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Chapter 1  

Introduction 

1.1 Motivation and Background 

In 2004, cancer accounted for 7.4 million deaths worldwide, around 13% of all deaths1. 

Among the deaths, 1.3 million were related to lung cancer.  Lung cancer has surpassed 

heart diseases as the leading cause of death for people younger than 85 in the United 

States since 1999.  In 2009, a total of 1,479,350 new cancer cases and 562,340 deaths 

from cancer were predicted in the United States, among which lung cancer was 

responsible for 219,440 new cases and 159,390 deaths, respectively.2 Although the 

incidence rate has been declining dramatically among men, from 102.1 per 100,000 in 

1984 to estimated 87.3 per 100,000 in 2009, the incidence rate for women had been 

increasing by 0.3% per year before 2003 and has been approaching a plateau ever since. 

While the overall lung cancer death rates have declined, it is anticipated to continue to be 

the leading cause of cancer deaths until at least the year 2040.3 Overall lung cancer 

survival rate is quite small, with one-year survival rate at 41% and five-year survival rate 

at 15% for all stages combined, making it one of most notorious cancers.  

 

The main types of lung cancer are small cell lung carcinoma (SCLC) and non-small cell 

lung carcinoma (NSCLC).  It has been established that SCLC usually responds better to 

radiation and chemotherapy. Treatment options for NSCLC, which accounts for 
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approximately 80% of lung cancer cases, are still under heavy debate. Currently, 

radiation therapy and chemotherapy treat most of the NSCLC patients jointly or 

separately.  

 

A typical conventional or conformal radiation therapy delivers 65 Gy with or without 

chemotherapy, achieving local tumor control at only 17% and 15% respectively.4 Study 

also showed that local control could be greatly improved by escalating the radiation dose 

to the target5. However, the toxicity that accompanies higher radiation increases as the 

energy deposited to the lung volume increases. The suppressing of side effects and the 

improving of local control could be achieved by more accurately confining the dose to 

the target.  A study by Kubota6 compared treatment outcomes of chemotherapy only and 

treatments of chemotherapy followed by three-dimensional conformal radiation therapy, 

which is a method for attempting to conform the radiation therapy to the tumor. 92 

patients at stage III were randomly divided into two groups. One group was given 

radiation of 50 to 60 Gy for 5 or 6 weeks after chemotherapy and another group received 

no radiation after chemotherapy. The first year survival rate in the chemotherapy only 

group was 66%, slightly higher than 58%, the survival rate of the chemo-radiation 

combining group. However, the two-year and three-year survival rate in the chemo-

radiation combining group dramatically beat that of the chemotherapy only group, at 36% 

vs. 9% and 29% vs. 3%, respectively. The result indicates that if radiation therapy could 

take advantage of sophisticated dose targeting techniques, it would achieve better long-

term survival.  
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As radiation therapy gradually established its principal role in treating NSCLC patients 

with localized disease, the conventional radiotherapy local control rate, which typically 

delivers 65 Gy, was disappointing. A model developed by Martel et al7 predicted that 

doses of 84.5 Gy would be required to achieve a 50% tumor control rate in 30 months.  A 

dose at this high level would raise the concern of radiation toxicity to normal tissue, 

including fatal side effects. Compared to conventional radiotherapy, conformal 

radiotherapy targets the tumor as accurately as possible while attempting to spare normal 

tissue. Sun et al8 conducted  phase I-II trials to compare the radiation response, acute and 

chronic toxicity, local control and survival rate of patients that were randomly selected to 

receive convention radiotherapy or concomitant boost radiation therapy which was able 

to more precisely confine the radiation to the tumor. The results were encouraging. For 

patients in the concomitant boost group, 46.8 Gy was delivered to the CTV (Clinical 

Target Volume, the gross disease and tissues with suspected disease) in 26 fractions, and 

an extra concomitant boost of 18.2Gy (0.7 Gy per fraction) was delivered to the GTV 

(Gross Tumor Volume, the tumor that can be detected by imaging or palpation) with a 

tight margin of 1.5cm to account for setup uncertainty. A combination of 65 Gy was 

delivered to the concomitant boost patients in 26 fractions.  For patients in the 

conventional treatment group, 70.8 Gy was delivered in 38 fractions. The response rates 

were access by radiographs. The boost patients responded significantly better than did the 

conventional patients, with response rate of 69.8% vs. 48.1%. Acute toxicity was 

evaluated by measuring the pre- and post-radiotherapy pulmonary function.  No 

significant difference in toxicity was reported in the two groups.  
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Preliminary data concerning further dose escalation were reported in a phase 1 trial 

conducted by Hayman et al9, using conformal therapy techniques. The initial doses 

ranged from 63 to 84 Gy. Due to the lack of the ability to design effective treatment plans 

that both covered the tumor and spared the surrounding normal tissue, some of the 

enrolled patients were unable to be treated to the protocol doses. The investigators 

hypothesized that Intensity Modulated Radiation Therapy (IMRT) would be able to meet 

the normal tissue constraints and allow further dose escalation. 

 

IMRT is an advanced approach to high-precision radiation whose clinical applications are 

expanding to challenging body sites such as the central never system, head and neck, and 

advanced prostate cancer. The process begins the same way as conformal therapy, with 

the acquisition of a simulation CT scan.  The scan is acquired while the patient is in the 

intended treatment position and with the use of immobilization hardware that aids in 

patient positioning and patient compliance.  Physicians segment the tumors using the CT 

scan datasets and they, or other clinical staff, segment the normal organs.  The physician 

also provides a dose prescription, which typically includes the desired tumor dose and the 

dose limits of the critical organs.  The segmentations, termed contours, provide the 

topological shape of the tumor and normal organs.  These, along with the prescriptions, 

are provided to an inverse treatment planning system that identifies the radiation delivery 

sequence that best approximates the clinical goals.  Unlike conventional and conformal 

radiation therapy where the intensity of each beam is uniform, the beam intensity in 

IMRT is modulated by multileaf collimators according to the instructions provided by the 

treatment planning system. Modulating of beam intensities allows better conformation of 
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the dose distribution to the tumor shape than is available by conventional and conformal 

therapy techniques.    

 

Although IMRT has proven its value in achieving more precise dose delivery, the benefit 

of IMRT in treating lung cancer is greatly limited by organ motion. During natural 

breathing cycles, the tumor position is not stationary, but traverses a trajectory that varies 

as the patient’s breathing depth and frequency varies.  There are many methods for 

dealing with breathing-induced tumor motion.  The simplest is to extend the tumor shape 

in the treatment plan to encompass the tumor motion.  This is termed the internal target 

volume (ITV) and results in an increased beam aperture size to irradiate the larger 

volume.  The dose distribution is delivered throughout the patient’s breathing cycle. The 

consequence of this method is that it delivers more dose to the surrounding normal tissues 

than would be possible if the tumor were stationary.   

Gated conformal therapy was developed to assist with the challenges of moving tumors.  

In gated therapy, the treatment plan is conducted assuming that the radiation will be on 

only during a user-specified phase of breathing.  The position of the tumor is monitored 

by correlating it against a real-time measurement of either an internal or external 

surrogate. When the surrogate indicates that tumor is entering the appropriate breathing 

phase, or the gating window, the radiation beam is energized.  The beam is shut off when 

the surrogate indicates that the tumor has exited the gating window. The major source of 

error from this technique comes from the poor of reliability of the correlation between the 

surrogate and the tumor position. Therefore, many clinics require independent 
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conformation of the tumor position prior to treatment using, for example, implanted 

fiducial markers imaged using fluoroscopic techniques10 . 

 

The gating technique provides a measure of motion compensation for conventional 

radiotherapy.  Its application in IMRT is compromised by assumptions inherent in IMRT 

dose delivery. The power of IMRT rests in its ability to subdivide the treatment into a 

sequence of interlocking inhomogeneous fluences delivery from a variety of angles. The 

inhomogeneous fluences are delivered by a time-dependent pattern that explicitly 

assumes that the remaining fluence delivery will be properly aligned.  While these 

fluences can accurately superimpose in the treatment room coordinate systems, the lung 

and lung tumor tissue is moving during the delivery sequence, so the delivered dose from 

each beam does not match the successive beams.  While gating reduces the intensity of 

this problem, it does not eliminate it.  Currently available IMRT treatment planning 

systems lack of the ability to correlate the breathing cycle with the delivery sequence, so 

the magnitude of this problem is not typically known to the treatment planner.  The dose 

errors due to breathing motion are dominated by a broader penumbra11 and also contain 

dose delivery errors in the tumor and normal organs12.  The concerns over dose 

superposition breakdown due to tumor mobility lead to a guideline published by the 

National Cancer Institute to limit the clinical use of intra-thoracic IMRT.   

 

Methods to improve the dose delivery for free breathing patients include expanding the 

radiation portal to account for the motion13, gating the radiation delivery to synchronize 

the radiation delivery with the position of the tumor14,15, tracking the tumor motion with 
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the radiation portal16,17,18 and managing breathing motion. Motion management includes 

free breathing19-25 coupled with a method for modifying the dose delivery to account for 

motion, breath hold26-28, breathing coaching29, where the patient uses biofeedback to 

guide their breathing pattern, and abdominal compression. Breath hold and breathing 

coaching both require cooperation of the patient for accurate implementation.  An 

informal survey of institutions that use these techniques has shown that patient 

compliance is limited to approximately 50%.  Abdominal compression does not require 

patient compliance, but significant reduction of tumor breathing motion is achieved in a 

minority of tumors.  Free breathing requires neither cooperation nor an external device 

for implementation, but it does not reduce the tumor motion.  It may, however, provide a 

stable method for predicting the tumor motion during therapy, thereby allowing an 

accurate prediction of the impact of gating techniques.   

 

 

The free-breathing treatment planning strategies require a breathing motion model.  The 

model is typically based on CT scans acquired during free breathing and sequenced using 

a simultaneously acquired breathing surrogate. The surrogate is typically a non-invasive 

measurement device such as a pneumatic belt placed around the abdomen, camera system 

that monitors a marker placed on the patient’s abdomen or pelvis, or pressure sensor 

mounted to a belt that is wrapped around the abdomen14,24.  There are two surrogates used 

in our research group when we conduct CT scans for free-breathing motion research; a 

pneumatic belt (bellows) placed around the abdomen, and a spirometer (Interface 

Associates, VMM 400). The spirometer measures the breathing flow rate, but has 
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significant measurement drift that precludes its independent use.  Simultaneous 

acquisition of the bellows and spirometry signals allow us to correlate the two signals and 

remove the drift artifact inherent in the spirometry signal  Therefore, the surrogate used 

to sequence the 4D CT scans can be the patient’s tidal volume, a surrogate that has direct 

physiologic significance.30  

 

Verified breathing models have not yet been established.  Many investigators have relied 

on the periodic nature of the breathing pattern to develop mathematical models that use 

time as an explicit variable.  These use the assumption that the breathing motion can be 

accurately described as a function of time31. Seppenwolde et al. 21 modeled breathing in 

this way using an even power of a cosine function with adjustable period and amplitude.  

They showed that in some cases, this was able to fit the motion of embedded clips, but 

also showed that changes in breathing frequency or amplitude were difficult to model.  

 

The breathing motion model may be as simple as identifying the position of the tumor 

throughout the breathing cycle with the breathing cycle subdivided equally in time 

between successive peak inhalations or exhalations.  This is termed phase-angle based 

gating.  Each breathing phase is assumed to coincide with a constant fraction of time 

during the breathing cycle. For example, the breathing cycle time can be described as 

proportional to an angle, from 0° to 360° from peak-to-peak.  The CT scan can be gated 

as a function of the measured breathing cycle, forming a 4D CT scan dataset.  

Examination of the CT scans reconstructed at each breathing phase allows the treatment 

planner to determine the overall tumor motion as well as linear accelerator gating 
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efficiency by identifying the fraction of the 360° breathing cycle for which the beam will 

be activated.  However, this phase-angle based model assumes that breathing patterns are 

consistent and reproducible, an inaccurate assumption for many lung cancer patients. 32  

 

A mathematical model of breathing motion would be very useful.  It would allow a 

treatment planning system to examine a recorded breathing cycle and develop a 

prediction for the positions of the tumor and normal lungs during a simulated treatment.  

This would allow for an improved prediction of the impact of using an ITV model or 

predict gating efficiency and its dosimetric impact.  Low, et al. 33 developed a breathing 

motion model that assumed that one of the independent model variables should be the 

tidal volume.  For quiet respiration, the tissue motion was assumed to be linearly 

proportional to the tidal volume.   

 

Research 34-41 on modeling dynamic lung motion has been conducted with limited success. 

Most of the work, based on Weibel’s model42 on bronchial anatomy, has applied the 

principles of fluid dynamics or viscoelasticity to modeling lung motion. However, 

because of lack of detailed information of lung’s inner structure, their results cannot be 

personalized.  Their work can be used to understand the mechanical behavior of lung 

under different circumstances. The stress distribution without considering the airway 

resistance was established by Mead43, indicating that tidal volume may play an important 

role in modeling lung motion. Lambert36 established that there are pressure losses in the 

flow along the airway, from the periphery to the flow-limiting site. A linear relationship 

between the pressure loss and flow rate was selected because of the low Reynolds’s 
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number found in the bronchial tree.  In general, regions with stronger or weaker air 

resistance, corresponding to worse or better communication with the outside air, longer or 

shorter airways from the trachea, will have lower or higher air pressure during respiration.  

The opposite would therefore occur during exhalation, namely that the regions that had 

lower pressure during inhalation would have greater pressure during exhalation.  

 

Based on the relationship between pressure and airflow, and the fact that different regions 

of the lungs have different resistance to airflow, hysteresis, defined as differential tissue 

motion between inhalation and exhalation, was hypothesized by Low, et al. 33 to be 

caused by pressure distribution imbalances during breathing.  For quiet respiration, these 

pressure imbalances are further assumed to be proportional to the vacuum developed to 

generate respiration, and that vacuum is in turn assumed to be proportional to the airflow 

into the mouth.  For quiet respiration, a further model approximation is made that the 

hysteresis motion magnitude was proportional to the airflow.  

 

Finally, the motion model by Low et al33 assumed that during quiet respiration, the 

motion component due to tidal volume changes was independent of the motion 

component due to pressure differentials and consequently airflow.  Under this assumption, 

hysteresis motion due to pressure imbalances would occur with the same magnitude 

regardless of the tidal volume, and the tidal volume lung expansion component at a 

specific point in time would not depend on the rate of breathing.  
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The use of tidal volume and airflow to describe free-breathing motion allows the time 

dependence of the model to exist outside the mathematical description of tissue motion.  

The time dependence lies in the behavior of the tidal volume and airflow and does not 

explicitly exist within the model equation.  The positions of lung tissues are therefore 

hypothesized to be functions of 5 independent parameters; the 3D positions of the tissue 

at a reference tidal volume and airflow (typically 0 ml and 0 ml/s), the tidal volume, and 

the airflow 44,45.  

 

As Low, et al33 hypothesized, the position of lung tissues can be described by a linear 

approximation in tidal volume and airflow.  The original mathematical description has 

been modified here for clarity. 0X
�

 is defined as the reference position, where the piece of 

tissue of concern is at located at zero tidal volume and zero airflow. The position X
�

 at 

tidal volume V and airflow f is 

fXVXXXfvX )()():,( 0000

�������
βα ++=  (1.1) 

where )( 0X
��α  and )( 0X

��
β  relate the tissue position of the tissue 0X

�
 to the tidal volume 

and airflow, respectively. Fig. (1.1) shows an illustration of the breathing motion model 

superimposed with data acquired from an enrolled patient 

 

1.2 Overview of Dissertation 

In this dissertation, the breathing motion model described in Eq. (1.1) is discussed and 

verified.  
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The major objectives of this dissertation are 

1. Develop a CT acquisition and reconstruction process and a deformable 

registration process that optimally and efficiently provides the positioning data for 

the proposed breathing motion model. 

2. Verify the model.  

3. Develop a theoretical interpretation for the breathing motion model. 

4. Verify the stability of the breathing model by showing that the breathing motion 

model parameters do not change in healthy subjects (lungs without any 

progressing pulmonary disease and not being irradiated), and that detectable 

changes occur to irradiated lungs.   

5. Develop a process that models localized tissue response to radiation therapy and 

correlates that response to radiation dose 

 

Chapter 2 describes the protocol of image acquisition on a 16-slice and 64-slice CT 

scanners with details describing tidal volume and air flow measurements using a 

spirometer. An alternative method for determining tidal volume and air flow for patients 

who cannot tolerate the use of a spirometer is also discussed.  

  

Chapter 3 gives a brief description of the image registration and fitting methods that were 

used for this study. Image registration tracks image features through the images acquired 

at different tidal volumes and air flows. The image feature trajectories, together with 
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corresponding tidal volumes and airflows, are used to fit the model parameters. 

(Objective 1) 

 

Chapter 4 gives a self-consistent verification of the breathing motion model using the 

continuity equation. (Objective 2) 

 

Chapter 5 gives a biomechanical interpretation of the model parameters that involves the 

stress distribution and Young’s modulus. Model parameter averages are estimated from 

published data. Patient-specific model parameters are then estimated using real patient 

data. Verification is conducted by comparing the theoretical prediction and results from 

real patient data. (Objective 3) 

 

Chapter 6 is an application of the breathing motion model in characterizing free-breathing 

patterns. The breathing motion model parameters for lung cancer and non-lung cancer 

patients under quiet respiration are reported for a large cohort of patients. The parameters 

α�  andβ
�

 together provide a quantitative characterization of breathing motion that 

inherently includes the complex hysteresis interplay. The α�  and β
�

 distributions are 

examined for each patient to determine overall general patterns and inter-patient pattern 

variations.  
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Chapter 7 describes potential applications of the breathing motion model in localizing 

lung cancer, monitoring radiation damage and suppressing artifacts in free-breathing PET 

images. The stability of the model is evaluated by investigating the consistency of model 

parameters calculated on image datasets of a healthy lung obtained two weeks apart. The 

α�  vector field divergence is related to the variation of local density during breathing. 

