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Chapter 1

Introduction

1.1 Motivation and Background

In 2004, cancer accounted for 7.4 million deathslavade, around 13% of all deaths
Among the deaths, 1.3 million were related to lwagcer. Lung cancer has surpassed
heart diseases as the leading cause of death é@iegpgounger than 85 in the United
States since 1999. In 2009, a total of 1,479,380 oancer cases and 562,340 deaths
from cancer were predicted in the United Statespraynwhich lung cancer was
responsible for 219,440 new cases and 159,390 sjeatlpectively. Although the
incidence rate has been declining dramatically agnoen, from 102.1 per 100,000 in
1984 to estimated 87.3 per 100,000 in 2009, thel@émce rate for women had been
increasing by 0.3% per year before 2003 and has &pproaching a plateau ever since.
While the overall lung cancer death rates haveimked] it is anticipated to continue to be
the leading cause of cancer deaths until at Idastyear 2048.Overall lung cancer
survival rate is quite small, with one-year surVikete at 41% and five-year survival rate

at 15% for all stages combined, making it one osmmtorious cancers.

The main types of lung cancer are small cell luagciocoma (SCLC) and non-small cell
lung carcinoma (NSCLC). It has been establishatl 8CLC usually responds better to

radiation and chemotherapy. Treatment options f@CNC, which accounts for



approximately 80% of lung cancer cases, are stiflen heavy debate. Currently,
radiation therapy and chemotherapy treat most ef NSECLC patients jointly or

separately.

A typical conventional or conformal radiation theyadelivers 65 Gy with or without
chemotherapy, achieving local tumor control at alifge and 15% respectivelyStudy
also showed that local control could be greatlyronpd by escalating the radiation dose
to the target However, the toxicity that accompanies higheratioh increases as the
energy deposited to the lung volume increases.sTippressing of side effects and the
improving of local control could be achieved by m@ccurately confining the dose to
the target. A study by Kubdtaompared treatment outcomes of chemotherapy amly a
treatments of chemotherapy followed by three-dinmrad conformal radiation therapy,
which is a method for attempting to conform theiatidn therapy to the tumor. 92
patients at stage Il were randomly divided intootgroups. One group was given
radiation of 50 to 60 Gy for 5 or 6 weeks aftermlo¢herapy and another group received
no radiation after chemotherapy. The first yeawisat rate in the chemotherapy only
group was 66%, slightly higher than 58%, the swalixate of the chemo-radiation
combining group. However, the two-year and threarygurvival rate in the chemo-
radiation combining group dramatically beat thathef chemotherapy only group, at 36%
vs. 9% and 29% vs. 3%, respectively. The resulcatds that if radiation therapy could
take advantage of sophisticated dose targetinghiggés, it would achieve better long-

term survival.



As radiation therapy gradually established its @pal role in treating NSCLC patients
with localized disease, the conventional radiothgracal control rate, which typically
delivers 65 Gy, was disappointing. A model devetbpgy Martel et dl predicted that
doses of 84.5 Gy would be required to achieve a &bfor control rate in 30 months. A
dose at this high level would raise the concermragfiation toxicity to normal tissue,
including fatal side effects. Compared to convemdlo radiotherapy, conformal
radiotherapy targets the tumor as accurately asillesvhile attempting to spare normal
tissue. Sun et &conducted phase I-1l trials to compare the ramfiatesponse, acute and
chronic toxicity, local control and survival ratépmatients that were randomly selected to
receive convention radiotherapy or concomitant boadiation therapy which was able
to more precisely confine the radiation to the tunide results were encouraging. For
patients in the concomitant boost group, 46.8 Gy walivered to the CTV (Clinical
Target Volume, the gross disease and tissues wihested disease) in 26 fractions, and
an extra concomitant boost of 18.2Gy (0.7 Gy paction) was delivered to the GTV
(Gross Tumor Volume, the tumor that can be detebtednaging or palpation) with a
tight margin of 1.5cm to account for setup uncetiai A combination of 65 Gy was
delivered to the concomitant boost patients in Béctions. For patients in the
conventional treatment group, 70.8 Gy was delivene88 fractions. The response rates
were access by radiographs. The boost patientenide significantly better than did the
conventional patients, with response rate of 69886 48.1%. Acute toxicity was
evaluated by measuring the pre- and post-radighyefaulmonary function. No

significant difference in toxicity was reportedtire two groups.



Preliminary data concerning further dose escalati@ne reported in a phase 1 trial
conducted by Hayman et®alusing conformal therapy techniques. The initiakes

ranged from 63 to 84 Gy. Due to the lack of thditgitio design effective treatment plans
that both covered the tumor and spared the surmognaormal tissue, some of the
enrolled patients were unable to be treated topitmtocol doses. The investigators
hypothesized that Intensity Modulated Radiationr@pg (IMRT) would be able to meet

the normal tissue constraints and allow furtheredescalation.

IMRT is an advanced approach to high-precisionataah whose clinical applications are
expanding to challenging body sites such as theaamever system, head and neck, and
advanced prostate cancer. The process begins it wway as conformal therapy, with
the acquisition of a simulation CT scan. The ssamcquired while the patient is in the
intended treatment position and with the use of ahitization hardware that aids in
patient positioning and patient compliance. Phgsg segment the tumors using the CT
scan datasets and they, or other clinical staffimsnt the normal organs. The physician
also provides a dose prescription, which typicaliudes the desired tumor dose and the
dose limits of the critical organs. The segmeatwtj termed contours, provide the
topological shape of the tumor and normal orgafkese, along with the prescriptions,
are provided to an inverse treatment planning systat identifies the radiation delivery
sequence that best approximates the clinical godislike conventional and conformal
radiation therapy where the intensity of each besamniform, the beam intensity in
IMRT is modulated by multileaf collimators accordito the instructions provided by the

treatment planning system. Modulating of beam isites allows better conformation of



the dose distribution to the tumor shape than &lable by conventional and conformal

therapy techniques.

Although IMRT has proven its value in achieving e@recise dose delivery, the benefit
of IMRT in treating lung cancer is greatly limitdey organ motion. During natural
breathing cycles, the tumor position is not stargnbut traverses a trajectory that varies
as the patient’'s breathing depth and frequencyesariThere are many methods for
dealing with breathing-induced tumor motion. Thamest is to extend the tumor shape
in the treatment plan to encompass the tumor motibims is termed the internal target
volume (ITV) and results in an increased beam apersize to irradiate the larger
volume. The dose distribution is delivered thromgfhthe patient’s breathing cycle. The
consequence of this method is that it delivers ndoise to the surrounding normal tissues

than would be possible if the tumor were stationary

Gated conformal therapy was developed to assist thé challenges of moving tumors.
In gated therapy, the treatment plan is conducssdiraing that the radiation will be on
only during a user-specified phase of breathine position of the tumor is monitored
by correlating it against a real-time measurementither an internal or external
surrogate. When the surrogate indicates that tusmentering the appropriate breathing
phase, or the gating window, the radiation beaenexgized. The beam is shut off when
the surrogate indicates that the tumor has exitedyating window. The major source of
error from this technique comes from the poor t&bdity of the correlation between the

surrogate and the tumor position. Therefore, maitipice require independent



conformation of the tumor position prior to treatrhaising, for example, implanted

fiducial markers imaged using fluoroscopic techeiu.

The gating technique provides a measure of motiempensation for conventional
radiotherapy. Its application in IMRT is comproeusby assumptions inherent in IMRT
dose delivery. The power of IMRT rests in its diilio subdivide the treatment into a
sequence of interlocking inhomogeneous fluencesatglfrom a variety of angles. The
inhomogeneous fluences are delivered by a timerdkpe pattern that explicitly
assumes that the remaining fluence delivery will greperly aligned. While these
fluences can accurately superimpose in the tredtno®@m coordinate systems, the lung
and lung tumor tissue is moving during the deliveeguence, so the delivered dose from
each beam does not match the successive beamde §dling reduces the intensity of
this problem, it does not eliminate it. Currendyailable IMRT treatment planning
systems lack of the ability to correlate the brewmgltycle with the delivery sequence, so
the magnitude of this problem is not typically knmote the treatment planner. The dose
errors due to breathing motion are dominated byoader penumbfaand also contain
dose delivery errors in the tumor and normal orffansThe concerns over dose
superposition breakdown due to tumor mobility léada guideline published by the

National Cancer Institute to limit the clinical uskintra-thoracic IMRT.

Methods to improve the dose delivery for free g patients include expanding the
radiation portal to account for the motidngating the radiation delivery to synchronize

the radiation delivery with the position of the tomtt*>, tracking the tumor motion with



the radiation portdf*’"*®*and managing breathing motion. Motion managemesitiiles
free breathin coupled with a method for modifying the dose detjvto account for
motion, breath hofd?® breathing coachiffg where the patient uses biofeedback to
guide their breathing pattern, and abdominal cosgio®. Breath hold and breathing
coaching both require cooperation of the patient docurate implementation. An
informal survey of institutions that use these teghes has shown that patient
compliance is limited to approximately 50%. Abdaalicompression does not require
patient compliance, but significant reduction ahtr breathing motion is achieved in a
minority of tumors. Free breathing requires neitb@operation nor an external device
for implementation, but it does not reduce the tumotion. It may, however, provide a
stable method for predicting the tumor motion dgritmerapy, thereby allowing an

accurate prediction of the impact of gating techeg)

The free-breathing treatment planning strategigsire a breathing motion model. The
model is typically based on CT scans acquired duin@e breathing and sequenced using
a simultaneously acquired breathing surrogate. stiieogate is typically a non-invasive
measurement device such as a pneumatic belt pteoedd the abdomen, camera system
that monitors a marker placed on the patient’s at®io or pelvis, or pressure sensor
mounted to a belt that is wrapped around the abdtifie There are two surrogates used
in our research group when we conduct CT scan$rderbreathing motion research; a
pneumatic belt (bellows) placed around the abdonam a spirometer (Interface

Associates, VMM 400). The spirometer measures treathing flow rate, but has



significant measurement drift that precludes itglependent use. Simultaneous
acquisition of the bellows and spirometry signdlisvaus to correlate the two signals and
remove the drift artifact inherent in the spirorgetignal Therefore, the surrogate used
to sequence the 4D CT scans can be the patietidlsviblume, a surrogate that has direct

physiologic significancé’

Verified breathing models have not yet been esthbli. Many investigators have relied
on the periodic nature of the breathing patterddeelop mathematical models that use
time as an explicit variable. These use the assamghat the breathing motion can be
accurately described as a function of fin&eppenwolde et &' modeled breathing in

this way using an even power of a cosine functiath &djustable period and amplitude.
They showed that in some cases, this was ablé¢ tbhefimotion of embedded clips, but

also showed that changes in breathing frequeneynplitude were difficult to model.

The breathing motion model may be as simple astiigigrg the position of the tumor
throughout the breathing cycle with the breathingle subdivided equally in time
between successive peak inhalations or exhalatidrss is termed phase-angle based
gating. Each breathing phase is assumed to ceneith a constant fraction of time
during the breathing cycle. For example, the biegtltycle time can be described as
proportional to an angle, from 0° to 360° from péadpeak. The CT scan can be gated
as a function of the measured breathing cycle, fgma 4D CT scan dataset.
Examination of the CT scans reconstructed at eagéitting phase allows the treatment

planner to determine the overall tumor motion adl vas linear accelerator gating



efficiency by identifying the fraction of the 360feathing cycle for which the beam wiill
be activated. However, this phase-angle based Inagsdames that breathing patterns are

consistent and reproducible, an inaccurate assamfiir many lung cancer patients.

A mathematical model of breathing motion would kEywuseful. It would allow a

treatment planning system to examine a recordedtlireg cycle and develop a
prediction for the positions of the tumor and nadrioags during a simulated treatment.
This would allow for an improved prediction of tirapact of using an ITV model or

predict gating efficiency and its dosimetric impatiow, et al.** developed a breathing
motion model that assumed that one of the indepdnaedel variables should be the
tidal volume. For quiet respiration, the tissuetiom was assumed to be linearly

proportional to the tidal volume.

Researci** on modeling dynamic lung motion has been condusiélimited success.
Most of the work, based on Weibel's modebn bronchial anatomy, has applied the
principles of fluid dynamics or viscoelasticity tmodeling lung motion. However,
because of lack of detailed information of lungiser structure, their results cannot be
personalized. Their work can be used to understhedmechanical behavior of lung
under different circumstances. The stress disipbutvithout considering the airway
resistance was established by M&aidicating that tidal volume may play an impottan
role in modeling lung motion. Lamb@&ttestablished that there are pressure losses in the
flow along the airway, from the periphery to thewtlimiting site. A linear relationship

between the pressure loss and flow rate was sdldxeause of the low Reynolds’s



number found in the bronchial tree. In generafjiaes with stronger or weaker air
resistance, corresponding to worse or better conuation with the outside air, longer or
shorter airways from the trachea, will have lowehigher air pressure during respiration.
The opposite would therefore occur during exhamgtimamely that the regions that had

lower pressure during inhalation would have greptessure during exhalation.

Based on the relationship between pressure arldvajrédnd the fact that different regions
of the lungs have different resistance to airflbwsteresis, defined as differential tissue
motion between inhalation and exhalation, was Hypsized by Low, et af*® to be

caused by pressure distribution imbalances durtegthing. For quiet respiration, these
pressure imbalances are further assumed to be i@ to the vacuum developed to
generate respiration, and that vacuum is in tusa@mgd to be proportional to the airflow
into the mouth. For quiet respiration, a furthend®al approximation is made that the

hysteresis motion magnitude was proportional tcaihéow.

Finally, the motion model by Low et*lassumed that during quiet respiration, the
motion component due to tidal volume changes wagepandent of the motion

component due to pressure differentials and coresgtyuairflow. Under this assumption,
hysteresis motion due to pressure imbalances wootdir with the same magnitude
regardless of the tidal volume, and the tidal vauhang expansion component at a

specific point in time would not depend on the i@tbreathing.

10



The use of tidal volume and airflow to describeefleeathing motion allows the time
dependence of the model to exist outside the matheah description of tissue motion.
The time dependence lies in the behavior of thal tidlume and airflow and does not
explicitly exist within the model equation. Thesttens of lung tissues are therefore
hypothesized to be functions of 5 independent patars; the 3D positions of the tissue
at a reference tidal volume and airflow (typicdlynl and 0 ml/s), the tidal volume, and

the airflow***°

As Low, et af® hypothesized, the position of lung tissues camléscribed by a linear

approximation in tidal volume and airflow. The ginal mathematical description has

been modified here for cIarit;bZO is defined as the reference position, where thegpof

tissue of concern is at located at zero tidal vauand zero airflow. The positioX at

tidal volumeV and airflowf is
X (v, f:X,)= X, +@(X )V +B(X,)f (1.1)

whered@(X,) and 5(X,) relate the tissue position of the tissg to the tidal volume

and airflow, respectively. Fig. (1.1) shows angthation of the breathing motion model

superimposed with data acquired from an enrolldizp&a

1.2 Overview of Dissertation

In this dissertation, the breathing motion modaatdibed in Eq. (1.1) is discussed and

verified.

11



The major objectives of this dissertation are

1. Develop a CT acquisition and reconstruction processl a deformable
registration process that optimally and efficienghpvides the positioning data for

the proposed breathing motion model.
2. Verify the model.
3. Develop a theoretical interpretation for the breahmotion model.

4. Verify the stability of the breathing model by shog that the breathing motion
model parameters do not change in healthy subjdatsgs without any
progressing pulmonary disease and not being ited)ia and that detectable

changes occur to irradiated lungs.

5. Develop a process that models localized tissueoresspto radiation therapy and

correlates that response to radiation dose

Chapter 2 describes the protocol of image acqorsibn a 16-slice and 64-slice CT
scanners with details describing tidal volume amd flaw measurements using a
spirometer. An alternative method for determiniigiglt volume and air flow for patients

who cannot tolerate the use of a spirometer isdismissed.

Chapter 3 gives a brief description of the imaggsteation and fitting methods that were
used for this study. Image registration tracks ienggatures through the images acquired

at different tidal volumes and air flows. The imafgature trajectories, together with

12



corresponding tidal volumes and airflows, are ugsedfit the model parameters.

(Objective 1)

Chapter 4 gives a self-consistent verification loé breathing motion model using the

continuity equation. (Objective 2)

Chapter 5 gives a biomechanical interpretatiorhefrhodel parameters that involves the
stress distribution and Young’s modulus. Model pater averages are estimated from
published data. Patient-specific model parametegstteen estimated using real patient
data. Verification is conducted by comparing theottetical prediction and results from

real patient data. (Objective 3)

Chapter 6 is an application of the breathing motimdel in characterizing free-breathing
patterns. The breathing motion model parameterduiog cancer and non-lung cancer

patients under quiet respiration are reported flarge cohort of patients. The parameters
@ andf together provide a quantitative characterizatidnboeathing motion that

inherently includes the complex hysteresis intsrpiahe & and 8 distributions are

examined for each patient to determine overall gedrgatterns and inter-patient pattern

variations.

