �)(x0

Z
pdG)��1

R
�pdGR
pdG

��(1� x0

Z
pdG)��1

R
�dG� x0

R
�pdG

1� x0
R
pdG

]:

For allQ � bQ; p(0)[W (t) �W (t)] � R(t)Q > 0;8t: So byLemma 1,for Q sufficiently

small, all agents want to go to college as soon as they can afford it. Lastly, for all those who

are constrained,
�
ki = �[R(t)ki +W (t)] > 0: This implies that indeed in the equilibrium

there will be an increasing fraction of people who can afford education. Q.E.D.

Corollary 1 Proof An agent starts to go to college at timet that satisfies

ki0(t) +
R t
0

�
ki(s)ds = Q; where the evolution ofki follows

�
ki = �[R(t)ki(t) +W (t)]:

At time t the faction of agents that goes to college is1� F (ki0(t)); which is increasing
in t; sinceki0(t) is decreasing int. Q.E.D.

Proposition 2 Proof I proceed in three steps.

Step 1: Transformation. Letbp(�) = �p(�)g(�); which necessarily satisfies

bp(�) � 0; 0 � R �
0
bp(�)d� � �: Let

R �
0
�dG � a. This problem is equivalent to a two-step
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maximization. Givena;

supbp(�)
�
x�

R �
0
�bpd� � a

R �
0
bpd�

(� � x
R �
0
bpd�)(�a� x

R �
0
�bpd�)

s:t:bp(�) � 0; 0 � Z �

0

bp(�)d� � �; 0 �
Z �

0

�bpd� � a�

Then, maximize over all possiblea.

Step 2: Change of variables. Lety(�) =
R �
0
bp(v)dv: Integration by part givesR �

0
�bpd� = R �

0
�y0(�)d� = �y(�)�

R �
0
y(�)d�: The problem can be rewritten as

sup
y(�);R �

0 y(�)d�

�
x�

(� � a)y(�)�
R �
0
y(�)d�

(� � xy(�))[x
R �
0
y(�)d� + �(a� xy(�)]

s:t:

�
0 � y(�) � �; y 0(�) � 0;

maxf0; �(y(�)� a)g �
R �
0
y(�)d� � (� � a)y(�):

�
Step 3: Maximization. Firstly,y(�) and

R �
0
y(�)d� can take values independently.

Secondly, the objective is increasing iny(�), but decreasing in
R �
0
y(�)d�. But biggery(�)

will increase the lowest level that
R �
0
y(�)d� can take.

If y(�) � a, then the optimal values arey(�) = a and
R �
0
y(�)d� = 0:

If y(�) � a. Then at the optimum, no matter what valuey(�) takes,
R �
0
y(�)d� =

�(y(�)� a). Substituting this relation into the objective functionsupy(�)
�
x ��y(�)
(��xy(�))(1�x) : It

is decreasing iny(�). Hence, at the optimum,y(�) = a and
R �
0
y(�)d� = 0.

In both cases, the maximum of the objective function issup(g s � g u) =
�
x ��a
(��xa)(1�x) :

Now maximize with respect toa, sup(g s � g u) =
�
x
1�x = �g1�x;asa! 0:Q.E.D.

Proposition 3 Proof Differentiate the objective function with respect to
�� givesg(��)[(2� + � � 1)��p(��) + �Q]. If 2� � 1 � �; maximum is
obtained at�� = �: Suppose2� < 1 � �. If (1 � 2� � �)�p(�) < �Q;
maximum is obtained at�� = �: Otherwise, first order necessary condition
requires for�� 2 [0; �]; (1 � 2� � �)��p(��) = �Q: SOC at�� gives
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[�� (1� �� �)][p(��) + ��p0(��)] < 0: Hence�(��) is a local maximum. It is easily
shown that�(��) > �(�) and�(��) > �(�): Hence,�� achieves the global maximum.
Q.E.D.

Proposition 4 Proof The agents’ problem: the value function is
vi(k(t)) = maxfvci(k(t)); vnci(k(t))g; where,

rvc(k(t)) = p(�)f(1� �)[R(t)(k(t)�Q) +W (t)] +
dvi

dk
�[R(t)(k(t)�Q) +W (t)]g

+[1� p(�)]f(1� �)[R(t)(k(t)�Q) +W (t)] +
dvi

dk
�[R(t)(k(t)�Q) +W (t)]g

s:t:k(t) + b(t) � Q:

rvnc(k(t)) = (1� �)[R(t)k(t) +W (t)] +
dvi

dk
�[R(t)k(t) +W (t)]:

By the same logic as inProposition 1,8t; vci(k(t))� vnci(k(t)) = p(0)[W (t)�W (t)]�

R(t)Q > 0: Now the factor prices in the proposed equilibrium are

W (t) = (1� �� �)b�(Z pdG)��2
Z
�pdG:

W (t) = �b�(1� Z pdG)��2(

Z
�dG�

Z
�pdG):

R(t) = �b�(K(t)�Q)��1;

where� = f�(1 �
R
pdG)��1(

R
�dG �

R
�pdG) + �(K � Q)� + (1 � � �

�)(
R
pdG)��1

R
�pdGg

1
�
�1:

p(0)[W (t)�W (t)]�R(t)Q

= b�fp(0)[(1� �� �)(

Z
pdG)��2

Z
�pdG� �(1�

Z
pdG)��2(

Z
�dG�

Z
�pdG)]

��(K(t)�Q)��1Qg;

By Assumptions 1-3,
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(1� �� �)(

Z
pdG)��2

Z
�pdG� �(1�

Z
pdG)��2(

Z
�dG�

Z
�pdG)

> (1� �� �)(x0

Z
pdG)��1

R
�pdGR
pdG

� �(1� x0

Z
pdG)��1

R
�dG� x0

R
�pdG

1� x0
R
pdG

> 0:

9 bQ� such that

p(0)[(1� �� �)(

Z
pdG)��2

Z
�pdG� �(1�

Z
pdG)��2(

Z
�dG�

Z
�pdG)

= �(K(0)� bQ�)��1:
It is readily seen thatbQ� > bQ: 8Q < bQ�; p(0)[W (t) �W (t)] � R(t)Q � 0: Hence,

everyone attends college at all times, while the wage gap remains constant. Q.E.D.

1.6.2 Separating Equilibrium

I sketch here the proof of the existence of a separating equilibrium forP2: This exercise

can be repeated forP1:

Assumption 4 p(0) = 0:
Assumption 5 g(�) = 0:

Assumption 6 �p(E(�))[
R �
E(�) �pdGR �
E(�) pdG

�
R
�dG�(1�F (Q))

R �
E(�) �pdG

1�(1�F (Q))
R �
E(�) pdG

] >

�[K0 � (1�G(E(�))Q]��1Q:

Assumption 7 1 > 2
R �
E(�)

pdG:

First, at timet, fix xt = 1� F (k0t) andKt: By Lemma 1, the cut-off level of talentb�t
satisfiesp(b�t)(W t �W t) = RtQ; or

�p(b�t)[Et(�jCG)� Et(�jHSG)] = �[Kt � (1�G(b�t))xtQ]��1Q: (1.3)

The LHS is further equal to�p(b�t)[R �b�t �pdGR �b�t pdG �
R
�dG�xt

R �b�t �pdG
1�xt

R �b�t pdG ]: One can show that RHS

is decreasing inb�t while LHS is increasing inb�t if

(a)b�t < R �dG; and (b)1 > 2xt
R �b�t pdG: We will restrict the solutionb�t to [0; E(�)]
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to guarantee (a). (b) is ensured by (a) and Assumption 7. Note that we can rewrite (2)

as2[xt(1 � G(b�t))] R �b�t pdG1�G(b�t) = 2�enrollment ratet�college completion ratet: One can verify

using the U.S. data from 1972 to 2005 that the above inequality is always satisfied. Under

Assumptions 4 and 5, in order for (1.3) to have a solution in[0; E(�)], one requires

Assumption 6. Hence, for all values ofxt andKt, there exists a cut-off pointb�t 2 [0; E(�)],
such that all agents with� � b�t choose to go to college as long as they can afford it.

Second, the dynamic system that characterizes the equilbrium path is

�
Kt = �A[�(Kt � (1� F (k0t))(1�G(b�t))Q)� + �E(�)�]1=�;

�
k0t = ��[RtQ+W t];

whereRt = ��[Kt�(1�F (k0t))(1�G(b�t))Q]��1; W t = ��[E(�)]
��1

R
�dG�(1�F (k0t))

R �b�t �pdG
1�(1�F (k0t))

R �b�t pdG
and� = A[�(Kt � (1 � F (k0t))(1 � G(b�t))Q)� + �E(�)�]1=��1: The cut-off of talent

satisfies

�p(b�t)[R �b�t �pdGR �b�t pdG �
R
�dG� (1� F (k0t))

R �b�t �pdG
1� (1� F (k0t))

R �b�t pdG ] = �[Kt�(1�G(b�t))(1�F (k0t))Q]��1Q:
The initial conditions areK0 =

R k0
0
k0dF; k00 = Q:

Under Assumptions 4-7, the solution to the above dynamic system exists. However,

the equilibrium paths of the cut-off point of talent, the enrollment rates and the college

premium are not necessarily monotone.

1.6.3 Calibration

1.6.3.1 Data

Skill premium.The raw data are taken from the CPS March from 1969 to 2005. Only

fullyear fulltime workers that have positive wage and schooling are considered. They are
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grouped by ages. The relevant age group here is those age 23 to 26. The log deflated

weekly wage, which is the income from wage and salary divided by weeks worked, is then

regressed on dummies of education, geographic region and race, by sexes. The education

is the highest education attainment reported, high school dropouts, high school graduates,

some college, college graduates or above. The geographical region is grouped in four,

Northeast region, Midwest region, South region and West region. For more definitions on

the data precession, please refer to Autor, Katz and Kearney (2008). For each sex, the log

wage gap is the difference between the prediction for a white college graduate (but with

no graduate degree) who lives in the average geographic region and that for a high school

graduate counterpart. The log wage gap is the mean of the log wage gaps of the two sexes,

weighted by their hours worked. CPS weights are used. I have explored variations of this

basic set-up, including the log 10-year-income gap, the log wage gap between a 23 year

old college graduate and a 19 year old high school graduate, among others. The results

don’t differ much.

Initial income distribution in 1972. Annual income from wage and salary are converted

into 2006 dollars by CPI index. CPS weights are used. To match the initial enrollment

rate, which is0:5006, I find the 50th percentile in the empirical income distribution and

normalize it to be equal toQ. That is,

F (Q=�) = 1� 0:5006:

Further multiply all income in the sample by� and this gives theF (�) in the model.� can

be thought of as the share of income that goes to educational expenses.
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Cost of college. The real cost of college, computed using the data published inTrends

in College Pricing 2006andTrends in Student Aid 2007,do not show an obvious trend

from 1986 to 2006. I takeQ to be the average over all these years, which is5467.

1.6.4 Proofs for Model withP2
Lemma 2’ Proof Let a = E(�). The gross output is

Y = Af�(K � xQ)� + �[LHE(�jHSG) + LCE(�jCG)]�g1=�:
W = ��a��1E(�jCG);
W = ��a��1E(�jHSG);
R = ��(K � xQ)��1;

where� = Af�(K � xQ)� + �[LHE(�jHSG) + LCE(�jCG)]�g1=��1:

ln
W

W
=

E(�jCG)
E(�jHSG)

=

R
�pdGR
pdG

1� x
R
pdGR

�dG� x
R
�pdG

increasing inx. Q.E.D.
Proposition 1’ Proof

p(0)(W �W )�RQ

= �fp(0)�a��1[E(�jCG)� E(�jHSG)]� �(K � xQ)��1Qg
� �fp(0)�a��1[E(�jCG)� E(�jHSG)]� �(K(0)�Q)��1Qg:

By the same token, there existseQ; s.t.

p(0)�a��1[E(�jCG)� E(�jHSG)] = �(K(0)� eQ)��1 eQ:
For allQ � eQ;

p(0)(W �W )�RQ � 0;8t:
Moreover, when this is the case, there will be indeed an increasing number of agents
going to college. Q.E.D.

1.6.5 1st Stage Estimation Results

P1 The non-linear model for wage gap is

ln(
W

W
)t = ln

1� �� �

�
+ (�� 1) ln( xt�t

1� xt�t
) + ln

(h0 + 
t)(1� xt�t)R
�dG� xt�t(h0 + 
t)

;
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which is transform into a statistical model with series ofln(W
W
)t; xt and�t:

yt = ln(
W

W
)t + ln

xt�t
1� xt�t

= ln
1� �� �

�
+ � ln

xt�t
1� xt�t

+ ln
(1� xt�t)(h0 + 
t)R
�dG� xt�t(h0 + 
t)

+ "t

= b0 ln
xt�t

1� xt�t
+ ln

(1� xt�t)(1 + b2t)

b1 � xt�t(1 + b2t)
+ "t:

Normalizeh0 = 1: Take� = � = 1=3; and jointly estimate�;
R
�dG and
: Note thatR

�dG and
 are relative toh0 as a result of normalization.

Source SS df MS Number of obs34
Model 7:4987 3 2:499 R-squared 0:9925
Residual :05678 31 :0018 AdjR-squared 0:9918

RootMSE :04280
Total 7:5555 34 :0018 Res.dev: �120:94
yt Coef. Std.Err. t P>t [95% Conf.Interval]
=b0 :8594 :0353 24:35 0:000 .7874 :9313
=b1 :9985 :0269 37:06 0:000 :9436 1:053
=b2 :0071 :0011 6:74 0:000 :0049 :0093

Parameter b0 taken as constant term in model & ANOVA table

This implies

� = 0:869356;Z
�dG = 0:9986415;


 = 0:71175%:

P2 The non-linear model for the wage gap is

ln
W

W t

= ln
(h0 + 
t)(1� xt�t)R
�dG� xt�t(h0 + 
t)

;

56



which is transformed into

yt = ln(
W

W
)t � ln(1� xt�t) = ln

h0 + 
tR
�dG� xt�t(h0 + 
t)

= ln
1 + b0t

b1 � xt�t(1 + b0t)
:

I normalizeh0 = 1; and jointly estimate
 and
R
�dG.

Source SS df MS Number of obs33
Model 22.56 2 11.28 R-squared 0.9966
Residual .07802 31 .0025 AdjR-squared 0.9963

RootMSE .0501668
Total 22.64 33 .6861 Res.dev: -105.9117
yt Coef. Std.Err. t P > t [95%Conf.Interval]
=b0 .0034 .00056 6.17 0.000 .0023 .0046
=b1 .9032 .01031 87.65 0.000 .8822 .92425

Parameter b0 taken as constant term in model & ANOVA table

This implies


 = 0:3435%;Z
�dG = 0:9032:
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Chapter 2 Information Production in the Process of Securitization

"The three credit rating agencies were key enablers of the financial
meltdown. The mortgage-related securities at the heart of the crisis could not have

been marketed and sold without their seal of approval. Investors relied on them,
often blindly. In some cases, they were obligated to use them, or regulatory capital
standards were hinged on them. This crisis could not have happened without the

rating agencies. Their ratings helped the market soar and their downgrades through
2007 and 2008 wreaked havoc across markets and firms."

——– The Financial Crisis Inquiry Commission Report 2011

2.1 Introduction

The financial crisis of 2007-2010 is considered by many as the worst financial crisis

since the Great Depression. Among the many causes of the crisis, the Financial Crisis

Inquiry Commission identifies the failure of the rating agencies as the key ingredient

of the financial melt-down. The role of the rating agencies is to evaluate the return of

structured financial products under new macroeconomic conditions and to communicate

it to the investors. More specifically, in order to rate a mortgage-backed security (MBS),

the rating agencies use quantitative models to estimate the loss distributions of the relevant

classes of mortgages and simulate the cash flow of the structure to determine the level

of credit enhancement needed for a given grade. All this is done under their forecast

of macroeconomic conditions. In abstract terms, I can interpret the rating process as a

post-origination information production process, i.e. producing information about the
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return of existing loans in banks’ portfolio. The quote from the Commission Report points

to the importance of understanding the post-origination information production in the

process of securitization12. In particular, we knew that the loans were getting riskier, but

more importantly why were we contented with knowing little about the riskiness of the

loans?

This paper develops a simple framework to look at banks’ incentive to produce

information and its effect on the loan origination decision. In doing so, I reduce rating

agencies’ problem of information production to banks’, assuming that rating agencies

de facto produce and use information that banks consider optimal. This assumption is

consistent with the issuer-pay model, which aligns rating agencies’ and banks’ objectives.

