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ABSTRACT OF THE DISSERTATION 

 

Development of Shell-Crosslinked Knedel-like Nanoparticles  

as Intracellular Delivery Vehicles  

and Gene Regulation Agents 

by  

Ke Zhang 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2009 

Professor Karen L. Wooley, Chairperson 

 

This dissertation focuses on the development of polymer-based nanomaterials, 

termed shell-crosslinked knedel-like (SCK) nanoparticles, as vehicles to carry specific 

guest molecules or guest structures into the cell.  Detailed synthetic procedures for and 

characterization of well-defined block copolymers, as well as the nanostructures resulted 

from their self-assembly are reported.  The nanoparticles exhibited different but 

controlled sizes and shapes, depending on the conditions for their preparation.  To 

incorporate functionality into these materials, both pre- and post-particle 

functionalization methods, as well as their combination, were used.  The nanostructures 

involved in this dissertation include protein transduction domain (PTD)-functionalized 

SCK, folate-functionalized SCK and cationic SCK (cSCK).  Biological evaluation of 
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each type of nanoparticles is described.  For the PTD- and the folate-SCKs, a particle 

shape/size dependence on their ability to undergo cell uptake was found, although their 

trends were opposite.  The cSCKs were designed to bear primary amines, which rendered 

the nanoparticles a positively charged character in solution that was utilized to condense 

and protect DNA.  The cSCKs were shown to be highly effective in transporting DNA 

into the cell to allow the DNA to function.  Peptide nucleic acids (PNAs) were also 

effectively transported into the cell by covalent conjugation to or electrostatically 

complexation with the cSCKs.  Finally, the cSCKs were shown to be able to form 

hierarchical nanoscale structures with anionc, cylindrical SCKs, and transport the 

cylinders into the cell. 
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Chapter 1 

 

Introduction 

 

On December 29, 1959, at an American Physical Society meeting at the 

California Institute of Technology, physicist Dr. Richard Feynman gave birth to the 

concepts found in nanotechnology in his ground-breaking lecture There’s Plenty of Room 

at the Bottom (1), and triggered the campaign to study and control matter over atomic 

and/or molecular scale.  Feynman described a process by which the ability to manipulate 

individual atoms and molecules might be developed, using one set of precise tools to 

build and operate another proportionally smaller set, and so on down to the needed scale.  

Later in the 1980s, this basic idea was explored in much more depth by Dr. K. Eric 

Drexler, who promoted the technological significance of nano-scale phenomena and 

devices through lectures and the books Engines of Creation: The Coming Era of 

Nanotechnology (1986) and Nanosystems: Molecular Machinery, Manufacturing, and 

Computation (1991), and so the term acquired its current sense.  Nanotechnology gained 

momentum in the early 1980s with two major developments: the birth of cluster science 

and the invention of the scanning tunneling microscope (STM).  Ever since, 

nanotechnology enjoyed rapid growth in academic and industrial laboratories, across 

disciplines, through the efforts and devotion from several generations of scientific 

researchers and has become a robust and well-accepted scientific field.  Meanwhile, 

profound impacts of nanoscience and technology have been growing explosively 

worldwide in manufacturing and scientific research, such as miniaturization of electronic 
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and memory devices, design and synthesis of more robust and efficient catalysts, 

development of more accurate and effective diagnostic procedures, and exploration of 

“smart” drugs that recognize and attack only the diseased regions. 

Two main approaches are used in nanotechnology.  In the "bottom-up" approach, 

materials and devices are built from molecular components which assemble themselves 

chemically by principles of molecular recognition (2-10).  In the “top-down” approach, 

nanostructures are constructed from larger entities without atomic level control, using 

physical and lithographical techniques (11-18).  Both approaches provide specific 

capacities that can be complemented by the other (19-23).  Nature achieved the very 

summit of nanostructure creation through the “bottom-up” approach.  The self assembly 

of polypeptides into proteins with intricate supramolecular structures and specific 

functionalities represents one of the most elegant manners in the construction of complex 

nanostructures.  This phenomenon not only proves that nanoscale synthesis and control is 

possible, but also inspires scientists to exploit Nature-mimicking nanoscale materials 

having unique optical, electrical, catalytic, and biological properties (24-26).  By 

synthetically preparing molecules that interact with each other through weak non-

covalent interactions, which included van der Waals, electrostatic, hydrophobic 

interactions, hydrogen and coordination bonds (27-31), various kinds of nanostructures 

can be assembled via a balanced reversible process (32-34).  These nano-assemblies 

exhibit diverse non-spherical morphologies, such as belt (35), cylinder (36), fiber (37-

40), helix (41-43), lamella (44), and vesicle (45-47), depending upon the intrinsic 

compositions and physical properties of the molecular constituent and its environment 

during the assembly process. 
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Among the many kinds of synthetic molecules that can undergo self-assembly, 

amphiphilic block copolymers have attracted significant attention recently from both 

academic and industrial investigators (48-50).  Many interesting/beneficial properties are 

offered by amphiphilic block copolymer systems: facile tuning of dimensions, 

compositions, and components;  ability to introduce of functionalities; large phase 

segregation tendency (51-52) and slow assembly kinetics (53). 

Advances in living polymerization techniques, especially the development of 

controlled radical polymerizations (CRP) (54), have dramatically improved the 

availability of well-defined block copolymers, thereby enriching the types of 

nanoassemblies that can be prepared, studied and used.  Using atom transfer radical 

polymerizations (ATRP) (55-58), a type of CRP independently discovered by Mitsuo 

Sawamoto and Krzysztof Matyjaszewki in 1995, various kinds of polymers having 

narrow molecular weight distributions, controlled architectures and chemical 

compositions can be produced.  These polymers may be further processed or modified to 

incorporate desired functionalities (59).  A wide range of conventional and 

unconventional morphologies have been prepared from these block copolymers, such as 

cylinders (60-69), vesicles (70-80), segmented rods (81), bowls (82), discs (83), helices 

(84) and toroids (85).  The versatility in morphology, composition and particle size of 

these polymer-based nanoparticles offer a rich selection of building blocks for the 

construction of higher-level, more complex and/or hierarchical nanostructured materials 

for use in biomedical applications. 

The impact of nanotechnology in healthcare resulted in a specific field – 

Nanomedicine (86-93), the medical applications of nanotechnology to improve the 
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performance of existing therapeutic and diagnostic modalities and to establish novel 

modalities for diagnostics, treatment, and therapy of diseases.  Block copolymer-based 

micelles (94-106) have already been widely studied in nanomedicine and found 

promising applications in both therapeutic delivery and diagnostics.  However, such self-

assembled entities are equilibrium products formed in solution.  Once diluted below 

critical micelle concentrations (usually at the order of 10-7 M), collapsing of their ordered 

structures and re-organization into unimers (amphiphilic block copolymer precursor) 

becomes thermodynamically favored.  As a result, properties intrinsic to the nanoscale 

size are lost.  Covalent (107-112) and non-covalent (113) crosslinkings have been 

introduced to these micellar assemblies to enhance their structural stability, resulting in 

several new classes of materials termed shell crosslinked knedel-like (SCK) 

nanoparticles, which remain stable under very dilution conditions.  These SCKs have also 

been further decorated with different functionalities for in vitro and in vivo applications 

(114-117). 

This dissertation is focused on the design, synthesis, and characterization of SCK 

nanostructures (spheres and cylinders) bearing different moieties that allowed for the 

targeted/non-targeted cell entry, DNA packaging and cell transfection, as well as the 

formation of complex, hierarchical nanostructures.  Previous studies on poly(acrylic 

acid)-shelled SCKs that were functionalized with the protein transduction domain of 

human immunodeficiency virus type 1 Tat protein (HIV Tat PTD) suggest that these 

materials may potentially serve as diagnostic and therapeutic agents with cell entry 

capabilities (118).  However, it was not well understood whether there is a particle 

size/shape preference to the mammalian cell.  In order to probe the nanoparticle 
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shape/size effect on cellular uptake, a spherical and two cylindrical nanoparticles, whose 

lengths were distinctively varied, were constructed by the selective crosslinking of 

amphiphilic block copolymer micelles.  In Chapter 2, it is demonstrated that, when the 

nanoparticles were functionalized with the protein transduction domain of human 

immunodeficiency virus type 1 Tat protein (HIV Tat PTD), the smaller, spherical 

nanoparticles had a higher rate of cell entry into Chinese Hamster Ovary (CHO) cells 

than did the larger, cylindrical nanoparticles.  It was also found that nanoparticles were 

released after internalization, and that the rate of cell exit was dependent on both the 

nanoparticle shape and the amount of surface-bound PTD. 

The PTD-assisted cell entry mechanism is known to be receptor-independent 

(119).  As a result, larger structures with a higher surface area may not benefit from a 

multivalent effect, where one nanoparticle is attached to the cell at multiple receptor sites.  

On the contrary, receptor-dependent cell internalizations are affected to a great extent by 

the multivalent effect.  It was, therefore, of interest to determine whether the trend 

observed in Chapter 2 is different for particles bearing not PTD, but ligands that can bind 

to cell surface receptors.  Chapter 3 reports the synthesis of spherical and cylindrical 

SCKs of exact physical sizes and shapes as those used in Chapter 2, but functionalized 

with folate using a poly(ethylene glycol) (PEG) that has folate and an amine group as the 

opposing chain termini.  By use of confocal microscopy, it is demonstrated that the 

delivery of folate-conjugated SCKs are selective to human KB cells, a cell line that 

overexpresses the folate receptor (FR).  A higher extent of polymer uptake by the cells 

occurred with the cylindrical SCK morphology, relative to the spherical SCKs, when both 

samples had the same fluorescein-5-thiosemicarbazide and polymer concentrations.  In 
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both cases, by using excess free folic acid as a block or SCKs lacking the folate-PEG 

conjugate, cell uptake was significantly reduced.  These results suggest that particle shape 

may play an important role in receptor-mediated cell uptake, and may be exploited in the 

targeted delivery of nanoscopic drugs. 

These PTD- and folate-functionalized SCKs described in Chapters 2 and 3 may be 

further loaded with small molecule therapeutics in the shell and/or core of the 

nanoparticles, and be used for intracellular delivery in a systemic or specific fashion, 

respectively.  However, the negatively-charged, poly(acrylic acid)-based shell of the SCK 

negates the notion of DNA packaging, which in recently years are being considered as a 

highly promising therapeutic that potentially could treat diseases currently considered 

incurable.  Nature’s material for DNA packaging and storage are the histones, which 

form disc-like nanoparticles of roughly 10 nm in diameter, around each of which 146 

base pairs of DNA can wrap.  Taking advantage of the concept of biomimicry, the SCKs 

were chemically altered to bear primary amines which could then be protonated to carry a 

positive charge for DNA packaging and transport, while being roughly the same size as a 

histone core particle.  Chapter 4 describes the detailed synthetic route for these cationic 

SCKs (cSCKs), and demonstrates that they are in fact efficient agents for cell 

transfection, comparing favorably with commercially available agents.  The structure-

activity relationship of the cSCK and cell transfection efficiency/cytotoxicity was further 

explored in Chapter 5, where it is shown that, through introduction of tertiary amine to 

the primary amine-containing shell of the cSCK, better release of DNA inside a cell can 

be achieved while maintaining sufficient buffering capacity, thereby significantly 

increasing cell transfection efficiency without increase in cytotoxicity. 
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Because DNA is native to humans and other organisms, its use as a therapeutic 

poses a safety risk.  Moreover, DNA is readily degraded.  As an alternative, peptide 

nucleic acids (PNAs) have been developed as a functional replacement of oligo DNAs.  

Carrying a peptidyl backbone, PNAs have a number of features that make them an ideal 

platform for use as DNA replacements, such as higher binding affinity and stability 

towards enzymatic degradation.  Unfortunately, their inability to pass through membranes 

has limited their in vivo application as diagnostic and therapeutic agents.  In Chapter 6, 

two strategies involving the use of the cSCKs as PNA delivery vehicles are described.  

PNAs are associated with the cSCKs either through electrostatic complexation with a 

PNA•ODN hybrid, or through a bioreductively-cleavable disulfide linkage.  These 

delivery systems are better than the standard lipofectamine/ODN-mediated method and 

much better than the Arg9-mediated method for PNA delivery in HeLa cells, showing 

lower toxicity and higher bioactivity.  The cSCKs were also found to facilitate both 

endocytosis and endosomal release of the PNAs, while themselves remaining trapped in 

the endosomes 

In the last part of this dissertation, Chapter 7, a “bottom-up” approach was 

utilized to construct hierarchical, complex nanoparticles using cSCKs and cylindrical 

SCKs as building blocks.  These composite materials are well-defined, hierarchically-

organized nanoscale objects of a cylindrical form and core-shell morphology, having an 

outer coating of cationic shell-crosslinked cSCK.  In addition to standard characterization 

techniques, a fluorescent resonance energy transfer (FRET) experiment was designed and 

used to study the coating of anionic cylinders by cationic spheres.  Expedited HeLa cell 

uptake was observed for the composite nanostructures compared with the non-coated 
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cylinders, indicating that this simple assembly strategy is a facile method to allow the 

secondary structure to inherit properties from its individual building blocks. 

Nanotechnology holds significant promise in advancing the field of medicine.  

With increased understanding of the molecular mechanisms of the human body, 

nanoscale, targeted drugs are being developed, and many have become available for 

clinical application.  Some of these drugs function by intracellularly manipulating the 

cells’ protein function/expression, signal transduction or genetic make-up, by means of 

delivering small molecule binders, intercalators, proteins, DNAs or synthetic 

macromolecules such as PNAs into the cell.  It is assumed that the nanoparticles 

themselves must be able to undergo cell entry in order for them to perform as guest-

delivery systems.  The following chapter will begin the discussion of nanoscale delivery 

vehicles by introducing PTD-functionalized SCKs. 
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Chapter 2 

 

Shape effects of nanoparticles conjugated with cell-penetrating peptides 

(HIV Tat PTD) on CHO cell uptake  

 [Portions of this work have been published previously as Ke Zhang, Huafeng Fang, 

Zhiyun Chen, John-Stephen A. Taylor and  Karen L. Wooley Bioconjugate Chem.  2007, 

19(9), 1880-1887.] 

 

Abstract 

In order to probe the nanoparticle shape/size effect on cellular uptake, a spherical 

and two cylindrical nanoparticles, whose lengths were distinctively varied, were 

constructed by the selective crosslinking of amphiphilic block copolymer micelles.  

