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Converting gene-sequence information into functional information about a protein 

is a major challenge of post-genomic biology(1). Proteins have a variety of functions 

from serving as catalysts to acting as structural components; all these functions are 

closely related to protein structure. The first step to understand protein function is often a 

structural study of that protein. Two major approaches, NMR spectroscopy(2) and X-ray 

crystallography(3), can provide an atomic-level, 3D structural model of a protein. The 

applications of these high resolution approaches, however, are limited by protein size, 

conformational flexibility, and aggregation propensity(4). To obtain complementary 

structural information about proteins, a variety of approaches from traditional structural 

biology (e.g., circular dichroism, fluorescence spectroscopy) to new advances (e.g., 

computational prediction, protein footprinting) are required(1).  

Mass spectrometry (MS) has become an important tool for studying protein 

structure, dynamics, interactions, and function(5).  In particular, detailed characterization 

of protein-ligand interactions is now possible(6), a critical step toward understanding 

biological function.Mass spectrometric analysis of protein structure can take two 

approaches. First, protein-ligand interactions can be probed by chemical labeling 

followed by MS analysis to determine the resulting mass shift (extent of labeling) and the 

location of the labeling.  This approach in a titration format gives protein-ligand affinities.  

The labeling takes place in solution, where biochemistry occurs, and can be under 

physiological conditions, whereas the mass spectrometer is used for analysis typically by 

bottom-up proteomic strategies.  In the other approach, protein assemblies can also be 

transferred directly into the gas phase and interrogated by MS to afford structural insights.  

One can view this is a top-down approach.  The measurements refer to a gas-phase 
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species, and that raises the question of whether the outcomes of the measurements have 

relevance to the structure and properties of proteins in solution or in a living system. 

Although there are differences in experimental format, results, and sensitivity 

between the two approaches of MS-based protein structural analysis, the similarity of 

those approaches must not be overlooked(7). All MS-based structural analyses rely 

heavily on the identification of peptides, purified protein species, or protein complexes. 

This analysis has been accelerated by the developments of MS instrumentation and 

methodology in protein analysis; the structural information provided by MS-based 

analysis is greatly facilitated by having a structural model of the protein. The integrated 

results from MS approaches, traditional structural biology approaches (e.g., NMR and X-

ray), and computational modeling give more complete structural information of proteins 

than that from any one of the approaches alone.  

In the first part of thesis, we focus on the development and application of 

chemical-labeling methods (protein footprinting) in studies of protein conformation. In 

the second part, a combined top-down approach of native ESI and electron-capture 

dissociation (ECD) in FTICR MSis presented for structural studies of protein assemblies 

in the gas phase.   

Part 1.The development and application of chemical-labeling methods in studies of 

protein conformation. 

One MS-based approach is protein footprinting(8). When a protein binds with a 

ligand, the solvent accessible surface areas of its residues are affected by the resulting 

conformational changes and direct ligand interactions.  Residues with reduced solvent 
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accessibility, such as those at the binding site in the holo state, have attenuated labeling 

or cleavage relative to those of the comparison state, and this signal change is readily 

resolved by MS.  Thus, protein footprinting is well suited to the study of protein-ligand 

interactions, although its outcome is of lower resolution than that provided by X-ray 

crystallography and NMR spectroscopy.  An advantage of MS-based footprinting over 

these high resolution methods is that protein-ligand structure can be interrogated in a near 

physiological setting (i.e., at dilute concentration in solution with appropriate buffer, 

ionic strength, and bimolecular milieu).    

Footprinting was first reported as a cleavage-based strategy to detect protein-

DNA binding specificity(9). This demonstration inspired similar methods to be 

developed for the analysis of proteins(10);  Hanai(11) and co-workers first demonstrated 

that modification reagents could footprint proteins. Protein footprinting as a 

complementary approachto probing protein conformationhas rapidly developed during 

the last two decades(12).Different footprinting strategies including side-chain 

derivatizations, hydrogen deuterium amideexchange (H/DX), and hydroxyl-radical 

modification  are now characterized sufficiently to be used (13-16). A labeling process 

usually induces a mass shift in aprotein’s molecular weight. The resulting mass shift 

makes mass spectrometry (MS) a suitable analytical tool for detecting the protein 

footprinting and locating its site. Coupled withthe labeling strategy, MS has greater 

sensitivity and speed than many other approaches in protein biochemistry.Several 

successful MS-based protein footprinting methods have been demonstratedfor monitoring 

the dynamics of protein folding/unfolding(4, 17, 18), measuring protein-ligand binding 
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affinity(19), locating the interface of protein-protein interactions, and probing protein 

structural information(20, 21).  

In MS-based footprinting, protein samples are modified at physiological pH and 

salt concentration. The modified protein can be directly analyzed by ESI-MS by using a 

C18 trap column to desalt the sample, or it can be digested by trypsin and analyzed by 

LC-ESI-MS/MS to quantify the site of modification. With accurate mass measurement, 

the percent modification (the modification extent) is determined with little ambiguity on 

the basis of the peak area of the modified peptide divided by the peak areas of all forms 

of that peptide.  The site of modification can be located by MS/MS; for example, 

carboxyl-group modification is located by interpretingthe product-ion spectrum of the 

modified peptide(Figure 1). 

Chemical-labeling-based protein footprinting can be classified into two groups: 

site-specific and site-nonspecific footprinting. Site-specific footprinting can provide 

detailed conformational information about only certain, reactive amino-acid residues. 

However, the information is limited by a small set of targets (e.g., acetylation modifies 

only the amino acid lysine). Site-nonspecific footprinting, on the other hand, has a 

relatively large set of targets and provides more information. The information from a 

large set of targets, however, increases the complexity in the footprinting data analysis(7). 

In the site-nonspecific footprinting, there are two subgroups: one is radical-based 

modifications; the other is hydrogen deuterium amide exchange (H/DX). The most 

common radical-based labeling approach is hydroxyl-radical protein footprinting(16). 

The hydroxyl radical, as structural probe, has several advantages; it is highly reactive 
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(hydroxyl radicals can react with the half of amino acids in microseconds of exposure), 

has a similar size as water and, therefore, goes where water goes, and gives modified 

products that can be interrogated by tandem MS to provide residue-level information. 

Hydroxyl radicals can be generated by different reactions:  examples are electron-pulse 

radiolysis, synchrotron radiolysis of water, laser photolysis of hydrogen peroxide, Fenton 

and Fenton-like reactions, and high-voltage electrical discharges(12). In the second 

chapter of this thesis, we describethe use of fast photochemical oxidation of protein 

(FPOP), an approach using laser photolysis of hydrogen peroxide to give hydroxyl 

radicals; this approach was developed in our group(22). FPOP modifies proteins on the 

microsecond time scale.  Highly reactive •OH, produced by laser photolysis of hydrogen 

peroxide, oxidatively modifies the side chains of overone half the common amino acids 

on this time scale.  Owing to the short labeling exposure, only solvent-accessible residues 

are sampled.We describe anapplication of FPOP in a structural study of various 

calmodulin-peptide complexes.  

The other subgroup in site-nonspecific footprinting is hydrogen deuterium amide 

exchange (H/DX)(23).  Deuterium incorporation is used as a probe to measure the solvent 

accessibility of the protein-backbone amide hydrogens. Although deuterium back 

exchange and scrambling can limit the application of H/DX, it is still a powerful 

technique in analyzing protein structure. By digesting the protein and looking at rates at 

the peptide level, the rate of H/DX can be measured along the entire length of a protein 

backbone, providing coarse structural information of the whole protein (except for 

proline). H/DX is unlikely to perturb protein structure during labeling as opposed to other 

labeling reagents. In the third chapter of this thesis, H/DX was used as protein-structure 
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check to insure that in the development of carboxyl group modification based protein 

footprinting, the footprinting itself is not perturbing the protein and does not give 

misleading labeling results.  

In site-specific footprinting, a variety of chemical reagents are used to modify 

specifically certain amino acids; an example is the 1-ethyl-3-(3-dimethylaminopropyl)-

carbodiimide(EDC) mediated coupling reaction between glycine ethyl ester (GEE) and 

the carboxyl group of a protein(14, 24).  Another example of a reactive amino-acid group 

is the thiolof cysteine; it can be modified by several reagents (e.g., iodoacetamide, 

NEM)(14, 25). The major drawback of site-specific footprinting is that, because there are 

so few target residues, it is likely the no conformational information will obtained as 

there is no target residue in protein region undergoing a change. 

In the third chapter of the thesis, the protocol of carboxyl-group-modification-

based protein footprinting is developed by using calmodulin as a model protein.The 

reaction rate of carboxyl-group modification is examined under different conditions.The 

application of carboxyl-group modification in probing conformational changes in 

calmodulin induced by calcium binding is demonstrated.  In the fourth chapter of this 

thesis, an application of carboxyl-group-modification-based protein footprinting, 

mapping the kinase domain dimer interface and phosphorylation-induced conformational 

changes of a membrane-associated tyrosine kinase (Her4/ErbB-4) is presented. The Her4 

kinase domain monomer-dimer equilibrium was measured using a titration format.  

Part 2:  Top-down fragmentation of protein assemblies: native electrospray and 

electron capture dissociation in FTICR MS.  



8 
 

Most proteins carry out their functions as a complex or a protein assembly. Those 

high-order structures varyin molecular mass from kDa to MDa and contain many 

components(26, 27).For example, in the yeast proteome, about 70% of the more than 

4000 proteins identified by mass spectrometry (MS) are involved in protein-protein 

interactions. One estimate is that more than 500 protein complexes are formed, each 

containing fivesubunits in average (28). To understand the function of high order 

structures, especially those that are hard to study by traditional techniques, 

complementary methods are needed to provide structural information.  

Protein structuresare usually investigated by electron microscopy, X-ray 

crystallography, NMR spectroscopy, and light microscopy (26, 29). One fast growing 

area in structural biology is the study of protein assemblies, and MS is beginning to play 

a role(30). The major approach for introducing assemblies to the gas phase is native 

electrospray (ESI)from aqueous solution under conditions that are close to 

physiological(31). Information about stoichiometry, structure, and subunit interactions 

can result from these MS studies. AlthoughMS cannot provide atomic-level resolution, as 

can X-ray crystallography and NMR, its advantages for interrogating protein complexes 

in their near-native states are small sample consumption, high throughput, and unique 

specificity to make it complementary to traditional structural biology techniques(32).  

Since Ganem and co-workers(33) first demonstrated the application of MS for 

protein complexes, developments in both methodology and instrumentation of MS have 

been improved its application in structural biology(32); progress has been reviewed 

periodically(34-36). Evidence about keeping complexes near their native conformations 

in the gas phase was also reported (37-39). Technical advances, such as analysis of 
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membrane protein complexes(40, 41) and large protein machine up to MDa(42), were 

also reported.  

Two types of mass analyzers, time-of-flight (TOF) and Fourier transform ion 

cyclotron resonance (FTICR) are appropriate for measuring the high m/z protein-

assembly ions introduced via native ESI. The principal instrumentation used thus faris 

thequadrupole/time-of-flight (QToF)(43)owing to its high upper-mass limit, simple 

design, and compatibility forinterface with ion mobility (IM). A small number of groups 

are using FTICR MScoupled with native ESI (44, 45). Although QToF instruments 

provide good accurate mass, dissociation chemistry, and when coupled with IM, 

assembly-shape information, identification of thesubunit via sequence information still 

relies on thestandard bottom-up proteomics(30). The disadvantage is that the dynamics, 

assembly shape and structural layout are lost in any bottom-up analysis.  

A top-down approach that integrates those two independent experiments into one 

would have significant advantages for sample preparation and data interpretation(46). 

Different fragmentation methods, collision-induced dissociation (CID), electron-capture 

dissociation (ECD), blackbody infrared radiativedissocation (BIRD), infrared 

multiphoton dissociation (IRMPD) and surface-induced dissocation (SID), are 

availablefor the top-down approach(47-53).  

            In the top-down approaches, CID and ECD are two effectivefragmentation 

methods. For CID, precusor ions are accelerated to high kinetic energy and collide with 

neutral molecules (nitrogen or argon) in the source region or collision cell of mass 

spectrometers. The kinetic energy of precusor ions is converted into internal energy. With 
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protonation on an amide nitrogen or a carbonyl oxygen, the C(O)-N cleavage occurs with 

attack of the adjacent nucleophilic carbonyl oxygen (Figure 3) (54). The major sequence-

specific ions from CID experiment are y- and b- type ions as in Figure 2. For ECD, low 

energy electrons are captured by the precursor ions in the FT-ICR trap. After initial 

electron capture atone of the positively charged sites, transfer of a hydrogen atom to an 

amide oxygen facilitates β-cleavage of the adjacent N-Cα bond through an aminoketyl 

radical intermediate. The resulting fragments are c- and z- type ions (Figure 4) (55). By 

comparing the product-ion spectra of protein or peptide ions with calculated mass lists of 

y-/b- type ions (CID) or c-/z- type ions (ECD), the sequence information of 

protein/peptide can be elucidated. 

For the application of CID, Robinson and co-workers(56)useda modified QTOF 

mass spectrometer and IM to study the unfolding of protein assemblies. Some fragment 

ions from backbone cleavageswere obtained, suggestingthe potential of tandem MS in 

structural studies of protein assemblies. A recent study on human transthyretin 

demonstrated that peptide fragments are generated by a charge-state-dependent decay(57). 

Charge reduction is required for successful CID experiment to break the backbone of 

protein complexes. 

One advantage of hybrid Qq-FTICR MS isits versatile fragmentation for top-

down purposes.Using hybrid Qq-FTICR, onecan fragment protein assemblies by ECD or 

IRMPD in the ICR trap or by CID or ISCID in the front end of the instrument to form 

highly charged sub-complexes or monomeric subunit. Additionally, a subunit bearing 

more charges is beneficial for ECD to generate sequence ions while they are stored in the 

FTICR trap.  The high mass resolving power of FTICR also makes feasible the analysis 
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of some complicated product-ion spectra by separating isotope peaks.Heeren and co-

workers(58) first reported the application of ECD and FTICR MS in the study of non-

covalent protein assemblies.  Although they selected each charge state of the assembly in 

the FTICR trap before ECD, they observed no ECD-induced backbone cleavage 

productions (i.e., sequence ions).  

In the fifth chapter of this thesis, the detail of native ESI of protein assemblies and 

recent advances in the area of protein assemblies are reviewed more extensively than here. 

The review suggests that dissociation of protein assemblies in the gas phase by tandem 

mass spectrometry can be a powerful approach in obtaining structural information. In the 

sixth chapter of this thesis, an example for top-down sequencing of a protein component 

in an intact protein assembly (the intact yeast alcohol dehydrogenase tetramer of 147 kDa) 

by electron-capture dissociation in FTICR MS is presented. To provide structural insights 

of protein assembly by this top-down approach, the systematic study of electron-capture-

dissociation-based top-down of protein assemblies is required. In the seventh chapter, an 

investigation of several protein assemblies including yeast alcohol dehydrogenase, 

concanavalin A, and photosynthetic Fenna-Matthews-Olsen protein complex are  

described in which native ESI and electron-capture dissociation in FTICR MS are used. 

We found that the relatively free and flexible regions of the subunits in protein 

assemblies can be sequenced by ECD or activated ECD. This top-down approach 

provides not only top-down proteomics information of the complex subunits, but also 

structural insights of protein assemblies.    
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Figure 1.1.Work flow of MS based carboxyl group protein footprint (1) Modification (2) 

ESI-MS analysis of modified protein (3) proteolytic digestion (4) LC-MS analysis of 

peptides (5) calculation of the modified peptide level (6) LC-MS/MS analysis of peptides 
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Figure 1.2.Nomenclature for fragment ions of peptide. 
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Figure 1.3.A proposed CID fragmentation mechanism. 
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Figure 1.4.A proposed ECD fragmentation mechanism. 
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Abstract 

  Quantification of the modification extent for the apo and holo states of a protein-

ligand complex should provide structurally sensitive information at the amino-acid level 

to compare the structures of unknown protein complexes with known ones.  We report 

here the use of FPOP to monitor the structural changes of calmodulin in its established 

binding to M13 of the skeletal muscle myosin light chain kinase.  We use the outcome to 

establish the unknown structures resulting from binding with melittin and mastoparan.  

The structural comparison follows from a comprehensive examination of the extent of 

FPOP modifications as measured by proteolysis and LC-MS/MS for each protein-ligand 

equilibrium.  The results not only show that the three calmodulin-peptide complexes have 

similar structures but also reveal those regions of the protein that became more or less 

solvent-accessible upon binding.  This approach has the potential for relatively high 

throughput, information-dense characterization of a series of protein-ligand complexes in 

biochemistry and drug discovery when the structure of one reference complex is known 

and related complexes are not, as is the case for calmodulin and M13 of the skeletal 

muscle myosin light chain kinase.   

  

Introduction 

In this paper, we use FPOP to show the effect of peptide ligands on calmodulin 

conformation.  Our intention is to set forth a method for comparing structures of 

protein/ligand complexes when one or more reference structures are available. We chose 

as a model calmodulin (CaM), a small acidic calcium binding protein(1). Increased Ca2+ 
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concentration promotes specific CaM-Ca2+ binding; with the uptake of four Ca2+ ions, 

CaM undergoes a conformational changes to a wholly different state capable of ligand 

binding(2). As a Ca2+ sensor and signal transducer, Ca2+-bound CaM binds to target 

proteins to alter their functions, acting as part of a calcium signal transduction 

pathway(3),(4).  CaM mediates processes such as inflammation, metabolism, muscle 

contraction, intracellular movement, short-term and long-term memory, nerve growth and 

the immune response(5).  One family of CaM targets is Ca2+/Calmodulin–dependent 

protein kinases such as skeletal muscle myosin light chain kinase (SK-MLCK) (6).  Some 

peptides also bind CaM to inhibit the calcium signal transduction pathway.  Two such 

peptides are melittin (Mel) and mastoparan (Mas).  Mel, the principal component of 

honeybee venom, is a 26-residue peptide(7), whereas Mas is a 14-residue peptide toxin 

from wasp(8).    

To date, no high resolution 3D structures of CaM-Mel or CaM-Mas have been 

published, although studies by NMR(9), H/DX(10), fluorescence(11), enzyme 

cleavage(12), cross-linking(13) and chemical modification were reported(14, 15).  

Previous studies demonstrated that both Mel and Mas share a target recognition and 

activation mechanism with the SK-MLCK binding domain (M13 peptide) (Figure 2.1), 

suggesting their structures are similar (16),

We tested the hypothesis of structural homology among the three CaM-ligand 

complexes by comparing their quantitative FPOP outcomes using spectra-contrast-angle 

evaluation (19).  This method utilizes the CaM-M13 complex as a well-understood 

template structure for the interpretation of FPOP signals of the CaM-Mel and CaM-Mas 

complexes.  By this example, we demonstrate a method for the detailed characterization 

(17, 18) .   
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of protein-ligand interactions.  Such an approach should be applicable to protein-ligand 

systems where sub libraries of ligands that are known to bind can be screened for 

similarity of interaction relative to a standard protein-ligand complex; the approach has 

higher throughput than NMR and X-ray crystallography.  Application of this method for 

the rapid analysis of protein-ligand complexes may prove useful for studies of disease-

related protein complexes, especially in drug discovery. 

Material and Methods 

Materials   

Bovine CaM (calcium free) was obtained from Ocean Biologics Co.  (Edmonds, 

WA).  Hydrogen peroxide, water, acetonitrile, formic acid, calcium chloride, phosphate 

buffered saline powder, EGTA (ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetra-

acetic acid), L-methionine, L-glutamine, melittin from honeybee venom (MW 2846), 

mastoparan from Vespula lewisii (MW 1478), catalase from bovine liver, and trypsin 

from porcine pancreas at the highest purity available were purchased from Sigma-Aldrich 

(St.  Louis, MO).  Skeletal muscle myosin light chain kinase peptide 

(M13), 1KRRWKKNFIAVSAANRFKKISSSGAL26, was purchased from AnaSpec, Inc.  

(Fremont, CA).   

Protein and peptide stock solution   

All proteins and peptides were received as lyophilized powder.  A stock solution 

of CaM was prepared in water, and its concentration determined by UV-absorbance at 

280 nm (ε = 2980 M-1 cm-1).  All FPOP samples contained 10 μM CaM in 10 mM 

phosphate buffered saline (PBS buffer, 138 mM NaCl, 2.7 mM KCl, pH = 7.4) and 20 

mM L-glutamine.  Peptides, Mel, Mas, M13, were used without further purification. 
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Formation of Complexes 

Eight types of samples were prepared from the CaM stock solution and PBS 

buffer: Ca2+-free-CaM (100 μM EGTA), Ca2+-free-CaM-Mel (100 μM EGTA, 20 μM 

Mel), Ca2+-free-CaM-Mas (100 μM EGTA, 20 μM Mas), Ca2+-free-CaM-M13 (100 μM 

EGTA, 20 μM M13), Ca2+-bound-CaM (100 μM calcium chloride), Ca2+-bound-CaM-

Mel complex (100 μM calcium chloride, 20 μM Mel), Ca2+-bound-CaM-Mas complex 

(100 μM calcium chloride, 20 μM Mas), and Ca2+

Hydrogen peroxide was added to each sample to a final concentration of 15 mM just 

prior to FPOP.  Samples of 50 µL were infused through the apparatus and collected in 

tubes containing 10 μL of 50 nM catalase and 20 mM methionine.  Residual hydrogen 

-bound-CaM-M13 complex (100 μM 

calcium chloride, 20 μM M13).  The protein-peptide ratio in the sample solutions was 

1:2.  All samples were incubated overnight at 22 °C to allow for equilibration prior FPOP 

labeling.   