In practice, the rating agencies rely on the banks to provide the statistics of the loans

that comprise the structured financial product, hence there is practically a boundary

of knowledge about the loans imposed by the banks. In my model, a bank makes

two decisions: loan origination and information production. When making origination

decision, the bank must decide loans from which risk class(es) to include in its portfolio.

After the loans are made, the bank then chooses how much information about the returns

of those existing loans to produce. Perfect disclosure is assumed: whatever information

produced, it is public information.

Consider first the problem of information production. A loan is represented by a draw

from a distribution of returns. The uncertainty in the riskiness of a mortgage is modeled

12 For some anecdotal evidence of the inadequicies of rating agencies’ practices, such as using outdated
30-year-fixed-interest models to evaluate the subprime mortgages, seeOhio AG vs. Credit Rating Agencies,
p. 30.
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as the uncertainty in the variance parameter of the distribution. A risk-averse bank, as the

originator of the loans, can costly produce a signal about the variance parameter. More

information makes the financial product to be marketed less risky to investors, increasing

the price of the financial product; on the other hand, it makes the price correlate more

with the information than with investors’ common prior, which leads to increased price

volatility. The net benefit of information is the difference between the two aforementioned

effects. The optimal amount of information balances the marginal net benefit with the

marginal cost of information.

Now if we consider the process of securitization as a means to diversify geographical

risks of different mortgages, we would expect that the information production be reduced

as compared to a case where diversification is not available. Diversification makes the

return of securities less sensitive to the information about a particular loan, decreasing

the marginal net benefit of information. When the bank is faced with the opportunity

of originating loans of different risk classes, the securitization implies that the bank

will originate more and riskier loans, since securitization improves the profitability of

issuing a single loan. These statements will be made precise in the models developed

below. Throughout the paper, two institutions are compared: one in which loans are sold

individually and the one in which pass-through securities backed up by the loans are sold.

The first scenario is a benchmark case which disables diversification.

Another way of understanding the issue is to see the process of securitization as a way

to redistribute risks. In the context of the model, in any non-trivial cases where information
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is beneficial at all, the bank is actually better off holding all assets13. It is kept from

doing so by assumption in the model (i.e. it has to sell all assets, either individually or

through securitization) and by required reserves and required capital in reality as argued in

Pennacchi (1988)14. By producing information, the bank effectively retains risks through

the volatility of asset prices. For example, if the bank produces an infinitely precise signal

about the return, the investors will pay to the bank exactly what the security is worth.

Hence, before the realization of the signal, the bank bears all the risks. This arrangement

is closer to the ideal distribution of risks but too costly from the bank’s perspective. So it

balances the improved distribution of risks through information provision with the cost of

doing so. Securitization transforms the problem of risk-distribution such that the welfare

is less sensitive to the information production. I will identify three sources of welfare

improvements from securitization.

So far in a static world where there exist only idiosyncratic risks, the process of

securitization is welfare improving. This may account for the success of this institution

before the crisis, when the perception of the environment is essentially static and the major

risks of concern are geographical risks and prepayment risks. The inability of making

good judgment about the changes in the environment sowed the seeds of the market crash

13 See Appendix.
14 Pennacchi (1988) argues that loan sales reduce the cost of capital for the bank when the required reserves

and required capital constraints are binding. However loan sales introduce a moral hazard problem: since
the return on the loans hinges on bank’s monitoring activities, selling loans reduces its commitment to
monitoring ex ante. In this paper, the information is not productive by itself. Hence it would be optimal
to finance the loans by loan sales if it were feasible. Securitization has long raised concerns from the
regulators as a way of regulatory arbitrage (Calomiris and Mason, 2004). By transferring mortgage loans to
the Real Estate Mortgage Investment Conduits (REMIC), banks can effectively structure a mortgage-backed
securities offering as a sale of assets rather than debt financing, removing the loans from the balance sheet
and bypassing the minimum capital requirement.
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in 2007. However, even in a static environment with idiosyncratic risks, the securitization

can make the bank better off at the cost of investors if the investors are optimistic about the

returns on loans. A slightly modified version of the model is used to illustrate the point.

The main message of the paper is that securitization reduces the production of

payoff-relevant information and induces the bank to originate more and riskier loans.

More specifically, the quality of the loans seems to deteriorate along two dimensions:

the estimated or perceived risk, such as those measured by loan-to-value ratios, and

the precision of the estimates, such as those measured by the percentage of low/no

documentation loans, as is shown in Table 2.1.

Table 2.1: Combined Loan-to-Value Ratio and Share of Low/No Doc Loans
Y ear 2001 2002 2003 2004 2005 2006 2007
CLTV % 79:4 80:1 82:0 83:6 84:9 85:9 82:8
% Low=NoDoc 23:5 29:6 32:2 33:6 36:6 37:7 33:3

Source: Table 1 in Demyanyk and van Hemert (2008).

Some empirical studies argue that securitization is likely to cause weak underwriting

standards. Dell’Ariccia, Igan and Laeven (2008) find that larger decline in lending

standards as measured by loan denial rates and loan-to-income ratio occurs in areas with

higher securitization rates. Mian and Sufi (2008) use zip code level borrowers’ data to

show a striking correlation between the increase in securitization and the expansion of

credit and its dissociation from income growth. In fact, 2002 to 2005 is the only period in

the last eighteen years when income and mortgage growth are negatively correlated in their

sample. Keys, Mukherjee, Seru and Vig (2010) use a regression discontinuity argument

to show that increased securitization had adverse effect on banks’ screening incentives.
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By exploiting a rule of thumb that loans with FICO score above a threshold of 620 can be

more easily securitized, they show that the loans with score just above 620 are more likely

to default than those just below the threshold.

On the theoretical ground, there is abundant work on the institution of securitization,

which focuses on the comparison between the originate-to-distribute model and the

originate-to-hold model (Pennacchi, 1988; Gorton and Pennacchi, 1995; Petersen and

Rajan, 2002; Parlour and Plantin, 2008). Although both those models and my model

imply that under securitization the bank originates loans of worse qualities, i.e. with

lower expected returns or riskier returns or both, the reasons behind it are different. In

those models, securitization, or essentially loan sales, introduces a moral hazard problem:

selling loans reduces banks’ incentive to monitor the loans, which improves the return

on those loans. Related, Diamond (1984) identifies banks pooling the loans and offering

debt contracts to lenders as an optimal arrangement to mitigate this moral hazard problem.

In contrast, this paper looks at the information productionafter the loans are made

and explore how that affects the origination decision. Securitization, by diversifying

and transforming the sensitivity of bank’s payoff to information, alters its solution to

the information production problem. As a result, improved risk-sharing and reduced

information production makes the origination of riskier loans more affordable to the bank.

As suggested by the quote at the beginning of the paper, the main problem is not that the

loans are perceived as riskier, but that we are contented with imprecise perceptions. My

model predicts that under securitization not only the bank lends to riskier borrowers, i.e.
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the perceived risk is increased, it also spends less resource improving its perception of

the risk. This "carefree" mindset of the bank and the rating agencies opens the possibility

of vastly erroneous predictions from under-invested models in an dynamic environment

whose key parameters keep evolving.

In terms of the welfare implications, the paper differs from the aforementioned papers

too. In those papers, since securitization or loan sales reduces productive monitoring, it

reduces welfare. Here, in a stationary world with idiosyncratic risks and homogeneous

priors, securitization is shown to be welfare-improving. This feature of securitization

justifies its existence and popularity in the 1980s and 1990s, but also sows the seeds

of slow adjustment and learning in a dynamic environment, which leads to the current

crisis. This is an example where information, which has a purely re-distributive role, is

Pareto-improving when the initial allocation is sub-optimal. For more discussion on the

social and private values of information, please refer to Hirshleiffer (1971) and Hakansson,

Kunkel and Ohlson (1982) among others.

Last but by no means the least, there is a long line of research on the information

production by heterogeneous investors in a competitive market with noisy rational

expectations: Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980), Verrecchia

(1982) and Diamond and Verrecchia (1991) are some important contributions to the

literature. However, I chose a set-up where the bank determines the information

production. It is motivated by the fact that in the market of mortgage-backed securities

there is practically little scope for the investors to acquire information. It is common
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practice among the government sponsored agencies such as Fannie Mae and Freddie Mac

to limit the amount of information available to the market. Information at the pool level

is disclosed, but specific information that helps identify the particular loans in the pool

is withheld. Diamond and Verrecchia (1991), Fishman and Hagerty, (1990) and Glaeser

and Kallal (1997) provide theoretical insights into this phenomenon in models with

asymmetric information. To the extent that bankshonestlydisclose coarser information, I

abstract away the informational asymmetry between the bank and the investors.

The paper is organized as follows. The second section contains a basic model

of information production. The third section solves the origination and information

production decisions jointly in a model with heterogeneous lending opportunities. Section

4 presents a model with heterogenous priors and discusses some welfare implications. The

conclusion follows.

2.2 The Basic Model

This is a static model of information production. There are a single bank and a large

number of homogeneous investors. The bank has the constant absolute risk aversion

(CARA) utility with risk tolerance� : U(w) = � exp(�w
�
): Investors’ preferences

are also of the CARA type with risk tolerancer : u(w) = � exp(�w
r
): The bank is

endowed withn loans. The returns on the loans are drawn independently from a common

normal distribution parameterized by(�; �2). Ex ante, the variance�2 is unknown and is

(correctly) believed to follow a normal distribution:e�2 � N(��; �2�): Suppose�� � ��:
15

15 For ���� � 4; Pr(e�2 � 0) � 3:2e� 005: In the numerical example in the next section, I will show that under
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The normality is assumed for ease of interpretation. I show in the Appendix that the

qualitative results also hold in an environment where the bank is risk neutral and the

variance of the return is distributed non-central�2(1). The bank has a technology to

produce a public signales2 about the unknown variancee�2 :
es2 = e�2 +e�;

where the noisee� is distributed asN(0; 1
�
) independently frome�2: The cost of signals is an

increasing and convex function of the precision�: c0(�) � 0; c"(�) � 0:

Consider two problems. In Problem 1, the bank sells the loans individually to the

investors. In Problem 2, it pools the loans and issuesN shares of securities toN investors,

each share being a claim of1
N

of the total return on the pool. AssumeN � n:

The sequence of the play is as follows. Given the loans, the bank chooses the precision

of the signal�: After the signal is realized and observed by all, the bank meets with an

investor and offers a loan if in Problem 1 and offers a share of security if in Problem 2.

The bank has full bargaining power and the investor is charged his willingness to pay,

which is a function of the realization and the precision of the signal. This type of meetings

continue until the bank sells off all of the loans.

I proceed by backward induction. Suppose the bank chooses a signal with precision�:

I can write the joint distribution of the variancee�2 and signales2 as�e�2es2
�
� N(

�
�20
�20

�
;

�
�2�0 �2�0
�2�0 �2�0 +

1
�

�
:

The conditional distribution ofe�2 givens2 is still normal, with the following posterior

the chosen parametrization, the normal distribution is a good approximation of the truncated normal.
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mean��1 and variance�2�1

��1(s
2) =

1

��2� + 1
�� +

��2�
��2� + 1

s2;

�2�1 =
�2�

��2� + 1
:

Problem 1

Consider the case where the bank sells the loans individually. Investors, conditioning

ons2, infer that the variancee�2 has the distribution

fe�2js2(�2) = 1p
2���1

expf� [�
2 � ��1(s

2)]2

2�2�1
g:

Furthermore, conditional on�2, the return on a loan,eul, is distributed according to

feulj�2(u) = 1p
2��

expf�(u� �)2

2�2
g:

Hence, the conditional distribution ofeul givens2 is

feuljs2(u) =

Z
feul;e�2js2(u; �2)d�2

=

Z
feulj�2(u)fe�2js2(�2)d�2;

which is not normal. However investors’ willingness to paypl(s2) is again normal. With
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some standard algebra16,

exp(�pl(s
2)

r
) = E[exp(�eul

r
)jes2 = s2]

= expf�[�
r
� ��1(s

2)

2r2
�
�2�1
8r4
]g:

) pl(s
2) = �0 � [

��1(s
2)

2r
+
�2�1
8r3
]| {z }

an investor’s risk premium

= �0 �
1

2r
(

1

��2� + 1
�� +

��2�
��2� + 1

s2)�
�2�1
8r3

:

As is indicated above, the investor’s risk premium reflects his perceived risk,��1(s
2),

and his uncertainty of the perception,�2�1. The perceived risk, or the posterior mean of

the variance parameter, is a weighted average of the prior and signal. When the signal is

perfectly informative, i.e.� !1, investors rely only on the signal, and vice versa.

Now I solve bank’s problem of information provision. Note that to the bank the

volatility of the profit comes solely from��1(es2).
max
�

EU(nepl � c(�))

= max
�

n�� [ n
2r
�� +

n

8r3
�2�1 ]| {z }� n2

8�r2
var[��1(s

2)]| {z }�c(�) (2.1)

investors’ risk premia the bank’s risk premium

= max
�

n�� [ n
2r
�� +

n

8r3
�2�

��2� + 1| {z }]�
n2

8�r2
��4�

��2� + 1| {z }�c(�):
decreasing in precision increasing in precision

In changing�, the bank is trading of investors’ risk premia with its own risk premium:

16 The willingness to pay can be derived by applying the mean-variance argument twice. First, the
willingness to pay given�2 is p0 = � � �2

2r : Second, sinceep0 = � � e�2
2r is itself normal, hence

pl(s
2) = E[ep0jes2 = s2]� var[ep0jes2=s]

2r = �� ��1(s)
2r � �2�1

8r3 :
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a higher precision reduces the risks that the investors face, decreasing their risk premia,

while it induces more volatile asset prices, increasing the bank’s risk premium. When

� > nr; the marginal effect of� on investors’ risk premia is bigger than that on the bank’s.

Hence, information production helps shift risks from the investors’ side to the bank’s.

Assumption 1 � > nr:

Under Assumption 2.1, I can define the notions of first- and second- best allocation

of risks in this model. The first-best allocation would be for the bank to hold all assets,

yieldingn� � n��
2�
� n2�2�

8�3
: This is infeasible if the bank faces binding required reserves

and capital, as discussed in the introduction. The second-best would be for the bank to

produce a perfectly precise signal to retain the risks, but it is too costly. Hence the optimal

information balances the redistribution of risks and the cost of doing so.

max
�

EU(nepl � c(�))

= max
�

n�� n

2r
�� �

n2

8�r2
�2�| {z }� (

n

8r3
� n2

8�r2
)

�2�
��2� + 1| {z }�c(�):

payoff from the 2nd best shortfall from the 2nd best

The optimal information production� is determined by the first order condition (FOC),

which is both sufficient and necessary,

n(�� nr)

8�r3
�4� = (��

2
� + 1)

2c0(�): (2.2)

Problem 2

Now consider the case where the bank sellsN shares of pass-through securities. For a
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given�2; the return on a share of the security is distributed normal,eus � N( nN�; n�2N2 ): The

willingness to pay upon seeings2 can be derived similarly,

ps(s
2) =

n

N
�� n��1(s

2)

2rN2
�
n2�2�1
8r3N4

:

IncreasingN amounts to increasing the investor base. AsN gets bigger, each investor is

closer to being risk neutral. The bank’s problem now becomes

max
�

EU(Neps � c(�))

= max
�

n�� n

2r

��
N
� n

8r3
�2�1
N3=n

� n2

8�r2
var(��1(s

2))

N2
� c(�): (2.3)

Compare (2.1) and (2.3) and it is clear that the bank’s utility is now less sensitive to the

precision�: The following proposition states that the bank chooses less information under

securitization.

Proposition 1 Let � be the optimal precision the bank chooses when it sells loans indi-
vidually andb� be the optimal precision when it securitizes. Under Assumption 2.1,

(1) when� > Nr; � > b� > 0:
(2) whennr < � � Nr; � > b� = 0:

Proof. When� > Nr;both problems have interior solutions. The FOC in Problem 2 is
n2(��Nr)

8�r3N3
�4� = (b��2� + 1)2c0(b�): (2.4)

Note that the common RHS of (2.2) and (2.4),
d

d�
(��2� + 1)

2c0(�) = 2�2�(��
2
� + 1)c

0(�) + (��2� + 1)
2c"(�) > 0:

The LHS in Problem 1 is unambiguously greater than that in Problem 2. Therefore,� >b� > 0: (2) is immediate.

