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Abstract

This is a collection of essays on the macroeconomics of information. The first chapter,
"The Skill Premium, College Enroliment and Education Signals" explores the quantitative
implications of a signaling model of education for the evolution of the skill premium for
young workers in the US since the 1970s. | formalize the idea that as college education
becomes more affordable for a larger fraction of population, not having a college degree
becomes a more precise signal about low ability, increasing the college wage premium.
The model, when calibrated, suggests that about 17 percent of the growth in college
premium is produced through this signaling channel. In light of the recent financial
crisis, in the second essay, | study banks’ incentive to produce public information about
the return to the loans that they sell to risk-averse investors. Risk-averse banks rely
on information production to redistribute risks between themselves and investors. |
show that securitization, by eliminating the idiosyncratic component of risk, promises
a less risky return, diminishing the marginal benefit of information, hence reducing
information production. The third chapter (with Juan Pantano) contributes to the literature
of accommodating unobserved heterogeneity in the Hotz-Miller estimation strategies by
proposing a new two-step fixed-effect estimation approach. We uncover the type of each
observation in the first step by exploiting a consistency requirement of the subjective

assessments of a given type reported in subjective expectations data.
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Chapter 1 The Skill Premium, College Enrollment and Education Signals

1.1  Introduction

The rise in the college wage premium - defined as the differential between the wages
of college and high school graduates - is a well-documented fact. As Card and Lemieux
(2001) have shown, the wage premium has evolved differently for different age groups:
younger workers account for most of the growth of the premium. In line with the
cohort-based perspective, this paper looks at college premium for workers age 23-26 and
asks: how much of this evolution can be reasonably explained by the idea that higher
education is (also) a signal of talent? The answer is motivated by the observation that the
college premium and college enroliment rates have closely tracked each other during the
past four decades (Figure 1). The story | submit is the following: as college education
becomes more accessible, the lack of a college degree becomes an increasingly clear
signal of poor talent; if talent, per se, is useful in the working place but unobservable,
the college degree will be rewarded by an increasing premium relative to the high school
diploma. The paper provides both a signaling model with closed-form solutions and a
robust estimate of the signaling effect for the US economy from 1972 to 2005. Within a
broadly defined class of models, the signaling mechanism accounts for about 17% of the

growth in college premium.

[Figure 1.1 about here.]
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afterwards rises half as quickly as that of college graduates, at 0.8% per year.

[Figure 1.2 about here.]

The model developed below formalizes the intuition for the case of a stationary
economy. When | take the model to data, | interpret the increase in the wage to college
graduates as due partly to capital accumulation and TFP growth, and partly, as an
improvement in college’s talent discrimination technology, summarized by the probability
of graduating from college given talent. If people of all talents choose to go to college,
the discrimination technology boils down to the average college completion rate. If
the technology improves - i.e. it becomes easier to complete college if talented and
harder if not - the average completion rate increases. Thus an improvement in the
discrimination technology leads to a rising wage to college graduates and an increasing
college completion rate, as in the data (see Figure 6).

Because the empirical relevance of my theory requires to be plausible the assumption
that college has become progressively more affordable because financial constraints were
relaxed, | should discuss here the relevant evidence. Baumol and Blackman (1995) and
Archibald and Feldman (2008) are two of the very few papers that address the change of
college affordability over time directly. Both papers recognize the rise of college price
as a cost disease phenomenon. Although the share of income spent on college education
has gone up, the relative price of other goods, which have experienced rapid productivity
growth, fell so much that given income, one could actually afford more college education

and more other goods. Archibald and Feldman (2008) argue that the difference between
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income and college expense is a better measure of affordability than share of income spent
on education. They show that during 1990-2007 the median income left over after paying
for college expense increased for both public and private institutions, with larger gains in
public institutions. Here | re-construct this measure to cover the period from 1975/76 to
2008/09. Figure 3 plots the time series of the difference between the HP-filtered median
household income and the net college price, together with the net college price as a share
of median household income. The net college price is obtained by substracting average
total aids per full-time-equivalent (FTE) student from average tuition, fees, room and
board (TFRB). The total aids include grant aids, federal loans, educaiton tax benefits and
federal work-study. The result is broadly consistent with the aforementioned findings.
The residual income shows an upward sloping trend, indicating an increase in college
affordability, even though the share of income keeps rising too.

[Figure 1.3 about here.]

Micro data tells a similar story. The National Postsecondary Student Aid Study
(NPSAS) contains student-level information on financial aid provided by the federal
government, the states, postsecondary institutions, employers, and private agencies, along
with demographic and enrollment data My sample consists of all students who are
dependent and enrolled in a bachelor’s degree program in NPSAS 87, 90, 93, 96, 00, 04
and 08. Tables 1 shows the difference between the mean of parents’ income and tuition
and fees net grants and federal loans, by household income quintile and type of institution.

The growth in the residual income is more apparent for 4-year public institutions than
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for 4-year non-for-profit private institutions. Notably, the increasing trend holds across
all income groups for public colleges. In so far as the marginally constrained student is
more likely to attend a public school, the evidence is supportive. The case of selective
private colleges is examined by Hill, Winston and Boyd (2005). In their sample of 28
highly selective COFHEcolleges and universities, the real net price of attending those
institutions as share of income fell for all income groups and the most dramatic decline
was at the lowest quintile income group. The above analysis assumes a constant family
size. If one takes into account that the number of own children under 18 per family
has decreased from 1.28 in 1971 to 0.84 in Z20@®: residual income after paying for

children’s college expenses should increase even more.

[Tables 1.1 about here.]

Some more evidence is available from the literature on the effect of aid on college
enroliment. Federal grants and loans have increased dramatically on a per FTE student
basis (Figure 4). The two key questions are how sensitive enrollment is to college price
and how effectively the grants and loans programs are in promoting college access. The
empirical evidence is mixed (for a review, cf. Kane, 2006). Most of the estimations
that exploit cross-sectional variability reach an estimate that $1,000 reduction of college
tuition increased the enrollment rate by three to five percentage points. See for example

Kane (1994), Dynarski (2003), and Winter (2009). However, those studies that look at the

Consortium on the Financing of Higher Education. All private institutions.
U.S. Census Bureau, Families and Living Arrangements 2009, Table FM-3.
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enrollment of high- and low-income students before and after Pell Grant was launched
in 1973 do not find relative increase in attendance in the low-income group, but those
models are typically not well identified (Kane, 1995 and Leslie and Brinkman, 1983).
Long (2007) finds a positive effect of loans on enrollment for those families who had just
become eligible and the effect was concentrated in full-time enrollment. By and large, the

evidence seems to favor a positive effect from grants and loans programs.

[Figure 1.4 about here.]

In the line of research that focuses on differential enroliment behaviors across
racial/ethnic groups, Cameron and Heckman (2001), Carneiro and Heckman (2002 and
2003) argue that long-run factors that determine the preparedness for college are more
important than short-term cash constraints in making schooling decision. Their point can
be translated into a high correlation between family income and ability in my model. As
long as the correlation is nat in which case ability is observable and there is no role for
college as a signal, the signaling mechanism in this paper still works, though the college
premium would be smaller. In fact, recognizing the positive correlation between family
income and talent helps my argument in the sense that the true marginal student, who
can benefit from college and is barely financially constrained, is likely from the middle
income group instead of the lowest one. | have shown in the preceding paragraphs that the
college indeed has become more affordable to the middle income families for both types
of institutions. While my model does not aim to provide a theory of enrollment decision

per se, the only, realistic, assumption that | need is that college enrollment rates have risen
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over the years because a bigger and bigger fraction of the population can go to college

when they choose to.

1.2 A Brief Literature Review

| briefly review the related literature. The evolution of the aggregate skill premium is
described, among others, by Autor, Katz and Kearney (2008). Katz and Murphy (1992)
provide a supply and demand framework to account for the dynamics of wages. Autor,
Katz and Krueger (1998) rely on skill-biased technological change to rationalize the
demand for skilled labor outpacing the supply. While their model involves assumptions on
the unobservable quality of labor, Krusell, Ohanian, Rios-Rull and Violante (2000) show
that the capital-skill complementarity can account for almost all of the growth in aggregate
skill premium without any change in the trend of the unobservable.

While all of the papers above look at wage differentials by education attainment across
all age groups, Card and DiNardo (2002) point out that the skill premium does not grow at
the same rate across age groups. Further, Card and Lemieux (2001) estimate a production
model with imperfect substitution between workers from different age groups and attribute
the rising college premium for younger workers to the slowdown in the rate of growth
of educational attainment starting with the 1950 cohorts. My paper shares with their
work this cohort-based perspective. Guvenen and Kuruscu (2009) calibrate a overlapping
generations model of human capital accumulation with skill-biased technical change and
heterogeneous agents differing in the ability to accumulate human capital. Their model

generate behaviors of the overall wage inequality and college premium for young workers
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that are consistent with the data. This paper differs from all of the above papers in that |
abstract away the technological progress in the production process that change the labor
demand. Instead, | focus on the implication of the signaling effect of education in an
environment in which the suppliers of labor are less and less financially constrained in
their schooling decision.

While the application of signaling theory to the college wage premium is relatively new,
the idea of education-as-a-signal is obviously not: it dates back to Spence (1973). Hendel,
Shapiro and Willen (2005) argue that decreasing interest rates on borrowing or decreasing
tuition has the unintended consequence of widening the wage gap for similar reasons to
the ones in this paper. They develop a model with imperfect capital markets and look at a
separating equilibrium with two types, in which only the high ability type can benefit from
college. The presence of the wedge between the borrowing and lending rates of interest
enriches the dynamics of the skill premium and college attendance and allow them to
discuss policies such as college loans. In contrast, this paper looks at a pooling equilibrium
where all agents having continuously distributed abilities can benefit from college as
long as they can afford it, while shutting down credit markets completely. The change in
affordability, which depends on the availability of financial aids and loans, is governed by
the speed with which the budget constraints are relaxed, a parameter which is calibrated
to match the observed enrollment rates. The convenience of a pooling equilibrium is
technical. The equilibrium dynamics has a closed form which facilitates the calibration.

However, it is plausible to me that a high school graduate believes that he can benefit from



college given the option of dropping out. Bedard (2001) lends some support to this by
showing that high school dropout rates are higher in areas with greater university access.
When more high school graduates have access to college, being a high school graduate
without college enroliment is not worthy of the effort to complete the high school. While
both my model and Hendel et al. (2005) predict no variation over time in the wage offer

to college graduates, Balart (2010) specifies conditions on the wealth distribution under
which more access to higher education decreases earnings for all education groups within
the framework of Hendel et. al.

This paper also contributes to the literature which quantifies the relative importance of
college education as a process of human capital enhancement and as a signaling device.
Riley (2001) summarizes a large body of empirical research that tests the educational
screening hypothesis against the human capital accumulation hypothesis, reaching mixed
conclusions. | refer the reader to the references therein. Recognizing both roles of college
education in generating college premium, Fang (2006) estimates a structural static model
of endogenous education choices and wage determination and finds that productivity
enhancement accounts for at least two-thirds of the college wage premium. On the other
hand, Taber (2001) develops a dynamic programming selection model and finds evidence
that the change in college premium in the 1980s was more plausibly driven by increasing
demand for unobservable abilities than for skills acquired at school. While Taber (2001)
suggests that the educational signal was likely to play a big role, he does not model the

education signaling explicitly. He assumes the within-cohort ability differential between



college graduates and high school graduates to be constant over time, eliminating the
cohort effect on the evolution of college premium. It is precisely this cohort effect that
is the focus of this paper. More specifically, to borrow from Taber’s terminology, the
change of college premium has three potential sources: the change in the payoff to skills
acquired in college, the change in the payoff to unobservable ability, the change in the
ability differential conditioning on education outcome. Fang (2006) suggests that the first
source is important, because in a static setting the college premium is determined mostly
by the payoff to skills learned in school. Taber’s (2001) argument is that the second source
seems to play a larger role than the first, ignoring the third possibility. In contrast, my
paper argues, roughly, that regardless of the relative importance of the first two roles, the
third source, the cohort effect, accounts for around 17% of the growth in college premium.
The rest of the paper is organized as follows. Section 2 presents the theory, while
Section 3 simulates the model and provides a measurement of the effect of signals on the

growth of skill premium. Section 4 concludes. All proofs are in the Appendix.

1.3 Model
1.3.1 A Static Model: the Working of the Education Signal

A static model may help the reader’s intuition. Assume personal talent is private
information that is nevertheless useful in production. Firms can base their wage offer
only on the observable signal, which consists of having attained, or not, a college degree.
Everyone is born with a high school diploma.

The population has size one, half is endowed with high talerand half with low

9



talentd. Let the distribution of wealth in the population B&(2). College education has a
fixed cost of). Assume that all those with wealth > @) go to college, hence, the fraction
of people who goes to college 15(QQ). Assume there is randomness in successfully
completing college. The probability of a high (low) talent person to complete college is
(p), with p > p. The wage offer is simply the expected talent conditional on the signal
received.

With some algebra, we have the wage offer to college gradii&tasd to high school

graduatedV,

W:

W 1-p[1 — F(Q)] e 1—p[l - F(Q)]

2-(+pl-F@Q] 2-@+pl-F@Q)]
While W is a constantly depends on the fraction of people that can afford to go to

college. Writex = 1 — F(Q), we havell/’(z) < 0, implying that the wage differential
increases together with college attendance. Next we embed this simple mechanism in a

dynamic model of production.

1.3.2 Embedding the Signals in a Dynastic Model

This is a continuous time discrete-choice problem. Each agent is indexed by the pair
(0, ko), whered denotes talent, distributed jf, §] according to a cumulative distribution
function G(0), andk is the initial endowment of capital from a distributidf(k,) over
[0, ko). The distributions?(-) and F(-) are independent. Each agent is endowed with 1

unit of labor. In each instant, an agent faces a discrete choice of whether going to college
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or not. There are two implicit assumptions in this formulation. One, the offspring of the
high (low) type remains high (low); since our main concern is not about social mobility,
this assumption seems innocuous. Two, firms cannot, through repeated interaction with
an agent from the same dynasty, infer her type. Agents save a constant fraction of their
income in each instant. Saving must be positive, i.e. agents cannot borrow against future
income. We will relax this assumption later. College education requires a fixe@codt.

The rest is the same as in the static model, w{), a monotone increasing function,

representing the probability of completing college for type
1.3.2.1 The Agents’ Problem

At each instant of time, an agettt, ko) decides whether to go to college or directly to
the labor market. If he decides to go to college, he pays the fixed G adter which one
of the two possible states of nature is realized: he either completes college or not. After
finding a job, he works, consumes and saves a fraetiohhis income. Agents are risk
neutral and maximize the discounted sum of future consumption taking the rental rate of
capital R(t) and the wage®V/ (t), W (t) as given:U (c(t)) = [, c(t)e " dL.

Since there is no disutility from labor, all agents supply 1 unit of labor inelastically.

There is no capital depreciation. For ease of exposition, the time argument is suppressed

when it does not cause confusion.

Lemmal Ifitis optimal for an agent with talert to go to college at, then it is
optimal for any agent who has talent greater thfato go to college at as long as his
current capital holdingk > Q.

Intuitively, for an agent with talertt attending college is convenientifd)(W — W) —

RQ is positive. Becausg(f) is increasing, this implies the result.
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1.3.2.2  Production
In each period the representative firm rents capital from the households and hires
workers. | will look at two different classes of production functions. The first class, call it
Pl,is
Y(K, Ly, L¢) = NS, E(O|HSG) + vK? + (1 — A —v)LLE(0|CG)]Y?, p <1, (P1)
where Ly is the number of high school graduates dngdis the number of college
graduates. Here high school graduates and college graduates are perceived as different
inputs, i.e. they are assigned different jobs. The productivity of each group is its average
talent, by Law of Large Numbers. Implicitly, college education here is productive in the
sense that successfully completing college equips the college graduates with a particular
set of skills that allow them to undertake a particular task. The elasticity of substitution
between two types of labor is the same as their elasticity with capital. In contrast, the
second class of production functions only employs aggregate labor and capital as its
inputs, that is, skilled and unskilled labor are perfect substitutes:
Y(K,L) = AlaK* + B(L - E())"]"/". (P2)
In both cases, markets are competitive and the high school (or college) graduates will be
paid by their marginal product conditional on the signal. Later, in the calibration section,
| will explore the different quantitative implications of the two production functions. The

total stock of capital ig<(t) = foko k(t)dF (ko) and the total labor suppli(t) = 1, Vt.
Following the tradition, skilled labor (or, unskilled) and college graduates (or, high school

graduates) are used interchangeably.
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1.3.2.3  Equilibrium

Definition 1  Equilibrium without credit markets
An equilibrium without credit markets of this economy is a listt), k(t), sh(t))

for each agentd, k) and a list of pricegR(t), W (t), W (t)) given initial capital
distribution F'(-) and distribution of talent:(-), the exogenous positive saving rate
and the production technology, so that

(i) Agents optimally make schooling decisieh(K (t)), givenR(t), W (t), W (t);

(i) Firm maximizes period profit;

(i) Factor Markets clear.

To provide an analytically convenient environment, we will look at a special class of
the equilibrium defined above, the pooling equilibria in which all agents optimally go to
college as soon as they can afford it. More discussion on equilibrium selection can be
found at the end of this section. Before proving the existence of the pooling equilibria,
| will prove the monotonicity of the wage differential in enrollment under the proposed
strategy profile, which will be useful in the construction of the equilibrium later.zlle¢
the fraction of agents who go to school and we have 1 — F'(Q). The theoretical results
here are presented mainly f&r. An analogous characterization of equilibria wit can

be obtained from the author upon request.

Lemma 2 For P1, under the strategy profile that all types of agents go to college
as soon as their current capital holdings> @, for high p and lowQ@, In(W /W) is
increasing in the fractiong, of agents going to college.

To facilitate interpretation, the wage differential has the formﬁWpf:

Ly

=i (e )t 2Rl An increase in the attendance will unambiguously lead to

a higher ratio of expected talen [,gj’f%, by exactly the same logic as in the static
model. Imagine = 1, then the wage differential will unambiguously go up. However, for

p < 1, the general equilibrium effect kicks in. Since college graduates become more abun-
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dant, its marginal productivity decreases relative to that of high school graduates, and this
mitigates the effects of the signals. For evéryl can find ay < 1, such that for alp > p,

this monotonicity property of the wage gap holds. In general, the monotonicity of wage
differential rely also on smal) and highp. Consider a separating equilibrium, in which
higher types opt for school and lower types don’t. Suppose that college is very expensive,
hence few people can afford it. Then a college degree is more correlated with wealth than
with talent and the signal it contains is weak. The marginal productivity of skilled labor is
high, hence skilled labor would be receiving a high payment, if identifiable. But holding

a college degree is not such a clear signal of talent, as only the rich can afford it. If col-
lege enrollment increases while its cost is constant the signal’s quality does not improve
as the high cost of attending college implies we are scrapping the "bottom of the barrel”
among wealthy people. More generally, this is true also when the cost of attending college
decreases as long as it is high and the distribution of wealth is not concentrated at high
values of wealth. The marginal productivity of skilled labor decreases, though, relative to
that of unskilled labor and, as a result, we may have a range in which increasing college

attendance brings about a decrease of the wage premium.
Proposition 1  Under some assumptions, f@r sufficiently small, there exists a

pooling equilibrium where all types of agents choose to go to college as soon as
k> Q.
To guarantee that the net benefit of college attendariée(V (t) — W (t)) — R(t)Q
is positive for allt, @ cannot be too high. A sufficient upper bour@,, is the solution
(which exists) tgp(0) (W (0) — W(0)) = v(K(0) — Q) Q.
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Remark 1 The bound of admissible, @ is (i) increasing inz; (ii) increasing in
p(0); necessarily(0) > 0; (iii) increasing inK (0).

The above proposition has nice implications about the trends of college enrollment rate

and of skill premium.

Corollary 1  There is a cut-off level of the initial wealth for a giverk,(t), so that
for all agents whose endowmeit > kq(t), they will choose college educationiat
That is, the college enrollment rate is increasing over time.

Observe that all agents who haven't attended college accumulate capital in
exactly the same fashionk’ — o[R(t)k' + W(t)]. Therefore,kq(t) satisfies
ko(t) = Q — fot k(s)ds,where the evolution of(s) follows & = o[R(s)k(s) + W (s)],

0 < s < t. Obviously,k(t) is decreasing over time along the equilibrium path.
Corollary 2  The wage gap is widening over time along the equilibrium path.

The equilibrium path is completely characterized in terms of the aggregate capital,

K (t), and the cut-off wealth levek(¢):

{K(t) =Y (K(t)— z(t)Q,1 — z(t) [ pdG,z(t) [ pdG) M
ko(t) = —o[R(1)Q + W (t)]

o
with K (0) = / kod (ko) andie(0) = Q;
0
whereY (K, Ly, L¢) is given by (P1),R(t) given by (A1), (¢) given by (A2) and

(ko(t)),

| will use this dynamic system to simulate the model in Section 1.4.

!

x(t)=1-

For P2, % = % | can establish the existence of the pooling equilibrium under

even weaker assumptions.

Lemma 2’ For P2, under the strategy profile that all types of agents go to college as
soon as their current capital holdings> @, In(W /IV) is increasing in the fraction,
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x, of agents going to college.

Proposition 1’  For P2, under the assumption th& < K(0), for @ sufficiently
small, there exists a pooling equilibrium where all types of agents choose to go to
college as soon ak > Q.

The two corollaries continue to hold and the dynamic system that characterizes the
equilibrium path remains valid with modified production technology and prices.