FPOP Protocol 

The protocol used here was based on a previous report (20) with minor changes. 

A 248 nm KrF excimer laser (GAM Laser Inc, Orlando, FL) tuned to 40 mJ/pulse, was 

used to irradiate the sample solution.  The laser was focused through a 250 mm convex 

lens (Edmunds Optics, Barrington, NJ) onto 150 μm i.d. fused silica tubing (Polymicro 

Technologies, Pheonix, AZ) located 125 mm from the lens, giving a 2.5 mm irradiation 

window; the fused silica polyimide coating in this region was first removed by using a 

propane torch. The flow rate and pulse frequency were adjusted to guarantee that1.2 x the 

reaction volume vacated the window between laser shots. The laser pulse frequency was 

controlled by an external pulse generator (B&K Precision, Yorba Linda, CA). 



29 
 

peroxide was decomposed by catalase treatment at room temperature for 10 min before 

storage at 4 °C.  FPOP labeling was done in triplicate for each sample type. 

ESI MS Analysis with a Q-TOF Mass Spectrometer 

All ESI mass spectra were acquired in the positive-ion mode on a Waters 

(MicroMass) Q-TOF Ultima (Manchester, U.K.) equipped with a Z-spray ESI source.  

The instrument setup for protein analysis was similar to that reported previously.(21)   

Trypsin Proteolysis Protocol 

Digestion of CaM FPOP sample was conducted according to the previously 

reported protocol without modification (22) .   

LC-ESI-MS/MS Analysis of Protein Digest  

Digested samples (1 μL) were diluted in 100 μL water with 0.1% formic acid.  An 

aliquot of 5 μL diluted solution was loaded onto a silica capillary column with a 

PicoFritTM tip (New Objective, Inc., Woburn, MA) that was custom-packed with C18 

reverse phase material (Magic, 0.075 mm × 150 mm, 5 μm, 120 Å, Michrom 

Bioresources, Inc., Auburn, CA).  The gradient was pumped with an Eksigent NanoLC-

1D ultra (Eksigent Technologies, Inc.  Livermore, CA) at 260 nL/min, from 2% to 60% 

solvent B (acetonitrile, 0.1% formic acid) over 60 min, then to 80% solvent B for 10 min, 

followed by a 12 min re-equilibration step by 100% solvent A (water, 0.1% formic acid).  

The flow was directed by a PicoView Nanospray Source (PV550, New Objective, Inc., 

Woburn, MA) to an LTQ Orbitrap (Thermo-Scientific, San Jose, CA) with a spray 

voltage of 1.8-2.0 kV, and a capillary voltage of 27 V.  The LTQ Orbitrap was operated 

in the standard, data-dependent acquisition mode controlled by Xcalibur 2.0.7 software.  

Peptide mass spectra (m/z range: 350-2000) were acquired at high mass resolving power 
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(60,000 for ions of m/z 400) in FT mode.  The top six most abundant multiply charged 

ions with minimal signal intensity at 1000 counts were subjected to CID (collision-

induced dissociation) in the linear ion trap.  Precursor activation was performed with an 

isolation width of 2 Da and an activation time of 30 ms.  The normalized collision energy 

was set at 35%.  The automatic gain control target value was regulated at 1 x 106 for the 

FT analyzer and 3 x 104 for ion-trap analyzer with a maximum injection time of 1000 ms 

for FT and 200 ms for ion trap. 

LC-MS Feature Annotation  

The LC-MS/MS data were searched for modified and unmodified CaM tryptic 

peptides by using Mascot 2.2.06 (Matrix Science, London, UK)(23) and the NCBI 

database.  All known •OH-side chain reaction products were added into modification 

database for searching as variable modifications.  Modification site assignments were 

validated by manual inspection of product-ion spectra.   

LC-MS/MS .raw files were imported into the Rosetta Elucidator system 

(v3.3.0.0.220, Rosetta Biosoftware, Seattle, WA) for retention time alignment of shared 

LC-MS features (24). The aligned retention time and peak volume of all high resolution 

extracted ion chromatogram features across a 5-70 min window were output to a 

spreadsheet for each sample.  Each product-ion spectrum was paired with its LC-MS 

feature by using its retention time and precursor m/z; a table of this pairing was used by 

the Excel macro written in our lab to annotate all Elucidator-determined LC-MS features 

with the Mascot assignments linked to their product-ion spectra.   

Calculation of Modification Extent 
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The fraction modified (Fox1 in Eq.  1) was calculated for any specific residue as 

the ratio of signal intensities of each peptide (Iox1) modified at this residue to the total 

intensities of modified and unmodified peptide signals spanning this residue (I + Iox1 + 

Iox2 + ...+ Ioxn).  The changes in modification (R) at a site between Ca2+-free and Ca2+-

bound states (Eq. 2) were calculated at the peptide level by using the modification 

fraction (FCa free and FCa bound

𝐹𝐹𝑜𝑜𝑜𝑜1 =
∑𝐼𝐼𝑜𝑜𝑜𝑜 1

∑ 𝐼𝐼𝑜𝑜𝑜𝑜 𝑖𝑖
𝑛𝑛
𝑖𝑖=1 +∑𝐼𝐼

                  Eq.  1 

) of each peptide, wherein the signal from all modifications 

on the peptide contribute to the numerator in equation 1.   

 

𝑅𝑅𝑜𝑜𝑜𝑜 = 𝐹𝐹𝐶𝐶𝐶𝐶  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 −𝐹𝐹𝐶𝐶𝐶𝐶  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐹𝐹𝐶𝐶𝐶𝐶  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
    Eq.  2 

To identify changes induced by complexation, results from CaM (no complex) 

were used as controls in both comparisons.  

Results and discussion 

ESI MS of calmodulin submitted to FPOP  

Beginning with CaM in the presence of Mel or Mas, we detected by ESI MS 

multiply charged CaM molecules (Figure 2.2a) that have a Gaussian charge-state 

distribution centered at the most abundant 15+ ion.  We also saw ions for Mel and Mas at 

lower m/z, consistent with dissociation of the complex under ESI conditions. Trace 

signals for oxidized Mel/Mas were observed as well.  The deconvoluted mass spectrum 

showed that the molecular weight (MW) of CaM is 16790 Da, consistent with CaM 
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having the expected post-translational modifications of N-terminal acetylation (+42 Da) 

and trimethylation of K115 (+42 Da) (22).   

After submitting CaM to FPOP, we found evidence in the mass spectra for 

significant oxidative modification (Figure 2.2b) as mass shifts +16, 32, 48… Da.  The 

distribution of oxidation products is Poisson-like, serving as an indication that FPOP is 

fast and probed only a single state of the target protein.  This conclusion is consistent 

with recent results(25) showing that the distribution of oxidation products of CaM and 

two other proteins sensitive to oxidative-induced unfolding are well modeled by a 

Poisson distribution.  The conformation sampled by FPOP for these experiments is 

singular and invariant during labeling (i.e., the protein did not unfold on the labeling 

timescale).   

The abundances of the +16, +32, and +48 Da modification products, as estimated 

from their +15 charge state intensities (Figure 2.2b-d), show that slightly more protein is 

modified in the Ca2+-bound, ligand-free state than the Ca2+-free and Ca2+-bound CaM-

ligand states.  The Ca2+-free and Ca2+

Mascot processing of the LC-MS/MS data of the trypsin-proteolyzed FPOP 

samples showed 93% sequence coverage for the three CaM complexes. The 

aforementioned PTMs were also identified by using Mascot.  Of the 12 peptides 

identified, nine had product-ion spectra for both the oxidatively modified and unmodified 

-bound structures are markedly different.  Given 

that the global FPOP product distributions do not substantially distinguish these two, we 

turned to peptide and residue-level analysis for their and CaM-peptide complexes’ 

structural footprints. 

Information Content of LC-ESI-MS/MS proteolyzed FPOPsamples 



33 
 

forms for all samples, spanning over 70% of protein sequence. Calmodulin 38-74, a large 

tryptic peptide, was not detected probably owing to high retention upon sample handling 

and chromatography.  This peptide was not included among the peptides used for 

quantitative analysis. Small tryptic peptides from ligand peptides (Mel/Mas/M13) were 

also observed.  Owing to the excess ligand present at equilibrium prior to FPOP, labeling 

occurs for both bound and free ligands; their differential analysis is consequently not 

possible.  

Minimization of post-FPOP oxidative-modification bias  

Several factors give rise to post-FPOP oxidation on peptides, including 

methionine oxidation during proteolytic digestion, sample handling (26), and electrospray 

ionization (ESI) (27).  Of these modification-biasing signals, ESI-induced oxidation is the 

easiest to distinguish and thereby to be excluded in our analysis.  The reason that we are 

not misled by ESI-induced oxidation is the hydrophilicity of a peptide is nearly always 

increased with oxidative-modification so that its reverse-phase LC retention time is 

earlier than that of its unmodified peptide (Figure 2.3). We routinely observe this in all 

FPOP labeling experiments (data not shown).  As co-elution of an oxidized peptide with 

its unmodified counterpart is unlikely, we attribute any oxidatively modified peptides co-

eluting with the unmodified counterpart to ESI-induced oxidation. 

A recent study of post-FPOP sample handling showed that proteins stored in 

millimolar levels of hydrogen peroxide can oxidize while frozen and at lower 

temperatures (28).  As a precaution, we stored FPOP-treated samples at 4 °C after 

removing hydrogen peroxide with catalase immediately following FPOP labeling.  To 

this mixture was added free methionine to curtail further any post-FPOP oxidation (29).  
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Changes of modification at peptide and residue level  

The extents of modification can be compared for CaM in the presence of various 

peptides with and without bound calcium (Figure 2.4).  Comparisons between CaM-

Mel/Mas/M13 complexes (Figure 2.4b-d) and CaM (Figure 2.4a) reveal that CaM 

peptides fall into three groups as discussed in following paragraphs.   

Peptides 76-86, 78-86 and 31-37 belong to group I; they have similar trends of 

modification change for both CaM and CaM-Mel/Mas/M13 complexes.  Peptides 76-86 

and 78-86 peptides originate from the linker region of CaM and display increased 

labeling in their Ca2+-bound vs. the Ca2+-free states, whereas peptide 31-37 shows 

decreased labeling.  More importantly, their modification extents are invariant with 

addition of the peptide ligands (Mel/Mas/M13), indicating that the regions represented by 

these peptides are not directly involved in any CaM-Mel/Mas/M13 interaction.   

Peptides 14-21, 22-30, 107-126, and 127-148 belong to group II; they exhibit 

different labeling trends for the CaM-Mel/Mas/M13 complexes than for CaM itself. The 

extents of oxidative modification decrease for peptides 14-21, 107-126 and 127-148 

when complexed with peptide ligands (Figure 2.4b,c,d) compared to Ca2+

Group III peptides 1-13 and 95-106 do not share a single labeling trend when 

CaM binds to peptides.  The N-terminus peptide, 1-13, from CaM and the CaM-Mel 

-bound CaM in 

the absence of peptide ligands, where increases occur (Figure 2.4a).  Reverse trends 

pertain to peptide 22-30.  The most significant decrease in oxidative modification occurs 

for peptide 14-21.  The differential labeling between CaM and the CaM-Mel/Mas/M13 

complexes indicates that, upon forming the complexes, these regions of CaM are either 

buried allosterically or directly protected by the ligand. 
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bound complex (Figure 2.4a, b) show a decrease in oxidative modification whereas that 

peptide from CaM-Mas and CaM-M13 complexes (Figure 2.4c,d) undergo increased 

labeling.  For peptide 95-106, the trend for CaM, CaM-Mel, and CaM-Mas (Figure 

2.4a,b,c) showed decreased labeling whereas the CaM-M13 (Figure 2.4d) showed 

increased oxidative labeling.   

Taken together, we propose that the patterns for all nine peptides compose a 

unique “fingerprint” of the protein-ligand complex.  Although these data are not residue-

resolved, they are readily accessible for comparing structures of the complexes because 

the modification extent of a peptide is a function of the aggregate of its modifiable 

residues’ solvent accessibilities (Figure 2.5a).  Examining these fingerprints should 

establish whether the CaM-Mel/Mas structures are similar to the known structure of 

CaM/M13 complex. 

Turning to product-ion spectra (Figure 2.6), we identified 14 modified residues.  

Seven are at the N-terminal domain, two from the linker region, and five from the C-

terminal domain.  Nine have side chains that contain sulfur (M36, M76, M109, M124, 

M144, and M145) or aromatic rings (F16, F19, Y99), all of which are highly reactive 

with •OH.  The extent of modification is highest for Met (with modification fractions > 

0.2).  Five aliphatic amino acids (L4, I9, L18, I27, and I85) undergo detectable amounts 

of modification.  The relative modification yields between these residues agree well with 

those reported in previous studies of the •OH reactivity of amino acids (30) .  Although 

we can detect other low-abundance modifications, we did not include them because their 

assignments based on product-ion spectra were problematic.  Instead, we focused on the 

14 oxidized residues as a source of comparative structural information of CaM complexes 
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(Figure 2.7).  Peptides containing more than one highly reactive site and undergoing 

double modifications are considered separately.   

Higher resolution provided by residue level FPOP data taken by MS/MS should 

afford more detailed views of CaM-peptide complexes. Those “zoom-in” views help to 

elucidate residue-level interactions between the protein and the peptide ligand, a view 

that is missing in the peptide mass spectra.  In the case of peptide 14-21, its modified 

residues F16, L18, and F19, however, do not share the same trends shown for the full 

peptide.  L18 and F19 show higher modification levels for CaM than for the complexes, 

which is the same trend seen at the peptide level.  F16, however, is modified to nearly the 

same extent for CaM as for the complexes.  Thus, one model of complexation puts L18 

and F19 in direct interaction with the peptide ligand and F16 away from this interface.  

These data for peptide 14-21 show that analysis at the amino-acid level, made efficient 

because the modifications are irreversible, provides a more resolved picture of protein-

ligand interaction than methodologies that only use peptide-level data. Integrating high-

resolution views with a reference structure of CaM-M13 can allow the structures of 

unknown CaM-Mel/Mas complexes to be compared (Figure 2.5b).    

Spectral-contrast-angle comparison of the modification patterns of peptides 

At this point, one may conclude from analysis at both the peptide level and the 

amino-acid residue level that the modification extents in the peptide-bound and free states 

for the three complexes are similar.  To test more rigorously the similarity, we employed 

a spectral-contrast-angle (θ) analysis of the nine peptide modification trends. This 

spectra-contrast-angle approach can validate the comparison process by providing a 

confident value (θ) related to similarity. It was used previously to compare the product-
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ion spectra of oligodeoxynucleotide isomers (19) .  The changes of oxidative 

modification of the various peptides from CaM can be treated in similar way. Although 

the sequence coverage of the tryptic peptides is ~70%, this statistical approach still is 

suitable for making comparisons and does not require full coverage. For comparing the 

CaM-peptide complex with the peptide-free sample, the set of peptide signals can be 

represented as a basis vector in an N-dimensional space (ai).  In this analysis, each signal 

is the change in modification level for the calcium-bound vs. calcium-free state.  A 

comparison vector (bi) is comprised of the same signal data from a different sample 

replicate or CaM-peptide mixture.  The spectral-contrast-angle (Eq. 3) of these vectors 

provides a single parameter reflecting their similarity; as the similarity increases, θ 0.   

The first four entries in Table 2.1 are the average θ for the three pair-wise 

comparisons of replicates from the independent triplicates of a CaM-peptide or absent-

peptide FPOP experiments.  These entries provide an expectation level for near identity 

of θ < 35.  The θ determined from the average of each CaM vs CaM-peptide comparison 

is significantly larger (Table 2.1, 5th entry).  This implies a significant change in structure 

with peptide binding, as is expected, and the small standard deviation conveys the overall 

similarity of this change among the three peptide complexes.  The pair-wise comparisons 

between each CaM-peptide complex give an average θ, which is similar to the smallest 

angle from replicate experiments (Table 2.1 last entry).  This similarity further supports 

the conclusion that the two unknown CaM-peptide complexes have similar structures and 

that they resemble the known CaM-M13 structure.  We propose that this statistical 

approach is a useful means of comparing protein/ligand structures for a series of ligands 

when one structure is known and can be used as a reference. 
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Comparative structure assignment from FPOP data 

The approach of utilizing the “fingerprint” of changes in extent of modification at 

the peptide and residue levels is more empirical than but complements that of Chance and 

coworkers (31, 32) who showed that the combination of •OH surface mapping data with 

computational modeling provides important protein structural data.  Our approach not 

only allows conclusions about the similarities of the protein-ligand structures but also 

permits establishment of some structural details.  Proteins or peptides (including Mel, 

Mas) that bind to CaM are likely to bind to both N-term and C-term hydrophobic clefts 

by forming a long alpha helix in a manner similar to that of SK-MLCK M13 peptide (16).  

In addition to the NMR structure (PDB ID: 2BBM) of CaM-M13 complex, the structures 

of Ca2+-free CaM from NMR (PDB ID: 1CFD) and Ca2+-bound CaM from x-ray crystal 

structure (PDB ID: 1CLL) are also known (Figure 2.1).  The FPOP results for the 

established structure of the CaM-M13 complex provide a basis for a more detailed 

structural analysis.  For example, we see that L18, F19, M109, M124, M144 and M145 

from both N and C terminal domains of the three complexes are protected against •OH 

reaction upon complex formation with the various ligand peptides.  All six are 

hydrophobic and are located at the interface between CaM and M13, as seen in the NMR 

structure (Figure 2.5b).  M109, M124, M144 and M145 are located inside the 

hydrophobic cleft of the C-terminus and make contact with the M13 hydrophobic side 

chains.  For the CaM-M13 structure, L18 and F19, which are at the hydrophobic-cleft 
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center of the N-terminus, become less solvent-accessible when the Ca2+-bound CaM 

binds with M13.  On the other hand, F16 is not part of the hydrophobic cleft in the CaM-

M13 complex, but it is hydrophobic and close in proximity to L18 and F19 (Figure 2.5b).   

The L4 and I9 side chains have relatively similar solvent accessibilities in CaM 

and the CaM-M13 complex, suggesting that these residues share similar conformations in 

CaM and in the peptide complexes.  Two other interesting sites are I27 and Y99, which 

are located in the EF hands.  Y99 is in a short anti parallel beta sheet between adjacent 

calcium binding loops. The aromatic side chain of Y99 points outside the molecule. 

Owing to its high solvent accessibility and its inherent high •OH reactivity, this tyrosine 

residue is particularly sensitive to slight changes in structure. This suggests the peptide-

binding-induced deprotection with M13 and induced protection with Mel and Mas are 

small changes although significantly different.  I27, however, is on the small loop 

connecting two alpha helices of the first EF hand motif.  Its side chain is inside the 

hydrophobic cleft in all three of the high resolution CaM structures (Ca2+-free CaM, 

Ca2+-bound CaM and CaM-M13 complex), consistent with the low reactivity and lack of 

difference between Ca2+

Conclusion 

-loaded CaM and the peptide complexes.   

Comparison of FPOP data taken for a protein complex of known structure to the 

FPOP-induced modifications of unknowns by using spectral-contrast-angle provides a 

way to test whether a protein has similar or different structures when it binds to various 

ligands.  Specifically, a statistical analysis of the modification extent of peptide regions 

of CaM extricated by tryptic digestion shows that two peptide ligands (i.e., Mel and Mas) 

bind similarly in the presence of Ca2+ as does a third ligand (M13) that forms a known 
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structure with CaM. Although one could use other proteases in the digestion to obtain 

more peptides and thereby increase certainty, we did not do this to show that this 

comparative approach is effective for distinguish the structural differences even when the 

sequence coverage is not 100%. An advantage of FPOP coupled with MS is that one can 

examine the modification extents at the amino-acid level to identify those residues that 

are involved in the conformational changes induced by ligand binding.  Those residues 

that show differential modification levels in the structure of CaM-M13 complex are those 

that are expected on the basis of the high resolution 3D structure from NMR.   

The MS-based FPOP method has the ability to probe structures on a comparative 

basis for small amounts of protein (pmoles) in relatively short times (fractions of a week) 

compared to NMR or X-ray crystallography.  These simple comparisons may have 

application in screening many protein/ligand interactions including those in drug 

development. The FPOP data serve as a “fingerprint” for the ligand interactions.  