It is obvious that increasingN , i.e. expanding the investor base, reduces bank’s

incentive to produce information. This is reminiscent of Peress (2010), who showed

that the bigger a given stock’s investor base, the less investors engage in information
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production.

There are three potential sources of welfare gains from the securitization. In the

non-trivial case where� > Nr; write the two objective functions in Problems 1 and 2 as

follows.

max
�

EU(nepl � c(�)) = n�� n

2r
�� �

n2

8�r2
�2� � (� +

1

�2�
)c0(�)� c(�):

max
�

EU(Neps � c(�)) = n�� n

2r

��
N
� n2

8�r2
�2�
N2| {z }�(b� +

1

�2�
)c0(b�)� c(b�)|{z} :

risk-sharing effect | {z } cost-saving effect

information sensitivity effect

Firstly, the second-best payoff in Problem 2 is bigger due to a risk-sharing effect. On

one hand, by pooling and subdividing the risks from the loans, the securitization reduces

the total amount of risks to be distributed(whenN = n). On the other, a bigger investor

base enables the risks to be distributed more widely. The second source of improvements

comes from the fact that the securitization reduces the sensitivity of bank’s payoff to

information. Interestingly, although in the action spaceb� is farther away from the 2nd-best

action, i.e. a precision of infinity, than� is, in the payoff space bank’s utility in Problem 2

is closer to the 2nd-best payoff than that in Problem 1. The securitization achieves a utility

level that is closer to the 2nd-best with a lower level of information production. The third

source of gain is in the saving in the cost of information.

In the next section, I show how the intuition in this basic model is brought into play in a

model with heterogeneous lending opportunities and endogenous origination.
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2.3 A Model with Heterogeneous Lending Opportunities

In this section, I endogenize the bank’s origination decision in light of its optimal

information production. Without loss of generality, assume from now onN = n:

Imagine there areN types of projects in need of funding. The return on each type of

projects are represented by a normal distribution with a common and known mean�17

and an unknown variancee�2i ; i = 1; 2; :::; N: The variances are from normal distributions

ordered in the following way:

��1 < ��2 < ::: < ��n < ::::;

�2�1 < �2�2 < ::: < �2�n < ::::: (2.5)

Again, assume��i � �2�i ;8i = 1; :::N . The lower-indexed types of projects not only

have lower perceived risks, but also the beliefs are more precise. Think of smaller��i

representing lower loan-to-value ratio and smaller�2�i representing full documentation

loans. There is a fixed supply of projects whose riskiness follow each distribution. I

normalized it to1. The bank clearly prefers originating lower indexed loans to higher

indexed ones.

The bank can produce signals about each of the random parameters:

es2i = e�2i + e"i;8i = 1; :::; N:
wheree"0is are noises distributed independently acrossi according toN(0; 1

�i
): The cost of

informationc(�i) has the usual properties.

17 The following analysis goes through in an alternative environment where the mean of the returns increases
sufficiently slowly in the index.
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The bank’s problem now is to decide at which index to stop, taking into consideration

the optimal post-origination information production. Again I compare its solution in

Problem 1 where it later sells the loans individually and that in Problem 2 where it later

securitizes the loans.

Assumption 2 1 < N � 3
4
[�
r
]� 1:

Assumption 3 Linear costs:ci(�i) = c � �i; 8i = 1; :::; N:
Assumption 4 �2�n >

q
8�r3n3c
��rn ; 8n = 1; 2; :::; N:

The linear cost structure allows me to solve the optimal information production

explicitly. Assumption 2.5 rules out the trivial case where there is no information

production under the securitization.

Problem 1

The bank’s problem can be summarized as

max
n

nX
i=1

	i(�i)

= max
n

nX
i=1

[�� 1

2r
��i �

1

8r3
�2�i

�i�2�i + 1
� 1

8�r2
�i�

4
�i

�i�2�i + 1
� c�i];

where

�i = maxf0;
r
�� r

8�r3c
� 1

�2�i
g:

Evidently, the optimal information provision is independent of the size of the pool,n.

One can prove the following properties.

Property 1.1 �i is independent ofn and increasing ini.
Property 1.2 	i(�i) is decreasing ini:

Property 1.1 is immediate. To derive Property 1.2, note that�2�i
�i�2�i+1

=
q

8�r3c
��r and
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all other terms in the objective function is decreasing in�i: More generally, these two

properties hold for all cost functions that are increasing and concave. The benefit from an

additional loan decreases, as the bank makes riskier loans. The optimal size of the pool is

therefore

n� = minfN;nj	n(�n) � 0 and	n+1(�n+1) < 0g:

To better illustrate the intuition, I parametrize the model18 and plot the�i and	i(�i) as

functions ofi in Figures 2.1 and 2.2. The optimal size of the pool is11 in this numerical

example.

Problem 2

The bank’s problem can be represented as maximizing the sum of bank’s utility

contributed by each loan.

max
n

nX
i=1

�ni (b�ni ) = max
n

nX
i=1

[�0�
1

2rn
��i�

1

8r3n3
�2�ib�ni �2�i + 1 � 1

8�r2n2
b�ni �4�ib�ni �2�i + 1 � cb�ni ]:

where

b�ni = maxf0;r �� rn

8�r3n3c
� 1

�2�i
g:

Clearly, the optimal information production of theith loan not only depends on�2�i; but

also on the size of the pool,n. This is because now the return on each share of security

depends on the total number of the loans in the pool.

Property 2.1 b�ni depends onn. For a givenn, b�ni is increasing ini.
Property 2.2 For a giveni; b�ni is decreasing inn:
Property 2.3 For anyn > 1; b�ni < �i; 8i � n:

18 � = 28; r = 1; � = 45; N = 20; c = 0:01: �2�n = 1:1
q

8�3n3c
��rn and��n = 4��n; 8n = 1; :::; N: In the

Appendix, I show the normal distribution is a good approximation of the truncated normal distribution of the
variance parameter in this environment.
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Property 2.2 reflects the fact that a larger number of loans decreases the sensitivity of

bank’s utility to information, reducing the information production of each existing loan.

Under the same parametrization as in Problem 1, I plot the information productionb�ni as a

function ofi for various numbers ofn in Figure 2.3. Asn increase, the curve is defined on

a bigger domain with the entire curve shifting down.

Property 2.4 For a givenn, �ni (b�ni ) is decreasing ini; 8i � n:
Property 2.5 Under Assumptions 2.5-2.5,�ni (b�ni ) < �n+1i (b�n+1i ); 8i � n and
8n � N:

Property 2.4 holds for pretty much the same reason as Property 1.2. For a fixed size of

the pool, the utility contribution from a riskier and more uncertain19 loan is smaller, for

two reasons. One, the price of the securities discounts higher perceived risks (bigger��).

Two, the bank needs to produce more information about a more uncertain loan (bigger

�2�), hence introducing more volatility in asset prices and a higher cost.

When the bank increasen, it of course loads additional risks on its book, but a

bigger pool implies less information production for all the existing loans. If the saving

in information production and reduction in the price volatility is large, it can make

projects that the bank wouldn’t find profitable in Problem 1 profitable here. Consider

an increase of the number of the loans fromn to n + 1: A sufficient condition for

�ni (b�ni ) < �n+1i (b�n+1i ) to hold is 1
8r3n3

�2�ib�ni �2�i+1 > 1
8r3(n+1)3

�2�ib�n+1i �2�i+1
, which is equivalent

to (� � rn)n3 < [� � r(n + 1)](n + 1)3: Assumption 2.5 is the sufficient and necessary

condition for the latter to hold for alln � N: An implication of Property 2.5 is that

the optimal choice in Problem 2, denoted byn��; has to be greater thann whenever

19 Let me abuse the usage of "uncertain" to mean a larger�2�:
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�nn(b�nn) > 0: Now I am ready to establish the result that the bank issues credit to more and

by construction riskier and more uncertain borrowers, under securitization.

Proposition 2 Under Assumptions 2.5-2.5,n�� � n�:
Proof. It is sufficient to show that�n

�
n�(b�n�n�) > 0: Rewrite

	n�(�n�) = �0 �
1

2r
��n� �

1

8�r2
�2�n� � c(�n� +

1

�2�n�
)� c�n� :

�n
�

n�(b�n�n�) = �0 �
1

2rn�
��n� �

1

8�r2n�2
�2�n� � c(b�n�n� + 1

�2�n�
)� cb�n�n�

> 	n�(�n�) � 0:

In the numerical example, the optimal number of loans in Problem 2 is the largest

possible,20: Figure 2.4 illustrates how�ni (b�ni ) as a function ofi shifts up asn increases.

Securitization is unambiguously welfare-improving in this context. Since	i(�i) <

�ni (b�ni ); 8i � n and8n; the bank already enjoys a higher utility level under securitization

than under piecemeal loan sales when the pool size isn�: Enlarging the pool size ton��

improves bank’s utility even further. On the other hand, all investors have zero surplus

always.

Proposition 3 Securitization is welfare-improving.

In this section, I show that when the bank decides the number of loans and information

production jointly, it includes more loans (hence riskier and more uncertain loans) into

its portfolio under securitization than otherwise. The per-loan information production is

lower under securitization than otherwise. In the numerical example, the total information
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production is also lower under securitization. The securitization, by changing the

sensitivity of payoffs to information, dissuades the use of information to shift risks. It is

shown to be welfare-improving.

2.4 A Model with Optimistic Investors

Adopt the set-up of the basic model and retain the assumption thatN = n: The old

notation is used to model bank’s beliefs. The investors have beliefs�e�2es2
�
� N(

�
��
��

�
;

�
�2� �2�
�2� �2� +

1
�

�
;

and�� < ��: Call these investorsoptimists. Rajan, Seru and Vig (2010) suggest that as

the level of securitization increases, lenders tend to originate loans that rate high based on

characteristics known to the investors and ignore other credit-relevant information. This

may give rise to an optimistic opinion about the returns among the investors. Accordingly,

I model the bank as having an objective belief�� and the investors as being more

optimistic. Obviously if�� were very small, the bank would never bother to produce

information to correct the investors’ beliefs. Here, I will restrict my attention to a case

where the investors are mildly optimistic so that the bank produces a positive amount of

information in the benchmark case while producing no information under securitization.

Assumption 5 �� � ��nr
4�r2

�2� < �� � �� � ��nr
4�r2n

�2�.

The same logic as in the Basic Model applies and I solve for optimal information

production in both problems and derive conditions under which the bank is better off at the

cost of the investors under securitization.

Proposition 4 Under Assumptions 2.1 and2.4, the sufficient and necessary condition,
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under which investors are worse off when the bank securitizes loans than when it sells
loans individually, is

c0(
n� 1
�2�

) <
�2�
2rn

(
�� nr

4�r3
�4� � �� + ��):

Proof. It’s easy to verify that in Problem 1, the bank chooses� that solves

n(
�� nr

4r2�
�2� � �� + ��) =

2r

�2�
(��2� + 1)

2c0(�); (2.6)

while in Problem 2,b� = 0: In Problem 1, the utility of an investor who is endowed withw0
wealth is

Eu(w0 � ep+ eu) = � exp(�w0
r
)E exp(

ep� eu
r
)

= � exp(�w0
r
)Ees2fexp(ep

r
E[exp(�eu

r
)js2]g

= � exp[�1
r
(w0 �

�� � ��
2r(��2� + 1)

)] < Eu(w0):

So investors incur loss from the trade (unknowingly at the time of the trade for them).
Repeat the same exercise for Problem 2,Eu(w0 � ep + eu) = � exp[�1

r
(w0 � �����

2nr
)] <

Eu(w0): Hence, the necessary and sufficient condition for investors to have a lower utility
level in Problem 2 is

n < ��2�0 + 1; or

� >
n� 1
�2�

:

Since the RHS of (2.6) is increasing in�. The above condition is equivalent to the inequality
in the statement of the proposition.

In general, there are many ways to satisfy the above condition. One trivial way is

to make the marginal cost of the signal sufficiently low. But I will discuss two other

economically more meaningful scenarios. In order to make comparisons, let me also fix

the parameters throughout these scenarios. In particular,

� = 10; n = 20; �20 = 9; �
2
0 = 8:5;

andc(�) = �2=20:

Numerical Examples

78



Scenario 1: Very risk averse investors:r = 0:25; �2� = 5:

Very risk averse investors are sensitive to information. A marginal increase in the

precision of the information increases their willingness to pay much more than it increases

the price volatility. This induces the bank to produce very precise signals in Problem 1,

� = 8:99: Here the utility of a single investor in Problem 1 is�1:0909, while his utility

under securitization is�1:2214:

Scenario 2: Very imprecise prior:�2� = 100; r = 0:48:

When investors and the bank have very rough idea about the variance of the distribution

of the return ex ante, for a given level of investors’ risk tolerance, the marginal benefit of

information is high. Here� = 1:9934. A single investor’s utility when the bank sells loans

is�1:0054, while his utility when the bank securitizes is�1:0558:

The parameters are chosen such that if we swap the value ofr in one scenario with

that in the other, the result that investors are worse-off under securitization goes away.

Basically when the prior belief about the variance is very imprecise, in order to dissuade

the bank from producing information under securitization, the investors cannot be overly

risk averse. Similar intuition goes through when investors are very risk averse.

Here I have outlined two cases in which securitization with zero information production

doesnot lead to Pareto improvement. In either case, the bank is better at the cost of

investors. In one scenario, investors are much more risk averse than the bank. In the other,

agents have very rough idea about the riskiness of the returns ex ante.
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2.5 Conclusion

In this paper, I propose a model of information production of banks, where information

is a costly tool to redistribute risks. The securitization, on one hand reduces the total

amount of risks to be distributed by providing diversification; on the other reduces the

costly information production by decreasing the sensitivity of bank’s payoff to information.

As a result, given a pool of loans, in a stationary environment with idiosyncratic risks, the

bank achieves a higher utility level under securitization with less information production.

Furthermore, when the bank decides how many loans to make taking into consideration

the optimal information production, it makes more and riskier loans, whose riskiness is

also more uncertain. Essentially, securitization increases the profitability of loans of all

risk classes, so that banks can afford extending credit to more riskier borrowers, which

would have generated negative profit if the bank were to sell the loan individually.

The findings have bearing on policy issues hotly debated in the aftermath of the crisis.

The low level of investment in statistical modeling and analysis is bred and rationalized

by the relatively stationary environment in the 80s and 90s, when the mortgage market

consisted of mostly prime mortgages and the risks are mostly at the geographical or

individual level. However, this rational inattention is no longer adequate or justifiable in

2000s, when the mortgage market exhibits an increasing sign of betting on house price

appreciation, which introduces an increasingly big component of systemic risks. The

rating agencies fail to understand that the changes in the nature of the mortgage contracts

and the macroeconomic environment render the conditions under which the securitization
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is socially desirable obsolete.

A future direction of work would be to incorporate a learning mechanism into the

model. If I interpret the level of information production as an effort level of learning about

the parameter of some trend in a dynamic environment, then the securitization slows down

the learning process by economizing on information production. This essentially translates

into a more volatile sequence of future returns and opens the possibility of erroneous

model predictions of the environment. The desirability of the institution of securitization

would then depend on weighing the benefits from diversification and reduced information

costs against the slower learning process.
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Figure 2.1:�i as a function ofi in Problem 1
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Figure 2.2:	i(�i) as a function ofi in Problem 1
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Figure 2.3:b�ni as a function ofi for variousn in Problem 2
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Figure 2.4:�ni (b�ni ) as a function ofi for variousn in Problem 2
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Appendix

Optimal Decision of Holding/Selling Loans

Within the framework of the basic model. Consider the problem where the bank

chooses the fraction of assets to sell. Given that the bank formsN shares of securities, it

chooses to sell�N shares to investors. The bank’s problem is

max
�;�

EU(�NepI + (1� �)epB � c(�));

where

epI =
n

N
�� ne��1

2rN2
�
n2�2�1
8r3N4

;

epB =
n

N
�� ne��1

2�N2
�
n2�2�1
8�3N4

:

Hence the FOC with respect to� is

(
1

r
� 1
�
)[
n��
2N

+
n2

4�N2

��4�
��2� + 1

(
�

r
+
1� �

�
)] +

n2

8N3

��4�
��2� + 1

(
1

r3
� 1

�3
) = 0:

When� < r, it is optimal to set� = 1: When� > r, it is optimal to set� = 0: In all the

interesting cases, when the bank chooses to produce a positive amount of information,

� > r, that is it is also optimal for it to actually keep the loans if it can.