13



Chapter 7 describes potential applications of tteathing motion model in localizing

lung cancer, monitoring radiation damage and sig3ong artifacts in free-breathing PET
images. The stability of the model is evaluatednwestigating the consistency of model
parameters calculated on image datasets of a kdafth obtained two weeks apart. The
a vector field divergence is related to the variatimof local density during breathing.
Comparing the divergences af at various points along the course of treatmerghini

localize changes in lung tissue biomechanical pt@se due to radiation damage.

(Objective 4 and Objective 5)

Chapter 8 summarizes the main conclusions drawn the study in this dissertation and
proposes future work. The future work include, bat limited to, quantitative guidance
for treatment planning, evaluation, staging and agament of respiratory diseases in
addition to cancer, quantitative nuclear mediciRET/CT and SPECT/CT) study

acquisition for free breathing patients withoutdihegng motion artifacts

14
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Chapter 2

Data Acquisition

The inputs to the breathing motion model are thaitpms of lung tissues and
accompanying tidal volumes and airflows. The lursgue positions are obtained by
registering a series of volumetric CT scans thataauquired while the patient’s breathing
patterns are being quantitatively measured. Thmesations, together with the tidal
volumes and airflows at the acquisitions, congitilte raw data input to our breathing

motion model.

2.1 Image Acquisition

A 12-slice CT scanner was used to acquire the isiagen the breathing motion model

was proposed in 2005. The scanner was capablenaftaneously acquiring 12 slices of

lung in the craniocaudal direction. The thicknetgarh slice was 1.5 mm. Technology
in CT scanner has made a huge progress since Weracquired all the patient data used
in this study in a 16-slice and then a 64-slice S€anner. Although we have started to
collect patient data using the 64-slice CT scamsang a craniocaudal resolution that is
better than the 16-slice CT scanner, the largeepatiataset we acquired using the 16-

slice CT scanner served as an outstanding datdsethis dissertation, data acquired

16



using both scanners were used. Therefore, acquigitiotocols that were used for both

scanners are described.

2.1.1 16-Slice CT Acquisition

49 patients were enrolled under an IRB-approvedopod and scanned using a 16-slice
CT scanner (Philips 16-slice Brilliance CT) opergtin ciné mode using 1.5 mm thick

slices. Each contiguous set of the simultaneoustuiaed 16 CT slices was termed a
couch position, which covered 24 mm craniocaudallge scanner was operated to
acquire 25 scans per couch position using a Oré6asion, 360 reconstruction, and 0.32

s between successive ciné acquisitions, requirthg 4 to acquire the 25 scans. Nine or
ten abutting couch positions were typically reqdite span the entire lung. The in-plane

field of view was 500 mm and images were reconggdiasing 512 x 512 voxel matrices.

2.1.2 64-Slice CT Acquisition

Currently, we have 25 patients enrolled under aB-#Rproved protocol and scanned
using a 64-slice CT scanner (Philips 64-slice Buiite CT) operating in ciné mode using
0.625 mm thick slices. A couch position in 64-sl€& scanner covered 40 mm of lung
craniocaudally. The scanner was operated to ac@birgcans per couch position using a
0.42 s rotation, 360reconstruction, and 0.32 s between successive aznéisitions,
requiring 18.2 s to acquire the 25 scans. Six @erseabutting couch positions were
typically required to cover the whole lung. Thepiane field of view was 500 mm and

images were reconstructed using 512 x 512 voxeiicest
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The advantages of the 64-slice CT scanner overlid®-€T scanner included the
improved image resolution and extended couch positength. The improved image
resolution provided more anatomic detail to faaibt feature tracking. In addition,
extended craniocaudal coverage between the twansmmneduced the number of couch
positions required to cover the lung and thus redhe number of intra-couch position
boundaries. Six couch positions were usually sefficto cover the lung in the 64-slice

CT scanner. An illustration of boundary aliasing te found in Yang’s worl€

In the future, we would like to modify the currembage data acquisition protocol.
Theoretically, the minimum number of scans requi@dit the model parameters is 3.
The purpose of acquiring 25 scans on the same cpaosiion was to provide enough
redundancy to allow for breathing irregularitiesddgrovide redundancy to check short-
term reliability and breath-to-breath reproductlili The scans used in these studies were
reconstructed using 360° projections. We are aotlweworking on using 180°
reconstruction to reduce image blurring due to thieg motion. Sophisticated
registration algorithms were also developed. Inftihere, we would like to distribute the
25 scans between successive half-overlapping cpashions. Therefore, instead of 6
abutting couch positions, we would have 11 coudhitjpms that half overlap each other
to cover the whole lung. Couch positions in thisaagement would greatly reduce
boundary aliasing. Each couch position would ha2e stans to provide sufficient

redundancy for breathing irregularities.
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2.2 Tidal Volume and Air Flow

Tidal volume and air flow are the two surrogatesdis the breathing motion model. The
hypothesis is that, any unique pair of tidal voluamsl air flow corresponds to specific

tissue position.

The acquisition of tidal volume and air flow wadgtiadly based on a spirometer and an
abdominal pneumatic belt that corrected the spitondrift. As we acquired data from

more patients, we found some patients could netdté the spirometer. To make use of
the portion of data acquired without spirometernew scheme was developed by
measuring the amount of air in the lungs using@hfescans themselves. This quantity

was termed the air content. .

2.2.1 Spirometer and bellows

.The tidal volume was acquired using a calibrategtali spirometer (Interface Associates,
VMM 400) that was sampled at 100Hz with 1 ml digition resolutiof{*® The
spirometer measured the airflow into and out ofrtfwuth using an internal fan that was
spun by the airflow as the patient breathed. Timerfaation rate was monitored by the
spirometer electronics and a digital data strears prvided as the airflow passing
through the spirometer. The spirometer was foundédoaccurate to within 2% in a
laboratory measurement under constant airflow rdesit drifted significantly in actual

use. Therefore a separate drift-free metric wasikameously acquired. An abdominal
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pneumatic belt (Philips Medical Systems) was plamexind the patient's abdomen and
attached to a pressure transducer. The pressareaded and increased during inhalation
and exhalation, respectively, and for short timenvals, the relationship between the
bellows pressure transducer voltage signal anes@itry was found to be linear after a
linear spirometry drift correction. The time petitw apply the linear drift correction and
determine the relationship between spirometry-nreaistidal volume and was set to 15 s,
based on earlier analyses of the spirometer®tirifthe drifted spirometer signal was
compared against the belt signal for 15 seconegments and the correlation coefficient
between the two signals was computed. A linealt darrection was applied to the
spirometer signal and the drift rate was determibgdmaximizing the correlation
coefficient. The ratio of drift-corrected spiromesignal to bellows signal provided a
scale factor that converted the bellows signaidal tvolume. The ratio was evaluated
each 15 s throughout the CT scan acquisition, la@aarrelation between spirometry and

the bellows signals is typically stable to a fewgeat over the course of 10 minutes.

The drift-corrected spirometry signal was usedetmatibrate the bellows signal such that
the final recorded values were tidal volume. Tamify the zero value of the tidal

volume, the fifth percentile tidal volume was sédecas 0 ml.

Because of sample-to-sample noise and digitizatrtifacts, the airflow was determined
using a movingith-order polynomial fitn was selected to be five in this work based on
the observation that no significant improvement \@akieved by using a higher order

polynomial fit. The airflow at time was the analytical derivative of the fifth-order
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polynomial of the tidal volume measurement takeer@/time span of 0.41 s (41 samples)
centered at the point where the airflow was deteechi This method of determining the
derivative was selected because it reproduced itla¢ volume signal with a marked
reduction in the derivative noise, allowing for éatively smooth determination of the

airflow.

2.2.2 Air content analysis

Occasionally, patients signing up the researchopabtcould not tolerate the spirometer.
The leakage between the mouthpiece attached tepinemeter and the mouth could
sometimes also compromise the precision of measnerin those cases, the air content
analysis appeared to be an effective way to deterrtie tidal volume and air flow.
Compared to the spirometer, the air content arelysis more accurate, consistent and

straightforward to apply to patients with irreguibaeathing.

CT scanners work by measuring the spatial distiobubf x-ray attenuation coefficients
using x-ray projections and inverse transforms. B&ttenuation coefficienys is not
typically displayed in the CT image. Instead thaaapt of Hounsfield Unit (HU) is used.
The HU scale is set such that the value of wateeis and air is either -1000 or -1024,
depending on the scanner manufacturer (Philips tisesstandard of -1000). The
relationship between the CT number acquired in @ipBhCT scanner ang: can be

described as
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- H= Hyo
Hy o

CT x1000 2.1)

where y,, , is the linear attenuation coefficient of water loe x-ray beam energy.

Because the CT number is linearly proportionalhie g, and for soft tissuesy is

proportional to density, an empirical equaffowas used to determine the fraction of a
CT voxel that contained air.

Fractional air contert 10— — =1 —CTar (2.2)

ﬁtissue_ ﬁair

The average CT value of ai€Tar) was sampled in the trachea. The average CT value

of tissue CTussue) Was estimated by sampling homogeneous soft tissaethe lungs and
was assumed to be the same as lung tissue dexsitxsi®e of air. The reason for the use
of averages rather than the empirical numbers @@00 and 0), was that the x-ray
beams are not monoenergetic and therefore experibeam hardening as they pass
through the patient. This causes the CT numbeg @ function of the patient geometry,
so the representative regions were sampled. Themeoof air in a CT voxel is the
product of fraction of air content and the voxelwoe. The volume of air in a couch
position was calculated by summing the volume pbaall CT voxels in the same couch
position. For images from a 16-slice CT scannee, tbxel volume was 1.43n%; For

images from a 64-slice CT scanner, the voxel voluras 0.60mn?
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For each couch position, 25 air contents were &atied at various phases of breathing.
Therefore, tidal volumes could not be fully recaehy simple summation of the air
contents. However, bellow signals could be condettebellow-based air contents for
each couch position, given the assumption thab#ilew signals and air contents is be
linear in each couch position, except for a possgrhall time delay. The bellow-based
air content could be used to recover the tidal mas. This was achieved in the following

steps.

First, for one couch position, 25 bellow signalattiynchronize the acquisitions of image
data in the same couch position were retrieved ftoencontinuously acquired bellow
signals. By least-square fitting the 25 bellow sigrto 25 recovered air contents in that
couch position, the correlation between bellow algrand air contents was obtained. The
correlation was used to convert the continuousobalsignals to continuous bellow-

based air contents for that couch position.

Second, the above procedure was repeated to gemeliaw-based air content curves
for all couch positions. Since the bellow-basectamtent curves of all couch positions
were based on the same bellow signal curve, sasiggroon each bellow-based air
content curve is corresponding to the same bregiphase. The whole lung volumes
during the acquisition now could be obtained bystmmation of the bellow-based air
content curves of all couch positions. Tidal volsnaere consequentially obtained by
zeroing the B percentile of air content in the whole lung. Mdetails can be found in

the technical note by Rene efal
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Chapter 3

Image Registration and Model Fitting

The goal of the lung motion model developed in thgsertation is to predict lung tissue
trajectories by determining the motion model paramseusing few samples of the motion
trajectory coupled with the corresponding tidaluroks and air flows. The methods for
determining the tissue positions in each of the &€dns are described in this chapter.
The techniques for fitting the motion model parasnetusing the registered tissue
positions, and corresponding tidal volumes andaaid will also be discussed in this

chapter.

Image registration is the process of finding thergetrical or spatial mapping between
multiple images of the same objects by determirtimg correspondence between the
images. Registration techniques have been widelgl us medicine to identify a patient’s

tissues throughout multiple image datasets. In thigpter, various image registration
schemes will be discussed. These registration sehemre employed during the course
of the research program and each had strength aakingss. A brief comparison of those

methods will also be given in this chapter.
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3.1 Normalized Cross-Correlation Coefficient Regisation

In signal processing, the cross correlation is aguee of how much two signals resemble
each other. Many signals evolve both temporally spatially, so it is rare that a signal is
identical at different points of time and positidm.the imaging process, the signal is the
image intensity distribution of the tissue of imst The image intensity distribution
changes as the organ moves. Additional distortenmd image artifacts are introduced
during the acquisition and reconstruction of imag&khough variations are always
present in images of the same tissue, it is reddera assume that images of the same
organ will have the greatest similarity. The noraed cross correlation coefficient
registration is a registration method based omtrentitative evaluation of the similarity

between the two images.

The use of cross correlation for evaluating theilanity of two sub-imagesf centered
at (0,0) andg centered atx,y), from a sequence of images is motivated by theusmy

Euclidean distance measure,

dig(xy) = X (fuv)-gu+xv+y))
= Z f2U,v)+> g?U+xv+y)=2> f(u,v)gu+xv+y) (3.1)

The cross-correlation term,

c(x,y) = f(uv)gu+xv+y) (3.2)

is a measure of similarity between the two imadethe image energy, termed as

> f2(u,v) and ) g*(u+xVv+y), are approximately constant.
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Image energy density, which is defined as the rafithe image energy over the
corresponding image space, is required to keeptaongver the whole image space.
Otherwise the correlation between a feature inirtege and its exactly match may
be less than the correlation between the featuwteadbright spot. Evaluation of image
similarities based on Eq. (3.2) also poses a strigiquirement on the time stability of
image intensities. Any fluctuation in the imageemsity over time and special
distribution of image energy density would cause bineakdown of Eq. (3.2) as an
effective measure of similarity. To overcome thificlilty, the intensities of images
are normalized before the similarity evaluationpexformed. After normalization,
F(xy) - F(xy)

S (f(uv) - fFuv)f
uv

image f(xy) becomes and image

g(x,y) —a(x,y) _
> (9u.v) -g(u,v))’

g(x, y) becomes

The squared Euclidean distance of normalized imagesw

2 fuv)-f gu+xv+y)-g
df,(xy) :Z mvl 2
S| (-] [Xleuxv+y) -g)

2x2(f (u,v) - f)(g(u+x,v+ y)-9)

(3.3)

=2

Z(f (U,V) - f(U,V))ZZ(g(u +X,V+ y) _g)z

u,v
The normalized cross-correlation term is

S (fuv) - flgu+xv+y)-g)
(X, y) = ——= — =-(3.4)
S (-3 (gu+xv+y)-7)

u,v
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which is free of temporal fluctuation of image im¢gies as well as spatial change of
image energy densities between imégand imagey. The normalized cross-correlation
term c(x,y) is a more robust measure of image similarity amdermed normalized

cross-correlation coefficient.

To register image A to image B, both images areddiv into grids, or voxels for 3D
image, of the same size. For a grid in image Amabzed cross-correlation coefficients
are calculated between it and all grids in image Bie grid in image B with highest
normalized cross-correlation coefficient is the chadf the grid in image A. Repeating
the procedure for all grids in image A, the mapploregween image A and image B is

established.

Although the normalized cross-correlation regisbrat has been shown to be a
straightforward method for registering images, safiés drawbacks limit its application.
Firstly, it is a very time consuming technique hesmit is a search algorithm based on a
convolution calculation. The complexity of this atighm is, thereforeQ(n® Wwheren is

the number of voxels in the search region. To spgethis algorithm, a fast normalized
cross-correlation coefficient method was introdudsd Lewis®, replacing the time-
consuming calculation of convolution with fast Feuaitransformation. However, the new
scheme only reduces the algorithm complexity frofm*® to YO(n”logn). A whole-
lung image typically includes 3 million voxels. would take weeks, if not months, to
finish the registration of a whole lung through ##teacquired scans if the images are not

downsampled. Despite its poor efficiency, the ndized cross-correlation registration is
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easy to implement and robust against image arifacid distortion. It was the first
registration scheme implemented during our work farifying our model and
characterizing the free-breathing motion trajectpagterns, which will be discussed in
Chapter 6. Secondly, the selection of the sizéhefsdub-image has to be customized for
the image modality and content. It largely depeondghe implementer’s experience. If
the size of the sub-image is too small, there ateenough details in the sub-image for
registration; if the size of the sub-image is taoge, the registration would average
through non-rigid motion. Thirdly, it is difficulto determine the size of the searching
region. A large searching scope will deteriorate dlready poor efficiency of normalized
cross-correlation registration while a small seerghscope will compromise the
registration’s capability of capturing large motionTherefore, a more efficient and

general registration method is needed.

3.2 Optical Flow Registration

The optical flow registration method was introdudgd Horn and Schunckin 1981.

Horn and Schunck related the variation of imagensities at one spatial location in the
course of time to the motion of the intensity paitat the same spatial location. The
motion of the intensity pattern, now termed asagitilow, reflected the trajectory of the
tracked image feature across a sequence of images its first introduction, substantial
research has been devoted to develop more effiaihtprecise algorithms to calculate
the optical flow based on Horn and Schunck’s athari Among these algorithms, the

total variation optical flow registration with'lnorm in the data fidelity term (TV3). has
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achieved precise and robust optical flow estimati®oth Horn and Schnuch’s original

algorithm and TV-L algorithm are discussed in the following sections.