In general, there may exist separating equilibria in the sense that only a fraction of
agents who can benefit from college self-select to attend college. In this case, Lemma 1
continues to hold, so the college-goers are those whose talent is above some threshold
and who are not financially constrained. | discuss conditions for the existence of a
separating equilibrium in the Appendix. The equilibrium evolution of the enroliment
rates, the cut-off values of talent or the college premium is not necessarily monotonic.
Furthermore, the actual enrollment rates and college completion rates imply that under
mild conditions, the college premium is increasing in the cut-off value of talent. This
means for a given enroliment rate, the lower the cut-off the smaller the wage gap. In other
words, if we interpret the rising college premium as attracting less talented high school
graduates to go to college, the decreasing minimum talent level tends to dampen the
college premium. Intuitively, as we move to the extreme case of a pooling equilibrium,
the effect of changes in the budget constraint on the college premium is smallest. Since
talent is unobservable, the data is silent on the equilibirum selection. | restrict my attention
to the pooling equilibrium for the following reasons: (1) the solution is closed-form and

has nice properties; (2) the signaling effect brought by relaxing budget constraints in a
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separating equilibrium is likely to be even greater than that in a pooling equilibrium; (3)

if we think empirically the talent cut-off in the separating equilibrium is decreasing, then

the pooling equilibrium can be seen as a limiting case; (4) since our starting point is high
school graduates, it is reasonable to assume that someone who can successfully complete

the high school curriculum is prepared for college.

1.3.2.4 A Theoretical Bound of the Effect of the Signals

The next question iBow muchthis story can account for the growth in the skill
premium. This is of course an empirical question, but here | will derive a theoretical
bound of the force of the signals. A widely held opinion is that compositional change in
the labor force has little effect on the distribution of wage. This exercise addresses this
concern theoretically and hopefully sheds some light on the kind of environment in which
the force of signals tends to be strong.

Following Krusell et al. (2000), the growth rate in skill premium can be decomposed
into two effects for the model witlP1, the relative quantity effect and the relative

efficiency effect,

9w = (1= p)(gn, — gn.) + p(9p, — 9u,);
w

whereg, = % b =z [ pdG; h, =1 -z [ pdG;+, = E[9|CG] andy, = E[|HSG].
The change in the distribution of signals leads to a change in the average talent given
a signal, which amounts to a change in the efficiency of skilled labor relative to that of

unskilled labor. To maximize the effect of the signals, we must choose the underlying
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parameters to maximize the relative efficiency efigct— g, :
[70p(0)dG — [ p(0)dG [, §dG

sup z(t

6.() (1= 2(t) fy p(O)dG) (fy 0dG — w(t) [} 0p(0)dC)

pe(-)

Remark 2 (1) z(t) andz(t) are conveniently taken as given at each t. Though they
are endogenous variables, | calibrate the enrollment rates to replicate those in data. So
we may well take it as exogenous here.
(2) We allowG,(-) andp,(+) to be time-dependent. This maximizes the possible
explanatory power of the signals and makes per period problem exactly the same.
From now on, we will suppress the time subsctipt

Proposition 2 The effect of signals is bounded by the negative growth rate of the
fraction of people that don't attend college (if finite)

xZ

gws - gwu S = _glfl"

1—2z

This result suggests that the signals work most effectively when the education can
perfectly sort out the highest talents. Consider the following example in which there are

only two talents, 1 or 0.

Example 1 There s afraction of (close to 0) of people with talent of 1 and the remaining
are of talent 0. As a result(§) = . Suppose people with high talent can pass the
exam almost surely, while people with low talent have the probability of success decreasing
overtime in the following fashion:

1

0 =120
Note that at each instant of time the probability of success is still weakly increasing in the
talents. The exam costs nothing. Then, one can verify that
E(0|with degree 1
E(@|without degreg T 12
d E(6|with degree
9o, = 9u, = gyl E(6|without degreg

,as e — 0.

— —g1-g,as5 € — 0.

Note that in this example, the sorting mechanism becomes more and more efficient

overtime, which also contributes to the growth of skill premium. This example shows
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that the suggested bound can be achieved in the limit. However, in the setting where the
probabilities of success are constant overtime, we would expect in general slower growth
in skill premium. The bottom line is that in an economy in which the distribution of
degrees is highly upward skewed, the education signal has a bigger force.

Now we do a simple counterfactual calculation. Take the college enrollment rates from
1969 to 2005 and computg_,2. Then, | take the skill premium in 1969, and let it grow
at the maximum theoretical bounéy; ., whereby | get the fictitious wage gap in the

dashed line contrasted with the real data, as is illustrated in Figure 1.5.

[Figure 1.5 about here.]

The signals, theoretically, have the potential to generate all of the growth in skill
premium. But as will be clear in Section 1.4, our hands are tied significantly by the

specification and parameterization of the model.

1.3.3  Optimality

In the current environment, there are two potential sources of inefficiency: the
information problem represented by the private information of talents and the problem of
missing credit market. We will investigate the consequences of these two problems one by

one. In both cases, the objective of the social planner is to maximize period total output.

1.3.3.1 Benchmark One: Complete Information

Assume a social planner observes the individual talents.PEpthe social planner

Since in the proof of the above propositianis assumed to be positive. | simply replace any negative
growth in the data with zero.
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simply chooseg”* so that all agents with talent abo#eare educated at a cagt

7 3 0
P = max{A(1- /0 pdG)pl(/O 0dG— /@ OpdG) + v[K — (1 — G(0")Q)°
7 0
B WY da)"~t | opdG)?
H1=a=o)( [ picy™ [ opaicy
s.t. 0<6*<@.

This is not a concave problem and the solution is messyp Letl for tractability.
Proposition 3 Considerp = 1 with P1. In cases in whicRX > 1 — v holds or both

2\ <1—wvand(1—2X—v)fp(d) < vQ hold, it is optimal not to provide education
atall. If 2\ <1 —wvand(l —2X —v)dp(h) > vQ, the optimal cut-off in talerd™ is
given by(1 — 2\ — v)0*p(6*) = vQ.

In cases where production relies more on unskilled labor than on skilled labor, or in
cases where the opportunity cost of investing in education is high, it may be optimal not
to provide education at all. But with incomplete information, there may still exist pooling
equilibria defined in Section 1.3.2.3. The individual incentive to self-signal the talent
causes both misallocation of factors and a waste of resources. More generally, in all those
pooling equilibria, after some finite length of time, the economy will always over-invest in
education, even though it may never reach the optimal amount of skilled labor even in the
limit.

With P2, the degrees are irrelevant since talents are perfectly substitutable and the

social planner simply uses all available resources.
Proposition 3* For P2, the social planner employs all labor and capital and the

period output isA[a K* + B(E(6))?]V/*.

In the case withP2, there is no need to invest in education if education serves purely as

a signal.
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1.3.3.2 Benchmark Two: Relaxing Borrowing Constraints
In this section, agents of the same generation are allowed to borrow from each other.
Let b(¢) be the amount of debt (or credit) that the agent acquires before he receives his

income, which has to be paid back at the end of that period.
Definition 2  Equilibrium with within-generation credit markets

An equilibrium of this economy is a ligt:(t), k(t), sh(t), b(t), R(t), W (t), W (t)) for
each agentd, k), given initial capital distributiorn?’(-) and distribution of talent7(-) and
the exogenous positive saving ratand the production technologso that

(i) Agents optimally chooseh(K (t)) andb(t), givenR(t), W (t), W (t);

(ii) Firm maximizes period profit;

(iif) Factor markets clear;

(iv) Credit markets clearf; ()’“T’b(t; 0, ko)dG(0)dF (ko) = 0.

Notice thatLemma 1still holds. It is easy to construct an equilibrium in which all

agents go to college from day 1.

Proposition 4 Under Assumptions 1- 3 anfdl, for @) sufficiently small, there exists
an equilibrium in which all agents go to college from day 1.

In this equilibrium, the college attendance rate is always 1 and the wage gap remains

constant
1—)\—1)( fpdG ),erpdG 1—fpdG '
A 1— [ pdG [ pdG [60dG — [ 6pdG
Furthermore, for all economies that have an equilibrium with borrowing constraints

w_
=

as is defined iDefinition 1, there is also an equilibrium with with-in generation credit

markets as is defined Definition 2,in which there is full attendance. The equilibrium

21



with within generation credit markets is easier to support: it exists for even higher cost of
education. Now the evolution of the aggregate capital is described by
K(t) = ou(K(t) — Q)" + I+,

For the same set of parameters, the equilibrium with within generation credit markets
has more skilled labor, less unskilled labor and less capital. Hence, only in an economy
where skilled labor is very productive, the relaxation of borrowing constraint may bring
about more output. More generally, from a social planner’s point of view, relaxing
borrowing constraint does not necessarily lead to a Pareto improvement with transfers,
since this allows for more competition through unproductive signals. The equilibrium

without credit markets converges to the benchmark equilibrium in the limit.

1.4 Calibration
1.4.1 Data

The relevant data series are the log wage gap between college graduates and high school
graduates, the college enrollment rate and the college completion rate.

Skill premium To be consistent with the theoretic prediction that cohorts born more
recently when the signaling effect of a degree is stronger face higher premium than
what earlier cohorts face, the calculation of college premium should be cohort-based. |
computed the wage series using the CPS March data from 1969 to 2005 by age groups and
focus on the age group 23-6. The construction process is essentially the same as Autor,

Katz and Kearney (2008).

4 = A1- [pdG)P~1([0dG — [0pdG) + (1 — XA — v)([ pdG)P~! [ OpdG.
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College enroliment rateThe college enroliment rate is available from 1960 to 2006
from the American College Testing Program on NCES website. The enrollment rate is
obtained by dividing the total number of college enrollment in a given year by the total
number of high school completers, who graduated from high school and completed GED
within the preceding 12 months.

College completion rateTake the number of bachelor’'s degrees conferred by
degree-granting institutions each year and divide it by the total college enroliment four
years before. The degree data are available by year from 1970 to 2006 from NCES. The
model counterpart iyfp(@)dG(G), the average passing rate of college-goers. | plot the

series of college completion rates in Figure 1.6.

[Figure 1.6 about here.]

Initial income distribution in 19721 take the wage/salary income distribution of the
fulltime-fullyear-employed 40-50 years old in 1972 from CPS March. These people were
likely to have children around 20-year-old in the same year. CPS sampling weights are
used.

Cost of college The cost of college in the model is the tuition, fees, room and board
(TFBR) net grants and aids. The TFBR is available from 1976 to 2005 from College
Board and the Grants and Aids are available from 1986 to 2006 on selected years. After
interpolating the missing observations linearly, the real net cost is almost constant from

1986 to 2006, averaged &t67 in 2006 dollars.
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1.4.2  Calibration Strategy

The data is structured as follows. The model year refers to the year for which the
skill premium is calculated. Within the same period in the model, the enroliment rate six
years and college completion rate two years before the model year are used. This is to
accommodate the fact that the skill premium is calculated for the age group 23-26. Since
the annual degree data starts in 1970 and the skill premium series ends in 2005, the first
period in the model is 1972, while the last is 2005.

In order to introduce more variability to the model, | allow the average talent given a
college degree to grow and transform the formulae of wage gap to make use of the data of
college completion rate. More specifically, let the average talent given a college degree

follow a linear trend
_ Jy omi(6)dG

1Y pi(0)dG
The model is silent about the changehin since the signaling effect from increasing

hi = E0|CG] = ho + t.

enrollment works through a deteriorating wage offer to unskilled labor. In reality, there

are reasons to believe that the average talent of a college graduate grows over time: better
screening mechanism in college admission, or better college financing to the talented, or
improving human capital accumulation through college, among others. Pernaitting

grow over time in this reduced form of course increases the overall fit of our model to data,
but we will see that the magnitude of the signaling effect modeled in this papendbes

hinge much on the growth rate bf.

The data counterpart of college completion ratés [ p(9)dG, whereby the models of
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wage differential are transformed into

W . 1—-A—v LT o—1 (h(] -+ ’)/t)(l — Jltﬂ't) .
w, A 1—am’  [0dG — xymi(ho + 1)

(P1)

K _ (h(] + ")/t)(l — mtﬂt) )
wt f 0dG — ZL’tﬂ't(h() + ’}/t)’
wherez, is the college enrollment rate. From the last section, the college completion rates

(P2)

rose sharply during the period 1985 to 1995. What does this imply? Assumé. It
is easy to show that witl’2, the wage gap is increasing in college completion rate as
long ashy > [ 0dG. With P1, the wage gap is increasing only/if > [ 0dG andp is
sufficiently close tal. In the calibrated models, it is true for both productions that the
growth in completion rates helps generating some portion of the college premium. This
may be interpreted as a change of the talent distribution over time, or changes in the
college screening technology.

Now we are ready to discuss the measurement of the signaling effect. To facilitate
discussion, | restrict my attention 2. Recall from Section 1.3.2.4 that in the model,
the growth rate of skill premium has two components, the relative quantity effect and the
relative efficiency effect.P2 only has the relative efficiency effect: there is no general
equilibrium effect of changes in skilled/unskilled labor composition on college premium.
In other words, when | vary the enroliment rate, the variation in the skill premium reflects
solely the relative efficiency effect, which is exactly the signaling effect that I'm interested
in. Hence, the signaling effect can be measured by a counterfactual simulation, in which

| fix the enrollment rate constant at the initial level and simulate the wage gap. In the
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absence of college completion rate data, the wage gap is constaat if. However, in

the transformed model with the completion rate data, there is some growth in the wage gap
even ify = 0. The signaling effect is then the residual contribution to the growth in college
premium on top of the prediction of the counterfactual model. | calculate the compound
annual growth rate (CAGR) of the wage gap predicted by a model holding enroliment
fixed and compare it with the CAGR of the wage gap predicted by a calibrated model with
endogenous enrollment rates. The measure of the signaling effect is the percentage of

growth rate that is contributed by varying enrollment rates:
X C'AGR(In ¥¥|holding enroliment fixedy)
CAGR(In ¥|~) '

(1.2)

Essentially, for anyy, | can compute the measure of the signaling effect within a model
parametrized by (call it model~) in the above way. As | vary, the overall fit of the

model varies and can be measured likewise by
CAGR(In ¥|v)
CAGR(In ¥ |datg
This is the percentage of growth explainediby mogdelith respect to data. Multiplying

the above two measures, | come to a measure of the overall signaling effect ofymodel
We will see that this measure is remarkably stable across different valyes of

To tackle the difficult problem brought by the unobservables, | ask the following two
guestions: one, what is the contribution of signals given that the unobservable behave in
the most favorable way to me; two, what is the effect of signals as I limit the contribution
of the unobservables. To answer them, I follow three steps.

In the first step, | jointly estimate some key parameters in a non-linear-least-square
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model of wage gap. More specifically, fét1, | normalizehy = 1, takev = \ = %
and jointly estimatey, £6 andp; for P2, | takea = %,ﬁ = % normalizehy = 1, and
estimatey and £0. But, all | take from this stage is the value of | interpret this value
as representing the most favorable term | can get from the unobservables. Details of the
estimation are available upon request.

In the second step, | calibrate the model in the standard fashion, takmog the first
step as given. In particular, the saving rates pinned down by minimizing the distance
between the model enroliment rates and the data.

In the third step, | calibrate models which correspond to different valuesminging
from 0 to the first step estimate. | look at the measurement of the signaling effect and find

it to be quite constant across different
1.4.3 Calibration Results
1431 P1

The first stage estimation for P1 yields= 0.712%. To gain a sense of the magnitude
of v, the avarage talent of college graduates growk28 times the original level within
33 periods. It turns out that with the first stage estimate,ahe model over-predicts the
growth in college premium. Hence, in the calibration, | pick thihat matches the model
prediction of college premium in the last period with that in the data.

In the second stage, | calibrate the model as follows.
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Model | Value Source

M* 45000 Decision rule

vy 0.5% Match last period model college premium with data
ho 1 Normalization

To 0.5006 College enrollment rate in 1966

Q 5467 Real TFRB net aids averaged over 1986 and 2006
F(-) —— Income distribution in 1972 time&" ! (1 — )
K 20816 Mean of F'(-)

v 0.3 Average capital share of national income in NIPA
p 0.98 Monotonicity of skill premium in enrollment rate

A 0.3283 To match the initial college premium in 1972

o 2.82e — 7 | To match model enrollment rate with the data

M requires some explanation/ scales the productivity of talent to a scale comparable
to that of capital, so that in each period the decision p8 (W — W) — RQ > 0
holds. The value op implies strong substitutability among the three inputs. Krusell et
al.(2000) estimate the elasticity of substitution between unskilled labor and equipment to
be 1.67 and that between skilled labor and equipment to be 0.67, which suggests some
substitutability between unskilled labor and the combo of skilled labor and capital. In this
model,p must be high enough to guarantee the monotonicity of the wage gap in enroliment
rate. Both the growth rate and the trend in college completion rates contribute to the
growth of the college premium. When holding the college enrollment rate fixed at the
initial condition, the model still predicts around 85% of the growth. To be more specific,
the CAGR of college premium in the model is 3.46%, while in the counterfactual with
constant enroliment, it is 2.98%. This suggests that the signaling effect contributes around

14% in the growth of college premium (Panel 1.1).

hy = M (ho + ~t).To guarantee the existence of the pooling equilibrium, | ngey(W — W) — RQ > 0.

A sufficient condition is thatr (W — W) — RQ > 0. The scale of; guarantees that.

The enrollment rate in 1966 is 0.5011. The difference results from a kernel density estimation of the income
distribution.
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[Panel 1.1 about here.]

1432 P2

In the model withP2, the same parameter values apply unless noted below.

Model | Value Source

M 100 Decision rule

y 0.3435% 1st stage estimation

E0 0.9058 To match the initial college premium in 1972

Q 5467 Real TFRB net aids averaged over 1986 and 2006
o 1/3 NIPA

o] 2/3 NIPA

P —1 Empirical estimate, see Antras (2004)

o 4.5239e — 005 | To match the model enrollment rate with the data

Now the CAGR of the model college premium is 3.36%, while in the counterfactual
model it is 2.76%. Therefore, the signals contribute about 18% in the growth of college
premium (Panel 1.2). Note that the model, by itself, is not an elaborate model about the
evolution of the college enrollment, therefore it fails to catch the swing in the college
enrollment rates. However, even if | feed the actual enrollment rate into the model, the
prediction of college premium doesn’t change much (Panel 1.3). The counterfactual
prediction accentuates the trough and peak for obvious reasons. But the model is able to

replicate the long-run trends subject to the limited source of variability.

[Panels 1.2 and 1.3 about here.]

1.4.3.3 Measuring the Signaling Effect
Now I restrict my attention t@”2. | recalibrate the model for 30 equally spaced values

of v ranging from 0 to 0.3435%.
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As is expected, the explanatory power of the model increases as | inerésse
Figure 1.7). However, Figure 1.8 shows that the signaling effect of mpaeactually
decreasing in.. Hence, in terms of the overall effect of signaling, the estimate stays fairly
constant within the range of 16-18.5% (see Figure 1.9).

The merit of this exercise is that we can be reasonably confident in saying that around
17% of the growth rate in college premium comes from the signaling mechanism modeled
here. This estimate allows rooms for many other potential explanations to be at play
at the same time, be it demographic change or skill-biased technological change or
capital-skill complementarity, since it is conceptually equivalent tol@ss than the first
step estimate. In general, with productions that allow decreasing return to scale in the
skills, the increasing trend of enrollment rates changes the relative supply of skilled labor,
which will tend to dampen the signaling effect. Hence the measure as defined in (1.2)
tends to underestimate the effect of signaling, since it is a product not only of the signaling

effect but also the general equilibrium effect of increased supply of skilled labor.

[Figures 1.7, 1.8 and 1.9 about here.]

1.5 Conclusion

Though the idea of education as a job market signal is well known, its application to the
evolution of wage distribution hasn’t been well articulated in theory. This paper is such an
attempt. | have developed a model with agents heterogeneous in initial wealth and talent,
who make schooling decisions. The growth in the college enrollment rate due to increased

accessibility to college makes a high school diploma a clearer signal of low talent. If talent
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is useful in production, the college degree will be rewarded a higher premium relative
to the high school diploma. This brings about a growing wage gap between college
graduates and high school graduates. The model is calibrated, with two specifications of
production technologies. The effect of signals on the college premium is estimated to be
around 17% for models that can potentially allow for other explanations of rising college
premium. Simplistic as it seems, the theory has a big potential to explain a wider range of
phenomena. | close the paper with directions for future research.

One immediate extension is to extend the two dimensional choice variable to the
multidimensional choice of getting bachelor’s, master’s or doctor’s degree. Eckstein
and Nagypal (2004) argues that the most important group contributing to the increase in
college wage premium is workers with a postgraduate degree. This is consistent with my
theory. The increase in the number of Bachelor’s degrees issued will demand even higher
degrees to effectively signal one’s talent, which leads to the growing graduate school
premium. It is conceivable that with a continuum of choice of levels of education, that
varies from community colleges to the Ph.D. programs in top universities, the distribution
of the education premium to each will fan out over time as the signals work their way
through the distribution.

The framework can also be easily adapted to explaining the increasingly high premium
of attending elite colleges. By casual observation, the best schools are becoming more and
more accessible to the high talented students, thanks to more effective admission processes

and more generous financial aid. As a result, the degree of elite schools must have become
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more correlated with talent than before. To estimate the fancy college premium and
observe its evolution over time would be an interesting empirical question.