Non-central Chi-Square Distributed Variance and a Risk Neutral Bank

In this section, I sketch the intuition for an alternative set-up, in which the variance is

distributed non-central Chi-square and the bank is risk neutral. The economic environment

and problems are otherwise the same as the basic model.

Denote the return to an individual loan aseu � N(�; �2). Consider an auxiliary random

variablee� � N(��; �2�) The variance of the return is the square of this auxiliary random
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variable. The signal structure is

es = e� +e�;e� � N(0; �2�) independent frome�:
The Bayesian posterior given a signales = s is

e�jes = s � N( �2�
�2� + �2�

�� +
�2�

�2� + �2�
s;

�2��
2
�

�2� + �2�
):

Denote��1(s) =
�2�

�2�+�
2
�
�� +

�2�
�2�+�

2
�
s and�2�1 =

�2��
2
�

�2�+�
2
�
: In this set-up, the normalized

variance(e����1(s)
��1

)2 is distributed�2(1).

Assume�2� < r2: This implies that�2�1 < r2: We will see from what follows that

this assumption guarantees well-defined normal densities. Now consider the investors’

willingness to pay in the first problem.

exp(�p(s)
r
) = E[exp(�eu

r
)jes = s]

=

Z Z
1

2����1
expf�1

2
[
2u

r
+
(u� �)2

�2
+
(� � ��1(s))

2

�21
]gd�du

=

Z Z
1p
2��

expf�
(u� �r��2

r
)2

2�2
gdu 1p

2���1
expf�

2 � 2�r
2r2

� (� � ��1(s))
2

2�2�1
gd�

=

Z
1p
2���1

expf�
(� � r2��1(s)

r2��2�1
)2

2
r2�2�1
r2��2�1

gd� expf r2��1(s)
2

2�2�1(r
2 � �2�1)

� �

r
� ��1(s)

2

2�2�1
g

=
rp

r2 � �2�1
expf ��1(s)

2

2(r2 � �2�1)
� �

r
g

) p(s) =�� r��1(s)
2

2(r2 � �2�1)
� r ln

rp
r2 � �2�1

:

Now since the bank is risk neutral, it only cares about the expected profit,

�(�) = n�� nr

2(r2 � �2�1)
E��1(s)

2 � nr ln
rp

r2 � �2�1
� c(�);
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where

E��1(es)2 = E(
�2�

�2� + �2�
�� +

�2�
�2� + �2�

es)2
=

�4�
(�2� + �2�)

2
�2� +

2�2��
2
�

(�2� + �2�)
2
�2� +

�4�
(�2� + �2�)

2
Ees2

=
�4�

(�2� + �2�)
2
�2� +

2�2��
2
�

(�2� + �2�)
2
�2� +

�4�
(�2� + �2�)

2
(�2� + �2� + �2�)

= �2� +
�4�

�2� + �2�
decreasing in�2� ;

as is the variance of the price in the basic model. Hence, the second-order effect of

signals manifests itself through the expected value of the posterior variance, in contrast to

the variance of the posterior variance in the basic model.var(��1(es)) affectsE��1(es)2
directly, and therefore affects the expected profit directly. The mechanism remains the

same as that in the main text, but with somewhat less clear-cut interpretation. An increase

in the precision of the signal decreases posterior variance,�2�1, which tends to increase

the expected profit; on the other hand, it also increases the expectation of the posterior

varianceE��1(es)2, which tends to decrease the expected profit. The optimal level of

information balances these two forces.

Now compare Problem 1 and Problem 2. AssumeN = n:In Problem 2,eu � N(�; �2
n
);
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where ex antee� � N(��; �2�): The willingness to pay is derived as follows,

exp(�p(s)
r
) = E[exp(�eu

r
)jes = s]

=

Z Z
1

2� �p
n
��1

expf�1
2
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rq
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:

The expected profit in this case is

b�(�) = n�� r

2n(r2 � �2�1
n
)
E��1(s)

2 � nr ln
rq

r2 � �2�1
n

� c(�):

One can show that� � b�; for pretty much the same reason, that is the diversification

implied by the securitization decreases the marginal benefit of information.

Numerical Example: Approximation of Truncated Normally Distributed

Variances

In the model with heterogeneous lending opportunities, I gave a numerical example

based the theoretical results obtained under normality assumptions. Here I verify that

normally distributed variances under the current parametrization do not affect the results

much. Under the assumption that��i > 4��i; 8i, the prior distribution of the variance,

which is a truncated normal distribution is well approximated by an unrestricted normal
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distribution.

Problem 1

For all loans, the optimal signal is quite precise:� is in the neighborhood of3:4694:

This implies that the posteriors

e�2jes2 = s2
�� N(s2; 0:288);

es2 � N(��i; �
2
�i + 0:2882):

Since by assumption��i > 4��i; 8i., the resultinges2 is well approximated by

N(��i; �
2
�i + 0:2882):

Problem 2

For lower indexed loans, which has� = 0, the posterior distribution coincides with the

prior distribution. However, atn�� = 20; b�2020 = 0:0204; which implies

e�220jes220 = s2 � N(4:95 + 0:97s2; 47);

es2 � N(152:72; 1506:6); with
152:72p
1506:6

= 3:93:

The unconditional probability of a signal being greater than23, so that the conditional

distribution has a negligible lower tail, is almost1; i.e.Pr(es2 > 23) = 1� 4:1598e� 4:
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Chapter 3 Using Subjective Expectations Data to Allow for Unobserved
Heterogeneity in Hotz-Miller Estimation Strategies

3.1 Introduction

Progress on structural estimation within applied microeconomics has been limited,

given the difficulty of implementation in "frontal" or "full solution" strategies, i.e.

strategies that solve the complicated optimization and/or equilibrium problem at each

trial of the structural parameter vector in the estimation routine.20 The work of Hotz

& Miller (1993) shows how to estimate the structural parameters of a discrete choice

dynamic programming model without solving the optimization problem even once. The

Hotz-Miller strategy has generated some methodological work on estimation of structural

models that builds upon this initial insight21. However, an inherent problem in the

Hotz-Miller type of strategy exploited by these papers is that, because of its very own

20 Within the full solution paradigm, Rust (1987) and Keane & Wolpin (1994,1997) provided subtantial
computational savings that stimulated most of the empirical research to date with these type of models. See
Keane & Wolpin (2009), Todd & Wolpin (2009), and Keane, Todd & Wolpin (2010) for surveys of a
substantial number of applications using full solution methods in development, labor, consumer behavior
and other fields in applied microceconomics. More recently, Su & Judd (2007) proposed a novel, promising
approach (MPEC) to further alleviate the computational burden associated with estimation via full solution
methods by recasting the problem in a constrained optimization framework. See also Dube, Fox and Su
(2009).

21 See Hotz, Miller, Sanders & Smith (1994) to extend the original estimator to deal with the "Data Curse
of Dimensionality" and for possible generalizations to allow for continuous choices and states. See
Aguirregabiria & Mira (2002) for a recursive implementation of Hotz-Miller and for convergence to Full
Information Maximum Likelihood. See Altug & Miller (1998) for a consistent account of aggregate shocks.
See Jofre-Bonet & Pesendorfer (2003) for dynamic auctions. See Golan & Levy-Gayle (2008) for estimation
of dynamic dignaling models. See Bajari, Hong, Krainer & Nekipelov (2009) for similar ideas applied to
estimation of static games. See Aguirregabiria & Mira (2007), Bajari, Benkard & Levin (2007), Pesendorfer
& Schmidt-Dengler (2008) and Pakes, Ostrovsky & Berry (2008) for dynamic discrete games and Choo
& Siow (2005) for the use of Hotz-Miller approaches in facilitating estimation of a dynamic two-sided
matching game.
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nature, it cannot accommodate permanent sources of unobserved heterogeneity.22 The first

step recovers equilibrium behavior policies from the data, and as such, these can only be

recovered based on observables. On the other hand, the more computationally intensive

"frontal strategies" can handle permanent unobserved heterogeneity by integrating out the

unobserved types in the likelihood function.23

Given its computational simplicity but its limitation regarding the handling of

unobserved heterogeneity, in recent years there have been some efforts directed towards

generalizing the Hotz-Miller approach to allow for unobserved heterogeneity.24 In this

paper we explore the potential use of expectation data such as, for example, subjective

assessments of future choice probabilities to allow for estimable unobserved heterogeneity

in these two-step estimation strategies for dynamic structural models.25 We show that

while requiring a particular type of data, our strategy can be an interesting alternative in

the toolkit of structural microeconometricians if and when such data is available. In that

sense, we think of our approach as complementary to the above literature. Our aim is to

22 This important limitation was noted early on by Eckstein & Wolpin (1989) among others.
23 This is the so-called Heckman & Singer (1984) approach taken by Wolpin (1984), van der Klaauw (1996),

Keane and Wolpin (1997), Eckstein and Wolpin (1999) , Carro & Mira (2006), Mira (2007), Arcidiacono,
Khwaja and Ouyang (2007), Blau & Gilleskie (2008), Liu, Mroz & van der Klaauw (2009), among many
others. Alternative approaches to handle unobserved heterogeneity, which still require DP solutions have
been advanced by Ackerberg (1999,2009) and Bajari, Fox, Kim & Ryan (2009). Whether discrete or
continuous, parametric or non-parametric, all of the above are "random effects" approaches in the sense that
only the probability of an observation being of a given type is contemplated.

24 Buchinsky, Hahn & Hotz (2005) propose a clustering approach that is similar to ours in the sense of being
essentially a fixed effects approach. Houde & Imai (2006) and Arcidiacono & Miller (2008) suggest
alternative estimation strategies in a random effects context. Arcidiacono & Miller (2008) allow for the
unobserved heterogeneity to transition in systematic ways over time. Kasahara & Shimotsu (2008, 2009a)
and Hu & Shum (2009) focus on estimation and identification of related dynamic discrete choice models
with time-invariant unobserved types.

25 We focus on expectations about future choice probabilitites because they are more widely available. Other
questions may elicit expectations about the future value of some state variables and could also be used to
identify types with our method.
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expand the toolkit that empirical researchers have when it comes to estimating dynamic

structural models in computationally feasible ways. Our explicit use of elicited subjective

expectations distinguishes our contribution from these other approaches taken in the

literature. We will be focusing on single agent models, as the availability of expectations

data seems more widespread in areas more amenable to single agent applications. However

our idea can be applied to multiple agent contexts, in particular to dynamic discrete

games. Indeed, much of the literature that built upon the Hotz-Miller strategy to estimate

dynamic games is now being generalized to allow for game and/or player level unobserved

heterogeneity.26,27

We first characterize the power of expectation data to identify and estimate these models

with the computational simplicity of a Hotz-Miller type of approach while, at the same

time, allowing for unobserved heterogeneity, assuming that expectations are precisely

elicited. For example, we first assume we have the ideal scenario in which there is no

"heaping" or "focal measurement error" in Self-Reported Choice Probabilities (SR-CPs

from now on).28 Second, we show that when the use of more realistic,focal, subjective

expectation data is contemplated in real applications, most of our results from the "ideal"

case hold. Finally, we characterize how a modified version of our "linking technology"

can alleviate some of the problems created by focal, reference point-based SR-CPs, if we

26 Aguirregabiria & Mira (2007) , Aguirregabiria, Mira & Roman (2007), Arcidiacono & Miller (2008),
Siebert and Zulehner (2008), Hu & Shum (2008). Blevins (2009)

27 Aguirregabiria & Mira (2009) provide a comprehensive overview of structural estimation in the context
of dynamic discrete choice models using full solution and non-full solution methods. Their review covers
single agent and mulltiple agent models

28 By "focal measurement error" we mean the systematic tendency of respondents to report round numbers
(focal points) when assesing their future choice probabilities.
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have more than one SR-CP available.29

In addition to the theoretical insight, several datasets already include this kind of

questions so our estimation strategy can be readily applied in a variety of settings. In the

U.S. alone, all the major longitudinal surveys such NLSY or HRS include these type of

questions. Looking ahead, however, the insights from our proposed estimation strategy

are also informative about questionnaire design. In particular, about how these SR-CPs

should be elicited to add the most value in a computationally feasible structural estimation

strategy.

Finally, it is worth mentioning that there exist two strands of literature on the use of

expectations data that are somewhat, but not directly related to our work: a) Relaxing

Rational Expectations. This is a strand of literature that uses expectation data in more

direct but still very important manner. The basic idea is to leverage data on expectations to

be more flexible about the modelling of expectations. Key contributions here are Manski

(2004) and Attanasio (2009). b) Using expectations data in estimation strategies for

structural models that do not exploit the Hotz-Miller inversion. In this approach, like in

ours, the expectation data are directly linked to the expectations used in the optimization

problem. See Wolpin & Gonul (1985), van der Klaauw (2000), Wolpin (1999) and van der

Klaauw & Wolpin (2008) for important contributions. In these cases, it is shown that these

data are similar to revealed choice data and their use can provide more efficient estimators.

29 Throughout this paper we allow for a specific form of (lack of) precision in the elicited sujective
expectations. Allowing for more flexible forms of self-reporting error in is certainly important. In principle
our framework could be generalized to allow for more flexible forms of measurement error in self reports
but such generalization is beyond the scope of this paper.
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These are important gains in estimator efficiency, but the contribution of such expectation

data in those contexts is somewhat different than the one explored here.

The rest of the paper is organized as follows: The next section presents an extremely

simple machine replacement example. We will use this example throughout the paper

to fix ideas. Section 3.3 adds unobserved heterogeneity to the set up and discusses

alternative conditions under which the use of expectation data succeeds in identifying such

heterogeneity. Section 3.4 provides Montecarlo experiments that describe the performance

of our estimation strategy. Section 3.5 discusses some extensions for our framework.

Conclusions follow.

3.2 Example: Estimating a Simple Dynamic Structural Model of Machine
Replacement Decisions

Consider a simplified capital replacement problem similar to that in Rust (1987). Firms

each use one machine to produce output in each period. These machines age, becoming

more likely to breakdown, and in each time period the firms have the option of replacing

the machines. Letxt be the age of the machine at timet and let the expected current period

profits from using a machine of agext be given by:

�(xt; dt; "0t; "1t) =

�
�1xt + "0t if dt = 0
R + "1t if dt = 1

wheredt = 1 if the firm decides to replace the machine att, R is the net cost of a new

machine, and the"ts are time specific shocks to the utilities/profits from replacing and not

replacing. Let’s assume that these"ts are i.i.d. across firms and time periods, and while

not required for the implementation of our methods below, let’s further assume that they
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follow a type I extreme value distribution. We consider a model with stochastic aging in

which

xt+1 =

8<: min f5; xt + 1g with probability�f if dt = 0
xt with probability1� �f if dt = 0
1 with probability 1 ifdt = 1

Note that in this very simple model the state space only has 5 points and therefore

full-solution methods can easily be used to estimate the model. We do this for illustrative

purposes, but it should be kept in mind that the method we propose below can deal with

more realistic state spaces in which standard full solution methods cannot be used or can

only be used at subtantial computational cost. Estimation is standard, and can proceed

using either Rust (1987) nested fixed point algorithm or Hotz-Miller (1993) two-step

estimator, among other alternatives. The Hotz-Miller strategy avoids the solution of

the complicated dynamic structural model. The associated optimization problem is not

solved even once. However, one is able to recover the structural parameters and can, after

estimation, solve the model at those parameters if needed for, say, baseline simulation of

artificial data and/or counterfactual policy experiments.

3.3 Adding Unobserved Heterogeneity

We now modify the machine replacement example to allow for heterogeneity in

the structural parameters capturing age related maintenance costs�1k and machine

replacement costsRk. We first consider the case of finite discrete types . We then analyze

the continuous case.

In the discrete case we index types byk = 1; ::::; K: An alternative set up considers

the existence of unobserved state variablesxu = fxu1 ; xu2 ; ::::g or, alternatively, a single
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unobserved discrete state variablekt 2 f1; :::; Kg that captures every possible combination

of unobserved states inxu: We allow for the possibility that unobserved states may

transition over time and allow for this transition to potentially depend on the choicedt.