3.2.1 Horn and Schunck’s Algorithm

In this algorithm, motion is detected through thenfof image intensity. Assuming the
image intensity of a certain object located at p&irdoesn’t change within a sequence of
images, and denoting the image intensity of theahj the image plane and at titnas

E(X,t), we have

dE

—=0 3.5

m (3.5)
Applying the chain rule for differentiation, Eq §3.can be expanded into

% ,i.0E=0, (3.6)

ot

whereU is the space velocity of the object moving acrthss image sequence and
Gg=%
dt

In this chapter, the space velocity of the objsegheasured in the image frame and is also
termed as the image flow or the optical flow. Sitice time interval between any two
registered images is always taken to be unit tifme,image flow or the optical flow is

equivalent to the displacement of the concernedablgicross the images

The image flow can be obtained from Eq (3.6),
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Et
]

u=- (3.7)

Although any motion satisfies Eq. (3.6), the motaam not be fully recovered from the
equation. Only the component that is parallel ®ittiensity gradient is recoverable in EQ.
(3.7). The perpendicular component is lost in tiveer product term. This issue is known

as the aperture problem of the optical flow aldont

One solution to the aperture problem is to intredadditional constrains. Smoothness is
the most popular option. The rationale of choosimpothness as the additional constrain
is that, the image flow doesn’t move in a randord amdependent manner. Instead, the
motions of neighboring points are assumed to bdasiim both magnitude and direction.
Unless the gradients of the neighboring image sites align in the same direction, the
local perpendicular component of flow with resptecthe gradient of image intensity is

determined from more distant points.

One way to smooth the image flow is to minimize #gpiared Euclidean distance of

image flow gradient,

2
z(ai] (3.8)
i1\ 0X;
wherei andj denote spatial components. Value of (3.8) dessribe departure from
smoothness. As smoothness decreases, the valuee detm in (3.8) increases. The

problem then turns to finding the image flow thahimizes both the sum of the residual

in EQ. (3.6) and the departure from smoothness:
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£= j(—+u . DEj+aZZ(%] dx. (3.9)

The first term is the data term, also known asojptecal flow constraint. The second term
is a regularization term that exerts a penaltyuiesmooth image flows and is known as

the deviation term.

The process of determining the minimum of Eq. (39equivalent to the solving of

Euler—Lagrange equation:

0 oL
- = 3.10
au Zax o, (3.10)
WhereL:a—E+U-DE+aZZUij2andUij :%_
ot i oX.

J

Applying the calculus of variation on Eq. (3.10) wbtain
9,E(0,E+U « DE)-0a%AU, =0, (3.11)

2
whereA = Z:—Z denotes the Laplace operator. To further simgh# notations in this
i OX

chapter, we defin®,E = Z—E .andoE = 9E
X

In practice the Laplacian is approximated numelyday employing the finite difference
method. In this method, the image space is dividemgrids (2D) or voxels (3D) in unit

dimension. The integral of the Laplacian is

jAUdv =jD-DUdv

=§DUdé (3.12)
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Confining the integral in one of the grids or voxealenoted as, Eq. (3.12) is

approximated by
AU (i) = k([T () -U (), (3.13)
whereU (i) is the average of image flows in the neighboringgyor voxels sharing one

face with grid or voxel. «is the number of neighboring grids or voxels. A wement

approximation to calculate the average is

U= z@ (3.14)
Wheren denotes the grid or voxel that shares one fade wakeli. In a 2D image,
AUG ) =406 ) -UG ) (3.15)
where
g, j) =%{U(i +1J)+UG-1j)+UG, -1 +UG, j +D) (3.16)
In a 3D image,
AUGL ) =60 G, 1)-U G i) (3.17)

where

UG+ = SUG+1500+UG-1].0)+UGj-1K

(3.18)
+U (@, j+1K)+U (G, k-1 +U(, |,k +1}
Eq. (3.11), after applying Eq (3.13), now reads
D 0,EU,0,E+a’kU; =a’kU, -0,E0,E (3.19)
j

Eqg. (3.19) is a system of linear equations with daadpsolute values in each row and
column dominated by the diagonal element. The Janethod is employed to determine

the solutions. An iterative process is repeatedtistawith initial guesses of solutions,
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until the solutions converge. Since the solutiopet&ls on the neighboring values of the
flow field, it must be repeated each time the neagbthave been updated. Therefore, the

following iterative scheme is employed to estimaeitmage flow,

aiE(ZUjajE +atEj
J

Ukt =gk -
' ' a’k? +||DE||2

(3.20)

where the superscript k+1 denotes the next iteraimhk is the previously calculated

result.

3.22TV-I

The Horn—Schunck algorithm is capable of yieldingigh density of flow vector field.
However, a quadratic penalization of the deviatiomtkads to two challenges. Firstly,
discontinuities are not allowed in the displacenfesitl. Secondly, extra small or large
motions distant from the rest of the displacemeiti$ can not be handled robustly. To
overcome these limitations, several modificatioms the original Horn-Schunck
algorithnt* have been proposed in the last two decades. Amamyg, ths proposed by
Zach, a differentiable approximation of the Total Vaioat with robust.® norm (TV-
LY) is used in the data fidelity term, which is optiflaw constraint that assumes the

intensity values ofy(x) do not change during its motionltgx+u(x)).

The total variation of a real-valued function fa@smeasure of the one-dimensional
arclength of the function as described using arpatac equation. In mathematics, the

total variationTVis defined as
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TV(f) = [|Df[dx. (3.21)

Q

If f is monotonic in [a, b], then TV(f) =|f(b)-f (a)¢gardless of whether or not f is
discontinuous. Since discontinuities in the optitav appear often in conjunction with
high image gradients, penalization on the totalatiemn would control both the sizes of
jumps between discontinuities and geometry of boreslaTVL! has advantages

over .the Horn—Schunck algorithm, both in precisaod robustness.

The objective of tha'V-L* optical flow registration algorithm is to find thmage flow

U which minimizes the residual that is contributed &yotal variation regularization

term and a robudt! norm in the data fidelity term that is similarvtat we described in

the Horn and Schunck’s algorithm. Mathematicalle ttnage flowU is the minimizer
of
j{A(@tEﬂj « OE)+ Z|DUi|}d>“( (3.22)

where (atE+U-DE) represents the image data fidelity afd|OU| is the

regularization termA weighs between the data fidelity term and the retaton term

that smoothes the displacement fields.

A dual formulation of Eq. (3.22) is introduced tohave an efficient and globally

convergent solution. In this scheme, Eq. (3.22misimized separately in the data

fidelity and regularization terms by introducing auxiliary variableV ,
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j{/i(atE +V « DE)+ Z|DUi|}dS{ (3.23)
In the following paragraphs, we denote the fidelg (atE +V e DE) by p(V).
An additional constraint termé%H(U —\7)”2, is introduced to make sure the image flows,

which are minimized in the two termi andV , converge at approximately the same

pace. EqQ. (3.23) now reads as:
O -
[ {/1,0(\/) +%H(u —V)H2 +Z|DUi|}d>? (3.24)

6 is a very small constant to guarantee sufficigspraximation betweety andV

which are minimized independently as depicted below

1 Minimization of the regularization term
: 1,+ 02
min I{Z—H“(U —V)H +Z|Dui|}d56 (3.25)
2. Minimization of the fidelity term
min [ {iH(U —\7)H2 +;|p(\7)}dsz (3.26)
26
The solution of Eq. (3.25) is given by
U=V-4apP (3.27)
whereP is a tensor oNxN and N is the dimension off . P can be solved iteratively

using the following equation,
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k+l —
R =

(e (224

(3.28)

where k is the iterative step an®° = .0r is the time step which controls the

convergence speed.

The solution of Eqg. (3.26) is given by the follogithreshold step:

0 oE if U)<-460 9 aE
b ax ax P Z ax ax
0 OE 0 OE
V. =U. +{-18 if U)>180» | —— 3.29
=V, Zax o pU,) Z( ,axJ (3.29)
2
d OE d OE - E
_ if o) <A8 (——j
AU )za ax/zaxa A Zj:axaxi

The implementation of this scheme is quite sim@aen two imagespland | of any

dimensions (2D or 3D),

1. Start with iterative step k=0

2. Set the image flow) =0. Also setV =0and P =0

3. Calculate the image fidelitp using p(U) =9,E +U « OE
4. Calculatev* using Eq. (3.29)

5. CalculateP*** using Eq. (3.28)

6. UpdateU “** using Eq. (3.27)

7. Update k with k+1
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8 Go to step3 and repeat

3.3 Model Fitting

After registering the images to obtain the lunguis motion positions for each acquired
image, the images are correlated against the violaimes and airflows at the times the
images were acquired. The motion model parameterdit by minimizing the residual

of the model equation (1.1),

_min BZHX. -X,-av, _BfiH

Xo,@,400
where X, was thei" location of the registrations, aand f, were the tidal volume
and airflow, respectively, for scanTo recover 3 undetermined model parameter vectors
)?O, @ and 3, at least 3 images acquired at different pairtidzfl volume and airflow

are required. However, because of the image adifaccurring during the acquisition
and registration noises, more than 3 images ardedet® recover the model parameters
with a higher confidence. Therefore, the determomabf the model parameters turn to
approximating the solutions for an overdetermingdtesm in which there are more
equations than unknowns. In this chapter, we defivee process of finding optimal

solutions to an overdetermined system as thedifiocess.
Two optimization techniques have been implementeths One is Linear Least-Square

method and another is nonlinear Nelder—-Mead metfib@. implementation of both

techniques is discussed in the following section.
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3.3.1 Linear Least-Square Optimization

Least-square optimization was first introduced karl@Gauss around 1794 to study the
motion of heavenly bodies. In this method, a residsidefined as the difference between
the observed positions (or the registered positiansl the predicted positions from the

model. The goal of fitting is to optimize the mogarameters to minimize the residuals.

The lung motion model discussed in this dissenaisca regression model that is a linear
combination of parameters. In mathematics, it canekpressed concisely with matrix
operations,

X =PS (3.30)
where X is the tissue trajectoryP is the matrix of the model parameters &id the
matrix containing the surrogates that include tit2lme and air flow.X , P and S are

specifically defined as the following

X X, .o Xy

X=lY: Yo oo Yn (3.31)
Z:I. ZZ ZN
XOx ax ﬂx

P=| X, a, B, (3.32)
XOX az ﬁz

and

1 1 ... 1

S=|V, V, ..V, (3.33)
f, o, ... f

whereN is the number of the acquisitions per couch pasiti
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The residual between the observed position angrbeicted position from the model is
written in matrix form as the following,
R=X, -PS (3.34)
Please notice that in this equatidhis replaced by, , which denotes the observed
position. The sum of the residual squares is gbsethe Frobenius inner product,
L=(X,, -P9S):(X,, - P9 (3.35)
where the operatardonotes the Frobenius inner product which, far matrixes A and

B with equal size, gives
A:B=> > AB, (3.36)
i

The Frobenius inner product of matrixes can be \edeitly transferred to trace

operation of the matrix multiplication. Hence Eg.35) can be rewritten as
L =Tr{(X,, - PS)(Xy, - P} (3.37)
where the Frobenius inner product is replaced kynibrmal matrix multiplication in the

trace operation.

The minimum of the sum of squares is found at anetpvhere the derivative of the sum

of squares with respect to the unknown parametgralg zero.

oL _ aTr{(X, —PS)Xy, - P}
oP P
_aTr{X X, - X, STPT -PSX], + PSS PT}
oP (3.38)
=0-SX, - SX\, +SS P +SSP" +(SS)"P"
= -2SX, +2SS P’
=0
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Therefore, we obtain the parameters in our lung ionotmodel, which is an

overdetermined system, in a closed form.
PT =(SS)™sX;, (3.39)
or

P=X,S (s )" (3.40)

3.3.2 Nelder—Mead Optimization

Although least-square optimization is by far thesinpopular method to estimate the
unknown model parameter, some disadvantages ofntlethod limit its application.

Firstly, least-square optimization only works fandar models whose parameter
derivatives are available. Secondly, the matrixduseleast-square optimization must be
non-singular in order to obtain meaningful resufist example, if we prospectively gate

the breathing and scan the patient only at endxbélation and end of inhalation, the

airflow would be zero for all the data acquired.that caseSS would be a singular

matrix and the inverse of the singular matrix wolddcome meaningless. Thirdly,
although we model lung motion during quite resparatusing a linear function, in the
future we would like to add more terms into our mloespecially cross terms of tidal
volume and airflow. A motion model with cross termsuld be nonlinear and the linear
least-square optimization would be no longer applie. Therefore, we need an

optimization method that could be applied to a devaange of situations.

Nelder-Mead optimizatior® is one of the most popular non-derivative alganish The

word “non-derivative algorithrhhere means broadly that it uses only functionugal
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(comparing to least-square optimization) and dagsimplicitly try to approximate the

gradient (comparing to finite-difference optimizat).

The biggest advantage of a non-derivative algoriigainst a derivative algorithm is that,
the non-derivative algorithm does not require addél coding to evaluate derivatives,
which are usually the major source of errors. Tddsantage, in addition to simplicity,

boosts the popularity of Nelder-Mead optimizationoamg users, despite its relatively

lower efficiency.

Nelder-Mead optimization is carried out on simpkexahich are constructed by the
model parameters to be fit. In the field of geomedrsimplex is a generalized notion of a
triangle or tetrahedron in arbitrary dimensions.e@fically, an n-simplex is an n-

dimensional polytope with n + 1 vertices, of whitie simplex is the convex hull. For

example, a 2-simplex is a triangle, a 3-simplex igetrahedron, and a 4-simplex is a
pentachoron. A single point may be considered am@lex, and a line segment may be
viewed as a 1-simplex. A simplex may be definedihes smallest convex set which

contains the given vertices.

The method approximates a local optimum of a problth N undetermined parameters.

For example, the purpose of fitting our lung motroadel is to look for an optimal set of
parameters ag £ and )ZO that together determine the lung tissue motiors. dlear that

the motion is a combination of contributions froth @arameters, but it is not easy to

visualize the impact of changing any specific eletén this case, we use the Nelder—
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Mead method to generate trial motions and test thessh round of tests will tell us if
we should keep looking in the same direction inroing the model parameters or we

are heading towards a dead end and should chareptiain.

Initially, one constructs an N-simplex with N+1 tiees. For a two parameter problem, a
2-simplex is constructed with 3 vertices, whichsisnply a triangle. However, the
construction of an initial simplex is more compliex our lung motion mode since the
model has 3 undetermined parameters, each of wha$ 3 independent spatial
components. To proceed with 9 variables, a 9-simp#e constructed at the very
beginning of the optimization. All the verticesmoints in the simplex are used to test the
possibility of finding an optimal solution, there&) they are called test points or test

simplex.

After the construction of the initial simplex, améest point is generated by extrapolating
the behavior of the objective function measureceath test point in the current test
simplex. The algorithm then chooses to replaceddribese test points with the new test
point and so the process continues to evolve. Tielsst step is to replace the worst
point with its mirror point that reflects throughet center of gravity of the remaining N

points. The center of gravity here is defined agwple average of the positions of all test
points. If the new point is better than the bestent point by giving a lower evaluation

of the objective function, the next iteration wetktend along the same direction. On the
other hand, if this new point isn't much bettemtiiae previous value, it is possible that a

minimum was crossed. Sampling an intermediate peauid then be attempted.
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There are many variations of the Nelder—Mead methitth variations depending on the
nature of the problem to solve. Steps of one Neldead algorithm are listed as the
following:

Given: N+1 verticesx,, i=1...N+1, of aN-simplex, a model presented by a function

f(x),1 =1.N+1 ,and coefficiento (reflection), y (expansion)y (contraction) ands

(shrinkage). In a standard implement of Nelder-Ma#gbrithm,p=1 y=1, y=05

ando = 05
1. Initialization. For a model with N undetermined parameters, chdésk points.

Evaluate the model at each point (vertex) of thepsex.

2. Sort by model value.Sort the values at the vertices to satisfy
f (X1) <--<f (XN) < f (XN+1) (3-41)

3. Localization of the gravity center. Calculate the gravity cerdé all points in the

simplex except the one that is going to be repldbld).
N
X=> X (3.42)

4. Reflection. Computer the mirror point of the worst point flecting through the

center of gravity

X, =X+ O(X = Xya) (3.43)
Comparing the evaluation of the function at the ngeint to those at points in the
simplex except the worst one, ff(x)< f(x )< f(ry ,)the new point is better in

minimizing the function than at least one pointhe simplex and also worse than at least
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one point. This indicates that optimization towagds probably in the right direction, but
the room for further improvement is limited. Thene, x, will be accepted to replace the

worst point and continue to step 2.