Combining the “fingerprints” with those from H/DX, specific chemical modification 

(e.g., acetylation of Lys), and cross linking can give detailed information about protein-

ligand interactions with reasonable throughput.   
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Figure  2.1.  3D structure of CaM and CaM-peptide complex: Ca2+-free CaM structure 

from the average NMR structure (PDB ID: 1CFD).  Ca2+-bound CaM structure from the 

x-ray crystal structure (PDB ID: 1CLL).  Ca2+-bound CaM-M13 complex structure from 

the average NMR structure (PDB ID: 2BBM).  M13 peptide is in pink.  Ca2+

 

 is displayed 

as yellow balls.   
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Figure 2.2.  ESI Q-TOF mass spectrum: (a) Ca2+-bound CaM (b) Ca2+-free CaM in 

extended view (c) Ca2+-bound CaM in extended view (d)Ca2+

 

-bound CaM-Mel in 

extended view (e) deconvoluted spectrum of CaM. 
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Figure 2.3.  LC-MS results of CaM FPOP samples.  (a) The Total Ion Chromatogram 

(TIC) of LC-MS experiment with all peptide peaks were labeled with different retention 

time. (b) Extracted Ion Chromatogram (EIC) of peptide 31-37 using doubly charged ion. 

(c) EIC of oxidized peptide 31-37 from doubly charged ion.   
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Figure 2.4.  Changes of modification extent from Ca2+-free to Ca2+-bound states for 

various CaM tryptic peptides from different CaM complexes.  (a) CaM itself, (b) CaM-

Mel Complex,  (c) CaM-Mas Complex, (d) CaM-M13 complex.   
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Figure 2.5.  FPOP footprinting results on CaM structures. (a) Changes of oxidation are 

labeled on peptides with different color. M13 is black. (b) Bottom view of CaM-M13 

complex.  Residues in pink are several modified residues detected by LC-MS experiment. 

M13 is in the center of structure with ball shape.  
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 Figure 2.6.  Mass spetra of modified peptide: (a). Mass spectra of peptide 31-37 (doubly 

charged), unmodified peptide (top), and modified peptide (bottom). (b). Product-ion 

spectra (MS/MS) of unmodified (top) and modified (bottom) peptide 31-37.  All ions 

with +16 mass shift induced by FPOP are in red.   
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Figure 2.7.  Extent of modification for Ca2+-free (white) and Ca2+

 

-bound (black) states of 

each modified residue for various CaM complexes.  (a) CaM itself (b) CaM-Mel 

Complex (c) CaM-Mas Complex (d) CaM-M13 complex.   

 

 

 

 

 

 

 



53 
 

Table 2.1.  Spectral Contrast Angle Similarity Evaluation on Changes of Oxidation 
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Chapter 3 

Mass Spectrometry-Based Protein Carboxyl-

Group Footprinting:  A Study of the Method  
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Abstract 

Higher order structure is important in determining the function of proteins in 

biology, and a variety of approaches have been employed to obtain complementary 

structural information about proteins. Mass spectrometry-based protein footprinting is a 

fast-growing approach in structural studies of proteins. One labeling-based footprinting 

approach is the use of a water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC), in the presence of a glycine ethyl ester (GEE) to modify solvent-

accessible carboxyl groups (i.e., on glutamate [E] and aspartate [D]).  This chapter 

describes the development of carboxyl-group modification in protein footprinting. The 

modification protocol was developed by using the protein calmodulin as a model. 

Because carboxyl-group modification is a slow reaction relative to protein folding and 

unfolding, there is an issue that modifications at certain sites may induce protein 

unfolding and lead to modification at sites that are not solvent-accessible in the wild-type 

protein.  Thus, we checked the protein structural integrity during carboxyl group 

modification by using hydrogen deuterium amide exchange (H/DX). The study 

demonstrated that application of carboxyl group modification in probing conformational 

changes in calmodulin induced by Ca2+

Introduction 

 binding provides useful information that is not 

compromised by labeling-induced protein unfolding.  

To analyze the outcome of protein footprinting by MS, the protein must be 

separated from its biological matrix, which is essential for its activity and for maintaining 

its active conformation. Such separation could affect the MS analysis of the footprinting 

product if the labeling is reversible. Both MS-based H/DX and hydroxyl-radical 
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footprinting are limited in some applications that require extensive post-labeling 

separation (1-3). For example, MS-based H/DX requires a rapid separation to avoid the 

back exchange. A protein in a complicated biological system (e.g., a protein embedded in 

a membrane) is a challenge for rapid separation. Extensive post-labeling separation could 

induce a false readout in hydroxyl radical footprinting by adding additional oxidations (4). 

Even with the development of efficient separation techniques such as UPLC, studies of 

complicated membrane proteins by MS-based H/DX and hydroxyl radical footprinting 

are still difficult. Thus, the general application of protein footprinting in complicated 

biological systems is still a challenge.  

One applicable approach for specific, irreversible modification is the 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (EDC) mediated coupling reaction between glycine 

ethyl ester (GEE) and the carboxyl group of a protein (5, 6)(Figure 3.1). The carboxyl 

groups of protein are activated by EDC, and then the nucleophilic modifying reagent, 

GEE, attacks the activated carboxyl group to yield the product. This reaction can lead to 

quantitative modification of solvent-accessible carboxyl groups under mild conditions20

A footprinting strategy based on modifying carboxyl groups appears appropriate 

because aspartate and glutamate side chains play important roles in electrostatic 

interactions and are essential for enzymatic activities in cells. This GEE coupling reaction 

has been successfully used in probing the enzymatic activity of the mammalian 

polyamine transport system, pancreatic phospholipase, thymidylate synthase, and 

cytochrome c oxidase (7-10).  

. 

The covalently labeled amide product and its hydrolyzed form are relatively stable in 

solution and can readily remain intact during extensive sample handling and separation.  



57 
 

Coupled with MS analysis, carboxyl-group modification can probe protein 

conformation. A previous study from our group demonstrated the application of 

carboxyl-group modification in determining the membrane orientation of the FMO 

antenna protein in the green sulfur bacterial photosynthetic system from Chlorobaculum 

tepidum (11). After footprinting, the modified FMO protein was separated and analyzed 

by MS. Information about FMO orientation in the membrane was elucidated by analysis 

of modification extent at the peptide level. Two advantages of carboxyl group 

modification—it is specific to carboxyl groups of protein and results in a relatively stable 

modified product—make this approach attractive for the study of protein conformation.  

Here, we describe a systematic development and test of this protein footprinting 

approach. The reaction rate of carboxyl-group modification was examined under different 

conditions. The developed protocol was based on a model protein, calmodulin, but now 

can be used as starting point in designing new footprinting reagents. We used H/DX as a 

protein structure integrity check method during the carboxyl-group modification. We 

address the question of whether carboxyl-group modification can provide conformational 

information for aspartates and glutamates at the residue level in a manner that is 

complementary to the other protein footprinting methods.  

Material and Methods 

Chemicals and Proteins  

Calcium free calmodulin (CaM) from bovine and troponin C (TnC) from rabbit 

skeletal muscle were obtained from Ocean Biologics Co. (Edmonds, WA). Water, 

acetonitrile, calcium chloride, phosphate-buffered saline powder, MES (2-(N-

Morpholino)ethanesulfonic acid), HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
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acid), formic acid, glycine ethyl ester, EDC (1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride, (ethylene glycol-bis(2-aminoethylether)-N,N,N`,N`-tetra-

acetic acid) (EGTA), ammonium acetate, urea solution (8 M), trifluoroacetic acid, β-

lactoglobulin A from bovine milk, trypsin from porcine pancreas were all obtained from 

Sigma-Aldrich (St. Louis, MO).  

Protein Sample preparations 

A protein stock solution was prepared as 10 μM protein in 10 mM phosphate 

buffered saline (PBS buffer, 138 mM NaCl, 2.7 mM KCl, pH = 7.4). The calcium-free 

CaM samples were prepared by incubating with EGTA as per a previously reported 

protocol(12).   

Carboxyl Group Modification 

Protein samples (10 μL) were mixed with GEE (2 M in water) 1 µL and EDC (50 

mM in water) 1 µL to initiate the reaction at room temperature (21.6 °C). The reaction 

was quenched by adding 20 μL ammonium acetate (1 M). After modification, all samples 

were kept at 4 °C. In the pH-dependence experiments, protein samples in a variety of 

buffer systems, MES/NaOH (pH = 5.5), PBS (pH = 6, 6.5, 7, 7.5), HEPES (pH = 8, 8.5) 

were prepared and modified in an identical way.  

MS of modified protein  

ESI mass spectra were acquired in the positive-ion mode on a Waters (MicroMass) 

Q-TOF Ultima (Manchester, U.K.) and a Bruker MaXis Q-TOF (Bremen, Germany). The 

instrument setup for Waters Q-TOF for protein analysis was similar to the previous 

protocol (12).  
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For the Bruker MaXis Q-TOF, the capillary voltage was 3.8-4 kV, nebulizer gas 

was 0.6 bar, dry gas was 6.0 L/min, and the source temperature (dry temperature) was 

180-200 °C. The protein sample (10 pmole) was loaded on a C8 rapid-resolution 

cartridge (ZORBAX Eclipse XDB-C8, 2.1 x 15 mm, 3.5 μm, Agilent Technologies, 

Santa Clara, CA). The protein was eluted at 200 uL/min with a LC gradient (Agilent 

1200 HPLC, 5 % - 15 % B in 0.3 min, 50 % B in 5.5 min, 100 % B in 6-7.5 min then 

back to 5% B in 9.5 min, solvent A: water, 0.3 % formic acid; solvent B: 80%  

acetonitrile, 20% water, 0.3% formic acid).   

CD experiment  

CaM samples, unmodified native and modified (reaction time 90 s), were desalted 

to remove extra ammonium acetate. CD spectra were measured at room temperature from 

195-300 nm wavelength at 1 nm intervals by a JASCO J815 CD spectrometer (JASCO 

Analytical Instruments, Tokyo, Japan).  

H/DX experiment  

Protein samples (2 μL, 10 μM) were mixed with PBS D2

The digestion of CaM samples was conducted according to a previously reported 

protocol with minor changes (12). The labeled protein sample was mixed with trypsin 

(trypsin: protein = 1:10) without heating or denaturation. LC-MS/MS of the protein 

O buffer (18 μL). The 

hydrogen deuterium exchange was conducted on ice. Exchange was quenched by adding 

30 μL 3 M urea solutions with 0.1% trifluoroacetic acid at 0 °C. H/D exchanged samples 

were directly desalted by LC at 0 °C and analyzed by MS to minimize any back exchange.  

Typsin digestion, LC-MS/MS and data analysis  
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digest and data analysis were similar to the previously reported approach (12). Changes 

were made to search for carboxyl-group modifications instead of FPOP modifications.  

Solvent accessible surface area (SASA) calculation  

The side-chain solvent accessibility of calcium-free and bound CaM were 

calculated by using the structures determined by NMR spectroscopy or X-ray 

crystallography. PDB files of calcium-free CaM (PDB ID: 1CFC) and calcium-bound 

CaM (PDB ID: 1CLL) were submitted to GETAREA 1.0 

(http://curie.utmb.edu/getarea.html) for calculation of individual side chain SASA (13).   

Results and Discussion 

Workflow of Post Labeling MS Analysis  

We analyzed the outcomes of protein footprinting MS at both the protein and the 

amino-acid residue levels. At the protein level, we used desalted protein samples and 

directly analyzed them by ESI MS. Peaks corresponding to unmodified and modified 

proteins allowed a comparison of the modification extents for different protein states. In 

the method development, we optimized the modification conditions based on MS analysis 

at the protein level even though the results cannot provide information about local 

conformational changes of the protein. To probe changes in local conformations, we 

digested the protein and analyzed the resulting peptides by LC-MS/MS, using a typical 

label-free, quantitative-analysis approach from proteomics. We used both calcium-free 

and calcium-bound CaM samples to obtain information at the amino-acid residue level.  

Modification Conditions for Protein Footprinting 
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Labeling protein in biological relevant settings should be the first step in protein 

footprinting. The modification experiment usually generates a mixture of unmodified and 

modified species. To calculate the modification extent, good MS signals for both the 

unmodified and modified species are essential. Tuning of the modification condition is 

required for generating the desired amount of modified species for MS analysis.  Ideally, 

one would aim for a “single hit” in the modification as this would guarantee that the 

footprinting does not induce unfolding and lead to misleading subsequent modifications.  

Single-hit modifications are not practical because analysis is difficult. 

The coupling reaction between the carboxyl group and GEE is initiated by the 

attachment of the protein to EDC. The next step involves attach of the carboxyl group to 

form an O-acylisourea. The nucleophilic GEE attacks the activated carboxyl group to 

yield the desired amide and urea. The rate of this coupling reaction depends on the 

reagent ratio, solvent conditions, and the solvent accessibility of the acid residues of the 

target protein (Figure 3.2).  

Carboxyl groups of CaM were modified with excess amounts of GEE and EDC 

(CaM : GEE:EDC = 1:20000:500) in PBS buffer at room temperature with different 

reaction times.  For each charge state, the peaks representing the modified protein show 

mass shifts of 85 Da (amide form) and 57 Da (hydrolyzed form of amide product) (Figure 

3.3). With increasing reaction time, multiple peaks for the modified protein (+2GEE, 

+3GEE, +4GEE, +5GEE) became intense in a sequential manner. The results show that 

the GEE coupling reaction efficiently modified CaM within a timescale of minutes.  
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The pH of solvent has a major effect on the reaction rate. We examined this effect 

by modifying CaM at different pHs (from 5.5 to 8.5). The results show that the rate of the 

coupling reaction can be accelerated by lowering the pH (Figure 3.4). In addition to 

affecting the coupling reaction, lowering the pH promoted the hydrolysis of the amide 

product formed in the modification. If the GEE coupling reaction is to be used in probing 

protein conformational changes that require pH variation, special attention is required to 

adjust the reaction time. Similarly, lowering the temperature can dramatically reduce the 

rate of the coupling reaction (Figure 3.5).  

The rate of the GEE coupling reaction is also affected by protein structure. We 

chose three proteins, CaM, BlG, and TnC, as models to be modified by carboxyl-group 

modification. Although these three proteins have similar sizes, CaM and TnC have more 

flexible structures (14-19), whereas BlG has a more compact and rigid structure owing to 

two pairs of disulfide linkages(20). At the same reaction times, higher levels of multiply 

modified species were observed for CaM and TnC samples (up to protein + 4 GEE) than 

for the BlG sample (up to protein + 2 GEE).  The modification conditions that we 

established for the CaM protein can serve as a good starting point for optimization in 

other applications of carboxyl-group modification in a biologically relevant setting.  

Ensuring the Protein’s Structural Integrity   

Ensuring a protein’s structural integrity is a major concern in labeling-based 

protein footprinting (6).  Covalent labeling can cause conformational changes by 

breaking protein noncovalent interactions (“over labeling”). The readouts of over-labeled 

samples will result in misleading conclusions about protein conformation. Various 

approaches can be employed to check the structural integrity following a modification: 
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examples are circular dichroism (CD)(21), fluorescence spectroscopy(22), and activity 

assays.  Another approach measures the reaction kinetics for individual modification sites 

(23) or the modification pattern at the protein level(24).  The premise is that the modified 

protein should show the same chemical reactivity as the unmodified version. 

CD spectroscopy is the most common check because it is sensitive to variations in 

protein secondary structure (25). In the development of carboxyl-group footprinting, we 

analyzed both native and modified CaM (reaction time 90 s) by CD (Figure 3.6). Typical 

α helix CD curves were observed for both samples. No change occurred in the CD 

spectrum of modified CaM. The result shows that no significant secondary structural 

change happened in the time scale of modification. In labeling-based protein footprinting, 

the protein sample is a mixture; that is, it contains both unmodified and modified species. 

The majority of the proteins in the mixture is still in an unmodified, native form. Any 

conformational changes from the small portion of the sample undergoing the 

modification could be overlooked in the CD spectrum.  

Alternatively, MS analysis can identify unmodified and modified species in the 

mixture of modified and unmodified proteins. Is it possible to employ a second MS-based 

footprinting method to check for any conformational changes that occur during carboxyl-

group modification?  H/DX is an ideal protein footprinting method for this purpose 

because the replacement of H by D induces minimal structural disturbance (26). The 

deuterium uptake of each modified protein state, as well as of the unmodified protein 

state, can be monitored separately by MS. More important, the H/DX outcome is directly 

measured as a mass shift of the protein. Any ionization bias induced by the carboxyl-

group modification can be ignored in the H/DX experiment.  
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We analyzed by H/DX three protein samples, CaM, BlG, and TnC, after their 

carboxylate footprinting (Figure 3.7). The unmodified-protein and each modified-protein 

state share a similar deuterium uptake curve. The results provide additional and more 

convincing evidence that no major conformational change occurs during the timescale of 

carboxyl-group modification.   The relatively simple design and high sensitivity to each 

modified protein state make this H/DX check attractive in the field of protein footprinting. 

With the fast peptic digestion protocol developed for the H/DX experiment, a more 

detailed check on the local conformational change than that provided by CD is available, 

and it should be a powerful control that can be used for the development of other protein 

footprinting strategies.  

GEE labeling probes conformational changes  

CaM is a small calcium-binding protein that has two domains; in each domain are 

two typical EF-hand motifs (helix-loop-helix unit) that bind calcium ions by electrostatic 

interactions (27). Calcium-binding EF hand motifs are rich in negatively charged 

glutamates, and aspartates. In the typical EF hand motif, the co-ordination of a calcium 

ion contains seven ligands arranged in a pentagonal bipyramidal fashion (28). Among 

these seven co-ordination sites, five are from the nine-residue loop and two are side 

chains of amino acids in the helix. In the nine-residue loop, three or four coordination 

sites are the carboxyl groups of aspartates or glutamates and one is a backbone carbonyl 

group.  CaM undergoes conformational changes upon calcium binding, and these changes 

activate its binding domain for target proteins in downstream signal transduction. 

We used carboxyl-group modification to probe the conformational changes 

induced by Ca 2+ binding and found a total of 30 modified aspartates or glutamates in the 
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CaM sequence. This coverage enables a thorough comparison of the modification extents 

of calcium-free and calcium-bound CaM.  We compare the calculated SASA of calcium-

free and bound-CaM in Figure 3.8 to see if they agree with the changes in the extent of 

modification.  The calculated SASA of aspartates or glutamates from those EF hands that 

coordinate Ca2+

Residues E11, D78, D80, E114, E118, E119, and E123 show significant 

differences between the modification extents and calculated SASA changes. These 

differences may originate from the dynamics of CaM solution structures. Calcium-free 

CaM has a flexible structure in solution, and its central linker region can be bent to 

 show significant decreases upon calcium binding. Similar trends in the 

modification extents occur for aspartate and glutamate residues from the other EF hands 

(Figure 3.9). Although the absolute SASA values and the modification extents are 

different, the decreases induced by calcium binding are clear. For those residues that 

undergo high modification extents (e.g., EF hand 1), the difference in modification 

extents between the calcium-free and calcium-bound CaM is statistically significant (99.5% 

confidence level in T-test).  An exception is E104 of EF hand 3 where there is no 

difference in the modification extent between the calcium-free and calcium-bound CaM. 

The lack of difference may be masked by the experimental error owing to the low 

modification extent and the poor S/N. The experimental errors from three biological 

replicas are from 0.5% to 5% (a total of 30 modified residues have an average error ~2%) 

in modification extent. This exception emphasizes again that adjusting the modification 

conditions is important for a successful footprinting experiment. For example, to 

differentiate the change of modification extent at the sites of low modification extent, 

adjusting the modification condition is required to increase the modification extent.     
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accommodate different relative positions of the N- and C-terminal domains (29). The 

calcium-bound CaM, however, has a relatively rigid solution structure (14). The central 

linker forms a seven-turn α helix that connects the two domains. All residues with 

inconsistent outcomes between modification extents and calculated SASA are from 

regions of the protein that are close to the central linker region (Figure 3.10). The highly 

flexible properties of CaM in the central linker region could result in inconsistent 

readouts from different measurements. The extent for carboxyl-group modification is an 

average over protein conformational dynamics during the reaction time whereas the 

calculated SASA results from the different 3D model of protein structures (calcium-free 

CaM model from NMR spectroscopy (29) and calcium-bound CaM model from X-ray 

crystallography(14)). The protein model from X-ray crystallography is a “snap shot” of 

the protein conformation in crystalline solid state whereas the model from NMR is an 

integrated picture from solution.  

The conformational effects of calcium binding on the EF-hand regions can be 

detected by the carboxyl-group modification at the residue level for aspartates and 

glutamates. Those effects were not seen in an FPOP approach to the same system (12). 

H/DX showed similar conformational variations induced by calcium binding at the EF 

hands (30, 31).  The results from H/DX, however, are not at the amino-acid residue level. 

Compared with other footprinting methods, carboxyl-group modification is sensitive to 

the conformational changes of the protein’s carboxyl side chains and capable of 

providing results at the residue level. More importantly, this approach provides protein 

conformational information that is complementary to that from other approaches.  

Conclusion  



67 
 

We studied carboxyl-group modification by using three model protein systems. A 

sufficient amount of modified species can be reached in a biologically relevant setting by 

adjusting the modification conditions. Under these conditions, no major conformational 

change occurred during the time scale of the carboxyl-group footprinting as determined 

by H/DX. This carboxyl-group footprinting approach is sensitive to the conformational 

changes in carboxyl side chains of the protein and can report, for example, the 

conformational variations induced by calcium binding at the EF hand region of CaM. 