Then, in general, we consider a state transition given by

fxk (x
0; k0jd; x; k)

We can entertain several assumptions that restrict the generality offxk (x
0; k0jd; x; k)

� Assumption F1((x;k) are conditionally independent): conditional on(d; x; k); x0

andk0 are independently distributed:
fxk (x

0; k0jd; x; k) = fk (k
0jd; x; k) fx (x0jd; x; k)

Similar to Arcidiacono & Miller (2008), we can also assume that

� Assumption F2 (Exogenous Transitions for Unobserved States):the transition of
the unobserved state variables does not depend on the current choice nor the current
observed state, but follows an exogenous and flexible markov stochastic process:

fk (k
0jd; x; k) = fk (k

0jk) = �kk0

As in much of the literature using full-solution methods, in some situations we can

further assume

� Assumption F3 (Time Invariant Unobserved Heterogeneity):the unobserved states
are time invariant.

�kk = 1 for all kt 2 f1; :::; Kg

In some cases we can further assume that

� Assumption F4 (Homogeneous Transitions for Observed State Variables):the
evolution of the observed states,x; does not depend on the unobserved heterogeneity,
k.

fx (x
0jd; x; k) = fx (x

0jd; x) for all k 2 f1; :::; Kg

In this setup, a standard estimation strategy would proceed by integrating out

unobserved heterogeneity in the likelihood function, treating types as discrete random

effects in the population. Alternatively, a modification of the Hotz-Miller strategy,
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exploiting subjective probabilities of future choices, can be used to estimate the structural

parameters allowing for unobserved heterogeneity and without solving the dynamic

program. In the remaining of this section we consider this possibility in detail.

3.3.1 Estimation using Hotz-Miller with Precise Subjective Choice Probability
Data

Suppose we have available self-reported probabilities of next period machine

replacement for each firm after the current period replacement decisions have been made.

Let

pSRi (dt0+1 = 1jxt0 ; dt0 ; k)

denote the 1-period ahead self-reported probability of choosingd = 1 (replacement

choice) at timet0 + 1; elicited att0 from the technician in charge of machine maintenance

at firm i, of unobserved typek; who, in addition is at the observed statext0 and who has

recently made choicedt0 : Throughout this section we assume that these probabilities are

elicited with great precision. For future reference we establish this feature of the data in

the following assumption

� Assumption SR-Precise:The subjective probabilities are elicited with precision. In
particular, self-reports are not rounded off to the nearest "focal" probability.

A key question is then: under what conditions can we use these expectation data to

reveal the underlying unobserved heterogeneity? The basic intuition can be grasped in the

context of our machine replacement example. Presumably if we have two firmsA andB

with machines in the same state in the current periodxAt = xBt = xt, and these two firms

make the same choice, dAt = dBt = dt, but report different probabilities of replacement
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tomorrow,

pSR (dA;t+1 = 1jxAt; dAt; kA) 6= pSR (dB;t+1 = 1jxBt; dBt; kB)

pSR (dA;t+1 = 1jxt; dt; kA) 6= pSR (dB;t+1 = 1jxt; dt; kB)

it must be the case that there is something unobserved by the econometrician but observed

by the technician in charge of machine maintenance in each firm that induces the

difference in the self-reports. In other words, the unobserved statek is different for the two

firms, kA 6= kB: Therefore, differences in self-reports are informative about underlying

unobserved heterogeneity. In particular, note that if there are only two types, there can

only be two and only two differentpSR (dt+1 = 1jxt; dt; k) reported by observations that

have the same state-choice combination(xt; dt).

It follows that the number of types,K can be readily identified by counting the number

of differentpSR (dt+1 = 1jx; d; k) elicited at each state-choice cell,(x; d).30 Can we

use the self-reported probabilities to estimate the machine replacement problem a la

Hotz-Miller but allowing for unobserved heterogeneity? The answer is yes. Below we

provide details on how to do so.

3.3.1.1 Linking Technology and Type Revelation with Precise Self Reports

We now introduce our "linking technology". The basic idea is pretty simple and

illustrates the power of eliciting self-reported choice probabilities to recover the underlying

30 Note that it is important to consider future choice probability elicitation at particular state-choice
combinations, not just particular states. The reason is that, among observations with the same state att,
xt, those who make different choices will induce different probability distributions for the state variables
next period, and then, even if they are of the same type, they will end up reporting different future choice
probabilities. By focusing on those who are at the same stateandmade the same current choice, we avoid
this problem.
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unobserved heterogeneity.

Let’s assume there are only two typesk = 1; 2: Then at any timet, the set of

observationsi with common observable statext and who made the same current choice

dt must be either typek = 1 or typek = 2. If they are of the same type, they face the

same prospects regarding their state variables next period.31 Moreover, they also face a

common distribution of idiosyncratic error terms next periodf ("t+1). Hence, they will

provide the same report about the probability of making the choice next period. However,

observations that are of different unobserved types will report a different probability.32

We should then see two, and only two, different values of SR-CPs for each observed

state-choice combination.33. Essentially, self-reported probabilities allow us to "reveal"

type membership. Then, after uncovering the unobserved type, estimation methods such

as those proposed by Hotz & Miller (1993) or Hotz, Miller, Sanders & Smith (1994) apply

directly, treating type as an additional observed discrete state. Moreover, for the purposes

of identification, the model can be reduced to one without unobserved heterogeneity.

Then identification results such as those in the work of Magnac & Thesmar (2002) apply

directly.34

The linking technology, which we introduce more formally below, is a technique to

31 Note that under Assumption F4, they would face the same prospects even if they were of different types.
32 Different types having the same 1-period ahead choice probability is a measure-zero event if the choice is

feasible next period and the utility of the choice depends on the type.
33 Note that this holds regardless of whether Assumption F4 is true or, instead, the transitions for the observed

states depend on the unobserved type.
34 Magnac & Thesmar (2002) do consider identification of a model with correlated fixed effects without

relying on expectations data. However, the structure of unobserved heterogeneity they focus on is somewhat
different than the one considered here.
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"link" observations in the data. The linking is done via self-reports, which act as the chain’s

interconnecting links for each unobserved type. When we have two self-reports available

for each observation, the only, rather weak, requirement for the linking technology to

work is the absence of isolated islands in the space of feasible state-choice combinations.

These "isolated islands" are sets of state-choice combinations(x; d) in which the pairs of

self-reports of individuals are all contained and have no bridges to other regions of the

state-choice space. Below we set up some notation and more formally define the linking

technology along with the No-Islands assumption in which we rule out the existence of

such islands.35

Definition 1 (Revelation of types) A revelation of types is defined by an equivalence re-
lation � on the set of observationsI = f1; 2; :::Ng. Call the cardinality of the quotient
setI= � the revealed number of types and denote it byM . By the Fundamental Theo-
rem of Equivalence Relations, an equivalence relation� on a set, partitions that set. The
underlying parameterK is unknown: M does not necessarily recoverK:

Let the pair of self-reports be elicited att0 andt00 for all observations.

Definition 2 (Linking Technology) Define a binary relation,R, in the following way:
8i; j 2 f1; 2; :::Ng;

i R j
iff

fepSRi (xit0 ; dit0); epSRi (xit00 ; dit00)g \ fepSRj (xjt0 ; djt0); epSRj (xjt00 ; djt00)g 6= ;:
The linking technology is a relation� onf1; 2; :::; Ng: 8i; j 2 f1; 2; :::Ng = I;

i � j

iff 9 a subset of observationsfi1; i2; :::ing � I, such that
i R i1 R i2 R:::R in R j:

The linking technology defines an equivalence relation. It is easily checked that� satisfies
reflexivity, symmetry and transitivity.

Assumption SR-No Islands is defined after specifying a particular linking technology.
35 Alternatively, observations in the isolated islands can be discarded provided that suitable assumptions about

their representativeness hold.
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� Assumption SR-No Islands:Define�k to be the set of all state-choice cells at which
a typek observation makes a self-report in the data. Then,8(x; d); (x0; d0) 2 �k;9
observationsm andn of typek, withm reporting at(x; d); andn reporting at(x0; d0),
andm � n:

Lemma 5 Under Assumption SR-Precise and SR-No Islands, the linking technology re-
covers the true number of types and type membership for each observation.
Proof. See Appendix.

We focus on the case in which we have permanent unobserved heterogeneity or "types"

and where we have 1-period ahead SR-CPs. In the extensions section we discuss some

variations. In section 3.5.1 we consider the elicitation of S-periods ahead SR-Cumulative

CP. Later in sections 3.5.2 and 3.5.3 we address the case in which the unobserved

heterogeneity is continuous as well as the case in which unobserved state variables evolve

as a Markov process. In the remainder of this section we maintain Assumptions F1 and F3.

3.3.1.2 1-Period Ahead SR-CPs

For now, let’s assume the available self-reports are about 1-period ahead CPs. In

general, these self-reports can occur before or after the choice has been made this period.

In what follows, and unless noted otherwise, we assume that the 1-period ahead SR-CPs

are elicited after the current choice,dt has been made.

If the model in question were deterministic, it would be clear which state point next

period the SR-CP is giving choice information about. In models with stochastic transitions

we need a more detailed "theory of self-report" that specifies what goes through the

respondent’s mind between the time she listens to the question and the time she provides

the answer. Our theory of self report is the following: We assume the question is asked at
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time t afterxt has been realized anddt has been chosen. Upon listening to the question

"what’s the probability that you will setdt+1 = 1?" respondents use the solution to the

dynamic programming problem to calculate the implied CCPs,p (dt+1 = 1jxt+1; k) at each

feasible state next period,xt+1: Note that there will be many probabilities, especially when

the state space is large. After computing these, however, they need to provide a single

answer. One reasonable way forward is to assume that respondents then report the average

of these CCPs using the one-period ahead transition probability for the state variables,

fx (x
0jd; x) as weights. In other words, the question elicits the "expected CCP". Formally,

SR-CP = E [CCP ]

pSR (dt+1jxt; dt; k) = Ext+1jxt;dt [Pr (dt+1jxt+1; k)]

=
X
xt+1

Pr (dt+1jxt+1; k) fx (xt+1jdt; xt)

In some case, it is also possible that the question actually elicits the one-period ahead

CCP at the Modal State. In this case the respondent reports the CCP at the mode of the

distribution of her own state variables next period. Given homogenous transitions, we can

infer what that state is and we are then back to the simpler deterministic case. We can then

"link" the self-reports at all those states. We call this the "Solve and Link" strategy: We

solve out for the implied (modal) observed state at which the self-reported probability is

being elicited. Then we link all the CCPs to trace out the unobserved types in the observed

state space. It should be emphasized that rather than being something like "what’s the

probability that you’d choosedt+1 = 1?" here we are assuming the question eliciting the

SR-CP is something more like the following: "Look one period ahead and consider what’s
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your most likely situation at that time. In that situation, what would be the probability that

you’d choosed = 1?". Note that the introduction to the second question more explicitly

instructs the respondent to situate himself in the most likely (modal) state one period

ahead and then only report the choice probability assuming she will in fact be in that state.

Formally,pSR (dt+1jxt; dt; k) = Pr
�
dt+1jxmt+1; k

�
wherexmt+1 = Mode (xt+1jxt; dt) is the

modal state at timet+ 1 givenxt anddt. That isxmt+1 = argmaxxt+1 ff (xt+1jxt; dt)g

In what follows, and unless noted otherwise, we assume that subjective expectation

questions elicit the expected CCP.

� Assumption SR-E[CCP]: The subjective probability questions elicit the expected
CCP.

We focus on the case in which we have two self-reports available for each individual.36

In this case we can work within a very general class of models. We can exploit the

self-reports to group observations into types, without trying to recover the implied CCPs.

By having at least two self-reports we can connect observations at different points in the

state space who belong to the same type. In particular, any two observations who share

one common self-report at a given state-choice combination are of the same type and

their other self-reports add to our signals to identify that type. The "linking technology"

is extremely powerful. By having two self-reports we can trace out types in unrestricted

models in which the profile of choice probabilities for different types may be allowed

36 Again, well known surveys such as NLYS and HRS do include at least two self reports about subjective
probability of future choices for the same individual. If only one Self-Report is available we need to restrict
ourselves to cases where the CCPs are monotonic on type across the state space. For example, we could
restrict ourselves to a class of models where one type always has higher choice probability. This is an
important restriction. When profiles of SR-CPs for different types "cross" at some point in the state space,
identification problems arise.
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to cross in the state space. The linking technology allows us to overcome the ambiguity

created by these crossings.

Recovering type-specific CCPs using 2 Self-Reports of Expected CCPs.While the

identification of number of types (and type membership for each observation) doesn’t

actually require it, we can also explore the conditions under which we can recover the

actual type-specific conditional choice probabilities. We will later make use of these results

in more complex settings, but it is useful to introduce the issue now. When expected CCPs

are reported, the respondent reports an average of CCPs, with the average taken using the

transition probability. To recover the underlying CCPs we use the alternative "Link and

Solve" strategy:

(1) We first link SR-CPs from the same type and form a system of equations.
(2) We thensolvethe system of equations and recover the type-specific CCPs.

To be specific, the first 1-period ahead SR-CP reported att0 gives us one equation for

respondenti of typeki:

pSR (di;t0+1 = 1jxit0 ; dit0 ; ki) =
X
xi;t0+1

Pr (di;t0+1 = 1jxi;t0+1; ki) f (xi;t0+1jxit0 ; dit0 ; ki)

wherepSR () andf () are known andPr (di;t0+1 = 1jxi;t0+1; ki) for all xi;t0+1 are the

unknowns. In general, we havejXj unknowns so we need more equations. We then link

this equation with a similar equation based on the respondent’s second self-report and with

the self-reports of other respondentsj of the same type who have been linked toi to form
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a linear system of equations that has as many equations as unknowns.

pSR (di;t0+1 = 1jxit0 ; dit0 ; ki) =
X
xi;t0+1

Pr (di;t0+1 = 1jxi;t0+1; ki) f (xi;t0+1jxit0 ; dit0 ; ki)

pSR (di;t00+1 = 1jxit00 ; dit00 ; ki) =
X
xi;t00+1

Pr (di;t00+1 = 1jxi;t00+1; ki) f (xi;t00+1jxit00 ; dit00 ; ki)

...

pSR (dj;t0+1 = 1jxjt0 ; djt0 ; kj) =
X
xj;t0+1

Pr (dj;t0+1 = 1jxj;t0+1; kj) f (xj;t0+1jxjt0 ; djt0 ; kj)

whereki = kj;8i; j is guaranteed by the "linking technology". We can then solve for

the CCPs,fPr (d = 1jx; k)gx2X by using standard techniques to solve systems of linear

equations. There arejXj unknowns and at mostjXj � jDj different self-reports.

Note that once these type-specific CCPs have been recovered, they could be plugged-in

directly instead of the non-parametric first stage probabilities in the typical Hotz-Miller

two-step approach.

We have focused on discrete types, 1-period ahead self-reports and time-invariant

unobserved heterogeneity. Our framework can be extend to relax each of these. We briefly

discuss these extensions below in Section 3.5.

3.3.2 Estimation using Hotz-Miller with "Focal" Subjective Choice Probability
Data

Unfortunately, in many contexts the SR-CPs are not as clean as we assumed them

to be in the previous section. While people may take more care in thinking about

these probabilities when making actual choices, it is likely that they exercise less care

when quickly computing these probabilities in a few seconds when answering to the
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interviewer.37 In particular, there is likely to be substantial "heaping" or "bunching" at

common reference points like 0, 0.10, 0.50, 0.90 and 1. See Walker (2003), Hill, Perry

& Willis (2004) and Blass, Lach & Manski (2010). Surprisingly, there is no bunching

at 0.33 and 0.66 which a priori appear to be good focal points when the probability

reflects 1 out 3 or 2 out of 3 odds. Interestingly, respondents seem to be more precise

when reporting probabilities close to the boundaries. For example, it is not uncommon

to observe self-reports of 0.01, 0.02, 0.98 and 0.99. It is understandable that respondents

care more about distinguishing 0 from 0.01 or 0.99 from 1 than 0.50 from 0.51 or 0.49.

We accommodate these empirical regularities of probability self-reporting behavior in our

discussion below.