5. Expansion . If f(x )< f(x,), the reflected point is the best point so far.sThi
indicates that optimization towards is very promising and the room for further
improvement is beyond detection so far. Instea#tesfpingx, and replacing the worst
point like step 4, a more aggressive exploratianiésl in the direction suggested by.

Xe = X+ X(X = Xy41) (3.44)
If the expanded point is better than the reflegienht, f (x,) < f(x, ), the worst point in

the simplex is replaced by the expanded point. @tise, the worst point in the simplex

is replaced by the reflected point. Continue tp 2@fter the replacing.

6. Contraction. If f(x )= f(xy), the reflection appears too aggressive to obtain a
gain over current points. A contraction betweerand the better ok, and x,., is

performed.

a.Outside. If f(xy)< f(x, )< f(Xy,.), calculate
X, =X+ p(X, —X) (3.45)
If f(x.)< f(x) , replacex,,, with x, and proceed to step 2; otherwise

proceed to step 7 for a shrinkage.

b.Inside. If f(x, )= f(x.,), calculate
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X

s =X+ y(XN+1 _)_() (3-46)
If f(x.)< f(x,,) , replacex,,, with x, and proceed to step 2; otherwise

proceed to step 7 for the shrinking.

7. Shrink. In this case, all the attempts to find a bettemp outside of the region
enclosed by the simplex have failed. The simplextbashrink to proceed. All the points

are shrunk to new points.
X =X +0(X =) (3.47)
wherei =1---,N+ 1 The points of the simplex are replaced by the mmwnts and

continue to step 2.

The Nelder-Mead algorithm is known for its ineféocy. A lot of effort has been put into
a mathematical analysis of the simple steps abowle Nttle progress. However the
Nelder-Mead algorithm is a simple and straightfaxvaethod for global optimization. It
has been used to solve a remarkable number ofwliffoptimization problems. We used
the Nelder-Mead algorithm in this study to examihe free breathing patterns. A
retrospective study also showed that the fittinguls from Nelder-Mead algorithm are
slightly better than those from the least-squaringpation, in addition to its capability
to optimize a potential nonlinear equation thatwald like to expand our model to in

the future, if necessary.
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Chapter 4

Verification of The Lung Motion Model

4.1 Introduction

The free-breathing lung motion model we discusshia dissertation hypothesized that
the breathing motion of lung tissues and lung tisy@an be modeled as a function of 5
independent parameters, which are the tidal voluheeairflow and 3 independent spatial
components of the tissue’s initial position at thierence condition of zero tidal volume
and zero airflow. The tidal volume metric is a sgate for the general inhalation and
exhalation motion while the airflow is a surrogéte the hysteresis behavior. Hysteresis
is defined as the variation between trajectoriesnduinhalation and exhalation. The

magnitude of hysteresis was observed to be minantle beginning of inhalation or the

end of exhalation, while maximal at mid-inhalat@md mid-exhalation. This observation

provided the rationale to model the hysteresis aitfiow.

This model was formulated such that the volume amfiow were functions of time,

rather than have time as an explicit variable srttodel. Excluding the time dependence
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explicitly from the model equation allows the compkime dependence to reside within

the variables rather than explicitly within the nebdquation.

In this chapter, some of the consequences of thdemwill be examined and the

predictions will be validated with patient data.

4.2 Materials and Methods

4.2.1 Derivation of Divergence Relationship

The breathing motion model was proposed with aalineelationship between tidal

volume, airflow and the subsequent tissue displacem The positionX of tissue was

modeled as

X(v, f:X,)= X, +@(X )V + B(X,) f (4.1)
where X, was the position of tissue under the conditiongiaél volumeV =0 and
airflow f =0, (7()?0) characterized the displacement of lung tissues fo filling and
/}5()?0) characterized the hysteresis motioa. had units of distance per tidal volume

(mm ™ in this work) andB had units of distance per airflow (mmsih this work). Eq.

(4.1) does not have time explicitly included. Thed dependence is imbeddedrandf.
This first-order model was assumed to accuratgbhyesent breathing motion under the

conditions of quiet respiration which was typicatliyaracterized by smooth changes in
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tidal volume and airflow. In this model, the phoaliprocesses that were modeled by the
tidal volume and airflow were assumed to be inddpeh of one another, so the

hysteresis behavior occurred independently of fihigg. For example, if the hysteresis
component of motion for a specific piece of tisglecated at)zo) was /35()?0) the

hysteresis motion was the same whether the tidahwe was at inhalation or exhalation

or in between.

The model accuracy has been studied by Low *Ataald investigations are ongoing to
evaluate the consistency of model parameters boththé case of irradiated and

unirradiated lungs.

The objective of this chapter is to examine whetiher model behaves correctly when

applied to the continuity equation. The continugtyuation states that the relationship

between a velocity fieldd and densityp is:

O« pU = —‘Z—f (4.2)

wheret is time and the velocity vector field $ = dX/dt. Expanding the left side of Eq.

(4.2)

E]polj+pﬁ°lj:—%—’f (4.3)

The equation states that the change in lung tidsusity at a point in space is due to two
causes presented by two terms on the left sideqof(£3). The first term is the inner
product of the gradient of the tissue density dmel tissue velocity. When there is a

gradient in the tissue density and the tissue m@a=t the point of observation, the
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density at the point of observation will changetime. The second term describes the
change in density due to expansion or contractibrthe velocity field. The local
expansion and contraction of lung tissue is likelype a physiologically relevant quantity

to study, so the first term is subtracted from kittes of the equation. This results in

- do
(JeU = ——— 4.4
P o (4.4)

In the proposed breathing motion model, time wasthe dependent variable, so the

chain rule was employed to change the variable froorV andf yielding terms with the

derivative df /dt. In order to simplify the equation, the consttaiha constant airflow
df /dt =0 was applied. This yielded

_opav
ov dt

(4.5)

av[o ox 00y, 00z
dt |[oxoV odyoV 0zadV
Eq. (4.1) shows the relationship between the tadlime, the airflow, and the tissue

position. Taking the partial derivatives of thesgion vectors and dividing both sides by

p dV/dt leads to

10p
p oV

Oed=- (4.6)

where the equation is valid under conditions ofstant airflow. This equation was
obtained by dividing both sides by dV/dt, so in principal it is not valid when either

the density or the airflow is zero, but it is validthe limit that the density or airflow

approach zero.
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4.2.2 Evaluation Equations

Eq. (4.6) showed that under conditions of constrftow, the relative local density
changed as a function of tidal volume by an amantal to the divergence of tlee
field. The hypothesis was that the local densayiation as a function of inhaled tidal
volume, and consequently, would remain consistent with time (days or weeakshe

lungs were not affected by disease or treatmeatvahtion such as radiation therapy.

Measuring the local density change directly from<€@ns acquired during free breathing
would normally be challenging due to the complesthgesis motion during respiration.
However, with the approach proposed by Low &t #le position of the tissues in the

individual free breathing CT scans could be coteglaagainst the tidal volumes and
airflows to generate the model parametérsand 8. According to Eq. (4.6), the
divergence ofa provided the relative density variation as thougle patient had

breathed infinitely slowly (consistent with the ctent airflow restriction) so that

hysteresis effects were not present.

While Eq. (4.6) provided the potential for exammithe lung density variations, a
validation of the equation would provide a powenalidation of the 5D model and its
consequences. The left side of Eq. (4.6) was iated throughout the lungs so Gauss’s

law could be used to convert the integral to asgfintegral
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ji-ﬁdv=§ﬁ-d§ 4.7)
\Y S

where the integral on the left of Eq. (4.7) woukldonducted throughout the entire lung

volumeV through volume elementV, and the surface integral on the right would be

conducted on the lung surfaéethrough surface area elementS, which represented
an infinitesimal surface area element whose dimactvas normal to the lung surface.

The term on the right could be expressed as

§§'° d» =§ )Z(V, f: Xo) :/)Zo _B(Xo)f . dé (4_8)

At end of inhalation and exhalation, the airflonuaty zero. At these two phases, Eq. (4.8)

became

—

§ﬁ-dézvi§(>2(v,f =0: X,) ~ X, )+ dS (4.9)

X(v, f =0: X,) — )ZO was the displacement vector of an infinitesimafesze element on

the lung, its vector product with the surface amea the change of lung volume through
the infinitesimal surface. The integral of the désement over the whole lung boundary
gave the total change of lung volume due to repiraat end of inhalation. The ratio of
lung volume change to the tidal volume had beeabéished to be 1.f3 the ratio of
room air to lung air densities. Therefore,

3957- dS =111 (4.10)

Using Gauss’ law, Eg. (4.10) became

[Oeadv =111 (4.11)
\Y
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Eq. (4.11) provided a useful test metric for thetioromodel. It indicated that for every
patient and every 4DCT scan session, the intedrieodivergence oﬁ()?o) must be

1.11.

The value of,E’(XO) was tested in a similar wayg related motion to airflow, which in

the breathing motion model was assumed to be ptiopal to internal pressure
imbalances that occurred during the act of inhafatind exhalation. Similar to the
analysis of Eq. (4.7) where the surface integradi oflescribed the inflation of the lungs,
the surface integral off also described lung inflation, this time due tosteyesis.

Because lung inflation due to changes in tidal n@uwas modeled by , the lung

inflation due to hysteresis should have been nixdigbut unlike Eq. (4.10), integrating
the divergence of8 did not provide a unitless quantity (it had a uofttime), so
interpretation of the results would have been dliffi Instead, theatio of surface
integrals of 8 to @ was defined, multiplying each integral by the nmaxin airflow f o
and tidal volumev, .. The surface integrals described the integradtel of inflation.

Multiplying the rate of inflation by the appropravariable would yield the total inflation.
For exampleg was calculated in units of distance per tidal wod so multiplying by

the surface integral by tidal volume gave the espan at the lung surface at the
maximum tidal volume. Similarly was calculated in units of distance per airflow, s

multiplying by the maximum airflow gave the amounit lung inflation due to the
hysteresis component. The ratio, defined RRscompared the maximum volume

expansion for these components.
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fay §5° 05

REvmax§a-d§

(4.12)

The motion model predicted that the influence daltivolume and airflow mechanics

were independent, and that the inflation was ptediby the volume component, so the

[ component, and consequently the r&ishould have been equal to zero. The ratio of

V, . . : .
% can be found in Tab. (4.1) for all patients em@llin this study. The surface

integral in the denominator of Eq. (4.12) was pded in Eq. (4.10). Applying Gauss’s

law to the numerator

< )
[
El
<

. (4.13)
111x —max

max

—- | <

Like Eq. (4.11), this provided a test of the mogi@lameter, in this casé()?o) :

4.2.3 Evaluation Method

Eq. (4.11) and Eq. (4.13) were evaluated usingicaindata from 35 patients. These
patients were scanned using a 16-slice CT (PhBipléiance) scanner operated in ciné
mode (spatial resolution: 0.98x0.98x1.5 Mimith 25 scans acquired contiguously at
each 24 mm wide couch position. Two external respiy measurements were
simultaneously acquired; tidal volume measuredgiaispirometer (VMM-400, Interface

Associates), and a bellows pressure signal measisiad a pneumatic belt system that

was wrapped around the abdomen. The bellows peessaasurement was correlated
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with the spirometry measurement to provide thel iddume and airflow at each scan.

Lu et aP® described this technique.

The tissue positions were mapped for each scarmg ukernormalized cross-correlation.
The scan with tidal volume closest to zero ml (dedi as the ® percentile tidal volume)

was employed as the reference scan. The remascugs were sorted by tidal volume
and categorized into whether they were acquiredngunhalation or exhalation. The

position matching was performed in the inhalation &xhalation category separately,
ordered by increasing tidal volume and using tHeremce scan as the initial guess for
the first operation in each category. The reswitnf each match was used as the initial

guess for the next match in the tidal volume order.

After the positions were mapped, the valuegiof3, and )ZO were fit by minimizing the

least squares difference of the predicted (Eq))X4id measured positions. The integrals
of the divergences in Eq. (4.11) and Eq. (4.13)enamymputed and the results used to

evaluate the model quality.

4.3 Results

Of the 35 datasets, 18 were from lung cancer patimd 17 were from non-lung cancer

patients. Tab. (4.1) lists the maximum tidal voluared airflow. The mean ratio of

maximum airflow to tidal volume wa¥pay/ frmax = 1195+ 045s.
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Tab. (4.2) and Tab. (4.3) list the results of E1{) and Eqg. (4.13) for each patient,
respectively. According to Eq. (4.11), the predictof Jﬁ * adV was 1.11 while the

\%
mean measured value waf6+ Q1Hig. (4.1) shows a histogram of the values of

ID *adV for the 35 patients. The predicted and mean medsvalues agreed
\%

within 5% and the spread of the results was redhtimarrow.

The prediction ofR was 0. Fig. (4.2a) shows a histogram of the \s&abfé for the 35
patients. The average value Waf17+ 0.0E®y. (4.2b) shows a histogram of the
values ofR for 17 non-lung cancer patients with average vat®.007+0.021. Fig.
(4.2c) shows a histogram of the valueRdbr 18 lung cancer patients with an average

value at 0.028+0.029. All the results are very eltasthe prediction of O.
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Figure 4.1: Histogram of the integral f)fj » adV for the 35 evaluated patient scans,
\Y

predicted to be 1.11 according to EqQ. (4.11)
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4.4 Discussion

Although Fig. (4.2) and Tab.(4.3) show that Reatios of both lung cancer and non-
lung cancer patients are very close to the prexdtiaif O, the results from non-lung cancer
patients, whose lung are assumed to function mormally than lung cancer patients’,
lie closer to the prediction, indicting that the toa model may be more robust for non-
lung cancer patients.

Both of the motion model quantitative evaluatiom®wed that the predictions of the

model agreed well with clinical data. The ovenafility of the motion model will
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ultimately be tested by repeated testing in patidmit the data shown here have provided
significant evidence to the model’s validity.

The reason that this analysis was possible wasthleatotion model used tidal volume
and its time derivative airflow as the motion metrand as independent variables. Most
published breathing motion studies or models haesl unetrics such as abdomen height
or a belt wrapped around the abdomen, neither aélwprovided a physiologic metric
that could be used to provide independent veribcabf a motion model. The use of
tidal volume and airflow allowed the model predcis to be validated, in this case using

the continuity equation.
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Lung Patients Non-Lung Patients

Vmax fmax Vma)lfmax Vmax fmax Vma)lfmax

(1) (I/s) (s) (1) (I/s) (s)
1 497.9 556.9 0.89 587.3 521.1 1.13
2 480.0 626.0 0.77 982.4 412.2 2.38
3 271.4 412.1 0.66 630.9 513.7 1.23
4 358.8 372.3 0.96 472.1 288.3 1.64
5 256.4 315.6 0.81 463.3 461.9 1.00
6 630.5 653.2 0.97 615.9 281.2 2.19
7 317.1 556.9 0.57 528.2 432.5 1.22
8 411.4 359.1 1.15 541.5 508.3 1.07
9 399.1 367.0 1.09 633.7 550.9 1.15
10 449.0 461.9 0.97 398.2 318.7 1.25
11 318.3 472.3 0.67 404.4 305.6 1.32
12 408.0 332.4 1.23 308.8 302.8 1.02
13 409.1 416.9 0.98 1438.7 611.1 2.35
14 459.0 402.5 1.14 335.7 356.1 0.94
15 848.9 699.4 1.21 523.9 443.8 1.18
16 557.9 321.6 1.73 569.1 425.5 1.34
17 971.0 510.0 1.90 240.0 349.7 0.69
18 546.6 595.7 0.92
Mean 1.03 1.36
VAR 0.12 0.25
STD 0.34 0.49

Overall

Mean 1.19
VAR 0.20
STD 0.45

Table 4.1.% of all the patients

max
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Lung Patient Non-Lung Patient

1 1.1887 1.0760
2 1.2032 1.1603
3 1.2758 0.9676
4 0.9277 0.8884
5 1.2167 1.0996
6 1.0256 1.2387
7 1.0820 1.0813
8 1.2077 1.0071
9 0.9413 1.1072
10 0.9113 0.9175
11 1.2744 1.2023
12 0.9422 1.1597
13 1.0445 0.8056
14 1.3814 1.0154
15 0.9219 1.0313
16 0.8686 1.1724
17 0.8988 0.9649
18 1.0050

Mean 1.0732 1.0526
VAR 0.1591 0.1189
STD 0.0239 0.0141

Overall

Mean 1.0632

VAR 0.0194

STD 0.1393

Table 4.2. Integrabf Jﬁ * ddV conducted
\%

over both lungs
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Lung Patient Non-Lung Patient

1 0.0760 0.0503
2 0.0653 0.0504
3 0.0178 -0.0029
4 -0.0004 -0.0181
5 0.0244 -0.0016
6 0.0093 -0.0004
7 0.0348 0.0034
8 0.0428 -0.0011
9 0.0023 -0.0041
10 0.0829 0.0116
11 0.0515 0.0322
12 0.0027 -0.0229
13 -0.0142 -0.0014
14 0.0497 0.0070
15 0.0326 0.0265
16 0.0007 0.0061
17 -0.0025 -0.0102
18 0.0240
Mean 0.0278 0.0073
VAR 0.0008 0.0004
STD 0.0288 0.0211

Overall
Mean 0.0178
VAR 0.0007
STD 0.0270
Table 4.3. IntegraID—'B dv

v 111x %

conducted over both lungs.

max
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Chapter 5

Mechanics of Respiration

Although the accuracy and application of the heigrisreathing motion model has been
discussed in the original papeand the previous chapter, the biomechanical mganin
behind the parameters of the breathing motion ma@esl not yet clearly described. The
goal of this chapter is to rebuild the free breaghiung motion model by examining the
biomechanical properties of lung tissue. To distisly the model we are about to develop
in this chapter from the heuristic free breathingg motion model we have discussed in
previous chapters, we term the former the biomachhmodel and the latter 5D model
(tidal volume, air flow and 3 independent composeot reference position) or lung
motion model. We will see that the biomechanicatlel@agrees with the 5D model under
the first order approximation, giving biomechaniaaterpretation to parameters in the

heuristic breathing motion model.

