Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-96-10

1996-01-01

Leap Forward Virtual Clock: An O(loglogN) Fair Queuing Scheme
with Guaranteed Delays and Throughput Fairness

Subhash Suri, George Varghese, and Girish P. Chandranmenon

We describe an efficient fair queuing scheme, Leap Forward Virtual Clock, that provides end-to-
end delay bounds almost identical to that of PGPS fair queuing, along with throughput fairness.
Our scheme can be implemented with a worst-case time O(loglogN) per packet guaranteed
delay and throughput fairness. As its name suggests, our scheme is based on Zhang's virtual
clock. While the original virtual clock scheme does not achieve throughput fairness, we can
modify it with a simple leap forward mechanism that keeps the server clock from lagging too far
behind the packet tags. We prove that our scheme guarantees a fair... Read complete abstract
on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Suri, Subhash; Varghese, George; and Chandranmenon, Girish P, "Leap Forward Virtual Clock: An
O(loglogN) Fair Queuing Scheme with Guaranteed Delays and Throughput Fairness" Report Number:
WUCS-96-10 (1996). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/402

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/402?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/402

Leap Forward Virtual Clock: An O(loglogN) Fair Queuing Scheme with Guaranteed
Delays and Throughput Fairness

Subhash Suri, George Varghese, and Girish P. Chandranmenon

Complete Abstract:

We describe an efficient fair queuing scheme, Leap Forward Virtual Clock, that provides end-to-end delay
bounds almost identical to that of PGPS fair queuing, along with throughput fairness. Our scheme can be
implemented with a worst-case time O(loglogN) per packet guaranteed delay and throughput fairness. As
its name suggests, our scheme is based on Zhang's virtual clock. While the original virtual clock scheme
does not achieve throughput fairness, we can modify it with a simple leap forward mechanism that keeps
the server clock from lagging too far behind the packet tags. We prove that our scheme guarantees a fair
share of the available bandwidth to each of the backlogged users, while precisely matching the delay
bounds of PGPS schemes. In order to improve computational efficiency, we introduce a "coarsened"
version of our scheme in which all tags assume values from a set of O(N) integers. We then use
"approximate sorting" and a finite-universe priority queue to achieve O(loglogN) processing time per
packet. We can show that the coarsening of tags increases the delay bound by a very small additive
constant. Finally, our proofs are based on a dual version of the algorithm called Leap Backward, whose
behavior is identical to the Leap Forward but that admits a simpler analysis.

https://openscholarship.wustl.edu/cse_research/402?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/402?utm_source=openscholarship.wustl.edu%2Fcse_research%2F402&utm_medium=PDF&utm_campaign=PDFCoverPages

Leap Forward Virtual Clock:
An O(log log N) Fair Queuing Scheme with
Guaranteed Delays and Throughput Fairness

Subhash Suri
George Varghese
Girish P. Chandranmenon

wucs-96-10

April 15, 1996

Department of Computer Science
Campus Box 1045

Washington University

One Brookings Drive

St. Louis, MO 63130-4899

Abstract

We describe an efficient fair queuing scheme, Leap Forward Virtual Clock, that provides end-
to-end delay bounds almost identical to that of PGPS fair queuing, along with throughput
fairness. Our scheme can be implemented with a worst-case time O(loglog N) per packet
(inclusive of sorting costs), which improves upon all previcusly known schemes that achieve
guaranteed delay and throughput fairness. As its name suggests, our scheme is based on
Zhang’s virtual clock. While the original virtual clock scheme does not achieve throughput
fairness, we can modify it with a simple leap forward mechanism that keeps the server
clock from lagging too far behind the packet tags. We prove that our scheme guarantees
a fair share of the available bandwidth to each of the backlogged users, while precisely
matching the delay bounds of PGPS schemes. In order to improve computational efficiency,
we introduce a “coarsened” version of our scheme in which all tags assume values from a set
of O(N}) integers. We then use “approximate sorting” and a finite-universe priority queue
to achieve O(loglog N) processing time per packet. We can show that the coarsening of tags
increases the delay bound by a very small additive constant. Finally, our proofs are based
on a dual version of the algorithm called Leap Backward, whose behavior is identical to the
Leap Forward but that admits a simpler analysis.

Leap Forward Virtual Clock:
An O(loglog N) Fair Queuing Scheme with
Guaranteed Delays and Throughput Fairness

Subhash Suri
suri@cs. wusti.edu
+1 314 935 7546

George Varghese
varghese@askew. wustl.edu
+1 314 935 4963

Girish P. Chandranmenon
girish@cs.wustl.edu
+1 314 935 4163

1. Introduction

Due to the popularity of the World Wide Web and teleconferencing tools such as wb, vat and vic,
traffic on the Internet is growing quite rapidly. Future applications like electronic commerce, video-
on-demand, remote medical diagnosis, and multiparty games are likely to strain the capabilities of the
Internet even further. While the traffic volume is clearly growing in quantity, it is also undergoing
a fundamental qualitative change, in large part due to the increase in audio and video data. A
fundamental distinction between an audio/video application and more traditional applications like
file transfer is that the former usually demands a quality-of-service (QoS) guarantee, which the latter
does not. Specifically, unless a large fraction of the audio or video packets are received within a
bounded delay, the received signal fails to meet perceptual standards acceptable to most users. This
latency requirement introduces a new dimension for traditional data networks like the Internet.

As the Internet expands to include a variety of commercial and private users, another form of
quality of service, called traffic isolation, becomes important; this is desirable even for traditional
data applications. In the new milieu, we need firewalls between contending users, so that well-
behaved users can be insulated from ill-behaved ones. Today’s Internet does not contain such
firewalls. A rogue source that sends at an uncontrolled rate can seize a large fraction of the buffers
at an intermediate router and harm well-behaved users. A solution to this problem is needed to
isolate the effects of bad behavior to users that are behaving badly.

If cost were no concern, then simple-minded solutions could be used. For instance, the Internet
could be over-engineered using the fastest links to guarantee QoS for latency-critical applications,
and routers could be equipped with special-purpose hardware to run traffic isolation algorithms at
Gigabit speeds. Such an Internet will be underutilized most of the time, and expensive to build and

maintain.

Leap Forward Virtual Clock 2

However, it is clear that cost #s a major issue. As commercial applications begin to use the
Internet, funding for the Internet will shift from government subsidies to revenue obtained from
customers. In this new setting, market forces will require cost-effective solutions. Even today, with
limited and shrinking government subsidies, it is important to consider cheap solutions that can be
widely deployed using existing links and existing hardware platforms.

There is a remarkable scheme called Weighted Fair Queuing (WFQ) [1] that has been regarded
as a central mechanism for the new Integrated Services Internet. WFQ provides guaranteed delay
bounds, fair throughput sharing, as well as traffic isolation. Unfortunately, the computational
overhead for implementing this scheme is rather large—it requires O(N) computation per packet,
where N is the number of conversations (flows) using a link. Other more efficient variants [9], fail
to match the delay bounds provided by WFQ. Very recently, an algorithm has been proposed [10]
whose service guarantee is almost as good as that of WFQ, but the new algorithm still requires
O(log N) time per packet.