Therefore, in order to make our method more empirically relevant, in this section

we address the issue of "less than ideal" subjective choice probability assessments and

characterize to what extent the results derived in the previous sections hold in the more

realistic case in which Assumption SR-Precise does not hold. We will work with a set of

B = 25 "focal" or "reference" values,b; that have been consistently found in practice to

account for most of the self-reported probabilities.38 With a little abuse of notation, letB

also denote the cardinality of the setB:

37 See Karni (2009) for a formalization of truthful elicitation of probabilities.
38 Indeed, casual inspection of some of the responses to these type of questions in the National Longitudinal

Survey of Youth 1997 NLSY97 reveals a pattern of clustering around the values in the particular set B we
defined. However, our methods can be used with any set B. That is, the set of focal values can be modified on
a case by case basis if the pattern of bunching in a specific survey is coarser or more detailed than this one.
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Then

b 2 B = f0; 1; 2; 5; 10; 15; 20; 25; 30; 35; 40; 45; 50;

55; 60; 65; 70; 75; 80; 85; 90; 95; 98; 99; 100g:

Focal SR-CPs may lead to "bunching" which may create uncertainty in the identification

of the types. Say, for example, we have two observations of different types at the same

(x; d). For simplicity, consider 1-period ahead E[CCP] self-reports. Say under assumption

SR-Precise type 1 reports 68% while type 2 reports 72%. Now, in a more realistic scenario

in which SR-Precise no longer holds, we will have both types reporting 70%.

In this section we will show that a variation of our linking technology, coupled with

mild assumptions on the pattern of bunching across types and about the sampling of

self-reports, can succeed in overcoming this problem. We maintain assumptionsF1, F3;

andF4 on the transition probability for state variables

A precise self-report ofi at timet is defined to be a function ofxit; dit; andki ,

which can be 1-period- or s-period-ahead expected CCP, modal CCP, etc. Following the

notation in the previous sections, letpSRi (dt+1 = 1jxit; dit; ki) be a the self-reported choice

probability that satisfies SR-Precise. Now, consider two SRs att0 andt00: In this section,

we want to focus on the case in which the SR-CPs are probabilities that are rounded-off to

the nearest focal point. We add anF to the self-report probability notation to emphasize it

is now a focal self-report:pSRFi (xit; dit; ki): Formally,

pSRFi (xit; dit; ki) = argmin
b2B

jpSRi (dt+1 = 1jxit; dit; ki)� bj

wherepSRi (dt+1 = 1jxit; dit; ki) may be a modal CCP or an Expected CCP. Actually,
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if pSRi (dt+1 = 1jxit; dit; ki) = E [CCP ] we need to account for an additional layer of

round-off in the underlying CCPs, which we then denote FCCPs:39

E [FCCP ] =
X
xi;t0+1

FCCP(xi;t0+1; ki) f (xi;t0+1jxit0 ; dit0 ; ki)

=
X
xi;t0+1

�
argmin

b2B
jCCP(xi;t0+1; ki)� bj

�
f (xi;t0+1jxit0 ; dit0 ; ki)

=
X
xi;t0+1

�
argmin

b2B
jPr (di;t0+1 = 1jxi;t0+1; ki)� bj

�
f (xi;t0+1jxit0 ; dit0 ; ki)

We assume all observations follow this "rounding" procedure. Sinceki is unobserved,

from the econometrician’s point of view, the SRs can be associated with states and actions

only: epSRFi (xit; dit) = pSRFi (xit; dit; ki):

Definition 3 (Bunching) Two SRs are said to be bunched at(x; d) for observationsi and
j of different types, ifpSRFi (x; d; ki) = pSRFj (x; d; kj) andki 6= kj: Two SRs are said to be
bunched at(x; d) for typesk andk0; if pSRF (x; d; k) = pSRF (x; d; k0):

Note that "Bunching" is defined both, for observations and for types. When focal

self-reports generate bunching in the data, some variation of our basic linking technology

works under some additional assumptions.

Assumption B1 (Immediate Detection of Bunching Observations)If a pair of SRs
by two observationsi andj who belong to different types, bunch at the state-choice
(x; d), then their other SRs must be elicited at another common state-choice(x0; d0), at
which the two types’ focal SRs differ:epSRFi (x0; d0) 6= epSRFj (x0; d0):

Assumption B1 essentially makes sure that all bunchings of a pair of observations can

39 This additional layer of rounding off corresponds to the idea that an additional source of discrepancy
between the theoreticalE [CCP ] and the self-report resides in the respondent’s inability to exactly compute
the value function "off the top of her head". This inability induces computation of FCCPs, rather than CCPs
at each feasible state point next period. Then, a second layer of rounding is introduced when the average
of these rounded CCPs is itself rounded off when the answer is provided to the interviewer. Note that this
assumption only introduce some limited rationality at the self-report stage. Behavior continues to be fully
rational.

111



be detected immediately. It will be relaxed later in the sense that we will not require

immediate detection of bunching observations, but will require detection of bunching

types.

Definition 4 (Bunching state-choice forfi; jg) The bunching state-choice forfi; jg is
the state-choice(x; d) at which their SRs bunch. Denote it by(xBij; d

B
ij):

Assumption B1 guarantees that whenever there are two observationsi andj of different

types reporting at a bunching state-choice for them, the bunching of different types is

immediately detected. Hence, the to-be-defined "linking technology under bunching" can

use this notion of "bunching state-choice".

In particular, under Assumption B1, two observationsi andj can bunch at most at one

state-choice cell.

In Figure 3.1, the squares mark the precise SRs, which are rounded-off to the nearest

focal points, marked by circles. Whenever there is bunching of two different precise SRs,

we include the square-marked precise SRs for illustrative purposes. As is evident from the

figure, observationsi andj have the same focal self-reports at the state-choice(xBij; d
B
ij):

However, Assumption B1 is not enough to identify the types. Consider the following

example in Figure 3.2. There is no way of telling whether the observations are grouped

asfj; ig andfg; hg or fi; gg andfh; jg. In light of this, we make Assumption B2, which

bridges the two SRs by the same type.

Assumption B2 (Bridging Bunchings) For all observationsi andj who belong to
the same type, but the singleton intersection of whose SRs is at(xBih; d

B
ih) for someh,

there exists another observationl of the same type asi andj, who has SRs in the two
non-bunching state-choice cells.
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Figure 3.1: Illustration of Immediate Detection of Bunching Observations
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Figure 3.2: Problem Without Assumption B2
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Figure 3.3: Illustration of Bridging the Bunching
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Figure 3.3 illustrates how observationl bridges a bunching.

Definition 5 (Linking Technology under Bunching) Define a binary relation,RB, in
the following way:8i; j 2 f1; 2; :::Ng;

i RB j

iff the following conditions are met:

(1) The pairs of self reports fori andj are such that
fepSRFi (xit0 ; dit0); epSRFi (xit00 ; dit00)g \ fepSRFj (xjt0 ; djt0); epSRFj (xjt00 ; djt00)g 6= ;;

(2) if 9 observationh;
fepSRFi (xit0 ; dit0); epSRFi (xit00 ; dit00)g\fepSRFj (xjt0 ; djt0); epSRFj (xjt00 ; djt00)g = fepSRFi (xBih; d

B
ih)g

then
9l; fepSRFl (xlt0 ; dlt0); epSRFl (xlt00 ; dlt00)g

= fepSRFi (xit0 ; dit0); epSRFi (xit00 ; dit00)g4fepSRFj (xjt0 ; djt0); epSRFj (xjt00 ; djt00)g;
where4 denotes the set difference.
The linking technology under bunchingis a relation�B on f1; 2; :::; Ng: 8i; j 2
f1; 2; :::Ng = I;

i �B j

– iff 9 a subset of observationsfi1; i2; :::ing � I, such that
i RB i1 R

B i2 R
B:::RB in R

B j:
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Figure 3.4: Identification of the Number of the Types
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It can be easily proved that the linking technology under bunching also defines an

equivalence relation.

Lemma 6 Under Assumptions B1, B2 and SR-No Islands, the linking technology under
bunching recovers the true types exactly.

Proof. See Appendix.

Note that the number of types is identified after the partition. In particular, it is not

identified by counting the number of different SRs in each state-choice cell. Consider

Figure 3.4. The partition identifies 3 types, though at each state-choice cell, there are only

2 different SRs. With a slight abuse of notation,(xBkk0 ; d
B
kk0) here denotes the bunching

state-choice cell for typek and typek0. The arrows indicate "bridges".
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Assumption B3 (Detection of Bunching Types)If two types,k andk0; bunch at the
state-choice(x; d), then9 two observationsi of typek andj of typek0; and another
state-choice(x0; d0) s.t. � epSRFi (x; d) = epSRFj (x; d)epSRFi (x0; d0) 6= epSRFj (x0; d0)

Assumption B3 is weaker than Assumption B1. Assumption B1 ensures that

whenever two observations of different types bunch, their other SRs reveal the bunching

to the researcher. Assumption B3 only requires that whenever two types bunch, some

observations’ SRs reveal the bunching of the types to the econometrician. Figure 3.5

gives an example which satisfy Assumption B3 but not Assumption B1. Consider the

observationl in the figure. Assumption B1 would require the existence of another

observation that linkspSRF (xBih; d
B
ih) = 0:5 andpSRF (x0; d0) = 0:8 for immediate detection

of bunching types. Nevertheless, Assumption B3 is satisfied as long as the observationsi

andh reveal the bunching of two types at(xBih; d
B
ih).

With Assumption B3 replacing Assumption B1, the linking technology under bunching

now cannot guarantee to recover the exact type of each observation. For example, types

of i andh in Figure 3.6 are not distinguishable. Assumption B4 deals with this issue.

Assumption B4 (No observations with two "bunched" self-reports) Every
observationi has at least one self-report elicited at a state-choice in which there is no
bunching.

The following proposition establishes one of the most important results in this paper.

Proposition 7 Under Assumptions B2,B3,B4 and SR-No Islands, the linking technology
under bunching recovers the true types.

Proof. Given Lemma 6, the critical step is to restore the identification of bunching

state-choice cells under Assumption B3 (Detection of Bunching Types), which is weaker
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Figure 3.5: SRFs Allowed under Assumption B3 but not B1

(x,d) (x',d')
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

state­choice

pS
R

F

(x
ih
B ,d

ih
B )

i

h l

Figure 3.6: Non-identification of Types
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Figure 3.7: Immediate Detection of i-u Bunching
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than Assumption B1 (Detection of Bunching Observations). Consider an observationi,

whose SRs involve one SR in a bunching state(x; d) where her type bunches with another

type. By Assumption B3, this bunching of types is detectable by two observations that

do not necessarily involvei. There are thus two possibilities. One,9 an observationu,

who bunches withi at (xBiu; d
B
iu); but differentiates itself at another state-choice(x0; d0); as

is depicted in Figure 3.7. Two, whilei’s other SR is at(x0; d0), there are two observations

u andv; who reveal the bunching of the types at some other state-choice(x00; d00), as is in

Figure 3.9.

Now consider observationsi andj, who are of the same type. We want to show thati

�B j: In the first case, by Lemma 6, we havei �B j. In the second case, by Assumption
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Figure 3.8: Detection of i-u Bunching Using v
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B3, there exist two observationsu andv that reveal the bunching of types at(x; d), that is,

(x; d) = (xBuv; d
B
uv): By Assumption B2, there exists some observationl that bridgesj and

v and there exists some other observationw that bridgesv andi. The linking technology

under bunching gives thatj �B v andv �B i. By the transitivity of the equivalence

relation,j �B i:

Now comes the other direction thatj �B i implieskj = ki: It suffices to show that8m

RB n implieskm = kn: Suppose not. Sincem RB n, let the common state-choice cell at

whichm andn made a common SR be(x; d): By Assumption B3,9 two observationsm0

andn0 and another state-choice(x0; d0) s.t.� epSRFm0 (x; d) = epSRFn0 (x; d)epSRFm0 (x0; d0) 6= epSRFn0 (x0; d0)
:

Assumption B2 identifies through bridging thatm0 �B m andn0 �B n: Hence,m0 �B n0.

Contradiction.

However, for all pairs of observations whose SRs are identical at two of their bunching

state-choice cells (observations ruled out in Assumption B4), their types are not identified.

Recall Figure 3.6. Assumption B3 nevertheless indicates which two types these two

observations may belong to.

In practice, we can write a computer algorithm that implements the linking technology

to determine the type of those observations whose two SRs do not bunch with those of

another type simultaneously.40

Finally, we can relax Assumption B4. For those observations whose types are

40 The algorithm is described in detail in a supplementary Appendix available upon request.
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indeterminate, we will impute their types by finding the conditional probability of

being a particular type given the observation’s history of states and choices and its

pair of bunching state-choices. Leti be such an observation of typek, whose SRs

arefepSRFi (xt0 ; dt0); epSRFi (xt00 ; dt00)g, where(xt0 ; dt0) and(xt00 ; dt00) are two bunching

state-choice cells for typesk andk0: Below we describe the procedure used to imputei0s

type.

First, we use the subsample where types can be correctly revealed to form a system of

equations in terms of CCPs for each type and solve for the CCPs for each type. There

are in generaljXj � K equations and unknowns. Note that unlike the situation under

SR-Precise, now even with 1-period ahead SRs the system will be non-linear. In the case

of expected CCPs, the non-linearity is introduced by the double rounding-off. A typical

equation of such a system will then look like

pSRFi (xit0 ; dit0 ; ki)

= pSRFi (di;t0+1 = 1jxit0 ; dit0 ; ki)

= argmin
b2B

jpSRi (dt+1 = 1jxit; dit; ki)� bj

= argmin
b2B

8<:
������
X
xi;t0+1

[FCCP(xi;t0+1; ki)] f (xi;t0+1jxit0 ; dit0)� b

������
9=;

= argmin
b2B

8<:
������
X
xi;t0+1

�
argmin

b2B
jPr (di;t0+1 = 1jxi;t0+1; ki)� bj

�
f (xi;t0+1jxit0 ; dit0)� b

������
9=;

Note that in general the above system may not have a unique solution. Therefore

we work with an approximate problem that essentially disregards the two layers of

rounding-off. Given the set of focal pointsB, the bias introduced by the approximation
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will be bounded. Since the focal CCPs differ from their precise values by at most�0:025

at each rounding-off, our procedure leads to a bounded bias of�0:05

Once we solve the above system, we compute the conditional probability ofi being type

k given i’s history of choices and states for every "problematic" observationi (i.e. every

observation whose pair of self-reports does not provide enough information to uncover its

type).

To that end note that for problematic observations we have

Pr (k jfxt; dtgt6=t0;t00 ) =
Pr
�
fxt; dtgt6=t0;t00 jk

�
Pr (k)

Pr
�
fxt; dtgt6=t0;t00

�
=

Pr
�
fxt; dtgt6=t0;t00 jk

�
Pr (k)PK

k0=1 Pr (fxt; dtgt6=t0;t00 jk0 ) Pr (k0)
In the RHS,Pr

�
fxt; dtgt6=t0;t00 jk

�
can be computed using typek’s CCPs and the

estimates of the transition probabilities of the states.Pr (k) is estimated using, for

example, the following equation

Pr (dt = 1jxt = 5) = Pr (dt = 1jxt = 5; k = 1)Pr (k = 1)

+Pr (dt = 1jxt = 5; k = 2) [1� Pr (k = 1)]

wherePr (dt = 1jxt = 5) is estimated by simple frequency from the data and

Pr (dt = 1jxt = 5; k = 1) andPr (dt = 1jxt = 5; k = 2) are computed using the type

specific CCPs for each type. Given that obtaining such CCPs is not feasible, we work

with approximate CCPs which solve the approximate system of equations described

above.41 Among all those problematic observations who have the same SRs and the same

41 Alternatively, the denominator in the RHS,Pr
�
fxt; dtgt6=t0;t00

�
; could be obtained by counting the
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remaining history fort 6= t0; t00 asi0s. We then assign their types such that with probability

p(kjfxt; dtgt6=t0;t00), they are of typek:42

3.4 Montecarlo Experiments

In this section we do not discuss the precise data case because its empirical

implementation is less feasible given that most subjective assessments of future choice

probabilities have focal measurement error. We instead focus on the more realistic,

empirically relevant, case in which there is focal measurement error in SR-CPs. We

analyze two cases : a) a case in which this particular form of noise in the self-reports is

innocuous and b) the more general case in which it leads to bunching.