The alveoli, where the exchanges of gas take ptawestitute 70% of the parenchyma at
the distal level of the bifurcated airway structukeing tissue motion is driven by the
response of alveoli to the actions of the respiyatouscles, as the volume of the lung

increases with inhalation and decreases with etibalaAmong all the respiratory
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muscles, the diaphragm, acting like a piston toease the volume of thoracic cavity, is

the primary breathing muscle driving respiration.

Adult alveoli have average diameter of 0.2 mm vatkery thin membrane. A very fine
mesh of capillaries covers the alveoli, stretchavgr 70% of the alveoli surface. The
capillary network, together with a skeleton of cedtive tissue fibers that are mainly
composed of collagen and elastin, build a wallechithe interalveolar septum that is
shared by adjacent alveoli. The lung parenchynfdlesl with interstitial fluid that acts

as the transmitter of pleural presstre

In this chapter, the alveolar structure is modali@aply as a cubic network. The stresses
on the lung tissue are analyzed to establish tlaioeship between the driving forces
and the resulting deformation. The biomechanicatl@havill be compared against the
published heuristic 5D lung motion motfel’ Verification of the biomechanical model

will be provided by comparing results from patidata with 5D model predictions.

5.1 Stress Distribution in the Lung

Alveoli have an irregular polyhedral configuratioh.close observation of fluorescently
labeled lung parenchyma, conducted by Brewer’2imR003 as illustrated in Fig. (5.1a),
shows a roughly hexagonal arrangement of alveolthis chapter, we employ a cubic
network to model the alveoli arrangement. The mtop@ of this arrangement is
illustrated in Fig. (5.1c); the cubic-shaped alwsols subjected to distending stresses that

inflate the alveolus on its 6 faces, each operatingn angle of $0with respect to the
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shared alveolar wall. The distending stresses cioome the pressure drop between the
inside and outside of the alveolar cell, which mbtely arises from the pressure drop
across the alveolar cell and the pleural wall dslv@ demonstrated below. The direction

of distending stress is normal to the surface upbich it acts, and it will be termed here

as normal stress.

Under quasi-static conditions and ignoring the ggjovariation of connected tissues, a
balance of stresses on the alveolar wall is reaclibd equation of balanced stresses

normal to the alveolar wall is:

Plalv + PZW +-|-2normal = Pzalv + le +-|-lnormal (51)

where P and P are the alveolar pressures in alveoli 1 and 2eetsgely. P" and
P," are the radial stresses arising from the surfaosidn on the alveolar membrane,

with subscripts 1 and 2 indicating the source & sarface tensior,*™ and T, ™

are the surface tensions arising from the resistasfcthe alveolar wall against the
inflation and deflation of alveoli and are normalthe alveolar walls. The source of the
recoil stresses is indicated by the subscript. Algh most of the physiology literature
assumes these pressures to be equal, this assongmly valid when the airflow is

infinitesimally slow. As the airflow rate changearithg respiration, the pressure drop
between the atmosphere and inside of alveoli clangenuniformly. This slight

fluctuation in the alveolar pressure distributiemon-trivial, especially when considering

hysteresis, which is caused by the imbalance afspre along the moving path.
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A question we try to answer in this chapter is b stress that distends the alveolus is
related to the pleural pressure. Applying Eq. (501 sac of alveolias illustrated in Fig.

(5.1c), the following equations are defined fohaia of alveoli to the lung boundary,

alv w normal — palv w normal
I:)i + Pi+1 +Ti+1 - Pi+1 + PI +Ti
alv w normal — palv w normal
I:)i+1 + I:)i+2 +Ti+2 - I:)i+2 + I:)i+l +Ti+l
alv w normal — palv w normal
Pn—l + Pn +Tn - Pn + Pn—l +Tn—1
alv — w normal
I:)n - I:)pl + I:)n +Tn

Summing the equations results in
Pialv _ Ppl - PiW +-|-inormal (52)
Eq. (5.2) states that if the motion of the alvedlalt is ignored, any alveolus, wherever it

is, is exposed to the pleural pressupg’ — , provides the stress that expands the

volume of the alveolar celR" andT."™ together provide the recoil stress from tfe i

alveolar unit. Many publications have described theasuring of recoil stre¥s The
recoil stress is passive and serves as the respbrgeg structure to the normal stress
that inflates the lung. The recoil stress is villjugquivalent to the normal stress in

magnitude and opposite in direction under the deyrdpf quiet respiration.

5.2 Biomechanical Model

In this chapter, we define a unit tissue as a poddang tissue with unit dimensions. The
unit tissue is small enough to be virtually homagms inside, while big enough that
principles of classical mechanics still apply. Sachnit tissue is considered to contain

the structures similar to that of the alveolus. Aituissue of 1x1x1 mrhcontains

65



approximately 125 alveoli, smoothing out the maatelior calculating error of each

alveolus.

A stress vecton‘én is defined as the stress on a plane normal to ¢o®wrin and passing
through the point of interest. Although there amdéinite number of planes passing
through that point, Cauchy showed that by just kngwthe stress vectors on three
orthogonal planes, the stress vector on any plaseipg through that point can be found
through coordinate transformations. In general,diness can be presented by a second-
order Cartesian tensor which completely definesstage of stresses at a poiyt,

su(Vof.%)  sp(V. %) su(V.f.%)

S=15,,(V. F.%) $,(V,f.%) S,(V,f.%)|, (5.3)
SuV, %) SV, 1,%) sV, %)

wheres,,, S,, ands,; are the normal stresses that are normal to thegonhal planes.

S, ands;;, S,, ands,;,s;; ands,, are 3 pairs of shear stresses that are parallieto

orthogonal planes. We hypothesized that all niremehts in the stress tensor are

functions of tidal volume and air flow.

Introducing
_S TS
7T; —% (5.4)
and
=S
T -5 7S > ! (5.5)
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the stress tensor can be decomposed into symmaettianti-symmetric components,

-

é :ésymm-'-santi—symm
TV, £.%) LV f.%) sV, %) 0 (V. f.%) TV, f,%)
= (V1. %) (VL 1.%) s (VL F.%0) |+ 75,V %) 0 TV, 1.%)
TV, %) TV, %) TV, %) | |7V, F.%) TV, %) 0

(5.6)
where §Symm is a symmetric Cauchy stress tensor working oady bhat is in equilibrium

and satisfies conservation of angular momen@m;symm is an anti-symmetric Cauchy

stress tensor that gives net moments to the bodigamses rigid rotation.

For any symmetric Cauchy stress tensor, we canyaliad three orthogonal planes,

called principal planes, where shear stresses vargsulting in the corresponding stress
vector that is perpendicular to the plane. Thedlstresses normal to these principal
planes are called principal stresses. If we ch@oseordinate system with axes oriented
to the principal directions, then the normal steeswill be the principal stresses and the

stress tensor is represented by a diagonal matrix.

(5.7)

whereo, 2 g, 2 g,. Under equilibrium conditions, the principal seesn be written as

a combination of the pressure across the alvedddiramd the stress from gravity,

0, =p(V,f)+g, (5.8)
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where g, is the pressure caused by the gravity on prindpattioni.

On any plan that passes through a point on whiehsghmmetric Cauchy stress tensor

-

S...., works, the maximum shear stress, is given by"

symm
1

max 2
h (5.9)
2

The maximum difference between pressures causeplawty is given by the weight of
the alveolus on the cross section area. Compawitigetisotropic pressure drop across the
alveolar wall that is caused by the breathing nmasscthe anisotropic pressures from
gravity is negligible. Ignoring the impact of grawithe maximum shear stress,, goes

to zero. Hence the principal stress can be simpdgented by the pressure drop across

the alveolar wall. The symmetric Cauchy stressdeé§ymm can be reduced into

pV, f) 0 0
Sym=| 0 pv.f) 0 (5.10)
0 0 pv.f)

On the other hand, the rigid-rotation tené;gn_symm, part of the shear stress3n comes

from the relative motion between adjacent tissi¥g. find that the relative motion
reaches its minimum at beginning of inhalation @nd of exhalation when airflow is
minimal, and maximum at the middle of inhalationdagxhalation when airflow is

maximal. Bases on this observation, we assumeath#ite shear stress components in

éanti—symm only depend on airflow instead of tidal volume nide §ami_symm can be reduced
to
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0 T(F.%) 15(f.%)
Sami—symm: T21(f’7(0) O Z-23(1:’)?0) (511)
T2 (f. %) T5(f. %) 0

The stress tensds is therefore simplified to be

PV, 1) 1,(F,%)  Tis(F,%)
S=|1,(f.%) PV, T)  1,(f,%) (5.12)
T (f.%) T(f.%)  p(v,f)

The stress vectoB, that works on a plane normal to unit vector (n,,n,,n, is given

by

(5.13)

3"”

wn
Il
Q S
+ t:

where g, is the normal stress that works on the plane, emeagnitude is given by

2 2
+ 2 p + nS p + n1n2T12 + n1nZT21 + n1n3T13 + n1n3T31 + n2n3T23 + n2n3T32

1
o)
<
.
~ D

(5.14)

T, is the shear stress that works on the plane.pgéipendicular to the normal stregs

working on the same plane, and its magnitude isrghy

7 =S| lod”
= \/T122 + T123 + T223 - (n3T12 —NyTy3— n1r23)2 (5-15)
=7(f)
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Suppose the strain of the unit tissue at tidal m&l and airflow ratef is x in then
direction. As the tidal volume changes framto V + & and the airflow rate changes
from f to f +J& , the strain follows fronx to x + & . The change of the strain is given
by

5t 2 OV + N4 E %) =0,V F,%) | To(f +.%) =7, (1,%)
” E(%) G(%)

(5.16)

where X, is the location of the tissue at zero tidal volusne airflow,d,(V, f,X, )is the
normal stress vector arf is the shear stress vect&(X, is }¥oung’s modulus of the
tissue ands(X, Js the shear modulug:.indicates an infinitesimal variation from the
original value.

The Taylor expansion o, (V +V,f + &, X, atV =V, andf = f; is

G (V+N, T +F %) =0, To, %)

95, (V, ,%) 00, (V. f.%)
+ 2500 10 %) +N -V)+————F f+d-f
ov V=V, v 0) of e ( o)
f=f, f=fy
2= e %G X
T R AL TR B AL
GV =Vo f ‘V:VO
f=f, f=fo
625' (V| f))?O)
+ n f+F—f +V -V, +..
oV vffvfo( o °
(5.17)

The Taylor expansion af (f +&,X, at f =1, is
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£ (F+ &%) =7, (5, %)

NCLEI\SREL)| R A S (5.18)
of |,
) e o
SOV R g2
of v,

whereV, and f, are selected to minimize the approximation ertorthis study, we
choseV, = Oand f, = O Stubbs, et & studied the correlation between recoil pressure,

lung volume and air flow rate. His results suggedieat a linear relationship exists
between recoil pressure, lung volume and airflaspeeially during quiet respiration. We
hypothesize that the first order approximation i £5.17) and Eq. (5.18) would be

adequate to achieve adequate clinical precisioaréefbre Eq. (5.16) is reduced to

RS P AR
] G(%) of |,

(5.19)

s =L [ 599V 0. %) |, 590, (Vo, f.%)
" E(%,) o | of

YEA

When tidal volume changes from zerotand air flow from zero tof , the strain is

accumulated to

0%, =|[&,
:J-v { 0G,(\V, fy,%)| dV+If {aﬁn(\/o,f,xo)| df
VE(R) .,  PER) o [,
o 1 or,(1.%) 4
°G(%) of |,

(5.20)
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where AX is the strain vector of the unit tissue. The takigplacement of the unit tissue
is accumulated by all pieces of tissue moving behin Therefore, the displacement

vector AX, due to air filling is

= (5.21)

A% :rod?v L 00, (V, f,,%)|
o TLE®R) OV |,

jxoo&jf 1 97, (f,%)| of
o o Gx) of |f=f0

dv+r°d5( f 1ﬁ 00, (V,, f,%)|
0 0 E(X) of

where 0 denotes the location in the lung wherditiseie doesn’t move during respiration.

Three additional variables are introduced

o 1 0d,(V, fy, %)
A Y -

X (5.22)

% 1 00,(V,, f,%)|

B (%) = jo TR |f:fodz (5.23)
5 oo 1 0T (%)
ﬁz(xo)—_[o G of |f:f0d>? (5.24)

Since @ , B, and 5, are functions only of the reference positigp, the total

displacement vectohAX  is reduced to

AX, = [@(R)AV + [ B(R)df + [ B, (%)df

(%V + B(%,) f

(5.25)

1
Q or—<
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where X, is the position of the tissue at zero tidal voluamel zero airflow, andi(X, )

and B(XO) are used to be consistent with the equation ailyirproposed by Low, et

al 33
Physiologically,d (X, )characterizes the displacement of lung tissuestalwr filling,

and [3()‘(0) characterizes the hysteresis motion that was ibescby Seppenwoolde, et
al’’. While @ is determined by the overall integral of the tidalume derivative of the
normal stressf is decomposed into two independent componeﬁtsand /3"2. The first

one is perpendicular to and the second one is paralleldo

5.3 Angle Analysis

An evaluation of the term@ , £ (5, and f3,) from Eq. (5.22), Eq. (5.23), and Eq. (5.24)
is illustrated in Fig.(5.2)a is the integral of the tidal volume derivativerairmal stress
over the lung space at constant airflow rate, amilaly, 3, the combination 015’1 and
[:’2, is the integral of the airflow derivative of stseover the lung space at constant tidal
volume. Thed motion component is contributed entirely by tharadpe of tidal volume,
or equivalently, the change of lung volume. TRecomponent, which comes from
changes of airflow rate during breathing, charaoésrthe hysteresis component of the
motion and contributes nothing to the volume chanfee Bl component, which is

parallel toa , aligns with the displacement vector which is dn\by the normal pressure

gradient purely from volume change. Therefore ihtdbutes to a displacement that
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further inflates or deflates the lung and subsetipechanges the volume of any

individual piece of tissue on which it works. Howeythe changes of volume add up to

zero over the whole lung space because accorditigetdefinition, ﬁl Is the airflow rate

derivative of normal stress at a fixed tidal volunihe /3"2 component, which is
perpendicular taz , serves as a rigid-body rotation of theeomponent and won'’t change
the volume of the tissue it works on. The verificatthat the summation qf’ over the

lung space equals zero was described in chapter 4.

In the region where the normal stress decreasasfisy increases, the direction ¢ is
anti-parallel to that ofy . In the region where normal stress increasesrigvaincreases,
the direction of,@l is parallel to that of7 . 3 lies at a specific angle with respect taz

and this angle will be predicted and measured ssrited in section 5.4.3.

5.4. Model Validation

49 patients were enrolled in an IRB-approved prtand scanned using a 16-slice CT
scanner operating in ciné mode and acquiring seaifisa spatial resolution of 0.98 x
0.98 x 1.5 mm25 scans were acquired contiguously at each 24wide couch position

(CP). Two external respiratory measurements wemnellaneously acquired; the tidal
volume measured using a spirometer (VMM-400, latezf Associates), and a bellows
pressure signal measured using a pneumatic bekmsythat was wrapped around the
abdomen. The bellows pressure measurement waslated with the spirometry

measurement to provide the tidal volume and airfdwach scari’*®
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5.4.1 Results from the Empirical Lung Motion Model

The tissue positions were mapped for each scarg wsinormalized cross-correlation
method. The scan with tidal volume closest to zeas employed as the reference scan.
The rest of scans were sorted on tidal volume amegorized into inhalation and
exhalation. The position matching was performedthe inhalation and exhalation
categories respectively in the order of tidal vodymvith zero motion as the initial
estimate for the first registration in one categang the result from previous matching as
the initial estimate for the remaining registraon that category.