Herein, we demonstrate that, when the nanoparticles were functionalized with the protein 

transduction domain of human immunodeficiency virus type 1 Tat protein (HIV Tat 

PTD), the smaller, spherical nanoparticles had a higher rate of cell entry into Chinese 

Hamster Ovary (CHO) cells than did the larger, cylindrical nanoparticles.  It was also 

found that nanoparticles were released after internalization, and that the rate of cell exit 

was dependent on both the nanoparticle shape and the amount of surface-bound PTD. 
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Introduction 

The plasma membrane of a cell serves as one of the major barriers against inward 

transportation of extraneous materials, such as a gene and/or a nanoscale synthetic 

delivery system.  Modern synthetic designs have incorporated various cell-penetrating 

peptides (CPPs), borrowed initially from virus particles, to facilitate their uptake by cells 

through a receptor-independent pathway (1), whose mechanism is not yet completely 

understood.  The ability of a nanostructure to translocate across the cell plasma 

membrane is of fundamental and practical interest, and will determine the possible 

outcomes of the nanomaterial in a biological context.  Nanostructures of various sizes, 

shapes and chemical compositions have gained access to the cell’s interior with or 

without the assistance of CPPs, including metal nanoparticles (2), dendrimers (3), 

liposomes (4), single-walled carbon nanotubes (5), and virus-mimics (6), etc.  However, 

the amount of assistance provided by the CPPs for the nanoparticles to be internalized by 

a cell may be limited (7); eventually the influence of the size and geometric features of 

the cargo will become increasingly important.  Recently, Chan et al (2, 8) probed the 

effects of size and shape, for penetratin-coated gold nanoparticles within the 10-100 nm 

range, on the endo- and exocytosis by mammalian cells.  A non-linear relationship 

between size and uptake was found, and 50 nm spherical particles were identified as 

having the highest cell uptake.  On the micrometer scale, Mitragotri et al investigated the 

shape effect by synthesizing a variety of geometrically-anisotropic polystyrene particles, 

whose phagocytosis rates were found to be strongly dependent on the shape of the 

microparticle (9).  However, a study to compare across the 10-1000 nm region using 

particles of similar chemical nature is still unavailable.  The mechanism of CPP-assisted 
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cell internalization of the cylindrical structure (several µm in length), which was recently 

discovered to enhance in vivo circulation times much beyond that which can be achieved 

by other morphologies (10), remains largely unknown.  It is, therefore, of interest to 

bridge the gap between nanoscale and microscale structures, in terms of comparing and 

understanding their CPP-assisted cell uptake and release.  

Advances in the design and synthesis of well-controlled block copolymers have 

given rise to the rapid growth of a new class of complex nanostructures having various 

compositions, morphologies, sizes, and physical and biological properties (11-13), which 

can serve as the primary materials for examination of the effects of nano- to 

microstructure size and shape on cell internalization.  For example, shell-crosslinked 

assemblies of amphiphilic block copolymers have in recent years attracted researchers to 

explore their biological and medicinal uses (14-17).  These shell-crosslinked 

nanoparticles have enhanced stability compared to micelles and are capable of carrying 

biologically-active molecules, which drastically change the biological behavior of the 

nanoparticles (15, 18).  In this work, we take advantage of the vast array of morphologies 

available to polymer micelle-based nanoparticles (19-23) and their ability to allow for 

chemical modifications (24-25) in order to study the shape and size effects of a 

nanoscopic particle in a cellular system. 

Herein, we report a method to create spherical and cylindrical nanostructures, of 

different lengths, from self assembly of block copolymers.  After functionalizing the 

nanostructures with the protein transduction domain of human immunodeficiency virus 

type 1 Tat protein (HIV Tat PTD, one commonly used CPP, having the sequence: 

GYGRKKRRQRRR), we demonstrate that the smaller spherical particles (on the 10 nm 
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scale) are internalized by CHO cells faster than are the larger cylindrical particles (20 or 

30 nm diameters and larger than 200 nm in one dimension).  It is also shown that, upon 

cellular uptake, the spherical particles are released from the cell, and the rate of release is 

also dependent on the amount of PTD loading. 

 

Experimental Procedures 

Polymer synthesis.  All polymers used in this study were synthesized by atom 

transfer radical polymerization, according to literature procedures (26). 

Peptide synthesis.  The ivDde-protected HIV Tat PTD peptide (sequence: 

GGYGRK(ivDde)K(ivDde)RRQRRR) was synthesized manually by standard Fmoc 

solid-phase chemistry.  The two ivDde protecting groups for lysine were intentionally left 

on the peptide prior to and following cleavage from the solid support, using 95% 

trifluoroacetic acid : 2.5% triisopropylsilane : 2.5% water solution (volume fractions) for 

90 minutes.  The beads were treated with cleavage solution 3 times total, and the 

solutions were combined and concentrated in vacuo.  The concentrate was precipitated 

into cold ether, and the precipitates were centrifuged at 3500 rpm for 10 min.  The 

supernatant was decanted, the pellet was resuspended in cold ether, and the centrifugation 

process was repeated.  The pellet was purified by reversed phase HPLC. MS (MALDI-

ToF): 2087.532 [M + H]+ (calcd: 2087.529). 

Spherical micelle formation.  Spherical polymer micelles of narrow size 

distribution were obtained by dissolving the block copolymer PAA128-b-PS40 (32.5 mg) in 

DMF (35 mL) followed by gradual addition (4 mL/h) of an equal volume of nonsolvent 

(H2O) for the hydrophobic polystyrene to induce micellization.  The micelles were stirred 
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for 4 h before being transferred to presoaked and rinsed dialysis bags (MWCO 6-8 kDa) 

and dialyzed against nanopure water (18.0 MΩ·cm) for 3 days to remove the organic 

solvent.  The final volume was 115 mL of aqueous micelle solution for a final 

concentration of 0.28 mg/mL.  TEM: 11 ± 2 nm (diameter). 

Short cylindrical micelle formation.  PAA96-b-PS48 block copolymer (10 mg) 

was dissolved in THF (50 mL) and was dried in a round-bottom flask in vacuo, leaving a 

thin membrane of the polymer in the flask.  To the flask, nanopure water (58.8 mL) was 

added and then sonicated while rotating in an aqueous sonicator (VMR Aquasonic 75T) 

for 40 min.  The resulting solution contained short cylindrical micelles, which gave a 

light-blue color to the solution, a characteristic of the light scattering caused by the 

cylindrical micelle assemblies.  The final concentration was 0.17 mg/mL.  TEM: 180 ± 

120 nm (length) and 20 ± 2 nm (cross-sectional diameter). 

Shell-crosslinked spherical and short cylindrical nanoparticle formation.  

The aqueous solutions of spherical and short cylindrical micellar assemblies of PAA128-b-

PS40 and PAA96-b-PS48, respectively, were individually mixed with O-bis-

(aminoethyl)ethylene glycol (0.15 equiv., relative to the molar number of available 

COOH groups) and allowed to stir at room temperature.  After 30 min, an aqueous 

solution of 1-[3’-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI) (1 

equiv., relative to the molar number of available COOH groups) was added.  The reaction 

mixture was allowed to stir overnight before being transferred to presoaked and rinsed 

dialysis tubing (MWCO 3 kDa) and dialyzed against nanopure water (18.0 MΩ·cm) for 3 

days. 
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Long cylindrical shell-crosslinked nanoparticle formation.  To a solution of 

triblock copolymer PAA94-b-PMA103-b-PS28 (8.4 mg) in THF (8.00 mL) with stirring was 

added a solution of THF (2.0 mL) containing O-bis-(aminoethyl)ethylene glycol (0.93 

mg, 0.15 equiv., relative to COOH groups).  The mixture was allowed to stir overnight at 

room temperature, and then H2O (40 mL) was added at a rate of 7.50 mL/h to induce 

micellization.  To this water-THF mixture, EDCI (5.6 mg) was added to crosslink the 

shell domain of the micelle and to lock the morphology (27).  The pre-mixing of the 

diamine crosslinker with the triblock copolymer is essential to the formation of the 

desired morphology (19).  After stirring overnight, the reaction mixture was transferred to 

presoaked and rinsed dialysis tubing (MWCO 6-8 kDa) and dialyzed against nanopure 

water (18.0 MΩ·cm) for 3 days to remove the organic solvent.  The final volume was 

61.3 mL of aqueous crosslinked long, cylindrical micelle solution for a final 

concentration of 0.14 mg/mL.  TEM: 970 ± 900 nm (length) and 30 ± 2 nm (cross-

sectional diameter). 

Functionalization with fluorescent tag.  The respective shell-crosslinked 

nanoparticle solutions were diluted to the same molar concentration (7.5 µM polymer) 

and each was placed into a round-bottom flask and cooled to 0 ˚C using an ice bath.  A 

mixed solution of 1:1, EDCI:N-hydroxysulfosuccinimide (sulfo-NHS) was added to each 

nanoparticle solution (1.2:1 molar ratio, relative to the available COOH groups) to 

activate the acrylic acid residues.  After 30 minutes, aliquots of Alexa Fluor 594 

cadaverine stock solution were added to each flask and the mixtures and were allowed to 

react overnight.  The solutions were then transferred to presoaked dialysis tubing 

(MWCO 6-8 kDa) and allowed to dialyze for 5 days against nanopure water. 
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Functionalization with PTD.  Shell-crosslinked nanoparticle solutions pre-

functionalized with Alexa Fluor 594 were each placed into a 25 mL round-bottom flask.  

Sodium chloride was placed into each flask to give a concentration of 5.0 mg/mL, to 

minimize particle-particle aggregation.  The flask was then placed in an ice bath.  A 

mixed solution of 1:1, EDCI:sulfo-NHS was added to each nanoparticle solution (1.2:1 

molar ratio, relative to the available COOH groups) to activate the acrylic acid residues.  

A stock solution (18.21 mg/mL) of the ivDde-protected PTD peptide was made in 

nanopure water, and aliquots of the solution were added to the respective flasks 30 min 

after the addition of EDCI/NHS.  The pH of each reaction mixture was adjusted to 7.40 

using pH = 8.00 sodium phosphate buffer.  The mixtures were allowed to react overnight.  

The solutions were then transferred to presoaked dialysis tubings (MWCO 12 kDa) and 

allowed to dialyze for 5 days against nanopure water.  At the end of dialysis, the 

nanoparticle solutions were treated with 2.0% hydrazine for 20 minutes to remove the 

ivDde protecting groups, and then the pH was adjusted to 6.50 using pH = 6.34 sodium 

phosphate buffer.  The solutions were then transferred to presoaked dialysis tubings 

(MWCO 100 kDa) for a second-stage dialysis over a period of 15 days.  UV-Vis 

measurements confirmed coupling of the PTD peptide to the shell-crosslinked 

nanostructures (18).  Removal of the ivDde protecting groups under these reaction 

conditions was confirmed by MALDI-ToF mass spectrometry for a model reaction 

performed upon non-conjugated PTD peptide (Fig. 2-3). 

Cell Line and Fluorescence Confocal Microscopy.  Chinese hamster ovary 

(CHO) cells (ATCC) were cultured, counted, and resuspended to a final concentration of 

100 000 cells/mL.  An aliquot of the cell suspension (3.00 mL) was deposited into each 
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well of a tissue culture treated six-well plate (Falcon, 3043), which contained a No. 1.5 

glass cover slip (Corning).  After 48 h, the cells (50-60% confluence) in each six-well 

plate were washed with PBS (2 × 5.00 mL).  An aliquot of serum free RPMI 1640 media 

(1.00 mL) was added to each well, followed by the respective nanoparticle solutions (100 

µL each).  The plates were then returned to the incubator to incubate at 37 °C or 0 °C.  

Following desired incubation times, the nanoparticles were removed, and each well was 

washed with Hanks Balanced Salt Solution (HBSS) (3 × 5.00 mL) and viewed under 

bright field and fluorescent conditions using a Leica TCS SP2 inverted microscope. 

Quantitative analysis of confocal images.  The background levels of the red 

channel containing the signal of Alexa Fluor-labeled nanoparticles were determined by 

the following method: 1. Binary masks corresponding to nanoparticles-associated 

fluorescence were generated (MaskNP0).  Threshold levels were determined by visual 

inspection.  2.  MaskNP0 was inverted by applying a NOT-operation to generate a binary 

mask for the background (Maskbg).  4.  The inverted mask Maskbg was multiplied with 

the original red channel, Red0, and the mean value of the resulting image was determined 

as the background level.  Cell fluorescence intensities were determined by the following 

method:  1. Background noise was subtracted from the original signal, Red0, giving Red1.  

2.  Binary masks were generated (MaskNP1) for Red1.  Threshold levels were determined 

by visual inspection.  3.  MaskNP1 was multiplied by Red1.  4.  Over the resulting image, 

individual cells were manually selected as regions of interest (ROI), and mean intensities 

were recorded for each cell.  A minimum of 100 cells was measured for each time point 

of each sample.  The mean intensity values and standard deviation values were 

calculated. 
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acid)128-b-polystyrene40, PAA128-b-PS40).  The short and long cylindrical nanoparticles 

were assembled from a diblock and a triblock copolymer, PAA98-b-PS48 and poly(acrylic 

acid)-b-poly(methyl acrylate)-b-polystyrene (PAA94-b-PMA103-b-PS28), respectively.  All 

three particles were nominally 30% crosslinked in the shell domain, using standard 

procedures (28).  The spherical particle had an average diameter of 11 ± 2 nm, as 

evidenced by transmission electron microscopy (TEM).  The short cylinder had an 

average cross-sectional diameter of 20 ± 2 nm, and an average length of 180 ± 120 nm.  

The long cylinder had an average cross-sectional diameter of 30 ± 2 nm, and an average 

length of 970 ± 900 nm.  The distinct size distributions of the nanoparticles are more 

clearly shown in Fig. 2-1.  TEM images (Fig. 2-2) show the morphologies of the three 

nanostructures. 

  

 

Figure 2-1.  Size distribution by surface area.  The size of the three 
nanostructures is each separated by an order of magnitude. 
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Figure 2-2.  TEM of PAA128-b-PS40 (A), PAA98-b-PS48 (B) and PAA94-b-
PMA103-b-PS28 (C) micelles in nanopure water. 

 

 
Figure 2-3.  Overlaid MALDI-ToF spectra of ivDde-protected PTD before 
and after treatment with 2.0% hydrazine for 20 minutes in water.  
Adequate removal of ivDde (>70%) was achieved, despite the 
deprotection reaction being less efficient in water than in organic solvent. 