While algorithms requiring O(log N) time per packet are a great improvement over the O(N)
time schemes, logarithmic computational overhead remains a considerable cost for routers that run
at Gigabit speeds. Some papers on fair queuing, such as [5, 10], suggest using special-purpose hard-
ware at routers to overcome the O(log N) sorting bottleneck.! However, the use of special-purpose
hardware drives up the cost of routers. Also, it seems better to implement router scheduling al-
gorithms in software for the following reasons: (1) given the rate at which the computing power
has been increasing for the last decade, by the time special-purpose hardware is designed and de-
ployed, a general purpose CPU may offer similar or even better performance, and (2) the algorithms
and protocols for fair queuing are likely to evolve; software upgrades are cheaper and easier than
retrofitting hardware.

In this paper, we describe a fair quening scheme called Leap Forward Virtual Clock that almost
matches the delay, throughput fairness, and traffic isolation performance of Weighted Fair Queuing,
but requires only O(loglog N) time per packet to implement. This makes our scheme a viable
candidate for efficient software implementation in Internet routers. The O(loglog N) bound is a small
constant for all practical purposes—for instance, loglog N < 5 for all N < 4 #10°; the constants
buried under the order of complexity notation are also reasonable. Note that our computational cost
includes all sorting overheads. This contrasts with several existing algorithms [5, 10], whose O(1)
time complexity bound accounts only for “tag computation;” these methods still incur an additional
cost of O(log N) per packet to insert each tag in a priority queue. Thus, our algorithm appears to
be the first to break the Q(log N) sorting bottleneck, while retaining all the desirable properties of
WFQ, namely, throughput fairness and delay bounds.

Our paper also shows that the Virtual Clock scheme of Zhang [12] can be modified to achieve delay
and throughput properties comparable to WFQ. Previous papers have shown that Virtual Clock
provided identical delay bounds to PGPS [11, 3], but did not provide fair throughput sharing [5, 10).
We present an intuitive “Leap Forward” modification to Virtual Clock that preserves throughput
fairness. By contrast, many previous approaches to providing efficient fair queuing have been based
on modifications to WFQ (e.g., [10]).?

The rest of the paper is organized as follows. In Section 2 we review previous fair queuing
schemes. In Section 3, we introduce our main algorithm, Leap Forward Virtual Clock. In Section 4,
we introduce a dual version of this algorithm, called Leap Backward Virtual Clock, whose extenal
behavior is identical to Leap Forward but lends itself to an easier analysis. We prove our end-
to-end delay bound theorem in Section 5, and throughput fairness theorem in Section 6. Finally,
in Section 7, we describe our tag coarsening technique and the Ologlog N) time implementation.

LIndeed, by using special-purpose hardware, it appears possible to implement WFQ in a(1) time.
2We have not been abie to determine the details of the Frame Based Frame Queuing scheme because the available
Technical Report [10] only refers to the scheme without providing details.

Leap Forward Virtual Clock 3

2. Previous Work

FIFO is perhaps the simplest possible scheduling algorithm, but it falls well short of providing
throughput fairness. On the other end of the spectrum lies idealized round-robin (or GPS), which
provides ideal latency and fairness, but is computationally impractical. There are a number of
known scheduling algorithms that have properties similar to GPS at a more reasonable cost. We
only review work-conserving scheduling algorithms, since they lead to better delay bounds than
non-work-conserving algorithms. (A scheduling algorithm is work-conserving if the server is never
idle as long as there is a packet in an input queue.) Non-work-conserving disciplines, like the one
proposed by Figuera and Pasquale [3], can be useful for bounding jitter, which is important in some
applications. The ideas of our paper can be combined with the results of [3] to bound jitter in the
context of a non-work-conserving server (see concluding remarks).

Weighted Fair Queuning (WFQ) was proposed by Demers, Keshav and Shenker [1], who suggested
its efficacy for throughput fairness and delay bounds. The main idea behind WF(Q is to compute a
tag for each packet based on the packet’s scheduled departure time in an idealized bit-by-bit round-
robin discipline, and then to serve packets in non-decreasing order of tag values. If N is the number
of active flows contending for a link, then tag computation/update can take ©(N) time.

The work of Demers et al. [1] was extended by Parekh and Gallager [7, 8], who showed that end-
to-end delay bound for a flow can be computed under the following assumptions: (1) the burstiness
of the flow is controlled by a suitable token bucket filter, and (2) all servers in the path of a flow
use the WFQ discipline. Parekh and Gallager use the name PGPS (packetized general processor
sharing) for WFQ, and they also refer to the idealized form of PGPS as GPS. We will use the terms
PGPS and WFQ interchangably in this paper. The end-to-end delay bounds proved by Parekh and
Gallager serve as benchmarks for comparing delay guarantees of other fair queuning algorithms.

Zhang [12] introduced Virtual Clock Fair Queuing, in which each packet is stamped with a tag
based on a hypothetical clock that “ticks” at the rate assigned to that packet’s flow. As in WFQ), the
Virtual Clock scheme services packets in the non-decreasing order of packet tags. Zhang’s scheme
achieves the PGPS delay bound [3, 11] but fails to provide throughput fairness; Figure 1 shows an
example where throughput fairness can be arbitrarily bad. The throughput unfairness of Virtual
Clock is removed by Golestani’s Self-Clocked Fair Queuing algorithm [5]. Unfortunately, this scheme
(SCFQ) suffers from large delay bounds, as shown by [4]—the worst-case delay of a packet may be
almost N times the delay guaranteed by PGPS, where N is the number of active flows.

Deficit Round Robin (DRR) [9], a variation of the classical round robin is also able to guarantee
throughput fairness. Instead of servicing one packet per flow in each round, DRR services upto a
specified amount @ per flow. DRR is almost as simple as round robin and can be implemented in
(1) time per packet. Unfortunately, like SCFQ, the delay bounds for DRR can be unacceptably
large. Recently, a new scheme proposed by Stiliadis and Varma [10], called Frame Based FQ, claims
to guarantee PGPS delay and fairness bounds and be implementable in O(log N) time per packet.
We have not been able to obtain details of this scheme, except for a brief description of its properties
in [10], because of some patent-related issues. Table 1 summarizes the salient features of perviously
known scheduling algorithms, and compares them to our new Leap Forward Virtual Clock scheme.

It can be seen from the table that our Leap Forward Virtual Clock scheme provides end-to-end
delay bounds almost identical to that of PGPS fair queuning, along with throughput fairness, and
yet can be implemented with a worst-case time O(log log N} per packet. No other scheme we know
of matches these bounds.

We remark that a vanilla implementation of our algorithm has eractly the same delay bounds as
PGPS and needs O(log N) time per packet, thus matching the Stiliadis and Varma [10] scheme. How-
ever, the use of “tag coarsening” idea leads to an “exponential speedup” resulting in an O(loglog N')

Leap Forward Virtual Clock 4

Scheme Delay Bound | Fairness | Efficiency
GPS 0 Fair Impractical
PGPS Small Fair O(N)
SCFQ Large Fair O(log N)
Virtual Clock Small Unfair O{log N)
Deficit Round Robin Large Fair 0(1)
Frame Based FQ Small Fair O(log N)
Leap Forward VC Small Fair O(loglog N)

Table 1: A comparison of several well-known scheduling algorithms. By a “small” delay,
we mean a delay that is only a small additive constant larger than GPS delay, while
“fair” throughput is fairness comparable to that of SCFQ or GPS.

time implementation. Tag coarsening introduces only a minor increase in the delay bound—indeed,
the increase is comparable to the difference between the delay bounds of PGPS and GPS. Since this
difference has been considered negligible, it appears that our exponential speedup comes at a negli-
gible cost in the delay bound. Our coarsening technique should have broader applicability, since it
introduces the useful notion of trading small delays for significant gains in computational efficiency.