Carboxyl-group modifications provide structural information that is complementary not 

only to traditional structural biology methods (e.g., NMR and X-ray) but also to other 

protein footprinting approaches (e.g., FPOP and H/DX). 
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Figure 3.1. Carboxyl group modification. Carbodiimide (EDC) mediates the 

incorporation of glycine ethyl ester (GEE) to the carboxyl group of aspartate or glutamate 

side chains.  
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Figure 3.2. Reaction mechanism of EDC mediated GEE coupling.  
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Figure 3.3.  Mass spectra of modified CaM samples at different reaction times. CaM was 

labeled (CaM:GEE:EDC = 1:20000:500) in PBS buffer. Resulting CaM samples were 

desalted and analyzed by a QTOF mass spectrometer to compare modified CaM samples 

(+15 charge state) at different reaction times. The unmodified protein state and each 

modified protein state are highlighted by different colors.  
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Figure 3.4. Mass spectra of modified CaM in different pH buffer systems. Modified CaM 

samples (+15 charge state) were compared (the unmodified and each modified protein 

state are highlighted by different colors). 
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Figure 3.5.  Mass spectra of modified CaM samples at different temperatures. CaM was 

labeled (CaM:GEE:EDC = 1:20000:500) in PBS buffer. Resulting CaM samples were 

desalted and analyzed by a QTOF mass spectrometer to compare modified CaM samples 

(+15 charge state).  
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Figure 3.6. CD spectra of unmodified and modified CaM samples. Native CaM and 

modified CaM (reaction time 90 s) samples were desalted and then analyzed by CD.   
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Figure 3.7.  HDX results of modified CaM, BlG and TnC, as analyzed by an H/DX 

experiment. The deuterium uptakes of unmodified protein state as well as each modified 

protein state were monitored separately. Extended views of the modified-CaM spectra 

with different exchange times are listed on the left. The deuterium uptake plots of three 

modified protein are on the right.   
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Figure 3.8. The modification extent and calculated SASA of apartate and glutamate 

residues detected by LC-MS/MS experiment. Two CaM samples, calcium-free and 

calcium-bound CaM, were analyzed. The modification extent of each detected aspartate 

and glutamate residue was plotted on the top panel, and calculated SASA values from 

calcium-free CaM (PDB ID: 1CFC) and calcium-bound CaM (PDB ID: 1CLL) were 

plotted on the bottom for reference.  
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Figure 3.9. The modification extent and calculated SASA of apartate and glutamate 

residues from CaM EF hand regions. The modification extents of each detected aspartate 

and glutamate residues from EF hand regions were plotted. Calculated SASA values 

plotted for reference.   
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Figure  3.10. The 3D models of calcium free CaM. Two conformations of calcium free 

CaM from NMR spectroscopy were displayed. The apartate and glutamate residues from 

EF hand regions were labeled in stick model with green color. The aspartate and 

glutamate residues with inconsistent outcomes between modification extents and 

calculated SASA values were labeled in stick model with red color. 
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Chapter 4 

Carboxyl Group Footprinting Maps the 

Dimerization Interface and Phosphorylation-

induced Conformational Changes of a 

Membrane-associated Tyrosine Kinase 

 
 
This chapter is based on recent publication: 

H. Zhang, W. Shen, D. Rempel, J. Monsey, I. Vidavsky, M. L. Gross, R. Bose, Mol Cell 
Proteomics. 2011. 
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W.S., J.V. performed research; H.Z., D.R., I.V. contributed analytic tool; H.Z., W.S., 
D.R., J.M. analyzed data; H.Z., W.S.,D.R.,J.M., I.V., M.L.G., R.B. discussed results; and 
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Abstract  

Her4, a receptor tyrosine kinase, is mutated in malignant melanoma and lung 

cancer.  Following binding of its growth-factor ligand, Her4 dimerizes, 

autophosphorylates, and activates several intracellular signaling pathways. To understand 

the dimerization and phosphorylation and to provide a fundamental basis for drug design 

and therapeutic intervention in cancer, we implemented footprinting of Her4 kinase 

domain.We used a water-soluble carbodiimide, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC), in the presence of glycine ethyl ester (GEE), 

to modify solvent-accessible carboxyl groups from glutamate and aspartate. Digestion 

and LC-MS/MS of the modified Her4 kinase monomer, homodimer, and the homodimer 

that was phosphorylated on the activation loop provide information to map the 

dimerization interface and to determine phosphorylation induced-conformational changes.  

Thirty seven glutamate/aspartate residues were modified, and four residues showed 

reduced extents of modification in the Her4 dimer as compared to the monomer. Three of 

the residues (Glu-690, Glu-692, and Glu-912) are at the dimer interface, on the basis of 

prior protein crystallography, and one residue (Asp-853) is on the activation loop. The 

footprinting results confirm the existence of the Her4 kinase domain asymmetric dimer in 

solution. Further investigation of the Her4 kinase domain conformational changes during 

autophosphorylation showed that Her4, when phosphorylated at Tyr 850, undergoes less 

modification on three residues in the activation loop and this suggests that 

phosphorylation causes this loop to become less flexible. We extended this footprinting 

approach to measure the dimer association constant for the Her4 kinase domain. 

Mathematical modeling of titration curves that show modification extent as a function of 
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protein concentration afforded a Her4 kinase domain dimer association constant in the 

range 1 × 108 to 4.5 × 108 M-1

Introduction 

.  The results show that carboxyl group footprinting is an 

effective means to study membrane-associated Her family homodimers and may be 

generally useful for other membrane proteins.  

Her4 is a transmembrane receptor tyrosine kinase that plays a vital role in the 

cardiovascular system, nervous system, and other tissues(1, 2).  Her4 (also called ErbB-4) 

binds the neuregulin family of growth factors.  Genetic knock-out of Her4 in mice results 

in embryonic lethality due to malformations of the heart and hindbrain(3).  Her4 

functions by binding the neuregulin growth factors, dimerizing, activating its tyrosine 

kinase domain, and phosphorylating Tyr residues on Her4 itself and on downstream 

signaling proteins.  Protein crystallography showed those regions in both the extracellular 

domain and kinase domain that contribute to Her4 dimerization(4, 5). The kinase domain 

dimerization contacts are particularly interesting because they mediate an allosteric 

activation of the Her4 tyrosine kinase domain(6).  The Her4 kinase domain dimer is 

asymmetric  where a surface on the N-lobe of one kinase monomer (involving residues 

680-691 and 734-745) contacts a surface on the C-lobe of the other kinase monomer 

(involving residues 910-960).  This dimer interface was identified on the basis of crystal 

packing interactions in the Her4 crystal structure(5), but the interface has not yet been 

verified to exist in solution.  Two important questions are: what is the affinity of this 

dimerization in solution and how does the subsequent phosphorylation step change the 

conformation of the Her4 kinase domain?  We propose that footprinting mass 
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spectrometry can address these questions, and we report the implementation of a suitable 

method in this article. 

Footprinting to probe protein structure has been rapidly developing over 20 

years(7). Notable approaches include acetylation (8), amide hydrogen/deuterium 

exchange(H/DX)(9), and hydroxyl radical footprinting(10). MS-based footprinting 

methods have been successful for monitoring protein folding/unfolding dynamics(11), 

characterizing protein-ligand interaction(12, 13), and protein oligomerization(14). For 

probing complicated systems, such as membrane-associated proteins, H/DX suffers 

limitations due to significant back exchange accompanying the demanding post-labeling 

purification.  Similarly, for hydroxyl radical based footprinting, an extra purification step 

(e.g., SDS-PAGE) may induce false readout in oxidations(15).  Nevertheless, 

improvements in H/DX(16) and hydroxyl radical based footprinting (17, 18) methods 

show promise in probing membrane proteins.  

Although less general than H/DX and radical footprinting,  labeling of carboxyl 

groups by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)-mediated 

incorporation of glycine ethyl ester (GEE) is a possible alternative(19). Carboxyl groups 

of protein are activated by the carbodiimide, and then the nucleophilic reagent, GEE, 

attacks the activated carboxyl group to form products (Figure 4.1A).  The properties of 

this reaction make it appropriate for probing proteins in complicated systems. The 

coupling reaction is highly efficient in biologically relevant buffer systems (20). 

Biological mixtures can be directly modified without pre-separation of the proteins, 

affording an opportunity to probe proteins in their native state.  Irreversibly modified 

products survive any intensive post-labeling purification. An example of this approach is 
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the determination of the membrane orientation of the FMO antenna protein in 

photosynthetic Chlorobaculum tepidum (21).  

In this paper, we applied carboxyl group footprinting to study the conformational 

changes of Her4 kinase domain upon dimerization and phosphorylation when the protein 

is bound to the surface of a liposome, which serves as a model for the membrane system.  

To our knowledge, this is the first reported investigation in solution of Her4 dimerization 

and phosphorylation-induced conformational changes. We expect that differences in the 

modification extent between Her4 monomer and dimer will show the existence of a Her4 

asymmetric dimer in solution and provide information about the dimerization interface. If 

tyrosine (Tyr-850) phosphorylation indeed induces conformational changes on the 

activation loop, the carboxyl group footprinting should report this and provide a deeper 

understanding the Her4 kinase domain dimerization. Moreover, using the carboxyl group 

modifications in a self titration format, we hope to develop a means to determine the 

association constant for Her4 kinase domain dimerization. Success of this approach to 

study the Her (ErbB) family homodimers offers promise for understanding the 

physiology of cardiovascular and nervous system and for developing new cancer 

treatments.      

Material and Methods 

Chemicals and Reagents 

Dioleoyl-phosphatidylcholine (DOPC) and nickel-1,2-dioleoyl-sn-glycero-3-([N-

(5-amino-1-carboxypentyl)iminodi acetic acid]succinyl)-nickel salt (Ni-NTA-DOGS) 

were purchased from Avanti Polar Lipids (Alabaster,AL). Water, acetonitrile, formic acid, 

glycine ethyl ester, EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, 
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ammonia acetate, trypsin from porcine pancreas were obtained from Sigma-Aldrich (St. 

Louis, MO).  The peptides LLEGDEKEYNADGGK and LLEGDEKEY(Phos)NADGGK 

were synthesized by GenScript USA Inc. (Piscataway, NJ). 

Protein expression and liposome preparation 

The protocols for Her4 protein expression and liposome preparation were 

previously reported (6). All protein and liposome preparations in this experiment 

followed this protocol without modification.  Nickel-liposomes contained 95 mol% 

DOPC and 5 mol% Ni-NTA-DOGS.  Control liposomes contained 100 mol% DOPC.  

Her4 residue numbering is based on the mature, full length protein minus its signal 

peptide and matches the numbering used by Qiu et al.(5).  

Protein dimerization and phosphorylation 

Protein stock solutions were prepared so that they contained 20 mM Tris-HCl, 

150 mM NaCl, 1 mM DTT (pH 8.0). Dimerization experiments started by equilibrating 

protein with nickel liposomes for 15 min on ice.  Protein phosphorylation was initiated by 

adding ATP and MgCl2 to the protein dimer solution (final concentration 100 μM ATP 

and 10 mM MgCl2

10 μL of 2.5 μM Her4 sample in 20 mM Tris-HCl, 100 mM NaCl, pH 7.5 in 0.5 

mL Eppendorf protein LoBind tube (Eppendorf North America, Hauppauge, NY) were 

prepared for the modification reaction.  0.5 µL of GEE stock solutions (2 M in water) 

with 0.5 µL of EDC stock solution (50 mM in water) were mixed to initiate the reaction.  

The reaction was quenched at 10 min by adding an equal volume of 1 M ammonium 

).  After 5 min incubation on ice, phosphorylation samples were ready 

for modification without quenching. 

Carboxyl group modification reaction 
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acetate.  For chemical modification of a synthetic peptides, the peptides were kept at 5 

nM in Tris (20mM Tris-HCl, 100mM NaCl, pH 7.5). The reaction was conducted under 

identical conditions as above. In titration experiments, Her4 samples with different 

protein concentrations (from 0.0375 to 1.25 μM) were used in the modification reaction.   

  

Gel separation and in-gel trypsin digestion 

Immediately after the carboxyl group modification,the reaction was quenched by 

ammonium acetate.  A 5X SDS-PAGE sample loading buffer, containing DTT as the 

reducing reagent, was mixed with each sample and the mixture was boiled for 3 min. The 

samples were loaded into 10% SDS-PAGE gel. The gel was stained by SimplyBlue 

SafeStain (Invitrogen, Carlsbad, CA).  In-gel digestion was performed as per the method 

of Shevchenko et al. (22) except  the extraction of peptide digestion products was 

modified. Extraction buffer A (5% formic acid, 0.1% trifluoroacetic acid and 50% 

acetonitrile in water) was added to each tube (solution:gel = 2:1 v/v), and the tube 

submitted to shaking in Thermomixer (Eppendorf North America, Hauppauge, NY) at 

room temperature for 10 min. The supernatant was collected in an Eppendorf protein 

LoBind tubes. The second extraction was done the same way by using extraction buffer B 

(5% formic acid and 0.1% trifluoroacetic acid in acetonitrile).  The supernatants were 

combined and dried with a speed vacuum.  

ESI-MS of Her4 protein 

 ESI mass spectra were acquired in the positive-ion mode on a Waters 

(MicroMass) Q-TOF Ultima (Manchester, U.K.) equipped with a Z-spray ESI source. 

The Instrument parameter setup and trap column desalting for protein analysis were 

reported previously(8). 
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Circular Dichroism 

Samples of Her4 for which the carboxyl group was either unmodified or modified 

were dialyzed into a CD Buffer (10 mM NaPO4, pH = 7.2, 5 mM NaCl) by using 

Amicon Ultra 10k spin-concentrators and centrifuging the samples to ~100 μL and filling 

the concentrator with CD Buffer three times.  The samples, ~2 µM, were transferred to a 

1 mm path length quartz cell.  CD spectra were measured at room temperature from 195-

260 nm wavelengths at 1 nm intervals in a JASCO J715 CD spectrometer (JASCO 

Analytical Instruments, Tokyo, Japan).  Three scans were taken and averaged, then 

corrected with a buffer blank.  The protein concentration was determined by the Bradford 

assay by using BSA as a standard. 

LC-ESI-MS/MS of Her4 tryptic peptides 

Peptide samples from the in-gel digestion were reconstituted with 20 μL water 

containing 0.1% trifluoroacetic acid. C18 zip tips (Millipore Co., Billerica, MA) were 

used to remove salts. The peptide sample was eluted with 75% acetonitrile 25% water 0.1% 

trifluoroacetic acid solution and dried by speed vacuum. Dry tryptic peptides were 

reconstituted with 15 μL solvent A (water, 0.1% formic acid). An aliquot (5 μL) was 

injected by Eksigent NanoLC-Ultra 1D (Eksigent Technologies, Inc. Livermore, CA) into 

a custom-packed  nano column. This reverse-phase nano column was custom-built by 

packing C18 material (Magic, 5 μm, 120 Å, Michrom Bioresources, Inc., Auburn, CA) 

into silica capillary tubing with a PicoFrit tip (75 µm × 200 mm, New Objective, Inc., 

Woburn, MA). The gradient was from 2% to 60% solvent B (acetonitrile, 0.1% formic 

acid) over 60 min at 260 nL/min. The gradient was followed by a 10 min 80% solvent B 

wash and a 12 min re-equilibration with 100% solvent A. A PicoView Nanospray Source 
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(PV550, New Objective, Inc., Woburn, MA) was used with an LTQ Orbitrap (Thermo-

Scientific, San Jose, CA). The nano electro-spray parameters were tuned by direct 

infusion of a Angiotensin II solution (10 μg/mL, 70% solvent A, 30% solvent B). LC-MS 

data were acquired in standard data-dependent mode controlled by Xcalibur 2.0.7 

software.  Peptide mass spectra (m/z range: 350-2000) were acquired at high mass 

resolving power (60,000 for ions of m/z 400). The six most abundant ions were 

fragmented by CID (collision-induced dissociation) in the linear ion trap.  CID 

experiment parameters were: isolation width, 2 Da; activation time, 30 ms; normalized 

collision energy, 35%; minimum ion counts, 1000. The mass calibration was checked and 

repeated regularly by using a standard calibration mixture of caffeine, short peptide MRFA and 

Ultramark 1621. 

Database searching of LC-MS/MS results 

Each product-ion mass spectrum was extracted from the raw data file by DTA 

creator of Rosetta Elucidator (v3.3.0.0.220, Rosetta Biosoftware, Seattle, WA). The 

combined dta files were searched by using Mascot (version 2.2.06, Matrix Science, 

London, UK) against a custom-built database containing His6-tagged Her4 kinase 

domain sequence. The custom-built database was established by adding all analysis 

targets of our lab (30-40 entries) into the E.coli database (approximately 39,000 entries 

from NCBI nr database).  Custom-built modification profiles (all carboxyl group 

modification products), phosphorylation (tyrosine, threonine and serine) and oxidation 

(methionine, tryptophan and histidine) were used as variable modifications. 

Carbamidomethylation of cysteine was considered in the database searching as a fixed 

modification. The other parameters in Mascot searching were: enzyme, trypsin; 
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maximum number of missed cleavage, one; peptide mass tolerance, 15 ppm; 13

 The inference of the Her4 dimerization association constant on the surface of the 

liposome relied on a bulk solution model, which was later reinterpreted to give the 

desired surface binding constants.  Specific binding ( the law of mass action applies ) and 

the principle of microscopic reversibility(23, 24) were assumed in the model.  The 

strategy for model calculation was an extension from one dimension to two dimensions 

of the strategy employed by Zhu(25, 26).  The mass conservation law for the Her4 is 

shown in Eq. 1 where [𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is the total analytical concentration of Her4 and 

[𝐻𝐻𝐻𝐻𝐻𝐻4] is the solution concentration of the free monomer Her4. 

C isotopic 

peak consideration, one; product-ion mass tolerance, 0.8 Da; instrument type, ESI-trap.  

Data processing 

Raw format data were loaded onto the Rosetta Elucidator (v3.3.0.0.220, Rosetta 

Biosoftware, Seattle, WA). The alignment retention time and calculating peak area were 

determined by using the Elucidator PeakTeller algorithm. Parameters in the algorithm 

were as in the default setup. Dynamic background subtraction and smoothing across the 

alignment window (both in retention time and m/z dimensions) were used.  All features 

were assigned a feature ID; a product-ion mass spectrum was associated with a feature by 

judging the retention time and precursor m/z; the outcome of Elucidator was further 

processed by using an Excel macro written in our lab. Modification extents were 

calculated based on the peak areas of all extracted ion chromatogram features.  

Equilibria Modeling 

[𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = [𝐻𝐻𝐻𝐻𝐻𝐻4] + 𝛽𝛽1,1[𝐵𝐵][𝐻𝐻𝐻𝐻𝐻𝐻4] + 2𝛽𝛽2,2[𝐵𝐵]2[𝐻𝐻𝐻𝐻𝐻𝐻4]2 + 𝛽𝛽1,3[𝑃𝑃][𝐻𝐻𝐻𝐻𝐻𝐻4] (Eq.1) 
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The overall Adair binding constant for attachment of the Her4 monomer to the 

liposome is given by 𝛽𝛽1,1 (𝛽𝛽1,1  =  𝐾𝐾11;  the term 𝐾𝐾11  was used in results section); the 

overall Adair binding constant for the dimerization of the Her4 on the liposome surface is 

𝛽𝛽2,2.  The equivalent bulk concentration of the free nickel binding sites on the liposome 

surface is[𝐵𝐵].  The model incorporated a provisional collection of parasitic binding sites 

for the Her4 that competed with the liposome binding and removed Her4 from the 

analytical path to detection.  The equivalent bulk solution concentration of the free form 

of these sites is given by [𝑃𝑃].  The total of the nickel binding sites on the liposomes has 

an equivalent bulk solution binding concentration of 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀  as shown in Eq. 2 for the 

corresponding mass conservation law for the nickel binding. 

𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 = [𝐵𝐵] + 𝛽𝛽1,1[𝐵𝐵][𝐻𝐻𝐻𝐻𝐻𝐻4] + 2𝛽𝛽2,2[𝐵𝐵]2[𝐻𝐻𝐻𝐻𝐻𝐻4]2 (Eq. 2) 

The parasitic binding sites also have an equivalent total bulk solution 

concentration 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀  and a corresponding mass conservation law as shown in Eq 3. 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 = [𝑃𝑃] + 𝛽𝛽1,3[𝑃𝑃][𝐻𝐻𝐻𝐻𝐻𝐻4] (Eq. 3) 

Eqs 1 and 2 were viewed as components of the vector Eq 4, which expresses 

[𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  and 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀  as a function of [𝐻𝐻𝐻𝐻𝐻𝐻4] and [𝐵𝐵]. 

�[𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀

� = 𝐹⃗𝐹([𝐻𝐻𝐻𝐻𝐻𝐻4], [𝐵𝐵]) (Eq. 4) 

Calculation of model curves was achieved by evaluating the inverse function 𝐹⃗𝐹−1 

in Eq 5, which expresses [𝐻𝐻𝐻𝐻𝐻𝐻4] and [𝐵𝐵] as a function of [𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  and 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 . 