 

Functionalization of the nanostructures with both the fluorescent tag (Alexa Fluor 

594 cadaverine) for confocal microscopy and the Tat PTD peptide was achieved by using 

carbodiimide chemistry.  Attachment of the Alexa Fluor 594 to the nanostructures was 

performed first.  To ensure that all final solutions had the same amount of total 
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fluorescence, the solution of spherical particles was then split for further labeling with 

different amounts of PTD (at levels of 0.5, 1, and 2% consumption of total COOH groups 

of the PAA128-b-PS40), while the solutions of cylindrical nanostructures were 

functionalized at a level that coincided with the 1% labeling of the spheres.  Because the 

Tat PTD has two lysine residues, whose side chain amine could compete with the 

terminal amine for the activated carboxylic acid on the nanoparticle, ivDde protecting 

groups were used to cap the lysine residues and were subsequently removed, after the Tat 

PTD was coupled to the nanoparticle (Scheme 2-2).  A model study on aqueous ivDde 

removal by Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-ToF) 

mass spectrometry demonstrated adequate removal under reaction with 2% hydrazine in 

water (Fig. 2-3).  These reaction conditions were fairly mild to the nanoparticle 

framework, although some amount of the AlexaFluor 594 cadaverine was cleaved.  

Therefore, all samples, even the control particles without PTD were treated to these 

deprotection reaction conditions.  Extensive dialysis was used to remove unbound 

peptide, which previously has been reported to be effective (18).  Both the fluorescent 

dye and the Tat PTD were loaded successfully within the nanoparticles, as evidenced by 

UV-Vis spectroscopy (Fig. 2-4), although it is not clear whether all detected peptide was 

covalently bound or electrostatically adsorbed onto or absorbed into the nanoparticles, 

due to their oppositely and highly positively-charged characteristics.  For the cylindrical 

particles, accurate UV-Vis measurement was complicated by light scattering and, 

therefore, the assumption was made that the coupling yields for all particles were similar 

(Fig. 2-5).  After functionalization, the morphologies of each nanostructure did not 

undergo discernible changes, as confirmed by TEM (images not shown). 
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Scheme 2-2.  Functionalization of the spherical nanoparticle sample was 
achieved through a three-step synthesis.  Alexa Fluor 591 and protected 
PTD were respectively coupled to the nanoparticle via carbodiimide 
chemistry.  The ivDde protecting groups were removed by treatment with 
a 2.0% hydrazine solution in water. 

 

 

Figure 2-4.  UV-Vis spectra of spheres and cylinders labeled with Alexa 
Fluor 594 cadaverine and PTD peptide. 
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Because the PTD peptides were conjugated after the micellization and 

crosslinking and should be present on the particles’ surfaces, the surface areas of the 

nanostructures determine the number of peptides loaded onto each particle given the total 

amount of PTD peptide, assuming the particles’ densities are similar (29).  The three 

nanostructures each represented a unique size distribution, with the greatest percentage 

surface area for each morphology being separated by an order of magnitude (Fig. 2-1). 

 
Figure 2-5.  Light scattering of the long cylinders complicates accurate 
UV-Vis measurement.  A: Long cylinders.  B: Short cylinders.  C: 
Spheres. 

 

To verify the effectiveness of CPP, spherical particles of the same size loaded 

with different amounts of CPP (series 1) were incubated with CHO cells at a 

concentration of 0.68 µM (polymer) at 37 ˚C and 0 ˚C for 1 hour.  Confocal microscopy 

imaging of non-fixed, live cells suggests that CPP had a pronounced enhancement in the 

uptake of the nanoparticles by the CHO cells (Fig. 2-6).  The highest amount of PTD 

loading, 2.0%, gave nanoparticles that exhibited nearly a 5-fold increase in cell uptake at 

37 ˚C, than the nanoparticles without PTD.  Incubation at 0 ˚C, under otherwise the same 



38 
 

conditions, resulted in little cell uptake.  The difference in cell uptake at different 

temperatures can be due to reduced membrane permeability at low temperatures, to the 

energy-dependency of the uptake process, or to both.  An interesting phenomenon we 

noticed is that the PTD-nanoparticle conjugates were both contained within cellular 

vesicles and partly spread into the cytoplasm, with exclusion from the nucleus, whereas 

PTD alone has been reported to accumulate selectively in the cell nucleus (30-31).  This 

observation is possibly due to the overall negatively-charged nature of the PTD-particle 

conjugate or may be due to comparisons between different cell lines. 

 
Figure 2-6.  Confocal images of CHO cells incubated with the spherical 
nanoparticles having different amounts of PTD for 1 hour.  Cell uptake of 
PTD-sphere conjugates increased by the action of increasing loadings of 
surface-bound PTD peptide. 

 

To probe the size/shape effect, we loaded the three differently-shaped particles 

with a fixed amount of PTD (equivalent to 1% of the carboxylates of PAA128-b-PS40), 

and incubated CHO cells in their solutions under the same buffer condition as above at 37 

˚C for 1 hour.  It was found that the smaller, spherical particle had higher cell uptake than 
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the larger, cylindrical nanoparticles (Fig. 2-7).  Based on these results, we can speculate 

on the general mechanisms that govern the transduction of the PTD-functionalized 

nanomaterials.  Many variables determine the uptake rate, including adhesion rate and 

receptor diffusion kinetics.  Freund et al (32) and Bao et al (33) have modeled these 

factors and developed a hypothesis involving “wrapping time” of the membrane; the 

shorter the wrapping time, the faster is the uptake.  It has been predicted theoretically by 

this model that through the competition between thermodynamic driving force and 

diffusion kinetics, there is an optimum radius for efficient “wrapping”, which is 27-30 

nm.  Because the early endocytic vesicles are usually less than 100 nm in diameter (6), 

most short cylindrical particles (average length = 170 nm) would have to be curved or 

bent to be internalized, which requires additional energy.  Therefore, although the 

cylindrical particles have higher surface area and hence more membrane-particle 

interaction (less diffusion), the system is not able to either overcome the overall lack of 

thermodynamic driving force caused by having to bend the cylinders to “fit” in the 

endosomes or to create larger endocytic vesicles to contain the cylindrical nanostructures.  

Another factor, for the higher uptake of the small, spherical particle by the cell at a given 

time, is the higher particle molar concentration for the spheres, which is the result of the 

lower aggregation number for the spherical particle, compared with the cylindrical 

particle. For example, the average short cylinder occupies ca. 80 times as much volume 

as does the sphere, based on calculations from TEM cross-sectional and longitudinal 

measurements.  
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Figure 2-7.  When conjugated with the same amount of PTD peptide, 
greater amounts of the smaller, spherical nanoparticles were internalized 
than were the larger, cylindrical nanoparticles.  Images were taken after 1 
hour of incubation. 
 

Last, we investigated the release of the PTD-nanoparticle conjugates from CHO 

cells.  CHO cells were incubated with 0.68 µM particle solutions for 1 h at 37 ˚C. 

Following the incubation period, the nanoparticle-containing solutions were removed, the 

cells were washed with PBS, and serum free RPMI 1640 media was introduced, followed 

by further incubation.  Fluorescence monitoring of CHO cells immediately after buffer 

change, and at 2, 4 and 8 h time points revealed that fluorescence intensity decreased 

over time for spherical nanoparticles labeled with 2%, 1% and 0.5% PTD, suggesting 

particles being released from the cell (Fig. 2-8).  The rates of release of spherical particles 
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appeared to be dependent on the amount of PTD loaded on the nanoparticle, for which 

the highest loading (2%) led to the fastest release.  This result could suggest that PTD-

assisted particle transduction works in a two-way fashion: both entry and exit seem to be 

facilitated by PTD (34).  The cells that had been incubated with spheres having no PTD 

did not show apparent decrease of fluorescence over 8 h.  Both the long and short 

cylinders behaved similarly as the spheres without the PTD peptide, showing little uptake 

and no measurable release.  Other PTD-independent processes, such as peptide 

degradation are possible, and thus more detailed studies on cell uptake and release of 

differently-shaped nanostructures are needed to reveal a fuller picture of the mechanisms 

involved. 

 

Figure 2-8.  Release profile of series 1 nanoparticles (spherical in shape; 
different amounts of PTD peptide) and series 2 nanoparticles (different 
shapes; each with 1.0% PTD peptide conjugation). 
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Conclusions 

The self assembly of block copolymers afforded spherical nanostructures and 

cylindrical nanostructures having distinctive lengths required to investigate the effects of 

different particle sizes and shapes, across a wide size range (10 nm - 1000 nm), upon cell 

transduction.  Attachment of the Tat cell penetration peptide of HIV-1 improved cell 

internalization of the spheres.  The amount of cell uptake was a function of PTD loading, 

with increasing amounts of PTD providing for increasing levels of cell internalization at a 

given time point.  Attachment of PTD to the small cylinders (~200 nm) and long 

cylinders (~ 1000 nm) did not produce detectable increase in cell uptake.  Once 

internalized, the PTD-spherical nanoparticle conjugates escaped from the cell at a rate 

that was a function of PTD loading.  The observation of reversible cell transduction will 

become important as these nanostructures are functionalized also with ligands that are 

designed to probe intracellular targets, so that escape from cells lacking the target can be 

facilitated to allow for the nanostructures to accumulate in the designated cells.   

The polymer micelle-based nanoparticles in this study have enabled comparison 

of size and shape on cellular uptake, for materials that have the same surface chemistry, 

differing only in their core composition, size and shape.  Further studies are required to 

understand fully the mechanisms by which the particle characteristics lead to the 

observed differences in cellular uptake and release.  Moreover, the particles and the 

methodologies for functionalization described herein can be employed for fundamental 
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studies that extend to systems involving ligand-receptor interactions to promote 

endocytosis, which will be important to gain new insights into the interface of biological 

systems with synthetic nanostructures.  These results also serve as a guideline in 

engineering artificial nanoscale carrier particles for drug delivery, where the control of 

size/shape is of significance. 
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Chapter 3 

 

Folate-mediated cell uptake of shell-crosslinked spheres and cylinders 

 [Portions of this work have been published previously as Ke Zhang, Raffaella Rossin, 

Aviv Hagooly, Zhiyun Chen, Michael J. Welch and Karen L. Wooley J. Polym. Sci. Part 

A Polym. Chem. 2008, 46(22), 7578-7583.] 

 

Abstract 

This chapter reports the synthesis of shell crosslinked nanoparticles (SCKs) of 

spherical and cylindrical shapes, and their functionalization with folate using a 

poly(ethylene glycol) (PEG) construct that has folate and an amine group as the opposing 

chain termini.  By use of confocal microscopy, we demonstrate the selective delivery of 

folate conjugated SCKs to human KB cells, a cell line that overexpresses the folate 

receptor (FR).  A higher extent of polymer uptake by the cells occurred with the 

cylindrical SCK morphology, relative to the spherical SCKs, when both samples had the 

same fluorescein-5-thiosemicarbazide and polymer concentrations.  In both cases, by 

using excess free folic acid as a block or SCKs lacking the folate-PEG conjugate, cell 

uptake was significantly reduced.  These results suggest that particle shape may play an 

important role in receptor-mediated cell uptake, and may be exploited in the targeted 

delivery of nanoscopic drugs. 
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Introduction 

Thus far, most drugs approved for clinical use function in an indiscriminate 

fashion – they access pathologic and healthy tissues alike.  As a result, the effect of the 

drug is systemic rather than specific.  The ability of a therapeutic or diagnostic agent to 

preferentially localize at diseased tissues would, therefore, be of great value.  Towards 

this end, polymeric nanoparticles have been designed and synthesized to augment the 

drug’s local concentration.  For example, Hubbell et al. have developed a nanoparticle 

drug delivery system with dual targeting moieties, which led to up to a 72-fold increase in 

targeting the extracellular compartment of articular cartilage in mice (1).  Although 

significant progress has been made in terms of identifying the targets and construction of 

targeting nanoparticles, the shape effect of the nanoparticle platform per se on cell 

binding and internalization through receptor-ligand interactions has not yet been 

investigated thoroughly (2-3).  Our interest here is to synthesize nanoparticles of different 

shapes and sizes, and use a well-known receptor-ligand pair to study whether the shape 

effects exist, and if they do, which shape is more favorable for this particular receptor-

ligand pair. 

In this chapter, folate was used as the model targeting ligand to be conjugated to 

the nanoparticles.  Folate has received extensive study as a targeting device for proteins 

utilizing folate receptor (FR)-mediated endocytosis (4).  By virtue of its high binding 

affinity towards the cell surface FR, which is overexpressed in a number of pathologic 
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cells, selective delivery of non-specific drugs that are conjugated to folate can be 

achieved.  Derivatization of folate has been successfully exploited in the targeted delivery 

of proteins (5-6), liposomes (7), DNA nanoparticles (8-9), synthetic organic (10-11) and 

inorganic nanoparticles (12-13).  As a targeting ligand, folate has many important 

advantages compared to monoclonal antibodies, such as low immunogenicity, high 

specificity and resistance to denaturation, etc.  Moreover, FR targeting agents may 

continuously accumulate into the cells due to receptor recycling.  Finally, folic acid has 

two carboxylic acid groups, one that is sterically blocked and the other that allows for 

simple and defined conjugation to a variety of organic molecules and nanoparticles 

through amidation chemistry.  Herein, we report a method to create spherical and 

cylindrical polymer shell-crosslinked (SCK) nanoparticles of similar chemical 

compositions, and to functionalize these nanoparticles with folic acid through a PEG 

tether.  We then further demonstrate that both nanoparticles received enhancement in 

uptake by human KB cells, surprisingly, with the cylindrical nanostructures being 

internalized to a greater extent than the spheres, and this enhancement could be 

competitively blocked partially by free folic acid. 

 

Experimental Procedures 

Polymer synthesis.  The two amphiphilic block copolymers used in this study 

were prepared by atom transfer radical polymerization, using literature procedures (14). 
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Spherical SCK formation.  The spherical polymer micelle sample was prepared 

by dissolving 18.6 mg of the block copolymer, poly(acrylic acid)128-b-polystyrene40 

(PAA128-b-PS40) in 20 mL dimethylformamide (DMF) followed by slow addition (4.0 

mL/h) of an equal volume of nonsolvent (H2O) for the hydrophobic polystyrene to induce 

micellization.  The micelles were stirred for 4 h before being transferred to presoaked 

dialysis tubing (MWCO 6-8 kDa) and dialyzed against nanopure water (18.0 MΩ·cm) for 

3 days to remove the organic solvent.  The final volume was 66 mL of aqueous micelle 

solution for a final concentration of 0.28 mg/mL.  Transmission electron microscopy 

(TEM): 10 ± 1 nm (diameter).  Dynamic light scattering (DLS): 14 ± 2 nm (diameter).  