Another direction of research is to model the supply side of the college education.
The key to the growing enrollment rate is the relaxation of household budget constraint
over time through capital accumulation. But in reality there may be other ways that
achieve the same effect. One example is the relaxation of the borrowing constraints, as
is studied in Hendel, Shapiro and Willen (2001). Incorporating a sector of college will
be a first step toward a general equilibrium approach. Colleges maximize some objective
function by choosing costly admission processes. They can either admit students without
much screening or undertake costly selection procedure. Colleges can be endowed with
reputation such that in equilibrium some reputedly good colleges choose to be more
selective, but will be compensated by higher prices they charge the students. Students in
turn will be compensated by the top college premium. The story is more relevant if we
can document the growing tuitions of top-notch schools and the growing returns to elite
education.

Finally, one can conceive a full dynamic model, in which agents optimize over
consumption and saving. Intuitively, this will help us more. Since the skill premium is
growing over time, for subjective discount rate that is not too high, later cohorts will
optimally choose to save more, which will allow their children to go to even fancier
colleges or allow them to pursue postgraduate degrees, that will further enlarge the

associated higher education premium. Combining a full dynamic model with a multiple
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or even continuum choice of levels of education would certainly make an elaborate
model, though possibly analytically intractable. One would want to pay the extra cost
of computation for more precise quantitative and policy-oriented analysis. After all, the

parsimonious model we have here lays out the essential economic intuition just as well.
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Figures and Tables

Figure 1.1: College Enroliment Rate and College Premium: HP-filtered, U.S. 1972-2005
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7 The college premium is the log weekly wage difference of a college graduate and a high school graduate for the age

group 23-6, constructed from March CPS. Data are filtered by the Hodrick-Prescott Filter to remove the cycle.
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Figure 1.2: HP-Filtered Log Weekly Wage to College Graduates and High School Gréduates
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8 Fitting a linear trend to the HP-filtered log weekly wage series yields: no trend with an average ofﬁ)gﬁ/ﬁfrpc’
until 1993 whilelog WH75¢ = 26.96 — 0.011 * Y ear; from 1994 to 2005,
log W& = —27.2323 + 0.0168 * Y ear andlog W75¢ = —10.10 + 0.0081 * Year; . All coefficients
significant at 1%. The smoothness paramater in the HP-filter is 6.25.
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Figure 1.3: The Difference of HP-filtered Median Household Income and Net College Price
versus Net College Price as Share of Median Household Income
(in 2008 Dollars) 1975/76-2007/88
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9 Data source: Trends in Student Aid 2009, Table 3; Trends in College Pricing 2009, Figure 5; U.S. Census Bureau, CPS,
Annual Social and Economic Supplements, Tables H-6, H-8.
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Figure 1.4: Average Grants and Federal Loans Per Full-Time-Equivalent Student (in 2008 Dollar) 1970/71%8008/09
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10 source:Trends in Student Aid 200%able 3.
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Figure 1.5 Real and Fictitious Wage Gap
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Figure 1.6 College Completion Ratés
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enrollment rate

enrollment rate

Panel 1.1: Model prediction of college premium 61 : ho= 1, p = 0.98, 7 = 0.5%
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log wage gap

Panel 1.3: Prediction of college premium using endogenous enrollment rates vs. data
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Figure 1.8: % of CAGR in College Premium in ModwlExplained by Signaling
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Table 1.1
Difference between Mean Parents’ Income and Tuition and Fees net Grants and Federal Loans,

by Income Groups and Types of Intitution, selected years (in 2008 dollars)

Year Lowest5th Second5th Third 5th  Fourth 5th  Highest 5th
Public 4-year Institutions

1985 15,110.83 36,668.34 55,474.54 79,295.33 145,075.60
1988 13,207.92 37,307.48 58,180.59 82,020.43 151,674.68
1991 16,125.12  36,804.96 55,521.14 80,999.30 156,513.43
1994  16,562.50 36,218.12 56,319.46 81,763.71 155,444.26
1998 18,708.25 39,304.02 60,786.51 88,908.78 160,174.07
2002 18,574.82  39,332.83 60,830.58 89,701.64 161,131.78
2006 18,505.38 39,554.77 61,375.99 92,128.54 168,814.00
Private Not-for-profit 4-year Institutions

1985 13,440.63 35,098.99 53,755.32 75,810.07 168,132.03
1988 10,037.89  33,389.80 53,464.12 76,961.45 167,005.24
1991 13,456.60  33,829.92 50,992.03 76,435.25 153,830.67
1994  13,436.82 32,813.51 52,238.00 76,540.80 157,520.44
1998 15,863.34 35,309.56 56,792.18 82,824.42 156,307.34
2002 13,544.82 34,069.10 54,987.60 84,082.46 156,285.44
2006 13,430.70 34,850.36 54,063.27 83,832.11 167,342.44

42



Antres, P. 2004. "Is the U.S. Aggregate Production Function Cobb-Douglas? New Esti-

mates of the Elasticity of SubstitutionContributions to Macroeconomiel 1161-1162.

Archibald, R. and Feldman D., 2008. "How to Think About Changes in Higher Education

Affordability”, College of William and Mary Working Paper No. 76.

Autor, Katz and Kearney, 2008. "Trends in U.S. Wage Inequality: Revising the Revision-

ists", Review of Economics and Statistie®(2), May, pp. 300-23.

Baumol, J. and Blackman, S. A. 1995. "How to Think About Rising College CdBtah-

ning for Higher Education23 (Summer) pp. 1-7.

Balart, P., (2010). “The Increase in College Premium and the Decline of College Wages: a

Signaling Story"”. Universitat Autonoma de Barcelona. Mimeo.

Bedard, K. 2001. "Human Capital versus Signaling Models: University Access and High

School Dropouts"Journal of Political EconomyMol. 109, no. 4, pp.749-75.

Cameron, S., and Heckman, J. 2001. "The Dynamics of Educational Attainment for Black,

Hispanic, and White MalesJournal of Political Economy\ol. 109, no. 3, pp. 455-499.

Carneiro, P. and Heckman, J. 2002. "The Evidence on Credit Constraints in Post-secondary

Schooling",Economic Journall12 (482): 705-734.

43



Carneiro, P. and Heckman, J. 2003. "Human Capital Policy", IZA Discussion Papers 821,

Institute for the Study of Labor (IZA).

Card, D. and Lemieux, T. 2001. " Can Falling Supply Explain the Rising Return to College
for Younger Men? A Cohort-based Analysi§he Quarterly Journal of Economicsol.

116, No. 2, pp. 705-46.

Card, D. and Lemieux, T. 2001. "Going to College to Avoid the Draft: The Unintended

Legacy of the Vietham War’American Economic RevieMay, Vol. 91(2), pp. 97-102.

Card, D. and DiNardo, J. 2002. "Skill-Biased Technological Change and Rising Wage
Inequality: Some Problems and Puzzle¥urnal of Labor Economigsvol. 20, No. 4,

pp.733-83.

Dynarski, S. 2003. "Does Aid Matter? Measuring the Effect of Student Aid on College At-
tendance and CompletiomBmerican Economic Reviewmerican Economic Association,

vol. 93(1), pp. 279-288.

Eckstein, Z. and Nagypal E., 2004. "US Earnings and Employment Dynamics 1961 - 2002:

Facts and Interpretation”, 2004 Meeting Papers 182, Society for Economic Dynamics.

Fang, H. 2006. "Disentangling the College Wage Premium: Estimating a Model with En-

dogenous Education Choice#pternational Economic Reviewol. 47, No. 4, November

44



2006, pp. 1151-85.

Guvenen, F. and Kuruscu B. 2009. "A Quantitative Analysis of the Evolution of the U.S.

Wage Distribution: 1970-2000", Federal Reserve Bank of Minneapolis, Staff Report 427.

Hendel, 1. Shapiro, J. and Willen, P. 2005. "Educational Opportunity and Income Inequal-

ity", Journal of Public Economicg/ol. 89, Issues 5-6, June 2005, pp. 841-70.

Hill, C., Winston, G. and Boyd, S. 2005. "Family Incomes and Net Prices at Highly Selec-
tive Private Colleges and Universitieslpurnal of Human Resource¥ol. 40, no. 4: pp.

769-790.

Kane, T. 1995. "Rising Public College Tuition and College Entry: How Well Do Public
Subsidies Promote Access to College" National Bureau of Economic Research Working

Paper 5164.

Kane, T. 2006. "Public Intervention in Postsecondary Education”, in Hanushek, E.A. and

Welch, F. editorsHandbook of the Economics of Educatidimsterdam: Elsevier.

Krusell, P., Ohanian, L., Rios-Rull, J. and Violante, G., 2000. "Capital-Skill Complemen-
tarity and Inequality: A Macroeconomic Analysi€conometricaVol. 68, No. 5. (Sep.,

2000), pp. 1029-1053.

45



Leslie, L. and Brinkman, P. 1988he Economic Value of Higher Educatiddew York:

Macmillan.

Long, B. 2007. "Do Loans Increase College Access and Choice? Examining the Introduc-
tion of Universal Student Loans", Federal Reserve Bank of Boston, NEPPC Working Paper

07-1

Riley, J. 2001. "Silver Signals: Twenty-Five Years of Screening and Signaliog¥nal of

Economic LiteratureVol. 39, No. 2, pp. 432-78.

Spence, M., 1973. "Job Market Signalin@he Quarterly Journal of Economic¥ol. 87,

No. 3. (Aug., 1973), pp. 355-374.

Stiglitz, J. 1975. "The Theory of 'Screening’, Education, and the Distribution of Income",

The American Economic Revigvol. 65, No. 3 (Jun., 1975), pp. 283-300.

Taber, C. 2001. "The Rising College Premium in the Eighties: Return to College or Return

to Unobserved Ability?"The Review of Economic Studi®®sl. 68, No. 3, pp. 665-91.

Winter C. 2009. "Accounting for the Changing Role of Family Income in Determining
College Entry", IEW Working Paper iewwp402, Institute for Empirical Research in Eco-

nomics.

46



1.6 Appendix

1.6.1 Theoretical Derivation
Lemma 1 Proof The value function i®*(k(t)) = max{v®(k(t)), v (k(t))}, where

%

o (K1) = PO (L~ 0)[RU)(K(E) — Q) + W(1)] + o [R(1) k(1) — @)+ (1)}

i

F [ O = )RE k() — Q) + W]+ S o[RE(H(E) — Q) + W)},
stk(t)>Q

ro"(k(t)) = (1 — o)[R()k(t) + W(1)] +

dv’
dk

a[R(t)k(t) + W(2)].

GivenW, W, R, since it is optimal fofk, 6) to go to college,

Ak, 0) = v5(k) — 0™ (k) = (1 — o + 03—2)[ (O)(W — W) — RQ] > 0
= 8k 0) = (1= o+ PRy 17w — )

>0Vve >0

Hence, independent of the state variablék,, 0') would always prefers collegas long
asgoing to college is feasible, i.é&.> ). Q.E.D.
(fy BpdG—J§ pdG [} 04G)(1-F (@)

J80dc—(1-F(Q)) [ opdG
Lemma 2 Proof Under the specified strategy profile, the output and factor prices are

Assumptionl p>1-—

R(t) = v (K(t) — z()Q)* " (A1)
0
W) = (1-X—o)Y(al(t )/ pdG)P~ 1Jy 0pG OpdC (A2)
0 fo pdG
W = - [ oy o 04 — x(0) Jy 0pG
0 1—x(t fo pdG
whereY = {\(1 — a:fog dG)”M +o(K(t) —zQ)” + (1 — X —

1—z foe pdG

pfo OpdG 7—1
fo dG) I2p dG’}

a7



w 1 p—1 [0pdG — [pdG [ 6dG
(W) = 1 ( + — )
w z [pdG* x [ 0dG — z [ 0pdG
1 p—1 [0pdG — [pdG [0dG
- ( + - )
1—z [pdG" [ 0dG — zo [ OpdG

> 0, by Assumption Bndzy =1 — F(Q).

SIS

) is increasing inz. Note thatv(), Assumption 1is not empty.

[=I=]

This implies thafn(

Q.E.D.
. “A—v 11—z dG\ p—9 | 0dG—xo [ OpdG
Assumption 2 1=3=v > ( mo}ié’G yo-2L xof;ng” .

Assumption ZuaranteedV (t) > W (t).

Assumption 3 @ < K(0).
Proposition 1 Proof The key is to verify that in the suggested equilibrium, all agents

optimally make the schooling decision.

By Lemma 1it is sufficient to look at the agent with the lowest talent and make sure he

prefers to go to college. Suppose the college attendance is growing over time.

PO ()~ W) - ROQ
= OO0 - A= o [ pacy L

M=o [ pagy LEEZS I ) - )

whereY, as is defined ilLemma 2is positive. Assumption 2andLemma 2implies
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(1-=X—v)(z fpdG)ﬁ‘lfepdG —AM1l—x fpdG)fHM is increasing inc. Now

[ pdG 1—z [ pdG
pO)IV(0) = W) = ROQ = T{p0)[(1 ~ A~ v)(an | pdc:)”‘lffefjg

X1~ zo [ pacy= e L) ic0) - @r1@) 2 0.

o1 OpdG - L[ 6dG — o [ 6pdG
= Ol = A= v)eo [ paGy I a1y [ pacy LI
> u(K(0) - Q)'Q=1(Q).
By Assumption 3552 = [K(0) — QP 2[K(0) — pQ] > Owith ¥(0) = 0;

limg_ x(0) ¥(Q) = +oo. By Assumption 2,

PO = At / picy IG?jg_A(l ~ % /pdG)plfef(i;oxfoidegdG] >0,

then there exists @ such that

R e e

ForallQ < @, p(0)[W(t) — W(t)] — R(t)Q > 0,Vt. So byLemma 1for Q sufficiently

small, all agents want to go to college as soon as they can afford it. Lastly, for all those who
are constrained;’ = o[R(t)k + W (t)] > 0. This implies that indeed in the equilibrium
there will be an increasing fraction of people who can afford education. Q.E.D.

Corollary 1 Proof An agent starts to go to college at timehat satisfies

RN k’ )ds = @, where the evolution of’ follows K= o[R(t)K(t) + W (1)].
At tlme t the factlon of agents that goes to collegé is F'(k{(¢)), which is increasing
in ¢, sincek{(t) is decreasing in. Q.E.D.
Proposition 2 Proof | proceed in three steps.

Step 1: Transformation. Lei(f) = 6p(0)g(6), which necessarily satisfies

p(d) > 0,0 < f[;ﬁ(e)de <. Let fdeG = a. This problem is equivalent to a two-step
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maximization. Givenu,

0 [~ 0 ~
— Opdf — do
supx@ — foap _afo p >
B0 (0 —x [, pdf)(fa — x [, Opde)

0 0
5.t.p(0) > 0,0 < / p(0)dh < 0,0 < / 0pdl < ab
0 0
Then, maximize over all possibte

Step 2: Change of variables. Lgtd) = fo v)dv. Integration by part gives

fo Opdo = fo 0y’ (0 0 fo 9)do. The problem can be rewritten as
. 0—a)y@ — [’
sup z0 ( ~ o U —
(@), (0 — xy( fo 0)df + 6(a — xy(é’)}
Jo w(®)d6

t{ 0 <y(0) <0;y'(6) >0; }
S. —
max{0, 0(y(0) —a)} < fo 0)do < (6 — a)y(0).

Step 3: Maximization. Firstlyy () and fo 0)d# can take values independently.
Secondly, the objective is increasingi(?), but decreasing i(ffy(&)d@. But biggery(f)
will increase the lowest level th@ff y(#)de can take.

If 4(0) < a, then the optimal values argf) = a andffy(&)d@ =0.

If y(6) > a. Then at the optimum, no matter what valy@) takes,ffy(e)de =

- = _— . . . . . o 0—y(6)
0(y(0) — a). Substituting this relation into the objective functlmpy(e) T ) 1) It

is decreasing ig(#). Hence, at the optimumy,(0) = a andfogy(e)de = 0.

In both cases, the maximum of the objective functiosuis(g, — g4 ) = 2 (()I"GTGIM
Now maximize with respect to, sup(gy, — gy,) = ﬁ = —gi1_.,asa — 0.Q.E.D.
Proposition 3 Proof Differentiate the objective function with respect to
0" givesg(0%)[(2A +v — 1)0"p(07) + vQ]. If 2A > 1 — v, maximum is
obtained at* = 6. Suppos&) < 1 —v. If (1 —2X — v)@p( ) < v@,
maximum is obtained at* = 6. Otherwise, first order necessary condition
requires ford* € [0,0],(1 — 2\ — v)0"p(0*) = v(Q. SOC atd* gives
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A= (1= X=2)][p(0%) +0"p'(6")] < 0. Hencel'(¢") is a local maximum. Itis easily
shown thaf(¢*) > I'(¢) andI'(#*) > I'(¢). Hence#* achieves the global maximum.
Q.E.D.

Proposition 4 Proof The agents’ problem: the value function is
v'(k(t)) = max{v“(k(t)),v"*(k(t))}, where,

ot (K(1)) = pO){(1 — D) [R(V(K(D) — Q) + T (1)) + T o[ R()(K(r) — Q) + (]}

L= P01~ )RE)(H(E) — Q) + W] + D [R(1) k(1) ~ @)+ WD)}
s.tk(t) +b(t) > Q.
r (1)) = (1= ) [RER(E) + W (D) +

dkj 7 W)
By the same logic as iRroposition 1v¢, v (k(t)) — v (k(t)) = p(0)[W (t) — W (t)] —

R(t)Q > 0. Now the factor prices in the proposed equilibrium are
) = (1—Xx—0v)Y( / pdG)P~2 / OpdG.
t) = AY(1- / pdG)P~%( / 0dG — / OpdG).

R(t) = oY(K(t)-Q) ™,
whereT = {\1 — [pdG)*~'([0dG — [0pdG) + v(K — Q)* + (1 — X —

v)([ pdGYL [ OpdGYe"

p(O)[W () — W(t)] - R(t)Q

— F{p0)[(1 = A—v)( / pdG)~? / BpdG— A(1 — / pdG)( / bdG — / 6pdC)
—u(K(t) = Q)F'Q},

By Assumptions 153

51



(1—X— u)(/pdG)f’2/9pdG — A1 - /pdG)P2(/ 0dG — /epdG)

OpdG 0dG — z¢ | OpdG
L ,1 ) OpdG / ey of60p
> (1= U)(xo/pdG) —fpdG M1 =1z | pdG) T2 [ pdC > 0.

= @* such that
P(O)[(1 = X — ) / pdG)P2 / OpdG — A(1 — / pdG)P2( / 0dG — / OpdC)
— o 0) -0

It is readily seen thaD* > Q. VQ < Q*, p(0)[W(t) — W(t)] — R(t)Q > 0. Hence,

everyone attends college at all times, while the wage gap remains constant. Q.E.D.

1.6.2 Separating Equilibrium
| sketch here the proof of the existence of a separating equilibriurRZom his exercise

can be repeated far1.
Assumption 4 p(0)
Assumption5 g¢(f) =

: 80, 00dG  [0dG—(1~F(Q)) [Z 4 0pdC
Assumption 6 0 2(0) _ JE(0)
p Bp( ( >>[ fg(Q) pdG 17(17F(Q))fg(9) pdG

alKo — (1= G(E@0)QF Q.
Assumption7 1> 2[ ) pdG.

0.
0.

First, at timet, fix ©; = 1 — F (ko) and K,;. By Lemma 1, the cut-off level of tale@g
satisfiegp(,) (W, — W,) = R,Q, or

Bp(B)E(0|CG) — E((B|HSG)] = o[K; — (1 — G(6,)=:Q" Q. (1.3)
fgt bpdG [ 0dG—a, fgt OpdG
fg 1—z¢ fggt pdG

is decreasing ilﬁt while LHS is increasing m?t if

The LHS is further equal tﬂp(@t)[ |. One can show that RHS

@) 0, < [0dG; and (b)1 > 2z, fg pdG. We will restrict the solutiord, to [0, £(6)]
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to guarantee (a). (b) is ensured by (a) and Assumption 7. Note that we can rewrite (2)

~ f? $lel
as2fz,(1 - G(0:)); %555

= 2-enroliment ratecollege completion rateOne can verify

using the U.S. data from 1972 to 2005 that the above inequality is always satisfied. Under
Assumptions 4 and 5, in order for (1.3) to have a solutiofdirF(¢)], one requires
Assumption 6. Hence, for all values efand K, there exists a cut-off poi € 0, E(6)],

such that all agents with > @ choose to go to college as long as they can afford it.

Second, the dynamic system that characterizes the equilbrium path is
K, = oAla(K, — (1= F(ko))(1 — G(0,)Q)° + BE(6)]/7;

ke = —o[RQ+W,];
pilfedG—(l—F(k:Ot))ifgt OpdG
1-(1=F (ko)) 5, pdG

andY = Alo(K; — (1 — F(ko))(1 — G(6,))Q)? + BE(6)*]*/*~. The cut-off of talent

whereR, = Ya[K,—(1—F(ky))(1-G(6,))Q]*~!, W, = TB[E(6)]

satisfies

5o f{iﬁpdG_ [0dG — (1 — F(ko)) !g OpdG
fpdG 1= (1= F(k)) f; pdG

The initial conditions ards, = [ kodF, ke = Q.

| = a[K—(1-G(0,) (1—F (ko)) Q"' Q.