3. Leap Forward Virtual Clock

We use the term flow to denote a logical connection between a source and a destination. Each packet
in a flow carries with it the ID of the flow to which it belongs. The packets in a flow pass through
a sequence of servers (or, routers) along their path to the destination. We concentrate on analyzing
the performance of our queuing algorithm at a single server. We will show that our algorithm falls
within the general framework of guaranteed rate (GR) fair-queuing algorithms as defined by Goyal
et al. [4], which allows us to establish a PGPS-like bound on the end-to-end delay in a multi-hop
system. In the following, therefore, we describe the algorithm at a single server S, with an output
rate B bits per second.

Let f1, fa,..., fn denote the set of flows that are serviced at S, where flow f; has a guaranteed
rate of r;, bits/sec, and Zf:l ry. = B. The sequence of packets in a particular flow f is denoted
P} P} - -, Py, and their sizes (in bits) are denoted I},1%,...,lj. As remarked earlier, we will assume
a work-conserving server: as long there is a packet queued for some flow, the server will not be idle.
The virtual clock underlying our fair queuing algorithm is associated with the server, and we can
think of it as a counter that keeps track of the number of bits sent out by S. The output rate of S
is B bits/sec, and thus servicing a packet p of length ! increments the clock by I/B. Every packet
to be serviced by S receives a tag, indicating the server clock value by which it must be serviced.
The factors determining the tag of a packet p of flow f are

1. the length of p,
2. the rate assigned to f, and

3. the server clock value when p reaches the head of its queue.

The tag of the jth packet in flow f is denoted T(p'})

Leap Forward Virtual Clock 5

The tags associated with the packets of a flow can be interpreted as a local clock for that flow.
Under ideal traffic conditions, when all flows are sending packets at their guaranteed rates, the local
clocks of all flows (almost) concur with the server clock. In reality, flows send packets in bursts
and some flows misbehave, causing local clocks to deviate significantly from the server clock. The
following simple example, due to Stiliadis and Varma [10], shows how the original virtual clock
scheme of Zhang fails to provide throughput fairness. Figure 1 illustrates this example.

Consider two flows, each with a guaranteed rate of 0.5 byte/sec, and let the server rate be 1
byte/sec. For the first 1000 secs, only flow 1 is active, and it sends at twice its allocated rate. In
the absence of any other flows, it is able to send 1000 bytes during this interval. At server time
1000, flow 2 becomes active. The first packet of flow 2 receives the virtual clock value 1000,
while the virtual clock of flow 1 equals 2000. Thus, for the next 500 seconds, flow 2 can send
at twice its rate, and flow 1 will not be able to send any packet. So, even though both flows
are backlogged during the time interval [1000, 1500], one of the flows receives no service at all,
violating throughput fairness.

flow 2

T MM

output channel

t 0 11000 1500 time —e

Figure 1: Why the Virtual Clock scheme does not guarantee throughput fairness.

Our acheme will rectify this shortcoming by ensuring that the tags assigned to different flows at
any time lie within a bounded interval of the current server clock value. First, we need to define a
few more terms.

. Let & denote the current server time (clock value) at any instant. The arrival time of a packet
P}, denoted A(p}), is defined as the server time when p} reaches the head of its flow queue. We
define the tag (scheduled service time) of p:’, as follows:

. . B
T(p}) = max{A(p}), T(p;")} + ot (1)

The definition of service tags is nearly identical to the one used in the classical virtual clock
algorithm;3 later we will describe an important modification of the original virtual clock scheme,
where we occasionally advance the server clock.

Define the current packet of a flow f, denoted pj, to be the one at the head of its queue. Define
the current tag of a flow f, denoted 17, to be the larger of the current server time and the tag of the

current packet of f. That is,

t; = max{T(p}), 3} (2)

30One minor difference: instead of a real-time clock, we use a discrete server clock to stamp arrival instants. This
only helps in the implementation because we can dispense with the real-time clock.

Leap Forward Virtual Clock 6

Let 77°Y denote the tag of the last packet sent by f; it is zero if no packet of f has been sent. For
technical convenience, if a flow f does not have a packet in its queune at the current time, then we

assume p; = NIL,1; = 0, and t; = max {t;’"‘", t¢ ». Therefore, the following formula for computing

tags is equivalent to the one in Eq. {1):

) ¥
T(p}) = max{th™™, £} + é. (3)

Finally, we define a quantity A that controls the leap forward step in our algorithm:

A = maex (l}n“)) (4)

I ry

where I7%% ig the size of the largest packet in flow f. Thus, A is the time needed to send the largest
packet by a flow at its guaranteed rate. With these preliminaries, we are now ready to describe our
leap forward virtual clock fair queuing algorithm.

Leap Forward Virtual Clock

1. [Initialize.] Each flow f has a variable t3"*", which maintains the tag of the last
packet of f serviced. The global variable t¢ maintains the server clock. All these
variables are initialized to 0.

2. [Enqueue.] When a packet p} arrives at the head of f’s queue, its tag is computed
using the expression in Eq. (3), and T(p_’;) is inserted into the priority queue H.

3. [Dequeue] When the server is ready to service the next packet, let p be the packet
in the priority queue H having the smallest tag. Suppose that p belongs to the flow

I
¢ [Leap Forward.] If T(p) > ¢ + 2A, then set t = 15 + A.

¢ [Service.] Transmit the packet p. Increment the server clock to 5 + -f;,-, where
{ is the size of p and B is the server rate. Delete p’s entry from H, and update
t;rcu = T(P)

The algorithm maintains a priority queue H over the current packets of each flow in the increasing
order of their tags. Within each flow the packets are serviced in first-in-first-out order, and the first
unserviced packet has its tag in H. (Thus, each flow with unsent packets waiting in its queue
has exactly one packet in H.) The server always picks the packet p in H with the smallest tag
for servicing next; when p’s transmission is complete, p is deleted from H and the server clock is
incremented by {/B, where [is the length of p.

The algorithm initializes the server clock to zero at the start, and whenever the server becomes
idle. After the initialization, the algorithm repeatedly performs the following two operations asyn-
chronously: enqueue, which inserts into H a packet that reaches the head of its queue, and dequeue,
which picks the packet in H with the smallest tag for servicing next. QOur crucial modification of
the Virtual Clock scheme occurs in the dequeue operation where we advance the server clock by A

Leap Forward Virtual Clock 7

whenever the smallest tag in H differs from ¢ by more than 2A. This step is the key to achieving
throughput fairness. Figure 2 gives an example illustrating the leap forward (and leap backward)
operation.

tC

s . Al B0 1

0 A 2A 34
(2)

b NTETH

0 A 2A 3A
()

<

ks 1

0 A 24 eL
©

Figure 2: lllustration of the Leap Forward and Leap Backward steps. In Fig. (a), the server clock lags
more than 2A behind the smallest tag in the priority queue. Fig. (b) shows the Leap Forward view, where
t; advances by A, while the tags remains the same. Fig. (c) shows the Leap Backward view, where all tags
retreat by A, while the server clock remains the same.

4. Leap Backward Virtual Clock

While Leap Forward is an elegant and simple modification of the original virtual clock, its analysis
is complicated by the leap forward step, which can advance the server clock in unpredictable ways.
However, a dual version of this algorithm, which we call Leap Backward, has identical behavior but
allows an easier analysis. It differs from Leap Forward only in the clock shifting step.

Whenever the Leap Forward scheme advances the server clock by A, the Leap Backward
scheme decreases the tags of all active flows by A.