The aqueous micelle solution was then mixed with O-bis-(aminoethyl)ethylene glycol 

(0.20 equiv., relative to the molar number of available COOH groups) and allowed to stir 

at room temperature.  After 30 min, an aqueous solution of 1-[3’-

(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI) (1 equiv., relative to 

the molar number of available COOH groups) was added.  The reaction mixture was 

allowed to stir overnight before being transferred to presoaked dialysis tubing (MWCO 3 

kDa) and dialyzed against nanopure water (18.0 MΩ·cm) for 3 days. 

Cylindrical SCK formation.  To a stirring solution of 8.4 mg triblock 

copolymer, poly(acrylic acid)94-b-poly(methyl acrylate)103-b-polystyrene28 (PAA94-b-

PMA103-b-PS28) in 8.00 mL tetrahydrofuran (THF) was added a solution of THF (2.0 

mL) containing O-bis-(aminoethyl)ethylene glycol (0.20 equiv., relative to COOH 
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groups).  The mixture was allowed to stir overnight at room temperature, and then H2O 

(40 mL) was added at a rate of 7.00 mL/h to induce micellization.  To this water-THF 

mixture, EDCI (6.3 mg) was added to crosslink the shell domain of the micelle and to 

lock the morphology (15).  After stirring overnight, the reaction mixture was transferred 

to presoaked dialysis tubing (MWCO 6-8 kDa) and dialyzed against nanopure water 

(18.0 MΩ·cm) for 3 days to remove the organic solvent and other residues.  The final 

volume was 62.6 mL of aqueous crosslinked long, cylindrical micelle solution for a final 

concentration of 0.13 mg/mL.  TEM: 900 nm (length) and 30 ± 2 nm (cross-sectional 

diameter). 

Functionalization with fluorescent tag.  The SCK solutions were diluted to the 

same polymer concentration (6.9 µM) and each was placed into a round-bottom flask and 

cooled to 0 ˚C using an ice bath.  A solution of 1:1 (mole : mole) EDCI : N-

hydroxysulfosuccinimide (sulfo-NHS) was added to each nanoparticle solution (0.5 : 1 

molar ratio, relative to the available COOH groups) to activate the acrylic acid residues.  

After 30 minutes, the pH of the reaction mixtures was adjusted to 7.7 using pH = 8.0 

sodium bicarbonate solution.  Then, aliquots of fluorescein-5-thiosemicarbazide stock 

solution were added to each flask and the mixtures were allowed to react overnight.  The 

solutions were then transferred to presoaked dialysis tubings (MWCO 6-8 kDa) and 

allowed to dialyze for 3 days against 150 mM NaCl solution, then for 3 days against 

nanopure water. 
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Conjugation of folate-PEG(1.5 kDa)-amine to nanostructures.  The folate-

PEG(1.5 kDa)-amine construct was synthesized by coupling of bis-PEG-amine (MW 1.5 

kDa) with folic acid, according to a literature procedure (16-18).  Conjugation to the 

nanostructures was achieved by use of amidation chemistry.  SCK solutions pre-

functionalized with fluorescein-5-thiosemicarbazide were each placed into a 25 mL 

round-bottom flask.  Sodium chloride was placed into each flask to give a concentration 

of 5.0 mg/mL, to minimize particle-particle aggregation.  The flasks were then placed in 

an ice bath.  A mixed solution of 1 : 1 (mole : mole), EDCI : sulfo-NHS was added to 

each nanoparticle solution (0.7 : 1 molar ratio, relative to the available COOH groups) to 

activate the acrylic acid residues.  Aliquots of the folate-PEG-amine DMF solution (14.3 

mg/mL, 10.0 equiv. to polymer) were added to the respective flasks 30 min after the 

addition of EDCI/NHS.  The pH of each reaction mixture was adjusted to 7.4 using pH = 

8.0 sodium bicarbonate solution.  The mixtures were allowed to react overnight.  The 

solutions were then transferred to presoaked dialysis tubings (MWCO 12 kDa) and 

allowed to dialyze against nanopure water for 5 days, then against pH =7.4 PBS buffer 

for 2 days.  UV-Vis measurements confirmed coupling of the folate-PEG-amine to the 

SCKs. 
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Scheme 3-1.  Synthesis of folate-functionalized shell-crosslinked 
nanoparticles of two distinct shapes.  A post-nanoparticle functionalization 
strategy was used, in which the spherical and cylindrical nanoparticles 
were constructed first from discrete polymer chains, and then a folate-PEG 
derivative was conjugated to the surface of the nanoparticles.  The 
nanostructures were also labeled by reaction with fluorescein-5-
thiosemicarbazide to enable particle tracking. 

 

Results and Discussion 

The overall design in this study involved the use of well-defined amphiphilic 

block copolymers to form micelles of a core-shell architecture.  Due to the inherent 



55 
 

differences in the block copolymers and the micellization conditions, different 

morphologies of the resulting micelles could be obtained.  After shell crosslinking of the 

micelles using a diamine crosslinker, their respective morphologies were locked (15).  

Then, a folic acid derivative, folate-PEG-amine, was conjugated to the shell-crosslinked 

nanoparticles, and the conjugates were evaluated in cells (Scheme 1).  The syntheses of 

the amphiphilic diblock copolymer PAA128-b-PS40 and triblock copolymer PAA94-b-

PMA103-b-PS28, were achieved using atom transfer radical polymerization, following 

previously reported methods (14).  The block copolymers were then dissolved in a good 

solvent for both/all blocks (THF or DMF), followed by slow addition of water to induce 

micellization.  The two resulting micelle samples exhibited distinctive morphologies, 

spherical and rod-shaped, from the diblock and triblock copolymers, respectively.  To 

impart stability to these micelles, such that under cell incubation fluid conditions the 

micelles do not disassemble into discrete polymer chains, crosslinking in the shell 

domain of the micelle using 2, 2’-(ethylenedioxy)bis(ethylamine) was performed with the 

aid of EDCI, consuming 20% of available carboxylic acids on the micelle (14).  The shell 

was also fluorescently labeled with fluorescein to enable particle tracking.  The polymer 

and fluorescein concentrations for each sample were controlled to be approximately the 

same (Fig. 3-1), thus allowing direct comparison of cell uptake by examining the 

confocal fluorescent images.  The shell-crosslinked nanoparticles were characterized by 

DLS and TEM (Fig. 3-2).  DLS gave a mean diameter of 14 ± 2 nm for the spherical 



56 
 

SCK, while TEM gave 10 ± 1 nm.  For the cylindrical SCK, TEM gave a mean length of 

900 nm, and a mean cross-sectional diameter of 30 ± 2 nm. 

 
Figure 3-1.  UV-Vis spectra of the nanostructure carriers functionalized 
with fluorescent tag and folate.  The absorbance at 488 nm represents 
fluorescein-5-thiosemicarbazide, the fluorescent tag.  Approximately the 
same amount of fluorescein was coupled to each of the samples.  The 
absorbance at 363 nm indicate successful coupling of folate-PEG-amine to 
the nanostructures.  Using fluorescein-tagged SCKs as background, the 
absorbances at 363 nm for the folate-fluorescein-SCKs were used to 
calculate the number of folates per polymer chain. 

 

Attachment of folic acid to the surface of the SCKs was achieved through the 

same carbodiimide coupling chemistry as was employed for the crosslinking reactions.  A 

PEG(1.5 kDa) linker was used to tether folate to the nanoparticle, since direct attachment 

of folic acid to nanostructures has been reported to result in reduced binding of folic acid 

to FR, possibly due to steric effects that limit folate from reaching the binding pockets of 
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FR (19).  The synthesis of folate-PEG-amine followed previously reported methods (16-

18).  The conjugates showed UV absorptions at 363 nm, representative of folate.  The 

extinction coefficient for folate in pH 7.4 PBS buffer at that wavelength is 6197 M-1cm-1.  

The number of folates per polymer can therefore be calculated as follows: 

Folates/polymer = (Abs. at 363 nm/6197 M-1cm-1)/[polymer 

(mg/mL)]/(MW of polymer (g/mol)) 

For PAA128-b-PS40, which forms the spherical particle, the folate/polymer number was 

determined to be 3.2; for PAA94-b-PMA103-b-PS28, which forms the cylindrical particle, 

the folate/polymer number was determined to be 3.0.  As expected, no measurable 

changes were observed in particle morphology after conjugation with folate, as evidenced 

by TEM (images not shown). 

 

Figure 3-2.  TEM images (obtained on a carbon-coated copper grid with 
negative staining by a mixture of uranyl acetate) of (left) the spherical 
supramolecular assembly of PAA128-b-PS40 formed in DMF by slow 
addition of water and (right) the cylindrical supramolecular assembly of 
PAA94-b-PMA103-b-PS28 formed in THF/water (vol:vol = 1:1) by slow 
addition of water.  Both particles were shell-crosslinked with 2, 2’-
(ethylenedioxy)bis(ethylamine), consuming nominally 20% of available 
carboxylic acids in the micelle. 
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The folate-conjugated nanoparticles were incubated with KB cells, a human 

nasopharyngeal epidermal carcinoma cell line overexpressing the FR.  As both samples 

contained the same molar concentrations of polymers and fluorescein probes, but 

different numbers of particles overall, quantification of cellular uptake on a polymer 

molar basis was observed.  After 4 hours of incubation, confocal microscopy of the cells 

showed that the polymers were internalized to a higher extent when they were of a 

cylindrical morphology than when they were in the form of the spherical particles (Fig. 3-

3, a and d), despite the fact that the cylinders are much larger in volume compared the 

spheres (ca. 700 times difference in volume for an average cylinder vs. sphere, based on 

TEM volume calculations).  This result is somewhat surprising because previously we 

have observed an opposite trend in cell internalization of the same nanostructures, with 

the exception that they were instead functionalized with the cell transduction domain 

peptide sequence of the HIV Tat protein (PTD) (20).  The different binding affinities 

between folate/FR and PTD/cell surface may contribute to the contrasting results for the 

folate- and PTD-decorated nanostructures.  It is hypothesized that a larger structure may 

span across several FR binding sites and lead to an increase in polyvalent effect (21), and 

increased FR-mediated endocytosis.  By contrast, the PTD-SCKs interact with the cell 

surface in a receptor-independent fashion (22) and, therefore, may not benefit from 

polyvalency.  For both nanostructure shapes, an excess of free folate (1 mmol/L) was able 

to competitively inhibit the binding and internalization of folate-functionalized particles, 
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suggesting FR specific binding (Fig. 3-3, b and e).  The control experiments using 

particles that lacked surface folate showed significantly reduced cell uptake for both 

spherical and cylindrical particles (Fig. 3-3, c and f). 

 

 

Figure 3-3.  Fluorescent confocal microscopy images of KB cells 
incubated for 4 hours at 37 °C with spherical and cylindrical nanoparticles 
functionalized with and without folate (70 nM polymer per 33-mm culture 
dish, plated with 3 × 105 cells per dish 24 h before imaging).  All particles 
were tagged with equal amount of fluorescein-5-thiosemicarbazide.  (a) 
folate-labeled spherical particle;  (b) folate-labeled spherical particle with 
the addition of 1 mmol/L free folate;  (c) spherical particles with no folate;  
(d) folate-labeled cylindrical particle;  (e) folate-labeled cylindrical 
particle with the addition of 1 mmol/L free folate;  (f) cylindrical particle 
with no folate; (a’)-(f’) bright field images corresponding to the 
fluorescent images. 

 

These preliminary results suggest that cylinders are a better candidate for cell 

internalization when the mechanism involves a receptor-mediated endocytotic process.  

This conclusion is valid, at least, for the folate-FR pair, which achieved a high degree of 

cell uptake; however, it may not be general.  Each individual target-receptor pair deserves 

its own study on the nanoparticle shape effect due to the difference in binding affinity, 
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target density on cellular surfaces, etc.  Knowing that shape plays important roles in cell 

internalization, as well as in overall biodistribution behavior in vivo (23), provides 

exciting opportunities to optimize another parameter in the design of drug delivery 

systems. 
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Chapter 4 

 

Cationic shell-crosslinked knedel-like nanoparticles for highly efficient 

gene and oligonucleotide transfection of mammalian cells 

 [Portions of this work have been published previously as Ke Zhang, Huafeng Fang, 

Zhenghui Wang, John-Stephen A. Taylor and Karen L. Wooley Biomaterials 2009, 

30(5), 968-977.] 

 

Abstract 

In this chapter, a robust synthetic nanostructure was designed for the effective 

packaging of DNA and it was shown to be an efficient agent for cell transfection.  An 

amphiphilic block copolymer, poly(acrylamidoethylamine)128-b-polystyrene40 (PAEA128-

b-PS40),  was synthesized, micellized in water and shell-crosslinked using a diacid-

derivatized crosslinker, to give cationic shell-crosslinked nanoparticles (cSCKs) with a 

mean hydrodynamic diameter of 14 ± 2 nm.  A series of discrete complexes of the cSCKs 

with plasmid DNA (pDNA) was able to be formed over a broad range of polymer 

amine:pDNA phosphate ratios (N/P ratio), 2:1 to 20:1.  The sizes of the complexes and 

their ability to fully bind the pDNA were dependent upon the N/P ratio, as characterized 

by dynamic light scattering (DLS), transmission electron microscopy (TEM) and gel 

retardation assay.  A luciferase activity assay and EGFP expression were used to evaluate 
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intracellular delivery of a splice-correcting phosphorothioate and genetic material, 

respectively, by the cSCKs, which indicated that an N/P ratio of 6:1 gave the highest 

transfection.  It was shown by both luciferase activity assay (48 h) and EGFP transfection 

data that high transfection efficiencies were achieved for HeLa cells transfected by 

cSCK/CCUCUUACCUCAGUUACA and cSCK/pEGFP-N1 plasmid, respectively.  The 

cSCK/pEGFP-N1 plasmid transfection efficiency of 27% far exceeded the performance 

of Polyfect® (PAMAM dendrimers), which achieved only 12% transfection efficiency, 

under the same conditions.  Cytotoxicities for the cSCKs were evaluated for HeLa and 

CHO cells. 
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Introduction 

Gene therapy has significant potential in the treatment, through the intracellular 

delivery of therapeutic gene-based materials, of many human diseases that are currently 

considered incurable.  Viral vectors, such as adenovirus or retrovirus, are highly efficient 

in the delivery of genes.  However, interests in developing non-viral vectors remain high 

because of both the advantages that synthetic materials offer and the concerns associated 

with human use of viral vectors, including bio-safety, large-scale production and 

immunogenicity (1-3).  As an alternative to viral vectors, various cationic polymers and 

structures such as polyethylenimine (PEI), poly(L-lysine) (PLL), polyamidoamine 

dendrimers (PAMAM) and cationic liposomes have been studied as gene delivery agents 

(4-5).  These cationic polymers condense DNA through electrostatic complexation and 

form nanoparticles on the order of ca. 100 nm.  As a result, the DNA is protected from 

nuclease degradation (5-6), while the cationic polymers mediate cell uptake (7) and 

endosomal escape (8) to induce high transfection efficiencies. 