Comparing the divergences of α�  at various points along the course of treatment might 

localize changes in lung tissue biomechanical properties due to radiation damage. 

(Objective 4 and Objective 5) 

 

Chapter 8 summarizes the main conclusions drawn from the study in this dissertation and 

proposes future work. The future work include, but not limited to, quantitative guidance 

for treatment planning, evaluation, staging and management of respiratory diseases in 

addition to cancer, quantitative nuclear medicine (PET/CT and SPECT/CT) study 

acquisition for free breathing patients without breathing motion artifacts 
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Figure 1.1: The breathing motion model (circles) of a piece of tissue as determined using the 

measured positions (crosses).  0X
�

, shown as a diamond, was the location of that tissue at the 

reference tidal volume and airflow, 0 L and 0 L/s respectively. The displacement vector for a 

selected tidal volume and airflow is decomposed into the two components, vX v α�
�

=  and 

fX f β
��

= , which are the tidal volume and airflow components, respectively. The lines 

connecting the measured and fit locations are the motion model discrepancies. The mean 

discrepancy in this case was 1.25mm, approximately 13% of the total motion. 
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Chapter 2  

Data Acquisition 

The inputs to the breathing motion model are the positions of lung tissues and 

accompanying tidal volumes and airflows. The lung tissue positions are obtained by 

registering a series of volumetric CT scans that are acquired while the patient’s breathing 

patterns are being quantitatively measured.  These positions, together with the tidal 

volumes and airflows at the acquisitions, constitute the raw data input to our breathing 

motion model. 

 

2.1 Image Acquisition 

A 12-slice CT scanner was used to acquire the images when the breathing motion model 

was proposed in 2005. The scanner was capable of simultaneously acquiring 12 slices of 

lung in the craniocaudal direction. The thickness of each slice was 1.5 mm. Technology 

in CT scanner has made a huge progress since then.  We acquired all the patient data used 

in this study in a 16-slice and then a 64-slice CT scanner. Although we have started to 

collect patient data using the 64-slice CT scanner using a craniocaudal resolution that is 

better than the 16-slice CT scanner, the large patient dataset we acquired using the 16-

slice CT scanner served as an outstanding dataset.  In this dissertation, data acquired 
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using both scanners were used. Therefore, acquisition protocols that were used for both 

scanners are described.  

 

2.1.1 16-Slice CT Acquisition 

49 patients were enrolled under an IRB-approved protocol and scanned using a 16-slice 

CT scanner (Philips 16-slice Brilliance CT) operating in ciné mode using 1.5 mm thick 

slices. Each contiguous set of the simultaneously acquired 16 CT slices was termed a 

couch position, which covered 24 mm craniocaudally. The scanner was operated to 

acquire 25 scans per couch position using a 0.46 s rotation, 360o reconstruction, and 0.32 

s between successive ciné acquisitions, requiring 19.2 s to acquire the 25 scans. Nine or 

ten abutting couch positions were typically required to span the entire lung.  The in-plane 

field of view was 500 mm and images were reconstructed using 512 x 512 voxel matrices.  

 

2.1.2 64-Slice CT Acquisition 

Currently, we have 25 patients enrolled under an IRB-approved protocol and scanned 

using a 64-slice CT scanner (Philips 64-slice Brilliance CT) operating in ciné mode using 

0.625 mm thick slices. A couch position in 64-slice CT scanner covered 40 mm of lung 

craniocaudally. The scanner was operated to acquire 25 scans per couch position using a 

0.42 s rotation, 360o reconstruction, and 0.32 s between successive ciné acquisitions, 

requiring 18.2 s to acquire the 25 scans. Six or seven abutting couch positions were 

typically required to cover the whole lung.  The in-plane field of view was 500 mm and 

images were reconstructed using 512 x 512 voxel matrices.  
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The advantages of the 64-slice CT scanner over 16-slice CT scanner included the 

improved image resolution and extended couch position length. The improved image 

resolution provided more anatomic detail to facilitate feature tracking. In addition, 

extended craniocaudal coverage between the two scanners reduced the number of couch 

positions required to cover the lung and thus reduce the number of intra-couch position 

boundaries. Six couch positions were usually sufficient to cover the lung in the 64-slice 

CT scanner. An illustration of boundary aliasing can be found in Yang’s work.46 

 

In the future, we would like to modify the current image data acquisition protocol. 

Theoretically, the minimum number of scans required to fit the model parameters is 3. 

The purpose of acquiring 25 scans on the same couch position was to provide enough 

redundancy to allow for breathing irregularities and provide redundancy to check short-

term reliability and breath-to-breath reproducibility.  The scans used in these studies were 

reconstructed using 360º projections.  We are currently working on using 180º 

reconstruction to reduce image blurring due to breathing motion. Sophisticated 

registration algorithms were also developed. In the future, we would like to distribute the 

25 scans between successive half-overlapping couch positions. Therefore, instead of 6 

abutting couch positions, we would have 11 couch positions that half overlap each other 

to cover the whole lung. Couch positions in this arrangement would greatly reduce 

boundary aliasing. Each couch position would have 12 scans to provide sufficient 

redundancy for breathing irregularities. 
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2.2 Tidal Volume and Air Flow  

 

Tidal volume and air flow are the two surrogates used in the breathing motion model. The 

hypothesis is that, any unique pair of tidal volume and air flow corresponds to specific 

tissue position.  

 

The acquisition of tidal volume and air flow was initially based on a spirometer and an 

abdominal pneumatic belt that corrected the spirometry drift. As we acquired data from 

more patients, we found some patients could not tolerate the spirometer. To make use of 

the portion of data acquired without spirometer, a new scheme was developed by 

measuring the amount of air in the lungs using the CT scans themselves.  This quantity 

was termed the air content.  . 

 

2.2.1 Spirometer and bellows 
 
.The tidal volume was acquired using a calibrated digital spirometer (Interface Associates, 

VMM 400) that was sampled at 100Hz with 1 ml digitization resolution47,48. The 

spirometer measured the airflow into and out of the mouth using an internal fan that was 

spun by the airflow as the patient breathed. The fan rotation rate was monitored by the 

spirometer electronics and a digital data stream was provided as the airflow passing 

through the spirometer. The spirometer was found to be accurate to within 2% in a 

laboratory measurement under constant airflow rates, but it drifted significantly in actual 

use. Therefore a separate drift-free metric was simultaneously acquired. An abdominal 
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pneumatic belt (Philips Medical Systems) was placed around the patient’s abdomen and 

attached to a pressure transducer.  The pressure decreased and increased during inhalation 

and exhalation, respectively, and for short time intervals, the relationship between the 

bellows pressure transducer voltage signal and spirometry was found to be linear after a 

linear spirometry drift correction.  The time period to apply the linear drift correction and 

determine the relationship between spirometry-measured tidal volume and was set to 15 s, 

based on earlier analyses of the spirometer drift32. The drifted spirometer signal was 

compared against the belt signal for 15 second increments and the correlation coefficient 

between the two signals was computed.  A linear drift correction was applied to the 

spirometer signal and the drift rate was determined by maximizing the correlation 

coefficient.  The ratio of drift-corrected spirometry signal to bellows signal provided a 

scale factor that converted the bellows signal to tidal volume.  The ratio was evaluated 

each 15 s throughout the CT scan acquisition, and the correlation between spirometry and 

the bellows signals is typically stable to a few percent over the course of 10 minutes. 

 

The drift-corrected spirometry signal was used to recalibrate the bellows signal such that 

the final recorded values were tidal volume.  To quantify the zero value of the tidal 

volume, the fifth percentile tidal volume was selected as 0 ml.  

 

Because of sample-to-sample noise and digitization artifacts, the airflow was determined 

using a moving nth-order polynomial fit. n was selected to be five in this work based on 

the observation that no significant improvement was achieved by using a higher order 

polynomial fit. The airflow at time t was the analytical derivative of the fifth-order 
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polynomial of the tidal volume measurement taken over a time span of 0.41 s (41 samples) 

centered at the point where the airflow was determined.  This method of determining the 

derivative was selected because it reproduced the tidal volume signal with a marked 

reduction in the derivative noise, allowing for a relatively smooth determination of the 

airflow.  

 

2.2.2 Air content analysis 
 

Occasionally, patients signing up the research protocol could not tolerate the spirometer. 

The leakage between the mouthpiece attached to the spirometer and the mouth could 

sometimes also compromise the precision of measurement. In those cases, the air content 

analysis appeared to be an effective way to determine the tidal volume and air flow. 

Compared to the spirometer, the air content analysis was more accurate, consistent and 

straightforward to apply to patients with irregular breathing.   

 

CT scanners work by measuring the spatial distribution of x-ray attenuation coefficients 

using x-ray projections and inverse transforms. The attenuation coefficient µ  is not 

typically displayed in the CT image. Instead the concept of Hounsfield Unit (HU) is used.  

The HU scale is set such that the value of water is zero and air is either -1000 or -1024, 

depending on the scanner manufacturer (Philips uses the standard of -1000).  The 

relationship between the CT number acquired in a Philips CT scanner and µ  can be 

described as  
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where OH 2
µ  is the linear attenuation coefficient of water for the x-ray beam energy.   

Because the CT number is linearly proportional to the µ , and for soft tissues, µ  is 

proportional to density, an empirical equation48 was used to determine the fraction of a 

CT voxel that contained air.  

Fractional air content
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The average CT value of air ( airCT
____

) was sampled in the trachea. The average CT value 

of tissue ( tissueCT
____

) was estimated by sampling homogeneous soft tissue near the lungs and 

was assumed to be the same as lung tissue density exclusive of air. The reason for the use 

of averages rather than the empirical numbers (e.g. -1000 and 0), was that the x-ray 

beams are not monoenergetic and therefore experience beam hardening as they pass 

through the patient.  This causes the CT numbers to be a function of the patient geometry, 

so the representative regions were sampled.  The volume of air in a CT voxel is the 

product of fraction of air content and the voxel volume. The volume of air in a couch 

position was calculated by summing the volume of air of all CT voxels in the same couch 

position. For images from a 16-slice CT scanner, the voxel volume was 1.43mm3; For 

images from a 64-slice CT scanner, the voxel volume was 0.60 mm3  
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For each couch position, 25 air contents were calculated at various phases of breathing. 

Therefore, tidal volumes could not be fully recovered by simple summation of the air 

contents. However, bellow signals could be converted to bellow-based air contents for 

each couch position, given the assumption that the bellow signals and air contents is be 

linear in each couch position, except for a possible small time delay. The bellow-based 

air content could be used to recover the tidal volumes. This was achieved in the following 

steps. 

 

First, for one couch position, 25 bellow signals that synchronize the acquisitions of image 

data in the same couch position were retrieved from the continuously acquired bellow 

signals. By least-square fitting the 25 bellow signals to 25 recovered air contents in that 

couch position, the correlation between bellow signals and air contents was obtained. The 

correlation was used to convert the continuous bellows signals to continuous bellow-

based air contents for that couch position.  

 

Second, the above procedure was repeated to generate bellow-based air content curves 

for all couch positions. Since the bellow-based air content curves of all couch positions 

were based on the same bellow signal curve, same position on each bellow-based air 

content curve is corresponding to the same breathing phase. The whole lung volumes 

during the acquisition now could be obtained by the summation of the bellow-based air 

content curves of all couch positions. Tidal volumes were consequentially obtained by 

zeroing the 5th percentile of air content in the whole lung. More details can be found in 

the technical note by Rene et al49 
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Chapter 3  

Image Registration and Model Fitting 

 

The goal of the lung motion model developed in this dissertation is to predict lung tissue 

trajectories by determining the motion model parameters using few samples of the motion 

trajectory coupled with the corresponding tidal volumes and air flows. The methods for 

determining the tissue positions in each of the CT scans are described in this chapter.  

The techniques for fitting the motion model parameters using the registered tissue 

positions, and corresponding tidal volumes and airflows will also be discussed in this 

chapter.   

 

Image registration is the process of finding the geometrical or spatial mapping between 

multiple images of the same objects by determining the correspondence between the 

images. Registration techniques have been widely used in medicine to identify a patient’s 

tissues throughout multiple image datasets. In this chapter, various image registration 

schemes will be discussed. These registration schemes were employed during the course 

of the research program and each had strength and weakness. A brief comparison of those 

methods will also be given in this chapter.  
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3.1 Normalized Cross-Correlation Coefficient Registration 

In signal processing, the cross correlation is a measure of how much two signals resemble 

each other. Many signals evolve both temporally and spatially, so it is rare that a signal is 

identical at different points of time and position. In the imaging process, the signal is the 

image intensity distribution of the tissue of interest. The image intensity distribution 

changes as the organ moves. Additional distortions and image artifacts are introduced 

during the acquisition and reconstruction of images. Although variations are always 

present in images of the same tissue, it is reasonable to assume that images of the same 

organ will have the greatest similarity. The normalized cross correlation coefficient 

registration is a registration method based on the quantitative evaluation of the similarity 

between the two images.    

 

The use of cross correlation for evaluating the similarity of two sub-images, f  centered 

at (0,0) and g centered at (x,y), from a sequence of images is motivated by the squared 

Euclidean distance measure, 
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The cross-correlation term,  
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is a measure of similarity between the two images if the image energy, termed as 

∑
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,

2 ),( , are approximately constant.  
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Image energy density, which is defined as the ratio of the image energy over the 

corresponding image space, is required to keep constant over the whole image space. 

Otherwise the correlation between a feature in the image and its exactly match may 

be less than the correlation between the feature and a bright spot. Evaluation of image 

similarities based on Eq. (3.2) also poses a stricter requirement on the time stability of 

image intensities. Any fluctuation in the image intensity over time and special 

distribution of image energy density would cause the breakdown of Eq. (3.2) as an 

effective measure of similarity. To overcome this difficulty, the intensities of images 

are normalized before the similarity evaluation is performed. After normalization, 

image ),( yxf  becomes ( )∑ −

−

vu

vufvuf

yxfyxf

,

2
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 and image 
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The squared Euclidean distance of normalized images is now 
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The normalized cross-correlation term is  
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which is free of temporal fluctuation of image intensities as well as spatial change of 

image energy densities between image f and image g. The normalized cross-correlation 

term ),( yxc  is a more robust measure of image similarity and is termed normalized 

cross-correlation coefficient.   

 

To register image A to image B, both images are divided into grids, or voxels for 3D 

image, of the same size. For a grid in image A, normalized cross-correlation coefficients 

are calculated between it and all grids in image B.  The grid in image B with highest 

normalized cross-correlation coefficient is the match of the grid in image A. Repeating 

the procedure for all grids in image A, the mapping between image A and image B is 

established.  

 

Although the normalized cross-correlation registration has been shown to be a 

straightforward method for registering images, some of its drawbacks limit its application. 

Firstly, it is a very time consuming technique because it is a search algorithm based on a 

convolution calculation. The complexity of this algorithm is, therefore, )( 3nO  where n is 

the number of voxels in the search region. To speed up this algorithm, a fast normalized 

cross-correlation coefficient method was introduced by Lewis50, replacing the time-

consuming calculation of convolution with fast Fourier transformation. However, the new 

scheme only reduces the algorithm complexity from )( 3nO  to )log( 2 nnO . A whole-

lung image typically includes 3 million voxels. It would take weeks, if not months, to 

finish the registration of a whole lung through the 25 acquired scans if the images are not 

downsampled. Despite its poor efficiency, the normalized cross-correlation registration is 
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easy to implement and robust against image artifacts and distortion. It was the first 

registration scheme implemented during our work for verifying our model and 

characterizing the free-breathing motion trajectory patterns, which will be discussed in 

Chapter 6. Secondly, the selection of the size of the sub-image has to be customized for 

the image modality and content. It largely depends on the implementer’s experience. If 

the size of the sub-image is too small, there are not enough details in the sub-image for 

registration; if the size of the sub-image is too large, the registration would average 

through non-rigid motion. Thirdly, it is difficult to determine the size of the searching 

region. A large searching scope will deteriorate the already poor efficiency of normalized 

cross-correlation registration while a small searching scope will compromise the 

registration’s capability of capturing large motion.  Therefore, a more efficient and 

general registration method is needed.  

 

3.2 Optical Flow Registration 

 

The optical flow registration method was introduced by Horn and Schunck51 in 1981. 

Horn and Schunck related the variation of image intensities at one spatial location in the 

course of time to the motion of the intensity pattern at the same spatial location. The 

motion of the intensity pattern, now termed as optical flow, reflected the trajectory of the 

tracked image feature across a sequence of images. Since its first introduction, substantial 

research has been devoted to develop more efficient and precise algorithms to calculate 

the optical flow based on Horn and Schunck’s algorithm. Among these algorithms, the 

total variation optical flow registration with L1 norm in the data fidelity term (TV-L1) has 
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achieved precise and robust optical flow estimation . Both Horn and Schnuch’s original 

algorithm and TV-L1 algorithm are discussed in the following sections. 