Under Assumptions 4-7, the solution to the above dynamic system exists. However,
the equilibrium paths of the cut-off point of talent, the enrollment rates and the college

premium are not necessarily monotone.
1.6.3 Calibration
1.6.3.1 Data

Skill premium.The raw data are taken from the CPS March from 1969 to 2005. Only

fullyear fulltime workers that have positive wage and schooling are considered. They are
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grouped by ages. The relevant age group here is those age 23 to 26. The log deflated
weekly wage, which is the income from wage and salary divided by weeks worked, is then
regressed on dummies of education, geographic region and race, by sexes. The education
is the highest education attainment reported, high school dropouts, high school graduates,
some college, college graduates or above. The geographical region is grouped in four,
Northeast region, Midwest region, South region and West region. For more definitions on
the data precession, please refer to Autor, Katz and Kearney (2008). For each sex, the log
wage gap is the difference between the prediction for a white college graduate (but with
no graduate degree) who lives in the average geographic region and that for a high school
graduate counterpart. The log wage gap is the mean of the log wage gaps of the two sexes,
weighted by their hours worked. CPS weights are used. | have explored variations of this
basic set-up, including the log 10-year-income gap, the log wage gap between a 23 year
old college graduate and a 19 year old high school graduate, among others. The results
don’t differ much.

Initial income distribution in 1972Annual income from wage and salary are converted
into 2006 dollars by CPI index. CPS weights are used. To match the initial enrollment
rate, which i0.5006, | find the 50th percentile in the empirical income distribution and

normalize it to be equal t@Q). That s,
F(Q/€) =1 —0.5006.

Further multiply all income in the sample kgyand this gives thé’(-) in the model £ can

be thought of as the share of income that goes to educational expenses.
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Cost of college The real cost of college, computed using the data publish&deimds
in College Pricing 2006and Trends in Student Aid 200@p not show an obvious trend

from 1986 to 2006. | také) to be the average over all these years, whichl&y.

1.6.4  Proofs for Model with P2
Lemma 2’ Proof Leta = E(f). The gross output is
Y = A{a(K — 2Q)” + B[LyE(A|HSG) + Lo E(0|CG)]P}?.
W = ABa’ 'E(0|CG);
W = ABa’'E(G|HSG);
R

= Aa(K —2Q)" 1,
whereA = A{a(K — 2Q)” + B[LyE(0|HSG) + LcE(0|CG)|P /et
I w E(0|CG)
w E(0)/HSG)

[0pdG 1—2x [pdG
[ pdG [0dG — z [ OpdG

increasing inc. Q.E.D.
Proposition 1’ Proof
p(0)(W — W) — RQ
= Mp(0)Ba"[E(A|CG) — E(0|HSG)] — a(K — 2Q)" ' Q}
> AMp(0)Ba"" [E(0|CG) — E(0]HSG)] - a(K(0) — Q)" Q}.
By the same token, there exi@s s.t.
p(0)8a"'[E(6]CG) — E(6|HSG)] = a(K(0) — Q)" Q.
ForallQ < Q, B
p(0)(W — W) — RQ > 0, Vt.
Moreover, when this is the case, there will be indeed an increasing number of agents
going to college. Q.E.D.

1.6.5 1st Stage Estimation Results

P1 The non-linear model for wage gap is

TyT¢ (h() + ”}/t)(l - ZL’t’ﬂ't)

1—-A—vw )+ In
1-— Ty f 0dG — l’tﬂ't(ho + ’Yt)y

A

ln(%)t =In + (p—1)In(
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which is transform into a statistical model with series*.nif%)t, x, andmy:

W LTt 1—-A—w TyT¢ (1 — SUt’ﬂ't)(h(] + ’}/t>
= In(— 1 =1 1 1
ve = Il In g = I I e I el 1)
LT (1 — Zlftﬂ't)(l + bgt)
= boln ——— +1 .
o 1-— LT +in bl — fEt']Tt(]_ + bzt) * =

Normalizeh, = 1. Takev = A = 1/3, and jointly estimatg, | §dG and~. Note that

[ 0dG and~ are relative tdi, as a result of normalization.

Source SS df MS Number of obs34
Model 7.4987 3 2.499 R-squared 0.9925
Residual .05678 31 .0018 AdjR-squared 0.9918
RootMSE .04280
Total 7.5555 34 .0018 Res.dev —120.94
yt Coef.  Std.Err. t Bt [95% Conf.Interval]
/b0 .8594  .0353 24.35 0.000 7874 9313
/b1 9985  .0269 37.06 0.000 9436  1.053
/b2 .0071  .0011 6.74  0.000 .0049 .0093

Parameter b0 taken as constant term in model & ANOVA table

This implies

p = 0.869356;
/GdG = 0.9986415;
Y

= 0.71175%.

P2 The non-linear model for the wage gap is

(h() -+ ’Yt)(l — thﬂt) .
[ 0dG — zymi(ho + 1)’

In %t =1In
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which is transformed into

In h() -+ ’}/t
[ 0dG — zymi(ho + i)

<=l

vy = In(—)—In(l —zym) =

1+ bot

pum ]_ .
o bl — l't’/'('t(l -+ bot)

| normalizeh, = 1, and jointly estimatey and [ 6dG.

Source  SS df MS Number of obs33

Model 2256 2 11.28 R-squared 0.9966

Residual .07802 31 .0025 AdjR-squared 0.9963
RootMSE .0501668

Total 22.64 33 .6861 Res.dev -105.9117

yt Coef.  Std.Err. ¢t P>t [95%Conf.Interval]

/b0 .0034 .00056 6.17 0.000 .0023 .0046

/bl 9032 .01031 87.65 0.000 .8822 .92425

Parameter b0 taken as constant term in model & ANOVA table

This implies
v = 0.3435%,

/ 0dG

0.9032.
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Chapter 2 Information Production in the Process of Securitization

"The three credit rating agencies were key enablers of the financial
meltdown. The mortgage-related securities at the heart of the crisis could not have
been marketed and sold without their seal of approval. Investors relied on them,
often blindly. In some cases, they were obligated to use them, or regulatory capital
standards were hinged on them. This crisis could not have happened without the
rating agencies. Their ratings helped the market soar and their downgrades through
2007 and 2008 wreaked havoc across markets and firms."

——— The Financial Crisis Inquiry Commission Report 2011

2.1 Introduction

The financial crisis of 2007-2010 is considered by many as the worst financial crisis
since the Great Depression. Among the many causes of the crisis, the Financial Crisis
Inquiry Commission identifies the failure of the rating agencies as the key ingredient
of the financial melt-down. The role of the rating agencies is to evaluate the return of
structured financial products under new macroeconomic conditions and to communicate
it to the investors. More specifically, in order to rate a mortgage-backed security (MBS),
the rating agencies use guantitative models to estimate the loss distributions of the relevant
classes of mortgages and simulate the cash flow of the structure to determine the level
of credit enhancement needed for a given grade. All this is done under their forecast
of macroeconomic conditions. In abstract terms, | can interpret the rating process as a

postorigination information production process, i.e. producing information about the
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return of existing loans in banks’ portfolio. The quote from the Commission Report points
to the importance of understanding the post-origination information production in the
process of securitizatiéh In particular, we knew that the loans were getting riskier, but
more importantly why were we contented with knowing little about the riskiness of the
loans?

This paper develops a simple framework to look at banks’ incentive to produce
information and its effect on the loan origination decision. In doing so, | reduce rating
agencies’ problem of information production to banks’, assuming that rating agencies
de facto produce and use information that banks consider optimal. This assumption is
consistent with the issuer-pay model, which aligns rating agencies’ and banks’ objectives.
In practice, the rating agencies rely on the banks to provide the statistics of the loans
that comprise the structured financial product, hence there is practically a boundary
of knowledge about the loans imposed by the banks. In my model, a bank makes
two decisions: loan origination and information production. When making origination
decision, the bank must decide loans from which risk class(es) to include in its portfolio.
After the loans are made, the bank then chooses how much information about the returns
of those existing loans to produce. Perfect disclosure is assumed: whatever information
produced, it is public information.

Consider first the problem of information production. A loan is represented by a draw

from a distribution of returns. The uncertainty in the riskiness of a mortgage is modeled

For some anecdotal evidence of the inadequicies of rating agencies’ practices, such as using outdated
30-year-fixed-interest models to evaluate the subprime mortgage®h#e@dG vs. Credit Rating Agencies
p. 30.
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as the uncertainty in the variance parameter of the distribution. A risk-averse bank, as the
originator of the loans, can costly produce a signal about the variance parameter. More
information makes the financial product to be marketed less risky to investors, increasing
the price of the financial product; on the other hand, it makes the price correlate more
with the information than with investors’ common prior, which leads to increased price
volatility. The net benefit of information is the difference between the two aforementioned
effects. The optimal amount of information balances the marginal net benefit with the
marginal cost of information.

Now if we consider the process of securitization as a means to diversify geographical
risks of different mortgages, we would expect that the information production be reduced
as compared to a case where diversification is not available. Diversification makes the
return of securities less sensitive to the information about a particular loan, decreasing
the marginal net benefit of information. When the bank is faced with the opportunity
of originating loans of different risk classes, the securitization implies that the bank
will originate more and riskier loans, since securitization improves the profitability of
issuing a single loan. These statements will be made precise in the models developed
below. Throughout the paper, two institutions are compared: one in which loans are sold
individually and the one in which pass-through securities backed up by the loans are sold.
The first scenario is a benchmark case which disables diversification.

Another way of understanding the issue is to see the process of securitization as a way

to redistribute risks. In the context of the model, in any non-trivial cases where information
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is beneficial at all, the bank is actually better off holding all assetsis kept from

doing so by assumption in the model (i.e. it has to sell all assets, either individually or
through securitization) and by required reserves and required capital in reality as argued in
Pennacchi (1988). By producing information, the bank effectively retains risks through
the volatility of asset prices. For example, if the bank produces an infinitely precise signal
about the return, the investors will pay to the bank exactly what the security is worth.
Hence, before the realization of the signal, the bank bears all the risks. This arrangement
is closer to the ideal distribution of risks but too costly from the bank’s perspective. So it
balances the improved distribution of risks through information provision with the cost of
doing so. Securitization transforms the problem of risk-distribution such that the welfare
is less sensitive to the information production. | will identify three sources of welfare
improvements from securitization.

So far in a static world where there exist only idiosyncratic risks, the process of
securitization is welfare improving. This may account for the success of this institution
before the crisis, when the perception of the environment is essentially static and the major
risks of concern are geographical risks and prepayment risks. The inability of making

good judgment about the changes in the environment sowed the seeds of the market crash

See Appendix.

Pennacchi (1988) argues that loan sales reduce the cost of capital for the bank when the required reserves
and required capital constraints are binding. However loan sales introduce a moral hazard problem: since
the return on the loans hinges on bank’s monitoring activities, selling loans reduces its commitment to
monitoring ex ante. In this paper, the information is not productive by itself. Hence it would be optimal

to finance the loans by loan sales if it were feasible. Securitization has long raised concerns from the
regulators as a way of regulatory arbitrage (Calomiris and Mason, 2004). By transferring mortgage loans to
the Real Estate Mortgage Investment Conduits (REMIC), banks can effectively structure a mortgage-backed
securities offering as a sale of assets rather than debt financing, removing the loans from the balance sheet
and bypassing the minimum capital requirement.
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in 2007. However, even in a static environment with idiosyncratic risks, the securitization
can make the bank better off at the cost of investors if the investors are optimistic about the
returns on loans. A slightly modified version of the model is used to illustrate the point.
The main message of the paper is that securitization reduces the production of
payoff-relevant information and induces the bank to originate more and riskier loans.
More specifically, the quality of the loans seems to deteriorate along two dimensions:
the estimated or perceived risk, such as those measured by loan-to-value ratios, and
the precision of the estimates, such as those measured by the percentage of low/no

documentation loans, as is shown in Table 2.1.

Table 2.1: Combined Loan-to-Value Ratio and Share of Low/No Doc Loans

Year 2001 2002 2003 2004 2005 2006 2007
CLTV % 79.4 80.1 82.0 836 849 859 828

% Low/No Doc 235 29.6 322 336 36.6 37.7 333
Source: Table 1 in Demyanyk and van Hemert (2008).

Some empirical studies argue that securitization is likely to cause weak underwriting
standards. Dell’Ariccia, Igan and Laeven (2008) find that larger decline in lending
standards as measured by loan denial rates and loan-to-income ratio occurs in areas with
higher securitization rates. Mian and Sufi (2008) use zip code level borrowers’ data to
show a striking correlation between the increase in securitization and the expansion of
credit and its dissociation from income growth. In fact, 2002 to 2005 is the only period in
the last eighteen years when income and mortgage growth are negatively correlated in their
sample. Keys, Mukherjee, Seru and Vig (2010) use a regression discontinuity argument

to show that increased securitization had adverse effect on banks’ screening incentives.
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By exploiting a rule of thumb that loans with FICO score above a threshold of 620 can be
more easily securitized, they show that the loans with score just above 620 are more likely
to default than those just below the threshold.

On the theoretical ground, there is abundant work on the institution of securitization,
which focuses on the comparison between the originate-to-distribute model and the
originate-to-hold model (Pennacchi, 1988; Gorton and Pennacchi, 1995; Petersen and
Rajan, 2002; Parlour and Plantin, 2008). Although both those models and my model
imply that under securitization the bank originates loans of worse qualities, i.e. with
lower expected returns or riskier returns or both, the reasons behind it are different. In
those models, securitization, or essentially loan sales, introduces a moral hazard problem:
selling loans reduces banks’ incentive to monitor the loans, which improves the return
on those loans. Related, Diamond (1984) identifies banks pooling the loans and offering
debt contracts to lenders as an optimal arrangement to mitigate this moral hazard problem.
In contrast, this paper looks at the information productfter the loans are made
and explore how that affects the origination decision. Securitization, by diversifying
and transforming the sensitivity of bank’s payoff to information, alters its solution to
the information production problem. As a result, improved risk-sharing and reduced
information production makes the origination of riskier loans more affordable to the bank.
As suggested by the quote at the beginning of the paper, the main problem is not that the
loans are perceived as riskier, but that we are contented with imprecise perceptions. My

model predicts that under securitization not only the bank lends to riskier borrowers, i.e.
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the perceived risk is increased, it also spends less resource improving its perception of
the risk. This "carefree" mindset of the bank and the rating agencies opens the possibility
of vastly erroneous predictions from under-invested models in an dynamic environment
whose key parameters keep evolving.

In terms of the welfare implications, the paper differs from the aforementioned papers
too. In those papers, since securitization or loan sales reduces productive monitoring, it
reduces welfare. Here, in a stationary world with idiosyncratic risks and homogeneous
priors, securitization is shown to be welfare-improving. This feature of securitization
justifies its existence and popularity in the 1980s and 1990s, but also sows the seeds
of slow adjustment and learning in a dynamic environment, which leads to the current
crisis. This is an example where information, which has a purely re-distributive role, is
Pareto-improving when the initial allocation is sub-optimal. For more discussion on the
social and private values of information, please refer to Hirshleiffer (1971) and Hakansson,
Kunkel and Ohlson (1982) among others.

Last but by no means the least, there is a long line of research on the information
production by heterogeneous investors in a competitive market with noisy rational
expectations: Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980), Verrecchia
(1982) and Diamond and Verrecchia (1991) are some important contributions to the
literature. However, | chose a set-up where the bank determines the information
production. It is motivated by the fact that in the market of mortgage-backed securities

there is practically little scope for the investors to acquire information. It is common
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practice among the government sponsored agencies such as Fannie Mae and Freddie Mac
to limit the amount of information available to the market. Information at the pool level
is disclosed, but specific information that helps identify the particular loans in the pool
is withheld. Diamond and Verrecchia (1991), Fishman and Hagerty, (1990) and Glaeser
and Kallal (1997) provide theoretical insights into this phenomenon in models with
asymmetric information. To the extent that bahksestlydisclose coarser information, |
abstract away the informational asymmetry between the bank and the investors.

The paper is organized as follows. The second section contains a basic model
of information production. The third section solves the origination and information
production decisions jointly in a model with heterogeneous lending opportunities. Section
4 presents a model with heterogenous priors and discusses some welfare implications. The

conclusion follows.

2.2 The Basic Model

This is a static model of information production. There are a single bank and a large
number of homogeneous investors. The bank has the constant absolute risk aversion
(CARA) utility with risk tolerancep : U(w) = —exp(—%). Investors’ preferences
are also of the CARA type with risk tolerance: u(w) = —exp(—%). The bank is
endowed withn loans. The returns on the loans are drawn independently from a common
normal distribution parameterized Ky, o?). Ex ante, the variance? is unknown and is

(correctly) believed to follow a normal distributiof? ~ N(p,, 02). Suppose:, > o,."°

15 Forte >4, Pr(5° < 0) < 3.2e — 005. In the numerical example in the next section, | will show that under
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The normality is assumed for ease of interpretation. | show in the Appendix that the
gualitative results also hold in an environment where the bank is risk neutral and the
variance of the return is distributed non-centyd(1). The bank has a technology to
produce a public signaf about the unknown varianée :

=5 +5,
where the noisé s distributed a\ (0, %) independently frond. The cost of signals is an
increasing and convex function of the precisian’/(r) > 0, ¢’ (7) > 0.

Consider two problems. In Problem 1, the bank sells the loans individually to the
investors. In Problem 2, it pools the loans and isshieshares of securities t¥ investors,
each share being a claim gf of the total return on the pool. Assumé > n.

The sequence of the play is as follows. Given the loans, the bank chooses the precision
of the signalr. After the signal is realized and observed by all, the bank meets with an
investor and offers a loan if in Problem 1 and offers a share of security if in Problem 2.
The bank has full bargaining power and the investor is charged his willingness to pay,
which is a function of the realization and the precision of the signal. This type of meetings

continue until the bank sells off all of the loans.

| proceed by backward induction. Suppose the bank chooses a signal with precision

| can write the joint distribution of the varianéé and signak? as

~2 2 2 2
o ) AT

, .
S 0 %o O + p

0

The conditional distribution oF” given s? is still normal, with the following posterior

the chosen parametrization, the normal distribution is a good approximation of the truncated normal.
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meany,, and variance?,

1 o2
2 a 2
S = + s,
() To2 + 1He mo +1
o2 — oy
ot o2 +1

Problem 1

Consider the case where the bank sells the loans individually. Investors, conditioning

on s2, infer that the variancg? has the distribution

1 2 2112
_ exp{— [U Mc;l(s )] }
V27104, 207,

Furthermore, conditional om?, the return on a loany,, is distributed according to

1 (u — p)?

eXpy—————5— .

Hence, the conditional distribution af givens? is

f&2|52 (02)

fﬂl\Uz (u) =

Fae(u) = / Fo 510211, %) o
= [ fn )ty

which is not normal. However investors’ willingness to pags?) is again normal. With
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some standard algeBfa

2 o~
(s U
exp(-21) — Blexp(- M) = 7
oxpf( Fals?) g,
= exp{ [r 272 87“4}}
2 Ho1(5%) 0_3—1

an investor’s risk premium

1 ( 1 N o2 2) (7?,1
=y — — §°) — ==
Ho ™5, o2 + 11 mo? +1 83

As is indicated above, the investor’s risk premium reflects his perceiveduisks?),
and his uncertainty of the perceptim‘ﬁl. The perceived risk, or the posterior mean of
the variance parameter, is a weighted average of the prior and signal. When the signal is
perfectly informative, i.er — oo, investors rely only on the signal, and vice versa.

Now | solve bank’s problem of information provision. Note that to the bank the
volatility of the profit comes solely from,_, (5?).

max EU(np; — ¢(m))

L

= maxnj — \[QTMU + @U‘”],_ 8[”2%7“[#01(82)] —c() (2.1)

(. J/
Vv -~

investors'’ risk premia the bank’s risk premium

n n o2 n® ot

T mang [§M” * 83 o2 + 1]  8pr2mo2 41 —elm).

decreasing in precision increasing in precision

In changingr, the bank is trading of investors’ risk premia with its own risk premium:

The willingness to pay can be derived by applying the mean-variance argument twice. First, the
willingness to pay givew? is p’ = ju — g—:, Second, sincg’ = p — g—f is itself normal, hence

~~2_ 2
pi(s2) = E[f[3? = 2] - verlfl&=s] ) ey () _ Zey
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a higher precision reduces the risks that the investors face, decreasing their risk premia,
while it induces more volatile asset prices, increasing the bank’s risk premium. When
p > nr, the marginal effect ofr on investors’ risk premia is bigger than that on the bank’s.

Hence, information production helps shift risks from the investors’ side to the bank’s.
Assumption1l p > nr.

Under Assumption 2.1, | can define the notions of first- and second- best allocation

of risks in this model. The first-best allocation would be for the bank to hold all assets,

yieldingnu — ”2% — ”82/;‘33 This is infeasible if the bank faces binding required reserves
and capital, as discussed in the introduction. The second-best would be for the bank to
produce a perfectly precise signal to retain the risks, but it is too costly. Hence the optimal

information balances the redistribution of risks and the cost of doing so.

max EU(np; — ¢(m))

= maxnp — —
T

83 8pr2’mol +1

payoff from the 2nd best  shortfall from the 2nd best

The optimal information productiofi is determined by the first order condition (FOC),
which is both sufficient and necessary,

n(p _ 717’) (= /(=
Wai = (T2 +1)%d (7). (2.2)

Problem 2

Now consider the case where the bank sallshares of pass-through securities. For a

69



giveno?, the return on a share of the security is distributed norialy N(# 1, ”NL;). The

willingness to pay upon seeing can be derived similarly,

N () i,

2\ _
ps(s7) = 2r N2 8r3 N4’

Increasing/V amounts to increasing the investor base.Mgets bigger, each investor is

closer to being risk neutral. The bank’s problem now becomes

max EU(Nps — c(m))

2 2 2
n Hte n 04 n UC”"(M(ﬂ(S ))
= -—Z - — - - : 2.3
TR T o N T 8 N3/n  8pr? N? e(r) (2:3)

Compare (2.1) and (2.3) and it is clear that the bank’s utility is now less sensitive to the
precisionr. The following proposition states that the bank chooses less information under

securitization.