The natural machinery for packaging of DNA are the histone core particles, that 

when wrapped by DNA form nucleosomes, responsible for storage of DNA within cell 

nuclei (9-10).  Our interest has been in the development of synthetic nanoparticles that 

can mimic histone core particles in their dimensions (ca. 10 nm) and function for 

reversible DNA condensation, as a means to effect DNA packaging, protection, transport 

and release for gene therapy applications.  Our initial design relied upon the robust 
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character of shell crosslinked knedel-like block copolymer micelles (SCKs) (11-14) 

constructed from amphiphilic block copolymers comprised of polystyrene and poly(4-

vinylpyridine) (15).  Quaternization of a portion of the 4-vinylpyridine repeat units with 

p-chloromethylstyrene provided sites for crosslinking reactions, to establish the robust 

SCK nanoparticle structures, and incorporated cationic character for electrostatic 

attractive interactions with the phosphodiester backbone of DNA.  These nanoparticles 

(ca. 15 nm diameter) were shown to condense DNA and to protect it from enzymatic 

digestion, but they did not afford transfection above the level of naked DNA.  The initial 

SCKs possessed several characteristics that could lead to their poor transfection 

properties, including limited number of cationic sites, low degree of cationic site 

accessibility because of the sterically-hindered aromatic quaternary nitrogens, and large 

diameter, relative to histone core particles.  Therefore, our current efforts involved the 

design and synthesis of SCKs of smaller diameter and comprised of an amine-rich block 

copolymer amphiphile for gene delivery studies, borrowing concepts from the natural 

system and also from synthetic materials (4-5, 16-17). 

Although SCKs comprised of poly(acrylic acid)-block-polystyrene (PAA-b-PS) 

block copolymers have been studied extensively, including their modification to achieve 

cell transduction (18), long blood circulation times in vivo (19) and targeting properties 

(20), the acrylic acid-based shell material imparts a constant negatively-charged surface 

(21).  As a result, they do not complex with DNA in solution and produce little to no 
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transfection using plasmid DNA (pDNA) or oligonucleotides (ONs).  Similar core-shell 

micellar structures, utilizing poly(ethylene glycol) (PEG)-block-polycation carrying 

ethylenediamine units in the side chain, have been exploited as successful biocompatible 

nanovectors for effective gene transfer to primary cells (22) and to vascular lesions 

without cytotoxicity and thrombus formation (23).  It was, therefore, of interest to build 

upon the extensive understanding of PAA-based SCKs and borrow from the structural 

features of Kataoka’s micellar systems to create well-defined nanoparticles that exhibit 

improved transfection rates in vitro and, ultimately, in vivo, with all of the advantages 

that a robust nanoparticulate form offers over a dynamic assembly.  

This chapter describes a facile method to invert the surface charge of SCKs from 

negative to positive, through modification of the PAA-b-PS block copolymer precursor, 

to give cationic SCKs, or cSCKs.  Complexation of cSCKs with pDNA and a 

phosphorothioate 2'-O-methyl oligoribonucleotide (ps-MeON) was then studied and the 

transfection efficiencies for each of the complexes toward CHO (Chinese hamster ovary 

cell line) and HeLa cells (human cervical cancer cell line) with EGFP pDNA were 

investigated. 

 

Materials and Methods 

Materials.  All solvents and chemicals were purchased from Sigma-Aldrich and 

used without further purification, unless otherwise indicated.  N-
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hydroxybenzotriazole·H2O (HOBt) and 2-(1H-benzotriazole-1-yl)-1, 1, 3, 3-

tetramethylaminium hexafluorophosphate (HBTU) were purchased from EMD 

Chemicals, Inc.  The amphiphilic block copolymer, PAA128-b-PS40, was prepared using 

atom transfer radical polymerization of (protected) monomer precursors followed by 

deprotection, according to literature reported methods (24).  A luciferase splice-

correcting phosphorothioate 2'-O-methyl-oligoribonucleotide (ps-MeON, 

CCUCUUACCUCAGUUACA) (25) was synthesized on an Expedite 8909 DNA 

synthesizer (Applied Biosystems, Inc.) using standard solid phase phosphoramidite 

chemistry and purified by 20% denaturing polyacrylamide gels, followed by extraction 

with phenol/chloroform and ethanol precipitation.  CHO-K1 and HeLa cells were 

obtained from the American Type Culture Collection.  The pLuc705 Hela cell line was a 

generous gift from Dr. R. Kole ( University of North Carolina, Chapel Hill, NC).  

Oligofectamine and LipofectamineTM 2000 were obtained from Invitrogen Co.  Polyfect® 

was purchased from Qiagen Inc.  pEGFP-N1 was obtained from Clontech Laboratories, 

Inc.  Steady-Glo® Luciferase Assay reagent and CellTiter-Glo® Luminescent Cell 

Viability Assay Kit were purchased from Promega Co.  All cell culture media was 

purchased from Invitrogen, Inc. 

Measurements.  1H NMR and 13C NMR spectra were recorded on a Varian 300 

MHz spectrometer interfaced to a UNIX computer using Mercury software.  Chemical 

shifts were referred to the solvent resonance signals.  IR spectra were recorded on a 

Perkin-Elmer Spectrum BX FT-IR system, and data were analyzed using Spectrum v2.0 
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software.  Tetrahydrofuran-based gel permeation chromatography (THF GPC) was 

conducted on a Waters Chromatography, Inc. (Milford, MA) model 1515, equipped with 

a Waters model 5414 differential refractometer, a Precision Detectors, Inc. (Bellingham, 

MA) model PD-2026 dual-angle (15˚ and 90˚) light scattering detector and a three-

column set of Polymer Laboratories, Inc. (Amherst, MA) gel mixed-bed styrene-

divinylbenzene columns (PLgel 5µm Mixed C, 500 Å, and 104 Å, 300 x 7.5 mm 

columns).  The system was equilibrated at 35 ˚C in tetrahydrofuran (THF), which served 

as the polymer solvent and eluent (flow rate set to 1.00 mL/min).  An injection volume of 

200 µL was used.  System calibration was performed using polystyrene standards.  Data 

were analyzed using Precision Detectors, Inc. Discovery 32 software.  N, N-

Dimethylformamide-based gel permeation chromatography (DMF GPC) was conducted 

on a Waters Chromatography, Inc. (Milford, MA) system equipped with an isocratic 

pump model 1515, a differential refractometer model 2414 and a two-column set of 

Styragel HR 4 and HR 4E 5 µm DMF 7.8 x 300 mm columns.  The system was 

equilibrated at 70 ˚C in pre-filtered N, N-dimethylformamide (DMF) containing 0.05 M 

LiBr, which served as polymer solvent and eluent (flow rate set to 1.00 mL/min).  

Polymer solutions were prepared at concentrations of ca. 3 mg/mL and an injection 

volume of 200 µL was used.  Data collection and analysis was performed with Empower 

Pro software.  The system was calibrated with poly(ethylene glycol) standards (Polymer 

Laboratories, Amherst, MA) ranging from 615 to 442,800 Da.  Samples for transmission 

electron microscopy (TEM) measurements were diluted with a 1 % phosphotungstic acid 
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(PTA) stain (v/v, 1:1).  Carbon grids were exposed to oxygen plasma treatment to 

increase the surface hydrophilicity.  Micrographs were collected at 50,000 and 100,000 × 

magnifications.  Hydrodynamic diameters (Dh) and size distributions were determined by 

dynamic light scattering (DLS).  The DLS instrumentation consisted of a Brookhaven 

Instruments Limited (Worcestershire, U.K.) system, including a model BI-200SM 

goniometer, a model BI-9000AT digital correlator, a model EMI-9865 photomultiplier, 

and a model 95-2 argon ion laser (Lexel Corp.) operated at 514.5 nm.  Measurements 

were made at 25 ± 1 ˚C.  Scattered light was collected at a fixed angle of 90˚.  A 

photomulitplier aperture of 100 μm was used, and the incident laser intensity was 

adjusted to obtain a photon counting of between, 200 and 300 kcps.  Only measurements 

in which the measured and calculated baselines of the intensity autocorrelation function 

agreed to within 0.1 % were used to calculate particle size.  The calculations of the 

particle size distributions and distribution averages were performed with the ISDA 

software package (Brookhaven Instruments Company).  All determinations were repeated 

5 times. 

Poly(acrylamidoethylamine-Boc)128-block-polystyrene40 (PAEA(Boc)128-b-

PS40).  PAA128-b-PS40 (50 mg, 3.7 µmol, 0.47 mmol carboxylic acid groups) was 

dissolved in DMF (5.0 mL) and stirred for 3 h, before 1.0 mL DMF solution containing 

HOBt (79 mg, 0.59 mmol) and HBTU (222 mg, 0.585 mmol) was added.  After 30 min, 

tert-butyl 2-aminoethylcarbamate (117 mg, 0.727 mmol) and diisopropylethylamine 
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(DIPEA, 102 µL, 0.585 mmol) were added.  The reaction mixture was allowed to stir 

overnight, diluted by the addition of DMF (10.0 mL), transferred to pre-soaked dialysis 

tubing (MWCO = 6 - 8 kDa), and was dialyzed against 150 mM NaCl solution for 2 days, 

then against nanopure water (18.0 MΩ·cm) for 5 days.  Precipitation occurred shortly 

after the dialysis began.  After the dialysis period, the polymer was collected by suction 

filtration and then dried in vacuo overnight.  Mn
NMR = 31.9 kDa; Mn

GPC (DMF) = 10.5 

kDa, Mw/Mn = 1.27.  IR (cm-1): 3600-3200, 3082, 2977, 2932, 1693, 1659, 1537, 1453, 

1392, 1343, 1366, 1274, 1252, 1172, 1003, 858, 737, 699.  1H NMR (300 MHz, CD2Cl2): 

1.05-2.52 (br, Boc protons and polymer backbone protons), 2.85-3.65 (br, 

NHCH2CH2NH2), 5.60-6.33 (br, NH), 6.35-6.80 and 6.88-7.40 (br, ArH) ppm.  13C 

NMR (75 MHz, CD2Cl2): 28.8 (br), 31.8-48.0 (multiple overlapping br), 79.7 (br), 126.2 

(br), 128.4 (br), 145.9 (br), 157.1 (br), 176.4 (br) ppm. 

Poly(acrylamidoethylamine)128-block-polystyrene40 (PAEA128-b-PS40).  

PAEA(Boc)128-b-PS40 (80 mg, 2.5 µmol) was dissolved in TFA (6 mL) and stirred for 2 

h.  The TFA was then removed in vacuo over two days.  Mn
NMR = 19.0 kDa.  IR (cm-1): 

3700-2600, 1681, 1556, 1434, 1204, 1135, 1026, 839, 801, 723, 700.  1H NMR (300 

MHz, DMSO-d6): 0.95-2.24 (br, polymer backbone protons), 3.00-3.47 (br, 

NHCH2CH2NH2), 6.20-6.80 and 6.81-7.33 (br, ArH), 7.82-8.49 (br, NH) ppm.  13C 

NMR (75 MHz, DMSO-d6): 31.3, 32.5-45.0 (multiple overlapping br), 125.7 (br), 127.4 

(br), 128.0 (br), 145.7 (br), 175.0 (br) ppm. 



 

73 
 

Synthesis of diacid crosslinker, 14-oxo-7,10-dioxa-4,13-diazaheptadecane-

1,17-dioic acid.  1, 2-Bis(2-aminoethoxy)ethane (74 mg, 0.50 mmol) was dissolved in 

DMF (1 mL), to which a DMF solution (1 mL) containing succinic anhydride (100 mg, 

1.00 mmol) and DIPEA (174 µL, 1.00 mmol) was added slowly.  The reaction mixture 

was stirred overnight and then the product was precipitated into diethyl ether containing 

1% TFA, then pure diethyl ether (4 ×), and collected by centrifugation and decanting of 

the supernatant, and was dried in vacuo overnight (yield: 132 mg, 76%).  IR (cm-1): 3700-

2200, 2928, 1716, 1651, 1557, 1418, 1201, 1134.  1H NMR (300 MHz, DMSO-d6): 2.33 

(t, J = 6 Hz, 4H, CH2CH2CONH), 2.41 (t, J = 6 Hz, 4H, CH2CH2CONH), 3.20 (t, J = 5.4 

Hz, 4H, NHCH2CH2O), 3.40 (t, J = 5.4 Hz, 4H, NHCH2CH2O), 3.52 (s, 4H, 

OCH2CH2O) ppm.  13C NMR (75 MHz, DMSO-d6): 29.8, 30.5, 39.3, 70.1, 70.5, 171.9, 

174.8 ppm. 

Formation of cSCK.  PAEA128-b-PS40 (43 mg, 2.2 µmol) was dissolved in 20 

mL dimethylsulfoxide (DMSO) and stirred for 2 h, before being transferred to a pre-

soaked dialysis tube (8 kDa MWCO) and being allowed to dialyze against nanopure 

water (18.0 MΩ·cm) to remove organic solvent.  After 4 days of dialysis, a clear solution 

(59 mL) containing the micelle precursors for the cSCKs was obtained.  To crosslink the 

micelles, the diacid crosslinker (5.0 mg, 14 µmol) was activated by mixing with 2.2 

equiv. of HOBt/HBTU (4 mg/12 mg, 1:1, mole:mole) in DMF (400 µL) and allowing to 

stir for 1 h.  This solution was then added slowly with stirring to the micelle solution, 
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which had undergone adjustment of the pH to 8.0, using 1.0 M aqueous sodium 

carbonate, and reduction of the temperature to 0 ˚C, using an ice bath.  The reaction 

mixture was allowed to stir overnight, and was then transferred to dialysis tubing (8 kDa 

MWCO) and dialyzed against nanopure water (18 MΩ·cm) for 2 days.  A clear solution 

containing the cSCKs with a final concentration of 0.70 mg/mL was obtained.  TEM: Dn 

= 9 ± 1 nm, DLS: (Dh)vol = 14 ± 2 nm.  ζ potential: 21.3 ± 1.3 mV. 