�
[𝐻𝐻𝐻𝐻𝐻𝐻4]

[𝐵𝐵] � = 𝐹⃗𝐹−1([𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀) (Eq. 5) 

The evaluation follows the trajectory of the titration experiment as it moves along 

a path 𝑙𝑙(𝜏𝜏) in the [𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀  domain as described in Eq 6. 
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�
[𝐻𝐻𝐻𝐻𝐻𝐻4]

[𝐵𝐵] � (𝜏𝜏) = 𝐹⃗𝐹−1 �𝑙𝑙(𝜏𝜏)� (Eq. 6) 

A total derivative with respect to the path variable 𝜏𝜏, which marks off the progress 

of the titration, gives Eq 7. 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
[𝐻𝐻𝐻𝐻𝐻𝐻4]

[𝐵𝐵] � = � 𝜕𝜕𝐹⃗𝐹−1

𝜕𝜕([𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 )� ∙
𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

 (Eq. 7) 

By the inverse function theorem (27, 28) 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
[𝐻𝐻𝐻𝐻𝐻𝐻4]

[𝐵𝐵] � = � 𝜕𝜕𝐹⃗𝐹
𝜕𝜕([𝐻𝐻𝐻𝐻𝐻𝐻4],[𝐵𝐵])�

−1
∙ 𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

 (Eq. 8) 

which can be viewed as a first-order, ordinary differential equation of a dynamical system 

and was solved with the “Rkadapt” function in Mathcad 14 (Parametric Technology 

Corporation, Needham, MA).  The first leg of the path, which accounted for the addition 

of the binding sites on the liposomes to the system, moved from (0,0) to (0,𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 ) for 

the value of ([𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀)  for which the solution of ([𝐻𝐻𝐻𝐻𝐻𝐻4], [𝐵𝐵])  moved 

trivially from the initial value of (0,0) to (0,𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 ).  The more consequential second leg, 

which accounted for the titration with Her4, was given by (𝜏𝜏,𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 ), where 𝝉𝝉 varied over 

the domain interval of [𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  from zero to 17.3 uM.  Rkadapt was set to record the 

solution for the second leg in a table of triples (𝜏𝜏, [𝐻𝐻𝐻𝐻𝐻𝐻4], [𝐵𝐵]) for 5000 equal length 

intervals.  The accuracy of the solution was checked by recalculating [𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  by Eq 

1 and 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀  by Eq 2 from values for [𝐻𝐻𝐻𝐻𝐻𝐻4] and [𝐵𝐵] extracted from the table.  For the 

table triples, the relative error of the recalculated [𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  was typically less than 2 × 

10-12, and the relative error of the recalculated [𝐵𝐵] was less than 1 × 10-13.  For linear 

interpolations between table entries, the relative error of the recalculated [𝐻𝐻𝐻𝐻𝐻𝐻4]𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

typically varied from 2 × 10-3 at low concentrations to 1 × 10-6 at high concentrations for 
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Her4 and the relative error of the recalculated [𝐵𝐵] typically varied from 7 × 10-6 at low 

concentrations to 4 × 10-7

The signal function 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹modified (Eq. 9) was constructed to represent the transfer 

function of the mass spectrometer and the following spectrum analysis. 

 at high concentrations for Her4. 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹modified = [𝐻𝐻𝐻𝐻𝐻𝐻4]+𝛽𝛽1,1[𝐵𝐵][𝐻𝐻𝐻𝐻𝐻𝐻4]+𝑓𝑓�2𝛽𝛽2,2[𝐵𝐵]2[𝐻𝐻𝐻𝐻𝐻𝐻4]2�

�[𝐻𝐻𝐻𝐻𝐻𝐻4]+𝛽𝛽1,1[𝐵𝐵][𝐻𝐻𝐻𝐻𝐻𝐻4]+𝑓𝑓�2𝛽𝛽2,2[𝐵𝐵]2[𝐻𝐻𝐻𝐻𝐻𝐻4]2��+�𝐺𝐺(1−𝑓𝑓)�2𝛽𝛽2,2[𝐵𝐵]2[𝐻𝐻𝐻𝐻𝐻𝐻4]2��
 (Eq. 9) 

It was assumed that the spectral signals varied in proportion to the concentrations 

of their corresponding solution species.  The numerator in Eq 9 gives the concentrations 

of those species that were assumed to be modified by GEE.  The factor f allows for a 

fraction of the Her4 dimer population to be modified in spite of the supposed protection.  

The remaining product term in the denominator represents the concentration of those 

Her4 molecules existing as dimers that were not modified.  A relative sensitivity factor G 

accounts for the different sensitivities of the mass spectrometer to various peptides and 

their modified counterparts. 

The inference of the Her4 dimerization association constant was accomplished by 

performing a nonlinear-least-square fit of a 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹modified curve to the experimentally determined 

extents of modification plotted as the curve of the Her4 titration experiment. The search 

minimizes the root mean square of the residuals (Residual RMS).  In each trial of the search for 

the fit, Eq 8, was solved by using known fixed parameter values or trial parameter values posed 

by the Quasi-Newton algorithm of the “Minimize” function in Mathcad and a 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹modified curve 

was calculated.  Fixed parameters were 𝐾𝐾11,𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 , and G,. The parameters 𝐾𝐾11 and 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀  were 

selected as described in the Results section. The parameter G was determined to have value of 

1.1236 by using Arg 15N labeled Her4 as standard.  The searched parameters were 𝑓𝑓, 𝛽𝛽2,2, 𝛽𝛽1,3, 
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and 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 .  The equivalent bulk solution dimerization association constant 𝐾𝐾22 was computed by 

evaluating Eq. 10 after the fit by 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹modified. 

𝐾𝐾22 = 𝛽𝛽22/�𝛽𝛽11
2� (Eq. 10) 

 

Results   

Carboxyl Group Footprinting Method  

In this MS-based footprinting, protein samples are modified by a coupling 

reaction between the carboxyl side chain of proteins and the primary amine of GEE, a 

reaction driven by EDC (Figure 4.1A). This reaction is performed at physiological pH 

and salt concentration and yields products of +85.0522 Da or +57.0209 Da.  The 

modified protein can be directly analyzed by ESI-MS using a C18 trap column to desalt 

the sample, or can be digested by trypsin and analyzed by LC-ESI-MS/MS to quantify 

the site of modification. With accurate mass measurement, the percentage of modification 

(the modification extent) is determined with little ambiguity on the basis of the peak area 

of the modified peptide divided by the peak area of all forms of that peptide.  The site of 

carboxyl group modification is located from the product-ion spectrum (Figure 4.1B). 

Global information of modified Her4 protein 

Multiply charged protein ions were observed upon ESI of the Her4 kinase domain 

protein (Figure 4.2A). The most abundant charge state was +51. Deconvolution (“de-

chargiing”) of the spectrum gave a protein molecular weight (MW) of 42,167 ± 3 Da. 

This measured protein MW agreed well with the theoretical MW provided the the protein 

N-terminus is acetylated (MW= 42,166 Da). A second series of multiple charged ions 

was clearly observed with extended view of charge state +51 (Figure 4.2B).  The MWs of 

the species corresponding to the second and third peaks are incremented by +80 Da, 
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suggesting low levels of phosphorylation of Her4.  This basal phosphorylation of Her4 is 

assessed in Figure 4.6.  

To test the reactivity of carboxyl group modification and to limit the overall 

degree of modification of the protein, we measured the time course of carboxyl group 

modification of Her4 kinase domain by comparing the ESI mass spectra of modified 

proteins at different reaction times.  In the extended view of charge state +51 (Figure 

4.2B), the relative abundance of the ions of m/z = 829.4 and 831.0 increased with 

increasing modification time with GEE.  These ions are consistent with addition of +85 

Da ethyl ester groups to the carboxylic acid side chains.  The relatively low abundance in 

the mass spectrum at zero time likely represents basal phosphorylation of the protein, as 

discussed above.  The mass shifts induced by ethyl ester groups (+85 Da) and by 

phosphorylation (+80 Da) are similar and at the +51 charge state, this 5 Da nominal mass 

difference corresponds to an m/z difference of 0.098. 

To insure that the carboxyl group modification performed here did not cause 

protein unfolding or major conformational change, we obtained circular dichroism (CD) 

spectra before and after carboxyl group modification.  The CD spectra (Figure 4.2C) 

showed no difference between carboxyl group modified Her4 and unmodified Her4, 

demonstrating that carboxyl group modification caused no large conformation change in 

the protein. Because the carbodiimide can function as a cross linker, there is a concern 

that a coupling reaction occurred to form a covalent dimer. By adding GEE prior to the 

EDC, any intermolecular coupling was avoided as determined from a gel assay (Figure 

4.3).  

LC-MS/MS of Her4 kinase domain digest 
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Digestion gave 98% sequence coverage over the Her4 kinase domain sequence.  

The two missing regions correspond to two small peptides, each of which contained three 

or four amino acids.  Beside common protein oxidation (on methionine, tryptophan and 

histidine), six phosphorylated residues (three on tyrosine, two on serine and one on 

threonine) were detected (Figure 4.4), and their significance is addressed below.  

We found that 37carboxyl groups were modified: 20 on Glu and 17 on Asp. The 

Her4 kinase domain protein sequence contains a total of 47 Asp/Glu sites, and the 

carboxyl group modification conditions employed here modifies 79% of those residues.  

We verified all sites of carboxyl group modification reported here by manually inspecting 

the product-ion spectra. The modification assignments are problematic when applied for 

low- abundance ions (< 10,000 counts in the product-ion spectrum). Peaks corresponding 

to those low-abundance ions were not included among the peptides used for quantitative 

analysis. Modification extents data represent mean and standard deviation of three 

independent samples.  

Footprinting between Her4 monomer and dimer 

We generated Her4 dimers by binding the His6-tagged Her4 kinase domain 

protein to a liposome containing the nickel chelating lipid Ni-NTA-DOGS, as described 

in Monsey et al. (6).  The binding of the His6-tagged Her4 to these “nickel liposomes” 

results in a high local concentration of Her4 that allows the dimers to form nearly 

spontaneously.  The His6-tagged Her4 kinase domain protein is predominantly a 

monomer in solution, as demonstrated by gel filtration analysis (data not shown).  As an 

additional control, we tested Her4 incubated with control liposomes that lack the nickel-

chelating lipid to evaluate for any non-specific effects from the liposomes on the 
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carboxyl group modification reaction.  These three conditions (i.e., Her4 monomer in 

solution, Her4 monomer plus control liposomes, and Her4 dimer on nickel liposomes) 

were reacted with GEE in the presence of EDC in an identical way and analyzed by in-

gel trypsin digestion and LC-MS/MS. Modification extents for the 37 Asp/Glu of Her4 

kinase domain protein were compared (Figure 4.5A and Table 4.1).  Decreases in 

modification extents of Her4 dimers compared to monomers were observed for several 

residues. Two N-lobe residues, Glu-690, Glu-692, one activation loop residue, Asp-853, 

and one C-lobe residue, Glu-912 all showed reduced modification extent in Her4 dimers. 

Based on the crystal structure of the Her4 kinase dimer(5), the C-lobe of one monomer 

(the donor monomer) contacts the N-lobe of the other monomer (the acceptor monomer) 

to form an asymmetric dimer (Figure 4.5B).  Glu-690, Glu-692, and Glu-912 are all 

located in the dimer interface in the Her4 kinase domain crystal structure (Figure 4.5B).  

However, Asp-853, which also showed reduced carboxyl group modification, is not 

located near the dimerization interface; rather it is on the activation loop, which is a 

flexible loop that can adopt a number of different conformations(5, 29).  In fact, Asp-853 

and its neighboring amino acids were not visualized on the Her4 crystal structure(5), 

further supporting the flexibility of this loop.  Based on prior crystallographic studies of 

Her4 and its family member EGFR kinase, it is reasonable to expect that the 

conformation of the activation loop will be altered by dimerization(5, 30).  Therefore, the 

lower carboxyl group modification of Asp-853 likely represents an allosteric effect of 

dimerization.   

One residue that shows increased carboxyl group modification is Asp-897 (Figure 

4.5A), which is located on the C-lobe but away from dimer interface (> 15 Å). Similar to 
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the decreased modification of Asp-853, the increased modification of Asp-897 may 

involve allosteric changes induced by dimerization. No other residues showed any 

statistically significant increase in carboxyl group modification upon dimerization.  

Footprinting on Her4 dimer autophosphorylation 

A previous study of Her4 phosphorylation demonstrated that Tyr-850 in the Her4 

activation loop can become phosphorylated(31).  For a closely related kinase, Her2/neu, 

we previously showed that the homologous activation loop Tyr residue (Tyr-877) is also 

phosphorylated in cells(32).  To study the conformation changes induced by 

phosphorylation, we first incubated Her4 monomers and Her4 dimers with ATP and 

MgCl2.  A low level of phosphorylation on six residues was detected even prior to ATP 

addition (Figure 4.6A), likely representing basal phosphorylation of the recombinant 

Her4 protein.  Consistent with our previous report(6), phosphorylation levels of Her4 

monomer showed only small changes when incubated with 100 µM ATP for 5 min at 

4 o

We next compared modification extents of the Tyr-850 phosphorylated Her4 

dimers to the Her4 dimers that had not been incubated with ATP.  Given that the 

phosphorylation of Tyr-850 did not reach 100% stoichiometry, the Her4 dimer that was 

incubated with ATP represents a mixture of Tyr-850 phosphorylated and 

C. A dramatic increase in Tyr-850 phosphorylation, however, occurred when Her4 

dimers were incubated with ATP under the same conditions.  The phosphorylation 

extents were calculated in the same way as for the carboxyl group modification. Although 

these phosphorylation extents do not represent the absolute stoichiometry of 

phosphorylation in the sample, they do provide a reliable relative change in 

phosphorylation between samples.   
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unphosphorylated proteins.  In a bottom-up approach, phosphorylated and 

unphosphorylated peptides can be separated by a LC and identified by MS based on the 

mass shift induced by phosphorylation, and their carboxyl group modification extents can 

be calculated separately.  Measuring the modification extent for the unphosphorylated 

Tyr-850 containing peptides can be viewed as another control experiment. We found that, 

of the five possible modification sites in the peptide containing Tyr-850, four were 

modified (Figure 4.6B and Table 4.2).  The modification extent was significantly 

decreased for Glu-847, Glu-849 and Asp-853 in the Tyr-850 phosphorylated state of 

Her4 as compared to the state for which Tyr-850 is unphosphorylated (Figure 4.6C).    

To rule out that decreases in the carboxyl group modification are due simply to 

the proximity of the acidic phosphotyrosine group, we synthesized the tryptic peptide 

containing Tyr-850 in both its phosphorylated and unphosphorylated forms, and 

submitted them to carboxyl group modification.  The carboxyl group modifications levels 

were similar whether the Tyr-850 was phosphorylated or unphosphorylated (Figure 4.6D).  

This indicates that the decrease in Glu-847, Glu-849, and Asp-853 modification upon 

activation loop phosphorylation of dimeric Her4 is due to a conformational change in this 

loop.  For several other kinases, activation-loop phosphorylation results in formation of 

salt bridges between the phosphorylated residue and Arg side chains, and these bridges 

stabilize the activation loop structure(33, 34).  Similarly, we predict that the 

phosphorylated activation loop in Her4 will be stabilized and become less flexible; as a 

result, several of its residues will be protected from the carboxyl group modification.  The 

results provide evidence that dynamic variations, which are usually not seen in a crystal 

structure of a protein, can be “trapped” by carboxyl group modification.  The carboxyl 
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group modification takes place over minutes of time, thereby presenting an integrated 

view of protein dynamics that occur over that time.  

 

Titration of Her4 kinase domain 

To gain a deeper understanding of Her4 kinase domain dimerization, we designed 

a quantitative analysis of dimerization. Like we did in a previously reported H/D 

exchange method (SIMSTEX)(14), we used carboxyl group modification to determine 

the Her4 kinase domain dimer association constant.  We implemented a titration 

experiment that was started by equilibrating nickel liposomes with different 

concentrations of the Her4 kinase domain protein. After reaching equilibrium, the 

samples were modified by EDC and GEE in an identical manner for each. By following 

the modification extent vs. protein concentration, we obtained titration curves and 

formulated mathematical models to fit the titration curve and afford the Her4 dimer 

association constant.  Observed decreases in modification extents are in agreement with 

results of carboxyl group modification between Her4 dimers and monomers (Figure 4.5A 

and figure 4.7). The titration curve of Asp-847 in the presence of nickel liposomes 

(Figure 4.8A) was used in the dimerization modeling. As a control, we performed a 

similar titration experiment in the absence of liposomes, and we observed that the 

modification extent did not vary with Her4 concentration (data not shown). Therefore, we 

conclude that the titration curve (Figure 4.8A) is due to the dimerization equilibrium on 

the surface of the nickel liposomes.  

We generated liposome-bound Her4 dimers by binding the His6-tagged Her4 

kinase domain protein to the nickel-liposome(6). This results in a high local 
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concentration of Her4, creating an equilibrium between Her4 monomers and dimers on 

the liposome surface (Figure 4.8B). We first assumed that all of Her4 was bound to the 

liposome, either as monomer or dimer and tested this to see that there is clear bias in this 

model; the fitted parameters G and f were clearly unreasonable (Figure 4.9).  To adjust, 

we made a simple increment in model complexity that resulted in the removal of model 

bias.  The increment incorporated four states for the Her4 kinase domain (Figure 4.8B): 

free monomer in solution, monomer on liposome surface, dimers on liposome surface, 

and binding of Her4 to plastic walls or other surfaces.  The latter state, which is termed 

“parasitic binding sites” in the method section, removes Her4 from MS analysis. With 

this model, an equation giving the carboxyl group modification extents (Figure 4.8A) was 

established as Fracmodified

Choices for two parameters, 𝐾𝐾11 and 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 , were made based on the following  

considerations.  Changes in 𝐾𝐾11 , the affinity of His

 in Eq.9.  

6-tagged Her4 to nickel-liposome 

produced little change in the shape of the fitted model curve (Figure 4.8C).  Fits were 

calculated for 𝐾𝐾11values of 3.3 × 105, 1 × 106, 3.3 × 106, and 1 × 107 M-1, which is a 

reasonable range for the association of Her4 to nickel binding sites on the liposome 

surface (6, 35). Although the value for 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀  could not be determined with precision, it 

was not likely to be greater than the value 4.2 × 10-6 M-1 that was determined in 

experiments performed under the same conditions by Monsey et al. (6).  The minimum 

residual RMS for each 𝐾𝐾11  occurs along the left heavy line on the surface for which 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀  

ranges from 1.75 × 10-6 at the back to 1.28 × 10-6 M at the front of the surface (Figure 

4.8C).  Below these respective values, the model curves clearly exhibited bias with the 

curves turning up rapidly at the high end of the titration curve.   
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Based on this modeling, the Her4 kinase domain dimer association constant (𝐾𝐾22) 

is between 1 × 108 to 4.5 × 108 M-1

Discussion 

. Equilibrium constant in this range are not sensitive to 

changes in the liposome binding capacity (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 ) or the binding constant of Her4 to 

liposome (𝐾𝐾11) as shown in Figure 4.8C and 4.8D.  

Our current knowledge of the Her4 dimerization interface is based on protein 

crystallography studies. Although these crystal structures provide an excellent starting point, they 

have several limitations. First, the Her4 asymmetric dimer structures are inferred from the crystal 

packing of the kinase monomers, and had to be validated by mutational analysis. Second, these 

structures provides snapshots of one conformation of the active or inactive kinases and do not 

provide information about the dynamics or the transitions that the kinases move through in the 

liquid phase. Third, flexible regions of the kinase, particular the activation loop, frequently lack 

electron density and cannot be visualized in the crystal structure.  

In contrast, MS methods are able to provide data on protein structure in solution and 

address questions of protein dynamics (36). MS can sample the ensemble of conformations of a 

protein in a time range extending from approximately 1 ms to many minutes. The nickel liposome 

system as a membrane-associated protein, provides a unique challenge for its study in vitro (37) 

because isolation of the protein following a footprinting reaction is time-demanding, making 

HDX a difficult approach. The successful implementation of another MS-based footprinting 

strategy for this in vitro study provides structural information for the first time for the protein 

complex in solution.  

We expect that the reactivity of carboxylic acid side chains on Asp/Glu residues will be 

strongly influenced by their solvent accessibility.  Therefore, protein-protein interactions that 

bury Asp and Glu side chains should result in decreased labeling of these residues. Crystal 

structure data on the Her4 kinase domain has shown that Her4 forms dimers (5). Two types of 
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interactions are involved in this dimer: interactions between hydrophobic residues form the major 

portion of the interface and are surrounded by several hydrogen bonds between the donor and 

acceptor monomers(30). The negative charged carboxylic acid side chains of Asp/Glu at 

physiological pH are major contributors to these hydrogen bonds. The decrease in modification 

extents for Glu-690, Glu-692 and Glu-912 confirms the existence of the Her4 asymmetric dimer 

on the liposome surface, as inferred from the crystal structure. Results presented here prove that 

this approach is sensitive to solvent accessibility of Asp/Glu.  To probe solvent accessibility of 

hydrophobic residues, hydroxyl radical modification, like fast photochemical oxidation of protein 

(FPOP)(38), is required, and that study is under development in our group. We expect a 

comprehensive characterization of Her4 dimerization interface can be achieved by combining 

results from carboxyl group footprinting and FPOP.     