Again, see Figure 2. The two schemes have identical external behaviors because the only difference
between them is a relativistic time shift, which does not change the values of tags relative to the
server clock. Unlike Leap Forward, which advances a single value (server clock), Leap Backward
might have to update tags of all the flows at every step, making it computationally unattractive.
However, our main motivation for introducing Leap Backward is the simplicity of its analysis; Leap
Forward is clearly the better choice for implementation. A key property of Leap Backward scheme
that proves critical in analyzing delay bounds is that its server clock runs almost in lockstep with
real time. Due to their behavioral equivalence, of course, the delay and throughput bounds for the
two systems are the same, and so we will only analyze the backward system.

Leap Forward Virtual Clock 8

Leap Backward Virtual Clock

1. [Enqueue.] Identical to Leap Forward scheme.

2. [Dequeue.] Let p be the packet in the priority queue having the smallest tag.
Suppose that p belongs to the flow f.

¢ [Leap Backward.] If T(p) > £ + 2A, then
(3) For all flows f, update t‘}"" =t — A,
(b) For all tags T in H, update T = T — A.

¢ [Service.] Transmit the packet p. Increment the server clock to £ + %, where
{ is the size of p and B is the server rate. Delete p’s entry from H, and update
t?rev = T(p)

Leap Backward has the same behavior as the Leap Forward scheme, as proved in the following
lemma. Specifically, given an identical packet sequence, the two queuing schemes will output packets
in the same sequence at the same time.

Lemma 4.1 (Relativistic Equivalence) Let LF and LB be two systems using the Leap Forward
and Leap Backward server disciplines, respectively. If the two systems are input the same arrival
distributions of packets and are run concurrently, then the following holds:

® Each flow f has the same relative tag (t}°" — 1) in both the systems.

o The priority queues of the two systems have tags of the same packets, and the relative values
of these tags (T'(p) — t¢) are the same in both systems.

ProoF. The only difference between LF and LB is that whenever the former adds A to the server
clock, the latter subtracts A from each of the tags. It follows then that the relative difference
between a tag and the server clock in both the system is the same. Finally, in both systems, the
next packet to be serviced is the one whose tag is closest to the server clock, the sequence of packets
serviced and the packets at the head of each queue are the same. This completes the proof. m]

In the next section, we show that Leap Backward guarantees that a packet is serviced before the
server clock reaches its tag value. Observe that a packet’s tag can be modified by the algorithm,
but since the modification only decreases a tag (Leap Backward), servicing a packet by its current
tag surely guarantees that it is serviced by its original tag.

5. Proof of the Delay Bound

A PGPS type delay bound is not obvious for the virtual clock scheme. Simply servicing packets in
the order of increasing tags does not guarantee that the server has enough time to meet all deadlines.
Consider the hypothetical example of N flows, each with a guaranteed rate of 1 byte/sec. Suppose

Leap Forward Virtual Clock 9

a (small) 10 byte packet artives at the head of flow f when the server clock has value 1000, and the
virtual clock scheme assigns it a tag at least as large as 1010. It might be possible that each of the
remaining N — 1 flows already has a large packet, say of size 1000 bytes, in the priority queue with
tags strictly less than 1010—these packets may have arrived much earlier, say around time zero.
Then, the small packet in the first flow will suffer a delay of about 1000 secs, in violation of the
PGPS delay guarantee. In the PGPS system, the delay of the 10-byte packet should be about 10
secs.

We will show that situations like the one described above cannot occur in our Leap Backward
scheme or in ordinary Virtual Clock[12]. We first establish the delay bound at a single server, then
extend it to the end-to-end case.

5.1. Delay at a single server

The key to our proof is an important inequality relating a time window (¢, t) and the total size
of all packets with service tags belonging to that window (Lemma 5.1). The lemma is intuitively
depicted in Fig. 3. Consider an arbitrary future time ¢ > t. Packets with tags less than ¢ represent
the backlog that must be serviced before the server advances to ¢, and the server has bandwidth to
transmit (t —¢¢) B bits during the interval (5,¢). Thus, a necessary condition is that the backlog be
less than (1< — ¢) B. In fact, a stronger inequality between the backlog packet sizes and the server
bandwidth is needed because: i) currently inactive flows can send new packets during the interval
(t¢,1), and ii) a flow with its current tag less than ¢ can also schedule another packet in the interval
(tS,t). The corrective term needed in the inequality turns out to be each packet’s “slack,” which
represents the gap between ¢ and the packet’s tag (Figure 3).

Mg g
c c
fs i ¢ <
Server Clock " Slack for flow f -

Figure 3: Lemma 5.1 states that the backlog of packets with tags less than an arbitrary time ¢ is never
more than the number of bits that the server can transmit in the interval (t%,t) minus the slack contnibuted
by each flow.

To state the lemma formally we need the following notation. Consider the current server time
t5, and any future time ¢ > 5. Let ®f denote the set of all flows whose current tags lie in the open
interval (¢, t). That is,

o = {flt; < &} < t}.
Recall that the current tag of any flow is never less than the current server time. Not all flows of &
necessarily have a packet at the head of their queue at the current time. A flow might have had a
packet tagged with clock value between £ and ¢, which has already been serviced, and so its current
tag equals the tag of that packet. Thus, ®f is a superset of flows whose packets might need to be
serviced before server clock reaches ¢.

Lemma 5.1 (Backlog Inequality) Let S be a server, with output rate B, using the Leap Backward
algorithm. IftS is the current server lime, and t > tS is an arbitrary time in the fulure, then the

following bound holds:
Sl < @—t)B - Y (t—15) 1y (5)
Je®; e

Leap Forward Virtual Clock 10

ProoF. Qur proof is by induction on the number of events, where an event is one of the threee
possible steps of the algorithm: packet servicing, insertion of a new tag (enqueue), and the Leap
Backward step. The base case of the induction holds trivially at initialization, where 5 = 0 and the
priority queue is empty. In the following, we show that the inequality is preserved by each of the
three events.

1. [Service.] The server chooses the packet p having the smallest tag in H for service, deletes p

from H, and the server clock is advanced by the amount I/ B, where ! is the length of p. This
event decreases the left hand side of the inequality by I. We show that the right hand side
decreases by no more than /.
Let t' = ¢S + I/ B be the new server clock value. Then, the first term in the right hand side
decreases by (1 —15)B — (1 —t')B = (t' —t)B, which is precisely {. The second term remains
unchanged, since there can be no f for which ¢} € (t;, ¢')—that would contradict Ineq. (5)
for t = ¢ because p had the smallest tag in H and both p and the current packet of f would
need to be serviced before ¢'. Thus, advancing the server clock from #¢ to t’ does not change
the second term, and this proves the inductive step for the first type of event.

2. [Enqueue.] Suppose a packet py arrives at the head of queue for the flow f. Let 5 be the
current tag of f before p; arrives. Then, py receives the following tag:

!
T(ps) = t§ + #

There are two cases to consider, depending upon whether or not T'(py) < t. If T(p;) 2> ¢,
then f ¢ ®f, and the lemma clearly holds. On the other hand, if T(p;) < t, then the left hand
side of our inequality increases by I;. The first term of the right hand side remains unchanged,

but the second term decreases by
(E=t3)ry — E=T(ps)) vy = (T{py) =27} rs = 1y,
which shows that the inequality is preserved.