Gel retardation assay.  An agarose gel (1%, w/v) was prepared in TAE 

(Tris−acetate−EDTA) buffer.  cSCK/pDNA (pEGFP-N1 plasmid, 4.7 kbp) complexes at 

predetermined N/P ratios were incubated in PBS buffer for 30 min, before being mixed 

with loading buffer (6 ×) and then loaded onto the agarose gel.  The gel was run at 120 V 

for 20 min and stained by incubating in TAE buffer with 0.5 µg/mL ethidium bromide 

(EtBr) for 30 min.  The locations of DNA bands were visualized using a UV illuminator. 

Cell culture.  cSCK mediated transfection was evaluated on CHO-K1 (Chinese 

hamster ovary cell line, ATCC CCL-61) and pLuc705 HeLa cells (human cervical cancer 

cell line) by using the pEGFP-N1 as reporter gene.  Cells were maintained in F-12K 

(CHO-K1) or DMEM (HeLa) containing 10% FBS, streptomycin (100 µg/mL), and 

penicillin (100 units/mL) at 37 ˚C in a humidified atmosphere with 5% CO2.  For 

pLuc705 HeLa cells, additional G418 (100 µg/mL) and hygromycin B (100 µg/mL) were 

also added. 
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Fluorescence confocal microscopy.  CHO cells (5 × 105) were plated in 35 mm 

MatTek glass bottom microwell dishes (MatTek Co.) 24 h prior to transfection.  pEGFP-

N1 (5.0 µg) was complexed with cSCKs at predetermined N/P ratios in 500 µL opti-

MEM solution and incubated for 30 min before use.  Prior to transfection, the medium in 

each well was replaced with 2.0 mL of fresh medium with 10 % FBS, to which 

cSCK/DNA complexes were added.  The plates were then returned to the incubator to 

incubate at 37 ˚C for another 24 or 48 h.  Each plate was washed 3 times with PBS buffer 

and viewed under bright field and fluorescent conditions using a Leica TCS SP2 inverted 

microscope, with excitation by an argon laser (488 nm). 

Flow cytometry.  The cell culture used for flow cytometry was the same as 

above.  Prior to analysis, cells were washed 3 times with 2.0 mL PBS, collected by 

trypsinisation, pelleted, and resuspended in 0.5 mL PBS.  Flow cytometric analysis for 

the transfection using cSCKs was performed using an FACS-calibur (Becton Dickinson) 

equipped with an argon laser exciting at 488 nm.  For each sample, 20,000 events were 

collected by list-mode data that consisted of side scatter, forward scatter, and 

fluorescence emission centered at 530 nm (FL1).  The fluorescence was collected at a 

logarithmic scale with a 1024 channel-resolution.  CellQuest software (Becton 

Dickinson) was applied for the analyses. 

Luciferase antisense splicing correction assay.  pLuc705 HeLa cells were 

seeded in a 96-well microtiter plate at a density of 1 × 104 cells/well and cultured for 24 h 
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in 100 µL DMEM containing 10% FBS.  ps-MeON (phosphorothioate 2'-O-methyl-

oligoribonucleotide: CCUCUUACCUCAGUUACA) was complexed with cSCKs at 

predetermined N/P ratios in 20 µL opti-MEM solution and incubated for 30 min before 

use.  At the time of the transfection experiment, the medium was replaced with 80 µL of 

fresh medium, to which the cSCK/ps-MeON complexes were added.  Following 24 h and 

48 h incubation periods, 100 µL Steady-Glo® Luciferase assay reagent were added.  The 

contents were mixed and the plate was allowed to incubate at room temperature for 10 

min to stabilize the luminescence signal.  Luminescence intensities were recorded on a 

Luminoskan Ascent® luminometer (Thermo Scientific) with an integration time of 1 

second per well. 

Cytotoxicity assay.  The cytotoxicity of the cSCKs was examined by CellTiter-

Glo Luminescent Cell Viability Assay (Promega Co.).  CHO and HeLa cells were each 

seeded in a 96-well plate at a density of 1 × 104 cells/well and cultured for 24 h in 100 µL 

F-12K (CHO-K1) or DMEM (HeLa) containing 10% FBS.  Thereafter, the medium was 

replaced with 100 µL of fresh medium containing various concentrations of cSCKs, 

Polyfect (positive control), or no additive (negative control).  After 24 h incubation at 37 

˚C, 100 µL CellTiter-Glo reagent was added.  The contents were mixed and the plate was 

allowed to incubate at room temperature for 10 min to stabilize luminescence signals.  

Luminescence intensities were recorded on a Luminoskan Ascent® luminometer (Thermo 
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Scientific) with an integration time of 1 second per well.  The relative cell viability was 

calculated by the following equation: 

Cell viability (%) = (luminescence(sample) / luminescence(negative control)) × 100 

Where luminescence(negative control) was obtained in the absence of particles and 

luminescence(sample) was obtained in the presence of cSCKs or Polyfect.  Data are shown 

as mean ± SD (n = 6). 

 

Results and Discussion 

To improve cell transfection, we designed and prepared the cSCKs as robust 

nanostructures that mimic the natural nucleosome core particle in terms of its DNA 

binding capability and size (ca. 10 nm).  The cSCKs originated from the supramolecular 

assembly and covalent stabilization of an amine-rich block copolymer PAEA128-b-PS40, 

which was afforded by chemical modification of a common amphiphilic block copolymer 

of acrylic acid and styrene.  A key step in the preparation PAEA128-b-PS40 was the 

complete conversion of carboxylic acids on PAA128-b-PS40 to amides using mono-Boc-

protected 1,2-ethylene diamine, which was achieved by using a large excess of the amine 

component.  The choice of the segment lengths and block ratio is based on previous 

findings that the block copolymer PAA128-b-PS40 gave SCKs of ~ 10 nm in diameter (18).  

It was reasoned that, with maintenance of the hydrophilic:hydrophobic balance, polymers 

derived from PAA128-b-PS40 would be likely to result in spherical micelles of similar size 
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upon micellization.  Polystyrene continues to be the choice of core material for the cSCK, 

as it has been shown to provide sufficient rigidity to the poly(4-vinylpyridine)-based 

SCKs such that the electrostatic interaction between the SCK and DNA did not deform or 

destroy the particles’ spherical morphology.  With poly(acrylamidoethylamine) as the 

particle shell, the success of PAMAM dendrimers in cell transfection was drawn upon by 

use of the same surface unit (amidoethylamine).  It was expected that the basic primary 

amines of the cSCK, and the positive charge resulting from their protonation, would 

promote its cell uptake and endosomal release through the proton-sponge effect (26).  To 

crosslink the PAEA128-b-PS40 micelles and form cSCKs, a diacid crosslinker (14-oxo-

7,10-dioxa-4,13-diazaheptadecane-1,17-dioic acid) was employed. 

 

Scheme 4-1.  Preparation of cSCK. 
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The amphiphilic polymer component of cSCK, PAEA128-b-PS40 was prepared by 

using atom transfer radical polymerization to give poly(t-butyl acrylate)-b-polystyrene 

(PtBA128-b-PS40), followed by removal of the t-butyl protecting groups, coupling of 

mono-Boc protected 1,2-bis(2-aminoethoxy)ethane, and deprotection to remove the Boc 

groups (Scheme 1).  Complete consumption of acrylic acid residues of PAA128-b-PS40 

during the amidation reaction was achieved, as demonstrated by the disappearance of the 

carboxylic acid protons in the 1H NMR spectrum (12.22 ppm, DMSO-d6).  The resulting 

polymer, PAEA(Boc)128-b-PS40, showed only two kinds of carbonyl carbons by 13C NMR 

spectroscopy, resonating at 157.5 ppm and 175.0 ppm (CD2Cl2), corresponding to the 

Boc carbamate carbons and the polymer amide carbons, respectively.  This result again 

confirmed the successful and complete conversion of the carboxylic acids to amides, a 

key step in this work.  Because the parent polymer (PtBA128-b-PS40, Mn
NMR: 20.7 kDa, 

Mn
GPC (THF): 20.0 kDa, PDI: 1.06) had a narrow molecular weight distribution, typical 

for polymers obtained from controlled radical polymerization, PAEA(Boc)128-b-PS40 also 

exhibited adequate polydispersity in molecular weight (Mn
NMR: 31.9 kDa, Mn

GPC (DMF): 

10.5 kDa, PDI: 1.27), even after three chemical modification steps.  The molecular 

weight calculation by GPC using DMF as eluent for PAEA(Boc)128-b-PS40 is not 

expected to be accurate, primarily because the molecular weight determinations were 

based PEG standards.  Deprotection of PAEA(Boc)128-b-PS40 was accomplished by 

stirring with an excess of TFA for 2 h at room temperature with no additional solvent 
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being required.  Quantitative removal of the Boc protecting groups was evidenced by loss 

of signals from Boc-related protons (1H NMR, CD2Cl2, 1.50 ppm) and carbons (13C 

NMR, CD2Cl2, 28.7 and 79.7 ppm). 

 
Figure 4-1.  Gel retardation assay of cSCK/pDNA complexes at different 
N/P ratios ranging from 0:1 to 4:1.  A fixed amount of pEGFP-N1 pDNA 
was used.  The cSCK was shown to fully bind to pDNA and prevent its 
migration on the agarose gel at an N/P ratio of 2:1. 

 

Self assembly of the block copolymer into micelles was achieved by direct 

dialysis of the DMSO solution of PAEA128-b-PS40 against nanopure water, where gradual 

exchange of DMSO by water occurred (Scheme 1).  Due to the nanoscopic size of the 

assemblies, the micelle solution remained clear at 0.70 mg/mL.  The volume-average 

hydrodynamic diameter ((Dh)vol ) of the particle was determined by DLS to be 14 ± 2 nm, 

and the number-average dry state diameter was determined by TEM to be 9 ± 1 nm.  The 

size of these cationic micelles is very close to that of the micelles comprised of PAA128-

b-PS40 ((Dh)vol = 12 ± 3 nm (DLS), Dn = 11 ± 2 nm (TEM)) due to their same polymer 

block lengths and segment ratio, and to that of nucleosome core particles (ca. 10 nm).  
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Figure 4-2.  TEM images of cSCK and cSCK/pDNA complexes at different N/P ratios.  
a) cSCK alone, without pDNA.  b) cSCK/pDNA complex at N/P ratio of 6:1.  c) 
cSCK/pDNA complex at N/P ratio of 2:1.  At an N/P ratio of 6:1, the majority of the 
complex nanoparticles were 50-100 nm in diameter.  Below 4:1, larger aggregates of 
hundreds of nanometers in size were also formed.  Insets:  DLS measurement of volume-
average hydrodynamic diameter ((Dh)vol) of cSCK and complexed particles. 
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Furthermore, ζ potential measurements of the micelles based on PAEA128-b-PS40 showed 

that the amidation step had inverted the charge of the particles to be cationic, with ζ = 

22.9 mV, relative to the negative-charge character of PAA128-b-PS40 micelles with ζ = -

31.5 mV.   

 

Figure 4-3.  Confocal laser scanning microscopy of HeLa cells (A-C) and 
CHO-K1 cells (D-F), transfected with pEGFP.  In A and D, cSCK was 
used as the transfection agent with pEGFP-N1 at an N/P ratio of 6:1.  B/E 
and C/F were positive controls using Polyfect and Lipofectamine2000 as 
the transfection agent, respectively, at N/P ratios recommended by 
manufacturer. 

 

In order to crosslink the micelles, a diacid crosslinker, 14-oxo-7,10-dioxa-4,13-

diazaheptadecane-1,17-dioic acid, was prepared.  When activated with carbodiimide, the 

carboxylic acids of the crosslinker react readily with amines.  Activation of the 

crosslinker was achieved by mixing with 2.2 equiv. of HOBt/HBTU (1:1, mol:mol) in 
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DMF and allowing to stir for 1 h.  The DMF solution containing the activated crosslinker, 

equivalent to 5% of the available amines, was then added to a solution of the PAEA128-b-

PS40 micelles with stirring, over a period of 10 min.  The crosslinking process resulted in 

no discernible change in DLS and TEM sizes.   

To mediate endocytosis and endosomal escape of DNA, the cSCK was designed 

to complex with the DNA and form supramolecular aggregates (larger composite 

nanostructures comprised of smaller cSCK and pDNA sub-units), via electrostatic 

interactions between the positively-charged cSCK and the negatively-charged DNA.  

Agarose gel retardation assays verified that the EGFP pDNA underwent complete 

complexation with cSCK at polymer/pDNA amine/phosphate (N/P) ratios of 2:1 

(mol:mol) and above, as demonstrated by retardation of DNA migration in 

electrophoresis (Fig. 4-1).  A low value of the N/P ratio to retard DNA migration is often 

desired as it not only suggests strong binding between the positively-charged transfection 

agent and the DNA, but also means that less transfection agent can be used in the cell 

experiments, which reduces toxic stress on the cells.  Because the cSCKs contain only 

closely-spaced primary amines, which have a higher binding affinity to DNA than 

tertiary amines, due to their lack of steric hindrance, optimal DNA complexes with cSCK 

are expected to require lower N/P values than cationic polymers containing secondary, 

tertiary amines, or aromatic amines.  For example, poly(amido amine) (pAPOL) requires 

a polymer:DNA wt:wt ratio of 24:1 (which corresponds to an approximate N/P ratio of 
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27:1, assuming an average MW of a deoxynucleotide base unit to be 330 Da) to fully 

retard DNA migration during electrophoresis (27).  Poly(4-vinylpyridine) only allows for 

incomplete complexation at room temperature with pDNA at 5:1 N/P ratio, due to the 

weakly interacting quaternary nitrogen (15).  Therefore, the cSCKs were found to be 

effective agents for condensing pDNA, even at relatively low N/P ratios. 

The sizes of the complexed pDNA/cSCK nanoparticles were measured by DLS, 

which allowed for determination of the hydrodynamic diameters for the aggregates while 

suspended in aqueous solution, and by TEM, which provided visualization of the 

components within those pDNA/cSCK clusters.  At an N/P ratio of 6:1, the majority of 

the aggregates were 50-100 nm in diameter, as measured by DLS, and had irregular 

shapes, as observed by TEM (Fig. 4-2b).  Mixing at N/P ratios of 4:1 and 2:1 resulted 

also in a significant volume of the material being organized into 50-100 nm-sized 

assemblies, but also with a population that had hydrodynamic diameters of several 

hundred nm (Fig. 4-2c).  In each case, it was observed that the rigidity of the cSCKs, 

imparted by their PS core material, allowed for retention of their globular morphology 

(Fig. 4-2a) when complexed with pDNA, as suggested by the approximately circular two-

dimensional shapes of the cSCKs in the TEM images (Fig. 4-2b and 2c).  In contrast, 

liposomes lose their particulate characteristic when complexed with DNA, and as a result, 

their binding is usually non-specific resulting in a heterogeneous mixture of particles.  