 

3.2.1 Horn and Schunck’s Algorithm 

In this algorithm, motion is detected through the flow of image intensity. Assuming the 

image intensity of a certain object located at point x
�

 doesn’t change within a sequence of 

images, and denoting the image intensity of the object in the image plane and at time t as 

E( x
�

,t), we have 

0=
dt

dE
.     (3.5)  

Applying the chain rule for differentiation, Eq (3.5) can be expanded into 

0=∇•+
∂
∂

EU
t

E �
,    (3.6) 

where U
�

 is the space velocity of the object moving across the image sequence and 

dt

xd
U

�
�

=  . 

 

In this chapter, the space velocity of the object is measured in the image frame and is also 

termed as the image flow or the optical flow. Since the time interval between any two 

registered images is always taken to be unit time, the image flow or the optical flow is 

equivalent to the displacement of the concerned object across the images 

 

The image flow can be obtained from Eq (3.6),  
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     (3.7) 

Although any motion satisfies Eq. (3.6), the motion can not be fully recovered from the 

equation. Only the component that is parallel to the intensity gradient is recoverable in Eq. 

(3.7). The perpendicular component is lost in the inner product term. This issue is known 

as the aperture problem of the optical flow algorithm.  

 

One solution to the aperture problem is to introduce additional constrains. Smoothness is 

the most popular option. The rationale of choosing smoothness as the additional constrain 

is that, the image flow doesn’t move in a random and independent manner. Instead, the 

motions of neighboring points are assumed to be similar in both magnitude and direction. 

Unless the gradients of the neighboring image intensities align in the same direction, the 

local perpendicular component of flow with respect to the gradient of image intensity is 

determined from more distant points.  

 

One way to smooth the image flow is to minimize the squared Euclidean distance of 

image flow gradient, 
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where i and j denote spatial components. Value of (3.8) describes the departure from 

smoothness. As smoothness decreases, the value of the term in (3.8) increases. The 

problem then turns to finding the image flow that minimizes both the sum of the residual 

in Eq. (3.6) and the departure from smoothness: 
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The first term is the data term, also known as the optical flow constraint. The second term 

is a regularization term that exerts a penalty for unsmooth image flows and is known as 

the deviation term.  

 

The process of determining the minimum of Eq. (3.9) is equivalent to the solving of 

Euler–Lagrange equation: 
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Applying the calculus of variation on Eq. (3.10), we obtain 

( ) 02 =∆−∇•+∂∂ iti UEUEE α
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,   (3.11) 

where ∑ ∂
∂=∆

i ix2
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 denotes the Laplace operator. To further simplify the notations in this 

chapter, we define 
i

i x

E
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In practice the Laplacian is approximated numerically by employing the finite difference 

method. In this method, the image space is divided into grids (2D) or voxels (3D) in unit 

dimension. The integral of the Laplacian is 
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Confining the integral in one of the grids or voxels denoted as i, Eq. (3.12) is 

approximated by 

( ))()()( iUiUiU −≈∆ κ ,    (3.13) 

where )(iU is the average of image flows in the neighboring grids or voxels sharing one 

face with grid or voxel i. κ is the number of neighboring grids or voxels. A convenient 

approximation to calculate the average is 
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n
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κ
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)(     (3.14) 

Where n denotes the grid or voxel that shares one face with voxel i. In a 2D image,  
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In a 3D image,  
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Eq. (3.11), after applying Eq (3.13), now reads 

EEUUEEU tiii
j
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Eq. (3.19) is a system of linear equations with large absolute values in each row and 

column dominated by the diagonal element. The Jacobi method is employed to determine 

the solutions. An iterative process is repeated, starting with initial guesses of solutions, 
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until the solutions converge. Since the solution depends on the neighboring values of the 

flow field, it must be repeated each time the neighbors have been updated. Therefore, the 

following iterative scheme is employed to estimate the image flow,  
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where the superscript k+1 denotes the next iteration and k is the previously calculated 

result.  

 

3.2.2 TV-L1 

 

The Horn–Schunck algorithm is capable of yielding a high density of flow vector field. 

However, a quadratic penalization of the deviation term leads to two challenges. Firstly, 

discontinuities are not allowed in the displacement field. Secondly, extra small or large 

motions distant from the rest of the displacement fields can not be handled robustly. To 

overcome these limitations, several modifications to the original Horn-Schunck 

algorithm51 have been proposed in the last two decades. Among them, as proposed by 

Zach52, a differentiable approximation of the Total Variation with robust L1 norm (TV-

L1) is used in the data fidelity term, which is optical flow constraint that assumes the 

intensity values of I0(x) do not change during its motion to I1(x+u(x)).  

 

The total variation of a real-valued function ƒ is a measure of the one-dimensional 

arclength of the function as described using a parametric equation. In mathematics, the 

total variation TV is defined as 
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( ) dxffTV ∫
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If ƒ is monotonic in [a, b], then TV(ƒ) =|ƒ(b)-ƒ(a)|, regardless of whether or not ƒ is 

discontinuous. Since discontinuities in the optical flow appear often in conjunction with 

high image gradients, penalization on the total variation would control both the sizes of 

jumps between discontinuities and geometry of boundaries. TV-L1 has advantages 

over .the Horn–Schunck algorithm, both in precision and robustness.  

 

The objective of the TV-L1 optical flow registration algorithm is to find the image flow 

U
�

 which minimizes the residual that is contributed by a total variation regularization 

term and a robust L1 norm in the data fidelity term that is similar to what we described in 

the Horn and Schunck’s algorithm. Mathematically, the image flow U
�

 is the minimizer 

of  
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where ( )EUEt ∇•+∂
�

 represents the image data fidelity and ∑ ∇
i

iU  is the 

regularization term. λ  weighs between the data fidelity term and the regularization term 

that smoothes the displacement fields. 

 

A dual formulation of Eq. (3.22) is introduced to achieve an efficient and globally 

convergent solution. In this scheme, Eq. (3.22) is minimized separately in the data 

fidelity and regularization terms by introducing an auxiliary variable V
�

, 
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In the following paragraphs, we denote the fidelity term ( )EVEt ∇•+∂
�

 by )(V
�

ρ . 

An additional constraint term, 
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which are minimized in the two terms U
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 and V
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, converge at approximately the same 

pace. Eq. (3.23) now reads as: 
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θ  is a very small constant to guarantee sufficient approximation between U
�

 and V
�

, 

which are minimized independently as depicted below. 

 

1 Minimization of the regularization term 
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2. Minimization of the fidelity term 
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The solution of Eq. (3.25) is given by  

PVU
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whereP
�

 is a tensor of NN ×  and N  is the dimension of U
�

. P
�

can be solved iteratively 

using the following equation, 
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where k is the iterative step and 00 =P . τ  is the time step which controls the 

convergence speed.  

 

The solution of Eq. (3.26) is given by the following threshold step: 
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The implementation of this scheme is quite simple. Given two images I0 and I1 of any 

dimensions (2D or 3D),  

1. Start with iterative step k=0 

2. Set the image flow U =0. Also set 0=V and 0=P
�

  

3. Calculate the image fidelity ρ  using EUEU t ∇•+∂=
��

)(ρ  

4. Calculate kV  using Eq. (3.29) 

5. Calculate 1+kP
�

 using Eq. (3.28) 

6. Update 1+kU  using Eq. (3.27) 

7. Update k with k+1 



 37 

8 Go to step3 and repeat 

 

3.3 Model Fitting 

After registering the images to obtain the lung tissue motion positions for each acquired 

image, the images are correlated against the tidal volumes and airflows at the times the 

images were acquired.  The motion model parameters are fit by minimizing the residual 

of the model equation (1.1), 

∑ −−−
ℜ∈ i

iii
X

fvXX βα
βα

����

��� 0
,, 3

0

min
 

where iX
�

 was the i th location of the registrations, and iv  and if  were the tidal volume 

and airflow, respectively, for scan i. To recover 3 undetermined model parameter vectors, 

0X
�

, α�  and β
�

, at least 3 images acquired at different pairs of tidal volume and airflow 

are required. However, because of the image artifacts occurring during the acquisition 

and registration noises, more than 3 images are needed to recover the model parameters 

with a higher confidence. Therefore, the determination of the model parameters turn to 

approximating the solutions for an overdetermined system in which there are more 

equations than unknowns. In this chapter, we define the process of finding optimal 

solutions to an overdetermined system as the fitting process.  

 

Two optimization techniques have been implemented so far. One is Linear Least-Square 

method and another is nonlinear Nelder–Mead method. The implementation of both 

techniques is discussed in the following section.  
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3.3.1 Linear Least-Square Optimization 

Least-square optimization was first introduced by Carl Gauss around 1794 to study the 

motion of heavenly bodies. In this method, a residual is defined as the difference between 

the observed positions (or the registered positions) and the predicted positions from the 

model. The goal of fitting is to optimize the model parameters to minimize the residuals. 

 

The lung motion model discussed in this dissertation is a regression model that is a linear 

combination of parameters. In mathematics, it can be expressed concisely with matrix 

operations, 

PSX =      (3.30) 

where X is the tissue trajectory. P  is the matrix of the model parameters and S is the 

matrix containing the surrogates that include tidal volume and air flow. X , P  and S  are 

specifically defined as the following 
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and 
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where N is the number of the acquisitions per couch position.  
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The residual between the observed position and the predicted position from the model is 

written in matrix form as the following, 

PSXR ob −=      (3.34) 

Please notice that in this equation X is replaced by obX , which denotes the observed 

position. The sum of the residual squares is given by the Frobenius inner product, 

( ) ( )T
obob PSXPSXL −−= :     (3.35) 

where the operator : donotes the Frobenius inner product which,  for two matrixes A and 

B with equal size, gives  

∑∑=
i j

ijij BABA :      (3.36) 

The Frobenius inner product of matrixes can be equivalently transferred to trace 

operation of the matrix multiplication. Hence Eq. (3.35) can be rewritten as 

( )( ){ }T
obob PSXPSXTrL −−=     (3.37) 

where the Frobenius inner product is replaced by the normal matrix multiplication in the 

trace operation. 

 

The minimum of the sum of squares is found at one point where the derivative of the sum 

of squares with respect to the unknown parameters equals zero.  
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Therefore, we obtain the parameters in our lung motion model, which is an 

overdetermined system, in a closed form.  

T
ob

TT SXSSP 1)( −=      (3.39) 

or 

( ) 1−= TT
ob SSSXP      (3.40) 

 

3.3.2 Nelder–Mead Optimization 

Although least-square optimization is by far the most popular method to estimate the 

unknown model parameter, some disadvantages of this method limit its application. 

Firstly, least-square optimization only works for linear models whose parameter 

derivatives are available. Secondly, the matrix used in least-square optimization must be 

non-singular in order to obtain meaningful results. For example, if we prospectively gate 

the breathing and scan the patient only at end of exhalation and end of inhalation, the 

airflow would be zero for all the data acquired. In that case, TSS would be a singular 

matrix and the inverse of the singular matrix would become meaningless. Thirdly, 

although we model lung motion during quite respiration using a linear function, in the 

future we would like to add more terms into our model, especially cross terms of tidal 

volume and airflow. A motion model with cross terms would be nonlinear and the linear 

least-square optimization would be no longer applicable. Therefore, we need an 

optimization method that could be applied to a broader range of situations.  

 

Nelder-Mead optimization 53 is one of the most popular non-derivative algorithms. The 

word “non-derivative algorithm” here means broadly that it uses only function values 
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(comparing to least-square optimization) and does not implicitly try to approximate the 

gradient (comparing to finite-difference optimization).  

 

The biggest advantage of a non-derivative algorithm against a derivative algorithm is that, 

the non-derivative algorithm does not require additional coding to evaluate derivatives, 

which are usually the major source of errors. This advantage, in addition to simplicity, 

boosts the popularity of Nelder-Mead optimization among users, despite its relatively 

lower efficiency.  

 

Nelder-Mead optimization is carried out on simplexes, which are constructed by the 

model parameters to be fit. In the field of geometry, a simplex is a generalized notion of a 

triangle or tetrahedron in arbitrary dimensions. Specifically, an n-simplex is an n-

dimensional polytope with n + 1 vertices, of which the simplex is the convex hull. For 

example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a 4-simplex is a 

pentachoron. A single point may be considered a 0-simplex, and a line segment may be 

viewed as a 1-simplex. A simplex may be defined as the smallest convex set which 

contains the given vertices. 

 

The method approximates a local optimum of a problem with N undetermined parameters. 

For example, the purpose of fitting our lung motion model is to look for an optimal set of 

parameters as α�  β
�

 and 0X
�

 that together determine the lung tissue motion. It is clear that 

the motion is a combination of contributions from all parameters, but it is not easy to 

visualize the impact of changing any specific element. In this case, we use the Nelder–
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Mead method to generate trial motions and test them. Each round of tests will tell us if 

we should keep looking in the same direction in optimizing the model parameters or we 

are heading towards a dead end and should change direction. 

 

Initially, one constructs an N-simplex with N+1 vertices. For a two parameter problem, a 

2-simplex is constructed with 3 vertices, which is simply a triangle. However, the 

construction of an initial simplex is more complex for our lung motion mode since the 

model has 3 undetermined parameters, each of which has 3 independent spatial 

components. To proceed with 9 variables, a 9-simplex is constructed at the very 

beginning of the optimization. All the vertices or points in the simplex are used to test the 

possibility of finding an optimal solution, therefore, they are called test points or test 

simplex.  

 

After the construction of the initial simplex, a new test point is generated by extrapolating 

the behavior of the objective function measured at each test point in the current test 

simplex. The algorithm then chooses to replace one of these test points with the new test 

point and so the process continues to evolve. The simplest step is to replace the worst 

point with its mirror point that reflects through the center of gravity of the remaining N 

points. The center of gravity here is defined as a simple average of the positions of all test 

points. If the new point is better than the best current point by giving a lower evaluation 

of the objective function, the next iteration will extend along the same direction. On the 

other hand, if this new point isn't much better than the previous value, it is possible that a 

minimum was crossed. Sampling an intermediate point would then be attempted.  
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There are many variations of the Nelder–Mead method, with variations depending on the 

nature of the problem to solve. Steps of one Nelder–Mead algorithm are listed as the 

following: 

Given: N+1 vertices ix , i=1…N+1, of a N-simplex, a model presented by a function 

1...1),( += Nixf i  ,and coefficient ρ  (reflection), χ  (expansion),γ  (contraction) and σ  

(shrinkage). In a standard implement of Nelder-Mead algorithm, 1=ρ , 1=χ , 5.0=γ  

and 5.0=σ  

1. Initialization. For a model with N undetermined parameters, choose N+l points. 

Evaluate the model at each point (vertex) of the simplex. 

 

2. Sort by model value. Sort the values at the vertices to satisfy  

)()()( 11 +≤≤≤ NN xfxfxf ⋯     (3.41) 

3. Localization of the gravity center. Calculate the gravity center of all points in the 

simplex except the one that is going to be replaced (N+1).  

∑
=

=
N

i
ixx

1

      (3.42) 

4. Reflection. Computer the mirror point of the worst point by reflecting through the 

center of gravity 

)( 1+−+= Nr xxxx ρ      (3.43) 

Comparing the evaluation of the function at the new point to those at points in the 

simplex except the worst one, if )()()( 1 Nr rfxfxf <≤ , the new point is better in 

minimizing the function than at least one point in the simplex and also worse than at least 
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one point. This indicates that optimization toward rx is probably in the right direction, but 

the room for further improvement is limited. Therefore, rx  will be accepted to replace the 

worst point and continue to step 2. 

 

5. Expansion. . If )()( 1xfxf r < , the reflected point is the best point so far. This 

indicates that optimization towards rx  is very promising and the room for further 

improvement is beyond detection so far. Instead of keeping rx  and replacing the worst 

point like step 4, a more aggressive exploration is tried in the direction suggested by rx . 

)( 1+−+= Ne xxxx χ      (3.44) 

If the expanded point is better than the reflected point, )()( re xfxf < , the worst point in 

the simplex is replaced by the expanded point. Otherwise, the worst point in the simplex 

is replaced by the reflected point. Continue to step 2 after the replacing.  

 

6. Contraction. If )()( Nr xfxf ≥ , the reflection appears too aggressive to obtain any 

gain over current points. A contraction between x  and the better of Nx  and 1+Nx  is 

performed.  

a. Outside. If )()()( 1+<≤ NrN xfxfxf , calculate  

)( xxxx rc −+= γ      (3.45) 

If )()( rc xfxf ≤ , replace 1+Nx  with cx  and proceed to step 2; otherwise 

proceed to step 7 for a shrinkage.  

b. Inside. If )()( 1+≥ Nr xfxf , calculate 
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)( 1 xxxx Nc −+= +γ      (3.46) 

If )()( 1+≤ nc xfxf , replace 1+Nx  with cx  and proceed to step 2; otherwise 

proceed to step 7 for the shrinking.  

 

7. Shrink . In this case, all the attempts to find a better point outside of the region 

enclosed by the simplex have failed. The simplex has to shrink to proceed. All the points 

are shrunk to new points.  

)( 11
' xxxx ii −+= σ      (3.47) 

where 1,,1 += Ni ⋯ . The points of the simplex are replaced by the new points and 

continue to step 2.  