3. [Leap Backward) This event occurs when the minimum tag in H exceeds ¢ + 2A. Clearly,
decreasing the current tags does not change the left hand side, but it significantly reduces the
right hand side. We will show that right hand side has sufficient slack to absorb the decrease
caused by this relative advancement of the server clock. Indeed, we prove that a stronger

inequality holds:

D5 < Y-ty - 3o -t5)ry, (6)
fedf fedg feds
which clearly implies the lemma as Z_fe(bf ry < B. Let us consider any flow f € ®f, whose
current packet is p; of length I;. Let t{ denote the current time; let ¢ and 1}, respectively,
denote the current tag of f before and after the Leap Backward step. Then, éy assumption,
t; > 15+ 2A. Together with the Leap Backward equality, namely, i} =t — A, we get the

fl
following inequalities:

A < 17 -1

I}TIGI

< 1%~ ¢
l'] ! *

P < (t—1) — (t—1})) ry.

Leap Forward Virtual Clock 11

The right hand side of the above inequality is the contribution of f to the right hand side
of Ineq. (5) after the Leap Backward step. Since I7'*® denotes the maximum size of a packet
of f, it follows that Leap Backward preserves the inequality for each flow, and therefore also
for the set of flows ®f.

Thus, we have shown that each of the three types of events that modify the priority queue or
the packet tags preserves the inequality. This completes the proof. (]

The preceding lemma implies that at any time ¢ the server has sufficient bandwidth to service
all the packets scheduled before ¢. This allows us to bound the service time of a packet.

Lemma 5.2 (Service Time) A packet p is serviced by the time the server clock reaches the value
of its tag, namely, T(p). Thus no packet in H has a tag less than 5.

PRoOOF. Our proof is by induction on the number of Dequeue operations. The base case (n = 0)
hoids trivially. Now, assume that the lemma holds for n operations, where the nth dequeue services
packet ¢, with tag T'(¢). Let t be the server clock when the service of ¢ is completed. Suppose that
the (n + 1)st operation services a packet p with tag T'(p). Since packets are serviced in the order of
increasing tags, we must have T(p) > T'(q). If I, is the length of p, then invoking Lemma 5.1 with
t = T'(p) gives

L < (T(p) - 13)B.

Thus, the service of p is completed at time ¢/ = ¢ + % < T{p). Thus, the (n + 1)st dequeue
operation is finished by T'(p), completing the induction. Qur proof above shows that p is serviced

no later than its current tag T(p). This value may be smaller than the original tag due to Leap
Backward adjustments, but that only works in favor of our delay bound proof. m]

The preceding lemma bounds a packet’s service time in terms of the virtual server clock, whereas
one might prefer it in terms of real time. This, however, is easy because these two time values differ
only by a small constant under Leap Backward scheme.

Lemma 5.3 {Server Clock Deviation)} The server clock value in the Leap Backward algorithm
always satisfies the following bounds:

te St S+ 4

lmdf

where t is real time and f = 5.

ProoF. During the busy period, the server clock is ticking at the same rate as the real time, with
the only difference that while the real time advances smoothly, the server clock advances in discrete
steps of size I;/B, where I; are the sizes of packets serviced by the server. The server clock is
incremented by {/B when it completes the service of p. Thus, real time never lags the server clock,
and it can be ahead of the server clock by at most %2, where [I"™%% ig the size of the largest packet
serviced by B. This establishes the lemma. o

The preceding two lemmas imply that a packet p leaves the Leap Backward system no later than
the real time value T(p) + B, where T(p) is the initial tag of packet p and # is the time spent by
the server in transmitting the largest packet in the system. We will use this in the next subsection
to prove end-to-end delay bounds.

Leap Forward Virtual Clock 12

5.2. End-to-End Delay Bound

Seminal work on End-to-end delay bounds has been done by Parekh and Gallager [7, 8]. Recently,
Goyal et al. [4] have synthesized an elegant and general strategy for proving delay bounds in the style
of Parekh-Gallager. Their formulation applies to a large class of scheduling/queuing algorithms,
which they call Guaranteed Rate scheduling.? We show that Leap Backward and Leap Forward
schemes also belong to the Guaranteed Rate class, and thus we can use the framework of [4] to
derive end-to-end delay bounds. We begin by reviewing the definition of the Guaranteed Rate class

from [4].
Consider a flow f with a guaranteed rate ry. Let p:} and Ij denote the jth packet of flow f
and its length. Let G'RC'(p}) denote the GR clock value a.ssngned to p}, and let AG(p}) denote the

arrival time of packet p’ at the server; the packet arrival in the GR. system is measured in real time,
and so we use primed notatlon to distinguish it from our arrival time, which is measured in server
clock time. The guaranteed rate clock values are defined as follows:

GRC() = 0
. . . 4
GRC(p)) = max{Ac(p}), GRC(F™")} + # (7

A scheduling algorithm belongs to the class GR if it can guarantee that a packet p} is transmitted

by GRC (7) + 3, where 3 is a constant dependent only on the scheduling algorithm and the server.
We show tilat the Leap Forward (and Leap Backward) scheme belongs to this class. We first show

a preliminary lemma:

Lemma 5.4 (Initial Tags are Bounded by Guaranteed Rate Clock) LetT (p_’r) be the tag as-

signed to a packet p’ by a server using the Leap Backward Virtual Clock algorithm; this is the inilial
tag computed at the time of packet’s arrival, and before any Leap Backward adjustments made by
the algorithm. Then, T(p} < GRC(p})

Proor. We prove the lemma by induction on j, the number of pa.cket.s in a flow f. The base
case {j = 0) clearly holds as GRC(p_,) = T(pf) = 0. The tag T(p} is computed Leap Backward
computes the tag using Eq. (1):

; X - 1y
T(p}) = max {A(p}), Te(r} ")} + ﬁ

where TL(p_’;'l) is the final value of the tag as adjusted by Leap Backward algorithm. Clearly,

TL(p} y < T(pv1 '), since Leap Backward only decreases a tag. Next, while A is measured
in server clock tlme and Ag is measured in real time, Lemma 5.3 shows that these times satisfy
A(p}) < Ag(p}) Finally, the induction hypothesis guarantees that T(p}_l) < G'RC(p}_l), which

together with the preceding inequalities establishes the claim that T(p}) < GRC(p})]

Lemma 5.5 (Leap Backward is GR) Leap Backward and Leap Forward Virtual Clock algorithms
belong to the class GR, for the constant § = , where I™% {5 the largest size packet transmitted
by the server and B is server’s rale.

1Many well-known fair queueing algorithms, including virtual clock, SCFQ, PGPS, belong to the class GR.

Leap Forward Virtual Clock 13

ProoF. Lemmas 5.2 and 5.3 show that a packet p} is transmitted by the server no later than real

time T(p_’,) + 3, which is no later than GRC(p}) + A, as proved by Lemma 5.4. This completes the
proof. (m]

The GR framework allows us to bound end-to-end delay assuming that the burstiness of flow f
is controlled. The use of a leaky bucket traffic shaper at the source is a standard assumption; we
will use this assumption to establish a PGPS-like bound for our algorithm. We say that a flow f
obeys a leaky bucket process with parameters (oy, r) if the total number of bits arriving during a
interval (£1,22) in flow f satisfy

APplty ts) < o + rp(ta —t1).

Now suppose there are K servers along the path of a flow f, where the ith server is denoted i. Let
0 and K + 1, respectively, denote the source and the destination. Let 3 represent the value of 2 for
the i-th server. Let o' = §° 4 7+ where 7'+ ig the propagation delay between the servers ¢ and
i+ 1. Then, the following result about end-to-end delay is established in Goyal et al. [4].