To determine the effect of phosphorylation on the Her4 dimer and to demonstrate that 

footprinting can provide new structural information beyond what is already known from protein 

crystallography, we examined the effect of phosphorylation on Her4 kinase structure. Consistent 

with prior studies on Her2/neu and Her4, we observed activation loop phosphorylation on Tyr-

850(6, 31, 32).  In this experiment, a Tyr-850 phosphorylation-induced conformational change 

was probed by carboxyl group modification. Dynamic fluctuations of this activation loop are hard 

to study by X-ray crystallography. Based on our knowledge, the change of dynamic fluctuations 

on activation loop between phosphorylated and unphosphorylated is seen for the first time in 

solution phase by carboxyl group modification procedure. The results show clearly the 

stabilization of the Her4 activation loop induced by Tyr-850 phosphorylation.   

To gain a deeper understanding of Her4 dimerization, a quantitative analysis of Her4 

dimerization would be helpful. Given that Her4 is a transmembrane protein, measuring a 

dimerization association constant of Her4 protein is a challenge. Dimer contacts are known to 

exist in both the extracellular domain and intracellular kinase domain, and in vitro studies on the 

isolated extracellular domain of Her4 and other EGFR members were reported(35). To our 
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knowledge, however, no kinase domain dimerization affinity has ever been reported. MS- based 

methods including PLIMSTEX(26), SUPREX(12) and SPROX(39), demonstrate the potential of 

MS based approach to measure the dissociation constant or thermodynamics of protein-ligand 

interactions. We took a lead from those methods to adapt carboxyl group modification to study 

quantitatively the Her4 kinase domain dimerization. Mathematical modeling of Her4 kinase 

domain titration curve provides not only the kinase domain dimerization association constant to 

be between 1 × 108 to 4.5 × 108 M-1

 

, but also insights into the mechanism of kinase dimerization. 

The outcome is within a range that is comparable with association constants reported for 

extracellular domain association constants of EGFR family (35).  
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Figure 4.1. Carboxyl group modification based footprinting workflow and reaction. (A) 

Footprinting by carboxylic-acid, side-chain modificaiton. Carbodiimide (EDC) modifies 

acid side chain of proteins in physiological relevant buffer. In the presence of 

nucleophiles (glycine ethyl ester), reaction occur to give mass shifts 85.0522 Da and 

57.0209 Da (hydrolysis product of ester). (B) Work flow of MS based carboxyl group 

protein footprint (1) Modification (2) ESI-MS analysis of modified protein (3) In-gel 

separation and proteolytic digestion  (4) LC-MS analysis of peptides (5) LC-MS/MS 

analysis of peptides (6) calculation modified peptide level    
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Figure 4.2. MS spectra of modified protein: (A) ESI-MS spectra of Her4 kinase domain 

protein. (B) Magnified view of +51 charge state with different reaction times. The ion of  

m/z 827.9  represents the unmodified ion peak.  Two peaks separated by 80 Da (corrected 

by +51 charge state) were observed. (C) CD spectrum of protein with and without 

carboxyl group modification. 
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Figure 4.3. SDS PAGE of modified Her4 kinase domain protein.  Only one band, 

corresponding to the Her4 monomer, was seen in each sample.  No cross-linked Her4 

dimer was detected. 
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Figure 4.4a. The product ion spectrum of phosphorylated peptide 698-709. The 

phosphorylation site was located on Try-708. Peaks corresponding to ammonia loss are 

labeled with octothorpes (#), and those corresponding to water loss are labeled with 

asterisks (*).  
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Figure 4.4b. The product ion spectrum of phosphorylated peptide 727-735. The 

phosphorylation site was located on Thr-732. Peaks corresponding to ammonia loss are 

labeled with octothorpes (#), and those corresponding to water loss are labeled with 

asterisks (*).  
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Figure 4.4c. The product ion spectrum of phosphorylated peptide 823-833. The 

phosphorylation site was located on Ser-828. Peaks corresponding to ammonia loss are 

labeled with octothorpes (#), and those corresponding to water loss are labeled with 

asterisks (*).  
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Figure 4.4d. The product ion spectrum of phosphorylated peptide 842-856. The 

phosphorylation site was located on Tyr-850. Peaks corresponding to ammonia loss are 

labeled with octothorpes (#), and those corresponding to water loss are labeled with 

asterisks (*).  

 

 

 

 

 

 

 

 

 

 



120 
 

 
Figure 4.4e. The product ion spectrum of phosphorylated peptide 959-967. The 

phosphorylation site was located on Tyr-959. Peaks corresponding to ammonia loss are 

labeled with octothorpes (#), and those corresponding to water loss are labeled with 

asterisks (*).  
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Figure 4.5. Carboxyl group modification extents: (A) Carboxyl group modification 

extents for Her4 kinase domain protein. Her4 residue numbering is based on the mature, 

full length protein minus its signal peptide and matches the numbering used in Qiu et al. 

The residues involved in dimer interface in crystal structure are labeled in red. The 

residues from activation loop are labeled in blue. Data represent mean and standard 

deviation of three independent samples. (B) Her4 kinase domain asymmetry dimer. 

Based on carboxyl group footprinting results, two residues E690 and E912 are labeled in 

red. (PDB ID: 3BCE).  
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Figure 4.6. Phosphorylation and carboxyl group modification in activation loop region: 

(A) Normalized phosphorylation levels based on MS signals corresponding to all six 

phosphorylated residues detected in LC-MS/MS experiment. (B) Carboxyl group 

modification extents of residues in activation loop. A total of four modified residues were 

detected by LC-MS/MS. The distinction between modification of unphosphorylated 

tryptic peptide and phosphorylated tryptic peptide was based on mass difference and 

product-ion spectrum of each peptide ion. (C) Activation loop in Her4 kinase domain 

(crystal structure, PDB id: 3BCE). The loop is labeled in rainbow colors. Three Glu 

residues and the phosphorylated residue Tyr-850 are highlighted in stick mode. The Asp 

residue Asp-853 is not seen in the crystal structure. (D) Phosphorylation effects on 

carboxyl group modification. Two synthetic peptides (unphosphorylated vs. 
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phosphorylated form) with same sequence as the Tyr-850-containing tryptic peptide were 

used as a control to check the effects of phosphorylation on carboxyl group modification.  

 

 
Figure 4.7. Titration experiment results of Glu-690 and Glu-730.  The Her4 kinase 

domain protein solution concentration was listed on X axis. The black dots are 

modification extents on different protein concentrations. 
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Figure 4.8. Model of Her4 dimerizaiton: (A) Titration curve of Asp-847. The Her4 kinase 

domain protein solution concentration was listed on X axis. The black dots are modification 

extents of Asp-847 on different protein concentrations. Asp-847 titration curve modeling by Her4 

dimer on Ni liposome with parasitic binding site model. Black line is the curve generated by the 

best fit model. (B) Her4 kinase domain exists in four possible states: free monomer in solution, 

monomer on liposome surface, dimers on liposome surface, and binding of Her4 to plastic walls 

or other surfaces. (C) The root mean square of the residuals from the model fits as a function of 

monomer-to-liposome association constant (K11) and liposome binding capacity (Bmax). Results 

for Bmax equal to 1 × 10-6 M are not shown because the model curves clearly show bias and the 

RMS is greater than 0.034 for these fits. The association constants K11 are given in M-1. (D) Her4 

dimer association equilibrium constant (K22) vs monomer-to-liposome association constant (K11) 
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and liposome binding capacity (Bmax). Results for Bmax equal to 1 × 10-6 M are not shown because 

the model curves clearly show bias. The resulting value for K22 varies from 4.8 × 1014 to 23 × 108  

for these fits. The association constants are given in M-1

 

 

. 

 
 
 

 

Figure 4.9. Asp-847 titration curve modeling by different Her4 dimer models. Her4 dimer 

on Ni liposome with parasitic binding site model (black curve). Simple Her4 dimer model 

(green curve) and Her4 dimer on Ni liposome model (red curve).  
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Table 4.1. Percentage of carboxyl group modification for Her4 kinase domain protein.  
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Table 4.2. LC-MS results of modified residues in the activation loop 

 

 
 
*Note: +15.9949 Da, methionine oxidation; +57.0215 Da, ester hydrolysis product of 

carboxyl group footprinting reaction; + 73.0164 Da, methionine oxidation and carboxyl 

group modification, +85.0527 Da, ethyl ester product of carboxyl group footprinting 

reaction.  The unmodified peptide peak usually has similar retention time with the 

+57.0215 Da modified peptide.  
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Chapter 5 

Mass Spectrometry-Based Studies of Protein 

Assemblies 
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Abstract 

Most functional units in biology are high-order assemblies formed of proteins(1). 

These assemblies have become a major target in structural biology. Besides traditional 

tools for protein structural studies, X-ray crystallography and NMR spectroscopy, mass 

spectrometry (MS) is becoming a complementary tool that can interrogate protein 

assemblies in their near native states(2). This is a remarkable development given that the 

gas phase is so different than solution.  Native ESI of protein assemblies has showed its 

ability within last two decades to provide structural insights that complement those from 

traditional structural biology approaches(3).  In this chapter, the details of native ESI of 

protein assemblies and recent advances in the area of protein assemblies are reviewed. As 

one of major approaches in probing protein assemblies in the gas phase, tandem mass 

spectrometry may become a powerful tool in obtaining structural information.  

Mass Spectrometry of Protein Assemblies 

Protein assemblies 

Proteins are of importance in almost all cellular processes, from DNA replication 

to protein synthesis and degradation(4). Significant structural-biology efforts are ongoing 

to study the relationship between protein structure and function. Furthermore, many 

cellular processes are performed by large protein complexes or assemblies(5). Structural 

biology is now focused on higher order structures, protein assemblies, which are 

composed of proteins, DNA, and cofactors. Motivated by their importance, traditional 

and novel structure biology methods continue to be developed and dedicated to studies of 

protein assemblies.     
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Methods for study of protein assemblies  

High resolution methods (e.g., X-ray crystallography and NMR spectroscopy), 

low resolution methods (e.g., cryo-electron microscopy and small-angle X-ray scattering 

(SAXS), proteomics-based tandem affinity purification (TAP), and protein footprinting 

(described in former chapters) are the principal tools for investigation of protein 

assemblies(1). Among those methods, MS is becoming an important complementary 

technique. Although MS cannot provide high resolution data, such as that from X-ray or 

NMR spectroscopy, it has an advantage that protein assemblies can be interrogated in 

their near native state with consumption of relatively small amounts of sample.    

Since the first experiments of MS-based approaches to protein assembly, more and more 

applications have been reported(6). Progress of this area has been reviewed periodically(2, 

7, 8).  A brief summary about MS-based studies of protein assemblies, from fundamental 

MS to critical applications, will be presented here.  

Generating Ions of Protein Assemblies 

The first step in an MS-based study of protein assemblies is generating ions of the 

protein assemblies. It was not possible before the 1980s to generate ions in any routine 

way from nonvolatile and labile biomolecules much less from biomolecule assemblies. 

Traditional ionization methods, like EI and CI, are suitable for volatile small molecules 

and Fast Atom Bombardment (FAB) are suitable for small nonvolatile molecules(9), but 

are inappropriate for analyzing nonvolatile and large biomolecules. After the introduction 

of the new ionization methods, electrospray ionization (ESI) and matrix assistant laser 

desorption ionization (MALDI), MS became a more important method for 
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maromolecular studies owing to its sensitivity and tolerance of sample heterogeneity. 

Proteins are analyzed in solution (ESI) or as solids formed by co-crystallization with UV 

absorbing organic acids (MALDI).  Successful studies of protein assemblies were 

reported when using both ionization methods(10). For example, ESI MS can analyze 

mega-Dalton protein within a modest m/z range by generating multiply charged protein 

ions.  In fact, most of the  reports of MS-based studies of protein assemblies come from 

the ESI experiments(3). For MALDI, preserving non-covalent interaction of protein 

assemblies in solid phase is problematic, and the singly charged large protein ions have 

m/z values usually beyond the optimum range of most commercial instruments except for 

time-of-flight spectrometers. These factors make MALDI less-ideal for study of protein 

complex than is ESI(3). In this thesis, we focus on the application of ESI in studies of 

protein assemblies. 

ESI and multiply charged protein ions 

A standard ESI setup involves flowing an analyte solution to the end of capillary 

held of high electrical potential (Figure 5.1). A parallel gas flow surrounds the capillary 

to aid the nebulization of emerging analyte solution. Because the electrical potential is 

high, positive ions (in the positive-ion mode of ESI) accumulate at the tip of the solution, 

causing the solution to form a “Taylor cone”. The steam of solution is drawn out as small 

charged droplets that move away each other owing to electrostatic repulsion of the excess 

positive (or negative) ions within each droplet. Solvent evaporation continually reduces 

the size of charged droplet until the Coulombic repulsions between crowded positive ions 

overcome the droplet surface tension (called the Rayleigh limit). Droplets undergo fission 
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and form even smaller droplets. Evaporation and fission are repeated several cycles until 

gas-phase ions are produced(11).  

Generation of multiply charged protein ions is the usual outcome of ESI. 

Although a general mechanism for ESI is well accepted, a detailed mechanism for 

generation of protein multiple charged ions remains unclear. Two models have been 

developed to explain the mechanism of ESI(12, 13): one is the charge-residue model 

(CRM); the other is the ion-evaporation model (IEM). In the CRM, evaporation and 

fission continue until a single molecule of analyte is left in the droplet. Complete 

evaporation results in a charged analyte ion. Based on the CRM model, the final charge 

state of protein ions can be predicted by the charge at the Rayleigh limit of the droplet.  

According to the IEM model, repulsions between analyte ions with other charged ions 

overcome the solvent force and analyte ions are ejected directly from the droplet 

(desorbed by the high electric field surrounding the droplets). Based on the IEM model, 

the charge state of analyte ion is a function of analyte properties. Previous experimental 

evidences with small molecules are in agreement with the IEM model, whereas ESI of 

large molecules (e.g., proteins) can be explained well by the CRM model. Recently, a 

revised version of the charged residue field emission model was developed to interpret 

the native state protein charge distribution in ESI(14, 15).  Multiply charged droplets are 

produced by ESI. The excess charges in each droplet are carried by small ionic species or 

clusters. The final charge state of protein is determined by emission of small ionic species 

or clusters from ESI droplet prior to complete solvent evaporation. The experimental 

observations of different size of proteins in their near-native states were examined. 
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Results show that charge states of protein ions are in good agreement with predicted 

values on the basis of charge carrier field emission 15

To preserve the native state and noncovalent interactions of a protein, it must be 

in aqueous solution at physiological pH and appropriate physiological ionic strength. An 

ESI approach called native ESI (or native MS) was developed to meet these 

requirements(2). Proteins in a volatile aqueous buffer or a salt solution (e.g., ammonium 

acetate) are directly sprayed by ESI. Native-like proteins carry fewer charges than 

denatured or unfolded states owing to the fewer exposed basic residues in the folded form. 

As a consequence, one achieves a narrow spread of the charge envelop for protein ions; 

the m/z of the protein in this case falls at a higher value (Figure 5.3). Non-covalent 

.  

Native ESI of protein assemblies 

There are several factors including solvent pH, concentration of non-volatile salts, 

and percentage of organic solvent that affect protein signal in ESI. Using a typical ESI 

solvent (50% Acetonitrile, 50% Water, 0.1% Formic Acid, pH = 1~2.), we find the 

majority of proteins are in a denatured state, here the proteins are largely unfolded and 

have exposed all their basic side chains to solvent. The ESI spectra of denatured proteins 

shows a broad charge state distributions (charge envelop) centered at low m/z (Figure 5.2). 

Non-covalent interactions between proteins and ligands are usually destroyed in their 

denatured state, therefore, preserving a non-covalent protein complex is a problem when 

using a typical ESI solvent. Such solvents are not particularly useful for exploring 

protein-ligand interactions.   
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interactions are thus preserved. Native ESI has become a suitable approach for studies of 

protein assemblies in their near-native states.   

Another advance in ESI that benefits studies of protein assemblies is nano ESI 

(nESI)(16).  nESI generates smaller droplets than does regular ESI by spraying the 

sample through a capillary with a smaller diameter (e.g., ~ 1 µm inner diameter) than 

normally used for ESI. Ionization conditions (spray voltage, capillary temperature, 

nebulizer gas flow) are more gentle for evaporating smaller droplets than for the larger 

drops of conventional ESI. nESI also dramatically reduces the amount of protein sample 

(e.g., from ~50 to 1-3 µL) required for MS analysis. More importantly, nESI has relative 

high tolerance for nonvolatile salts that are often required to maintain the native state of a 

protein assembly.    

In native ESI, incomplete desolvation can cause problems in determining the 

molecular weight of a protein(17). In fact, the observed mass from native ESI usually is 

higher than the calculated mass based on the protein sequence(18). Because desolvation 

is incomplete, extra solvent molecules or other small MW substances in the solution can 

reside in the final droplet with the protein ions. These species associate with the protein, 

resulting in broad protein peaks in the native ESI mass spectrum. Desolvation can be 

improved by applying collision energy in the source or collision-cell regions of the mass 

spectrometer.  The collision energy used in “cleaning up” native ESI mass spectra needs 

to be carefully tuned to avoid complex unfolding and dissociation. Practically, the most 

accurate mass assignments for protein assemblies come from the spectra acquired under 

condition just below the dissociation energy of the assemblies.   
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Another issue of native ESI is non-specific oligomerization(19). Non-native 

oligomers may form in native ESI; on the basis of the CRM model, high-order oligomers 

can form from association of two or more complexes that are present in the same droplet. 

Because the interactions of these non-specific oligomers are weak and concentration 

dependent, they can be overcome by applying collision energy in the source or in the 

collision-cell region or reducing the protein concentration. Alternatively, they can be 

recognized by data processing, as reported by Robinson and co-workers(20), and 

removed “computationally.” The number of non-specific oligomers can be deduced 

through predicting the occupancy of the droplets in ESI. A model of the occupancy 

droplets was developed by incorporating the predicting into a Monte Carlo simulation. 

This droplet occupancy model was trained and validated by several protein complexes 

and applied in study the aggregation of amyloid-related protein transthyretin (TTR). The 

specific WT TTR tetramer and nonspecific higher order oligomers of L55P variant form 

of TTR were differentiated by the droplet occupancy model.  

Transmitting and Analyzing Ions of Protein Assemblies 

After successfully generating ions of protein assemblies, transmitting and mass 

analyzing these ions become a challenge for MS. Since the first MS-based study of 

protein assembly nearly 20 y ago, advances in both method and instrumentation have 

accelerated the study of protein assemblies.  One major advance is the “collisional 

focusing” (or “collisional cooling”) for transmitting large protein complex ions in the 

source region (ion-guide region).  It is the first breakthrough that demonstrated that 

increasing pressure of the source region in the first vacuum stage resulted in signal 

improvement of high m/z ions(21).  Systematic studies showed that increasing low 
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frequency collisions between high kinetic-energy protein ions and relatively small MW 

gas molecules can focus ions and improve ion transmission in the source region.  

A number of instrument modifications have also been made, and they have 

benefited studies of protein assemblies(22-24).  Similar “collisional focusing” effects are 

used in the later stages of mass spectrometers (quadrupole and collision cell regions). 

Carefully adjusting the pressure in mass spectrometer during ion transmission becomes 

an essential step for MS-based studies of protein assemblies.  

High m/z protein-complex ions are usually observed at a high m/z range, which is 

beyond the range of most commercial mass spectrometers (maximal m/z 3000-4000). For 

example, protein or protein complexes with molecular weight over 60 KDa may form 

ions having an m/z greater than 4000. One can make use of the quadrupole analyzer, 

which is a major ion transmission component in hybrid mass spectrometers, to transmit 

the ions. When a quadrupole is operating in the RF-only mode, ions can be focused by 

RF frequency and transmitted to the detector. The maximal m/z is determined by the 

principles of a quadrupole:  three parameters, RF amplitude, inner radius of the 

quadrupole, and RF frequency, can be adjusted to increase its maximal m/z.  In practice, 

only the RF frequency is reduced to fulfill this purpose. Reports(25, 26) of Q-TOF 

instruments equipped with low-frequency quadrupoles described extended mass ranges 

up to m/z 22,000.   

Analyzing Ions of Protein Assemblies 

Two major mass analyzers can satisfy the analysis of high m/z ions of protein 

complexes: time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR). 
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The TOF mass analyzer has a relatively simple design and high sensitivity. The majority 

of protein-assembly studies have been conducted with hybrid quadrupole time-of-flight 

(Q-TOF) mass spectrometers because these instruments can transmit and detect large 

protein complexes of MDa masses. The mass measurement accuracy that pertains to ions 

from protein complexes is more dependent on complete ion desolvation than on 

instrument mass resolving power. Even the high resolving power provided by FTICR MS 

is less important than the quality of ionization in measuring the mass of intact protein 

complexes.  Advantages of FTICR MS, however, also include a variety of dissociation 

approaches, and these have important applications for the study of protein assemblies. 