Proposition 1 Let7 be the optimal precision the bank chooses when it sells loans indi-
vidually and7 be the optimal precision when it securitizes. Under Assumption 2.1,
(1) whenp > Nr, 7w >m > 0.
2)whemr < p < Nr,T>7=0.
Proof. Whenp > Nr,both problems have interior solutions. The FOC in Problem 2 is
n%(p — Nr
%Uﬁ = (;T\Ui -+ 1)20/(%). (24)
Note that the common RHS of (2.2) and (2.4),

d
d—(ﬂai +1)%d (7)) = 20% (702 + 1) (7)) + (702 + 1) (1) > 0.
m

The LHS in Problem 1 is unambiguously greater than that in Problem 2. Therafare,
7 > 0. (2) isimmediate.m

It is obvious that increasing/, i.e. expanding the investor base, reduces bank’s
incentive to produce information. This is reminiscent of Peress (2010), who showed

that the bigger a given stock’s investor base, the less investors engage in information
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production.
There are three potential sources of welfare gains from the securitization. In the

non-trivial case wherg > Nr, write the two objective functions in Problems 1 and 2 as

follows.
n n? 1
max BU(np, — ¢(m)) = np— o po = Spr? o= (T + 0—3)0'(7) — ().
_ n n* o2 1., A
mngU(Nps —c(m)) = nu-— ﬂﬁa - SpTQFJQ —(7+ a—g)c () — (7).

-~

risk-sharing effect cost-saving effect
N——
information sensitivity effect

Firstly, the second-best payoff in Problem 2 is bigger due to a risk-sharing effect. On
one hand, by pooling and subdividing the risks from the loans, the securitization reduces
the total amount of risks to be distributédhen N = n). On the other, a bigger investor
base enables the risks to be distributed more widely. The second source of improvements
comes from the fact that the securitization reduces the sensitivity of bank’s payoff to
information. Interestingly, although in the action spads farther away from the 2nd-best
action, i.e. a precision of infinity, thanis, in the payoff space bank’s utility in Problem 2
is closer to the 2nd-best payoff than that in Problem 1. The securitization achieves a utility
level that is closer to the 2nd-best with a lower level of information production. The third
source of gain is in the saving in the cost of information.

In the next section, | show how the intuition in this basic model is brought into play in a

model with heterogeneous lending opportunities and endogenous origination.
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2.3 A Model with Heterogeneous Lending Opportunities

In this section, | endogenize the bank’s origination decision in light of its optimal
information production. Without loss of generality, assume from nouNo#g n.

Imagine there aré/ types of projects in need of funding. The return on each type of
projects are represented by a normal distribution with a common and known;ffean
and an unknown varianc&’%, i =1,2,...,N. The variances are from normal distributions

ordered in the following way:

o2 < o2 <..<0or <. (2.5)
Again, assumeu,; > o2 Vi = 1, ...N. The lower-indexed types of projects not only
have lower perceived risks, but also the beliefs are more precise. Think of smgaller
representing lower loan-to-value ratio and smadigrrepresenting full documentation
loans. There is a fixed supply of projects whose riskiness follow each distribution. |
normalized it tol. The bank clearly prefers originating lower indexed loans to higher
indexed ones.
The bank can produce signals about each of the random parameters:
=0 +5,Vi=1,..,N.
wherez’s are noises distributed independently acrioascording taN(0, 7%) The cost of

informationc(r;) has the usual properties.

The following analysis goes through in an alternative environment where the mean of the returns increases

sufficiently slowly in the index.
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The bank’s problem now is to decide at which index to stop, taking into consideration
the optimal post-origination information production. Again | compare its solution in
Problem 1 where it later sells the loans individually and that in Problem 2 where it later

securitizes the loans.

Assumption2 1 <N < 2[2] —1.
Assumption 3 Linear costsi;(7;) = c-m;, Vi =1,..., N.

Assumption 4 o2 > /%277 vy =192 N,

on p—rn

The linear cost structure allows me to solve the optimal information production
explicitly. Assumption 2.5 rules out the trivial case where there is no information

production under the securitization.

Problem 1

The bank’s problem can be summarized as

n

max Z U, (7;)
i=1
" 1 1 o2 1 7ol _
= a. _— L — — — — ils
mnX Z[:u 2 ILLUZ 87,,3 71'0%”' + 1 8p7,,2 ﬁzo_gl n 1 CTr ]

where

_ [p—rT 1
T, = maX{O, w — 0_—2}

Evidently, the optimal information provision is independent of the size of the pool,

One can prove the following properties.
Property 1.1 7, is independent of and increasing in.
Property 1.2 ¥,(7;) is decreasing in.

Property 1.1 is immediate. To derive Property 1.2, note;rl_q;ézl;—l = % and
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all other terms in the objective function is decreasing inMore generally, these two
properties hold for all cost functions that are increasing and concave. The benefit from an
additional loan decreases, as the bank makes riskier loans. The optimal size of the pool is
therefore
n* = min{N,n|¥,(7,) > 0and¥, (7,1) < 0}.
To better illustrate the intuition, | parametrize the mé¥lahd plot ther; and ¥, (7;) as
functions ofi in Figures 2.1 and 2.2. The optimal size of the podllisn this numerical

example.

Problem 2
The bank’s problem can be represented as maximizing the sum of bank’s utility

contributed by each loan.

n n 9 ~n _4
max » ON(7!) =max » [y — L,u - %o 1 TiT0i ]
E L(E) = E o . _ _ )
no n 2rn’ 7" 8r3ndTioZ, +1  8prin?Tiol, +1 ’
1= 1=

where

. [ p—Tn 1
T, = maX{O, W — O_—gl}

Clearly, the optimal information production of thih loan not only depends aff,, but
also on the size of the poot, This is because now the return on each share of security

depends on the total number of the loans in the pool.
Property 2.1 7. depends om. For a givem, 7} is increasing in.
Property 2.2 For a given, 7" is decreasing im.
Property 2.3 Foranyn > 1,7, <7;, Vi < n.

p=28,1r=1,=45 N =20,c=0.01 02, = 1.1,/% andyu,, = 40,y,,Yn =1,..., N. In the

Appendix, | show the normal distribution is a good approximation of the truncated normal distribution of the
variance parameter in this environment.
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Property 2.2 reflects the fact that a larger number of loans decreases the sensitivity of
bank’s utility to information, reducing the information production of each existing loan.
Under the same parametrization as in Problem 1, | plot the information prodaGtias a
function ofi for various numbers ai in Figure 2.3. As: increase, the curve is defined on
a bigger domain with the entire curve shifting down.

Property 2.4 For a givenn, ®'(7;') is decreasing in, Vi < n.

Property 2.5 Under Assumptions 2.5-2.87(7}") < e (FMh) Wi < nand
VYn < N.

Property 2.4 holds for pretty much the same reason as Property 1.2. For a fixed size of
the pool, the utility contribution from a riskier and more uncerfaioan is smaller, for
two reasons. One, the price of the securities discounts higher perceived risks (higer
Two, the bank needs to produce more information about a more uncertain loan (bigger
o2), hence introducing more volatility in asset prices and a higher cost.

When the bank increase it of course loads additional risks on its book, but a
bigger pool implies less information production for all the existing loans. If the saving
in information production and reduction in the price volatility is large, it can make
projects that the bank wouldn’t find profitable in Problem 1 profitable here. Consider
an increase of the number of the loans frento » + 1. A sufficient condition for

A A - 2 2 - - .
(7T < OMYFIY) to hold iS by g > gt T=i—, which is equivalent

8r3n3 %?U?”.—Q—l 8r3(n+1)3 %;”'lggi_i_l '

to(p—rn)n® < [p —r(n+ 1)](n + 1)3. Assumption 2.5 is the sufficient and necessary
condition for the latter to hold for ak. < N. An implication of Property 2.5 is that

the optimal choice in Problem 2, denoted oy, has to be greater thanwhenever

19 | et me abuse the usage of "uncertain" to mean a larger
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o7 (7)) > 0. Now | am ready to establish the result that the bank issues credit to more and

by construction riskier and more uncertain borrowers, under securitization.

Proposition 2 Under Assumptions 2.5-2.67* > n*.
Proof. It is sufficient to show thad”. (77.) > 0. Rewrite

_ 1 1 _ _
W, (7Tn*) =l — yum* — Spr2 Uz.n* — C(ﬂ'n* + o2 ) — CTTp.
n* j~n* 1 1 ~n* 1 P
cI)n* (ﬂ-n*) = My — %Mo’n* - 8p7"2n*2 O-zn* - C(ﬂ-n* + 2 *) — CTl

> W () > 0.

In the numerical example, the optimal number of loans in Problem 2 is the largest
possible20. Figure 2.4 illustrates how? (7;") as a function of shifts up as: increases.
Securitization is unambiguously welfare-improving in this context. Sibde;) <
o (7)), Vi < n andV¥n, the bank already enjoys a higher utility level under securitization
than under piecemeal loan sales when the pool sizé.iEnlarging the pool size to**
improves bank’s utility even further. On the other hand, all investors have zero surplus

always.

Proposition 3 Securitization is welfare-improving.

In this section, | show that when the bank decides the number of loans and information
production jointly, it includes more loans (hence riskier and more uncertain loans) into
its portfolio under securitization than otherwise. The per-loan information production is

lower under securitization than otherwise. In the numerical example, the total information
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production is also lower under securitization. The securitization, by changing the
sensitivity of payoffs to information, dissuades the use of information to shift risks. It is

shown to be welfare-improving.

2.4 A Model with Optimistic Investors

Adopt the set-up of the basic model and retain the assumptiomthatn. The old

notation is used to model bank’s beliefs. The investors have beliefs
7w

andz, < p,. Call these investorgptimists Rajan, Seru and Vig (2010) suggest that as
the level of securitization increases, lenders tend to originate loans that rate high based on
characteristics known to the investors and ignore other credit-relevant information. This
may give rise to an optimistic opinion about the returns among the investors. Accordingly,
| model the bank as having an objective beligfand the investors as being more
optimistic. Obviously ifzi, were very small, the bank would never bother to produce
information to correct the investors’ beliefs. Here, | will restrict my attention to a case
where the investors are mildly optimistic so that the bank produces a positive amount of

information in the benchmark case while producing no information under securitization.
Assumption 5y, — G-r0n < i, < p, — 505
The same logic as in the Basic Model applies and | solve for optimal information
production in both problems and derive conditions under which the bank is better off at the

cost of the investors under securitization.

Proposition 4 Under Assumptions 2.1 arl4, the sufficient and necessary condition,
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under which investors are worse off when the bank securitizes loans than when it sells

loans individually, is
,mn—1 a?, p—nr 4, .
< - :
() < g o — o+ 1)
Proof. It's easy to verify that in Problem 1, the bank choogdhkat solves
p—nr - 2r -
ey 05 = Hy + 1s) = —5 (Fo, + 1)%¢(7), (2.6)
while in Problem 27 = 0. In Problem 1, the utility of an investor who is endowed with

wealth is

n(

p—a

)E exp( .

)

o w,
Eu(wy—p+1u) = — exp(—TO

- _ exp<—%)Eg2 {exp(gE[exp(—%)\sz]}

_ _exp[_l(wo __Ho " Ho

r 2r(mo2 +1)

So investors incur loss from the trade (unknowingly at the time of the trade for them).
Repeat the same exercise for Problent2,(wy — p + @) = — exp[—X(wy — ¥3L=)] <

Eu(wy). Hence, the necessary and sufficient condition for investors to have a lower utility
level in Problem 2 is

)] < Eu(wy).

n < ﬁa?,ole, or
n—1

T
g
Since the RHS of (2.6) is increasinginThe above condition is equivalent to the inequality
in the statement of the propositiom

In general, there are many ways to satisfy the above condition. One trivial way is
to make the marginal cost of the signal sufficiently low. But | will discuss two other
economically more meaningful scenarios. In order to make comparisons, let me also fix
the parameters throughout these scenarios. In particular,
p=10; n =20; 00 =9; 75 = 8.5;

andc(rn) = 7%/20.

Numerical Examples
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Scenario 1: Very risk averse investors= 0.25; 02 = 5.

Very risk averse investors are sensitive to information. A marginal increase in the
precision of the information increases their willingness to pay much more than it increases
the price volatility. This induces the bank to produce very precise signals in Problem 1,

7 = 8.99. Here the utility of a single investor in Problem 1-g.0909, while his utility

under securitization is-1.2214.

Scenario 2: Very imprecise prioe? = 100; r = 0.48.

When investors and the bank have very rough idea about the variance of the distribution
of the return ex ante, for a given level of investors’ risk tolerance, the marginal benefit of
information is high. Herer = 1.9934. A single investor’s utility when the bank sells loans

is —1.0054, while his utility when the bank securitizes-isl.0558.

The parameters are chosen such that if we swap the valuénaine scenario with
that in the other, the result that investors are worse-off under securitization goes away.
Basically when the prior belief about the variance is very imprecise, in order to dissuade
the bank from producing information under securitization, the investors cannot be overly
risk averse. Similar intuition goes through when investors are very risk averse.

Here | have outlined two cases in which securitization with zero information production
doesnot lead to Pareto improvement. In either case, the bank is better at the cost of
investors. In one scenario, investors are much more risk averse than the bank. In the other,

agents have very rough idea about the riskiness of the returns ex ante.
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2.5 Conclusion

In this paper, | propose a model of information production of banks, where information
is a costly tool to redistribute risks. The securitization, on one hand reduces the total
amount of risks to be distributed by providing diversification; on the other reduces the
costly information production by decreasing the sensitivity of bank’s payoff to information.
As a result, given a pool of loans, in a stationary environment with idiosyncratic risks, the
bank achieves a higher utility level under securitization with less information production.
Furthermore, when the bank decides how many loans to make taking into consideration
the optimal information production, it makes more and riskier loans, whose riskiness is
also more uncertain. Essentially, securitization increases the profitability of loans of all
risk classes, so that banks can afford extending credit to more riskier borrowers, which
would have generated negative profit if the bank were to sell the loan individually.

The findings have bearing on policy issues hotly debated in the aftermath of the crisis.
The low level of investment in statistical modeling and analysis is bred and rationalized
by the relatively stationary environment in the 80s and 90s, when the mortgage market
consisted of mostly prime mortgages and the risks are mostly at the geographical or
individual level. However, this rational inattention is no longer adequate or justifiable in
2000s, when the mortgage market exhibits an increasing sign of betting on house price
appreciation, which introduces an increasingly big component of systemic risks. The
rating agencies fail to understand that the changes in the nature of the mortgage contracts

and the macroeconomic environment render the conditions under which the securitization
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is socially desirable obsolete.

A future direction of work would be to incorporate a learning mechanism into the
model. If | interpret the level of information production as an effort level of learning about
the parameter of some trend in a dynamic environment, then the securitization slows down
the learning process by economizing on information production. This essentially translates
into a more volatile sequence of future returns and opens the possibility of erroneous
model predictions of the environment. The desirability of the institution of securitization
would then depend on weighing the benefits from diversification and reduced information

costs against the slower learning process.
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Figure 2.1.7; as a function ot in Problem 1

Information Productiorpi in Problem 1
3.5

3.48 4

3.46 4

3.441 J

3.421 1

3.4 J

Figure 2.2:¥,(7;) as a function of in Problem 1

0 Yi in Problem 1

30 ]

20 R

0 5 107=11 15 20

82



Figure 2.3:7;" as a function of for variousn in Problem 2
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Appendix

Optimal Decision of Holding/Selling Loans
Within the framework of the basic model. Consider the problem where the bank
chooses the fraction of assets to sell. Given that the bank fdfrsisares of securities, it

chooses to seltk N shares to investors. The bank’s problem is

max EU(aNp' 4 (1 — a)p? — ¢(n)),

where
~ 2 . nﬁal o 7120'(2)_1 .
b= NPT 9N T g
~B _ E _ nﬁal _ n20-g']_
P = NPT 9N T 8Nt
Hence the FOC with respect tois
1 1. np, n? wot a 1-« n? mot 1 1

=-= c (= ” (= —=)=0
(7" p)[2N+4pN27mg+1(r+ p )]+8N37r0§+1(7"3 ,03)

Whenp < r, itis optimal to setx = 1. Whenp > r, it is optimal to setx = 0. In all the
interesting cases, when the bank chooses to produce a positive amount of information,

p > r, thatis itis also optimal for it to actually keep the loans if it can.

Non-central Chi-Square Distributed Variance and a Risk Neutral Bank

In this section, | sketch the intuition for an alternative set-up, in which the variance is
distributed non-central Chi-square and the bank is risk neutral. The economic environment
and problems are otherwise the same as the basic model.

Denote the return to an individual loan@s- N(yu, 0?). Consider an auxiliary random

variables ~ N(u,,0%) The variance of the return is the square of this auxiliary random
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variable. The signal structure is
5 =0 +¢,¢~ N(0,0?) independent frona.

The Bayesian posterior given a sigRak s is

2 2 2 2
~~ o o o_0
gls=s~N . + 75 :
| (o—g+o—§”" 02—1—02 ’02—1-02)
2 2
Denotey,,(s) = Ugﬁgz Ly + 0227023 ando?, = ﬁ In this set-up, the normalized

varlance(" “01 ))2 s distributedy?(1).
Assumeo? < r2. This implies thaiv2, < r*. We will see from what follows that
this assumption guarantees well-defined normal densities. Now consider the investors’

willingness to pay in the first problem.

exp(-2) = plesp(- Dy = o
1 1.2 — 1)
:// exp{——[—u+ (’LL ,U) +< /’LUI( )) ]}dO’dU
20041 2°r o2 o
(u— == o )2 1 o =2ur (0 — fi,(5))?
d - 5 d
//\/ GeXp{ 202 }u\/27r001 P 2r? 202, ydo
(o — =y Pug (s ()’
B d ol _ 2 Pol
/\/_0'01 exp{ 21”1;27052 } JeXp{ (7“2 — 0‘31) r 20'[2,1 }
r Hor(s)?  p
= ex - =
r?2 — o2, p{ 2(r? —03,) 7"}
,r:ual( )2 r

= p(s) = o A P S—
() H 2(7"2—0'31) /Tg_agl

Now since the bank is risk neutral, it only cares about the expected profit,

— nr T
H(ﬂ') =nu — mEﬂol(8)2 — m’lnw — C(ﬂ'),
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where

o
E 2 — E € o 2
b3 = Bl atte t oy o2®)
_ U? ,U2 203‘70 ,u2 Ui ER
(7 + 02! T (e (o4 o2y
4 20252 o
_ € 2 [aed 2 o 2 2 2
R A R LA R AL G
4
2 O, . .9
= + decreasing imz,
ILLO' O-g_ + O_? g €

as is the variance of the price in the basic model. Hence, the second-order effect of

signals manifests itself through the expected value of the posterior variance, in contrast to

the variance of the posterior variance in the basic modet(,,(35)) affectsEpu,_,(5)?

directly, and therefore affects the expected profit directly. The mechanism remains the

same as that in the main text, but with somewhat less clear-cut interpretation. An increase

in the precision of the signal decreases posterior variarfge which tends to increase

the expected profit; on the other hand, it also increases the expectation of the posterior

varianceEu,,(5)?, which tends to decrease the expected profit. The optimal level of

information balances these two forces.

Now compare Problem 1 and Problem 2. Assuke- n.In Problem 2 ~ N(p, %),
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where ex ant& ~ N(pu,,c2). The willingness to pay is derived as follows,

p(s U,
exp(-2) = plesp(- D) = o
L2u  nlu—p)? (0= 15 (5)"
B s g dod
// 2m-2 001 alt [ o2 * o2, [ydordu
2
(u — Hm=o)2 1 o2 —=2urn (o — u(s))?
= expq— o du ex — do
/ / V 27T\/Lﬁ p{ 2%2 } A 271'0'01 p{ 27“271 20—31 }
1ty (5) 2
1 (0 — T Ppg (s)2 p pg(s)?
= — d ol _ P _Pa\d)
/ V21O 51 b 2% } oexp{ o2, (r*n—o2) r 202, }
r“n—o ol
2
— r exp{ :uol(s) . _ ﬁ}
Jr2 % 2n(r? —Zet) T
2
2n(r? — 2=1) r2 _ %a1

n

The expected profit in this case is

ﬁ(w) =nu— ;Euol(s)Q —nrln ;2 —c(m).
2n(r? — 7=t r2 _ %o

n

One can show that > 7, for pretty much the same reason, that is the diversification

implied by the securitization decreases the marginal benefit of information.

Numerical Example: Approximation of Truncated Normally Distributed
Variances

In the model with heterogeneous lending opportunities, | gave a numerical example
based the theoretical results obtained under normality assumptions. Here | verify that
normally distributed variances under the current parametrization do not affect the results
much. Under the assumption that, > 40,;, Vi, the prior distribution of the variance,

which is a truncated normal distribution is well approximated by an unrestricted normal
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distribution.
Problem 1
For all loans, the optimal signal is quite precigeis in the neighborhood df.4694.

This implies that the posteriors

73? = 5%~ N(s%0.288);

“

~ N(iy;,02; + 0.2882).
Since by assumptiop_; > 40,;, Vi., the resultings® is well approximated by
N(ftys, 02; + 0.2882).
Problem 2
For lower indexed loans, which has= 0, the posterior distribution coincides with the
prior distribution. However, at** = 20, 750 = 0.0204, which implies
Ta0l52y = 8%~ N(4.95+0.975% 47);

. 152,72
%~ N(152.72,1506.6), with ———— = 3.93.