Lemma 5.6 (Goyal et al.) Suppose that a flow f conforms to a leaky bucket process with parame-
ters (oy,ry), and the scheduling algorithm at each of the K servers on its path belongs to GR. Then,

the end-to-end delay of a packet p%, denoted by d7, is given by the following:
i !

%) K
gy k] l! i
&t < =+ (K-1)m —+§ o',
f_—r! ()j-_-alxrf i=1

We can now state our main theorem on end-to-end delay bound.

Theorem 5.1 (End-to-end Delay Bound for Leap Forward Fair Queuing) Suppose that a
flow f conforms to a leaky bucket process with parameters (¢;,7;), and the scheduling algorithm
at each of the K servers on its path is Leap Forward or Leap Backward Virtual Clock. Then, the
end-to-end delay of a packet p}, denoted by d}, is given by the following:

X K
gy n i! i
dn <& - e = .
- + (K - 1)mlax - +) a

i=1

ProoF. The theorem follows immediately from Lemmas 5.5 and 5.6. D

Goyal et al. [4] also show how to obtain probabilistic bounds on the end-to-end delay when the
burstiness of a flow is bounded with a stochastic process (e.g., exponentially bounded burstiness).
The same results also apply to our scheduling algorithms. In next section, we address the throughput
fairness of our algorithm.

Leap Forward Virtual Clock 14

6. Proof of Throughput Fairness

We will show that our scheme guarantees near-ideal throughput fairness. Informally, a scheme is
fair if each backlogged flow receives its fair share of the available server bandwidth. More formally,

we adopt a measure of throughput fairness defined by Golestani [5].

A flow is said to be backlogged during an interval (¢;,13) if the queue for flow f is never empty
during (21,%2). Let senty(1y,¢2) denote the total number of bits of f transmitted during (¢;,¢2) by the
server. The throughput fairness of an algorithm is defined to be the maximum (absolute) difference
between rate-normalized values of senty(t1,12) and sent;(t1,t2) over all pairs of backlogged flows
and over all intervals (1,%2). In other words, consider an execution of our scheduling algorithm, and

define F(t;,1,)} as follows:

ty(t1,t (2
F(t),t3) = max senty (t1,22) ST a(t1,12)
fvg rf rg

1

where max is over all pairs of flows that are backlogged during (¢, t2). Then, the throughput fairness
is measured by the worst-case maximum value of F(t;,¢2) over all intervals and all executions of the
queuing algorithm:
F = max F(t1,12).
{t1.t3) (f1,2)

We call a service discipline fair if the quantity F is asmall. In particular, F should be a constant,
independent of the length of the time interval [5]. PGPS schemes achieve F < I™%* and the self-
clocked fair queuing (SCFQ) has F < 2i™°®. However, no finite bound can be shown for the
original virtual clock scheme—in a worst case, F — oo.

We prove that our Leap Forward or Leap Backward Virtual Clock algorithms achieve F < g8I™s=,
The constant factor in this bound can be improved to 6 or even smaller with minor modification of
the algorithm, at the expense of slightly complicating the implementation. However, we believe that
these constants are small enough that throughput fairness should not be an issue for our algorithm,
even without the additional fine tuning.

Our proof of the throughput fairness depends crucially on the following fact: the current tags
of any two backlogged flows can differ by at most 3A at any time. Before we prove that lemma, we

establish the following auxiliary lemma.

Lemma 6.1 (Flow Tag Bound) Let f be a flow that currently does not have a packet in its queue.
Then, 17 < 1] +2A.

PROOF. If f does not have a current packet, then either 15 = #5 or £ = 7", In the former case,
the lemma holds trivially. In the latter case, let ¢ be the server time at which p;"" was serviced.,

At that moment, indeed T'(p}™*’) was the minimum value in H. If T(p§"°) > ¢+ 2A, then the
Leap Backward step must have decremented the tag of f by A, thus ensuring that when the service
of p}"" was completed, the gap between t"}"" and the current server time was less than 2A. This

completes the proof. 0

Lemma 6.2 {Tag Difference Bound) Let p; and ps be two packets present in the priorily queue
at any time. Then, their tags satisfy the following:

|T(p1) — T(p2)l < 3A.

Leap Forward Virtual Clock 15

Proo¥. Following our proof for the delay bound, we will use induction on the number of events.
The base case of the induction holds trivially at the start, when the priority queue is empty. There
are three events: enqueue, service, and leap backward; for the purpose of this lemma, the only
nontrivial event is the enqueue operation.

1. [Enqueue.] A new packet p arrives at the head of f’s queue. It receives the tag

T(py) = 15 + 2L
f
Since a flow can have at most one packet in H, at the time of p’s arrival, f had no packet
in H. By the preceding lemma, therefore, ¢; < ¢ + 2A. Since [;/r; < A, we see that
T(ps) < tS+ 3A. By the delay bound property of our scheme, every packet currently in H
has tag value at least as large as 1¢, and therefore the lemma holds for this case.

2. [Service.] The server picks the packet p with the minimum tag in H, services it, deletes it from
H, and the server clock advances by I/B. The lemma clearly holds in this case, since no new
packet is added in this step.

3. [Leap Backward)] The minimum tag in H has value greater than ¢¢ + 2A, and so the tags of
all flows are decremented by A. This step clearly does not change the relative magnitudes of
the tags.

This completes the proof of the lemma. (]

We can now prove the throughput fairness theorem for our algorithm.

Theorem 6.1 (Throughput Fairness for Leap Forward Fair Queuing) Leap Forward {or Leap
Backward) Virtual Clock algorithm guarantees that I < 8I™%%,

ProoF. Consider a flow f backlogged during an interval (¢1,23). Let p ' and p" +7 respectively, be
the packets at the head of f’s queue at time #; and ¢5. Observe that uring a.n mterval when f is
backlogged, the tags satisfy:

[l'+1

T(pit') = T(p}) + J;;" forj<i<j+m-—1.

Therefore, we have the following equation relating the tags of jth and (j 4+ m)th packet:

1 LLL) J
T(p}"'m - E f_
i=1
On the other hand, the total number of bits sent by f is upper bounded by
m—1 i+
senty(t1,12) < Z ‘:. ;
i=0 f

the packets p} through p}"'m ! have all been transmitted, and p} may be in the process of
transmission at time #3.

Leap Forward Virtual Clock 16

Letting p ! and p , respectively, denote packets at the head of f’s queue at the two ends of the
interval (tl,tz), we get the following inequality:

senty(ty,t2) : ¢ oy
— Y & N — 1y — Ao 2,
S < Twp) -) - 4 L (8)

Similarly, another flow g backlogged during the same interval yields:

senty(ty,t2) ; b I
— L= LT 1) — L g
= (ry) — T(py) . + . 9

Lemma 6.2 guarantees that tags of two packets present m H a.t, any t.une cannot differ by more

than 3A. Also by the definition of A, we have that |--L - -’-| |J— - -’—| < A. Plugging these
bounds in Eqgs. 8 and 9, we get

senty(t1,12) sentg(ty,12)
Ty Tg

< BA.

‘This completes the proof of the theorem. (m]

7. Implementation and Data Structures

In this section we will only consider the Leap Forward scheme because it is easier to implement
although the throughput and delay bounds apply to both schemes. The only nontrivial data structure
needed for implementing the Leap Forward Virtual Clock is a priority queue. There are several well-
known priority queue data structures that achieve O(log V') time per operation for insert, delete, and
findmin. Each flow maintains its incoming packets in a queue, where a new packet can be added at
the tail or the packet at the head of the queue can be extracted in O(1) time. Thus, using standard
data structures for maintaining pricrity queues, we can implement the Leap Forward Virtual Clock
algorithm in O(log N} time per packet.