The registration results, together with the coroesiing tidal volumes and airflows were
fit to Eq. (1.1) employing the Nelder-Mead Optintina Algorithm by minimizing the

root-mean least-squares average distance betwedittithy and measurements.
XJ;T};BDsZHXi —Xo—av, - B, H (5.26)

where X, was thei™ location of the measurements, andand f, were the tidal volume
and airflow, respectively, for scan In this study, 25 scans were obtained for eacitic
position, so)?o, @ andg in Eq. (5.26) were overdetermined to suppressirtigact of
image motion artifacts and registration errors.

For each dataset, we defin#ﬁﬁgo and ‘B‘go as the 90 percentile of thed and B

magnitudes, respectively. We choose thB pércentile as the indicator to represent the
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maximumd and 8 magnitudes because it was stable against redistrand fitting

errors.

5.4.2 Results from the Biomechanical Model

@ and B result from the stresses in the lung parenchynmeofietically, they can be

predicted through Eq. (5.22), Eq. (5.23) and EqR4pif the Young’s modulus, shear
modulus, tidal volume and airflow rate derivativestress, and the distance from the
investigated tissue to a fixed reference pointkan@wn. Although in-vivo acquisition of

patient-specific parameters required in Eq. (5.2 (5.23), and Eq. (5.24) are
infeasible, values in the literature were used herestimations. The Young’'s modulus
E was taken to be 27.7 cmy® from Lai-Fook, et &F by averaging results from 15

subjects with two independent measuring methods. &uerage tidal volume derivative

of normal stressa;% was 3.80 cm bD/L from a study conducted by Rodarte ef‘al.

. o 20 .
The average airflow rate derivative of normal sireasi} was estimated to be 0.40 cm

H,O s/L from the study conducted by Stubbs & &lince no published literature data on
the shear stress inside of the lung is availalib, 6’1 could be estimated from published
data. The reference point that is supposed notaeenduring respiration was set at the
apex of the lung. The lung height, was defined as the Y@ercentile of distances of all
points inside the lung to the reference point. gshese valueér¢7|90 was predicted using

Eq. (5.22), which is
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a _ Ls 00,

oo ™E v 5.27
_ 380 (-27)

277

‘/351‘90 was be predicted using Eq. (5.23),

B _ Lo 99,
Yoo E of
5.28
_ 040, (5.28)
27.7 %

5.4.3 Comparison of@ and B between the Empirical Lung Motion

Model and the Biomechanical Model

A comparison of the 90percentile of the? magnitudes from both the 5D model and the

biomechanical model was used to evaluate how ve¢l Inodels agree with each other.

[ is a vector composed of two orthogonal vectqﬁlsand BZ, and the angle between

‘5’1‘ and‘[:" is given by

A,
cos¢,) =% (5.29)
Although E could be determined clinically by fitting the patt data to our
empirical lung motion model, it could not be fullgcovered from the biomechanical
model because the determination of one componeﬁt,q@z, required information

on the shear stress between adjacent tissues, Hmhwve did not have any

qualitative study to refer to. Therefore, the opbssible way to calculate the angle
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J, was performed by takin@l‘90 from the biomechanical model ab@go from the

5D model by fitting patient datzfi?l‘ was calculated by using published data using
Eq. (5.24). Presuming the measurements of the lwbamécal properties of lungs
obey a Gaussian distribution in the literature nogr@d above, the estimation )qfil‘
which depended on those biomechanical propertiesidhalso obey a Gaussian

distribution. Therefore, the averab?;‘ was also th%ﬁl‘ with maximum likelihood,

andJ, in Eq. (5.29) was taken as the maximum-likelihondla betweens, and 3,
or equivalently, the maximum-likelihood angle beéne and 3.

An alternative way to calculate the angle betwéemd B was using only the results

from 5D model. A new variablg was introduced to distinguish the angle calculated
this way from the way discussed in the previousgaph. was obtained through the

following equation,

=

a

(5.30)
a

cos) =

!

where both@ and 8 were obtained from the 5D model by fitting theipat data.

Unlike ,, 9 was obtained fron# and £ over the whole lung. Due to the variation of

lung properties and errors in registration andnfittof 5D model,J was obtained as a

spectrum of angles, instead of a single value. W parameter?, was defined as the

angle with the maximum likelihood over the spectrama is compared té, .
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As demonstrated by the biomechanical model conduattﬂ)ve,,é1 is parallel toa .
Therefore,, is expected to equdl}. The comparison off, and, provided another

indicator of how well the biomechanical model agregth the 5D model.

5.4.4. Zenith Angle Distribution

The distribution ofJ is biased on the Zenith angle distribution whililustrated in Fig.
(5.3). Defining the Zenith direction as paralleldq a random distribution off would
be proportional tsin(@ XFig.(5.3)). The angular distribution from the SBodel was

divided by this baseline to unbias the results.

5.5. Results

The craniocaudal dimensions of the lungs in 49%pédiwere measured using the CT
images. The average '®percentile of the distances between all tissuémth the left
and right lungs to the corresponding referencetpaimich were defined at the apex of

each lung were 192 mm and 191 mm respectivelylussrated in Tab. (5.1).

The estimated value ¢di|90 in the left lung from Eq. (5.27) was 26.3 mm/Lnguared to

the average}ﬁ'|90 of 25.2 mm/L from the 5D model. The discrepancyween the

biomechanical model prediction and the result binfj real patient data in the 5D model

was 1.1 mm/L, or 4.4% of the fitting result.
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The estimated value ¢ﬂ|go in the right lung from Eq. (5.27) was 26.2 mm/bpgared

to the averagéd]| , of 28.9 mm/L from the 5D model. The discrepancywisen the
biomechanical model prediction and the result binfj real patient data in the 5D model

was 2.7 mm/L, or 9.3% of the fitting result.

The estimate o’f/}l‘go from Eq. (5.28) was 2.8 maiL in the left lung. The averad;é‘go
measured from the 5D model was 4.2 $inin the left lung as listed in Tab. (5.1). The
angle 9, between, and B was 48.2°. Since8, was normal tod , § was 41.8° or

138.2° if,@2 was parallel or anti-paralleled t, and corresponded to the angles where

tissues are pushed and held back by surroundisigess respectively.

The estimate o’fﬁl‘ from Eq. (5.28) was 2.8 msiL in the right lung. The average

90

‘B‘go measured from the 5D model was 4.2 sifin in the right lung as listed in Tab.

(5.1).. The angled, betweeng, and S was 48.2°. Thereforef was 41.8° or 138.2° if

B, was or anti-paralleled t@ , respectively.

The spectrum of angle8 betweend and 8 was also measured for the 49 patients.

There were 3 typical patterns, illustrated in F§4) and Fig.(5.5) for left and right lungs,
respectively. All of the distributions included laist one obvious peak, indicating the
most probabled . The peak angles were very close to the predistioring the

biomechanical model developed in this chapter.

The histogram of angles¥) with maximum likelihood in all the datasets isigtrated in

Fig. (5.6). Fig. (5.6a). These show that the 5Qlehdocalized peaks at 42.1° and 149.5°
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in the left lungs, while the two predicted anglés)(from the biomechanical model were

41.8° and 138.2°. Fig. (5.6b) showed that the 5Riehtocalized peaks at 37.7° and
133.0° in the right lungs with the same predictedles as the left lungs from the

biomechanical model.

5.6 Conclusion and Discussion

This study establishes a relationship that linkseémpirical 5D breathing motion model
parameters published by Low, ef*alo biomechanical properties of the lung, such as
stress and Young’s modules. Analysis of the pubtishiomechanical properties of lung
tissues provided predictions of the 5D model patarse They were found to be in good

agreement with the directly measured parameters.

The spectrum o provides more insight into the stress distributioside the lung
parenchyma. The hysteresis lag in the anterior liefy might be explained by the
presence of heart as a geometrical retardantgoetisnotion. As the anterior portion of
the left lung moved towards the heart, the rescganom the hearts was enhanced by
squeezing the lung tissue against the heart. Theeased resistance in the anterior
portion of the left lung caused the pressure adfusslveolar membrane decreased in the
same region. Although the pressure inside the dlga@mained, the pressure drop (the
normal stress) decreased by the escalation of malktance when airflow rose. The
physiological sequence of decreased intrapulmommagssure was that the air was

redistributed to region with higher intrapulmonamgion like the posterior region.
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Therefore, in the anterior portion of the left Iurj[g is most likely to be anti-parallel to
the motion of the lung tissue at] was observed to be larger than 90°. As indicated
Fig. (5.4), the motion of the anterior portion bétleft lung was most likely to lag due to
the hysteresis component. Similar phenomena wesereed in the inferior and posterior
portion of the right lung, but for a different reas Since the heart impacts breathing
motion primarily inferior to the left lung, the hglung has less geometrical confinement
than the left lung does. Instead, gravity playslatively important role in distributing the
air in the right lung. Since the inferior and posteregion of the right lung bear more
stress from gravity, it has a smaller resting vatuat the beginning of inhalation
compared to that of the anterior region of thetrlghg. The elasticity of the lung , which
is a monotonically decreasing function of lung vo#*, is in favor of smaller alveoli
than larger ones. Therefore, the inferior and pasteegion of the right lung is easier to
inflate than the superior and anterior region aodsequently receives more ventilation.
However, the relatively smaller air space and meeatilation in the inferior and
posterior region would escalate the pressure insigdveolus higher than in the superior
and anterior region as airflow increases. The higiteeolar pressure would redistribute
the air from the inferior and posterior region be tsuperior and anterior region. Hence
the pressure drop that drives the alveolus to timfla the inferior and posterior region
would decrease. Therefore, the motion of the rewith better ventilation was subject to
a hysteresis lag anfl, was observed to be larger than 90°, as illustratefig. (5.5)
where a hysteresis lag was present in the infemak posterior region of the right lung.
On the other hand, the region with less ventilati@muld be boosted by the extra air flow

and move more than it would have at constant awflo
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In the left lung, the hysteresis lag was presemiabgse the amount of air flowing in
decreased due to resistance increase during airfh@nease. In the right lung, the
hysteresis lag was present because the alveolasyree decreased during airflow
increase due to the relatively easy and fast mdoligion of air through airways. Both the
increase in resistance and the decrease of alveaasure lead to a decline in the stress

that drives the lung to inflate and deflate.

In this chapter, a biomechanical model was develdpemodeling the lung as an elastic
material subjected to driven forces from diaphragmd other breathing muscles. The first

order approximation of this biomechanical model tedh lung motion model proposed
by Low, et af®>. Two parameters in the biomechanical modeind 2 were calculated

using published data while the same parameterswid 5D lung motion model were fit
using clinical datasets. Both models reached ckmgeement both on the magnitude of
the parameters and on the angle of hysteresisresitect to the motion of the concerned

tissue.

83



al
R p
normal, normal
]; I T ]"2

P —p

2 2

Fig .5.1: (a)Fluorescently labeled lung tissue,
Brewer, K. K. et al. J Appl Physiol 95: 1926-1936
2003 (b) Stresses normal to the wall shared by two

adjacent alveoli P2 s the alveolar pressure ang

P" comes from the surface tension of the liquid
membrane that defines the boundary of alveolus

T ™™ is the recoil stress from the resistance of
i i+1l - n the alveolar wall against the deflation or inflatiof

the alveolus inside. (c) Arrangement of alveoliaon
2D plane.

(©)
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AV, +AV, =AV, = f >
AV, + AV, <AV, = 1
AV, +AV, > AV, = f «

Fig .5.2: Chest wall and respiration muscles areuated with an airtight container and
piston. Airflow rate changes as the free space ée&tvthe container and the lung. The

displacement of tissue &k, is @(X,)V + B,(%,) f + B,(%,) f , as described in Eq (5.25).
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Fig. 5.3 Baseline off and 8 spontaneous distribution
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biomechanical model are 41.8° and 138.

89



Patient

# Left Lung Right Lung
Lgo (mm) [, (mmiL) Bl mmsi) L ) ], (mmiL) B, (mm-si)

1 165.2 7.1 2.2 208.0 26.1 3.8
2 175.0 23.8 2.8 176.2 24.7 2.7
3 176.3 25.7 2.9 178.2 24.1 2.5
4 202.8 30.9 2.9 212.6 30.7 3.8
5 195.5 38.7 5.8 186.1 445 5.7
6 201.1 20.1 3.8 197.3 18.4 5.0
7 183.6 33.1 5.1 172.7 37.3 51
8 185.4 23.2 3.2 178.3 29.5 3.2
9 155.1 19.4 25 163.1 18.9 2.0
10 160.6 32.3 6.8 160.7 28.1 7.5
11 174.2 22.1 2.6 162.4 35.8 2.8
12 214.1 22.5 2.7 216.9 26.8 3.3
13 192.4 34.2 3.6 163.1 31.7 2.8
14 203.1 21.0 2.2 195.3 29.9 2.4
15 206.1 26.1 55 200.8 34.1 2.6
16 207.5 26.4 3.4 197.5 21.8 2.8
17 207.0 20.5 3.1 203.9 26.2 2.6
18 198.5 17.5 3.2 209.9 26.9 3.2
19 208.7 24.3 4.9 201.3 21.6 4.2
20 190.4 41.6 5.3 178.6 29.6 5.3
21 159.0 16.9 5.4 171.8 36.6 5.0
22 253.2 31.6 4.8 265.9 35.2 4.6
23 179.1 23.0 4.4 180.7 36.6 9.1
24 177.2 26.0 5.1 170.7 40.9 5.8
25 183.1 25.6 3.9 196.6 30.0 4.3
26 166.3 39.3 6.1 174.7 55.0 8.4
27 218.8 25.1 2.7 228.6 17.0 1.9
28 230.9 40.5 3.2 212.7 12.5 1.8
29 178.0 11.3 12.1 159.4 15.1 12.1
30 171.3 324 3.6 166.0 43.9 35
31 204.0 29.3 4.9 183.9 43.0 6.0
32 173.5 34.3 3.7 161.6 36.0 5.0
33 197.5 17.3 3.6 175.0 17.9 2.8
34 179.5 45.6 13.4 182.6 39.5 5.9
35 206.7 14.9 2.7 174.1 14.9 3.7
36 199.5 16.7 1.6 191.9 30.9 3.9
37 180.5 25.5 3.8 185.1 36.6 3.7
38 222.3 23.7 2.3 209.8 28.3 2.8
39 150.1 12.8 3.7 189.7 43.1 4.6
40 242.7 12.6 2.8 245.1 20.6 3.0
41 209.7 27.0 7.8 200.6 26.5 51
42 192.2 17.3 4.4 193.1 22.2 4.4
43 183.0 21.8 3.0 161.2 30.5 35
44 172.1 9.1 6.3 171.0 11.0 6.7
45 218.6 21.2 2.6 220.2 29.0 2.5
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46
47
48
49
Mean

Table 5.1. 90 percentile ¢ and‘[f‘ in both left and right lungs.

156.4
166.8
231.6
202.9
192.0

43.4
28.1
15.8
38.1
25.2
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5.6
2.3
2.6
4.9
4.2

189.7
170.1
237.8
208.3
190.6

44.3
19.6
11.8
19.7
28.9

51
1.6
2.7
3.8
4.2



Chapter6

Characterization of Free Breathing

6.1. Introduction

Little is know about the motion pattern of lungsties during quiet respiration. Textbooks
state that the diaphragm is the primary breathingate and that the intercostal muscles
are secondary in that they help to expand theade. Therefore, the movement of lung
tissue is mainly in the cranialcaudal direction hvgdome transverse motion. When
observing patients signing up for our protocol, fwend that motion pattern variations

exist, either in the direction of the dominant roatior its magnitude. In this chapter,
and B distributions were examined, both qualitativelyl @uantitatively, for each patient

to determine general patterns and inter-patienépavariations.

6.2. Methods and Materials
6.2.1. Data Acquisition

49 patients were enrolled under an IRB-approvedopod and scanned using a 16-slice
CT scanner (Philips 16-slice Brilliance CT) opergtin ciné mode using 1.5-mm-thick
slices. Of these patients, 28 were lung cancermpatiand 21 were non-lung cancer

patients. Data were acquired during patients’ tinests. Tidal volumes were measured
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and calibrated with a spirometer and pneumatic aido@ belt. Air flows were

calculated as the time derivative of tidal volunmdsre details can be found in Chapter 2.

6.2.2. Image Registration

In order to determine the motion model at each tpgasition measurements of each
point of tissue in each CT scan dataset were redquin this study, a fast normalized
cross-correlation (NCC) method that was describe@hapter 3 was employed. In order
to determine the motion of a specific point of tissa small region withlx11x 10

pixels that surrounded the point was identified HelNCC algorithm was used to locate
that same region in the other 24 scans. One aalyartf using the NCC model was that
the determination of the maximum NCC was not semasito the variation of CT

Hounsfield Units found between inhalation and eatiah CT scans.