 

The Nelder-Mead algorithm is known for its inefficiency. A lot of effort has been put into 

a mathematical analysis of the simple steps above with little progress. However the 

Nelder-Mead algorithm is a simple and straightforward method for global optimization. It 

has been used to solve a remarkable number of difficult optimization problems. We used 

the Nelder-Mead algorithm in this study to examine the free breathing patterns. A 

retrospective study also showed that the fitting results from Nelder-Mead algorithm are 

slightly better than those from the least-square optimization, in addition to its capability 

to optimize a potential nonlinear equation that we would like to expand our model to in 

the future, if necessary. 
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Chapter 4   

Verification of The Lung Motion Model 

 

4.1 Introduction 

 

The free-breathing lung motion model we discuss in this dissertation hypothesized that 

the breathing motion of lung tissues and lung tumors can be modeled as a function of 5 

independent parameters, which are the tidal volume, the airflow and 3 independent spatial 

components of the tissue’s initial position at the reference condition of zero tidal volume 

and zero airflow. The tidal volume metric is a surrogate for the general inhalation and 

exhalation motion while the airflow is a surrogate for the hysteresis behavior. Hysteresis 

is defined as the variation between trajectories during inhalation and exhalation. The 

magnitude of hysteresis was observed to be minimal at the beginning of inhalation or the 

end of exhalation, while maximal at mid-inhalation and mid-exhalation. This observation 

provided the rationale to model the hysteresis with airflow.  

 

This model was formulated such that the volume and airflow were functions of time, 

rather than have time as an explicit variable in the model. Excluding the time dependence 
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explicitly from the model equation allows the complex time dependence to reside within 

the variables rather than explicitly within the model equation. 

 

In this chapter, some of the consequences of the model will be examined and the 

predictions will be validated with patient data.   

 

4.2 Materials and Methods 

 

4.2.1 Derivation of Divergence Relationship 

 

The breathing motion model was proposed with a linear relationship between tidal 

volume, airflow and the subsequent tissue displacement.  The position X
�

 of tissue was 

modeled as 

fXVXXXfvX )()():,( 0000

�������
βα ++=    (4.1) 

where 0X
�

 was the position of tissue under the conditions of tidal volume 0=V  and 

airflow 0=f , )( 0X
��α  characterized the displacement of lung tissues from air filling and 

)( 0X
��

β  characterized the hysteresis motion.  α�  had units of distance per tidal volume 

(mm l-1 in this work) and β
�

 had units of distance per airflow (mm s l-1 in this work).  Eq. 

(4.1) does not have time explicitly included. The time dependence is imbedded in V and f.  

This first-order model was assumed to accurately represent breathing motion under the 

conditions of quiet respiration which was typically characterized by smooth changes in 
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tidal volume and airflow.  In this model, the physical processes that were modeled by the 

tidal volume and airflow were assumed to be independent of one another, so the 

hysteresis behavior occurred independently of lung filling.  For example, if the hysteresis 

component of motion for a specific piece of tissue (located at 0X
�

) was ( )0X
��

β , the 

hysteresis motion was the same whether the tidal volume was at inhalation or exhalation 

or in between.  

 

The model accuracy has been studied by Low et al54 and investigations are ongoing to 

evaluate the consistency of model parameters both in the case of irradiated and 

unirradiated lungs.  

 

The objective of this chapter is to examine whether the model behaves correctly when 

applied to the continuity equation.  The continuity equation states that the relationship 

between a velocity field U
�

 and density ρ  is: 

t
U

∂
∂−=•∇ ρρ

��

     (4.2) 

where t is time and the velocity vector field is dtXdU
��

= .  Expanding the left side of Eq. 

(4.2) 

t
UU

∂
∂−=•∇+•∇ ρρρ

����

    (4.3) 

The equation states that the change in lung tissue density at a point in space is due to two 

causes presented by two terms on the left side of Eq. (4.3). The first term is the inner 

product of the gradient of the tissue density and the tissue velocity.  When there is a 

gradient in the tissue density and the tissue moves past the point of observation, the 
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density at the point of observation will change in time.  The second term describes the 

change in density due to expansion or contraction of the velocity field.  The local 

expansion and contraction of lung tissue is likely to be a physiologically relevant quantity 

to study, so the first term is subtracted from both sides of the equation.  This results in  

dt

d
U

ρρ −=•∇
��

     (4.4) 

In the proposed breathing motion model, time was not the dependent variable, so the 

chain rule was employed to change the variable from t to V and f yielding terms with the 

derivative dtdf .  In order to simplify the equation, the constraint of a constant airflow 

0=dtdf  was applied.  This yielded 
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Eq. (4.1)  shows the relationship between the tidal volume, the airflow, and the tissue 

position.  Taking the partial derivatives of the position vectors and dividing both sides by 

dtdVρ  leads to  

V∂
∂−=•∇ ρ

ρ
α 1��

     (4.6) 

where the equation is valid under conditions of constant airflow.  This equation was 

obtained by dividing both sides by dtdVρ , so in principal it is not valid when either 

the density or the airflow is zero, but it is valid in the limit that the density or airflow 

approach zero. 
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4.2.2 Evaluation Equations 

 

Eq. (4.6) showed that under conditions of constant airflow, the relative local density 

changed as a function of tidal volume by an amount equal to the divergence of the α�  

field.  The hypothesis was that the local density variation as a function of inhaled tidal 

volume, and consequently α� , would remain consistent with time (days or weeks) if the 

lungs were not affected by disease or treatment intervention such as radiation therapy.   

 

Measuring the local density change directly from CT scans acquired during free breathing 

would normally be challenging due to the complex hysteresis motion during respiration.  

However, with the approach proposed by Low et al1, the position of the tissues in the 

individual free breathing CT scans could be correlated against the tidal volumes and 

airflows to generate the model parameters α�  and β
�

.  According to Eq. (4.6), the 

divergence of α�  provided the relative density variation as though the patient had 

breathed infinitely slowly (consistent with the constant airflow restriction) so that 

hysteresis effects were not present. 

 

While Eq. (4.6) provided the potential for examining the lung density variations, a 

validation of the equation would provide a powerful validation of the 5D model and its 

consequences.  The left side of Eq. (4.6) was integrated throughout the lungs so Gauss’s 

law could be used to convert the integral to a surface integral 
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∫∫ •=•∇
SV

SddV
����

αα     (4.7) 

where the integral on the left of Eq. (4.7) would be conducted throughout the entire lung 

volume V through volume elements dV, and the surface integral on the right would be 

conducted on the lung surface S
�

 through surface area elements Sd
�

, which represented 

an infinitesimal surface area element whose direction was normal to the lung surface. 

The term on the right could be expressed as 

Sd
V

fXXXfvX
Sd

S

�
�����

��
•−−=• ∫∫

)():,( 000 βα   (4.8) 

At end of inhalation and exhalation, the airflow equals zero. At these two phases, Eq. (4.8) 

became 

( ) SdXXfvX
V

Sd
������ •−==• ∫∫ 00):0,(

1α    (4.9) 

00 ):0,( XXfvX
���

−=  was the displacement vector of an infinitesimal surface element on 

the lung, its vector product with the surface area was the change of lung volume through 

the infinitesimal surface. The integral of the displacement over the whole lung boundary 

gave the total change of lung volume due to respiration at end of inhalation.  The ratio of 

lung volume change to the tidal volume had been established to be 1.1155, the ratio of 

room air to lung air densities.  Therefore,  

11.1=•∫ Sd
��α      (4.10) 

Using Gauss’ law, Eq. (4.10) became 

11.1=•∇∫
V

dVα�
�

     (4.11) 
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Eq. (4.11) provided a useful test metric for the motion model.  It indicated that for every 

patient and every 4DCT scan session, the integral of the divergence of )( 0X
��α  must be 

1.11.  

 

The value of )( 0X
��

β  was tested in a similar way.  β
�

 related motion to airflow, which in 

the breathing motion model was assumed to be proportional to internal pressure 

imbalances that occurred during the act of inhalation and exhalation.  Similar to the 

analysis of Eq. (4.7) where the surface integral of α�  described the inflation of the lungs, 

the surface integral of β
�

 also described lung inflation, this time due to hysteresis.  

Because lung inflation due to changes in tidal volume was modeled by α� , the lung 

inflation due to hysteresis should have been negligible, but unlike Eq. (4.10), integrating 

the divergence of β
�

 did not provide a unitless quantity (it had a unit of time), so 

interpretation of the results would have been difficult.  Instead, the ratio of surface 

integrals of β
�

 to α�  was defined, multiplying each integral by the maximum airflow maxf  

and tidal volume maxV .  The surface integrals described the integrated rate of inflation.  

Multiplying the rate of inflation by the appropriate variable would yield the total inflation.  

For example, α�  was calculated in units of distance per tidal volume, so multiplying by 

the surface integral by tidal volume gave the expansion at the lung surface at the 

maximum tidal volume.  Similarly, β
�

 was calculated in units of distance per airflow, so 

multiplying by the maximum airflow gave the amount of lung inflation due to the 

hysteresis component.  The ratio, defined as R, compared the maximum volume 

expansion for these components.   
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     (4.12) 

The motion model predicted that the influence of tidal volume and airflow mechanics 

were independent, and that the inflation was predicted by the volume component, so the 

β
�

 component, and consequently the ratio R should have been equal to zero.  The ratio of 

max

max

f

V
 can be found in Tab. (4.1) for all patients enrolled in this study. The surface 

integral in the denominator of Eq. (4.12) was provided in Eq. (4.10).  Applying Gauss’s 

law to the numerator  

max

max11.1
f

V

dV

R V

×

•∇
=
∫ β

��

     (4.13) 

Like Eq. (4.11), this provided a test of the model parameter, in this case )( 0X
��

β .   

 

4.2.3 Evaluation Method 

 

Eq. (4.11) and Eq. (4.13) were evaluated using clinical data from 35 patients.  These 

patients were scanned using a 16-slice CT (Philips Brilliance) scanner operated in ciné 

mode (spatial resolution: 0.98x0.98x1.5 mm3) with 25 scans acquired contiguously at 

each 24 mm wide couch position.  Two external respiratory measurements were 

simultaneously acquired; tidal volume measured using a spirometer (VMM-400, Interface 

Associates), and a bellows pressure signal measured using a pneumatic belt system that 

was wrapped around the abdomen.  The bellows pressure measurement was correlated 
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with the spirometry measurement to provide the tidal volume and airflow at each scan.  

Lu et al56 described this technique.   

 

The tissue positions were mapped for each scan using the normalized cross-correlation.  

The scan with tidal volume closest to zero ml (defined as the 5th percentile tidal volume) 

was employed as the reference scan.  The remaining scans were sorted by tidal volume 

and categorized into whether they were acquired during inhalation or exhalation. The 

position matching was performed in the inhalation and exhalation category separately, 

ordered by increasing tidal volume and using the reference scan as the initial guess for 

the first operation in each category.  The result from each match was used as the initial 

guess for the next match in the tidal volume order.   

 

After the positions were mapped, the values of α� , β
�

, and 0X
�

 were fit by minimizing the 

least squares difference of the predicted (Eq. (4.1)) and measured positions.  The integrals 

of the divergences in Eq. (4.11) and Eq. (4.13) were computed and the results used to 

evaluate the model quality.   

 

4.3 Results 

 

Of the 35 datasets, 18 were from lung cancer patients and 17 were from non-lung cancer 

patients. Tab. (4.1) lists the maximum tidal volume and airflow.  The mean ratio of 

maximum airflow to tidal volume was ssfV 45.019.1maxmax ±= .   
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Tab. (4.2) and Tab. (4.3) list the results of Eq. (4.11) and Eq. (4.13) for each patient, 

respectively.  According to Eq. (4.11), the prediction of ∫ •∇
V

dVα�
�

 was 1.11 while the 

mean measured value was 14.006.1 ± . Fig. (4.1) shows a histogram of the values of 

∫ •∇
V

dVα�
�

 for the 35 patients.  The predicted and mean measured values agreed 

within 5% and the spread of the results was relatively narrow. 

   

The prediction of R  was 0.  Fig. (4.2a) shows a histogram of the values of R for the 35 

patients.  The average value was 0.0270.017± . Fig. (4.2b) shows a histogram of the 

values of R for 17 non-lung cancer patients with average value at 0.007±0.021. Fig. 

(4.2c) shows a histogram of the values of R for 18 lung cancer patients with an average 

value at 0.028±0.029. All the results are very close to the prediction of 0.  
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Figure 4.1:  Histogram of the integral of ∫ •∇
V

dVα�
�

 for the 35 evaluated patient scans, 

predicted to be 1.11 according to Eq. (4.11)  
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(a) (b) 

(c) 

Figure 4.2: (a) Histogram of 

max

max11.1
f

V

dV

R V

×

•∇
=
∫ β

��

 for 35 patients. (b) 

Histogram of R in non-lung cancer 

patients.(c) Histogram  of R in lung cancer 

patients 

 

4.4 Discussion 

 

Although Fig. (4.2)  and Tab.(4.3) show that the R ratios of both lung cancer and non-

lung cancer patients are very close to the prediction of 0, the results from non-lung cancer 

patients, whose lung are assumed to function more normally than lung cancer patients’, 

lie closer to the prediction, indicting that the motion model may be more robust for non-

lung cancer patients. 

Both of the motion model quantitative evaluations showed that the predictions of the 

model agreed well with clinical data.  The overall utility of the motion model will 
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ultimately be tested by repeated testing in patients, but the data shown here have provided 

significant evidence to the model’s validity.   

The reason that this analysis was possible was that the motion model used tidal volume 

and its time derivative airflow as the motion metrics and as independent variables.  Most 

published breathing motion studies or models have used metrics such as abdomen height 

or a belt wrapped around the abdomen, neither of which provided a physiologic metric 

that could be used to provide independent verification of a motion model.  The use of 

tidal volume and airflow allowed the model predictions to be validated, in this case using 

the continuity equation.   
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 Lung Patients Non-Lung Patients 
 Vmax 

(l) 
fmax 

(l/s) 
Vmax/fmax 

(s) 
Vmax 

(l) 
fmax 

(l/s) 
Vmax/fmax 

(s) 
1 497.9 556.9 0.89 587.3 521.1 1.13 
2 480.0 626.0 0.77 982.4 412.2 2.38 
3 271.4 412.1 0.66 630.9 513.7 1.23 
4 358.8 372.3 0.96 472.1 288.3 1.64 
5 256.4 315.6 0.81 463.3 461.9 1.00 
6 630.5 653.2 0.97 615.9 281.2 2.19 
7 317.1 556.9 0.57 528.2 432.5 1.22 
8 411.4 359.1 1.15 541.5 508.3 1.07 
9 399.1 367.0 1.09 633.7 550.9 1.15 
10 449.0 461.9 0.97 398.2 318.7 1.25 
11 318.3 472.3 0.67 404.4 305.6 1.32 
12 408.0 332.4 1.23 308.8 302.8 1.02 
13 409.1 416.9 0.98 1438.7 611.1 2.35 
14 459.0 402.5 1.14 335.7 356.1 0.94 
15 848.9 699.4 1.21 523.9 443.8 1.18 
16 557.9 321.6 1.73 569.1 425.5 1.34 
17 971.0 510.0 1.90 240.0 349.7 0.69 
18 546.6 595.7 0.92    
       
Mean   1.03   1.36 
VAR   0.12   0.25 
STD   0.34   0.49 

Overall 
Mean 1.19 
VAR 0.20 
STD 0.45 

Table 4.1. 
max

max

f

V
 of all the patients 
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 Lung Patient  Non-Lung Patient 
1 1.1887 1.0760 
2 1.2032 1.1603 
3 1.2758 0.9676 
4 0.9277 0.8884 
5 1.2167 1.0996 
6 1.0256 1.2387 
7 1.0820 1.0813 
8 1.2077 1.0071 
9 0.9413 1.1072 
10 0.9113 0.9175 
11 1.2744 1.2023 
12 0.9422 1.1597 
13 1.0445 0.8056 
14 1.3814 1.0154 
15 0.9219 1.0313 
16 0.8686 1.1724 
17 0.8988 0.9649 
18 1.0050  
   
Mean 1.0732 1.0526 
VAR 0.1591 0.1189 
STD 0.0239 0.0141 

Overall 
Mean 1.0632 
VAR 0.0194 
STD 0.1393 

Table 4.2.  Integral of ∫ •∇
V

dVα�
�

 conducted 

over both lungs 
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 Lung Patient  Non-Lung Patient 
1 0.0760 0.0503 
2 0.0653 0.0504 
3 0.0178 -0.0029 
4 -0.0004 -0.0181 
5 0.0244 -0.0016 
6 0.0093 -0.0004 
7 0.0348 0.0034 
8 0.0428 -0.0011 
9 0.0023 -0.0041 
10 0.0829 0.0116 
11 0.0515 0.0322 
12 0.0027 -0.0229 
13 -0.0142 -0.0014 
14 0.0497 0.0070 
15 0.0326 0.0265 
16 0.0007 0.0061 
17 -0.0025 -0.0102 
18 0.0240  
   
Mean 0.0278 0.0073 
VAR 0.0008 0.0004 
STD 0.0288 0.0211 

Overall 
Mean 0.0178 
VAR 0.0007 
STD 0.0270 

Table 4.3. Integral ∫
×

•∇

V

dV

f

V

max

max11.1

β
��

 

conducted over both lungs. 
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Chapter 5   

Mechanics of Respiration 

 

Although the accuracy and application of the heuristic breathing motion model has been 

discussed in the original paper33 and the previous chapter, the biomechanical meaning 

behind the parameters of the breathing motion model was not yet clearly described. The 

goal of this chapter is to rebuild the free breathing lung motion model by examining the 

biomechanical properties of lung tissue. To distinguish the model we are about to develop 

in this chapter from the heuristic free breathing lung motion model we have discussed in 

previous chapters, we term the former the biomechanical model and the latter 5D model 

(tidal volume, air flow and 3 independent components of reference position) or lung 

motion model. We will see that the biomechanical model agrees with the 5D model under 

the first order approximation, giving biomechanical interpretation to parameters in the 

heuristic breathing motion model.  