Consider the model in the machine replacement example of Section 3.2. Again, note

that we purposefully work with a simple toy model to be able to assess timing gains

relative to a full-solution approach. However the method works equally well if we have a

realistic state space that prevents estimation via full-solution. True, when the state space

gets large it is likely that we will run into a "Data Curse of Dimensionality" in the sense

that we will not have enough data to estimate the first-stage CCPs non-parametrically,

even if we do not condition on type. This is not a limitation of our method, but one

shared with the original Hotz-Miller (1993) estimator. However, there exist well known

generalizations of the original Hotz-Miller strategy that preserve the initial insight while at

the same time solving the "Data Curse of Dimensionality". For example, after unraveling

the types we could use the estimator advanced by Hotz, Miller, Sanders and Smith (1994)

proportion of observations who have this particular history of states and choices.
42 This procedure can be readily extended to the case where there are more than two types bunching at the

state-choice cells at the time of the SRs.
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that combines the alternative representation of the value function with a forward path

simulation approach to greatly diminish the data requirements of the original Hotz-Miller

strategy.43

We consider the simplest case in which there areK = 2 types. We simulate data on

N = 100; 000 firms andT = 10 periods using that model as underlying DGP with the

following parameters:

Type 1: (�11; R1) = (�0:4;�3)
Type 2: (�12; R2) = (�1:2;�7)

We generate inputs to the simulated self-reports using our theory of self-report and

further round off self-reported choice probabilities on the simulated elicitation according

to the focal points described Section3:3:2: In Figure 3.10 we see that despite the

measurement error induced by focal self-reports, no type-bunching occurs. The squares

point to the location of the precise E[CCP]s, the ones that would be elicited in the ideal

case without "heaping" in focal values. The circles show the corresponding "focal"

E[CCP]s

Since no type bunching occurs, the linking technology quickly establishes the number

of types and type membership, and Hotz-Miller proceeds with type as an extra state

variable. Table 1 describes the results of the Montecarlo simulations and illustrates that our

linking technology allows quick and precise estimation of the unobserved heterogeneity in

the structural model.44The mean estimate over the R=500 repetitions is virtually the same

43 Only states visited with positive probability in the sample at hand (as oposed to all feasible states
conceptually possible in the model) are used in this estimation strategy.

44 Convergence of the entire algorithm takes on average aproximately half a minute. Almost all of the time is
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Figure 3.10: Focal Self-Reports That Do Not Lead to Bunching
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as the truth. The standard deviation of the Montecarlo distribution is very small.45

Table 3.1

Truth Full Solution Hotz-Miller
Mean SD Mean SD

�11 �0:4 -0.4000 0.0058 -0.3999 0.0058
R1 �3:0 -2.9997 0.0198 -2.9995 0.0198
�12 �1:2 -1.2012 0.0269 -1.2008 0.0268
R2 �7:0 -7.0071 0.0951 -7.0057 0.0949

Avg. Time - 11 minutes 30 seconds

We now modify our DGP to generate a more complex situation. The parameters are

now:

spent in the Hotz-Miller step. Indeed, preliminary type revelation and linking only takes about half a second.
The montecarlo was run in a standard desktop using MATLAB.

45 Standard Deviations for the montecarlo distribution of estimates are computed for each parameter as

follows:
q

1
R

PR
r=1(�r � �)2 where� = 1

R

PR
r=1 �r
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Type 1: (�11; R1) = (�0:27;�2:65)
Type 2: (�12; R2) = (�0:40;�3:75)

In Figure 3.11 we can see that focal self-reports now lead to bunching in state

choice-combinations(x; d) = (2; 0) and(x; d) = (3; 0). Again, the squares point to

the location of the precise E[CCP]s. The nearby circles show the corresponding "focal"

E[CCP]s that respondents actually provide.

Figure 3.11: Focal Self-Reports That Lead to Bunching
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We consider four estimation strategies for this case. In Table 2 we show the Montecarlo

results for each of these.

(1) Discarded: In this strategy, we just drop from the sample those observations
whose type cannot be determined. Column 2 shows the mean estimates. While
the maintenance costs,�1 are estimated very precisely for both types, there is a
small bias in the estimates of replacement costsR1 andR2. In both cases we tend
to underestimate replacement costs. This makes sense. Since the two bunching
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state choice combinations(2; 0) and(3; 0) involve non-replacement decisions, when
we discard observations we tend to disproportionately eliminate from the sample
observations that do not replace machines. Therefore the sample becomes more
dominated by observations that do replace machines. The structural parameter
estimates rationalize this behavior in the data by making machine replacement
decisions less costly than they really are.

(2) Infeasible A: In this case we pretend we know each observation’s type. Then we
estimatep (k jf(xt; dt)gt=t0;t00 ; fxt; dtgt6=t0;t00 ) by simple frequency and assign types
to "problematic" observations such that they (as a group) are consistent with this
estimated probability. Here we are back to the scenario of our first Montecarlo without
bunching. Not surprisingly the performance is excellent.

(3) Infeasible B: Here we no longer pretend we know each observation’s
type but instead claim we know the precise CCPs. Then we compute
p (k jf(xt; dt)gt=t0;t00 ; fxt; dtgt6=t0;t00 ) using the Bayesian update described above and
again assign types to "problematic" observations.46 Again results are extremely good.

(4) Feasible: Our feasible estimation strategy follows the same protocol as Infeasible
B, but now using the approximate type-specific CCPs derived from the approximate
system of equations based on focal E[CCP]s. The performance here is also excellent
and virtually the same as the one achieved by Infeasible B, which uses the (usually
unavailable) precise CCPs.

Table 3.2

Truth "Discarded" Infeasible A Infeasible B Feasible
Mean SD Mean SD Mean SD Mean SD

�11 �0:27 -0.2735 0.0016 -0.2707 0.0016 -0.2713 0.0016 -0.2709 0.0015
R1 �2:65 -2.6227 0.0088 -2.6538 0.0085 -2.6566 0.0085 -2.6561 0.0082
�12 �0:40 -0.4006 0.0024 -0.3985 0.0022 -0.3968 0.0022 -0.3977 0.0022
R2 �3:75 -3.7024 0.0138 -3.7414 0.0134 -3.7304 0.0131 -3.7329 0.0134
t - 24.1 seconds 27.4 seconds 30.2 seconds 76.6 seconds

3.5 Extensions

We first consider in some detail three important extensions in the ideal case in which

we have self reports that are precisely elicited. We then briefly outline other directions for

future research.

46 In the actual implementation there is a trade-off when choosing how much information to condition on when
doing the Bayesian update. If we condition on all the historyfxt; dtgt6=t0;t00 ;the number of observation in
each cell might be very small so in practice it might be better to condition on a subset of the available history.
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3.5.1 S-periods ahead Self-Reported Cumulative Choice Probability

In some cases the question explicitly specifies a longer planning horizon and the elicited

subjective probability then refers to the probability of the action being taken at some point

during the given planning horizon. In this case the linking technology still works and types

can be revealed in the same fashion as in the 1-period ahead case. Then we proceed via

standard Hotz-Miller using the revealed types as an extra observed state in the first stage.

Still, we can attempt to recover the underlying type-specific CCPs. Consider the

2-periods ahead SR-Cumulative CP. Then we have a nonlinear equation given by

pSR (d = 1 at some point during the next two periods)

= Pr (dt+1 = 1 [ dt+2 = 1jxt; dt;k)

= 1� Pr (dt+1 = 0 \ dt+2 = 0jxt; dt;k)

= 1�
X
xt+1

[Pr (dt+1 = 0 \ dt+2 = 0jxt+1;dt;k)] f (xt+1jxt; dt; k)

= 1�
X
xt+1

[Pr (dt+2 = 0jxt+1; dt+1 = 0; k) Pr (dt+1 = 0jxt+1; k)] f (xt+1jxt; dt; k)

= 1�
X
xt+1

�
�t+1

�
f (dt+1jxt; dt; k)

where

�t+1 =

 X
xt+2

Pr (dt+2 = 0jxt+2; k) f (xt+2jxt+1; dt+1 = 0; k)
!
Pr (dt+1 = 0jxt+1; k)

Again if assumption F4 holds, in this equation thef (xt+1jxt; dt) andpSR () are known,

whereas thePr (d = 0jx; k) 8x are unknown. Here we can also link the two self-reports

of the same respondent and form additional equations with other self-reports from other
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respondents of the same type until we have a system that can be solved.47

3.5.2 Continuous Distribution of Unobserved Heterogeneity

Allowing for a continuous distribution of unobserved heterogeneity in dynamic

programming models is very complicated. The only computationally feasible attempt we

are aware of is the importance sampling strategy proposed by Ackerberg (1999,2009).

Let’s assume we have the full set of precise CCPs or, alternatively, we have precise

E[CCP]s at every possible state choice combination(x; d) : In our machine replacement

example, this would amount to having SR-CPs requested at each and every one of the

six state-choice combinations.48 In this case we can estimate the model allowing for a

nonparametric continuous distribution of unobserved heterogeneity as follows: With all the

possible E[CCPs] in hand we can solve a system of equations and recover the individual

specific CCPs at every possible state point. Then we can "plug-in" the individual-specific

set of CCPs to compute individual specificWi for eachi = 1; :::; N exploiting Hotz &

Miller’s alternative representation. If we redefine structural parameter heterogeneity as

deviations�i from a common mean,

�1i = ��1 + �1i

Ri = �R + �Ri

47 Unlike the 1-period ahead case, this system of equations is non-linear (even under precise elicitation) and
the computational advantage of this strategy should be evaluated on a case by case basis for each specific
model. This system of non-linear equations grows with the state-space so while our basic linking technology
still works, recovering the underlying CCPs directly from the self-reports becomes more computationally
demanding in realistic models. Still, it should be kept in mind that this whole step needs to be done only
once so one can easily afford some computational cost.

48 Note that given the renewal structure of our model, we need only consider the following six state-choice
combinations:(1; 2) ; (2; 0) ; (3; 0) ; (4; 0) ; (5; 0) and(x; 1)
for anyx: No matter what the state is, if a replacement decision is made, the state variable next period is
"reset" to one with probability one.
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the rest of the estimation protocol follows as in Hotz-Miller. The estimation routine

searches for the mean of the structural parameters and, at each iteration, we solve out for

the structural parameter deviationsf�ig
N
i=1 =

��
�1i
�Ri

��N
i=1

that are consistent with the

data (given current trial parameter vector for the mean,

�
��1
�R

�
). We do so by picking

two CCPs implied by the self-reports (CCPSR
i (xit)) and solving the linear system based

on

Z�i = E

where

Z =
�ez bP (1; xit)� ez bP (0; xit)�

E = � log
�

1

CCPSRi (xit)
� 1
�
� ee bP (1; xit) + ee bP (0; xit)� ez bP (1; xit) �u + ez bP (0; xit) �u

which can be derived by noting that49

CCPSRi (xit) =
exp

nez bP (1; xit) (�u + �i) + ee bP (1; xit)o
exp

nez bP (0; xit) (�u + �i) + ee bP (0; xit)o+ expnez bP (1; xit) (�u + �i) + ee bP (1; xit)o
After convergence we can "plot" the nonparametric joint distribution of the structural

parameters and recovers its moments.

49 If current utility is given byU (d; xit; "it) = u (d; xit) + "it (d) and we let� = (�u; �f ) be the
vector of structural parameters. Consider a linear-in-parameters utilityu (d; xit) = z (d; xit)

0
�u

wherez (d; xit) is a Dim(�u) � 1 vector. State variables evolve according tofx (xt+1jdt; xt; �f ).
The choice specific value functions can be re-written asv (d; x; �) = ez (d; x; �) �u + ee (d; x; �)
whereez (d; xt; �) = z (d; x) +

PT�t
s=1 �

sExt+sjdt=d;xt

hPD
d0=0 P (d

0jxt+s; �) z (d0; xt+s)
i

andee (d; xt; �) = PT�t
s=1 �

jExt+sjdt=d;xt

hPD
d0=0 P (d

0jxt+s; �) e (d0; xt+s)
i
. The policy

function is� (xt; "t) = argmaxd fv (d; xt; �) + "t (d)g and the expected error conditional
on optimal choice ise (d; xt) = E ["t (d) jxt; � (xt; "t) = d] :Hotz & Miller (1993) show
that e (d; xt) = f (d; P (�jxt; �) ; G") :For example, if"it (d) are iid Extreme Value, then
e (d; xt) = 
 � log [P (djxit; �)]

130



Figure 3.12: Figure 3.11 Distribution of Structural Parameter Population Heterogeneity
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For example, consider the following DGP.�
�1i
Ri

�
� N

�
��1
�R

;�

�
with true parameter values given by��1 = �1:15 , �R = �4:45;� =

�
0:1 0
0 0:5

�
:

Figure 3.12 depicts the true distribution of structural parameter values in the population.

Our estimates are obtained in less than one minute. The estimated population means for

both structural parameters are

\E [�1] = �1:1496

[E [R] = �4:4451

which are almost exactly equal to the truth.
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Figure 3.13: Figure 3.12 Estimated Distribution of Structural Parameter Heterogeneity
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The estimated variance covariance matrix for the distribution of structural parameter

heterogeneity in the population is

dV ar (�1; R) = � 0:1002 0:0028
0:0028 0:5043

�
which is consistent with the underlying bivariate normal DGP. Note however, that

our approach is non-parametric in the sense that we could have recovered any kind of

distribution since at no point did we use normality, other than to simulate the data.

Figure 3.13 presents the plot for the non-parametric estimate of the distribution of

structural parameters in the population.

Note that in more complex models, having the entire set of E[CCPs] might be
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unrealistic. However, if we have three self-reports, we can use a variant of the linking

technology that supplements our original linking strategy with an interpolation step.

Indeed, if we assume Finite Dependence50, Modal CCP self-reports and Assumption F4,

then we can recover the continuous distribution of unobserved heterogeneity in structural

parameters by interpolating CCPs using nearest neighbors to complete each individual’s

full set of self-reports.51

3.5.3 Time-Varying Unobserved Heterogeneity

As we discussed in the Introduction, recent efforts, to which our paper contributes,

show that under some conditions, it is possible to accommodate permanent unobserved

heterogeneity in two-step estimation strategies. The work of Arcidiacono & Miller (2008)

pushes the frontier forward by not only allowing for unobserved heterogeneity but by

letting it evolve in systematic ways over time.

In this subsection we briefly note that our linking approach can be modified to

accommodate unobserved heterogeneity that evolves over time. To continue with our

machine replacement example, we now think of firms as being in one of two possible

unobserved states. These unobserved states are not permanent, but rather can change over

time. We focus on cases in which we have two self-reports taken in consecutive periods.

In this scenariok is no longer fixed but becomeskt; a random variable that exogenously

evolves over time as in assumption F2. The key idea can be grasped withK = 2 (i.e. there

50 The concept of finite dependence was originally developed by Altug & Miller (1998) and further generalized
by Arcidiacono & Miller (2008). It sharpens the insight of the Hotz-Miller original result by showing that
for certain class of models only the 1-period (or, in general for finite� > 0; the��period ) ahead CCPs are
needed in the alternative representation of the value functions.

51 Nearest neighbors are those observations that report similar SR-CPs in two of the same state-choice cells.
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are two possible unobserved statesk = 1; 2). Suppose that at timet0 the first self-report is

collected. Among those with the same(xt0 ; dt0) we can identify those who give different

SR-CPs and, following the reasoning of previous sections, those who have differentkt0 :

Without loss of generality we can assign one group tokt0 = 1 and the others tokt0 = 2.

We can track this group into the next period. Suppose that next period,t0 + 1, the second

self-report is collected. We can see how the answers of each group split at the time of the

second self-report. These splits give information on unobserved state transitions�jl for

j; l = 1; 2.

How do we know which % transitioned into which state ? We can compare self-reports

in the second period across different states and check against the self-reports collected at

those same states in the first period as long as the model is stationary. We are then able to

identify those that remained in their previous unobserved state and those who transitioned

into a new one.

Finally, note that all of the above can be generalized to: a) anyK > 2; b) self-reports

collected in any two, not necessarily consecutive time periods(t0; t00), c) cases in which

the first period collecting self-reports,t0, is not the first sample period and d) models with

choice-dependent transitions for unobserved states.52

52 Choice dependent transitions for unobserved states accomodate the following case: instead of firms differing
in kt, machine differences are the underlying source of unobserved heterogeneity. Suppose when a firm
replaces an old machine, the new machine may turn out to be an "easy maintenance, easy replacement"
machine or a "problem" machine which is difficult to maintain and difficult to replace. Here the unobserved
state may evolve over time but only if the renewal action is taken. To handle this case we relax Assumption
F2.
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3.5.4 Other Extensions

(1) In some special cases we can entertain the possibility of estimating the model off
SR-CPs alone, rather than using actual revealed choice data.