The CT scan with the tidal volume closest to 0 eXh@lation) was selected as the
reference scan for purposes of motion mapping. Ghescan length of 2.4 cm limited
each multi-slice CT dataset to a small portion loé tung, typically 1/8 or 1/9. The
magnitude of the motion at the inferior lung watenfgreater than 3.0 cm. Some tissue
regions, especially those closest to the diaphragrayed out of the longitudinal
coverage of the dataset because the zero tidaineofican was selected as the reference.
This would give rise to two issues that could hasmpromised the results. Firstly, the
region being tracked would move out of the seaghiggion but the NCC registration

method would select a region within the couch pmsitwith largest correlation

93



coefficient and produce spurious results. Seconfltihe region of interest moved out of

the current couch position and was not trackedesohthe 25 scans would be unused.

In this study, the registration was performed ino tdirections, depending on the
breathing phase relative to the reference phasan@exhalation, the tissue generally
moved superiorly. Therefore, the multi-slice CTad&tt was first categorized into two
groups, inhalation and exhalation respectively.nEgmup was sorted according to the
tidal volumes from low to high. The reference seeas divided into a 3D mesh of

abutting templates consisting ofl11x11x 10voxels, corresponding to
10.7x10.7x15mnt. The search region, co-centered with the templatd 21x 21x 20

voxels, corresponding 80.5x205x 3fnT. The registration began with the scan that
had the tidal volume closest to the reference $ickh volume. Because 25 scans were
acquired during respiration, there were enoughl vdéume samples to limit the tidal
volume change between two successive scans taHass100 ml. The magnitude of
motion corresponding to a tidal volume change d i) was usually less than 8 mm.
The search range used in this study had sufficregyins to allow for this much motion.
When a matching tissue was identified, the disptesdgs were recorded and
accumulated to generate the new center of seagibnrdor the next scan. When the
search region was expected to cross the boundatizeoturrent couch position, the
portion that moved out was replaced by the cornedipg part of the scan in the next
couch position with the closest tidal volume ansl @#ccompanying airflow as the

reference template.
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6.2.3. Model fitting

The registration process typically resulted in & ok 25 (,y,2 locations for each

evaluated point, along with the tidal volume andl@av corresponding to the acquisition
time for each scan. The positions, tidal voluneey] airflows were fit to the motion
model, employing the Nelder-Mead Optimization Aigfum described in Chapter 3 by
minimizing the root-mean least-squares averagearnlist between the fitting and

measurements.

25
min >'[X, - X, -aV, - 81| (6.1)

7 R 3
Xo.@,400 =1

where X, was thei™ location of 25 measurements, avidand f, were the tidal volume

and airflow, respectively, for scanin equation 1.1X0, a and[:’, vectors in0°, were
the overdetermined fitting parameters. Considetimge independent components for

each vector, nine parameters were determined loge&surements (25 sets ﬁf).

One drawback with the Nelder-Mead method was thie, other multidimensional
unconstrained optimization algorithms, it occaslgnéocated a local minimum. To
overcome this drawback and minimize the discrepariditting, the fitting process was
repeated at the current best p®inintil the difference of discrepancies between two
consecutive fitting operations fell below 5% of tkéscrepancy obtained from the

previous fitting operation.
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6.3. RESULTS

Fig. (6.1) shows the registration error of the NCC regigtratnethod used in this study.

Registration error was defined as the discrepamtwyden the displacement given by the
registration and that given by manual tissue tragkilOO landmarks were selected in the
inferior portion of lung from five patients. The tran magnitudes of landmarks ranged

from 10mm to 30mm. The mean registration error u8@mm.

Fig. (6.2 and Fig. 6.) show the coronal and sagittal planar sampldsﬂoénd‘/?‘ in the
left and right lungs of one patient with lung can¢é|, in units of millimeters per liter,

represents the displacement of the tissue in thg after inhaling one Iiter.‘ﬁ‘, with

units of millimeters per liter per second, représahe tissue motion hysteresis at an
airflow of one liter per second. For this patietite 8% percentile tidal volume was

665.0 ml and the airflow varied from —309.1 ml/2280.8 ml/s.

The result showed tha was greater in the inferior and posterior portiohshe lungs
and smaller in the superior and anterior portiofisthee lungs. The craniocaudal

component of dominated the displacement of the motion during llheathing cycle.
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[ was greater in the lateral lungs. This patterﬁbhnd‘ﬁ‘ distribution were observed

in 44 out of 49 patients and was therefore defathe normal pattern.

Fig. (6.4 and Fig. 6.5 showed the coronal and sagittal projectiorjﬁ(l)fand‘/?‘ in the

left and right lung of a patient that had an abredrmotion pattern. For this patient, the
85" percentile tidal volume was 460.1 ml and the awflvaried from —300.0 ml/s to

327.8 ml/s.

For this patient, in the right Iuniﬁ|was greater in the inferior and posterior portions

while ‘E‘ was greater in the lateral lung. Both were simitawhat was observed in the

normal case. Howevebﬁ| and‘,@‘ exhibited a different pattern in the left lunggF§6.4)
shows tha¢ﬁ| was greater in the superior and anterior portarthe left lung. Fig. &.5)

shows tha‘,@‘, instead of being greater in the lateral lung, \geesater in the superior

portion of the left lung, as indicated by arrowsheTcraniocaudal component of
dominated the displacement of the motion during Ibineathing cycle. CT images
reconstructed at a series of tidal volumes showatthe size of the left lung was only
half of the size of the right lung, and the lefaplhragm barely moved during respiration.
The dysfunction of left diaphragm caused the lafigl breathing to be dominated by
chest expansion, so the lung expanded in the amgoisterior direction, which was well

modeled bya .

97



Of the 49 patients]ﬁ| reached its maximum in the anterior lung in thpaéients, while

for two other patients]ﬁ| was greatest in the lateral lung. For 45 out obéﬁents,|c?|
reached its maximum in the inferior and posteriortipns of the lungs. The hysteresis

motion B had greater variability, but for the majority cﬂt'pents,‘/?‘ was greatest in the

lateral lungs.

The values ofﬁ| and‘ﬁ‘ are three dimensional scalar fields, so a histogoé the 85’

percentile values was selected to describe the-patiient variability. Fig. &.6) shows

the histogram of the &5percentile ofd| and‘,é‘ in all of the patients. The mean"85
percentiles ofc7| in the left and right lungs were 23.2 mm/l and12&m/I, respectively.

The mean 85 percentiles o‘ﬁ‘ in the left and right lungs were 3.7 nufh and 3.6

mm-s/l, respectively.

Fig. (6.7a) shows the cumulative histogram of discrepanbesveen the modeled and
measured locations of all 49 patient datasets.réfdt indicated that for 80% of the lung
tissues, the discrepancies were less than 1.75anchfor 90%, less than 2.14 mm. Fig.
(6.70) shows the cumulative histogram of relative dipancies for motion magnitudes
greater than 15 mm. The relative discrepancy wéseatkas the ratio of the discrepancy
to the motion magnitude. For tissues where theabdveotion was greater than 15mm,

78% and 96% of the lung tissue positions had lleas 10% and 15% relative position
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discrepancies, respectively. Fig.7) and Fig. §.7d) shows the cumulative histograms
of relative discrepancies for motions between 10 amd 15 mm and motions between

5mm and 10mm.

6.4. DISCUSSION

This is the first report of the 3-dimensional braag motion model parameters for a

large cohort of patients. The overhﬂ and‘,@" maps varied smoothly as expected.

and B described different breathing motion charactexisti modeled local lung
expansion and could be interpreted as the breatmiogon as if the patient breathed
infinitely slowly. B modeled the hysteresis motion which was hypotieesia be caused
by the dynamics of breathing. The relative magteti of @ and S are major
determinates of the motion path eccentricity. Inagal, regions that had greater values of

‘/}5‘ corresponded to regions with gredtﬁr. These results showed that the majority of
patients exhibited simildﬁ| maps. The*ﬁ‘ maps showed greater inter-patient variability

with the common feature th#ﬁ‘ was greater in the lateral lungs.

The utility of the proposed breathing motion modelto non-invasively monitor and
predict the motion of lung tissues and tumors usomdy external surrogates. The
positions of any piece of lung tissue were hypasesto be determined by the tidal
volume and airflow. The implication of this hypo#i®was that the position of a specific

piece of tissue or tumor would be at the same iocat given the same tidal volume and
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airflow, regardless of the point of time. It hasebh shown that the position of tumors
varies day-to-day at exhalatfdnin apparent contradiction to the model. The nhode
however, is based on tidal volume, which has a zatloe at a selected percentile. This
value is valid only for a single scanning or treatrinsession. To compare the positions
of tissues between sessions, an absolute lung wohkurrogate would be required, for
example, the total air content. Rather than meathe total air content, the position of a
piece of tissue, using an implanted surrogate xan®le, could be used to shift the tidal

volume definition to correspond to the original €0 session.

Although airflow is the time derivative of tidal kone, the breathing motion model is an
explicit function only of tidal volume and airflowThe tidal volume and airflow are
themselves functions of real time. The assumptsomade that a first-order relationship
between the displacement and the surrogates wibt nige clinical requirement in
precision of dose delivery or treatment planningr this study, 25 scans were acquired
and good agreement between the measurements ampdethietions from the breathing
motion model was observed when the motion was gréhin 15 mm, as illustrated in
Fig. (6.70), with more than 90% of the points having lesnthh5% relative discrepancy.
Since the average registration error in this sisdy.32mm as illustrated in Fig6.({), and

IS quite constant over widely varying motion magdés, the registered trajectory tends
to be more relatively dispersive in less activenfgias the registration error gains more
weight in the motion magnitude that is relativelyadl. Therefore it is not surprising that
the model performs worse for points that move lassjlustrated in Fig.6(7c) and Fig.

(6.7d). However 90% of the points still exhibited bettean 2 mm agreement.
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In this study, 25 scans were acquired for eachlt@asition while the breathing motion
model had only 9 independent parameters. TheollgtiGa scans acquired at different
tidal volumes and airflows would have provided miéint motion data to fit the model
parameters. Errors in registration and motion-irdugnage artifacts would still cause
errors in motion parameter determinations. Theafsalditional CT scans was expected
to reduce the impact of individual registrationoes; but at the cost of dose to the patient.
The minimum number of scans and optimization ofliheathing phases of those scans

remains an open question.

a
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o

Number of landmarks
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0 0.5 1 15 2 2.5 3
Registration error (mm)

Fig. 6.1: The registration error of the normalized crosselation registration method employed
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in this study. The registration error is definedtzes discrepancy between the displacement fields
given by the registration method and manual tragkib00 landmarks selected in the inferior part
of lung from five patients were tracked and manuatimpared. The motion magnitudes of these

landmarks varied from 10 mm to 30 mm
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Chapter 7

Clinical Application

Anatomical and physiological evidences have shdvan $olid tumors in breast typically
have greater firmness than the surrounding norissli€®. This characteristic has been
linked to the presence of abundant collagen irtuheor stroma, commonly referred to as
the desmoplastic reactin A recent study by Ragavendra €€ dlrther confirmed this

phenomena in thyroid gland tumors. In Ragavendstlgly, a 5-cm long and 25-gauge
fine needle was repeatedly advanced and withdréaaougjh suspected tumor regions.
The firmness of the tissue was evaluated and rabletthe nature and strength of the
haptic force-feedback from the tumor due to tiggeeetration. All the participants were
categorized into two groups. Group 1 exhibited paien resistance with a distinctive
force-feedback; group 2 exhibited no resistancealFRtytological diagnoses were made
after obtaining resistance information. Of 146 jggraints in group 1, 93 were diagnosed
with tumor and 53 without tumor. Of 463 participaim group 2, 22 were diagnosed with
tumor and 441 without tumor. The overall sensiiwitas 0.81 and the overall specificity
was 0.89. This result clearly indicated a high elatton between the firmness and the

solid tumors.

Section 7.1 will discuss the potential clinical hggtion of the free breathing lung

motion model as auxiliary evidence in diagnosinggltumor. The parameters in the
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model were related to the biomechanical properiesung in Chapter 5, where the
corresponding biomechanical description of firmnes¥oung’s modulus. The firmness
of a tissue, which determines the extent of theigselasticity, has a direct impact on the
stress distribution. Therefore, the escalationimfiriess in cancerous regions would be

reflected in the model parameters.

Section 7.2 will discuss the model stability. Orfetlee central hypotheses of the free
breathing lung motion model is that variations Ire tbreathing cycle are explicitly
considered because the model variables are tidaime and airflow. Therefore, the
model parameters should not change significantbepixfor a) disease progression or b)
radiation damage and radiation response. A hedathyect (non-lung cancer) should
exhibit little variation in the motion model paratees, especially the positions of
parameter maxima and minima, corresponding to maxinand minimum breathing
motion, respectively. The model parameters arectijreelated to the tissue motion, so
an analysis of model parameter changes can betlgiiaterpreted as changes in the

motion magnitude.

Section 7.3 will discuss the monitoring of radiatidamage using our model. We hope
this study would give us more insight into the etation between the radiation damage
and the variation of lung density by examining tblegange of model parameters.
Clinically, we hope this study would provide us ¢iyn update on the change of

biomechanical properties of lung to assist in thedwation of radiation damages.
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Section 7.4 will discuss the application of the dbneng motion model in removing
breathing motion artifacts from Positron emissiomography (PET) images if the model

is robust only within the time of the CT scan sessi

7.1 Distortion of g in Cancerous Region

In chapter 5, we have related the model parameferand 3, to the normal stress

distribution, Young’'s modulus and shear modulughalung.

oo 1 0,V f, %)
A Y -

s e 100,V f,%)| w 1 07, (f,%)|
A=, E(X)  of o+ G(x) of

X (7.1)

ax (7.2)
|f=f0 |f=f0
where g, is the normal stress art{ is the shear stresg& is the Young’'s modulus and

G is the shear modulus. Both Young's modulus andshedulus are the indicators of
tissue firmness. A solid tissue usually comes wiiffher Young’'s modulus and shear
modulus. Hence Young's modulus and shear modules ratated to the local

expansibility and deformability of the tissue. Aptichange of the elastic modulus is also
expected around the boundary of cancerous regiore$ and £ is accumulative
along the path from the reference point which iBnéel as the fixed point in the lung
during respiration, the influence of tissue stiffa®n the amplitudes @f and 8 would

be swallowed in the integral. However, the direwsi@f & and B are different stories.
The escalation of Young’s modulus and shear modulike cancerous region reduces

the contribution of that region td@ and 8. As the integral approaches the cancerous
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region, weight of contributions from regions witbwler Young’s modulus and shear

modulus would increase, and weight of contributityos cancerous regions would drop.

Although the magnitude of and B barely changes because the integral, the direction

of @ and 8 would turn to regions with lower Young’s modulesiashear modulus.

Fig (7.1) showed the coronal views @fand B in one patient with NSCLC. The red
triangle indicates the tumor position. The color lom the right side of the figure
indicates the magnitude @& and 3, in unit of mm/L andmmls/L, respectively. A

mild distortion in the@ direction exists near the tumor. FBr, a very clear distortion in

its direction exists near the tumor.

The flow of B appeared to avoid or escape from the canceroisntesjmilarly to the
way that water in a river flows around a rock. Tdistortion in theS direction can be
explained by its two orthogonal componerﬁ@,and BZ. As discussed in Chapter 5’1

is parallel tod , the displacement of the tissue contributed bit&ly slow filling of air.
Along the boundary of the cancerous regiﬁp,is constrained by the firmness of the
tumor simply because the tumor is more resistargtitetching or squeezing than the
surrounding normal tissue, Whi@, which is parallel ta7 , is barely affected. As the
relative contribution off, increases relative t#, it would tend to diver{3 toward the
direction that is perpendicular @ from its original direction at the absence of tumo

Fig. (7.2) shows more examples of the distortiofBo&iround the tumor.

112



The significance of this study is that the breaghmotion model is potentially capable of
aiding cancer diagnosis by visualizing the suspigicancerous region at the distortion of

model parameters.

7.2 Model Stability

The utilization of the motion model depends onsizbility over time. If the breathing
motion model parameters change significantly betwsessions (either imaging or
treatment), the specific motion model would be ukehly for single-session activities,
such as removing motion artifacts from nuclear miedi images. If the motion model
parameters are stable for weeks, exclusive of sisspeogression or treatment response, it
would be useful for supporting radiation therapyatment planning, including
optimization of linear accelerator gating windovfsthe model is proven to be stable
over timescales consistent with the course of tamfiatherapy, changes in the model

parameters might be used to monitor disease praigresr radiation response.