 

The alveoli, where the exchanges of gas take place, constitute 70% of the parenchyma at 

the distal level of the bifurcated airway structure. Lung tissue motion is driven by the 

response of alveoli to the actions of the respiratory muscles, as the volume of the lung 

increases with inhalation and decreases with exhalation. Among all the respiratory 
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muscles, the diaphragm, acting like a piston to increase the volume of thoracic cavity, is 

the primary breathing muscle driving respiration. 

 

Adult alveoli have average diameter of 0.2 mm with a very thin membrane. A very fine 

mesh of capillaries covers the alveoli, stretching over 70% of the alveoli surface. The 

capillary network, together with a skeleton of connective tissue fibers that are mainly 

composed of collagen and elastin, build a wall called the interalveolar septum that is 

shared by adjacent alveoli. The lung parenchyma is filled with interstitial fluid that acts 

as the transmitter of pleural pressure57. 

 

In this chapter, the alveolar structure is modeled simply as a cubic network. The stresses 

on the lung tissue are analyzed to establish the relationship between the driving forces 

and the resulting deformation. The biomechanical model will be compared against the 

published heuristic 5D lung motion model33,58.Verification of the biomechanical model 

will be provided by comparing results from patient data with 5D model predictions.  

 

5.1  Stress Distribution in the Lung 

Alveoli have an irregular polyhedral configuration. A close observation of fluorescently 

labeled lung parenchyma, conducted by Brewer et al59 in 2003 as illustrated in Fig. (5.1a), 

shows a roughly hexagonal arrangement of alveoli. In this chapter, we employ a cubic 

network to model the alveoli arrangement. The projection of this arrangement is 

illustrated in Fig. (5.1c); the cubic-shaped alveolus is subjected to distending stresses that 

inflate the alveolus on its 6 faces, each operating at an angle of 90o with respect to the 
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shared alveolar wall. The distending stresses come from the pressure drop between the 

inside and outside of the alveolar cell, which ultimately arises from the pressure drop 

across the alveolar cell and the pleural wall as will be demonstrated below. The direction 

of distending stress is normal to the surface upon which it acts, and it will be termed here 

as normal stress.  

Under quasi-static conditions and ignoring the velocity variation of connected tissues, a 

balance of stresses on the alveolar wall is reached. The equation of balanced stresses 

normal to the alveolar wall is: 

normalwalvnormalwalv TPPTPP 112221 ++=++     (5.1) 

 

where alvP1  and alvP2  are the alveolar pressures in alveoli 1 and 2 respectively. wP1  and 

wP2  are the radial stresses arising from the surface tension on the alveolar membrane, 

with subscripts 1 and 2 indicating the source of the surface tension. normalT1  and normalT2  

are the surface tensions arising from the resistance of the alveolar wall against the 

inflation and deflation of alveoli and are normal to the alveolar walls.  The source of the 

recoil stresses is indicated by the subscript. Although most of the physiology literature 

assumes these pressures to be equal, this assumption is only valid when the airflow is 

infinitesimally slow. As the airflow rate changes during respiration, the pressure drop 

between the atmosphere and inside of alveoli changes nonuniformly. This slight 

fluctuation in the alveolar pressure distribution is non-trivial, especially when considering 

hysteresis, which is caused by the imbalance of pressure along the moving path.  
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A question we try to answer in this chapter is how the stress that distends the alveolus is 

related to the pleural pressure. Applying Eq. (5.1) to a sac of alveoli i as illustrated in Fig. 

(5.1c), the following equations are defined for a chain of alveoli to the lung boundary,  

normal
i

w
i

alv
i TPP 11 ++ ++  

 

normal
i

w
i

alv
i TPP ++= +1  

 
normal

i
w

i
alv

i TPP 221 +++ ++  normal
i

w
i

alv
i TPP 112 +++ ++=  

…  …  

normal
n

w
n

alv
n TPP ++−1  normal

n
w

n
alv

n TPP 11 −− ++=  
alv

nP  normal
n

w
npl TPP ++=  

Summing the equations results in 

normal
i

w
ipl

alv
i TPPP +=−      (5.2) 

Eq. (5.2) states that if the motion of the alveolar cell is ignored, any alveolus, wherever it 

is, is exposed to the pleural pressure. pl
alv

i PP −  provides the stress that expands the 

volume of the alveolar cell. w
iP  and normal

iT  together provide the recoil stress from the ith 

alveolar unit. Many publications have described the measuring of recoil stress60. The 

recoil stress is passive and serves as the response of lung structure to the normal stress 

that inflates the lung. The recoil stress is virtually equivalent to the normal stress in 

magnitude and opposite in direction under the condition of quiet respiration. 

 

5.2 Biomechanical Model 

In this chapter, we define a unit tissue as a piece of lung tissue with unit dimensions. The 

unit tissue is small enough to be virtually homogeneous inside, while big enough that 

principles of classical mechanics still apply. Such a unit tissue is considered to contain 

the structures similar to that of the alveolus. A unit tissue of 1×1×1 mm3 contains 
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approximately 125 alveoli, smoothing out the modeling or calculating error of each 

alveolus.  

 

A stress vector nS
�

is defined as the stress on a plane normal to the vector n
�

 and passing 

through the point of interest. Although there are infinite number of planes passing 

through that point, Cauchy showed that by just knowing the stress vectors on three 

orthogonal planes, the stress vector on any plane passing through that point can be found 

through coordinate transformations. In general, the stress can be presented by a second-

order Cartesian tensor which completely defines the state of stresses at a point 0x
�

, 











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



=
),,(),,(),,(

),,(),,(),,(
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023022021

013012011
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���

���

���

�

,   (5.3) 

where 11s , 22s  and 33s  are the normal stresses that are normal to the orthogonal planes. 

12s  and 13s , 21s  and 23s , 31s  and 32s  are 3 pairs of shear stresses that are parallel to the 

orthogonal planes. We hypothesized that all nine elements in the stress tensor are 

functions of tidal volume and air flow.  

Introducing  

2
jiij

ij

ss +
=π     (5.4) 

and  

2
jiij

ij

ss −
=τ    (5.5) 
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the stress tensor can be decomposed into symmetric and anti-symmetric components, 
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where symmS
�

 is a symmetric Cauchy stress tensor working on a body that is in equilibrium 

and satisfies conservation of angular momentum;symmantiS −

�

 is an anti-symmetric Cauchy 

stress tensor that gives net moments to the body and causes rigid rotation.  

 

For any symmetric Cauchy stress tensor, we can always find three orthogonal planes, 

called principal planes, where shear stresses vanish, resulting in the corresponding stress 

vector that is perpendicular to the plane. The three stresses normal to these principal 

planes are called principal stresses. If we choose a coordinate system with axes oriented 

to the principal directions, then the normal stresses will be the principal stresses and the 

stress tensor is represented by a diagonal matrix. 


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
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
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=

3
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1

00

00
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σ
σ

σ

symmS
�

    (5.7) 

where 321 σσσ ≥≥ . Under equilibrium conditions, the principal stress can be written as 

a combination of the pressure across the alveolar wall and the stress from gravity,  

ii gfVp += ),(σ     (5.8) 
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where ig  is the pressure caused by the gravity on principal direction i. 

On any plan that passes through a point on which the symmetric Cauchy stress tensor 

symmS
�

 works, the maximum shear stress maxτ is given by61 

( )

( )31

31max

2

1
2

1

gg −=

−= σστ
   (5.9) 

The maximum difference between pressures caused by gravity is given by the weight of 

the alveolus on the cross section area. Comparing to the isotropic pressure drop across the 

alveolar wall that is caused by the breathing muscles, the anisotropic pressures from 

gravity is negligible. Ignoring the impact of gravity, the maximum shear stress maxτ  goes 

to zero. Hence the principal stress can be simply presented by the pressure drop across 

the alveolar wall. The symmetric Cauchy stress tensor symmS
�

 can be reduced into  

















=
),(00
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00),(

fVp
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Ssymm
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   (5.10) 

On the other hand, the rigid-rotation tensor symmantiS −

�

, part of the shear stress inS
�

, comes 

from the relative motion between adjacent tissues. We find that the relative motion 

reaches its minimum at beginning of inhalation and end of exhalation when airflow is 

minimal, and maximum at the middle of inhalation and exhalation when airflow is 

maximal. Bases on this observation, we assume that all the shear stress components in 

symmantiS −

�

 only depend on airflow instead of tidal volume. Hence symmantiS −

�

 can be reduced 

to  
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The stress tensor S
�

 is therefore simplified to be  
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The stress vector nS
�

 that works on a plane normal to unit vector ),,( 321 nnnn =� is given 

by  

nn

n SnS

τσ ��

���

+=
⋅=

   (5.13) 

where nσ�  is the normal stress that works on the plane, whose magnitude is given by  
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(5.14) 

nτ�  is the shear stress that works on the plane. It is perpendicular to the normal stress nσ�  

working on the same plane, and its magnitude is given by 
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Suppose the strain of the unit tissue at tidal volume V  and airflow rate f  is x  in the n
�

 

direction. As the tidal volume changes from V  to VV δ+  and the airflow rate changes 

from f  to ff δ+ , the strain follows from x  to xx δ+ . The change of the strain is given 

by 

)(
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=  (5.16) 

where 0x
�

 is the location of the tissue at zero tidal volume and airflow, ),,( 0xfVn

��σ  is the 

normal stress vector and nτ�  is the shear stress vector. )( 0xE
�

is Young’s modulus of the 

tissue and )( 0xG
�

 is the shear modulus. δ indicates an infinitesimal variation from the 

original value. 
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The Taylor expansion of ),( 0xffn

�� δτ +  at 0ff =  is 
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where 0V  and 0f  are selected to minimize the approximation error. In this study, we 

chose 00 =V  and 00 =f . Stubbs, et al62 studied the correlation between recoil pressure, 

lung volume and air flow rate. His results suggested that a linear relationship exists 

between recoil pressure, lung volume and airflow, especially during quiet respiration. We 

hypothesize that the first order approximation in Eq. (5.17) and Eq. (5.18) would be 

adequate to achieve adequate clinical precision. Therefore Eq. (5.16) is reduced to 
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When tidal volume changes from zero to V and air flow from zero to f , the strain is 

accumulated to  
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where nx
�∆ is the strain vector of the unit tissue. The total displacement of the unit tissue 

is accumulated by all pieces of tissue moving behind it. Therefore, the displacement 

vector nX
�

∆  due to air filling is 

df
f

xf

xG
xd

df
f

xfV

xE
xddV

V

xfV

xE
xdX

ff

n
fx

ff

n
fxx V

VV

n
n

0

0

0

00

0

),(

)(

1

),,(

)(

1),,(

)(

1

00

0

000 0

0

=

==

∂
∂

∂
∂

+
∂

∂
=∆

∫∫

∫∫∫ ∫
��

�
�

��

�
�

��

�
��

�

��

τ

σσ

 (5.21) 

where 0 denotes the location in the lung where the tissue doesn’t move during respiration.  

Three additional variables are introduced 
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Since α� , 1β
�

 and 2β
�

 are functions only of the reference position 0x
�

, the total 

displacement vector nX
�

∆  is reduced to 
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where 0x
�

 is the position of the tissue at zero tidal volume and zero airflow, and )( 0x
��α  

and )( 0x
��β  are used to be consistent with the equation originally proposed by Low, et 

al.33  

Physiologically, )( 0x
��α  characterizes the displacement of lung tissues due to air filling, 

and )( 0x
��β  characterizes the hysteresis motion that was described by Seppenwoolde, et 

al21. While α�  is determined by the overall integral of the tidal volume derivative of the 

normal stress, β
�

 is decomposed into two independent components, 1β
�

 and 2β
�

. The first 

one is perpendicular to α�  and the second one is parallel to α� . 

 

5.3 Angle Analysis  

An evaluation of the terms α� , β
�

 ( 1β
�

 and 2β
�

) from Eq. (5.22), Eq. (5.23), and Eq. (5.24) 

is illustrated in Fig.(5.2). α�  is the integral of the tidal volume derivative of normal stress 

over the lung space at constant airflow rate, and similarly, β
�

, the combination of 1β
�

 and 

2β
�

, is the integral of the airflow derivative of stress over the lung space at constant tidal 

volume. The α�  motion component is contributed entirely by the change of tidal volume, 

or equivalently, the change of lung volume. The β
�

 component, which comes from 

changes of airflow rate during breathing, characterizes the hysteresis component of the 

motion and contributes nothing to the volume change. The 1β
�

 component, which is 

parallel to α� , aligns with the displacement vector which is driven by the normal pressure 

gradient purely from volume change. Therefore it contributes to a displacement that 
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further inflates or deflates the lung and subsequently changes the volume of any 

individual piece of tissue on which it works. However, the changes of volume add up to 

zero over the whole lung space because according to the definition, 1β
�

 is the airflow rate 

derivative of normal stress at a fixed tidal volume. The 2β
�

 component, which is 

perpendicular to α� , serves as a rigid-body rotation of the α� component and won’t change 

the volume of the tissue it works on. The verification that the summation of β
�

 over the 

lung space equals zero was described in chapter 4. 

In the region where the normal stress decreases as airflow increases, the direction of 1β
�

 is 

anti-parallel to that of α� . In the region where normal stress increases as airflow increases, 

the direction of 1β
�

 is parallel to that of α� . β
�

 lies at a specific angle θ with respect to α�  

and this angle will be predicted and measured as described in section 5.4.3. 

 

5.4. Model Validation 

 

49 patients were enrolled in an IRB-approved protocol and scanned using a 16-slice CT 

scanner operating in ciné mode and acquiring scans with a spatial resolution of 0.98 x 

0.98 x 1.5 mm3.25 scans were acquired contiguously at each 24 mm wide couch position 

(CP).  Two external respiratory measurements were simultaneously acquired; the tidal 

volume measured using a spirometer (VMM-400, Interface Associates), and a bellows 

pressure signal measured using a pneumatic belt system that was wrapped around the 

abdomen.  The bellows pressure measurement was correlated with the spirometry 

measurement to provide the tidal volume and airflow at each scan. 47,48 
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5.4.1 Results from the Empirical Lung Motion Model 

 

The tissue positions were mapped for each scan using a normalized cross-correlation 

method.  The scan with tidal volume closest to zero was employed as the reference scan.  

The rest of scans were sorted on tidal volume and categorized into inhalation and 

exhalation. The position matching was performed in the inhalation and exhalation 

categories respectively in the order of tidal volume, with zero motion as the initial 

estimate for the first registration in one category and the result from previous matching as 

the initial estimate for the remaining registrations in that category. 

The registration results, together with the corresponding tidal volumes and airflows were 

fit to Eq. (1.1) employing the Nelder-Mead Optimization Algorithm by minimizing the 

root-mean least-squares average distance between the fitting and measurements.   

∑ −−−
ℜ∈ i

iii
X

fvXX βα
βα

����

��� 0
,, 3

0

min  (5.26) 

where iX
�

 was the i th location of the measurements, and iv  and if  were the tidal volume 

and airflow, respectively, for scan i.  In this study, 25 scans were obtained for each couch 

position, so 0X
�

, α� andβ
�

 in Eq. (5.26) were overdetermined to suppress the impact of 

image motion artifacts and registration errors.  

For each dataset, we defined 
90

α�  and 
90

β
�

 as the 90th percentile of the α�  and β
�

 

magnitudes, respectively. We choose the 90th percentile as the indicator to represent the 
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maximum α�  and β
�

 magnitudes because it was stable against registration and fitting 

errors.  

 

5.4.2 Results from the Biomechanical Model 

 

α�  and β
�

 result from the stresses in the lung parenchyma. Theoretically, they can be 

predicted through Eq. (5.22), Eq. (5.23) and Eq. (5.24) if the Young’s modulus, shear 

modulus, tidal volume and airflow rate derivative of stress, and the distance from the 

investigated tissue to a fixed reference point are known. Although in-vivo acquisition of 

patient-specific parameters required in Eq. (5.22), Eq. (5.23), and Eq. (5.24) are 

infeasible, values in the literature were used here for estimations. The Young’s modulus 

E  was taken to be 27.7 cm H2O from Lai-Fook, et al63 by averaging results from 15 

subjects with two independent measuring methods. The average tidal volume derivative 

of normal stress 
V

n

∂
∂σ

 was 3.80 cm H2O/L from a study conducted by Rodarte et al.60  

The average airflow rate derivative of normal stress 
f

n

∂
∂σ

 was estimated to be 0.40 cm 

H2O s/L from the study conducted by Stubbs et al62. Since no published literature data on 

the shear stress inside of the lung is available, only 1β
�

 could be estimated from published 

data. The reference point that is supposed not to move during respiration was set at the 

apex of the lung. The lung height 90L  was defined as the 90th percentile of distances of all 

points inside the lung to the reference point. Using these values, 
90

α�  was predicted using 

Eq. (5.22), which is  
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90
1β
�

 was be predicted using Eq. (5.23), 

90

90

90
1

7.27

40.0
L

fE
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=

∂
∂

=
σβ

�

  (5.28)  

 

5.4.3 Comparison of α
�

 and β
�

 between the Empirical Lung Motion 

Model and the Biomechanical Model 

 

A comparison of the 90th percentile of the α�  magnitudes from both the 5D model and the 

biomechanical model was used to evaluate how well both models agree with each other. 