(2) Using Other Probability Questions:

– As seen in Section 3.5.1, sometimes we have SR-Cumulative CPs like "What’s the
probability that you will choosed = 1, at least once, at some point during the next
S years?". In some cases, we may have two of these questions at the same time
t0, eliciting the cumulative probability that an action is taken or a state is reached
within two or more time horizons. We may have, for example,��

pSRi ([5s=1 fdt+s = 1g jxt; dt; k)
pSRi ([10s=1 fdt+s = 1g jxt; dt; k)

��N
i=1

eliciting the 5- and 10-period ahead cumulative CP. This eliminates the need of a
panel of self-reports.

– "What’s the probability that you will havext+S = x in S years?"
(3) Using Other Types of Expectations: Some questions don’t ask about the probability of

making a given choice or reaching a given state but rather ask whether the respondent
"expects" to make that choice or reach a given point in the state space.

– "Do you expect to havedt+S = d in S years?" This case which severely
limits the informational content of the self-report arguably asks whether
Pr (dt+S = djxt; dt; k) > 50%

– "What value ofx do you expect to end up having over your planning horizon?"
In these casesx may refer to the number of children or completed years of
education that a person will have over their remaining lifetime, i.e. over
the nextT � t years. Here, respondents could arguably be rounding-off the
expected maximum,E [xT jxt; dt; k] to the nearest integer or providing the mode,
Mode [xT jxt; dt; k] = argmaxxT ff (xT jxt; dt; k)g

(4) Application to multiple agent models.
(5) Multinomial choice and use of GEV unobservables following McFadden (1978) ,

Breshnahan, Stern & Trajtenberg (1997), Arcidiacono (2005) and Arcidiacono &
Miller (2008).

3.6 Conclusions

We have introduced a new approach to allow for unobserved heterogeneity in two-step,

CCP-based estimation strategies for discrete choice dynamic programming models such

as those pioneered by Hotz & Miller(1993). Our strategy exploits the availability of

expectations data. Since subjective expectations data about future choice probabilities
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integrate the future temporary idiosyncratic shocks, they are extremely powerful and

they become a valuable resource to identify and estimate unobserved heterogeneity. We

believe that if and when such data is available, our approach should be attractive given

that identification requires mild assumptions and estimation can proceed with very light

data. Indeed, the method can be implemented with only two unconditional self-reports

about future choice probabilities per respondent. Our Montecarlo experiments show

that computational burden is essentially the same as that of the (already fast) original

Hotz-Miller estimator. The method can be applied in combination with variants of the

original Hotz-Miller estimator that reduce its onerous data requirements in models with

rich state spaces. While our focus has been on single agent models of dynamic discrete

choice, we believe that our approach can be generalized to the many other contexts

discussed in the introduction as long as subjective expectations data is available to

supplement traditional data on observed choices and states. We leave these and other

extensions for future research. We believe this is a first step in a fruitful research program

that leverages new forms of available data to be more flexible about the specification of

unobserved heterogeneity in structural estimation.

3.6 Appendix: Proofs of Lemmas

Lemma 1 Under Assumption SR-Precise and SR-No Islands, the linking technology

recovers the true number of types and type membership for each observation.

Proof. First, we establish that under Assumption SR-Precise, the linking technology

implies that for alli � j; ki = kj: By definition of the linking technology,i � j iff 9 a
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possibly empty subset of observationsfi1; :::ing � I, such thati R i1 R:::R in R j: By

transitivity of" = "; it is enough to show that8m R n; km = kn: By definition,m R n iff

fepSRm (xmt0 ; dmt0); epSRm (xmt"; dmt")g \ fepSRn (xnt0 ; dnt0); epSRn (xnt"; dnt")g 6= ;
Since under Assumption SR-Precise the probability of two different types having exactly

the same report on the same state-choice cell is zero, it holds thatm R n ) km = kn:

Hence,ki = ki1 = ::: = kin = kj:

Second, we need to show that8i; j with ki = kj, i � j: Suppose not. Consider

observationsi; j, who are of typek, but i � j: Let�[i] (�[j]) be the set of all state-choice

cells at which the equivalent class[i] ([j]) gives SRs. Then,�[i] \ �[j] = ;: Otherwise,

9(x; d) 2 �[i] \ �[j] and9 observationsi0 2 [i]; j0 2 [j], who share a common SR at(x; d)

and this implies thati0 R j0: Hence,i � i
0
R j0 � j, contradicting our assumption that

i � j. So�[i] \ �[j] = ;: But it further contradicts Assumption SR-No Islands, because

�[i] \ �[j] = ;; together withi � j; implies that8(x; d) 2 �[i] � �k; (x0; d0) 2 �[j] � �k,

there does not exist two observationsm andn, such thatm gives a SR at(x; d) andn at

(x0; d0) andm � n:

Lemma 2 Under Assumptions B1, B2 and SR-No Islands, the linking technology

under bunching recovers the true types exactly.

Proof. First, we want to prove that under Assumption B1, the linking technology under

bunching implies that for alli �B j; ki = kj: Definition of linking under bunching gives

i �B j iff 9 a possibly empty subset of observationsfi1; :::ing � I, such thati RB i1

RB:::RB in R
B j: By transitivity of" = "; it is enough to show that8m RB n; km = kn:
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Consider suchm RB n: They must satisfy

(1) fepSRFm (xmt0 ; dmt0); epSRFm (xmt00 ; dmt00)g \ fepSRFn (xnt0 ; dnt0); epSRFn (xnt00 ; dnt00)g 6= ;;
(2) if 9 observationh;
fepSRFm (xmt0 ; dmt0); epSRFm (xmt00 ; dmt00)g\fepSRFn (xnt0 ; dnt0); epSRFn (xnt00 ; dnt00)g = fepSRFm (xBmh; d

B
mh)g

then
9l; fepSRFl (xlt0 ; dlt0); epSRFl (xlt00 ; dlt00)g

= fepSRFm (xmt0 ; dmt0); epSRFm (xmt00 ; dmt00)g4fepSRFn (xnt0 ; dnt0); epSRFn (xnt00 ; dnt00)g;
where4 denotes the set difference.

Proceed by contradiction. Suppose thatkm 6= kn: Then by Assumption B1,

m andn bunching at the state-choice cell of their common SR is immediately

detected:fepSRFm (xmt0 ; dmt0); epSRFm (xmt00 ; dmt00)g \ fepSRFn (xnt0 ; dnt0); epSRFn (xnt00 ; dnt00)g =

fepSRFm (xBmn; d
B
mn)g. In this case,n qualifies as the observationh in the second condition,

so

9l; fepSRFl (xlt0 ; dlt0); epSRFl (xlt00 ; dlt00)g

= fepSRFm (xmt0 ; dmt0); epSRFm (xmt00 ; dmt00)g4fepSRFn (xnt0 ; dnt0); epSRFn (xnt00 ; dnt00)g;

contradiction to the non-existence of such an observation who reports two different

probabilities at one state-choice cell. Hence,km = kn andki = ki1 = kin = kj:

Second, to show that for any pair of observations of the same type, they must belong

to the same equivalence class, we proceed by contradiction. Consider two observations

i andj of the same typek, but i �B j: Define�[i];�[j] as in the proof of Lemma 1.

Now for any(x; d) 2 �[i] � �k and any(x0; d0) 2 �[j] � �k; by Assumption SR-No

Islands,9 two observationsm andn of typek, withm reporting at(x; d) andn at (x0; d0),

and m �B n: Since(x; d) 2 �[i], 9 observationi0 2 [i] who reports at(x; d) and some
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other(x00; d00) 2 �[i]: Obviously,i0 andm share a common SR at(x; d): If (x; d) is a

bunching state-choice cell, Assumption B1 immediately identifies this and Assumption B2

makes sure that9 an observationl that bridgesi0 andm0s non-bunching SRs. Linking

technology under bunching impliesi0 �B m. If (x; d) is not a bunching state-choice cell,

the linking technology under bunching directly givesi0 �B m: By the same argument,

9j0 2 [j] such thatj0 �B n: Therefore,i �B i0 �B m �B n �B j0 �B j. Therefore,

[i] \ [j] = fi0; j0;m; ng 6= ;: A contradiction to the definition of equivalence class.

Ackerberg (1999) Importance Sampling and the Method of Simulated Moments, mimeo.

Ackerberg (2009) A New Use of Importance Sampling to Reduce Computational Burden

In Simulation Estimation, Quantitative Marketing and Economics, forthcoming

Arcidiacono (2005), Affirmative Action in Higher Education: How Do Admission and

Financial Aid Rules Affect Future Earnings?, Econometrica, Vol. 73, No. 5, September,

1477–1524

Arcidiacono, P., A. Khwaja and L. Ouyang (2007) Habit persistence and teen sex: Could

increased access to contraception have unintended consequences for Teen pregnancies?

mimeo. Duke University.

Arcidiacono & Miller (2008), CCP Estimation of Dynamic Discrete Choice Models with

Unobserved Heterogeneity, mimeo.

139



Aguirregabiria & Mira (2009), Dynamic Discrete Choice Structural Models: A Survey.

Journal of Econometrics.

Aguirregabiria & Mira (2002), Swapping the Nested Fixed Point Algorithm: A Class of

Estimators for Discrete Markov Decision Models, Econometrica

Aguirregabiria & Mira (2007), Sequential Estimation of Dynamic Discrete Games, Econo-

metrica

Aguirregabiria, Mira & Roman (2007), An Estimable Dynamic Model of Entry, Exit, and

Growth in Oligopoly Retail Markets, American Economic Review

Altug & Miller (1998), The Effect of Work Experience on Female Wages and Labor Supply,

Review of Economic Studies

Attanasio, O. P. (2009): Expectations and Perceptions in Developing Countries: Their

Measurement and Their Use" American Economic Review, Papers and Proceedings.

Bajari, Hong, Krainer & Nekipelov (2009), Estimating Static Models of Strategic Interac-

tions, mimeo.

Bajari, Benkard & Levin (2007), Estimating Dynamic Models of Imperfect Competition,

Econometrica

140



Bajari, Fox, Kim & Ryan (2009), A Simple Nonparametric Estimator for the Distribution

of Random Coefficients, mimeo.

Blass, Lach & Manski (2010), "Using Elicited Choice Probabilitites to Estimate Random

Utility Models: Preferences for Electricity Reliability", International Economic Review,

Vol. 51, No. 2, May

Blau, D. and D. Gilleskie (2008) The Role of Retiree Health Insurance in the Employment

Behavior of Older Males. International Economic Review.

Blevins (2009) “Sequential MC Methods for Estimating Dynamic Microeconomic Mod-

els", Duke University, mimeo.

Bresnahan, Stern & Trajtenberg (1997), Market Segmentation and the Sources of Rents

from Innovation: Personal Computers in the Late 1980s, RAND

Buchinsky, Hahn & Hotz (2005), Cluster Analysis: A Tool for Preliminary Structural

Analysis.

Carro, J. and P. Mira (2006), A Dynamic Model of Contraceptive Choice of Spanish Cou-

ples. Journal of Applied Econometrics 21, 955-980.

Choo & Siow (2005): Dynamic Two-Sided Matching Games, mimeo

141



Dube, Fox and Su (2009), "Improving the Numerical Performance of BLP Static and Dy-

namic Discrete Choice Random Coefficients Demand Estimation" mimeo

Golan & Levy-Gayle (2008), Estimating a Dynamic Adverse-Selection Model: Labor-

Force Experience and the Changing Gender Earnings Gap 1968-93, mimeo Carnegie Mel-

lon University

Eckstein and Wolpin (1989) "The Specification and Estimation of Dynamic Stochastic Dis-

crete Choice Models: A Survey" Journal of Human Resources, Fall, 24, 4

Eckstein and Wolpin (1999) "Why Youths Drop Out of High School: The Impact of Pref-

erences, Opportunities, and Abilities" Econometrica, 67(6): 1295-339

Heckman, J., and B. Singer, (1984) A method for minimizing the impact of distributional

assumptions in economic models for duration data. Econometrica 52, 271-320

Hill, Perry and Willis (2004), Estimating Knightian Uncertainty from Survival Probability

Questions on the HRS, mimeo

Hotz & Miller(1993), Conditional Choice Probabilities and the Estimation of Dynamic

Models, Review of Economic Studies

Hotz, Miller, Sanders & Smith (1994), A Simulation Estimator for Dynamic Models of

142



Discrete Choice, Review of Economic Studies

Hu & Shum (2008) Identifying Dynamic Games with Serially-Correlated Unobservables,

mimeo

Hu & Shum (2009) Nonparametric Identification of Dynamic Models with Unobserved

State Variables, mimeo

Jofre-Bonet & Pesendorfer (2003), Estimation of a Dynamic Auction Game, Econometrica

Karni (2009) "A Mechanism for Eliciting Probabilities" Econometrica, Vol. 77, No. 2,

March, 603–606

Kasahara & Shimotsu (2008), Pseudo-likelihood Estimation and Bootstrap Inference for

Structural Discrete Markov Decision Models, Journal of Econometrics, 146(1), 92-106

Kasahara & Shimotsu (2009a), Nonparametric Identification of Finite Mixture Models of

Dynamic Discrete Choices, Econometrica

Kasahara & Shimotsu (2009b), Sequential Estimation of Structural Models with a Fixed

Point Constraint, mimeo

Keane & Wolpin (1994) "The Solution and Estimation of Discrete Choice Dynamic Pro-

143



gramming Models by Simulation and Interpolation: Monte Carlo Evidence" Review of

Economics and Statistics

Keane & Wolpin (1997) "The Careers of Young Men" Journal of Political Economy

Keane & Wolpin (2009) "Empirical applications of discrete choice dynamic programming

models" Review of Economic Dynamics

Todd & Wolpin (2009) "Structural Estimation and Policy Evaluation in Developing Coun-

tries" Annual Review of Economics, September 2010, Vol. 2

Keane, Todd & Wolpin (2010) "The Structural Estimation of Behavioral Models: Discrete

Choice Dynamic Programming Methods and Applications, Handbook of Labor Economics,

forthcoming.

Liu, Mroz & van der Klaauw (2009), Mother’s Work, Migration, and Child Achievement,

Journal of Econometrics, forthcoming.

Magnac & Thesmar (2002) "Identifying Dynamic Discrete Decision Processes", Econo-

metrica, Vol. 70, No 2, March 801-816

McFadden (1978) " Modelling the Choice of Residential Location", in A. Karlqvist et

al., eds., Spatial Interaction: Theory and Planning Models. Amsterdam. North Holland

144



Publishing.

Mira (2007) "Uncertain Infant Mortality, Learning and Life-Cycle Fertility". International

Economic Review 48, 809-846

Pakes, Ostrovsky & Berry (2008), Simple estimators for the parameters of discrete dynamic

games (with entry/exit examples), RAND

Pesendorfer & Schmidt-Dengler (2008), Asymptotic Least Squares Estimators for Dy-

namic Games, Review of Economic Studies

Pesendorfer & Schmidt-Dengler (2008), Sequential Estimation of Dynamic Discrete

Games: A Comment, mimeo

Rust (1987), Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold

Zurcher, Econometrica

Siebert, R., and C. Zulehner (2008): “The Impact of Market Demand and Innovation on

Market Structure” Purdue University, mimeo.

Su, Che-Lin & Judd, Kenneth (2007), "Constrained Optimization Approaches to Estima-

tion of Structural Models", mimeo

145



van der Klaauw (1996) Female Labor Supply and Marital Status Decisions: A Life Cycle

Model, Review of Economics Studies, 1995, 63(2): 199-235.

van der Klaauw (2000) On the Use of Expectations Data in Estimating Structural Dynamic

Models: An Analysis of Career Choices, mimeo, UNC-Chapel Hill

van der Klaauw & Wolpin (2008) Social Security and the Retirement and Savings Behavior

of Low Income Households, Journal of Econometrics

Walker (2003), "Pregnancy and Fertility Expectations: Estimates of Bounded Rationality

and Unintended Births", mimeo.

Wolpin (1984), An Estimable Dynamic Stochastic Model of Fertility and Child Mortality,

Journal of Political Economy,1984, Vol. 92: 852-875

Wolpin (1999), Commentary on “Analysis of Choice Expectations in Incomplete Scenar-

ios”, by C.F. Manski” Journal of Risk and Uncertainty

Wolpin & Gonul (1985) "On The Use of Expectations Data in Micro Surveys: The Case of

Retirement", Report to the Employment and Training Administration, U. S. Department of

Labor, Washington, DC, March.

146


	Three Essays on the Macroeconomics of Information
	Recommended Citation

	tmp.1328377774.pdf.xbuVF