In the next subsection, we show how to achieve a significant saving in computation overhead, with
only a minor penalty in delay and throughput fairness. In particular, we show that by maintaining
only a coarse virtual clock and a finite-universe priority queue, we can achieve O(log log N) processing
time per packet.

7.1. Tag Coarsening and Finite-Universe Priority Queue

The basic idea of tag coarsening is that maintaining eract order among virtual clock tags is overkill
if one is willing to tolerate a minor increase in latency. For instance, suppose the server rate is B
and the largest packet size in any flow is M. Then, rounding up all the tags to multiples of M/B
dramatically reduces the underlying key space of the priority queue, while possibly increasing the
delay by at most M/B. We further reduce the key space to a set of O(N) integers, in the range
[1, eN] for a fixed constant ¢, by using a tag-separation property of our algorithm and modular
arithmetic to recycle tags. With these ideas in place, we can then use “approximate sorting” and
a finite-universe priority queue of van Emde Boas [2] to achieve O(loglog N) processing time per
packet.

Leap Forward Virtual Clock 17

Our technique applies to most clock-based fair quening schemes, and so a similar performance
tradeoff can be realized for these schemes as well. Assume, by normalization, that the server band-
width B is 1 bit/sec; M is the size of the largest packet in any flow; and the guaranteed rate of every
flow is at least & bits/sec, where ¢ > 0 is an absolute constant.®

Let us begin by considering the impact of coarsening the virtual clock on our algorithm’s perfor-
mance, Since the smallest packet size is 1 and the minimum rate is 1/¢N, the smallest amount by
which the current tag of a flow increases is ¢N. On the other hand, the largest advance in a flow’s
tag is at most cM N, since M is the largest packet size in any flow. As a concrete example, let us set
the level of granularity to be M. Then, all our tag values are reunded up to match the next smallest
muitiple of M. In other words, T'(p), the coarse tag for a packet p, is defined as follows:

) = u- [52]. (10)

The server clock is not affected by this coarsening—it still increments at the rate of 1/B per bit sent.

Let us first show that the use of coarsened tags increase the worst-case delay of a packet by only
a minor amount, namely, # = M/B. The coarse clock has the granularity of M, meaning that the
order between two tags that are less than M apart is indistinguishable. As a matter of fact, all
packets with tags in the semi-open range (({ — 1)M, iM] are scheduled for service at time iM. The
following lemma shows a packet with coarse tag T is serviced no later than server clock time T'.

Lemma 7.1 (Delay Penalty for Coarse Tags) A packet is serviced before the server clock reaches
its coarse tag value. The additional delay introduced by the coarsening of tags is at most M/B.

PROOF. Intuitively, the lemma holds because coarsening can only relax the constraints on the server
by delaying the scheduled time of service for a packet. More formally, consider the basic inequality
on the sizes of pending packets, namely, Eq. 5. Clearly, the inequality holds true if we increase
the tag of every pending packet in H (possibly by different amount for each packet)—the increase
keeps the first term of the right hand side unchanged but may decreases the second term, which
is negative. Since coarsening the tags (rounding up) only increases their values, we conclude that
server will service each packet no later than its coarse tag. Finally, since rounding up can increase
the tag of a packet by at most M, the additional delay suffered by a packet is no more than M/B.

This completes the proof. o

7.2. Mapping Tags to a Finite Range

The preceding discussion shows that we can use rounding to restrict our tag values to multiples of
M, causing only a minor increase in the delay bounds. Taking this idea one step further, we show
that tag values can be mapped to a finite universe of integers, which allows us to use a specialized
priority queue yielding a worst-case bound of O(loglog N) per packet. While the coarse tags are
always multiples of M, their absolute values can grow without bounds, as the server clock itself
grows with the total amount of bits sent. Lemma 6.2 implies that the largest tag in the priority
queue is always within 3A of the server clock.

5If there are flows with vastly different rates, we can partition them into groups of similar rates. The technique
we are about to present works as long as the minimum and the maximum rates are within a constant factor of each
other in each group. We maintain flows of each group in a separate priority queue, and organize them into a higher
level priority queue. We omit the details of this standard method from this version.

Leap Forward Virtual Clock 18

Thus, to keep the tags within a bounded range of integers, we use modular arithmetic over the
coatse tags, as follows. Recalling that 1/¢N is the minimum possible rate for a flow, for some fixed
constant ¢ > 0, we get A = cMN. We compute the coarse tags modulo L = 3eM N + 1, s0 that all
values are multiple of M in the range [0, 3cM N]. That is,

T'(p) = M- [W] : (11)

With the modular arithmetic, we need to maintain the priority queue of tags as a circular list,
where the tags are ordered circularly starting from #¢, since the tag wrap around whenever they
exceed L — 1. When maintaining a circular list as a priority queue, we also need to modify the
meaning of the minimum element—the packet to be serviced next is the one with the smallest
tag greater than t¢ mod L. This is, however, an implementation issue that we will discuss shortly
when describing our priority queue. More pertinent to the present discussion is the observation
that performing tag calculations modulo L does not affect the delay or throughput behavior of our
algorithm in any way. Thus, we have succeeded in establishing the following lemma.

Lemma 7.2 (Rounding) We can implement Leap-Forward Virtual Clock using coarse tags so that
all values are multiples of M and they lie in the range [0,3¢ N M. The coarsening increases the worst-
case delay of a packet by at most M /B seconds, where M is the largest packet size and B the output
rate of the server.

In the following section, we show that the coarse tags can indeed lead to significant efficiency
gains while compromising the delay and throughput performance only in a very minor way. Without
any restriction on the size and range of service tags, it can be shown that Q(log N) overhead per
packet is necessary to maintain a priority queue on service tags—the problem is equivalent to sorting
N numbers. We beat this bound using a data structure called van Emde Boas priority queue by
exploiting the fact that our tags lie in a finite universe of size Q(N).

7.3. The van Emde Boas Data Structure

We will use a priority queue that facilitates the operations insert, delete, and successor in O(loglog L)
time, provided that the elements are integers in the range [0, L]. Assume that U = {0,1,2,...,L}
is the underlying universe, and X C U is a subset currently maintained by the priority queue. The
operation insert(y, X) adds a new element y to X, delete(y, X) removes an element y currently in
X, and successor(y,X) finds the smallest element in X that is larger than y; if y is the largest
element, a special symbol co is returned. We quote the following result from van Emde Boas [2];
Mehlhorn’s book [6] contains an eminently readable account of this data structure.

Lemma 7.3 (van Emde Boas) Let U = {0,1,2,...,L}, and let X C U be a subset. The opera-
tion insert(y, X), delete(y, X), and successor(y, X} can be implemented in time Ofloglog L) each.
The priority queue can be initialized in time O(Lloglog L) using O(L loglog L) space.

In our algorithm, the service tags are integer multiples of M in the range [0, 3¢M N]. Thus, the
finite universe in our case is the set {0, 1,...,3¢N}, which has size O(N). The operations insert and
delete are the standard priority queue operations, used to put in or remove a packet from the queue.
The operation of finding the packet with the next service tag is implemented using successor. We
call the function successor(t$, X). Unless the special symbol ¢o is returned, we have found the next
packet to be serviced. However, if oo is returned, we know that, because of the modular arithmetic,
the next packet lies before £S. In this case, we call suceessor(—1, X) to find the smallest tag in X.
We conclude with the following theorem, which summarizes the main result of our paper.