Based on TEM measurements of particle size, and on the stoichiometry of particle/DNA 
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ratios, an average pDNA/cSCK supramolecular aggregate with a diameter of 50 nm is 

estimated to comprise ca. 43 cSCKs and ca. 16 pDNAs.1  These results indicate that the 

cSCK has a relatively high efficiency in DNA packaging per gram of cSCK (1:1, 

pDNA/cSCK, wt:wt), similar to that of some commercially used agents such as bPEI (25 

kDa) (1:1). 

 
Figure 4-4.  Quantification of pEGFP-N1 transfection for HeLa cells by 
flow cytometry.  The reported transfection efficiency is the ratio of the 
number of cells producing fluorescent signal to the number of total cells. 

                                                 
1 The cSCK/DNA molar ratio for the complex is calculated to be 2.7:1 (mol:mol), based on an N/P ratio of 
2:1 as determined by gel electrophoresis.  This molar ratio was calculated by taking into account the 
double-stranded pDNA having 9466 b, interacting with 18932 amino groups of the cSCK, which requires 
2.7 cSCKs, as each cSCK contains ca. 7080 amines (based upon a PAEA128-b-PS40 block copolymer 
aggregation number of 60, as expected from the TEM-measured particle diameter [19]).  The theoretical 
cSCK and pDNA numbers (43 and 16, respectively) within the complexes were calculated by using the 
buoyant volume of pDNA, calculated to be 3030 nm3 based on an average buoyant density of 1.7 g/mL and 
4733 bp/pDNA, with each base unit being an average of 330 Da in MW, and the volume occupied by 
cSCKs having diameter of 9 nm. 
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To evaluate the in vitro transfection efficiency of the cSCK, its complexes with 

pDNA and ps-MeON were produced and assayed by using confocal microscopy/flow 

cytometry and a luciferase activity assay, respectively.  To demonstrate delivery of 

pDNA, cSCK was complexed with reporter gene pEGFP-N1 expressing green 

fluorescent protein and incubated with two cell lines (HeLa cells and CHO cells), at six 

different N/P ratios ranging from 2:1 to 20:1 with no serum added.  Polyfect and 

Lipofectamine2000 were used as positive controls.  Confocal microscopy confirmed 

successful transfection in both cell lines (Fig. 4-3).  cSCK appeared to have transfected a 

similar proportion of cells as did Polyfect for CHO cells, and a higher proportion for 

HeLa cells.  The transfection efficiency was also quantitatively measured by flow 

cytometry, by the ratio of fluorescent cells to total cells, which showed that cSCK indeed 

achieved higher transfection (27%) than Polyfect (12%) for HeLa cells (Fig. 4-4), at an 

N/P ratio of 6:1.  Particles at lower N/P ratios did not produce the same level of 

transfection, possibly due to the size effect of the complexed nanoparticle on cell uptake.  

It has been reported that particles of 50 - 100 nm in diameter were most efficiently 

internalized by the cell (28-30), compared to larger particles having at least in one 

dimension a length of 200 to 1000 nm (18).  The correlation of the transfection 

efficiencies of cSCK/pDNA complexes at different N/P ratios with their respective 

average hydrodynamic diameters seems to agree with these literature reports. 
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Figure 4-5.  Luciferase activity assay of cSCK at different cSCK and ps-
MeON concentrations, compared to commercially available transfection 
agents (Oligofectamine and Polyfect), after 24 h and 48 h incubations.  A: 
Oligofectamine 1.0 μg, ODN 1.0 μmol; B: Polyfect 2.0 μg, ps-MeON 1.0 
μmol; C: cSCK 0.3 μg, ps-MeON 1.0 μmol; D: cSCK 0.6 μg, ps-MeON 
1.0 μmol; E: cSCK 1.2 μg, ps-MeON: 1.0 μmol; F: cSCK 2.4 μg, ps-
MeON: 1.0 μmol; G: cSCK 4.8 μg, ps-MeON 1.0 μmol; H: cSCK 2.4 μg, 
ps-MeON 0.5 μmol; I :cSCK 2.4 μg, ps-MeON 1.0 μmol; J: cSCK 2.4μg, 
ps-MeON 2.0 μmol;  K:cSCK 2.4 μg, ps-MeON 5.0 μmol; L: ps-MeON 
1.0 μmol; M: ps-MeON 5.0 μmol; N: cells only. 

 

To demonstrate delivery of an oligonucleotide, ps-MeON, a 18-mer 2'-O-methyl 

phosphorothioate oligoribonucleotide that corrects luciferase pre-mRNA splicing in an 

engineered HeLa cell line was complexed with cSCK in two series of cSCK/ps-MeON 

ratios. The  first  series  contained  a  fixed  amount  of  ps-MeON  (1 µmol)  and  various 
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Figure 4-6.  Relative cell viability of CHO-K1 cells and HeLa cells in the 
presence of cSCK and polyfect dendrimer.  Data are shown as mean ± SD 
(n = 6).  cSCK showed higher toxicity towards HeLa cells and lower 
toxicity towards CHO cells, when compared with Polyfect. 

 

amounts of cSCK (0.3-4.8 µg).  The second series involved a fixed amount of cSCK (2.4 

µg) and various amounts of ps-MeON (0.5 to 5 µmol).  Polyfect and Oligofectamine at 

their respective manufacturer-recommended transfection agent/pDNA ratios were used as 
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positive controls, using an equal amount of ps-MeON as used in series 1.  The ps-MeON-

complexes were incubated with pLuc705 HeLa cells for 24 h and 48 h, to allow for 

expression of luciferase, which was then quantified by measurement of luminescence 

after the Steady-Glo Luciferase assay reagent was added.  In series 1 with 24 h 

incubation, an optimum ratio of cSCK 0.6 μg/ps-MeON 1.0 μmol was found (Fig. 4-5).  

After 48 h incubation, the best performing ratio was cSCK 0.3 μg/ps-MeON 1.0 μmol, 

which led to a higher amount of luminescence than that produced by complexes 

containing Polyfect and Oligofectamine.  It is worth noting that, for the data point where 

cSCK and Polyfect gave comparable transfection at 48 h (Fig. 4-5, C), only 0.3 µg cSCK 

was used compared to the 2.0 µg of Polyfect.  In series 2, the best performing ratio is 

cSCK 2.4 μg/ps-MeON 0.5 μmol, for both 24 and 48 h incubations.  In both series, a 

non-linear relationship between cSCK:ps-MeON ratio and total luminescence was 

observed, a result for which multiple factors might be in effect, such as cell 

internalization rate, cell proliferation rate (due to cytotoxicity) and intracellular cSCK/ps-

MeON dissociation rate. 

In vitro cytotoxicity of cSCK was evaluated using CellTiter-Glo Luminescent 

Cell Viability Assay (Promega Co.) on CHO and HeLa cells.  Compared to Polyfect, 

cSCK maintained > 70% cell viability for CHO cells at 18 µg/mL while < 10% cells were 

viable under the same conditions and for the same weight concentration of Polyfect (Fig. 

4-6).  For HeLa cells, the cSCK exhibited higher toxicity than Polyfect, but still 
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maintained >70% cell viability at 18 µg/mL.  Cell death is often caused by the 

aggregation and accumulation of the multivalent transfection agents in various cellular 

organelles after dissociation with DNA.  To reduce the problem of cytotoxicity, various 

strategies have been applied including incorporation of degradable moieties in the 

backbone of the cationic polymers, such as disulfide or ester linkages (31-32).  The cSCK 

is expected to have lowered cytotoxicity when a degradable crosslinker and/or degradable 

polymer structure is used, due to disassembly of the nanostructure into discrete polymer 

chains below critical micelle concentrations and/or small molecules, and subsequent 

removal from the cell.  Amine density also plays a role on cytotoxicity and DNA delivery 

efficiency.  A high amine density may not significantly increase transfection efficiency 

but could lead to an increase in cytotoxicity (33).  Therefore, by modulating amine 

densities of the cSCK through incorporation of diamines containing longer alkyl spacers, 

a reduction in cytotoxicity while maintaining efficient transfection is expected. 

 

Conclusions 

In this work, we have constructed cSCKs that contain closely-spaced primary 

amines by facile post-polymerization modification of PAA128-b-PS40.  These 

nanoparticles formed supramolecular composite assemblies with plasmid DNA at N/P 

ratios of 2:1 and above.  At an N/P ratio of 6:1, the complexes exhibited equal or higher 

EGFP plasmid transfection efficiencies than that of Polyfect, for CHO and HeLa cells.  
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Additionally, the cSCK showed higher transfection of a splice-correcting 18-mer 

oligonucleotide at 48 h than did Polyfect and Lipofectamine2000 while only using a 

relatively small weight amount of cSCK (0.3 µg cSCK vs. 2.0 µg Polyfect).  Further 

increase in transfection efficiency is expected when multiple factors, including polymer 

molecular weight, block ratio and/or particle morphology and size are optimized.  For 

CHO cells, Polyfect exhibits higher toxicity than cSCK, and for HeLa cells the trend is 

opposite.  However, higher than 90% cell viability at 24 h was observed for cSCK at 

concentrations of 10 µg/mL or below for both cell lines.  It is expected that by 

incorporation of degradable crosslinkers and/or by use of degradable block copolymer, 

cytotoxicity would be reduced. 
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Chapter 5 

 

Structure-activity relationships of cationic shell-crosslinked knedel-like 

nanoparticles: Shell composition and transfection efficiency/cytotoxicity 

[Portions of this work have been published previously as Ke Zhang, Huafeng Fang, 

Zhenghui Wang, Zhou Li, John-Stephen A. Taylor and Karen L. Wooley Biomaterials 

2009, published online] 

 

Abstract 

Cationic nanoparticles are a promising class of transfection agents for 

oligonucleotide and gene delivery, but vary greatly in their effectiveness and cytotoxicity.  

In the last chapter, we described a new class of cationic transfection agents based on 

cationic shell-crosslinked nanoparticles (cSCKs) that efficiently transfect mammalian 

cells with both oligonucleotides and plasmid DNA.  In an effort to further improve 

transfection efficiency without increasing cytotoxicity, we examined the effects of the 

composition of primary amine (pa), tertiary amine (ta) and carboxylic acid (ca) groups in 

the shell of these nanoparticles.  A series of discrete complexes of the cSCKs with 

plasmid DNA (pDNA) or phosphorothioate 2’-OMe oliogonucleotides (ps-MeON) were 

prepared over a broad range of amine to phosphate ratios (N/P ratio) of 0:1 to 32:1.  The 

sizes of the complexes and the ability of the nanoparticles to completely bind ODNs were 
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found to depend on the cSCK amine to DNA phosphate (N/P) ratio and the cSCK 

buffering capacity.  The cSCKs were then evaluated for their ability to transfect cells 

with plasmid DNA by monitoring fluorescence from an encoded EGFP, and for delivery 

of ps-MeON by monitoring luminescence from luciferase resulting from ps-MeON-

mediated splicing correction.  Whereas the cationic cSCK-pa25-ta75 was found to be best 

for transfecting plasmid DNA into HeLa cells at an N/P ratio of 20:1, cSCK-pa50-ta50, at 

an N/P ratio 10:1 was best for ps-MeON delivery.  We also found that increasing the 

proportion of tertiary relative to primary amine reduced the cytotoxicity.  These results 

demonstrate that a dramatic improvement in gene and oligonucleotide delivery efficiency 

with decreased cytotoxicity in HeLa cells can be achieved by incorporation of tertiary 

amines into the shells of cSCKs. 

  



100 
 

Introduction 

Gene therapy and antisense and antigene agents are widely believed to have 

tremendous potential for the treatment of many diseases currently considered incurable.  

One major stumbling block in the implementation of these therapeutic strategies is the 

lack of a suitable method for efficient intracellular delivery of the nucleic acid-based 

agents.  Compared with viral vectors, synthetic materials, such as cationic liposomes, 

polymers and nanoparticles, are spared from many biosafety issues inherent to viral 

systems, and are amenable to large scale production and chemical modifications (1-5).  

Though progress has been made in the development of such non-viral vectors (6-9), the 

better transfection materials usually exhibit higher toxicities, and show high variation in 

effectiveness depending on cell type.  Therefore, materials for efficient and non-cytotoxic 

transfection of nucleic acid-based agents is one of the most urgent and important issues in 

the field of biomedicine. 

Current methods for effecting delivery of nucleic acid therapeutics are often based 

on liposome- or polymersome-mediated membrane fusion (10-12) and ligand-mediated 

endocytosis (13-14).  Cationic liposomes have been widely used to transfect DNA in cell 

culture but its use in vivo is oftentimes compromised by its cytotoxicity and poor 

biodistribution.  Addition of polyethylene glycol (PEG) moieties to the transfection 

agents generally improves their biocompatibility but often leads to significantly reduced 

transfection efficiency.  Surface-conjugated PEG has also been found to hinder the ability 
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of the cationic functional groups to interact with cell surface receptors (15-16).  Intricate 

designs are required to retain effectiveness in transfection while improving 

biodistribution (17).  Cationic peptides, polymers, and nanoparticles have been used to 

enhance endocytosis of nucleic acids through macropinocytosis, and various ligands have 

been used for receptor-mediated endocytosis.  In all cases, the transfection agents must 

form stable complexes with the nucleic acid therapeutic to protect it from enzymatic 

degradation and ensure delivery to the target site.  The complexes also need to be of 

appropriate size, shape, flexibility and surface composition for optimal biodistribution 

and efficient intracellular delivery.  For complexes entering cells by endocytosis, a 

mechanism for endosome rupture or leakage is required to release the complexed nucleic 

acid therapeutic into the cytosol, such as membrane disruption by endosome disrupting 

peptides, or the proton sponge effect, which is triggered during endosomal acidification 

(18).  Each of the steps, if problematic, can lead to poor performance of the transfection 

agent.  It is, therefore, not surprising that the structure and properties of the transfection 

agent play important roles in the formation and cell uptake of the complexes, and timely 

release of the nucleic acid therapeutic (19-20). 