1506.6

The unconditional probability of a signal being greater thanso that the conditional

distribution has a negligible lower tall, is almdsti.e. Pr(s* > 23) = 1 — 4.1598¢ — 4.
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Chapter 3 Using Subjective Expectations Data to Allow for Unobserved
Heterogeneity in Hotz-Miller Estimation Strategies

3.1 Introduction

Progress on structural estimation within applied microeconomics has been limited,
given the difficulty of implementation in "frontal” or "full solution" strategies, i.e.
strategies that solve the complicated optimization and/or equilibrium problem at each
trial of the structural parameter vector in the estimation roufinehe work of Hotz
& Miller (1993) shows how to estimate the structural parameters of a discrete choice
dynamic programming model without solving the optimization problem even once. The
Hotz-Miller strategy has generated some methodological work on estimation of structural
models that builds upon this initial insight However, an inherent problem in the

Hotz-Miller type of strategy exploited by these papers is that, because of its very own

Within the full solution paradigm, Rust (1987) and Keane & Wolpin (1994,1997) provided subtantial
computational savings that stimulated most of the empirical research to date with these type of models. See
Keane & Wolpin (2009), Todd & Wolpin (2009), and Keane, Todd & Wolpin (2010) for surveys of a
substantial number of applications using full solution methods in development, labor, consumer behavior
and other fields in applied microceconomics. More recently, Su & Judd (2007) proposed a hovel, promising
approach (MPEC) to further alleviate the computational burden associated with estimation via full solution
methods by recasting the problem in a constrained optimization framework. See also Dube, Fox and Su
(2009).

See Hotz, Miller, Sanders & Smith (1994) to extend the original estimator to deal with the "Data Curse

of Dimensionality" and for possible generalizations to allow for continuous choices and states. See
Aguirregabiria & Mira (2002) for a recursive implementation of Hotz-Miller and for convergence to Full
Information Maximum Likelihood. See Altug & Miller (1998) for a consistent account of aggregate shocks.
See Jofre-Bonet & Pesendorfer (2003) for dynamic auctions. See Golan & Levy-Gayle (2008) for estimation
of dynamic dignaling models. See Bajari, Hong, Krainer & Nekipelov (2009) for similar ideas applied to
estimation of static games. See Aguirregabiria & Mira (2007), Bajari, Benkard & Levin (2007), Pesendorfer
& Schmidt-Dengler (2008) and Pakes, Ostrovsky & Berry (2008) for dynamic discrete games and Choo

& Siow (2005) for the use of Hotz-Miller approaches in facilitating estimation of a dynamic two-sided
matching game.
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nature, it cannot accommodate permanent sources of unobserved hetercgdmeitirst

step recovers equilibrium behavior policies from the data, and as such, these can only be

recovered based on observables. On the other hand, the more computationally intensive

"frontal strategies" can handle permanent unobserved heterogeneity by integrating out the
unobserved types in the likelihood functién.

Given its computational simplicity but its limitation regarding the handling of
unobserved heterogeneity, in recent years there have been some efforts directed towards
generalizing the Hotz-Miller approach to allow for unobserved heterogefiditythis
paper we explore the potential use of expectation data such as, for example, subjective
assessments of future choice probabilities to allow for estimable unobserved heterogeneity
in these two-step estimation strategies for dynamic structural mé&dele. show that
while requiring a particular type of data, our strategy can be an interesting alternative in
the toolkit of structural microeconometricians if and when such data is available. In that

sense, we think of our approach as complementary to the above literature. Our aim is to

This important limitation was noted early on by Eckstein & Wolpin (1989) among others.

This is the so-called Heckman & Singer (1984) approach taken by Wolpin (1984), van der Klaauw (1996),
Keane and Wolpin (1997), Eckstein and Wolpin (1999) , Carro & Mira (2006), Mira (2007), Arcidiacono,
Khwaja and Ouyang (2007), Blau & Gilleskie (2008), Liu, Mroz & van der Klaauw (2009), among many
others. Alternative approaches to handle unobserved heterogeneity, which still require DP solutions have
been advanced by Ackerberg (1999,2009) and Bajari, Fox, Kim & Ryan (2009). Whether discrete or
continuous, parametric or non-parametric, all of the above are "random effects" approaches in the sense that
only the probability of an observation being of a given type is contemplated.

Buchinsky, Hahn & Hotz (2005) propose a clustering approach that is similar to ours in the sense of being
essentially a fixed effects approach. Houde & Imai (2006) and Arcidiacono & Miller (2008) suggest
alternative estimation strategies in a random effects context. Arcidiacono & Miller (2008) allow for the
unobserved heterogeneity to transition in systematic ways over time. Kasahara & Shimotsu (2008, 2009a)
and Hu & Shum (2009) focus on estimation and identification of related dynamic discrete choice models
with time-invariant unobserved types.

We focus on expectations about future choice probabilitites because they are more widely available. Other
guestions may elicit expectations about the future value of some state variables and could also be used to
identify types with our method.
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expand the toolkit that empirical researchers have when it comes to estimating dynamic
structural models in computationally feasible ways. Our explicit use of elicited subjective
expectations distinguishes our contribution from these other approaches taken in the
literature. We will be focusing on single agent models, as the availability of expectations
data seems more widespread in areas more amenable to single agent applications. However
our idea can be applied to multiple agent contexts, in particular to dynamic discrete
games. Indeed, much of the literature that built upon the Hotz-Miller strategy to estimate
dynamic games is now being generalized to allow for game and/or player level unobserved
heterogeneity?,*

We first characterize the power of expectation data to identify and estimate these models
with the computational simplicity of a Hotz-Miller type of approach while, at the same
time, allowing for unobserved heterogeneity, assuming that expectations are precisely
elicited. For example, we first assume we have the ideal scenario in which there is no
"heaping" or "focal measurement error" in Self-Reported Choice Probabilities (SR-CPs
from now on)?® Second, we show that when the use of more realifsizal, subjective
expectation data is contemplated in real applications, most of our results from the "ideal”
case hold. Finally, we characterize how a modified version of our "linking technology"

can alleviate some of the problems created by focal, reference point-based SR-CPs, if we

Aguirregabiria & Mira (2007) , Aguirregabiria, Mira & Roman (2007), Arcidiacono & Miller (2008),

Siebert and Zulehner (2008), Hu & Shum (2008). Blevins (2009)

Aguirregabiria & Mira (2009) provide a comprehensive overview of structural estimation in the context

of dynamic discrete choice models using full solution and non-full solution methods. Their review covers
single agent and mulltiple agent models

By "focal measurement error” we mean the systematic tendency of respondents to report round numbers
(focal points) when assesing their future choice probabilities.
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have more than one SR-CP available.

In addition to the theoretical insight, several datasets already include this kind of
guestions so our estimation strategy can be readily applied in a variety of settings. In the
U.S. alone, all the major longitudinal surveys such NLSY or HRS include these type of
guestions. Looking ahead, however, the insights from our proposed estimation strategy
are also informative about questionnaire design. In particular, about how these SR-CPs
should be elicited to add the most value in a computationally feasible structural estimation
strategy.

Finally, it is worth mentioning that there exist two strands of literature on the use of
expectations data that are somewhat, but not directly related to our work: a) Relaxing
Rational Expectations. This is a strand of literature that uses expectation data in more
direct but still very important manner. The basic idea is to leverage data on expectations to
be more flexible about the modelling of expectations. Key contributions here are Manski
(2004) and Attanasio (2009). b) Using expectations data in estimation strategies for
structural models that do not exploit the Hotz-Miller inversion. In this approach, like in
ours, the expectation data are directly linked to the expectations used in the optimization
problem. See Wolpin & Gonul (1985), van der Klaauw (2000), Wolpin (1999) and van der
Klaauw & Wolpin (2008) for important contributions. In these cases, it is shown that these

data are similar to revealed choice data and their use can provide more efficient estimators.

Throughout this paper we allow for a specific form of (lack of) precision in the elicited sujective
expectations. Allowing for more flexible forms of self-reporting error in is certainly important. In principle
our framework could be generalized to allow for more flexible forms of measurement error in self reports
but such generalization is beyond the scope of this paper.
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These are important gains in estimator efficiency, but the contribution of such expectation
data in those contexts is somewhat different than the one explored here.

The rest of the paper is organized as follows: The next section presents an extremely
simple machine replacement example. We will use this example throughout the paper
to fix ideas. Section 3.3 adds unobserved heterogeneity to the set up and discusses
alternative conditions under which the use of expectation data succeeds in identifying such
heterogeneity. Section 3.4 provides Montecarlo experiments that describe the performance
of our estimation strategy. Section 3.5 discusses some extensions for our framework.

Conclusions follow.

3.2 Example: Estimating a Simple Dynamic Structural Model of Machine
Replacement Decisions

Consider a simplified capital replacement problem similar to that in Rust (1987). Firms
each use one machine to produce output in each period. These machines age, becoming
more likely to breakdown, and in each time period the firms have the option of replacing
the machines. Let, be the age of the machine at tirhand let the expected current period

profits from using a machine of age be given by:

) + & if d; =0
H(J}t,dt,ﬁ()t,slt) = { gt—{— €1t0t if dz =1

whered; = 1 if the firm decides to replace the machine ak is the net cost of a new
machine, and the;s are time specific shocks to the utilities/profits from replacing and not
replacing. Let’'s assume that thess are i.i.d. across firms and time periods, and while

not required for the implementation of our methods below, let's further assume that they

97



follow a type | extreme value distribution. We consider a model with stochastic aging in

which
min {5, 2, + 1}  with probabilityr,  if d, =0
Typ1 = Ty with probabilityl — 7y if d; =0
1 with probability 1 ifd, =1

Note that in this very simple model the state space only has 5 points and therefore
full-solution methods can easily be used to estimate the model. We do this for illustrative
purposes, but it should be kept in mind that the method we propose below can deal with
more realistic state spaces in which standard full solution methods cannot be used or can
only be used at subtantial computational cost. Estimation is standard, and can proceed
using either Rust (1987) nested fixed point algorithm or Hotz-Miller (1993) two-step
estimator, among other alternatives. The Hotz-Miller strategy avoids the solution of
the complicated dynamic structural model. The associated optimization problem is not
solved even once. However, one is able to recover the structural parameters and can, after
estimation, solve the model at those parameters if needed for, say, baseline simulation of

artificial data and/or counterfactual policy experiments.

3.3 Adding Unobserved Heterogeneity

We now modify the machine replacement example to allow for heterogeneity in
the structural parameters capturing age related maintenancef/gostisd machine
replacement costB;,. We first consider the case of finite discrete types . We then analyze
the continuous case.

In the discrete case we index typeshy= 1, ...., K. An alternative set up considers

the existence of unobserved state variables- {z}, =4, ....} or, alternatively, a single
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unobserved discrete state variablec {1, ..., K'} that captures every possible combination
of unobserved states irt'. We allow for the possibility that unobserved states may
transition over time and allow for this transition to potentially depend on the clapice

Then, in general, we consider a state transition given by
fa:k: (.I',, k/|d7 x, k)

We can entertain several assumptions that restrict the generality, 0f’, £'|d, x, k)

e Assumption F1(x, k) are conditionally independent): conditional on(d, z, k), «’
andk’ are independently distributed:

fur (2 K |d, 2, k) = fr. (K'|d, z, k) fo (2']d, 2, k)

Similar to Arcidiacono & Miller (2008), we can also assume that

e Assumption F2 (Exogenous Transitions for Unobserved Statesjhe transition of
the unobserved state variables does not depend on the current choice nor the current
observed state, but follows an exogenous and flexible markov stochastic process:

fu (K'|d, 2, k) = fi (K'|k) = me
As in much of the literature using full-solution methods, in some situations we can

further assume

e Assumption F3 (Time Invariant Unobserved Heterogeneity)the unobserved states
are time invariant.
e = Lforall k, € {1, ..., K}

In some cases we can further assume that
e Assumption F4 (Homogeneous Transitions for Observed State Variablesjhe

evolution of the observed states,does not depend on the unobserved heterogeneity,
k.
fo (@|d, 2, k) = f, (2'|d,x) forallk € {1,..., K}
In this setup, a standard estimation strategy would proceed by integrating out

unobserved heterogeneity in the likelihood function, treating types as discrete random

effects in the population. Alternatively, a modification of the Hotz-Miller strategy,
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exploiting subjective probabilities of future choices, can be used to estimate the structural
parameters allowing for unobserved heterogeneity and without solving the dynamic

program. In the remaining of this section we consider this possibility in detail.

3.3.1 Estimation using Hotz-Miller with Precise Subjective Choice Probability
Data

Suppose we have available self-reported probabilities of next period machine
replacement for each firm after the current period replacement decisions have been made.

Let

P (dy =y, du, k)

denote the 1-period ahead self-reported probability of choasiagl (replacement
choice) at timeg’ + 1, elicited att’ from the technician in charge of machine maintenance
at firm, of unobserved typ&, who, in addition is at the observed state and who has
recently made choicé,. Throughout this section we assume that these probabilities are
elicited with great precision. For future reference we establish this feature of the data in

the following assumption

e Assumption SR-Precise:The subjective probabilities are elicited with precision. In
particular, self-reports are not rounded off to the nearest "focal" probability.

A key question is then: under what conditions can we use these expectation data to
reveal the underlying unobserved heterogeneity? The basic intuition can be grasped in the
context of our machine replacement example. Presumably if we have twoAians B
with machines in the same state in the current perigd= =, = z;, and these two firms

make the same choicé,; = dg; = d;, but report different probabilities of replacement
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tomorrOW,
P (dasr = Yz ar, das, ka) # p°F(dpiy1 = 1zps, dpy, k)

pf (dagsr = Loy, di ko) # P (dpt+1 = 1|ay, dy, k)

it must be the case that there is something unobserved by the econometrician but observed

by the technician in charge of machine maintenance in each firm that induces the
difference in the self-reports. In other words, the unobserved siatdifferent for the two
firms, k4 # kg. Therefore, differences in self-reports are informative about underlying
unobserved heterogeneity. In particular, note that if there are only two types, there can
only be two and only two different®? (d,,, = 1|y, d;, k) reported by observations that
have the same state-choice combinationd, ).

It follows that the number of typeds can be readily identified by counting the number
of differentp®® (d;,, = 1|z,d, k) elicited at each state-choice cdlf;, d).*° Can we
use the self-reported probabilities to estimate the machine replacement problem a la
Hotz-Miller but allowing for unobserved heterogeneity? The answer is yes. Below we

provide details on how to do so.

3.3.1.1 Linking Technology and Type Revelation with Precise Self Reports
We now introduce our "linking technology"”. The basic idea is pretty simple and

illustrates the power of eliciting self-reported choice probabilities to recover the underlying

Note that it is important to consider future choice probability elicitation at particular state-choice
combinations, not just particular states. The reason is that, among observations with the same, state at
x, those who make different choices will induce different probability distributions for the state variables
next period, and then, even if they are of the same type, they will end up reporting different future choice
probabilities. By focusing on those who are at the same atadenade the same current choice, we avoid
this problem.

101



31
32

33

34

unobserved heterogeneity.

Let's assume there are only two types= 1,2. Then at any time, the set of
observationg with common observable state and who made the same current choice
d; must be either typé = 1 or typek = 2. If they are of the same type, they face the
same prospects regarding their state variables next p&riddreover, they also face a
common distribution of idiosyncratic error terms next perjod;.;). Hence, they will
provide the same report about the probability of making the choice next period. However,
observations that are of different unobserved types will report a different probability.
We should then see two, and only two, different values of SR-CPs for each observed
state-choice combinatiof. Essentially, self-reported probabilities allow us to "reveal”
type membership. Then, after uncovering the unobserved type, estimation methods such
as those proposed by Hotz & Miller (1993) or Hotz, Miller, Sanders & Smith (1994) apply
directly, treating type as an additional observed discrete state. Moreover, for the purposes
of identification, the model can be reduced to one without unobserved heterogeneity.
Then identification results such as those in the work of Magnac & Thesmar (2002) apply
directly®

The linking technology, which we introduce more formally below, is a technique to

Note that under Assumption F4, they would face the same prospects even if they were of different types.
Different types having the same 1-period ahead choice probability is a measure-zero event if the choice is
feasible next period and the utility of the choice depends on the type.

Note that this holds regardless of whether Assumption F4 is true or, instead, the transitions for the observed
states depend on the unobserved type.

Magnac & Thesmar (2002) do consider identification of a model with correlated fixed effects without

relying on expectations data. However, the structure of unobserved heterogeneity they focus on is somewhat
different than the one considered here.
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"link" observations in the data. The linking is done via self-reports, which act as the chain’s
interconnecting links for each unobserved type. When we have two self-reports available
for each observation, the only, rather weak, requirement for the linking technology to
work is the absence of isolated islands in the space of feasible state-choice combinations.
These "isolated islands" are sets of state-choice combinationd$ in which the pairs of
self-reports of individuals are all contained and have no bridges to other regions of the
state-choice space. Below we set up some notation and more formally define the linking
technology along with the No-Islands assumption in which we rule out the existence of

such islands®

Definition 1 (Revelation of types A revelation of types is defined by an equivalence re-
lation ~ on the set of observations= {1,2,...N}. Call the cardinality of the quotient
set// ~ the revealed number of types and denote ity By the Fundamental Theo-
rem of Equivalence Relations, an equivalence relatioan a set, partitions that set. The
underlying parametek is unknown M does not necessarily recovéf.

Let the pair of self-reports be elicited#@tandt” for all observations.

Definition 2 (Linking Technology) Define a binary relation,R, in the following way:
Vi,j € {1,2,..N},
iRj
iff
(B (s, divr), 95 (i, dar )} O APS T (e, dyr ), 15 T (g, djaor) } 0.
The linking technology is a relatior on{1,2, ..., N}: Vi, j € {1,2,..N} =1,
1~
iff 3 a subset of observatio$,, is, ...i, } C I, such that
iRiyRis R..Ri, Rj.
The linking technology defines an equivalence relation. Itis easily checked Hatisfies
reflexivity, symmetry and transitivity.

Assumption SR-No Islands is defined after specifying a particular linking technology.

Alternatively, observations in the isolated islands can be discarded provided that suitable assumptions about
their representativeness hold.
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e Assumption SR-No Islands:DefineX* to be the set of all state-choice cells at which
a typek observation makes a self-report in the data. Th&n, d), (z/,d’) € ¥*,3
observationsn andn of type k, with m reporting at(x, d), andn reporting at(z’, d'),
andm ~ n.

Lemma5 Under Assumption SR-Precise and SR-No Islands, the linking technology re-
covers the true number of types and type membership for each observation.
Proof. See Appendixm

We focus on the case in which we have permanent unobserved heterogeneity or "types”
and where we have 1-period ahead SR-CPs. In the extensions section we discuss some
variations. In section 3.5.1 we consider the elicitation of S-periods ahead SR-Cumulative
CP. Later in sections 3.5.2 and 3.5.3 we address the case in which the unobserved
heterogeneity is continuous as well as the case in which unobserved state variables evolve

as a Markov process. In the remainder of this section we maintain Assumptions F1 and F3.

3.3.1.2 1-Period Ahead SR-CPs

For now, let's assume the available self-reports are about 1-period ahead CPs. In
general, these self-reports can occur before or after the choice has been made this period.
In what follows, and unless noted otherwise, we assume that the 1-period ahead SR-CPs
are elicited after the current choieg,has been made.

If the model in question were deterministic, it would be clear which state point next
period the SR-CP is giving choice information about. In models with stochastic transitions
we need a more detailed "theory of self-report” that specifies what goes through the
respondent’s mind between the time she listens to the question and the time she provides

the answer. Our theory of self report is the following: We assume the question is asked at
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time ¢t afterz; has been realized antl has been chosen. Upon listening to the question
"what's the probability that you will sef;,; = 1?" respondents use the solution to the
dynamic programming problem to calculate the implied CGR8;., = 1|x;,1, k) at each
feasible state next period, ;. Note that there will be many probabilities, especially when
the state space is large. After computing these, however, they need to provide a single
answer. One reasonable way forward is to assume that respondents then report the average
of these CCPs using the one-period ahead transition probability for the state variables,
f= (2'|d, z) as weights. In other words, the question elicits the "expected CCP". Formally,
SR-CP = E[CCP]
P (dei|e, diy k) = Euysjwna, [Pr (deal @i, F)]

= Y Pr(du|ziia, k) fo (waldy, )
Te1

In some case, it is also possible that the question actually elicits the one-period ahead
CCP at the Modal State. In this case the respondent reports the CCP at the mode of the
distribution of her own state variables next period. Given homogenous transitions, we can
infer what that state is and we are then back to the simpler deterministic case. We can then
"link" the self-reports at all those states. We call this the "Solve and Link" strategy: We
solve out for the implied (modal) observed state at which the self-reported probability is
being elicited. Then we link all the CCPs to trace out the unobserved types in the observed
state space. It should be emphasized that rather than being something like "what's the

probability that you'd choosé, ,; = 17" here we are assuming the question eliciting the

SR-CP is something more like the following: "Look one period ahead and consider what's
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your most likely situation at that time. In that situation, what would be the probability that
you'd choosel = 17". Note that the introduction to the second question more explicitly
instructs the respondent to situate himself in the most likely (modal) state one period
ahead and then only report the choice probability assuming she will in fact be in that state.
Formally, p% (dii1|z¢, dy, k) = Pr (dysa |2}y, k) wherea] | = Mode (z441]|zy, dy) is the
modal state at time+ 1 givenz, andd,. Thatisz}}, = argmax,,,, {f (xi11|x, di)}

In what follows, and unless noted otherwise, we assume that subjective expectation

guestions elicit the expected CCP.

e Assumption SR-E[CCP} The subjective probability questions elicit the expected
CCP.