The applications of FTICR MS and ECD as a top-down approach in studies of protein 

assemblies will be addressed in the following chapter.     

Ion-Mobility Measurement 

Another fast-growing area for protein-assembly studies is one that emerges from 

the coupling of ion mobility (IM) with MS(27). In IM, ions from ion complexes are 

injected into a region containing neutral gas molecules (gas pressure 100-1000 mbar) and 

having an electric field. Driven by this electric field (~ 10-30 V/cm), ions can be 

separated based on their shape. Large ions experience more collisions and take more time 

to arrive at the detector than do smaller ions or ones of small cross sections. The collision 

cross sections (CCS) of ions can be calculated based on their drift times and charge state, 

which are measured in the combined instrument. These provide structural insights as to 

the size and shape of protein assemblies. IM measurement, thus, has the potential to be an 

important extension of MS-based studies of protein assemblies. In the early applications, 
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IM has provided critical evidence that protein native or nearly native structures can be 

preserved in the gas phase.  

Solution-Phase Properties of Protein Assemblies 

Stoichiometry of Protein Assemblies 

Studies of the functional unit formed by oligmerization of proteins is a crucial 

part of contemporary biology.  One major application of native ESI is the determination 

of stoichiometry of protein assemblies; that is, the number and nature of subunits. 

Stoichiometry information of large protein complexes (e.g., the chaperone complex 

GroEL(28) or hemoglobin complexes with variable compositions(29), were already 

reported by various research groups.       

In the typical work flow of protein-assembly studies, the identification of a 

subunit still relies heavily on a proteomics-based, bottom-up LC/MS experiment(30).  

Protein complexes are proteolytically digested, and peptide mixtures are analyzed by 

LC/MS to identify the subunits. Sequence information of each subunit is obtained from 

partial MS-based sequencing followed by database searching of peptide product-ion 

spectra that give the sequence information.  The stoichiometry of the protein assembly is 

deduced from results of native ESI MW measurements and LC-MS experiments. The 

intact mass of protein assembly is obtained by native ESI. Subunits from the protein 

assembly are identified by LC/MS. Integrating information of the intact mass of protein 

assembly and the subunit mass can provide the stoichiometry of the protein assembly.  

Subunits that comprise the protein complex can be released by adjusting the ion-

source temperature or introducing denaturants into sample solution. The molecular 
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weight of subunit released from protein complex is measured by the mass spectrometer. 

Temperature variations can also initiate the dissociation of the complex, and these 

experiments can tell us about the thermodynamic stability of complexes.(31)  Robinson 

and co-workers (32) reported, using a modified ESI source, the stability of heat-shock 

proteins. Alternatively, introducing denaturants (urea, organic solvents, and acids) can 

release various subunits from the protein complex(33). Analyzing samples submitted to 

gradually increased amounts of denaturants allows subunit molecular weights to be 

measured.  However, this approach requires a number of steps in sample preparation and 

analysis, and, thus, can consume considerable protein sample. If we can directly 

dissociate protein complexes by tandem mass spectrometry, we would have a promising 

approach for studies of protein complexes(34, 35).  

Gas-Phase Properties of Protein Assemblies 

Because native ESI probes protein assemblies in the gas phase, one must consider 

the relationship between a gas-phase and a solution structure. Given that water molecules 

stabilize protein structure in solution, the ongoing argument has been whether there is any 

similarity between the native-state protein structure in solution and its structure in the gas 

phase. In another words, the question is whether noncovalent interactions that join 

together the protein subunits can be preserved in the gas phase. There are two 

noncovalent interactions involved in protein assemblies: hydrophobic and electrostatic 

interactions. In theory, the electrostatic interactions are strengthened in the gas phase, in 

the absence of solvent, whereas hydrophobic interactions are weakened by dehydration 

and introduction into the gas phase.   
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IM measurements can provide critical structural insights on protein assemblies in 

the gas phase. For example the protein assembly, trp RNA binding protein, forms a ring 

structure with 11 subunits. Evidence from IM measurements indicate that the ring 

structures are preserved in the absence of bulk solvent(36). IM shows that large protein 

assemblies can structurally survive in the gas phase on the time scale of an MS 

experiment. In another example, important evidence comes from the measurement of 

hydrophobic interaction kinetics in the gas phase by black-body infrared dissociation 

(BIRD). An example deals with the hydrophobic interaction between beta lactoglobin and 

its ligand (a fatty acid)(37). The kinetic data of this protein-ligand interaction show that 

hydrophobic interactions are preserved in the gas phase.  

Outcomes from various experiments indicate strongly that the some solution-

phase interactions as well as some protein near-native structures can be preserved in the 

gas phase. That evidence serves as a growing foundation that native ESI of protein 

assemblies containing multiple hydrophobic interactions (e.g.,  membrane proteins) can 

successfully be introduced to the gas phase without major perturbation of structure.  For 

example, one might expect that an assembly arrangement would be preserved even 

though some remodeling of the structures of individual protein subunits occurs.  

For native ESI of protein assemblies, membrane protein assemblies are the 

biggest challenge owing to their hydrophobicity.  Robinson and co-workers(38) first 

examined the native ESI of a membrane protein assembly by using micelles to protect the 

complex during its introduction to the gas phase. The micelles, formed by detergents, 

were removed by collisional activation by using small inert  gas molecules as collision 
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partners, allowing the stoichiometry to be determined and structural insights of 

membrane complex to be gained. 

Tandem Mass Spectrometry of Protein Assemblies 

Once a protein assembly has been introduced to the gas phase by native ESI, 

dissociation of the assembly can be achieved by tandem MS(34). Protein complexes gain 

internal energy during collisions with inert gas in the source or collision-cell region. 

When the overall internal energy is sufficient to break the non-covalent interaction, the 

protein complex releases some subunits. The process of dissociation is controlled in 

native ESI by adjusting the collision energy. An early example of collision-induced 

dissociation (CID) in native ESI studies is the work of Smith and co-workers(39) who 

reported the release of a single monomer from the tetrameric concanavalin A. 

Interestingly, they learned that the charge partitioning between ejected monomer and the 

rest of complex is asymmetric based on the charge per mass. Several other groups 

reported the dissociation of protein complexes into highly charged monomers and 

relatively less charged oligomers missing one subunit (Figure 5.4)(34). Systematic 

studies of structure and charge effects on protein assembly dissociation are now being 

conducted. Recently, new evidence shows that the loss of a high charged monomer is not 

the only pathway of dissociation of protein assemblies(40).     

Although the majority of tandem MS experiments are conducted by using CID, 

new dissociation techniques, including BIRD and SID, are becoming more important. 

Slow heating a protein complex trapped in FTICR cell by absorption of blackbody 

photons (via BIRD) is a unique approach in studies of protein-ligand interactions, as 
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shown in the work of Klassen and co-workers(41) . The temperature-dependent rate 

constant can be extracted from the dissociation data. Results from a study of fatty-acid 

binding protein and its ligand provide critical evidence for the preservation of  

hydrophobic interactions in the gas phase.  

Wysocki and co-workers(42) first reported an extension of CID, surface induced 

dissociation (SID). Compared with CID, SID provides a large mass collision partner (a 

solid surface instead of small inert gas molecule) for protein assemblies, thus increasing 

the center-of-mass energy for a given acceleration potential.  Interestingly, symmetric 

charge partitioning occurs in the SID of the protein assembly.  More structural insight of 

protein assemblies should now become available by integrating fragmentation behaviors 

from different dissociation approaches.   

Scope of the following chapter 

In tandem MS studies of protein assemblies, disruption of noncovalent 

interactions commonly occur giving information on connectivity of the proteins. An 

important goal would be to break the covalent bonds along the polypeptide chain while 

maintaining the noncovalent interactions between subunits. This top-down approach 

would afford sequence information of subunits without carrying out an independent 

bottom-up LC-MS experiment. The next chapters focus on the development of ECD top-

down approach in studies of protein assemblies that addresses achieving this goal.    
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Figure 5.1. The ESI process. The analyte solution is pushed to the end of capillary held of 

high electrical potential. Positive ions accumulate at the tip of the solution. The steam of 

solution is drawn out as small charged droplets that move away each other owing to 

electrostatic repulsion of the excess positive ions within each droplet. 
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Figure 5.2. Regular ESI spectrum of FMO protein. FMO protein was sprayed in 70% 

Acentonitrile  30% Water and 0.1% Formic Acid. FMO protein unfolded in this solution. 

All its pigments (BChl a) were missing. 
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Figure 5.3. Native ESI spectrum of FMO protein.  FMO protein in 1 M ammonium 

acetate solution and was sprayed by nESI. The trimeric complex was preserved and all 

pigments attached.  
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Figure 5.4. Tandem mass spectrum of L-lactate Dehydrogenase.  Tetrameric form of 

lactate dehydrogenase was observed at 5500-6500 m/z.  By adjusting the collision energy 

in the collision cell of QTOF, monomeric and dimeric forms of lactate dehydrogenase 

were observed at low m/z range. 
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Abstract   

The intact yeast alcohol dehydrogenase (ADH) tetramer of 147 kDa was 

introduced into a FTICR mass spectrometer by native electrospray.  Electron capture 

dissociation of the entire 23+ to 27+ charge state distribution produced the expected 

charge-reduced ions and, more unexpectedly, 39 c-type peptide fragments that identified 

N-terminus acetylation and the first 55 amino acids. The results are in accord with the 

crystal structure of yeast ADH, which shows that the C-terminus is buried at the 

assembly interface whereas the N-terminus is exposed, allowing ECD to occur. This 

remarkable observation shows promise that a top-down approach will be effective for 

characterizing their components, inferring their interfaces, and obtaining both proteomics 

and structural biology information in one experiment. 

 

Introduction 

Mass spectrometry (MS) is evolving as an important approach for investigating 

intact, large protein assemblies in the gas phase(1), augmenting other approaches(2). 

Advances in quadrupole time-of-flight instruments and ion mobility have underpinned 

this new role in structural biology(3-5). Determinations of molecular weight, 

stoichiometry, and assembly patterns of essential biological assemblies as large as MDa 

hepatitis B virus assemblies are now possible(6). 

To identify the constituents of a protein complex, information about the subunits 

of a complex is needed. Collisionally activated dissociation (CAD)(1), black-body 

infrared dissociation (BIRD)(7), electron-capture dissociation (ECD)(8), infrared 

multiphoton dissociation (IRMPD)(9), and surface-induced dissociation (SID)(10) can 
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yield some sequence information for proteins in large assemblies. For example, multiple 

collisions at keV laboratory energy demonstrate that native protein complexes can be 

disassembled into peptide fragments(11).  ECD(12), now an established tool for top-

down sequencing and for determining post-translational modifications, can successfully 

characterize, in part, proteins of MW up to 200 kDa(13) and noncovalent protein-ligand 

complexes(14).  Applications of ECD to protein–protein assemblies(8), however, are 

sparse.  

ECD and FT (Fourier Transform) ion cyclotron resonance (ICR) MS combine as 

an appealing approach for study of protein assemblies because, in principle, the masses of 

the complex and of the subunits, as well as some sequence of the constituents can be 

acquired in a single experiment. Indeed, we  report here a successful ECD-based FT 

ICRMS top-down approach that affords the composition, stoichiometry, and partial 

sequence of a 147 kDa noncovalent protein assembly; namely, the yeast alcohol 

dehydrogenase (ADH) tetramer.  

Experimental 

Fresh yeast alcohol dehydrogenase (ADH) complex (Sigma, St. Louis, MO, USA) 

(1.7 µM) was prepared by buffer exchange before every experiment and sprayed from 

aqueous NH4OAc (1 M). Custom spray tips were pulled from Polymicro silicon tubing 

(360 µm o.d., 150 µm i.d., Phoenix, AZ, USA) by using a microcapillary puller (Sutter 

Instrument Co., Novato, CA, USA).  The sample solution was infused at 25-100 nL/min 

(Harvard PHD Ultra syringe pump, Instech Laboratories, Inc., Plymouth Meeting, PA, 

USA).  A Bruker SolariX™12 T FTICR mass spectrometer with capabilities for CAD, 

ETD, ECD and sustained off-resonance irradiation (SORI) was used for analysis. 
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Results and Discussion 

We successfully sprayed (native ESI) the yeast alcohol dehydrogenase (ADH) 

assembly, obtaining significantly lower charged proteins (23+ to 27+, Figure. 6.1A) 

compared to what would be observed by non-native ESI. Charge deconvolution gave a 

MW of 147.5 kDa, verifying that we had introduced the tetramer.  

We conducted collisional activation in the front end of the hybrid instrument 

(prior to the FTICR trap) and found it to be inadequate to fragment the complex, 

suggesting tight binding of the protein constituents.  We also were unable to detect any 

fragments by using electron-transfer dissociation (ETD).  Given the large m/z difference 

of the complex and ETD reagent ion, the precursor ions may not have optimally situated 

for the ETD reaction.  We considered front-end selection by the quadrupole mass 

analyzer, but this is not yet possible for ions in this m/z range. When we attempted in-trap 

isolation and ECD of the most abundant 26+ charge state, only charge reduction was 

observed owing to poor dynamic range. The observation matches that of Geel (8) on 

ECD of the 84 kDa gp31 heptamer; only charge reduction and no peptide fragments were 

produced. The high MW ion packet isolated inside the ICR trap was likely displaced 

from the cell center owing to perturbations from the waveforms used for isolation. This 

led to poorer overlap between the electron beam for ECD and the stored ion packet than 

when activating lower m/z ions(15).  

When we submitted the entire charge-state distribution to ECD, without isolation, 

we obtained a remarkable result (Fig. 1B) whereby the precursor ions were completely 

depleted, and two types of product ions formed:  (1) a set of peptide fragments of m/z < 

2000 and (2) charge-reduced precursors down to at least 10+, accompanied presumably 
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by high m/z ions that are complements to the peptide fragments. To our knowledge, this 

is the first observation of peptide fragments produced directly by ECD from a protein 

constituent of a protein assembly.  

Analysis of the low m/z pattern shows that the first residue is acetylated serine, 

not methionine. Moreover, 39 c-type ions up to the 55th

One means to characterize large protein complexes by MS is a “bottom-up” 

strategy whereby the proteins are denatured leading to release of the subunits, the 

components separated and proteolyzed, or simply proteolyzed, and LC/tandem MS and 

 residue form in the fragmentation 

from the N terminus (Figure 6.2). Missing in the pattern are ions from chain cleavages at 

Pro23, 25, 27, and 55, which cannot be seen because there is no mass change when the 5-

membered ring is cleaved to give a c-type ion. Nevertheless, those fragments that are 

produced identify the protein (Figure 6.2).   

Moreover, the fragments are consistent with the X-ray crystal structure (Figure 

6.3) that shows the N terminal region is free and available for fragmentation whereas the 

C terminal region is buried at the interface.  In this case, the transition to the gas phase 

preserves sufficient solid-state structure to enable these phenomena. This complex is a 

dimer of dimers(16), held together by nearly a score of salt bridges(17).  The ionic forces 

that maintain protein higher order structure and hold together assemblies of this nature 

become stronger in the gas phase, suggesting why ECD affords sequence information 

rather than disrupts the assembly. It also explains why we can sequence through the first 

55 residues of the N terminus, which is not involved in the interface. Further, the 

complementary z-ions are likely seen for each of the charge-reduced species at slightly 

lower m/z, dispersed by their complex isotope patterns. 
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database searching are applied to identify the constituents. More refinement comes from 

high performance QToF MS of macromolecular assemblies, revealing stoichiometry and 

connectivity of subunits(4). Our observation suggests tha a top-down approach for 

characterization of protein complexes directly by tandem mass spectrometry will be 

successful.    

Assuming the constituents of this complex are unknown and that top-down 

sequencing can be successful, we tested whether the sequence from ECD was sufficient 

to identify the protein.  Although there are a number of ways to accomplish this, we 

chose to generate sequence tags(18) (7-20 amino acid) by using Bruker™  Biotools and 

extended them with consideration of the proline gaps. We then submitted the three 

longest tags to Mascot searching against the NCBI database with a mass tolerance of 0.02 

Da to identify the published Chain A, yeast alcohol dehydrogenase I (gi 112491285) 

containing 347 residues and having MW of 36.7 kDa.  The Mascot peptide score was 294 

(expectation value 1.5e-16). Given that the measured molecular weight of the complex is 

147.5 kDa, it is straightforward to conclude that four ADH monomers make up the whole 

assembly. 

Conclusion 

This approach using FTICR MS applied to the yeast ADH assembly afforded the 

MW of the complex.  More importantly, ECD generated sufficient sequence information 

to identify reliably the constituent protein.  Given the long run of ECD fragments, one 

can pinpoint that region of the protein that is relatively free in the ADH tetramer, and 

likely to be remote from the interface of this gas-phase assembly.  
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More generally, this “top-down” approach may offer a more efficient and simpler 

procedure than a “bottom-up” approach for characterization of each constituent in a 

macromolecular assembly. Furthermore, as a one-step protocol, it demonstrates the 

integration of MS-based proteomics and structural biology in one platform and satisfies a 

sought-after goal(19). In future experiments, we will focus on methodology; namely 

development of front-end preselection of precursor ions for ECD and addition of IRMPD 

to the platform for better fragmentation efficiency. We are also studying other 

homogeneous and ultimately heterogeneous assemblies, the results of which will be the 

subject of future publications.  
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Figure 6.1. Mass spectra of ADH complex: (A) Mass spectrum and (B) ECD product-ion 

spectrum of the yeast ADH complex. 
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Figure 6.2. ECD mass spectrum of the ADH complex over the low m/z range of Figure 1 
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Figure 6.3. ADH tetramer: ADH sequence showing the sites of ECD cleavages (top) and 

crystal structure of the yeast ADH tetramer (2HCY in PDB) with the N-terminal 55 

residues that were sequenced highlighted in red (bottom). 
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Abstract 

Native ESI combined with mass spectrometry is complementary to other 

biophysical methods owing to its high sensitivity, extended mass range, and fast data 

acquisition/processing. Protein assemblies with molecular masses up to MDa can now be 

investigated.  Most approaches have used quadrupole/time-of-flight tandem mass 

spectrometry sometimes coupled with ion mobility to reveal the stoichiometry, shape, 

and dissociation of protein assemblies.  The amino-acid sequence of the subunits, 

however, still relies heavily on independent bottom-up proteomics. We report here the 

integration of an electron-capture dissociation (ECD) top-down approach with native ESI 

to study protein assemblies in a 12 tesla FTICR mass spectrometer. The results from 

yeast alcohol dehydrogenase (ADH, 147 kDa), concanavalin A (ConA,103 kDa), and 

photosynthetic Fenna-Matthews-Olsen protein complex (FMO, 140 kDa) show that 

relatively free and flexible regions of the subunits can be sequenced by ECD or activated 

ion ECD. Furthermore, non-covalent metal-binding sites can also be determined for the 

ConA assembly. Most importantly, the regions that undergo fragmentation, either from 

one of the termini by ECD or from the middle on a protein as initiated by CID, correlate 

well with the B-factor from X-ray crystallography.  This factor is a measure of to what 

extent an atom can move away from its coordinated position as a function of temperature 

or crystal imperfections. The approach provides not only top-down proteomics 

information of the complex subunits but also structural insights complementary to those 

obtained by ion mobility. 

Introduction  
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We reported recently that a large number of consecutive backbone cleavages 

occur for the 147 kDa yeast alcohol dehydrogenase tetramer upon ECD in a 12 tesla 

FTICR mass spectrometer (1). We now follow up this observation with a report on a 

more detailed and general development and application of ECD and CID to several 

different protein assemblies. We show that the masses, subunit identities, metal-ion 

binding sites, and some structural information can be obtained in one experiment. The 

ECD fragmentation patterns of the protein complexes activated at different collision 

energies show preferred fragmentations of one terminus over the other, or of the middle 

region, indicating that the fragmentations are structurally significant. To correlate these 

fragmentations, we utilize a B-factor parameter from X-ray crystallography, a factor that 

is predictive of the flexible regions of a protein. 

Material and Methods 

Chemicals and Proteins 

Ammonium acetate, water, yeast alcohol dehydrogenase (ADH) form 

Saccharomyces cerevisiae, concanavalin A (ConA) from Canavalia ensiformis (Jack 

bean) were purchased from Sigma-Aldrich (St. Louis, MO). The FMO protein from green 

sulfur bacterial Chlorobium tepidum was purified as previously described(2).  

Sample preparation for Native ESI 

Lyophilized protein powder was dissolved in 100 mM ammonium acetate (pH = 

6.5-7) to afford an assembly concentration at 5 μM. The sample was washed three times 

with equal volume 100 mM ammonium acetate buffer in a Vivaspin 500 concentrator 

with 10,000 or 30,000 molecular weight cut off (MWCO) (Vivaproducts Inc., Littleton, 
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MA). Buffer exchange of purified FMO protein sample was conducted by Vivaspin 500 

conentrators (30,000 MWCO) before the native ESI experiment.  