β
�

 is a vector composed of two orthogonal vectors, 1β
�

 and 2β
�

, and the angle between 

1β
�

 and β
�

 is given by 

β

β
ϑ �

�

1

1)cos( =       (5.29) 

Although β
�

 could be determined clinically by fitting the patient data to our 

empirical lung motion model, it could not be fully recovered from the biomechanical 

model because the determination of one component of β
�

, 2β
�

, required information 

on the shear stress between adjacent tissues, for which we did not have any 

qualitative study to refer to. Therefore, the only possible way to calculate the angle 
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1ϑ  was performed by taking 
90

1β
�

 from the biomechanical model and 
90

β
�

 from the 

5D model by fitting patient data. 1β
�

 was calculated by using published data using 

Eq. (5.24). Presuming the measurements of the biomechanical properties of lungs 

obey a Gaussian distribution in the literature mentioned above, the estimation of 1β
�

, 

which depended on those biomechanical properties should also obey a Gaussian 

distribution. Therefore, the average 1β
�

 was also the 1β
�

 with maximum likelihood, 

and 1ϑ in Eq. (5.29) was taken as the maximum-likelihood angle between 1β
�

 and β
�

, 

or equivalently, the maximum-likelihood angle between α�  and β
�

. 

An alternative way to calculate the angle between α� and β
�

 was using only the results 

from 5D model. A new variable ϑ  was introduced to distinguish the angle calculated in 

this way from the way discussed in the previous paragraph. ϑ  was obtained through the 

following equation, 

βα
βαϑ ��

��
⋅=)cos(      (5.30) 

where both α�  and β
�

 were obtained from the 5D model by fitting the patient data. 

Unlike 1ϑ , ϑ  was obtained from α�  and β
�

 over the whole lung. Due to the variation of 

lung properties and errors in registration and fitting of 5D model, ϑ  was obtained as a 

spectrum of angles, instead of a single value. A new parameter 2ϑ  was defined as the 

angle with the maximum likelihood over the spectrum and is compared to 1ϑ . 
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As demonstrated by the biomechanical model conducted above, 1β
�

 is parallel to α� . 

Therefore, 1ϑ  is expected to equal2ϑ . The comparison of 1ϑ  and 2ϑ  provided another 

indicator of how well the biomechanical model agreed with the 5D model.  

 

5.4.4. Zenith Angle Distribution 

 

The distribution of ϑ  is biased on the Zenith angle distribution which is illustrated in Fig. 

(5.3). Defining the Zenith direction as parallel to α� , a random distribution of β
�

 would 

be proportional to )sin(θ  (Fig.(5.3)). The angular distribution from the 5D model was 

divided by this baseline to unbias the results.  

 

5.5. Results 

The craniocaudal dimensions of the lungs in 49 patients were measured using the CT 

images. The average 90th percentile of the distances between all tissues in both the left 

and right lungs to the corresponding reference points which were defined at the apex of 

each lung were 192 mm and 191 mm respectively, as illustrated in Tab. (5.1).  

The estimated value of 
90

α�  in the left lung from Eq. (5.27) was 26.3 mm/L, compared to 

the average 
90

α�  of 25.2 mm/L from the 5D model. The discrepancy between the 

biomechanical model prediction and the result by fitting real patient data in the 5D model 

was 1.1 mm/L, or 4.4% of the fitting result. 
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The estimated value of 
90

α�  in the right lung from Eq. (5.27) was 26.2 mm/L, compared 

to the average 
90

α�  of 28.9 mm/L from the 5D model. The discrepancy between the 

biomechanical model prediction and the result by fitting real patient data in the 5D model 

was 2.7 mm/L, or 9.3% of the fitting result. 

The estimate of 
90

1β
�

 from Eq. (5.28) was 2.8 mm·s/L in the left lung. The average 
90

β
�

 

measured from the 5D model was 4.2 mm·s/L in the left lung as listed in Tab. (5.1). The 

angle 1ϑ  between 1β
�

 and β
�

 was 48.2º. Since 1β
�

 was normal to α� , ϑ  was 41.8º or 

138.2º if 2β
�

 was parallel or anti-paralleled to α� , and corresponded to the angles where 

tissues are pushed and held back by surrounding tissues, respectively.  

The estimate of 
90

1β
�

 from Eq. (5.28) was 2.8 mm·s/L in the right lung. The average 

90
β
�

 measured from the 5D model was 4.2 mm·s/L in the right lung as listed in Tab. 

(5.1).. The angle 1ϑ  between 1β
�

 and β
�

 was 48.2º.  Therefore, ϑ  was 41.8º or 138.2º if 

2β
�

 was or anti-paralleled to α� , respectively.  

The spectrum of angles ϑ  between α�  and β
�

 was also measured for the 49 patients.  

There were 3 typical patterns, illustrated in Fig. (5.4) and Fig.(5.5) for left and right lungs, 

respectively. All of the distributions included at least one obvious peak, indicating the 

most probableϑ . The peak angles were very close to the predictions using the 

biomechanical model developed in this chapter. 

The histogram of angles (2ϑ ) with maximum likelihood in all the datasets is illustrated in 

Fig. (5.6). Fig. (5.6a).  These show that the 5D model localized peaks at 42.1º and 149.5º 
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in the left lungs, while the two predicted angles (1ϑ ) from the biomechanical model were 

41.8º and 138.2º. Fig. (5.6b) showed that the 5D model localized peaks at 37.7º and 

133.0º in the right lungs with the same predicted angles as the left lungs from the 

biomechanical model. 

 

5.6 Conclusion and Discussion 

This study establishes a relationship that links the empirical 5D breathing motion model 

parameters published by Low, et al33 to biomechanical properties of the lung, such as 

stress and Young’s modules. Analysis of the published biomechanical properties of lung 

tissues provided predictions of the 5D model parameters. They were found to be in good 

agreement with the directly measured parameters.  

 

The spectrum of ϑ  provides more insight into the stress distribution inside the lung 

parenchyma. The hysteresis lag in the anterior left lung might be explained by the 

presence of heart as a geometrical retardant to tissue motion. As the anterior portion of 

the left lung moved towards the heart, the resistance from the hearts was enhanced by 

squeezing the lung tissue against the heart. The increased resistance in the anterior 

portion of the left lung caused the pressure across the alveolar membrane decreased in the 

same region. Although the pressure inside the alveolus remained, the pressure drop (the 

normal stress) decreased by the escalation of wall resistance when airflow rose. The 

physiological sequence of decreased intrapulmonary pressure was that the air was 

redistributed to region with higher intrapulmonary region like the posterior region. 
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Therefore, in the anterior portion of the left lung, 1β
�

 is most likely to be anti-parallel to 

the motion of the lung tissue and 2ϑ  was observed to be larger than 90º.  As indicated in 

Fig. (5.4), the motion of the anterior portion of the left lung was most likely to lag due to 

the hysteresis component. Similar phenomena were observed in the inferior and posterior 

portion of the right lung, but for a different reason. Since the heart impacts breathing 

motion primarily inferior to the left lung, the right lung has less geometrical confinement 

than the left lung does. Instead, gravity plays a relatively important role in distributing the 

air in the right lung. Since the inferior and posterior region of the right lung bear more 

stress from gravity, it has a smaller resting volume at the beginning of inhalation 

compared to that of the anterior region of the right lung. The elasticity of the lung , which 

is a monotonically decreasing function of lung volume64, is in favor of smaller alveoli 

than larger ones. Therefore, the inferior and posterior region of the right lung is easier to 

inflate than the superior and anterior region and consequently receives more ventilation. 

However, the relatively smaller air space and more ventilation in the inferior and 

posterior region would escalate the pressure inside of alveolus higher than in the superior 

and anterior region as airflow increases. The higher alveolar pressure would redistribute 

the air from the inferior and posterior region to the superior and anterior region. Hence 

the pressure drop that drives the alveolus to inflate in the inferior and posterior region 

would decrease. Therefore, the motion of the region with better ventilation was subject to 

a hysteresis lag and 2ϑ  was observed to be larger than 90º, as illustrated in Fig. (5.5) 

where a hysteresis lag was present in the inferior and posterior region of the right lung. 

On the other hand, the region with less ventilation would be boosted by the extra air flow 

and move more than it would have at constant airflow.  
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In the left lung, the hysteresis lag was present because the amount of air flowing in 

decreased due to resistance increase during airflow increase. In the right lung, the 

hysteresis lag was present because the alveolar pressure decreased during airflow 

increase due to the relatively easy and fast redistribution of air through airways. Both the 

increase in resistance and the decrease of alveolar pressure lead to a decline in the stress 

that drives the lung to inflate and deflate.  

In this chapter, a biomechanical model was developed by modeling the lung as an elastic 

material subjected to driven forces from diaphragm and other breathing muscles. The first 

order approximation of this biomechanical model led to a lung motion model proposed 

by Low, et al33. Two parameters in the biomechanical model, α� and β
�

 were calculated 

using published data while the same parameters in Low’s 5D lung motion model were fit 

using clinical datasets. Both models reached close agreement both on the magnitude of 

the parameters and on the angle of hysteresis with respect to the motion of the concerned 

tissue.  
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(a) 

 

(b) 

 

(c) 

Fig .5.1: (a) Fluorescently labeled lung tissue, 
Brewer, K. K. et al. J Appl Physiol 95: 1926-1936 
2003 (b) Stresses normal to the wall shared by two 

adjacent alveoli . alvP  is the alveolar pressure and 
wP comes from the surface tension of the liquid 

membrane that defines the boundary of alveolus. 
normalT  is the recoil stress from the resistance of 

the alveolar wall against the deflation or inflation of 
the alveolus inside. (c) Arrangement of alveoli on a 
2D plane. 
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Fig .5.2: Chest wall and respiration muscles are simulated with an airtight container and a 
piston. Airflow rate changes as the free space between the container and the lung.  The 

displacement of tissue at  0x
�

is fxfxVx )()()( 02010

������ ββα ++ , as described in Eq (5.25). 
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Fig. 5.3 Baseline of α�  and β

�

 spontaneous distribution 
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Fig .5.4:Sagittal view of unbiased angle distribution in the left lungs of 3 patients.  
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Fig .5.5:Sagittal view of unbiased angle distribution in the right lungs of 3 patients.  



 89 

 

  
Fig .5.6 (a): Two peaks at 42.1º and 149.5º. 
The predictions from the biomechanical 
model are 41.8º and 138.2º. 

Fig. 5.5.6 (b): Two peaks at 37.7º and 
133.0º. the predictions from the 
biomechanical model are 41.8º and 138.2º. 
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Patient 
# Left Lung Right Lung 

 90L  (mm) 90
α� (mm/L) 

90
β
�

(mm·s/L) 
90L  (mm) 90

α� (mm/L) 
90

β
�

(mm·s/L) 

1 165.2 7.1 2.2 208.0 26.1 3.8 
2 175.0 23.8 2.8 176.2 24.7 2.7 
3 176.3 25.7 2.9 178.2 24.1 2.5 
4 202.8 30.9 2.9 212.6 30.7 3.8 
5 195.5 38.7 5.8 186.1 44.5 5.7 
6 201.1 20.1 3.8 197.3 18.4 5.0 
7 183.6 33.1 5.1 172.7 37.3 5.1 
8 185.4 23.2 3.2 178.3 29.5 3.2 
9 155.1 19.4 2.5 163.1 18.9 2.0 

10 160.6 32.3 6.8 160.7 28.1 7.5 
11 174.2 22.1 2.6 162.4 35.8 2.8 
12 214.1 22.5 2.7 216.9 26.8 3.3 
13 192.4 34.2 3.6 163.1 31.7 2.8 
14 203.1 21.0 2.2 195.3 29.9 2.4 
15 206.1 26.1 5.5 200.8 34.1 2.6 
16 207.5 26.4 3.4 197.5 21.8 2.8 
17 207.0 20.5 3.1 203.9 26.2 2.6 
18 198.5 17.5 3.2 209.9 26.9 3.2 
19 208.7 24.3 4.9 201.3 21.6 4.2 
20 190.4 41.6 5.3 178.6 29.6 5.3 
21 159.0 16.9 5.4 171.8 36.6 5.0 
22 253.2 31.6 4.8 265.9 35.2 4.6 
23 179.1 23.0 4.4 180.7 36.6 9.1 
24 177.2 26.0 5.1 170.7 40.9 5.8 
25 183.1 25.6 3.9 196.6 30.0 4.3 
26 166.3 39.3 6.1 174.7 55.0 8.4 
27 218.8 25.1 2.7 228.6 17.0 1.9 
28 230.9 40.5 3.2 212.7 12.5 1.8 
29 178.0 11.3 12.1 159.4 15.1 12.1 
30 171.3 32.4 3.6 166.0 43.9 3.5 
31 204.0 29.3 4.9 183.9 43.0 6.0 
32 173.5 34.3 3.7 161.6 36.0 5.0 
33 197.5 17.3 3.6 175.0 17.9 2.8 
34 179.5 45.6 13.4 182.6 39.5 5.9 
35 206.7 14.9 2.7 174.1 14.9 3.7 
36 199.5 16.7 1.6 191.9 30.9 3.9 
37 180.5 25.5 3.8 185.1 36.6 3.7 
38 222.3 23.7 2.3 209.8 28.3 2.8 
39 150.1 12.8 3.7 189.7 43.1 4.6 
40 242.7 12.6 2.8 245.1 20.6 3.0 
41 209.7 27.0 7.8 200.6 26.5 5.1 
42 192.2 17.3 4.4 193.1 22.2 4.4 
43 183.0 21.8 3.0 161.2 30.5 3.5 
44 172.1 9.1 6.3 171.0 11.0 6.7 
45 218.6 21.2 2.6 220.2 29.0 2.5 
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46 156.4 43.4 5.6 189.7 44.3 5.1 
47 166.8 28.1 2.3 170.1 19.6 1.6 
48 231.6 15.8 2.6 237.8 11.8 2.7 
49 202.9 38.1 4.9 208.3 19.7 3.8 

Mean 192.0 25.2 4.2 190.6 28.9 4.2 

Table 5.1. 90 percentile of α� and β
�

 in both left and right lungs. 
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 Chapter6   

Characterization of Free Breathing 

 

6.1. Introduction 

Little is know about the motion pattern of lung tissues during quiet respiration. Textbooks 

state that the diaphragm is the primary breathing muscle and that the intercostal muscles 

are secondary  in that they help to expand the rib cage. Therefore, the movement of lung 

tissue is mainly in the cranialcaudal direction with some transverse motion. When 

observing patients signing up for our protocol, we found that motion pattern variations 

exist, either in the direction of the dominant motion or its magnitude. In this chapter, α�  

and β
�

 distributions were examined, both qualitatively and quantitatively, for each patient 

to determine general patterns and inter-patient pattern variations.  

 

 

6.2. Methods and Materials 

6.2.1. Data Acquisition  

49 patients were enrolled under an IRB-approved protocol and scanned using a 16-slice 

CT scanner (Philips 16-slice Brilliance CT) operating in ciné mode using 1.5-mm-thick 

slices. Of these patients, 28 were lung cancer patients and 21 were non-lung cancer 

patients. Data were acquired during patients’ treatments. Tidal volumes were measured 



 93 

and calibrated with a spirometer and pneumatic abdominal belt. Air flows were 

calculated as the time derivative of tidal volumes. More details can be found in Chapter 2.  

 

6.2.2. Image Registration 

In order to determine the motion model at each point, position measurements of each 

point of tissue in each CT scan dataset were required. In this study, a fast normalized 

cross-correlation (NCC) method that was described in Chapter 3 was employed. In order 

to determine the motion of a specific point of tissue, a small region with 101111 ××  

pixels that surrounded the point was identified and the NCC algorithm was used to locate 

that same region in the other 24 scans.  One advantage of using the NCC model was that 

the determination of the maximum NCC was not sensitive to the variation of CT 

Hounsfield Units found between inhalation and exhalation CT scans.  

 

The CT scan with the tidal volume closest to 0 ml (exhalation) was selected as the 

reference scan for purposes of motion mapping.  The CT scan length of 2.4 cm limited 

each multi-slice CT dataset to a small portion of the lung, typically 1/8 or 1/9. The 

magnitude of the motion at the inferior lung was often greater than 3.0 cm. Some tissue 

regions, especially those closest to the diaphragm, moved out of the longitudinal 

coverage of the dataset because the zero tidal volume scan was selected as the reference. 

This would give rise to two issues that could have compromised the results. Firstly, the 

region being tracked would move out of the searching region but the NCC registration 

method would select a region within the couch position with largest correlation 
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coefficient and produce spurious results. Secondly, if the region of interest moved out of 

the current couch position and was not tracked, some of the 25 scans would be unused.  

 

In this study, the registration was performed in two directions, depending on the 

breathing phase relative to the reference phase. During exhalation, the tissue generally 

moved superiorly. Therefore, the multi-slice CT dataset was first categorized into two 

groups, inhalation and exhalation respectively. Each group was sorted according to the 

tidal volumes from low to high.  The reference scan was divided into a 3D mesh of 

abutting templates consisting of 101111 ××  voxels, corresponding to 

157.107.10 ×× 3mm .  The search region, co-centered with the template, had 202121 ××  

voxels, corresponding to 305.205.20 ××  3mm . The registration began with the scan that 

had the tidal volume closest to the reference scan tidal volume. Because 25 scans were 

acquired during respiration, there were enough tidal volume samples to limit the tidal 

volume change between two successive scans to less than 100 ml. The magnitude of 

motion corresponding to a tidal volume change of 100 ml was usually less than 8 mm. 