We focus on the case in which we have two self-reports available for each indi¥idual.
In this case we can work within a very general class of models. We can exploit the
self-reports to group observations into types, without trying to recover the implied CCPs.
By having at least two self-reports we can connect observations at different points in the
state space who belong to the same type. In particular, any two observations who share
one common self-report at a given state-choice combination are of the same type and
their other self-reports add to our signals to identify that type. The "linking technology"
is extremely powerful. By having two self-reports we can trace out types in unrestricted

models in which the profile of choice probabilities for different types may be allowed

Again, well known surveys such as NLYS and HRS do include at least two self reports about subjective
probability of future choices for the same individual. If only one Self-Report is available we need to restrict
ourselves to cases where the CCPs are monotonic on type across the state space. For example, we could
restrict ourselves to a class of models where one type always has higher choice probability. This is an
important restriction. When profiles of SR-CPs for different types "cross" at some point in the state space,
identification problems arise.
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to cross in the state space. The linking technology allows us to overcome the ambiguity
created by these crossings.

Recovering type-specific CCPs using 2 Self-Reports of Expected CCR&hile the
identification of number of types (and type membership for each observation) doesn’t
actually require it, we can also explore the conditions under which we can recover the
actual type-specific conditional choice probabilities. We will later make use of these results
in more complex settings, but it is useful to introduce the issue now. When expected CCPs
are reported, the respondent reports an average of CCPs, with the average taken using the
transition probability. To recover the underlying CCPs we use the alternative "Link and

Solve" strategy:

(1) We firstlink SR-CPs from the same type and form a system of equations.
(2) We thensolvethe system of equations and recover the type-specific CCPs.

To be specific, the first 1-period ahead SR-CP reportedgates us one equation for

respondent of typek;.

pSR (di,t’+1 = 1|$it', Ay, kz) = Z Pr (di,t’—H = 1|93z‘,t/+17 k?z) f (xi,t’+1|$it’a dy, kz)
Titl+1
wherepf () and f () are known andr (d; y41 = 1|x; 441, k;) for all z; ., are the
unknowns. In general, we hay& | unknowns so we need more equations. We then link

this equation with a similar equation based on the respondent’s second self-report and with

the self-reports of other responderitsf the same type who have been linked to form
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a linear system of equations that has as many equations as unknowns.

pSR (di,t/Jrl = 1‘xit’>dit/7 kz) = Z Pr (di,t’Jrl = 1‘xi,t’+1> kz) f (xi,tUrl’xit/adit’a kz)
Tt/ +1
pSR (di,t”—i—l = 1|$z’t", iy, k?z) = E Pr (di,t”—H = 1|1‘i,t"+1, k?z) f (fi,t"+1|$z’t", iy, k?z)
Ti ¢ 41
pSR (dj,t’+1 = ]_|.2th1, djt’y k?]) = Z Pr (dj,t’—f—l = 1|xj,t’+17 ]{J]) f (xj,t’+1|'rjt’7 djt’7 ]{3])
mjyt/+1

wherek; = k;, Vi, j is guaranteed by the "linking technology”. We can then solve for
the CCPs{Pr (d = 1|z, k)},.y by using standard techniques to solve systems of linear
equations. There até&| unknowns and at mos$X | x | D| different self-reports.

Note that once these type-specific CCPs have been recovered, they could be plugged-in
directly instead of the non-parametric first stage probabilities in the typical Hotz-Miller
two-step approach.

We have focused on discrete types, 1-period ahead self-reports and time-invariant
unobserved heterogeneity. Our framework can be extend to relax each of these. We briefly

discuss these extensions below in Section 3.5.

3.3.2  Estimation using Hotz-Miller with "Focal" Subjective Choice Probability
Data

Unfortunately, in many contexts the SR-CPs are not as clean as we assumed them
to be in the previous section. While people may take more care in thinking about
these probabilities when making actual choices, it is likely that they exercise less care

when quickly computing these probabilities in a few seconds when answering to the
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interviewer’” In particular, there is likely to be substantial "heaping" or "bunching" at
common reference points like 0, 0.10, 0.50, 0.90 and 1. See Walker (2003), Hill, Perry
& Willis (2004) and Blass, Lach & Manski (2010). Surprisingly, there is no bunching
at 0.33 and 0.66 which a priori appear to be good focal points when the probability
reflects 1 out 3 or 2 out of 3 odds. Interestingly, respondents seem to be more precise
when reporting probabilities close to the boundaries. For example, it is not uncommon
to observe self-reports of 0.01, 0.02, 0.98 and 0.99. It is understandable that respondents
care more about distinguishing 0 from 0.01 or 0.99 from 1 than 0.50 from 0.51 or 0.49.
We accommodate these empirical regularities of probability self-reporting behavior in our
discussion below.

Therefore, in order to make our method more empirically relevant, in this section
we address the issue of "less than ideal” subjective choice probability assessments and
characterize to what extent the results derived in the previous sections hold in the more
realistic case in which Assumption SR-Precise does not hold. We will work with a set of
B = 25 "focal" or "reference" valueg), that have been consistently found in practice to
account for most of the self-reported probabilitieswith a little abuse of notation, leB

also denote the cardinality of the det

See Karni (2009) for a formalization of truthful elicitation of probabilities.

Indeed, casual inspection of some of the responses to these type of questions in the National Longitudinal
Survey of Youth 1997 NLSY97 reveals a pattern of clustering around the values in the particular set B we
defined. However, our methods can be used with any set B. That is, the set of focal values can be modified on
a case by case basis if the pattern of bunching in a specific survey is coarser or more detailed than this one.
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Then
b € B ={0;1;2;5;10;15;20; 25; 30; 35; 40; 45; 50;
55; 60; 65; 70; 75; 80; 85; 90; 95; 98;99; 100}.

Focal SR-CPs may lead to "bunching" which may create uncertainty in the identification
of the types. Say, for example, we have two observations of different types at the same
(x, d). For simplicity, consider 1-period ahead E[CCP] self-reports. Say under assumption
SR-Precise type 1 reports 68% while type 2 reports 72%. Now, in a more realistic scenario
in which SR-Precise no longer holds, we will have both types reporting 70%.

In this section we will show that a variation of our linking technology, coupled with
mild assumptions on the pattern of bunching across types and about the sampling of
self-reports, can succeed in overcoming this problem. We maintain assumptiphs,
and F'4 on the transition probability for state variables

A precise self-report of at timet is defined to be a function af;;, d;;, andk; ,
which can be 1-period- or s-period-ahead expected CCP, modal CCP, etc. Following the
notation in the previous sections, j€t%(d; . = 1|z, di;, k;) be a the self-reported choice
probability that satisfies SR-Precise. Now, consider two SRsaaid¢”. In this section,
we want to focus on the case in which the SR-CPs are probabilities that are rounded-off to
the nearest focal point. We add arto the self-report probability notation to emphasize it
is now a focal self-reporty? (2, d;, k;). Formally,

PP (24, diy, k) = argrgéiél PP (dyy = 1y, di, ki) — b

wherep?f(d,,1 = 1|zi, dis, k;) may be a modal CCP or an Expected CCP. Actually,
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if pPf(d,1 = 1|ay, di, ki) = E[CCP] we need to account for an additional layer of

round-off in the underlying CCPs, which we then denote FCE€Ps:

E[FCCP] = Y FCCP(ziyi1,ki) f(zipalwiv, di, k)

Tt/ +1

= Z [arg min |CCP(xip41, ki) — b|] [ (@ip 1|z, div, ki)
Ti ¢l +1

= Z {arg Il}élél | Pr(dipr1 = Ui, ki) — b|] f@ipa|ziv, div, ki)
T ¢/ +1

We assume all observations follow this "rounding” procedure. Sinteunobserved,
from the econometrician’s point of view, the SRs can be associated with states and actions
only: ﬁ?RF(mity dit) = prF(Jiit, dit, k).

Definition 3 (Bunching) Two SRs are said to be bunched atd) for observations and
j of different types, b7 (x, d, k;) = p§i¥(x,d, k;) andk; # k;. Two SRs are said to be
bunched atz, d) for typesk and ', if p*F (x, d, k) = pFF (x,d, k').

Note that "Bunching" is defined both, for observations and for types. When focal
self-reports generate bunching in the data, some variation of our basic linking technology

works under some additional assumptions.

Assumption B1 (Immediate Detection of Bunching Observations)f a pair of SRs
by two observations and; who belong to different types, bunch at the state-choice
(z,d), then their other SRs must be elicited at another common state-ghdid8, at
which the two types’ focal SRs differ:

@SRF(x/’d/) %@SRF([E,,d,).

Assumption B1 essentially makes sure that all bunchings of a pair of observations can

This additional layer of rounding off corresponds to the idea that an additional source of discrepancy
between the theoreticdl [CC P] and the self-report resides in the respondent’s inability to exactly compute
the value function "off the top of her head". This inability induces computation of FCCPs, rather than CCPs
at each feasible state point next period. Then, a second layer of rounding is introduced when the average
of these rounded CCPs is itself rounded off when the answer is provided to the interviewer. Note that this
assumption only introduce some limited rationality at the self-report stage. Behavior continues to be fully
rational.
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be detected immediately. It will be relaxed later in the sense that we will not require

immediate detection of bunching observations, but will require detection of bunching

types.

Definition 4 (Bunching state-choice for{i, j}) The bunching state-choice fdi, j} is
the state-choicéz, d) at which their SRs bunch. Denote it by, dZ)

g0 @ig)-

Assumption B1 guarantees that whenever there are two observatiadg of different
types reporting at a bunching state-choice for them, the bunching of different types is
immediately detected. Hence, the to-be-defined "linking technology under bunching” can
use this notion of "bunching state-choice".

In particular, under Assumption B1, two observatiom@ad; can bunch at most at one
state-choice cell.

In Figure 3.1, the squares mark the precise SRs, which are rounded-off to the nearest
focal points, marked by circles. Whenever there is bunching of two different precise SRs,
we include the square-marked precise SRs for illustrative purposes. As is evident from the
figure, observationsand; have the same focal self-reports at the state-cl*(ajgedﬁ ).

However, Assumption B1 is not enough to identify the types. Consider the following
example in Figure 3.2. There is no way of telling whether the observations are grouped
as{j,i} and{g, h} or{i,g} and{h, j}. Inlight of this, we make Assumption B2, which

bridges the two SRs by the same type.

Assumption B2 (Bridging Bunchings) For all observations andj who belong to
the same type, but the singleton intersection of whose SRgig;atl? ) for somen,
there exists another observatibaf the same type asand;j, who has SRs in the two
non-bunching state-choice cells.
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Figure 3.1: lllustration of Immediate Detection of Bunching Observations
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Figure 3.2: Problem Without Assumption B2
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Figure 3.3: lllustration of Bridging the Bunching
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Figure 3.3 illustrates how observatidbbridges a bunching.

Definition 5 (Linking Technology under Bunching) Define a binary relation,R”, in
the following way:vi, j € {1,2,...N},

i RBj
iff the following conditions are met:

(1) The pairs of self reports farand; are such that
{p (xzt’ zt’) @SR (xlt” dzt”)} N {~SR (xjt'7djt'> @SVR (xjt"7djt”)} 7é @’
(2) if 4 observatior,
{ASRF(%' dir), D; RF(l’z't”y dz‘t”>}ﬂ{ﬁj$RF($jt’7 djt’)aﬂfRF(xjt”a djn) } = {pSRF( gu dﬁz>}
then
i, {ASRF(iClt/ dlt’) @SRF(iUlt'/ dlt“)}
{ (fl‘zt’ zt’) @SRF($zt" dzt")}A{~SR (fﬂjt’ydjt’),]fRF(wjt”;djtﬁ}a
whereA denotes the set difference.

The linking technology under bunchinig a relation~? on {1,2,..., N}: Vi,j €

(1,2, .N} =1,
i~

— iff 3 a subset of observatioqs,, is, ...i, } C I, such that
i RP i, R® i, RB..RP i, RP j.
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Figure 3.4: Identification of the Number of the Types
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It can be easily proved that the linking technology under bunching also defines an

equivalence relation.

Lemma 6 Under Assumptions B1, B2 and SR-No Islands, the linking technology under
bunching recovers the true types exactly.

Proof. See Appendix.®

Note that the number of types is identified after the partition. In particular, it is not
identified by counting the number of different SRs in each state-choice cell. Consider
Figure 3.4. The partition identifies 3 types, though at each state-choice cell, there are only
2 different SRs. With a slight abuse of notatign?,, 2 ,) here denotes the bunching

state-choice cell for typg and typek’. The arrows indicate "bridges".
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Assumption B3 (Detection of Bunching Types)if two types,k andk’, bunch at the
state-choicér, d), then3 two observations of type k and; of type k', and another
state-choicéz’, d') s.t.

{ @?RF(x7 d) = @SRF(I’ d)
@SRF(x/’ d/) # ﬁfRF(x’, d/)

Assumption B3 is weaker than Assumption B1. Assumption B1 ensures that
whenever two observations of different types bunch, their other SRs reveal the bunching
to the researcher. Assumption B3 only requires that whenever two types bunch, some
observations’ SRs reveal the bunching of the types to the econometrician. Figure 3.5
gives an example which satisfy Assumption B3 but not Assumption B1. Consider the
observation in the figure. Assumption B1 would require the existence of another
observation that linkg>? (258 dB) = 0.5 andp®®F'(2/, d') = 0.8 for immediate detection
of bunching types. Nevertheless, Assumption B3 is satisfied as long as the observations
andh reveal the bunching of two types @t , d% ).

With Assumption B3 replacing Assumption B1, the linking technology under bunching
now cannot guarantee to recover the exact type of each observation. For example, types

of < andh in Figure 3.6 are not distinguishable. Assumption B4 deals with this issue.

Assumption B4 (No observations with two "bunched" self-reports) Every
observation has at least one self-report elicited at a state-choice in which there is no
bunching.

The following proposition establishes one of the most important results in this paper.

Proposition 7 Under Assumptions B2,B3,B4 and SR-No Islands, the linking technology
under bunching recovers the true types.
Proof. Given Lemma 6, the critical step is to restore the identification of bunching

state-choice cells under Assumption B3 (Detection of Bunching Types), which is weaker
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Figure 3.5: SRFs Allowed under Assumption B3 but not B1
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Figure 3.6: Non-identification of Types
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Figure 3.7: Immediate Detection of i-u Bunching
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than Assumption B1 (Detection of Bunching Observations). Consider an obseriation
whose SRs involve one SR in a bunching statel) where her type bunches with another
type. By Assumption B3, this bunching of types is detectable by two observations that
do not necessarily involve There are thus two possibilities. Onean observation,
who bunches with at (22, d2), but differentiates itself at another state-chaice d'), as
is depicted in Figure 3.7. Two, whilés other SR is atz’, d'), there are two observations
u andv, who reveal the bunching of the types at some other state-chdicé”), as is in
Figure 3.9.

Now consider observationisandj, who are of the same type. We want to show that

~B j.In the first case, by Lemma 6, we have® j. Inthe second case, by Assumption
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Figure 3.8: Detection of i-u Bunching Using v
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B3, there exist two observatiomsandv that reveal the bunching of types(at d), that is,
(z,d) = (2B,dB)). By Assumption B2, there exists some observatitimt bridges and
v and there exists some other observatiothat bridges andi. The linking technology
under bunching gives that~? v andv ~ i. By the transitivity of the equivalence
relation,j ~% i.

Now comes the other direction that-? i impliesk; = k;. It suffices to show thatm
RE nimpliesk,, = k,. Suppose not. Since R” n, let the common state-choice cell at

whichm andn made a common SR ke, d). By Assumption B33 two observations’

andn’ and another state-choi¢e’, d’) s.t.

ﬁfnﬁF(:E, d) = ﬁgﬁF(xa d)
R d) £ BT d)

Assumption B2 identifies through bridging that ~® m andn’ ~% n. Hencem' ~f n/.
Contradiction.

However, for all pairs of observations whose SRs are identical at two of their bunching
state-choice cells (observations ruled out in Assumption B4), their types are not identified.
Recall Figure 3.6. Assumption B3 nevertheless indicates which two types these two
observations may belong ta

In practice, we can write a computer algorithm that implements the linking technology
to determine the type of those observations whose two SRs do not bunch with those of
another type simultaneousfy.

Finally, we can relax Assumption B4. For those observations whose types are

40 The algorithm is described in detail in a supplementary Appendix available upon request.
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indeterminate, we will impute their types by finding the conditional probability of
being a particular type given the observation’s history of states and choices and its
pair of bunching state-choices. Lebe such an observation of tyge whose SRs

are {p? B (v, dy), 07 B (24, dyn) }, Where(xy, dy) and (z4, dyr) are two bunching
state-choice cells for typdsandk’. Below we describe the procedure used to implde
type.

First, we use the subsample where types can be correctly revealed to form a system of
equations in terms of CCPs for each type and solve for the CCPs for each type. There
are in generalX| x K equations and unknowns. Note that unlike the situation under
SR-Precise, now even with 1-period ahead SRs the system will be non-linear. In the case
of expected CCPs, the non-linearity is introduced by the double rounding-off. A typical
equation of such a system will then look like

prF (%‘t/ N kz)

= pZSRF (dijrs1 = Uzirr, digr, ki)

= argmin [p;T(di1 = |z, dig, ki) — b
beB

= arg fbréig Z [FCCP(wi 11, ki)l f (@i pr1|wiwr, divr) — b
Ti ¢/ 41

= argmin E [arg min | Pr (d; p+1 = Uaipi1, ki) — || f (zipia|@iw, diw) — b
beB beB
Ti ¢/ 4+1

Note that in general the above system may not have a unique solution. Therefore
we work with an approximate problem that essentially disregards the two layers of

rounding-off. Given the set of focal point3, the bias introduced by the approximation
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will be bounded. Since the focal CCPs differ from their precise values by at-1tb825
at each rounding-off, our procedure leads to a bounded bi&$ .06

Once we solve the above system, we compute the conditional probabilibeafg type
k given’s history of choices and states for every "problematic” observat{oe. every
observation whose pair of self-reports does not provide enough information to uncover its
type).

To that end note that for problematic observations we have
Pr ({xt, A}y |k> Pr (k)

Pr({ze.d},,, )
Pr ({xt, A}y |k;) Pr (k)

25:1 Pr ({It7 dt}t#t’,t” |]{3/> Pr (k,)
n the Pr({z;d} can be computed using ty s and the
In the RHS.Pr ({a1, i}, , |k ) can b d using typés CCPs and th

Pr (k |{$t> dt}t;ﬁt’,t”) =

estimates of the transition probabilities of the statBs(k) is estimated using, for
example, the following equation

Pr(d;=1|x; =5) = Pr(dy=1z;=5k=1)Pr(k=1)

+Pr(d; =1jzy =5,k =2)[1 — Pr(k =1)]

wherePr (d; = 1|x; = 5) is estimated by simple frequency from the data and
Pr(d; = 1|x; =5,k = 1) andPr (d; = 1|z, = 5, k = 2) are computed using the type
specific CCPs for each type. Given that obtaining such CCPs is not feasible, we work
with approximate CCPs which solve the approximate system of equations described

above?* Among all those problematic observations who have the same SRs and the same

41 Alternatively, the denominator in the RHBy ({xt, dt}t#/,w> , could be obtained by counting the
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remaining history for £ ¢', t” asi’s. We then assign their types such that with probability

p(k|{xs, di }ize 1), they are of typé:.*2

3.4 Montecarlo Experiments

In this section we do not discuss the precise data case because its empirical
implementation is less feasible given that most subjective assessments of future choice
probabilities have focal measurement error. We instead focus on the more realistic,
empirically relevant, case in which there is focal measurement error in SR-CPs. We
analyze two cases : a) a case in which this particular form of noise in the self-reports is
innocuous and b) the more general case in which it leads to bunching.

Consider the model in the machine replacement example of Section 3.2. Again, note
that we purposefully work with a simple toy model to be able to assess timing gains
relative to a full-solution approach. However the method works equally well if we have a
realistic state space that prevents estimation via full-solution. True, when the state space
gets large it is likely that we will run into a "Data Curse of Dimensionality" in the sense
that we will not have enough data to estimate the first-stage CCPs non-parametrically,
even if we do not condition on type. This is not a limitation of our method, but one
shared with the original Hotz-Miller (1993) estimator. However, there exist well known
generalizations of the original Hotz-Miller strategy that preserve the initial insight while at
the same time solving the "Data Curse of Dimensionality”. For example, after unraveling

the types we could use the estimator advanced by Hotz, Miller, Sanders and Smith (1994)

proportion of observations who have this particular history of states and choices.
This procedure can be readily extended to the case where there are more than two types bunching at the
state-choice cells at the time of the SRs.
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that combines the alternative representation of the value function with a forward path
simulation approach to greatly diminish the data requirements of the original Hotz-Miller
strategy’®

We consider the simplest case in which there/dre- 2 types. We simulate data on
N = 100,000 firms andT" = 10 periods using that model as underlying DGP with the

following parameters:

Type 1: (611, Rl) = (—04, —3)
Type 2: (912, RQ) = (—12, —7)

We generate inputs to the simulated self-reports using our theory of self-report and
further round off self-reported choice probabilities on the simulated elicitation according
to the focal points described Secti@r8.2. In Figure 3.10 we see that despite the
measurement error induced by focal self-reports, no type-bunching occurs. The squares
point to the location of the precise E[CCP]s, the ones that would be elicited in the ideal
case without "heaping" in focal values. The circles show the corresponding "focal”

E[CCP]s

Since no type bunching occurs, the linking technology quickly establishes the number
of types and type membership, and Hotz-Miller proceeds with type as an extra state
variable. Table 1 describes the results of the Montecarlo simulations and illustrates that our
linking technology allows quick and precise estimation of the unobserved heterogeneity in

the structural modéef.The mean estimate over the R=500 repetitions is virtually the same

43 Only states visited with positive probability in the sample at hand (as oposed to all feasible states
conceptually possible in the model) are used in this estimation strategy.
44 Convergence of the entire algorithm takes on average aproximately half a minute. Almost all of the time is
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Figure 3.10: Focal Self-Reports That Do Not Lead to Bunching
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as the truth. The standard deviation of the Montecarlo distribution is very $mall.