MS of Protein complexes 

Protein sample was delivered by syringe pump (Harvard PHD Ultra syringe pump, 

Instech Laboratories, Inc., Plymouth Meeting, PA) at flow rate 5-300 nL/min to a nano 

spray source, which has a custom-pulled nano spray tip (Sutter Instrument Co., Novato, 

CA) of silica capillary tubing (360 µm o.d., 150 μm i.d., Polymicro Technologies, 

Phoenix, AZ). Mass spectra were acquired with a Bruker Solarix 12T FTICR mass 

spectrometer (Bruker Daltonics, Bremen, Germany). The capillary voltage was 0.9-1.3 

kV.  The drying-gas temperature was 100 ℃; its flow was 2.5 L/min. The voltage for in-

source fragmentation (ISCID) was varied from 0 to 100 V depending on the application. 

The ion-funnel RF amplitude was 300 Vpp, and the ion-funnel voltages were 200 V 

(funnel 1) and 18 V (funnel 2). RF frequencies used in all ion-transmission regions were 

the lowest available value: multipole1 (2 MHz), quadrupole (1.4 MHz) and transfer line 

(1 MHz). The collision voltage for the collision cell was varied from 0 to 50 V, 

depending on the application. Ions were accumulated for 500 ms in the RF-hexapole ion 

trap before being transmitted to the infinity ICR trap. The time-of-flight was ~ 2.5 ms for 

the protein-assembly ions.  The source region (PS1) pressure was 2.3 mbar; the 

quadrupole region (PS4) pressure was 4.36e-6 mbar and trap-chamber pressure (PS6) was 

1.3e-9 mbar. The typical ECD pulse length was 0.06 s, ECD bias 0.6 V and ECD lens 10 

V. The ECD hollow cathode heater current was 1.6 A. MS parameters were slightly 

modified in each individual sample to obtain an optimized signal. Calibration was done 

by ESI of cesium perfluoroheptanoic acetate up to m/z 8500. 
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Data Analysis 

Peak picking and spectra deconvolution were performed with Bruker 

DataAnalysis software (Bruker Daltonics, Bremen, Germany). Bruker Biotools software 

was used for mapping the measured peak mass list with calculated fragment mass list 

from the protein sequences. To validate that the sequence information is sufficient to 

identify the constituent subunits, sequence tags were generated with the Biotools software 

based on the deconvoluted spectra and submitted to Mascot searching against NCBI 

database as previous reported(1). Alternative peak matching was conducted by Prosight 

PTM (v1.0, https://prosightptm.northwestern.edu)(3).   

 

Results and Discussion 

ECD of protein complexes 

In FTICR MS, electrons from a cathode emitter interact with trapped protein-

assembly ions to initiate fragmentation. We could select the ions based on their m/z 

before fragmentation either prior to the ICR trap, using a selection quadrupole or in the 

FTICR trap itself (Figure 7.1).   Ion selection allows the study of each species or charge 

state. When using native ESI, some signal intensity is lost during ion pre-selection in 

commercial FTICR instruments. The upper limit on the instrument used here is ~ 6000 

m/z for selection by the quadrupole.  Large protein-assembly ions in our experiment had 

m/z values close to 6000 because native spray produces lower charge states than normal 

ESI, where the proteins are denatured. Preselecting high m/z ions by the quadrupole was 

inefficient, giving poor signal intensity. To select ions in the FTICR trap, the excitation 

waveforms used to excite an ion of interest also excite ions of nearby m/z. This excitation 

https://prosightptm.northwestern.edu/�
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causes movement of high m/z ion packets from the trap’s central axis, reducing the 

overlap between protein-assembly ions and the emitted electrons needed for ECD(4).  

Because preselection for ECD is not highly efficient, we chose to avoid 

preselection and to submit the entire charge distribution to ECD. This is not a problem 

here because native ESI generated a narrow charge-state distribution extending over ~ 4 

charge states with one as most significant.  When we communicated preliminary results, 

we also did no preselection and obtained, using ECD, a clean set of c ions from the ADH 

protein assemblies(1). A report from the Langridge-Smith group demonstrated a similar 

improvement in overall efficiency by applying ECD to several of the most abundant 

charge states of a protein-ligand complex(5).  

Having established a protocol, we conducted top-down ECD of protein 

assemblies with different sizes and oligomer states. In addition to the ADH assembly,  

ConA and the FMO antenna assemblies fragment to give c or z ions and charge reduction 

(Figure 7.2). The results suggest that ECD top-down fragmentation of protein assemblies 

will be useful for other assemblies. The approach affords subunit sequence information 

and MW information in single experiment.    

Subunit sequence and metal binding sites 

With ECD of protein assemblies, both ions representing the full assembly and 

fragment ions are observed. Information extracted from this single experiment may give 

subunit identification and stoichiometry of protein complexes. As for the previously 

reported ECD of the yeast ADH assembly, the ECD fragmentation extent is sufficient to 

identify the constituent subunit by sequence-database searching(1). The stoichiometry of 
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the assembly can be determined on the basis of the molecular mass of the assembly and 

that of its subunits.  

For ConA, the intact mass of the assembly (103 kDa) is read out directly from 

spectrum of native ESI. By applying ECD to the assembly, c fragment ions are formed, 

and they can be assigned within 20 ppm mass accuracy. Sequence information matched 

ConA (237 amino acid, 25,539 Da, UniProtKB database ID: CONA_CANVI).  A total 38 

fragment ions, with or without metal adducts, covered the N terminus of ConA up to 57th

In the case of ConA, metal binding is preserved in the gas phase upon native ESI.  

Each lectin ConA protein has two metal-binding sites for two bivalent metal ions (Mn

 

residue from the N terminus. Having obtained subunit identity and intact mass of 

complex, we found that it is straightforward to conclude that ConA forms a tetramer.  

ECD is capable of identifying labile modifications and non-covalent ligand 

binding sites(6). Important biological information including phosphorylation and drug-

binding sites, can be elucidated. For example, Loo and co-workers demonstrated that 

ECD in a top-down format can locate non-covalent drug binding sites(7, 8).  

2+ 

for the S1 site and Ca2+ for the S2 site)(9); these sites are essential for ConA’s interaction 

with glycogen. Previous metal-binding studies demonstrated that several bivalent metal 

ions can bind to ConA as substitutes for Mn2+ and Ca2+ (Co2+, Ni2+, Cd2+, Mg2+ for the S1 

site, Cd2+ for the S2 site)(10-12).  Fragment ions containing Ca2+ and Mg2+ are preserved 

in the ECD top-down study of tetrameric ConA, and residues Asp-19 and Asp-10 can be 

identified as major Mg2+ and Ca2+ binding sites on the basis of ECD fragmentation 

(Figure 7.3a); these assignments are in agreement with the S1 and S2 binding sites seen 
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in the crystal structure(13).  We note that an ECD top-down experiment with denatured 

ConA failed to provide metal binding information owing to the loss of metal ion upon 

denaturation or ESI (Figure 7.3b).  

In most protein-assembly studies by MS, the mass of the assembly is measured by 

native ESI whereas subunit identity and PTM information are provided by bottom-up LC-

MS of the proteolytically digested assembly. Our results show that these two independent 

experiments can be integrated into one by using a top-down approach with fragmentation 

induced by ECD. More importantly, this approach should be applicable to the study of 

non-covalent ligand binding and labile PTMs (e.g., phosphorylation and glycosylation) of 

a protein assembly.  

Structural information elucidated by ECD experiment 

One rapid growing area of MS-based investigations of protein assemblies focuses 

on their nature of dissociation in the gas phase(14). Protein assemblies can be dissociated 

by applying additional accelerating potential or heating during the transmission of the 

ions from the source to the detector(15, 16).  The dissociation results in ejection of a few 

subunits from the assembly, providing a view of the arrangement of the assembly(17). 

Interestingly, ejected subunits usually carry more charges per mass than the remainder of 

the assembly. IM shows that as a region unfolds, it allows  protons to move from the core, 

causing it to charge disproportionately; dissociation of that segment then occurs(14). 

Subunit unfolding can be investigated by ECD top-down approach. This “peel-an-

onion” process occurs because the internal energy of the assembly increases, providing in 

principle information about relatively flexible and unstructured arms of the constituent 

proteins. In our experiment, internal energy of protein complex was increased by using a 
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larger acceleration voltage to afford ion-source CID (ISCID). We used nitrogen as 

collision gas. The unfolding process induced by increasing the internal energy can be 

monitored by the locating the sites of ECD fragmentation. The tetrameric assembly of 

yeast ADH was activated by varying the acceleration voltage from 0 to 100 V (Figure 

7.4). Various c ions of higher m/z become more abundant with increasing acceleration 

voltage (Figure 7.5a). The results indicate that protein unfolding starts at the N-terminus 

and extends further to the core of the assembly.   

Correlation of fragmentation with the B-factor 

There are clearly opportunities for new structural insights from ECD; its pattern 

may serve as an indicator of flexibility in protein structure. In the x-ray crystal structure, 

the atomic displacement parameter (B-factor) reflects the flexibility and dynamics of a 

polypeptide chain(18, 19); for example, a large B-factor indicates high mobility of 

individual atoms and side chains. When we plot the B-factor as a function of the location 

of the amino-acid residue for the N-terminal region of ADH, we see that the extent of 

fragmentation correlates with it; the highest B-factor is on the end of terminal region 

among the four chains (Figure 7.5b). We interpret that this subunit unfolds first, moving 

away from the protein core, adopting charge, and undergoing subsequent fragmentation 

(Figure 7.6). 

There is evidence from previous IM studies on protein assemblies that subunit 

unfolding occurs before dissociation. A more detailed unfolding process can now be 

proposed by considering the ECD outcome and locating regions of structural flexibility. 

Given that protein flexibility is highly correlated with protein function, ECD in a top-
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down format may be highly informative for the study of not only of structure but also of 

flexibilty of biologically important protein assemblies.  

Structural elucidation by top-down ECD and CID 

Although an ECD-based top-down approach to protein assemblies appears to 

identify the terminal regions of high flexibility, a flexible region in the middle of protein 

sequence may not be sampled in the fragmentation. We decided to integrate other 

fragmentation approaches (i.e., CID) to see if the combination of CID and ECD can 

provide more comprehensive structural information. In the study of the trimeric FMO 

antenna protein, only z ions from C terminal of FMO are produced in the ECD top-down 

experiment (Figure 7.7), and these results are consistent with the C terminal region of 

FMO being more flexible than the N terminal region, which is heavily involved in 

forming the protein interface.  

Interestingly, an unusual set of fragment ions with different charge states were 

observed in a CID experiment (Figure 7.7). A database search indicates the fragment ion 

is not from the N or C terminal regions. Using the high mass resolving power and 

accurate mass measurement capabilities of FTICR MS, we were able to identify this ~ 10 

kDa species as originating from 201-295 in the middle of FMO protein sequence (Figure 

7.8).  Previous studies of other protein assemblies showed that unfolding and ejection of a 

subunit is the major pathway upon CID.  

The unique fragment patterns are consistent with the assembly’s structure. The 

FMO protein trimer contains seven bacteriochlorophyll a (BChl a) pigments inside, 

forming a tight trimeric entity by salt bridges(20). For each subunit, a series of beta 

sheets form two parallel walls, like a “taco shell”, holding seven BChl a pigments. The 
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open end of the “taco shell” contains several alpha helixes and two BChl a pigments 

(BChl 1 and 2) and points to the center of the trimeric complex; all the BChl a pigments 

are buried inside. Dissociation of the assembly will destroy those salt bridges and expose 

BChl a pigments, a process that requires high energy. Thus, no subunit ejection occurred 

upon CID. Alternatively, a loop of a beta sheet within the region 201-295 unfolded first, 

fragmented upon collisional activation, and lost a large peptide from the middle of the 

protein.  

Based on the crystal structure of trimeric FMO complex(21) (Figure 7.9), the C 

terminus of the protein is at the bottom of this complex, while the N-terminal is in a 

middle beta-sheet structure forming the side wall of the assembly. The region that 

undergoes CID is on the top of protein complex.  Given our supposition that the locale 

for fragmentation is related to the flexibility of protein structure, we applied the B-factor 

as a potential correlate for the fragment pattern.  Indeed, the region undergoing CID is 

one that has one of the highest B factors in the protein sequence. Moreover, the region 

201-295 released upon CID overlaps with 275-366 that releases upon ECD. The 

combined outcome of ECD and CID is evidence that the unfolding starts at the middle 

region of protein.  This initial unfolding also increased the flexibility of the polypeptide 

chain extending to the C-terminus, which undergoes ECD.    

Conclusions 

ECD in a top-down format appears to be an alternative for the structural studies of 

protein assemblies and offers a unique view of the dynamics of a protein assembly. The 

results from three protein complexes show that unique fragmentations occur (upon both 

CID and ECD) and that they are indicative of their specific structures. We propose that 
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careful analysis of the fragmentation patterns obtained with this top-down approach will 

benefit the structural studies of protein assemblies.   This proposal is supported by the 

results from three model assemblies:  yeast ADH tetramer, FMO antenna complex of 

green sulfur bacterial, and concanavalin A.  Specifically, we could obtain in one 

experiment sequence information, non-covalent metal-binding sites, assembly 

stoichiometry, and structural insight that pinpoints flexible regions. This approach is 

complementary to not only the traditional methods of crystal structure and NMR 

spectroscopy but also commonly applied approaches of native ESI, QToF MS, and ion 

mobility. 

Although this FT-ICR based ECD top-down approach is still in its infancy, its 

promise will increase developments to improve efficiency and selection capability and to 

integrate other fragmentation method including IRMPD and other photochemical 

activation schemes, and in-trap, high-energy collisional activation. In another direction, 

different and important protein complexes of heterogeneous composition need to be 

investigated to demonstrate a broader application of this approach; some of these 

developments are under investigation in our laboratory.  

 

 

 

 

 

 

 

 



178 
 

References 

1. Zhang, H., Cui, W., Wen, J., Blankenship, R. E., and Gross, M. L. Native 

electrospray and electron-capture dissociation in FTICR mass spectrometry 

provide top-down sequencing of a protein component in an intact protein 

assembly, J Am Soc Mass Spectrom 21, 1966-1968. 

2. Wen, J., Zhang, H., Gross, M. L., and Blankenship, R. E. (2009) Membrane 

orientation of the FMO antenna protein from Chlorobaculum tepidum as 

determined by mass spectrometry-based footprinting, Proc Natl Acad Sci U S A 

106, 6134-6139. 

3. LeDuc, R. D., Taylor, G. K., Kim, Y. B., Januszyk, T. E., Bynum, L. H., Sola, J. 

V., Garavelli, J. S., and Kelleher, N. L. (2004) ProSight PTM: an integrated 

environment for protein identification and characterization by top-down mass 

spectrometry, Nucleic Acids Res 32, W340-345. 

4. Guan, S., and Burlingame, A. L. High mass selectivity for top-down proteomics 

by application of SWIFT technology, J Am Soc Mass Spectrom 21, 455-459. 

5. Clarke, D. J., Murray, E., Faull, P. A., Hupp, T., Barran, P., Langridge-Smith, P., 

and Mackay, C. L. (2010) Investigating Protein-Peptide Binding by 'Top-Down' 

FT-ICR MS, Ion-Mobility MS and Hydrogen/Deuterium Exchange, In 58th ASMS 

Conference on Mass Spectrometry and Allied Topics, Salt Lake City, Utah. 

6. Cooper, H. J., Hakansson, K., and Marshall, A. G. (2005) The role of electron 

capture dissociation in biomolecular analysis, Mass Spectrom Rev 24, 201-222. 

7. Yin, S., and Loo, J. A. Elucidating the site of protein-ATP binding by top-down 

mass spectrometry, J Am Soc Mass Spectrom 21, 899-907. 



179 
 

8. Xie, Y., Zhang, J., Yin, S., and Loo, J. A. (2006) Top-down ESI-ECD-FT-ICR 

mass spectrometry localizes noncovalent protein-ligand binding sites, J Am Chem 

Soc 128, 14432-14433. 

9. Hardman, K. D., and Ainsworth, C. F. (1972) Structure of concanavalin A at 2.4-

A resolution, Biochemistry 11, 4910-4919. 

10. Kalb, A. J., and Levitzki, A. (1968) Metal-binding sites of concanavalin A and 

their role in the binding of alpha-methyl d-glucopyranoside, Biochem J 109, 669-

672. 

11. Young, N. M. (1983) Magnesium as a natural substitute for manganese in 

concanavalin A and other lectins, FEBS Lett 161, 247-250. 

12. Sanders, J. N., Chenoweth, S. A., and Schwarz, F. P. (1998) Effect of metal ion 

substitutions in concanavalin A on the binding of carbohydrates and on thermal 

stability, J Inorg Biochem 70, 71-82. 

13. Edelman, G. M., Cunningham, B. A., Reeke, G. N., Jr., Becker, J. W., Waxdal, M. 

J., and Wang, J. L. (1972) The covalent and three-dimensional structure of 

concanavalin A, Proc Natl Acad Sci U S A 69, 2580-2584. 

14. Benesch, J. L., and Robinson, C. V. (2006) Mass spectrometry of macromolecular 

assemblies: preservation and dissociation, Curr Opin Struct Biol 16, 245-251. 

15. Benesch, J. L., Sobott, F., and Robinson, C. V. (2003) Thermal dissociation of 

multimeric protein complexes by using nanoelectrospray mass spectrometry, Anal 

Chem 75, 2208-2214. 



180 
 

16. Geels, R. B., Calmat, S., Heck, A. J., van der Vies, S. M., and Heeren, R. M. 

(2008) Thermal activation of the co-chaperonins GroES and gp31 probed by mass 

spectrometry, Rapid Commun Mass Spectrom 22, 3633-3641. 

17. Benesch, J. L. (2009) Collisional activation of protein complexes: picking up the 

pieces, J Am Soc Mass Spectrom 20, 341-348. 

18. Daggett, V., and Levitt, M. (1992) A model of the molten globule state from 

molecular dynamics simulations, Proc Natl Acad Sci U S A 89, 5142-5146. 

19. Parthasarathy, S., and Murthy, M. R. (2000) Protein thermal stability: insights 

from atomic displacement parameters (B values), Protein Eng 13, 9-13. 

20. Tronrud, D. E., Wen, J., Gay, L., and Blankenship, R. E. (2009) The structural 

basis for the difference in absorbance spectra for the FMO antenna protein from 

various green sulfur bacteria, Photosynth Res 100, 79-87. 

21. Camara-Artigas, A., Blankenship, R. E., and Allen, J. P. (2003) The structure of 

the FMO protein from Chlorobium tepidum at 2.2 A resolution, Photosynth Res 

75, 49-55. 

 



181 
 

 
 
Figure 7.1. ECD top-down approach by FTICR MS showing three ways for ion selection: 

in the quadrupole region before entering the FTICR trap (top); in the FTICR trap 

(middle); and without pre-selection (bottom).  
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Figure 7.2. ECD spectra of intact protein complexes: (a) concanavalin A (ConA) from 

Canavalia ensiformis (Jack bean); (b) FMO antenna protein from green sulfur bacteria 

Chlorobium tepidum; (c) yeast alcohol dehydrogenase (ADH) from Saccharomyces 

cerevisiae .  
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Figure 7.3. Sequence coverage of ConA by top-down ECD for denatured ConA (in 50% 

acetonitrile 50% water 1% formic acid) (top and for ConA in its near native state (in 100 

mM ammonium acetate, pH 7).  
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Figure 7.4. ECD spectra of ADH with different acceleration potentials (ISCID). Each 

spectrum was a summary of 100 scans with the same instrument parameters (except 

ISCID). The ECD fragment ions were observed at low m/z and are c ions from the N-

terminal region of ADH. The charge-reduced ions and complimentary z ions were 

observed at high m/z region of the spectra.  
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Figure 7.5. ECD fragmentation and B-factor: (a) Normalized intensity of ECD fragment ions 

(c ions) from the ADH assembly at different acceleration potentials (ISCID). (b) Atomic 

displacement parameter (B-factor) plot for the C terminal region of ADH. The B-factor values are 

from the crystal structure of yeast ADH (PDB id: 2HCY). In the crystal structure, the protein has 

four different conformations represented by Chain A-D.  
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Figure 7.6. Tetrameric ADH crystal structure color-coded to show the B factor extent.  

Tetrameric ADH complex was assembled by crystal packing (PDB id: 2HCY). Dimer on 

the bottom of ADH complex is displayed with the B-factor scheme (the color and width 

represent the value of B factor) from crystal data (Chain B).   
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Figure 7.7. Native ESI and ECD/CID top-down spectra of the FMO antenna protein 

complex.  (a-c) native ESI spectra of FMO with 0, 10, 20 V ISCID. No fragment ions 

were observed. (d) ECD spectrum of FMO protein with 15 V ISCID. (e) CID (10 V) 

spectrum of FMO; no fragment ions were observed. (f) CID (20 V) spectrum of FMO. 

Multiply charged fragment ions was observed at low m/z.  
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Figure 7.8. Product-ion spectrum of the FMO antenna protein produced upon top-down 

CID). The 6+ charge state was expanded and aligned with theoretical calculated m/z 

values and abundances (open circles).  
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Figure 7.9. Crystal structure of the FMO antenna protein complex; the protein is 

displayed in cartoon mode; BChl a is depicted as a stick mode with gray color.  
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