The search range used in this study had sufficient margins to allow for this much motion.  

When a matching tissue was identified, the displacements were recorded and 

accumulated to generate the new center of search region for the next scan. When the 

search region was expected to cross the boundary of the current couch position, the 

portion that moved out was replaced by the corresponding part of the scan in the next 

couch position with the closest tidal volume and its accompanying airflow as the 

reference template.  
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6.2.3. Model fitting 

 

The registration process typically resulted in a set of 25 (x,y,z) locations for each 

evaluated point, along with the tidal volume and airflow corresponding to the acquisition 

time for each scan.  The positions, tidal volumes, and airflows were fit to the motion 

model, employing the Nelder-Mead Optimization Algorithm described in Chapter 3 by 

minimizing the root-mean least-squares average distance between the fitting and 

measurements.   

∑
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iii
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����

���    (6.1) 

 

where iX
�

 was the i th location of 25 measurements, and iV  and if  were the tidal volume 

and airflow, respectively, for scan i. In equation 1.1, 0X
�

, α� andβ
�

, vectors in 3ℜ , were 

the overdetermined fitting parameters. Considering three independent components for 

each vector, nine parameters were determined by 75 measurements (25 sets of iX
�

). 

 

One drawback with the Nelder-Mead method was that, like other multidimensional 

unconstrained optimization algorithms, it occasionally located a local minimum.  To 

overcome this drawback and minimize the discrepancy of fitting, the fitting process was 

repeated at the current best point65 until the difference of discrepancies between two 

consecutive fitting operations fell below 5% of the discrepancy obtained from the 

previous fitting operation.  
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6.3. RESULTS 

 

Fig. (6.1) shows the registration error of the NCC registration method used in this study. 

Registration error was defined as the discrepancy between the displacement given by the 

registration and that given by manual tissue tracking. 100 landmarks were selected in the 

inferior portion of lung from five patients. The motion magnitudes of landmarks ranged 

from 10mm to 30mm.  The mean registration error was 1.32mm. 

 

Fig. (6.2) and Fig. (6.) show the coronal and sagittal planar samples of α�  and β
�

 in the 

left and right lungs of one patient with lung cancer. α� , in units of millimeters per liter, 

represents the displacement of the tissue in the lung after inhaling one liter.  β
�

, with 

units of millimeters per liter per second, represents the tissue motion hysteresis at an 

airflow of one liter per second.  For this patient, the 85th percentile tidal volume was 

665.0 ml and the airflow varied from –309.1 ml/s to 280.8 ml/s.  

 

The result showed that α�  was greater in the inferior and posterior portions of the lungs 

and smaller in the superior and anterior portions of the lungs. The craniocaudal 

component of α�  dominated the displacement of the motion during the breathing cycle. 
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β
�

 was greater in the lateral lungs. This pattern of α�  and β
�

 distribution were observed 

in 44 out of 49 patients and was therefore defined as the normal pattern.  

 

Fig. (6.4) and Fig. (6.5) showed the coronal and sagittal projection of α�  and β
�

 in the 

left and right lung of a patient that had an abnormal motion pattern. For this patient, the 

85th percentile tidal volume was 460.1 ml and the airflow varied from –300.0 ml/s to 

327.8 ml/s.  

 

For this patient, in the right lung, α� was greater in the inferior and posterior portions 

while β
�

 was greater in the lateral lung. Both were similar to what was observed in the 

normal case. However, α�  and β
�

 exhibited a different pattern in the left lung. Fig. (6.4) 

shows that α�  was greater in the superior and anterior portions of the left lung. Fig. (6.5) 

shows that β
�

, instead of being greater in the lateral lung, was greater in the superior 

portion of the left lung, as indicated by arrows. The craniocaudal component of α�  

dominated the displacement of the motion during the breathing cycle.  CT images 

reconstructed at a series of tidal volumes showed that the size of the left lung was only 

half of the size of the right lung, and the left diaphragm barely moved during respiration.  

The dysfunction of left diaphragm caused the left lung breathing to be dominated by 

chest expansion, so the lung expanded in the anterior-posterior direction, which was well 

modeled by α� .  
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Of the 49 patients, α�  reached its maximum in the anterior lung in three patients, while 

for two other patients, α�  was greatest in the lateral lung. For 45 out of 49 patients, α�  

reached its maximum in the inferior and posterior portions of the lungs. The hysteresis 

motion β
�

 had greater variability, but for the majority of patients, β
�

 was greatest in the 

lateral lungs.  

 

The values of α�  and β
�

 are three dimensional scalar fields, so a histogram of the 85th 

percentile values was selected to describe the inter-patient variability.  Fig. (6.6) shows 

the histogram of the 85th percentile of α�  and β
�

 in all of the patients. The mean 85th 

percentiles of α�  in the left and right lungs were 23.2 mm/l and 26.1 mm/l, respectively. 

The mean 85th percentiles of β
�

 in the left and right lungs were 3.7 mm·s/l and 3.6 

mm·s/l, respectively.  

 

Fig. (6.7a) shows the cumulative histogram of discrepancies between the modeled and 

measured locations of all 49 patient datasets. The result indicated that for 80% of the lung 

tissues, the discrepancies were less than 1.75 mm, and for 90%, less than 2.14 mm. Fig. 

(6.7b) shows the cumulative histogram of relative discrepancies for motion magnitudes 

greater than 15 mm. The relative discrepancy was defined as the ratio of the discrepancy 

to the motion magnitude.  For tissues where the overall motion was greater than 15mm, 

78% and 96% of the lung tissue positions had less than 10% and 15% relative position 
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discrepancies, respectively. Fig. (6.7c) and Fig. (6.7d) shows the cumulative histograms 

of relative discrepancies for motions between 10 mm and 15 mm and motions between 

5mm and 10mm.  

6.4. DISCUSSION 

This is the first report of the 3-dimensional breathing motion model parameters for a 

large cohort of patients. The overall α�  and β
�

 maps varied smoothly as expected. α�  

and β
�

 described different breathing motion characteristics. α�  modeled local lung 

expansion and could be interpreted as the breathing motion as if the patient breathed 

infinitely slowly. β
�

 modeled the hysteresis motion which was hypothesized to be caused 

by the dynamics of breathing.  The relative magnitudes of α�  and β
�

 are major 

determinates of the motion path eccentricity. In general, regions that had greater values of 

β
�

 corresponded to regions with greater α� . These results showed that the majority of 

patients exhibited similar α�  maps. The β
�

 maps showed greater inter-patient variability 

with the common feature that β
�

 was greater in the lateral lungs.  

 

The utility of the proposed breathing motion model is to non-invasively monitor and 

predict the motion of lung tissues and tumors using only external surrogates. The 

positions of any piece of lung tissue were hypothesized to be determined by the tidal 

volume and airflow. The implication of this hypothesis was that the position of a specific 

piece of tissue or tumor would be at the same location if given the same tidal volume and 
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airflow, regardless of the point of time.  It has been shown that the position of tumors 

varies day-to-day at exhalation21, in apparent contradiction to the model.  The model, 

however, is based on tidal volume, which has a zero value at a selected percentile.  This 

value is valid only for a single scanning or treatment session.  To compare the positions 

of tissues between sessions, an absolute lung volume surrogate would be required, for 

example, the total air content.  Rather than measure the total air content, the position of a 

piece of tissue, using an implanted surrogate for example, could be used to shift the tidal 

volume definition to correspond to the original 4D CT session.  

 

Although airflow is the time derivative of tidal volume, the breathing motion model is an 

explicit function only of tidal volume and airflow. The tidal volume and airflow are 

themselves functions of real time. The assumption is made that a first-order relationship 

between the displacement and the surrogates will meet the clinical requirement in 

precision of dose delivery or treatment planning. For this study, 25 scans were acquired 

and good agreement between the measurements and the predictions from the breathing 

motion model was observed when the motion was greater than 15 mm, as illustrated in 

Fig. (6.7b), with more than 90% of the points having less than 15% relative discrepancy.  

Since the average registration error in this study is 1.32mm as illustrated in Fig. (6.1), and 

is quite constant over widely varying motion magnitudes, the registered trajectory tends 

to be more relatively dispersive in less active points, as the registration error gains more 

weight in the motion magnitude that is relatively small. Therefore it is not surprising that 

the model performs worse for points that move less, as illustrated in Fig. (6.7c) and Fig. 

(6.7d). However 90% of the points still exhibited better than 2 mm agreement.  
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In this study, 25 scans were acquired for each couch position while the breathing motion 

model had only 9 independent parameters. Theoretically, 3 scans acquired at different 

tidal volumes and airflows would have provided sufficient motion data to fit the model 

parameters. Errors in registration and motion-induced image artifacts would still cause 

errors in motion parameter determinations.  The use of additional CT scans was expected 

to reduce the impact of individual registration errors, but at the cost of dose to the patient.  

The minimum number of scans and optimization of the breathing phases of those scans 

remains an open question.  

 

 

 

 

 

Fig. 6.1: The registration error of the normalized cross-correlation registration method employed 
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in this study. The registration error is defined as the discrepancy between the displacement fields 

given by the registration method and manual tracking.  100 landmarks selected in the inferior part 

of lung from five patients were tracked and manually compared. The motion magnitudes of these 

landmarks varied from 10 mm to 30 mm  
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Fig. 6.2: Distribution of α�  in a normal pattern 
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Fig. 6.3: Distribution of β
�

 in a normal pattern 
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Fig. 6.4: Distribution of α�  in an abnormal pattern 
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Fig. 6.5: Distribution of β
�

 in an abnormal pattern 
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Fig. 6.6: Histogram of the mean α�  and β
�

 at the 85th percentile for 49 patients. 
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(a) 

 

 

(b) 

 

(c) 

 

(d) 

Fig. 6.7: (a) Cumulative histogram of discrepancies between measured and fit locations. 

(b) Cumulative histogram of relative discrepancies to motion magnitudes over 15mm. (c) 

Cumulative histogram of relative discrepancies to motion magnitudes between 10mm and 

15mm. (d) Cumulative histogram of relative discrepancies to motion magnitudes between 

5mm and 10 mm.  
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Chapter 7   

Clinical Application 

Anatomical and physiological evidences have shown that solid tumors in breast typically 

have greater firmness than the surrounding normal tissue66. This characteristic has been 

linked to the presence of abundant collagen in the tumor stroma, commonly referred to as 

the desmoplastic reaction67. A recent study by Ragavendra et al68 further confirmed this 

phenomena in thyroid gland tumors. In Ragavendra’s study, a 5-cm long and 25-gauge 

fine needle was repeatedly advanced and withdrawn through suspected tumor regions. 

The firmness of the tissue was evaluated and ranked by the nature and strength of the 

haptic force-feedback from the tumor due to tissue penetration. All the participants were 

categorized into two groups. Group 1 exhibited penetration resistance with a distinctive 

force-feedback; group 2 exhibited no resistance. Final cytological diagnoses were made 

after obtaining resistance information. Of 146 participants in group 1, 93 were diagnosed 

with tumor and 53 without tumor. Of 463 participants in group 2, 22 were diagnosed with 

tumor and 441 without tumor. The overall sensitivity was 0.81 and the overall specificity 

was 0.89. This result clearly indicated a high correlation between the firmness and the 

solid tumors.  

 

Section 7.1 will discuss the potential clinical application of the free breathing lung 

motion model as auxiliary evidence in diagnosing lung tumor. The parameters in the 
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model were related to the biomechanical properties of lung in Chapter 5, where the 

corresponding biomechanical description of firmness is Young’s modulus. The firmness 

of a tissue, which determines the extent of the tissue elasticity, has a direct impact on the 

stress distribution. Therefore, the escalation of firmness in cancerous regions would be 

reflected in the model parameters.  

 

Section 7.2 will discuss the model stability. One of the central hypotheses of the free 

breathing lung motion model is that variations in the breathing cycle are explicitly 

considered because the model variables are tidal volume and airflow. Therefore, the 

model parameters should not change significantly except for a) disease progression or b) 

radiation damage and radiation response. A healthy subject (non-lung cancer) should 

exhibit little variation in the motion model parameters, especially the positions of 

parameter maxima and minima, corresponding to maximum and minimum breathing 

motion, respectively. The model parameters are directly related to the tissue motion, so 

an analysis of model parameter changes can be directly interpreted as changes in the 

motion magnitude.   

 

Section 7.3 will discuss the monitoring of radiation damage using our model. We hope 

this study would give us more insight into the correlation between the radiation damage 

and the variation of lung density by examining the change of model parameters. 

Clinically, we hope this study would provide us timely update on the change of 

biomechanical properties of lung to assist in the evaluation of radiation damages.  
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Section 7.4 will discuss the application of the breathing motion model in removing 

breathing motion artifacts from Positron emission tomography (PET) images if the model 

is robust only within the time of the CT scan session 

 

7.1 Distortion of β
�

 in Cancerous Region 

In chapter 5, we have related the model parameters, α�  and β
�

, to the normal stress 

distribution, Young’s modulus and shear modulus in the lung.  
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where nσ�  is the normal stress and nτ�  is the shear stress. E  is the Young’s modulus and 

G is the shear modulus. Both Young’s modulus and shear modulus are the indicators of 

tissue firmness. A solid tissue usually comes with higher Young’s modulus and shear 

modulus. Hence Young’s modulus and shear modulus are related to the local 

expansibility and deformability of the tissue. Abrupt change of the elastic modulus is also 

expected around the boundary of cancerous region. Since α�  and β
�

 is accumulative 

along the path from the reference point which is defined as the fixed point in the lung 

during respiration, the influence of tissue stiffness on the amplitudes of α�  and β
�

 would 

be swallowed in the integral. However, the directions of α�  and β
�

 are different stories. 

The escalation of Young’s modulus and shear modulus in the cancerous region reduces 

the contribution of that region to α�  and β
�

. As the integral approaches the cancerous 
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region, weight of contributions from regions with lower Young’s modulus and shear 

modulus would increase, and weight of contributions from cancerous regions would drop. 

Although the magnitude of α�  and β
�

 barely changes because the integral, the directions 

of α�  and β
�

 would turn to regions with lower Young’s modules and shear modulus.  

 

Fig (7.1) showed the coronal views of α�  and β
�

 in one patient with NSCLC. The red 

triangle indicates the tumor position. The color bar on the right side of the figure 

indicates the magnitude of α�  and β
�

, in unit of Lmm/  and Lsmm /⋅ , respectively. A 

mild distortion in the α�  direction exists near the tumor. For β
�

, a very clear distortion in 

its direction exists near the tumor.  

 

The flow of β
�

 appeared to avoid or escape from the cancerous region, similarly to the 

way that water in a river flows around a rock. The distortion in the β
�

 direction can be 

explained by its two orthogonal components, 1β
�

 and 2β
�

. As discussed in Chapter 5, 1β
�

 

is parallel to α� , the displacement of the tissue contributed by infinitely slow filling of air.  

Along the boundary of the cancerous region, 1β
�

 is constrained by the firmness of the 

tumor simply because the tumor is more resistant to stretching or squeezing than the 

surrounding normal tissue, while 2β
�

, which is parallel to α� , is barely affected. As the 

relative contribution of 2β
�

 increases relative to β
�

, it would tend to divert β
�

 toward the 

direction that is perpendicular to α�  from its original direction at the absence of tumor.. 

Fig. (7.2) shows more examples of the distortion of β
�

 around the tumor.  
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The significance of this study is that the breathing motion model is potentially capable of 

aiding cancer diagnosis by visualizing the suspicious cancerous region at the distortion of 

model parameters.   

 

7.2 Model Stability 

The utilization of the motion model depends on its stability over time.  If the breathing 

motion model parameters change significantly between sessions (either imaging or 

treatment), the specific motion model would be useful only for single-session activities, 

such as removing motion artifacts from nuclear medicine images.  If the motion model 

parameters are stable for weeks, exclusive of disease progression or treatment response, it 

would be useful for supporting radiation therapy treatment planning, including 

optimization of linear accelerator gating windows. If the model is proven to be stable 

over timescales consistent with the course of radiation therapy, changes in the model 

parameters might be used to monitor disease progression or radiation response.  

We are currently recruiting patients with healthy lungs to determine the motion model 

stability. So fare we only have one subject. Fig. (7.3) was the coronal view of α�  

calculated from 2 scans that were acquired two weeks apart from that patient. Fig. (7.4a) 

was the histogram of α�  variation between two scanning sessions. The α�  variation ratio 

is defined as 
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where )(1 xI
�

 and )(2 xI
�

 are the values of model parameter of the same tissue in two 

scanning sessions. Fig. (7.4b) was the cumulative histogram of α�  variation ratios. The 

shape of the α�  distribution was similar between the two scan sessions, with 84% of α�  

varying by less than 20% from the first session to the second session. The α�  distribution 

on the left lung appeared to be more consistent, with 95% of α�  varying by less than 

20% between two scanning sessions. Fig. (7.5) showed the coronal view of β
�

 in the two 

scans and Fig. (7.6) showed the histogram of β
�

 variation ratios and the cumulative 

histogram. Although the shapes of β
�

 distributions were similar, large variations were 

observed in the magnitude of β
�

, with only 53% of β
�

 varying by 20% or less between 

two scanning sessions.  