Table 3.1
Truth Full Solution Hotz-Miller

Mean SD Mean SD
011 —0.4 -0.4000 0.0058 -0.3999 0.0058
Ry —3.0 -2.9997 0.0198 -2.9995 0.0198
01 —-1.2 -1.2012 0.0269 -1.2008 0.0268
Ry —7.0 -7.0071 0.0951 -7.0057 0.0949

Avg. Time - 11 minutes 30 seconds

We now modify our DGP to generate a more complex situation. The parameters are

now:

spent in the Hotz-Miller step. Indeed, preliminary type revelation and linking only takes about half a second.
The montecarlo was run in a standard desktop using MATLAB.
Standard Deviations for the montecarlo distribution of estimates are computed for each parameter as

follows: \/§ S (0, —0)2whered = £ 0,
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Type 1 (011, Rl) = (—027, —265>
Type 2: (012, Ry) = (—0.40, —3.75)

In Figure 3.11 we can see that focal self-reports now lead to bunching in state
choice-combinationéz, d) = (2,0) and(z,d) = (3,0). Again, the squares point to
the location of the precise E[CCP]s. The nearby circles show the corresponding "focal"

E[CCP]s that respondents actually provide.
Figure 3.11: Focal Self-Reports That Lead to Bunching
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We consider four estimation strategies for this case. In Table 2 we show the Montecarlo

results for each of these.

(1) Discarded: In this strategy, we just drop from the sample those observations
whose type cannot be determined. Column 2 shows the mean estimates. While
the maintenance cost®, are estimated very precisely for both types, there is a
small bias in the estimates of replacement cégtand R,. In both cases we tend
to underestimate replacement costs. This makes sense. Since the two bunching
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state choice combinatiorig, 0) and(3, 0) involve non-replacement decisions, when
we discard observations we tend to disproportionately eliminate from the sample
observations that do not replace machines. Therefore the sample becomes more
dominated by observations that do replace machines. The structural parameter
estimates rationalize this behavior in the data by making machine replacement
decisions less costly than they really are.
(2) Infeasible A: In this case we pretend we know each observation’s type. Then we
estimatep (k [{(z, d¢) bi—p v, {4, di 120 o0 ) DY Simple frequency and assign types
to "problematic" observations such that they (as a group) are consistent with this
estimated probability. Here we are back to the scenario of our first Montecarlo without
bunching. Not surprisingly the performance is excellent.
(3) Infeasible B: Here we no longer pretend we know each observation’s
type but instead claim we know the precise CCPs. Then we compute
p (k|{(z¢, di) }rmp v, {x1, di }120 ) USING the Bayesian update described above and
again assign types to "problematic” observatitinsgain results are extremely good.
(4) Feasible: Our feasible estimation strategy follows the same protocol as Infeasible
B, but now using the approximate type-specific CCPs derived from the approximate
system of equations based on focal E[CCP]s. The performance here is also excellent
and virtually the same as the one achieved by Infeasible B, which uses the (usually
unavailable) precise CCPs.

Table 3.2
Truth "Discarded" Infeasible A Infeasible B Feasible
Mean SD Mean SD Mean SD Mean SD
#,; —0.27 -0.2735 0.0016 -0.2707 0.0016 -0.2713 0.0016 -0.2709 0.0015
Ry —2.65 -2.6227 0.0088 -2.6538 0.0085 -2.6566 0.0085 -2.6561 0.0082
., —0.40 -0.4006 0.0024 -0.3985 0.0022 -0.3968 0.0022 -0.3977 0.0022
Ry, -3.75 -3.7024 0.0138 -3.7414 0.0134 -3.7304 0.0131 -3.7329 0.0134
t - 24.1 seconds 27.4 seconds 30.2 seconds 76.6 seconds

3.5 Extensions

We first consider in some detail three important extensions in the ideal case in which

we have self reports that are precisely elicited. We then briefly outline other directions for

future research.

In the actual implementation there is a trade-off when choosing how much information to condition on when
doing the Bayesian update. If we condition on all the hist@ary, d; }++ +~,the number of observation in
each cell might be very small so in practice it might be better to condition on a subset of the available history.
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3.5.1 S-periods ahead Self-Reported Cumulative Choice Probability
In some cases the question explicitly specifies a longer planning horizon and the elicited
subjective probability then refers to the probability of the action being taken at some point
during the given planning horizon. In this case the linking technology still works and types
can be revealed in the same fashion as in the 1-period ahead case. Then we proceed via
standard Hotz-Miller using the revealed types as an extra observed state in the first stage.
Still, we can attempt to recover the underlying type-specific CCPs. Consider the

2-periods ahead SR-Cumulative CP. Then we have a nonlinear equation given by

p°T (d = 1 at some point during the next two perigds
= Pr (dt+1 =1U dt+2 = ]_|[L’t, dt’]{?)
= 1-—Pr (dt+1 =0N dt+2 = 0|l’t, dt,k)

= 1 - Z [PI’ (dt+1 - O N dt+2 - 0|xt+1,dt,k>} f ($t+1|xt7 dt? kj)

Tt41

= 1- Z [Pr (di2 = 0|41, dipy1 = 0,k) Pr (dp1 = Olwigr, B)] f (@e1a]we, di, )

Tt41

= 1= (€] f(dusa|zs, di, F)

Tt+1

where

§i1 = (Z Pr(dii2 = O|xsy0, k) f (we12|Tii1, diyr = 0, k)) Pr(diy1 = 0|wyy1, k)
Tt4-2
Again if assumption F4 holds, in this equation thér,, 1|z, d;) andp®* () are known,
whereas th&@r (d = 0|z, k) Vz are unknown. Here we can also link the two self-reports

of the same respondent and form additional equations with other self-reports from other
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respondents of the same type until we have a system that can be $olved.

3.5.2  Continuous Distribution of Unobserved Heterogeneity

Allowing for a continuous distribution of unobserved heterogeneity in dynamic
programming models is very complicated. The only computationally feasible attempt we
are aware of is the importance sampling strategy proposed by Ackerberg (1999,2009).
Let's assume we have the full set of precise CCPs or, alternatively, we have precise
E[CCP]s at every possible state choice combinatiar/) . In our machine replacement
example, this would amount to having SR-CPs requested at each and every one of the
six state-choice combinatiofs.In this case we can estimate the model allowing for a
nonparametric continuous distribution of unobserved heterogeneity as follows: With all the
possible E[CCPs] in hand we can solve a system of equations and recover the individual
specific CCPs at every possible state point. Then we can "plug-in" the individual-specific
set of CCPs to compute individual specifi¢ for eachi = 1, ..., N exploiting Hotz &
Miller’'s alternative representation. If we redefine structural parameter heterogeneity as

deviations;, from a common mean,
Ori = g, + 1y

Ry = pp+ng

Unlike the 1-period ahead case, this system of equations is non-linear (even under precise elicitation) and
the computational advantage of this strategy should be evaluated on a case by case basis for each specific
model. This system of non-linear equations grows with the state-space so while our basic linking technology
still works, recovering the underlying CCPs directly from the self-reports becomes more computationally
demanding in realistic models. Still, it should be kept in mind that this whole step needs to be done only
once so one can easily afford some computational cost.

Note that given the renewal structure of our model, we need only consider the following six state-choice
combinations{(1,2), (2,0),(3,0),(4,0),(5,0) and(z, 1)

for anyz. No matter what the state is, if a replacement decision is made, the state variable next period is
“reset" to one with probability one.
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the rest of the estimation protocol follows as in Hotz-Miller. The estimation routine
searches for the mean of the structural parameters and, at each iteration, we solve out for

N
the structural parameter deviatiopg } -, = { ( :77“ ) } that are consistent with the
Ri i=1

data (given current trial parameter vector for the me(auﬁel )). We do so by picking
R

two CCPs implied by the self-reports (CEP(z;;)) and solving the linear system based

on

N

3
I
&

%

7 = <Eﬁ(1,xit)—5ﬁ(07$it)>

—mqéﬁéag—g—#ﬁwm+?mwm—fawm%+fmwm&

which can be derived by noting tHat
exp {2 (L) (0 + ) + & (L)}

CCFfR (xzt) = — — - ~
exp {27 (0, 2ig) (0 + 1) + &7 (0,210) b+ exp {37 (1, i) (Bu + m,) + 8 (L) |

After convergence we can "plot" the nonparametric joint distribution of the structural

parameters and recovers its moments.

If current utility is given byU (d, z;t,ei4) = u(d, zi) + €4 (d) and we letd = (6,,0;) be the
vector of structural parameters. Consider a linear-in-parameters utilityz;;) = z (d, z;;) 0.,
wherez (d, z;;) is a Dim(@,,) x 1 vector. State variables evolve accordingf{a(z,41|ds, ¢, 6f).
The choice specific value functions can be re-writtem & x,0) = z (d, x,0) 0, + €(d,z,0)
wherez (d, z¢,0) = z(d,x) + Ez:lt BBy, \di=d,z, [2520 P (d|xys,0) 2 (d’,xt+s)]

andé (d,1,0) = S12 87 B, ai=ae, |[Steo P (d]2115,0) ¢ (&', 211.4)] . The policy
function is«a (z¢,e:) = argmaxy {v (d, z,0) + : (d)} and the expected error conditional
on optimal choice i (d,z;) = F [ (d) |z, a (x4, e¢) = d] .Hotz & Miller (1993) show
thate (d,z:) = f(d, P (:]z¢,0) ,Ge) .For example, ife;; (d) are iid Extreme Value, then
e(d,x¢) =y — log [P (d|wit, 0)]
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Figure 3.12: Figure 3.11 Distribution of Structural Parameter Population Heterogeneity
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with true parameter values given py, = —1.15, up = —4.45,3 = 0 05 |

Figure 3.12 depicts the true distribution of structural parameter values in the population.

Our estimates are obtained in less than one minute. The estimated population means for

both structural parameters are

El] = —1.1496
E[R] = —4.4451

which are almost exactly equal to the truth.
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Figure 3.13: Figure 3.12 Estimated Distribution of Structural Parameter Heterogeneity
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The estimated variance covariance matrix for the distribution of structural parameter
heterogeneity in the population is

‘765“(9173) _ {0.1002 0.0028}

0.0028 0.5043
which is consistent with the underlying bivariate normal DGP. Note however, that
our approach is non-parametric in the sense that we could have recovered any kind of
distribution since at no point did we use normality, other than to simulate the data.
Figure 3.13 presents the plot for the non-parametric estimate of the distribution of
structural parameters in the population.

Note that in more complex models, having the entire set of E[CCPs] might be
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unrealistic. However, if we have three self-reports, we can use a variant of the linking
technology that supplements our original linking strategy with an interpolation step.
Indeed, if we assume Finite Dependetichlodal CCP self-reports and Assumption F4,
then we can recover the continuous distribution of unobserved heterogeneity in structural
parameters by interpolating CCPs using nearest neighbors to complete each individual’s

full set of self-reports?

3.5.3 Time-Varying Unobserved Heterogeneity

As we discussed in the Introduction, recent efforts, to which our paper contributes,
show that under some conditions, it is possible to accommodate permanent unobserved
heterogeneity in two-step estimation strategies. The work of Arcidiacono & Miller (2008)
pushes the frontier forward by not only allowing for unobserved heterogeneity but by
letting it evolve in systematic ways over time.

In this subsection we briefly note that our linking approach can be modified to
accommodate unobserved heterogeneity that evolves over time. To continue with our
machine replacement example, we now think of firms as being in one of two possible
unobserved states. These unobserved states are not permanent, but rather can change over
time. We focus on cases in which we have two self-reports taken in consecutive periods.

In this scenarid: is no longer fixed but becomés, a random variable that exogenously

evolves over time as in assumption F2. The key idea can be graspefl' witR (i.e. there

%0 The concept of finite dependence was originally developed by Altug & Miller (1998) and further generalized
by Arcidiacono & Miller (2008). It sharpens the insight of the Hotz-Miller original result by showing that
for certain class of models only the 1-period (or, in general for finite 0, the p—period ) ahead CCPs are
needed in the alternative representation of the value functions.

51 Nearest neighbors are those observations that report similar SR-CPs in two of the same state-choice cells.
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are two possible unobserved states 1, 2). Suppose that at timé the first self-report is
collected. Among those with the sarfe/, d-) we can identify those who give different
SR-CPs and, following the reasoning of previous sections, those who have diffgerent
Without loss of generality we can assign one group;to= 1 and the others tg;,, = 2.

We can track this group into the next period. Suppose that next petied,, the second
self-report is collected. We can see how the answers of each group split at the time of the
second self-report. These splits give information on unobserved state transitidoss

g l=1,2.

How do we know which % transitioned into which state ? We can compare self-reports
in the second period across different states and check against the self-reports collected at
those same states in the first period as long as the model is stationary. We are then able to
identify those that remained in their previous unobserved state and those who transitioned
into a new one.

Finally, note that all of the above can be generalized to: a)fany 2, b) self-reports
collected in any two, not necessarily consecutive time perigdsg’), c) cases in which
the first period collecting self-reports, is not the first sample period and d) models with

choice-dependent transitions for unobserved states.

Choice dependent transitions for unobserved states accomodate the following case: instead of firms differing
in k;, machine differences are the underlying source of unobserved heterogeneity. Suppose when a firm
replaces an old machine, the new machine may turn out to be an "easy maintenance, easy replacement”
machine or a "problem" machine which is difficult to maintain and difficult to replace. Here the unobserved
state may evolve over time but only if the renewal action is taken. To handle this case we relax Assumption
F2.
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3.5.4 Other Extensions

(1) In some special cases we can entertain the possibility of estimating the model off
SR-CPs alone, rather than using actual revealed choice data.

(2) Using Other Probability Questions:

— As seen in Section 3.5.1, sometimes we have SR-Cumulative CPs like "What's the
probability that you will choosé = 1, at least once, at some point during the next
S years?". In some cases, we may have two of these questions at the same time
t’, eliciting the cumulative probability that an action is taken or a state is reached
within two or more time horizons. We may have, for example,
PER (U {dyey = 1} [, di, k) \ ™
pr (Uigl {dt+s = 1} ’xtv dt? k) i—1
eliciting the 5- and 10-period ahead cumulative CP. This eliminates the need of a
panel of self-reports.
— "What's the probability that you will have;, s = = in S years?"

(3) Using Other Types of Expectations: Some questions don’t ask about the probability of
making a given choice or reaching a given state but rather ask whether the respondent
"expects"” to make that choice or reach a given point in the state space.

— "Do you expect to have,,s = d in S years?" This case which severely
limits the informational content of the self-report arguably asks whether
Pr(dy s = d|zy, dy, k) > 50%

— "What value ofr do you expect to end up having over your planning horizon?"
In these cases may refer to the number of children or completed years of
education that a person will have over their remaining lifetime, i.e. over
the nextT’ — t years. Here, respondents could arguably be rounding-off the
expected maximum¥ [zr|x, d;, k] to the nearest integer or providing the mode,
Mode [xp|xy, dy, k] = argmax,,. {f (x7p|xs, di, k) }

(4) Application to multiple agent models.

(5) Multinomial choice and use of GEV unobservables following McFadden (1978) ,
Breshnahan, Stern & Trajtenberg (1997), Arcidiacono (2005) and Arcidiacono &
Miller (2008).

3.6 Conclusions

We have introduced a new approach to allow for unobserved heterogeneity in two-step,
CCP-based estimation strategies for discrete choice dynamic programming models such
as those pioneered by Hotz & Miller(1993). Our strategy exploits the availability of

expectations data. Since subjective expectations data about future choice probabilities
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integrate the future temporary idiosyncratic shocks, they are extremely powerful and
they become a valuable resource to identify and estimate unobserved heterogeneity. We
believe that if and when such data is available, our approach should be attractive given
that identification requires mild assumptions and estimation can proceed with very light
data. Indeed, the method can be implemented with only two unconditional self-reports
about future choice probabilities per respondent. Our Montecarlo experiments show
that computational burden is essentially the same as that of the (already fast) original
Hotz-Miller estimator. The method can be applied in combination with variants of the
original Hotz-Miller estimator that reduce its onerous data requirements in models with
rich state spaces. While our focus has been on single agent models of dynamic discrete
choice, we believe that our approach can be generalized to the many other contexts
discussed in the introduction as long as subjective expectations data is available to
supplement traditional data on observed choices and states. We leave these and other
extensions for future research. We believe this is a first step in a fruitful research program
that leverages new forms of available data to be more flexible about the specification of

unobserved heterogeneity in structural estimation.

3.6  Appendix: Proofs of Lemmas

Lemma 1 Under Assumption SR-Precise and SR-No Islands, the linking technology
recovers the true number of types and type membership for each observation.
Proof. First, we establish that under Assumption SR-Precise, the linking technology

implies that for all: ~ j, k; = k;. By definition of the linking technology, ~ j iff 3 a
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possibly empty subset of observatiofis, ...i,,} C I, suchthat Ri; R...Ri, R j. By
transitivity of” = 7 it is enough to show thatm R n, k,, = k,. By definition,m R n iff

(B0 @ o), PR (@t s i)} OV APE (s, i), P (s i)} 7 0
Since under Assumption SR-Precise the probability of two different types having exactly
the same report on the same state-choice cell is zero, it holdsitthan = k£, = k,.
Hencek; = ki, = ... = k;, = k;.

Second, we need to show that j with k; = k;, i ~ j. Suppose not. Consider
observationg, j, who are of typek, buti < j. Let X1 (3U) be the set of all state-choice
cells at which the equivalent clag$ ([;]) gives SRs. Thersll N ¥l = ). Otherwise,
3(x,d) € ¥l N ¥l and3 observationg’ < [i], ;' € [j], who share a common SR (at, d)
and this implies that' R j'. Hence; ~ i R j' ~ j, contradicting our assumption that
i j. Soxllnxbl =@. Butitfurther contradicts Assumption SR-No Islands, because
yll N 2l = ), together withi « j, implies thatv(z, d) € X! C XF (2, d') € £V C ©F,
there does not exist two observationsandn, such thatn gives a SR afz, d) andn at
(«',d)andm ~n. &

Lemma 2 Under Assumptions B1, B2 and SR-No Islands, the linking technology
under bunching recovers the true types exactly.

Proof. First, we want to prove that under Assumption B1, the linking technology under
bunching implies that for all ~* j, k; = k;. Definition of linking under bunching gives
i ~B jiff 3 a possibly empty subset of observatidns, ...i,} C I, such that R? 4,

RP..RB i, RP j. By transitivity of” = ", it is enough to show thatm R” n, k,, = k,.

137



Consider suchn R n. They must satisfy

(1) {~SRF($mt’;dmt’) ﬁfnRF(xmt” d t")} N {~SRF($nt'7dnt’) ﬁﬁR (Int”udnt”)} 7é Q)J
(2) if 34 observatiom,

{ASRF(mmt'admt')aﬁmeF(xmt'wdmt”)}ﬂ{ﬁsRF(fcnt/adnt')ﬁgR (Tgr, dpyrr) } = {ASRF( mhadﬁh)}
then

=) {ﬁSR ($lt' dlt’) R (l’lt” dlt”)}
{NSRF (xmt’a dmt’) ﬁfnRF (xmt” d t”)}A{~SRF(xnt’a dnt’)yﬁgRF (Int”v dnt”)}a
whereA denotes the set difference.

Proceed by contradiction. Suppose that # k,. Then by Assumption B1,
m andn bunching at the state-choice cell of their common SR is immediately
detected{ D> (2, doner ), DEFE (2pprry Ay ) Y VPSR (200, dyir ), Do (T, digr )} =
{pSRE (B a8 1. In this casep qualifies as the observatidnin the second condition,

m’m mn

SO

30, A5 (e dye ), 57T (g, i)}

= B @ontry dyr )y B (@t o) YD (@t o), By (g )}
contradiction to the non-existence of such an observation who reports two different
probabilities at one state-choice cell. Heneg,= k, andk; = k;, = k;, = k;.

Second, to show that for any pair of observations of the same type, they must belong
to the same equivalence class, we proceed by contradiction. Consider two observations
i andj of the same typé, buti ~? j. DefineXl! ¥U! as in the proof of Lemma 1.

Now for any(z,d) € X! C ¥¥ and any(2/,d") € XV C ©* by Assumption SR-No
Islands,3 two observations: andn of type k, with m reporting af(x, d) andn at (z/, d'),

and m ~® n. Since(z,d) € I, 3 observation’ ¢ [i] who reports atz, d) and some
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other (2", d") € Yll. Obviously,i’ andm share a common SR &t,d). If (z,d) is a
bunching state-choice cell, Assumption B1 immediately identifies this and Assumption B2
makes sure that an observatiorn that bridges’ andm’s non-bunching SRs. Linking
technology under bunching impli¢s~Z m. If (z,d) is not a bunching state-choice cell,

the linking technology under bunching directly givés-? m. By the same argument,

3j" € [j] such thatj’ ~P n. Therefore; ~P i’ ~B m ~B n ~B j' ~B j Therefore,

[i) N [j] = {7, 4, m,n} # (. A contradiction to the definition of equivalence clas.
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