We are currently recruiting patients with healtiopds to determine the motion model
stability. So fare we only have one subject. Fig3) was the coronal view ¢ﬁ|
calculated from 2 scans that were acquired two welart from that patient. Fig. (7.4a)
was the histogram c}ﬁ| variation between two scanning sessions. Iﬁlhe/ariation ratio

is defined as

L)1)

VA R+ LM

(7.3)
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where |,(X) and |,(X) are the values of model parameter of the sameaetigs two

scanning sessions. Fig. (7.4b) was the cumulatist®dram of|c?| variation ratios. The
shape of theéd| distribution was similar between the two scan isess with 84% ofd|
varying by less than 20% from the first sessiothtosecond session. Thi} distribution

on the left lung appeared to be more consisterth 85% 0f|57| varying by less than

20% between two scanning sessions. Fig. (7.5) stholneecoronal view o’f/?‘ in the two
scans and Fig. (7.6) showed the histogranfuﬁbfvariation ratios and the cumulative
histogram. Although the shapes‘ﬁ’f distributions were similar, large variations were

observed in the magnitude )(ﬁ" , with only 53% of‘ﬁ‘ varying by 20% or less between

two scanning sessions.

Since there is only one subject with healthy luag heen recruited and studied, it is too
early to draw a conclusion on the stability of threathing motion model over weeks,
especially given the facts that the registratiomampromised by the image artifacts in

the first scan. Similar scans from a two lung cangatients has also exhibited little

change idﬁ| and‘,@". As more patients are imaged, we will soon accateuenough

evidence to test our hypothesis on the model #tatmler the timescale of weeks. If
inconsistencies are observed in most of the sujded uncertainties in the model will be

guantified.
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7.3 Radiation damage monitoring

As we discussed in section 7.1, the magnitude& @ind S are not clear enough to

distinguish tumors from normal tissues because rtegnitudes ofd and S8 are
accumulated along the path originating from theenegfice point. However, the spatial
differences of@ and 3 reflect local expansibility and motion hystereaisd could be

good indicators for any change in the biomechamcaperties of lung. In this section,
we will discuss the relationship between the lurepgity and divergences of model
parameters. We hope this discuss in this sectiamdMead to a scheme to monitor the

radiation damage effectively in clinical applicatio

Radiation damage may occur after a patient rece@@stion therapy or is exposed to
products or substances containing radiation. Ithss major side effect that patients
receive from radiotherapy. If we can develop aeaie and prompt method to monitor
the damage from radiation treatment, it could Hbk physician to adjust the treatment

plan for the patient developing radiation damage.

Radiation damage is usually accompanied by symptitkescough, weight loss and
disorder of lung function. We hypothesize that thedel parameter obtained at various

days would change dramatically in patients whouaigergoing radiation damages.

A coarse relationship between the divergencé and the lung density was discussed in
Chapter 4, given the condition that airflow keepsstant during respiration. A general

equation that applies at any tidal volume and@wftieveloped below.
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As we have demonstrated in Chapter 4 that theioakttip between the tissue velocity

and the tissue density is given by

- do
el =-1F 7.4
P ot (7.4)

The hypothesis in our lung motion model is thatri@ion is a function of tidal volume
and airflow. Although tidal volume and airflow evel with time, time only serves as an
implicit variable. Therefore, applying the chaimvlan both sides, Eq. (7.4) now expands

to,

pDo a_Xd_V+6_X£ = - a_,Od_V_l_a_,Oﬂ (75)
ov dt of dt ov dt of dt

Moving all items with tidal volume to the left sidad all items with airflow to the right

side, Eq. (7.5) is rewritten as,

X op_ poX_fop 7.6
ov oV f of f oOf

.dv . daf ..,
by replacing— with f and— with f
yreplacing dt

Eq. (7.6) only holds when the airflow is not zefbe equation for zero airflow has been

discussed in Chapter 4.

In a time evolving system, all variables are eitieplicitly or implicitly function of time,
in which sense that all the variables are conneatetldependant on time. In the lung
motion model discussed in this dissertation, tisexplicitly excluded. Images taken at

close tidal volumes and airflow have not necesgdyéden acquired in close temporal
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proximity. Tidal volume and airflow serve as twod@pendent variables in our lung

motion model.

The density is an implicit function of time. Sintene is excluded in our lung motion
model, the involvement of time in our model is esg@d by the tidal volume and airflow.
We constrain the density to have the form

PV, 1) =pV)p(f) (7.7)

Plugging Eqg. (7.7) into Eq. (7.6), we have

LOX 9p(v) __fp(f) X f ap(f) 78

0
) ov Vv f of f of

Observe that the left side of the equation, denbted(V )is a function ofV only , and
the right side of the equation, denoted hf, f , is)a function off and f . Since the
values ofV , f and f are independent to each othérmust be constant.
AV) = A(f, f)=k (7.9)
Since f is expected to vanish at end of inhalation andakatton,
A(f,f=0)=0 (7.10)
the only option left fork is zero.

k=0 (7.11)

Therefore, Eq. (7.6) splits up to two equations,

LOX  9p)
o(\V)O oy 0 (7.12)

and

117



0X  ap(f) _

f)de
A of o

(7.13)

Replacing X with )?O +aV + B , Eq. (7.12) and Eq. (7.13) can now be writteneimis
of the motion model parameters,

o(\V)e a+6p(\/) = (7.14)

and

o(f)0e /3+ap(f) 0 (7.15)

Eq. (7.14) and Eq. (7.15) govern the change ofl Ideasity as a function of tidal volume
and airflow during respiration. The hypothesistigt the change of local density will
keep constant if observed at two different poirftiroe, presuming that no fundamental
change happens in the time across the observatimwgever, if fundamental changes do
happen to the lung, such as propagation of pulnyodisease or radiation damage, we
hypothesize that the relationship between the trana of local density and model

parameters will not remain constant at various {gaf time.

Fig. (7.7) shows the coronal views |6f obtained from one lung-cancer patient who was

scanned at the middle of the treatment and at kdeoé the treatment. Fig. (7.8) shows

the dose delivered to the patient during the whidatment. The region that received

radiation highly correlated the region Wheiﬁq‘e is obviously smaller that the remaining

regions.
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Fig. (7.9a) shows the profile 4JP| on a line that passes through the center of tji# ri

lung, shown in Fig. (7.3b), which was a healthyguRig. (7.9b) shows the profile f|

on a line that passes through the center of the hiopng, shown in Fig. (7.7a), which was
a lung with tumor. Fig. (7.9a) shows that for alti®y lung, thed divergence increased
craniocaudally in a smooth way. However, for a luegeived radiation, an abrupt
escalation ofd divergence at the boundary of irradiated regios whserved. This is

shown in Fig. (7.9b) and indicates a suppressiod@ afivergence in the irradiated region
and boostedd divergence in the un-irradiated region, when camgbaagainst the

healthy lung. This could be due to a redistributod ventilation between irradiated and

un-irradiated lung tissues.

Fig. (7.10) shows the comparison [df @ between un-irradiated lung and irradiated
lung. Fig. (7.10a) indicates thate @ was slightly larger in the inferior portion of the

1% in 1962 that ventilation was

lung. This agreed with the observation made by Bl
more active in the inferior region of the lung thanperior. However, Fig. (7.10Db)
showed thatde & was much greater in the inferior than superiottiporof the lung.

Since the boundary of abrupt escalationiofg aligned with the boundary of delivered

dose, we concluded that the dramatically deceased in the superior portion of the

lung was caused by radiation that damaged the ndama

Currently, there is limited understanding of how amuradiation will alter the lung
density variation with respect to tidal volume amdlow, although evidence is being

accumulated that hints that radiation compromiseslltissue’s function and alters its
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biomechanical properties. If the damage happenasr@gion where a segmental bronchus
passes by, it would cause symptomatic bronchialosis, the narrowing of the bronchi,
which has been reported after the patients weresepto high dose radiotherdh{*
The narrowing of the bronchi usually occurs after patients receive 60Gy. Poiseuille’s
law dictates that resistance in the airway is isghr proportional to the fourth power of
the radius. Thus, even modest reductions may Bieisuat to cause pulmonary symptoms.
The normal function of the tissues whose ventitetioare supplied through the
compromised bronchus would suffer dramatically frghortage of ventilation, even
there is no change qualitatively happens in thgiore We hope, by verifying the
correlation between model parameter divergencesathdtion damage on more patients,
the model could help us to find out how radiati@mége develops during treatment and

help us to visualize when and where the radiatemabe takes place.

7.4 Breathing Motion Artifacts in Free Breathing PET Images

Positron-emission tomography (PET) scans providaquen functional imaging

information with relatively poor spatial resolutioim contrast, CT scans provide whole
body image in excellent spatial resolution withifieav seconds. Integration of CT and
PET offers the advantage of providing both metabatid anatomical information, while

improving both the sensitivity and specificity ofiignant lesion detectidh

One of the major drawbacks of PET imaging is tlymificant time required for image

acquisition (up to 10 minutes per bed position).eWlscanning the thorax and upper
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abdomen where breathing motion causes significamtement of tumors and normal
organs, the attenuation, on which the scannersréliggenerate the image, is the average
attenuation instead of actual one. The incorredégyermined attenuation will cause
inaccurate attenuation corrections and subsequarabcurate PET radionuclide uptake.
Generation of accurate attenuation maps requirgsaatitative model of the breathing

motion of the internal organs.

The restoration of tissue images can by done byyeygpthe breathing motion model
developed in this study, the relative positionstloé target tissue are know for each
breathing phase. The individual PET scan images lmandeformably mapped and
summed onto a single image dataset at a referehasepof breathing that has only
residual (small) breathing motion artifacts. A ptoan study was conducted to test the
feasibility of this method for acquiring free-breetg thoracic PET images without

breathing motion artifacts but with full statistics

Data were collected using a Philips Brilliance &idmens Biograph PET/CT scanners
using list mode. Patient-modeled tumor trajectonesre provided using a custom-
fabricated 4D motion phantom shown in Fig. (7.1%a)spherical PET phantom with
diameter of 1cm, shown in Fig. (7.11b), was usedhis study, moved in a motion
trajectory shown in Fig. (7.11c). The trajectoryswaubdivided into 10 bins of 8 mm
width and the average location in each bin was tehby a brown dot. The probability
distribution of the phantom motion distribution watsown in Fig. (7.11d) in 20ms time

units. There were two regions where the phantomndidpass (0% probability), but the
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phantom passed a finite fraction of the time thfotgmaining 8 regions. To synchronize
the phantom and PET acquisition, a TTL synchrommasignal was fed to the cardiac
trigger channel. The trigger was activated whenghantom passed a user-determined
spatial threshold and therefore provided an irragblut well-determined time pattern.
The list mode was queried to determine the reldiime of the cardiac triggers and this
was used to synchronize the phantom position aadishmode data. PET events were
selected from the list mode file according to whitth the phantom was in at the time of
the PET event. This created 10 separate list nfibele Those list mode files were
submitted to the commercial reconstruction softwareeconstruct images using only
events occurring in the corresponding bins. Thenmstruction images were shifted by
the known phantom displacement and summed. Thgegukent image was compared

against the known phantom shape to determine ifegbenstruction was successful.

The gated reconstructions were compared againstirigated (original list mode file)
reconstructions, showing significant improvementhe reconstructed phantom shape,
both in Philips Brilliance and Siemens Biograph REI scanners as shown in Fig. (7.12)
Residual deformation was noted, consistent with@h@am wide gating window. This
study indicates that the phantom shape can bereéstny gating windows and shows
promise in acquiring PET images in the thorax apden abdomen without significant

breathing motion artifacts if provided a quantitatbreathing motion model
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(b)

Fig.7.1(a) Coronal view off in a lung cancer patient (b) Coronal view&if a lung

cancer patient
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Fig. 7.2 More examples of 8

discontinuity around a tumor.
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Non-Lung Cancer Patient: Scan 1
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Fig. 7.34] distributions of the non-lung cancer patient seahtwo weeks apart
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Fig. 7.4 Histogram 0Fc?| variation ratios between two scanning sessions
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Lung Cancer Patient: Mid Treatment
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Fig. 7.7d] distributions of one lung cancer patient scanmexiweeks apart
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Chapter 8

Conclusion

In this chapter, we review the results obtainethia dissertation in accordance with the

objectives we had in mind.
8.1 Conclusions

A breathing motion model is needed to predict thatiom of lung and lung tumor for
more precise delivery of dose in radiotherapy aheroclinical purposes like suppressing
image artifacts. The breathing motion model is tigved based on two observations: 1)
the lung tissues move father along their trajeetds the patient breathes deeper. 2) the
shapes of the trajectories resemble ellipse armdesidue to the intrinsic hysteresis-like

behavior.

Tidal volume was introduced into the breathing motas the first surrogate to meet the
first observation. Air flow was introduced as thecend surrogate to give the motion a
different path during exhalation than during intiala. We hypothesize that any unique

pair of tidal volume and air flow would give a unglocation for the concerned tissue.
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To determine the model parameter, a quantity gédtary samples with corresponding
tidal volumes and air flows are required. The tgey samples were obtained by
registering images scanned at different breathimses. The image acquisition protocols
were developed for both 16-slice Philips CT scaramet 64-slice Philips CT scanner as
our scanner was updated while the research prajest on due to the rapid developing
of scanning technology. For most of the subjectltivolume and air flow were

measured using a spirometer. Some subjects thdd oot tolerate the spirometer, so
tidal volume and air flow were calculated by conivey the CT numbers to ratio of air in

the CT volume.

Registration provides the trajectory of lung tissukat are the input of the breathing
motion model. Registration is also one of the maources of error. Another major
sources of error are the image artifacts that dst€T images. 3 image registration

techniques were listed in Chapter 3 chronologically

The preceding discussion identifies the variabled methods that are necessary for
describing the lung and lung tumor trajectoriesChapter 4, the continuity equation was
applied to the breathing motion model to quantityi test the model performance. The

continuity equation resulted in a prediction thHa tolume integral of the divergence of
the @ vector field was 1.11 for all patients. The im@gof the divergence of thg
vector field was expected to be zero. 35 patierdgevselected for this study. Tlae
vector field prediction was 1.06 + 0.14, encompagdhe expected value. For tige

vector field prediction, the average value was 0#2.03. These results provide
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guantitative evidence that the breathing motion ehodelds accurate predictions of

breathing dynamics.

To get a deeper understanding of the model parasyete developed a biomechanical

interpretation by investigating the normal stresthie lung.d was modeled to be related
to the tidal volume derivative of normal stress gfidwas related to the air flow

derivative of normal stress. Averages |6f estimated using published data were
compared with averages W| from 49 patients. The comparison gave a discrgpkass

than 10% between results from two methods. Thetspaof angles betweed and 3

was found to present a characteristic distributidrere two peaks were observed in the
data from most of the 49 patients. A calculationsdash on our biomechanical
interpretation gave two maximum-likelihood anglesttagreed to within 10° with the

peaks observed in the patient data.

The model was employed to characterize the freathirey patterns for a large cohort of
patients. The and 8 distributions were examined for each patient teiheine overall
general patterns and inter-patient pattern vanatié-or most of the patients, the largest
values of|d| were observed in the inferior and posterior lurigee hysteresis motio

had greater variability, but for the majority oftmats,‘ﬁ‘ was largest in the lateral lungs.

The study showed that the breathing motion modsltha potential for non-invasively

predicting lung motion. The majority of patientshéited similar|(7| maps, and thb@‘

137



maps showed greater inter-patient variability. Tim®tion parameter inter-patient
variability will inform our need for custom radiati therapy motion models. The utility
of this model depends on the parameter stabiliter otvme, which is still under

investigation.

The stability of the model parameters was invegidiy enrolling radiotherapy patients
with healthy lungs (no lung tumors) for two separatans weeks apart. Currently we
have available data from only one patient. The ystod that patient showed that the

distribution model parameter kept similar shapd8o ®f tissues investigated varied less

than 20% in|c7| and only 53% varied less than 20%‘[}11. We will continue to recruit

more patients to investigate the model stabilityhie future.

Other clinic applications in include the potentfl 8 as an indicator of cancerous

regions, divergence of the model parameters amdicator of radiation damage and

suppressing motion artifacts in PET images.

8.2 Future work

We anticipate continuing the following studies aftee successful validation of the

registration and the breathing motion model techesq

If the stability of model parameters is proved ormal fluctuation range is determined,
we would continue this study in

1. Evaluation, staging and management of respirat@gades in addition to cancer
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2. Monitoring radiation damage
3. Quantitative guidance for treatment planners rdggrdhe impact of linear
accelerator gating on the accuracy and efficientyadliation therapy dose

distribution planning.

If the model is robust only within the time of t&8d scan session, we would continue this
study in
1. Quantitative nuclear medicine (PET/CT and SPECT/Gfy acquisition for
free breathing patients without breathing motiaifaots
2. Quantitative evaluation of the benefit of tumorckimg on dose delivery accuracy
and conformality.

3. Quantitative evaluation of the impact of breathingtion on IMRT dose delivery

This work is supported in part by NIHRO1CA096679 &MIHRO1CA116712.
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