 

Since there is only one subject with healthy lung has been recruited and studied, it is too 

early to draw a conclusion on the stability of the breathing motion model over weeks, 

especially given the facts that the registration is compromised by the image artifacts in 

the first scan. Similar scans from a two lung cancer patients has also exhibited little 

change in α�  and β
�

. As more patients are imaged, we will soon accumulate enough 

evidence to test our hypothesis on the model stability over the timescale of weeks. If 

inconsistencies are observed in most of the subjects, the uncertainties in the model will be 

quantified.  
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7.3 Radiation damage monitoring  

As we discussed in section 7.1, the magnitudes of α�  and β
�

 are not clear enough to 

distinguish tumors from normal tissues because the magnitudes of α�  and β
�

 are 

accumulated along the path originating from the reference point. However, the spatial 

differences of α�  and β
�

 reflect local expansibility and motion hysteresis and could be 

good indicators for any change in the biomechanical properties of lung. In this section, 

we will discuss the relationship between the lung density and divergences of model 

parameters. We hope this discuss in this section would lead to a scheme to monitor the 

radiation damage effectively in clinical application.  

 

Radiation damage may occur after a patient receives radiation therapy or is exposed to 

products or substances containing radiation. It is the major side effect that patients 

receive from radiotherapy. If we can develop an effective and prompt method to monitor 

the damage from radiation treatment, it could help the physician to adjust the treatment 

plan for the patient developing radiation damage.  

 

Radiation damage is usually accompanied by symptoms like cough, weight loss and 

disorder of lung function. We hypothesize that the model parameter obtained at various 

days would change dramatically in patients who are undergoing radiation damages.  

 

A coarse relationship between the divergence of α�  and the lung density was discussed in 

Chapter 4, given the condition that airflow keeps constant during respiration. A general 

equation that applies at any tidal volume and airflow developed below. 
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As we have demonstrated in Chapter 4 that the relationship between the tissue velocity 

and the tissue density is given by 

dt

d
U

ρρ −=•∇
��

    (7.4) 

The hypothesis in our lung motion model is that the motion is a function of tidal volume 

and airflow. Although tidal volume and airflow evolve with time, time only serves as an 

implicit variable. Therefore, applying the chain law on both sides, Eq. (7.4) now expands 

to, 
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Moving all items with tidal volume to the left side and all items with airflow to the right 

side, Eq. (7.5) is rewritten as, 
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by replacing 
dt

dV
 with f  and 

dt

df
 with fɺ  

Eq. (7.6) only holds when the airflow is not zero. The equation for zero airflow has been 

discussed in Chapter 4.   

 

In a time evolving system, all variables are either explicitly or implicitly function of time, 

in which sense that all the variables are connected and dependant on time. In the lung 

motion model discussed in this dissertation, time is explicitly excluded. Images taken at 

close tidal volumes and airflow have not necessarily been acquired in close temporal 
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proximity. Tidal volume and airflow serve as two independent variables in our lung 

motion model.  

 

The density is an implicit function of time. Since time is excluded in our lung motion 

model, the involvement of time in our model is replaced by the tidal volume and airflow. 

We constrain the density to have the form 

)()(),( fVfV ρρρ =      (7.7) 

Plugging Eq. (7.7) into Eq. (7.6), we have 
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Observe that the left side of the equation, denoted by )(Vλ is a function of V only , and 

the right side of the equation, denoted by ),( ff ɺλ , is a function of f  and fɺ . Since the 

values of V , f  and fɺ  are independent to each other, λ  must be constant.  

kffV == ),()( ɺλλ      (7.9) 

Since fɺ  is expected to vanish at end of inhalation and exhalation,  

0)0,( ==ff ɺλ      (7.10) 

the only option left for k  is zero.  

0=k        (7.11) 

Therefore, Eq. (7.6) splits up to two equations, 
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Replacing X
�

with fVX βα
���

++0 , Eq. (7.12) and Eq. (7.13) can now be written in terms 

of the motion model parameters,  
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Eq. (7.14) and Eq. (7.15) govern the change of local density as a function of tidal volume 

and airflow during respiration. The hypothesis is, that the change of local density will 

keep constant if observed at two different points of time, presuming that no fundamental 

change happens in the time across the observations. However, if fundamental changes do 

happen to the lung, such as propagation of pulmonary disease or radiation damage, we 

hypothesize that the relationship between the variations of local density and model 

parameters will not remain constant at various points of time.  

 

Fig. (7.7) shows the coronal views of α�  obtained from one lung-cancer patient who was 

scanned at the middle of the treatment and at the end of the treatment. Fig. (7.8) shows 

the dose delivered to the patient during the whole treatment. The region that received 

radiation highly correlated the region where α�  is obviously smaller that the remaining 

regions. 
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Fig. (7.9a) shows the profile of α�  on a line that passes through the center of the right 

lung, shown in Fig. (7.3b), which was a healthy lung. Fig. (7.9b) shows the profile of α�  

on a line that passes through the center of the right lung, shown in Fig. (7.7a), which was 

a lung with tumor.  Fig. (7.9a) shows that for a healthy lung, the α�  divergence increased 

craniocaudally in a smooth way. However, for a lung received radiation, an abrupt 

escalation of α�  divergence at the boundary of irradiated region was observed.  This is 

shown in Fig. (7.9b) and indicates a suppression of α�  divergence in the irradiated region 

and boosted α�  divergence in the un-irradiated region, when compared against the 

healthy lung.  This could be due to a redistribution of ventilation between irradiated and 

un-irradiated lung tissues.  

 

Fig. (7.10) shows the comparison of α�•∇  between un-irradiated lung and irradiated 

lung. Fig. (7.10a) indicates that α�•∇  was slightly larger in the inferior portion of the 

lung. This agreed with the observation made by Ball et al 69 in 1962 that ventilation was 

more active in the inferior region of the lung than superior. However, Fig. (7.10b) 

showed that α�•∇  was much greater in the inferior than superior portion of the lung. 

Since the boundary of abrupt escalation of α�•∇  aligned with the boundary of delivered 

dose, we concluded that the dramatically deceased α�•∇  in the superior portion of the 

lung was caused by radiation that damaged the normal lung.  

 

Currently, there is limited understanding of how much radiation will alter the lung 

density variation with respect to tidal volume and airflow, although evidence is being 

accumulated that hints that radiation compromises local tissue’s function and alters its 
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biomechanical properties. If the damage happens in a region where a segmental bronchus 

passes by, it would cause symptomatic bronchial stenosis, the narrowing of the bronchi, 

which has been reported after the patients were exposed to high dose radiotherapy70,71. 

The narrowing of the bronchi usually occurs after the patients receive 60Gy. Poiseuille's 

law dictates that resistance in the airway is inversely proportional to the fourth power of 

the radius. Thus, even modest reductions may be sufficient to cause pulmonary symptoms. 

The normal function of the tissues whose ventilations are supplied through the 

compromised bronchus would suffer dramatically from shortage of ventilation, even 

there is no change qualitatively happens in that region. We hope, by verifying the 

correlation between model parameter divergences and radiation damage on more patients, 

the model could help us to find out how radiation damage develops during treatment and 

help us to visualize when and where the radiation damage takes place. 

 

7.4 Breathing Motion Artifacts in Free Breathing PET Images 

 

Positron-emission tomography (PET) scans provide unique functional imaging 

information with relatively poor spatial resolution. In contrast, CT scans provide whole 

body image in excellent spatial resolution within a few seconds. Integration of CT and 

PET offers the advantage of providing both metabolic and anatomical information, while 

improving both the sensitivity and specificity of malignant lesion detection72. 

 

One of the major drawbacks of PET imaging is the significant time required for image 

acquisition (up to 10 minutes per bed position). When scanning the thorax and upper 
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abdomen where breathing motion causes significant movement of tumors and normal 

organs, the attenuation, on which the scanner relies to generate the image, is the average 

attenuation instead of actual one. The incorrectly determined attenuation will cause 

inaccurate attenuation corrections and subsequently inaccurate PET radionuclide uptake. 

Generation of accurate attenuation maps requires a quantitative model of the breathing 

motion of the internal organs. 

 

The restoration of tissue images can by done by applying the breathing motion model 

developed in this study, the relative positions of the target tissue are know for each 

breathing phase. The individual PET scan images can be deformably mapped and 

summed onto a single image dataset at a reference phase of breathing that has only 

residual (small) breathing motion artifacts. A phantom study was conducted to test the 

feasibility of this method for acquiring free-breathing thoracic PET images without 

breathing motion artifacts but with full statistics. 

 

Data were collected using a Philips Brilliance and Siemens Biograph PET/CT scanners 

using list mode. Patient-modeled tumor trajectories were provided using a custom-

fabricated 4D motion phantom shown in Fig. (7.11a). A spherical PET phantom with 

diameter of 1cm, shown in Fig. (7.11b), was used in this study, moved in a motion 

trajectory shown in Fig. (7.11c). The trajectory was subdivided into 10 bins of 8 mm 

width and the average location in each bin was denoted by a brown dot. The probability 

distribution of the phantom motion distribution was shown in Fig. (7.11d) in 20ms time 

units. There were two regions where the phantom did not pass (0% probability), but the 
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phantom passed a finite fraction of the time through remaining 8 regions. To synchronize 

the phantom and PET acquisition, a TTL synchronization signal was fed to the cardiac 

trigger channel.  The trigger was activated when the phantom passed a user-determined 

spatial threshold and therefore provided an irregular but well-determined time pattern.  

The list mode was queried to determine the relative time of the cardiac triggers and this 

was used to synchronize the phantom position and the list mode data. PET events were 

selected from the list mode file according to which bin the phantom was in at the time of 

the PET event.  This created 10 separate list mode files.  Those list mode files were 

submitted to the commercial reconstruction software to reconstruct images using only 

events occurring in the corresponding bins. The reconstruction images were shifted by 

the known phantom displacement and summed.  The subsequent image was compared 

against the known phantom shape to determine if the reconstruction was successful.  

 

The gated reconstructions were compared against the ungated (original list mode file) 

reconstructions, showing significant improvement in the reconstructed phantom shape, 

both in Philips Brilliance and Siemens Biograph PET/CT scanners as shown in Fig. (7.12) 

Residual deformation was noted, consistent with the 8 mm wide gating window. This 

study indicates that the phantom shape can be restored by gating windows and shows 

promise in acquiring PET images in the thorax and upper abdomen without significant 

breathing motion artifacts if provided a quantitative breathing motion model 
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(a) 

(b) 

Fig.7.1(a) Coronal view of α� in a lung cancer patient (b) Coronal view ofβ
�

in a lung 

cancer patient 
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Fig. 7.2 More examples of β
�

 

discontinuity around a tumor. 
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 (a) 

 (b) 

Fig. 7.3α�  distributions of the non-lung cancer patient scanned two weeks apart 
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(a) 

(b) 

Fig. 7.4 Histogram of α�  variation ratios between two scanning sessions 
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 (a) 

 (b) 

Fig. 7.5 β
�

distributions of the non-lung cancer patient scanned two weeks apart 
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(a) 

(b) 

Fig. 7.6 Histogram of β
�

 variation ratios between two scanning sessions 
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 (a) 

 (b) 

Fig. 7.7α�  distributions of one lung cancer patient scanned two weeks apart 
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Fig. 7.8 Dose delivered to the lung cancer patient 
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(a) 

(

b) 

Fig. 7.9 Comparison of α�  change in cranialcaudal direction. a) Cranialcaudal profile of 

α�  from the non-lung cancer patient. b) Cranialcaudal profile of α�  from the lung cancer 

patient 



 132 

 

(a) 

(b) 

Fig. 7.10 Comparison of α�•∇  in (a) un-irradiated lung and (b) irradiated lung.  
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(a) 
(b) 

(c) (d) 

Fig. 7.11  a) The 4D phantom in a Philips PET/CT scanner.  b) The spherical PET 

phantom with diameter of 1cm . c) Trajectory used to move the phantom in this study 

with the gating windows used to subdivide the trajectories. The dots denoted the average 

trajectory locations within each window. These positions were used to determine the 

shifts from each of the gated PET images.  d) The probability distribution (in 20 ms time 

units) of the phantom motion distribution.  
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a 

 
b 

 
c 
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Fig. 7.12  a) The image reconstructed using all of the list-mode data (ungated) acquired in the Philips 
PET/CT scanner.  The elongation of the spherical target due to the motion is evident.  b) The shifted 
and summed PET image from Philips PET/CT scanner showing the recovery of the spherical target 
shape due to the quantitative nature of the gating and shifting algorithm. c) The ungated image from 
the Siemens PET/CT scanner. d) The shifted and summed PET image from the Siemens PET/CT 
scanner 
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Chapter 8 

 

Conclusion  

In this chapter, we review the results obtained in this dissertation in accordance with the 

objectives we had in mind.  

 

8.1 Conclusions 

 

A breathing motion model is needed to predict the motion of lung and lung tumor for 

more precise delivery of dose in radiotherapy and other clinical purposes like suppressing 

image artifacts. The breathing motion model is developed based on two observations: 1) 

the lung tissues move father along their trajectories as the patient breathes deeper. 2) the 

shapes of the trajectories resemble ellipse and circles due to the intrinsic hysteresis-like 

behavior.  

 

Tidal volume was introduced into the breathing motion as the first surrogate to meet the 

first observation. Air flow was introduced as the second surrogate to give the motion a 

different path during exhalation than during inhalation. We hypothesize that any unique 

pair of tidal volume and air flow would give a unique location for the concerned tissue.  

 



 136 

To determine the model parameter, a quantity of trajectory samples with corresponding 

tidal volumes and air flows are required. The trajectory samples were obtained by 

registering images scanned at different breathing phases. The image acquisition protocols 

were developed for both 16-slice Philips CT scanner and 64-slice Philips CT scanner as 

our scanner was updated while the research project went on due to the rapid developing 

of scanning technology. For most of the subjects tidal volume and air flow were 

measured using a spirometer. Some subjects that could not tolerate the spirometer, so 

tidal volume and air flow were calculated by converting the CT numbers to ratio of air in 

the CT volume.  

 

Registration provides the trajectory of lung tissues that are the input of the breathing 

motion model. Registration is also one of the major sources of error. Another major 

sources of error are the image artifacts that distorts CT images. 3 image registration 

techniques were listed in Chapter 3 chronologically.  

 

The preceding discussion identifies the variables and methods that are necessary for 

describing the lung and lung tumor trajectories. In Chapter 4, the continuity equation was 

applied to the breathing motion model to quantitatively test the model performance. The 

continuity equation resulted in a prediction that the volume integral of the divergence of 

the α�  vector field was 1.11 for all patients.  The integral of the divergence of the β
�

 

vector field was expected to be zero. 35 patients were selected for this study. The α�  

vector field prediction was 1.06 ± 0.14, encompassing the expected value. For the β
�

 

vector field prediction, the average value was 0.02 ± 0.03. These results provide 
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quantitative evidence that the breathing motion model yields accurate predictions of 

breathing dynamics.   

 

To get a deeper understanding of the model parameters, we developed a biomechanical 

interpretation by investigating the normal stress in the lung. α�  was modeled to be related 

to the tidal volume derivative of normal stress and β
�

 was related to the air flow 

derivative of normal stress. Averages of α�  estimated using published data were 

compared with averages of α�  from 49 patients. The comparison gave a discrepancy less 

than 10% between results from two methods. The spectrum of angles between α�  and β
�

 

was found to present a characteristic distribution where two peaks were observed in the 

data from most of the 49 patients. A calculation based on our biomechanical 

interpretation gave two maximum-likelihood angles that agreed to within 10º with the 

peaks observed in the patient data.  

 

The model was employed to characterize the free-breathing patterns for a large cohort of 

patients. The α�  and β
�

 distributions were examined for each patient to determine overall 

general patterns and inter-patient pattern variations. For most of the patients, the largest 

values of α�  were observed in the inferior and posterior lungs. The hysteresis motion β
�

 

had greater variability, but for the majority of patients, β
�

 was largest in the lateral lungs. 

The study showed that the breathing motion model has the potential for non-invasively 

predicting lung motion. The majority of patients exhibited similar α�  maps, and the β
�

 



 138 

maps showed greater inter-patient variability. The motion parameter inter-patient 

variability will inform our need for custom radiation therapy motion models.  The utility 

of this model depends on the parameter stability over time, which is still under 

investigation.  

 

The stability of the model parameters was investigate by enrolling radiotherapy patients 

with healthy lungs (no lung tumors) for two separate scans weeks apart. Currently we 

have available data from only one patient. The study on that patient showed that the 

distribution model parameter kept similar shapes. 84% of tissues investigated varied less 

than 20% in α�  and only 53% varied less than 20% in β
�

. We will continue to recruit 

more patients to investigate the model stability in the future.  

 

Other clinic applications in include the potential of β
�

 as an indicator of cancerous 

regions, divergence of the model parameters as an indicator of radiation damage and 

suppressing motion artifacts in PET images. 

 

8.2 Future work 

We anticipate continuing the following studies after the successful validation of the 

registration and the breathing motion model techniques  

 

If the stability of model parameters is proved or normal fluctuation range is determined, 

we would continue this study in  

1. Evaluation, staging and management of respiratory diseases in addition to cancer 



 139 

2. Monitoring radiation damage 

3. Quantitative guidance for treatment planners regarding the impact of linear 

accelerator gating on the accuracy and efficiency of radiation therapy dose 

distribution planning.  

 

If the model is robust only within the time of the CT scan session, we would continue this 

study in 

1. Quantitative nuclear medicine (PET/CT and SPECT/CT) study acquisition for 

free breathing patients without breathing motion artifacts 

2. Quantitative evaluation of the benefit of tumor tracking on dose delivery accuracy 

and conformality. 

3. Quantitative evaluation of the impact of breathing motion on IMRT dose delivery  

 

This work is supported in part by NIHR01CA096679 and NIHR01CA116712. 
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