Leap Forward Virtual Clock 19

Theorem 7.1 (Leap Forward Virtual Clock Theorem) Leap Forward Virtual Clock fair queu-
ing algorithm achieves end-to-end delay bound almost as good as PGPS, has throughput fairness,
and can be implemented with the worst-case computational overhead O(loglog N) per packet, where
N s the number of active flows in the system.

7.4. Preliminary Implementations

We have implemented the O(lglg V) priority queue but have not finished optimizing it. The con-
stants are reasonable but we have found that a second scheme based on tries, outperforms the
(unoptimized) Van Emde Boas structure for small values of N. The trie scheme views a K bit tag &
bits at a time, and goes through a tree of arrays b bits at a time. If b is small we can avoid searching
through empty array elements by keeping a bitmap and doing a table lookup to determine the lowest
non-nuil array position. A trie-based implementation for values in the range [0..2?! — 1] requires
worst-case 85 Sparc instructions for Insert and 183 instructions for ExtractMin. Note that for both
the trie scheme and the Van Emde Boas scheme, reducing the size of the tag by coarsening is crucial
for decreasing processing costs. We hope that further optimizations will reduce the cost to around
40 instructions for values of N < 10000.

8. Concluding Remarks

We believe there are several important contributions of this paper. The first contribution is the fair
queuing algorithm itself: Leap Forward Virtual Clock. We have shown that a simple modification
of Zhang’s virtual clock scheme is able to provide throughput fairness, without compromising its
delay bounds. In view of the elegance and simplicity of the original virtual clock scheme, our scheme
should have practical appeal.® While our suggested Leap Forward modification is simple to state,
there are a number of seemingly simple variants that do not work. One particularly intuitive scheme
we explored was to simply clamp a packet’s tag at time max{T(p), ¢ + cA}, for any constant c¢. This
has the desired effect of controlling the tag’s deviation from the server clock, but we discovered that
it fails to guarantee throughout fairness because clamping loses information about a packet’s size.

A more theoretical contribution of our paper is to show that Q(log N) processing per packet
is not necessary for achieving latency and throughout fairness. The implicit use of sorting in all
virtual-clocked (or self-clocked) scheduling algorithms might lead one to believe the logarithmic lower
bound. Indeed, prior to our work, no fair queuing algorithm with delay and throughput bounds
matching those of PGPS was known to use sub-logarithmic computational overhead per packet. We
have shown that by using “coarsened” packet tags, one can avoid the general complexity of sorting
arbitrary numbers, and achieve O(loglog N) cost per packet. It remains a tantalizing theoretical
open problem whether fair queuing with near-ideal (approaching PGPS) delay and throughput
bounds can be realized with O(1) cost per packet.

The O(loglog N) computational overhead is a small constant for all practical values of N. As
an illustration, consider a router of the future handling N = 32,000 flows; then, log N = 15, while
loglog N < 4. We believe that the scalability offered by the O(loglog N) scheme holds tremendous
promise as the networks become larger, more complex, and operate at increasingly higher speeds.
Our preliminary implementation shows that the underlying constant is reasonable; we believe that
with further optimization we can rival more conventional (e.g., trie-based) schemes, for even small

$Some readers may have noticed a small difference between our and Zhang's scheme, in that we use an artificial
server clock to mark packet arrival times, whereas Zhang uses real time. This is a rather superficial difference but we
prefer our scheme because it does not require the use of a real-time clock.

Leap Forward Virtual Clock 20

values of N. Tag coarsening is crucial to the speed of both our trie-based and O(loglog N) imple-
mentations because their costs decrease as the tag size decreases.

Trading a small delay bound for a significant gain in computational efficiency appears to be
a useful general idea, which should have other applications beyond the specific O(loglog N) fair
queuing algorithm of our paper. By rounding tags to different multiples, we can navigate to various
points in this tradeoff space. We used the van Emde Boas data structure in our scheme, but any
priority queue that beats logarithmic bound for keys in a bounded range (such as the trie data
structure) can be used instead. When the value of N is small to moderate, these data structures
may even yield better constants. We are currently starting to implement several different data
structures to test and compare their relative performance in practice.

In this paper, we have focused on work-conserving service disciplines. While non-work-conserving
disciplines in general do not lead to better latency bounds, they can be useful for bounding jitter,
which is useful in some applications. We believe that our ideas can be generalized to these settings
as well using ideas similar to that in Figuera and Pasquale [3], where the virtual clock algorithm is
generalized by adding delay regulators.

A final feature of our scheme that might be of possible interest is that it can give improved delay
bounds for flows that exceed their assigned rates. The Leap Forward step of our algorithm ensures
that a flow’s tag never exceeds t¢ + 3A. Thus the delay penalty for such a flow is always bounded,
without adversely affecting the delay bounds or the throughput fairness of other flows. Except for
this effect, the average (not the worst-case) delay bounds of our scheme should be similar to those of
the standard virtual clock scheme [12]. We are currently in the process of carrying out a simulation
atudy to verify these and other behaviors.

Leap Forward Virtual Clock 21

References

(1] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm.
Proc. Sigcomm ‘89, 19(4):1-12, September 1989.

[2] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority
queue. Math. Syst. Theory, 10:99-127, 1977.

[3] N. Figuera and J. Pasquale. Leave-in-time: A new service discipline for real-time communication
in a packet-switching data network. Proc. Sigcomm '95, September 1995.

[4] P. Goyal, S. S. Lam, and H. M. Vin. Determining End-to-End Delay Bounds in Heterogeneous
Networks. In Proceedings of Workshop on Network and OS Support forAudio-Video, pages 287-

298, April 1995.

[6) S.J. Golestani. A Self-Clocked Fair Queueing Scheme for High Speed Applications. In Proceedings
of IEEE INFOCOM ’94, pages 636-646, April 1994,

[6] K. Mehlhorn. Sorting and Searching, Volume 1 of Data Structures and Algorithms. Springer-
Verlag, Heidelberg, West Germany, 1984,

[7] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control:
The Single Node Case. In Proceedings of IEEE INFOCOM 92, volume 2, pages 915-924, May

1992.

[8] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Controlin
Integrated Services Networks: The Multiple Node Case. In Proceedings of IEEE INFOCOM 93,
volume 2, pages 521-530, March 1993.

[9] M. Shreedhar and G. Varghese. Efficient Fair Queueing Using Deficit Round Robin. In Proceed-
ings of ACM SIGCOMM ’95, pages 231-242, September 1995.

[10] D. Stiliadis and A. Varma. Latency-Rate Servers: A General Model for Analysis of Traffic
Scheduling Algorithms. Technical Report UCSC-CRL-95-38, Dept. of Computer Enginieering
and Information Sciences, University of California, Santa Cruz, July 1995.

[11] G. G. Xie and S. S. Lam. Delay Guarantee of a Virtual Clock Server. Techincal Report TR-94-
24, Dept. of Computer Sctences UT-Austin, October 1994.

[12] Lixia Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet-Switched Networks.
ACM Transactions on Computer Systems, 9(2), May 1991.

	Leap Forward Virtual Clock: An O(loglogN) Fair Queuing Scheme with Guaranteed Delays and Throughput Fairness
	Recommended Citation
	Leap Forward Virtual Clock: An O(loglogN) Fair Queuing Scheme with Guaranteed Delays and Throughput Fairness

	tmp.1439928365.pdf.JNOqT