We have shown that cationic shell-crosslinked knedel-like nanoparticles (cSCKs) 

can form electrostatic complexes with plasmid DNA and antisense phosphorothioate 2’-

OMe oligonucleotides (ps-MeON) and efficiently transfect them into cells (21).  Similar 

to the cationic micellar structures (6, 22-24) studied by Kataoka et al, the cSCKs 
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represent an example of an emerging class of nanoscale materials composed of 

amphiphilic block copolymers, each consisting of a hydrophobic section linked to a 

hydrophilic section (25-30).  The block copolymers are first assembled into micelles and 

then crosslinked through chemical conjugation between functional groups in the shell.  

Compared to the dynamic assemblies of micellar structures, the cSCKs are rigid, robust 

nanoparticles and resemble natural histones in size and DNA packaging ability (31).  The 

particular cSCK used for the transfection experiments consisted of a hydrophobic 

polystyrene (PS) polymer joined to a polyacrylamidoethylamine (PAEA) that were 

subsequently micellized and then crosslinked through amide bond formation.  The 

cationic nature of the cSCK, resulting from the protonated primary amines of the PAEA 

in the shell, facilitates electrostatic binding to negatively charged nucleic acids.  The 

cationic shell is capable of enhancing endocytosis through electrostatic interaction with 

the membrane surface and subsequent macropinocytosis.  The presence of amines is also 

likely to promote subsequent endosomal release through the proton-sponge effect, due to 

their ability to neutralize protons (buffering capacity) in the pH 5.5-7.0 range during 

endosomal acidification. 

cSCKs of PAEA-b-PS composition were found to transfect plasmid DNA into 

HeLa cells efficiently.  These same particles were also shown to deliver peptide nucleic 

acids (PNAs) with very high efficiency, through electrostatic binding to a partially 

complementary DNA, or with even greater efficiency through conjugation via a 
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bioreductively cleavable linker (32).  The different efficiencies observed for transfection 

of the electrostatically and covalently bound PNAs suggested that it might still be 

possible to improve the DNA/ODN binding and release properties of the cSCK by 

manipulating the structures of the functional groups in the shell.  We, therefore, 

synthesized a series of cSCKs with different shell compositions, and found that their 

binding capacity, transfection efficiency, and cytotoxicity could be manipulated and 

improved by varying the relative amounts of primary amines (pa), tertiary amines (ta) and 

carboxylic acids (ca). 

 

Materials and Methods 

Materials.  All solvents and chemicals were purchased from Sigma-Aldrich and 

used without further purification, unless otherwise indicated.  N-

hydroxybenzotriazole·H2O (HOBt) and 2-(1H-benzotriazole-1-yl)-1, 1, 3, 3-

tetramethylaminium hexafluorophosphate (HBTU) were purchased from EMD 

Chemicals, Inc.  The amphiphilic block copolymer, PAA128-b-PS40, was prepared using 

atom transfer radical polymerization of (protected) monomer precursors followed by 

deprotection, according to literature reported methods (33).  A luciferase splice-

correcting phosphorothioate 2'-O-methyl-oligoribonucleotide (ps-MeON, 

CCUCUUACCUCAGUUACA) was synthesized on an Expedite 8909 DNA synthesizer 

(Applied Biosystems, Inc.) using standard solid phase phosphoramidite chemistry and 



104 
 

purified by 20% denaturing polyacrylamide gels, followed by extraction with 

phenol/chloroform and ethanol precipitation.  HeLa cells were obtained from the 

American Type Culture Collection.  The pLuc705 Hela cell line was a generous gift from 

Dr. R. Kole (University of North Carolina, Chapel Hill, NC).  Oligofectamine and 

LipofectamineTM 2000 were obtained from Invitrogen Co.  Polyfect® was purchased from 

Qiagen Inc.  pEGFP-N1 was obtained from Clontech Laboratories, Inc.  Steady-Glo® 

Luciferase Assay reagent and CellTiter-Glo® Luminescent Cell Viability Assay Kit were 

purchased from Promega Co.  All cell culture media was purchased from Invitrogen, Inc. 

Measurements.  1H NMR and 13C NMR spectra were recorded on a Varian 300 

MHz spectrometer interfaced to a UNIX computer using Mercury software.  Chemical 

shifts were referenced to the solvent resonance signals.  IR spectra were recorded on a 

Perkin-Elmer Spectrum BX FT-IR system, and data were analyzed using Spectrum v2.0 

software.  Samples for transmission electron microscopy (TEM) measurements were 

diluted with a 1 % phosphotungstic acid (PTA) stain (v/v, 1:1).  Micrographs were 

collected at 50,000 and 100,000 × magnifications on a Hitachi-600.  Hydrodynamic 

diameters (Dh) and size distributions were determined by dynamic light scattering (DLS).  

The DLS instrumentation consisted of a Brookhaven Instruments Limited 

(Worcestershire, U.K.) system, including a model BI-200SM goniometer, a model BI-

9000AT digital correlator, a model EMI-9865 photomultiplier, and a model 95-2 argon 

ion laser (Lexel Corp.) operated at 514.5 nm.  Measurements were made at 25 ± 1 ˚C.  
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Scattered light was collected at a fixed angle of 90˚.  A photomulitplier aperture of 100 

μm was used, and the incident laser intensity was adjusted to obtain a photon counting of 

between, 200 and 300 kcps.  Only measurements in which the measured and calculated 

baselines of the intensity autocorrelation function agreed to within 0.1 % were used to 

calculate particle size.  The calculations of the particle size distributions and distribution 

averages were performed with the ISDA software package (Brookhaven Instruments 

Company).  All determinations were repeated 5 times and the standard deviations 

reported were calculated as the error between DLS runs.  Zeta potential (ζ) values for the 

nanoparticle solution samples were determined with a Brookhaven Instrument Co. 

(Holtsville, NY) model Zeta Plus zeta potential analyzer.  Data were acquired in the 

phase analysis light scattering (PALS) mode following solution equilibration at 25 °C.  

Potentiometric titration of various cSCKs was performed using a Brinkmann Bottletop 

Buret 25 and a Corning pH meter 440.  cSCK solutions containing 0.5 µmol polymers 

were diluted in 20 mL 38.94 mM HCl and titrated with 0.010 M NaOH. 

Poly(acrylamidoethylamine(Boc)-co-acrylamidoethyldimethylamine)-block-

polystyrene (PAEA(Boc)-co-PAEDMA-b-PS).  PAA128-b-PS40 (100 mg, 7.4 µmol, 0.94 

mmol carboxylic acid groups) was dissolved in DMF (8.0 mL) and stirred for 3 h.  

Aliquots (2.0 mL) of the solution containing 25 mg polymer were transferred to 3 flasks.  

Then, 2.0 mL DMF solution containing HOBt (44 mg, 0.33 mmol) and HBTU (125 mg, 

0.330 mmol) was added to each flask.  After 30 min, 2.0 mL DMF solution containing 
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various molar ratios of tert-butyl 2-aminoethylcarbamate and N-(2-aminoethyl) 

acrylamide (1:3, 2:2 and 3:1, 1.5 eq. to COOH total) and diisopropylethylamine (DIPEA, 

35 µL, 0.20 mmol) was slowly added to each flask at 4.0 mL/h using a syringe pump.  

The reaction mixtures were then sealed, allowed to stir overnight, diluted by the addition 

of DMF (5.0 mL), transferred to pre-soaked dialysis tubing (MWCO = 6 - 8 kDa), and 

were dialyzed against 150 mM NaCl solution for 2 days, then against nanopure water 

(18.0 MΩ·cm) for 5 days.  After the dialysis period, the polymers were collected by 

lyophilization.  Characterization data shown below are for PAEA(Boc)64-co-PAEDMA64-

b-PS40.  IR (cm-1): 3281, 3060, 2931, 2685, 1660, 1538, 1392, 1366, 1273, 1252, 1170, 

1026, 1005, 824, 759.  1H NMR (300 MHz, DMSO-d6, ppm): δ 1.05-2.30 (br, Boc 

protons and polymer backbone protons), 2.85-3.65 (br, NHCH2CH2NH, 

NHCH2CH2N(CH3)2), 6.35-6.80 and 6.88-7.40 (br, ArH), 7.50-9.00 (br, CONH).  13C 

NMR (75 MHz, CD2Cl2, ppm): δ 28.9 (br), 31.8-46.0 (multiple overlapping br), 56.6 (br), 

78.4 (br), 126.4 (br), 127.9 (br), 128.7 (br), 145.3 (br), 156.8 (br), 175.3 (br). 

Poly((acrylic acid)-co-acrylamidoethylamine(Boc))-block-polystyrene  (PAA-

co-PAEA(Boc)-b-PS) and poly((acrylic acid)-co-acrylamidoethyldimethylamine)-

block-polystyrene (PAA-co-PAEDMA-b-PS).  Steps leading to the formation of 

activated polymers were the same as above.  Afterwards, 1.0 mL DMF solutions of tert-

butyl 2-aminoethylcarbamate (180, 96 and 64 equivalents to polymer) and N-(2-

aminoethyl) acrylamide (180, 96, 64, and 32 equivalents to polymer) were added to the 
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polymer solutions.  Following 24 h reaction time, the polymers were purified using above 

procedures.  PAA64-co-PAEA(Boc)64-b-PS40.  IR (cm-1): 3316, 2931, 1704, 1660, 1531, 

1392, 1366, 1252, 1170, 823, 760, 668.  1H NMR (300 MHz, DMSO-d6, ppm): δ 1.05-

2.30 (br, Boc protons and polymer backbone protons), 2.80-3.20 (br, NHCH2CH2NH), 

6.22-6.83 and 6.83-7.27 (br, ArH), 7.40-8.00 (br, CONH).  13C NMR (75 MHz, DMSO-

d6, ppm): δ 28.3 (br), 31.8-44.0 (multiple overlapping br), 79.7 (br), 126.2 (br), 127.3 

(br), 128.4 (br), 145.9 (br), 155.9 (br), 174.0 (br), 176.4 (br).  PAA64-co-PAEDMA64-b-

PS40.  IR (cm-1): 3283, 3027, 2927, 2715, 2359, 1727, 1678, 1553, 1382, 1199, 1138, 799, 

703.  1H NMR (300 MHz, DMSO-d6 with 1% TFA-d, ppm): δ 0.80-2.49 (br, polymer 

backbone protons), 2.52-4.20 (br, NHCH2CH2N(CH3)2), 6.35-6.80 and 6.88-7.40 (br, 

ArH), 8.18-8.84 (br, CONH).  13C NMR (75 MHz, DMSO-d6, ppm): δ 28.8 (br), 31.9-

48.0 (multiple overlapping br), 56.4 (br), 126.4 (br), 128.0 (br), 145.9 (br), 175.7 (br). 

Removal of Boc groups.  Polymers containing Boc protecting groups (1.0 µmol) 

were dissolved in TFA (3 mL) and stirred for 6 h.  The TFA was then removed in vacuo.  

1H NMR and 13C NMR (DMSO-d6) confirmed the loss of Boc protons (1.42 ppm) and 

carbons (28.9 ppm, 79.7 ppm, 155.9 ppm), respectively.  PAEA64-co-PAEDMA64-b-PS40.  

IR (cm-1): 3277, 3063, 2956, 2705, 1648, 1553, 1467, 1394, 1366, 1274, 1165, 1024, 748, 

701, 660, 630.  1H NMR (300 MHz, DMSO-d6, ppm): δ 1.05-2.30 (polymer backbone 

protons), 2.85-3.65 (br, NHCH2CH2NH, NHCH2CH2NH+(CH3)2), 6.20-6.80 and 6.82-

7.40 (br, ArH), 7.80-8.40 (br, CH2CH2NH3+, CONH), 9.70-10.20 (br, 
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CH2CH2NH+(CH3)2).  13C NMR (75 MHz, CD2Cl2, ppm): δ 31.8-46.0 (multiple 

overlapping br), 56.6 (br), 126.4 (br), 127.9 (br), 128.6 (br), 145.3 (br), 175.6 (br). 

General procedure for the formation of primary-amine containing cSCK-pa-

ta, and cSCK-pa-ca from PAEA-co-PAEDMA-b-PS and PAA-co-PAEA-b-PS, 

respectively.  Each polymer (1.0 µmol) was dissolved in 7.0 mL dimethylsulfoxide 

(DMSO) and stirred for 2 h, before being transferred to a pre-soaked dialysis tube (8 kDa 

MWCO) and being allowed to dialyze against nanopure water (18.0 MΩ·cm) to remove 

organic solvent.  After 4 days of dialysis, clear solutions containing the micelle 

precursors for the modified cSCKs were obtained.  To crosslink each micelle sample, a 

diacid crosslinker (6.4 µmol, corresponding to 5% crosslinking) was activated by mixing 

with 2.2 equiv. of HOBt/HBTU (mole:mole) in DMF (400 µL) and allowing to stir for 1 

h.  This solution was then added slowly with stirring to the micelle solution, which had 

undergone adjustment of the pH to 8.0, using 1.0 M aqueous sodium carbonate, and 

reduction of the temperature to 0 ˚C, using an ice bath.  The reaction mixture was allowed 

to stir overnight, and was then transferred to dialysis tubing (8 kDa MWCO) and dialyzed 

against nanopure water (18 MΩ·cm) for 3 days.  All particles showed a mean 

hydrodynamic diameter (Dh) in the14-18 nm range by DLS, and a mean dry-state 

diameter of 9 ± 3 nm, estimated from multiple (>3) TEM images. 

General procedure for the formation of cSCK-ta-ca from PAA-co-PAEDMA-

b-PS.  PAA-co-PAEDMA-b-PS polymers (1.0 µmol) were assembled into micelles using 
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the procedures above.  To crosslink the micelles, O-bis-(aminoethyl)ethylene glycol (6.4 

µmol, corresponding to 5% crosslinking) was added and the solution was allowed to stir 

at room temperature.  After 30 min, an aqueous solution of 1-[3’-

(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI) (1.0 equiv., relative 

to the molar number of available COOH groups) was added.  The reaction mixture was 

allowed to stir overnight before being transferred to presoaked and rinsed dialysis tubing 

(MWCO 3 kDa) and dialyzed against nanopure water (18.0 MΩ·cm) for 3 days.   

Gel retardation assay.  The oligodeoxynucleotide 

d(CCTCTTACCTCAGTTACA) was 5’-labeled by p32-γ-ATP with T4 Polynucleotide 

Kinase.  Serial amounts of cSCKs were mixed with 0.5 µM radiolabeled ODN at N/P 

ratio of 0, 0.5:1, 1:1, 2:1, 4:1, 8:1, 16:1, 32:1, in PBS buffer for 30 min, which were then 

mixed with loading buffer (6 ×), and loaded to 15% native polyamide gel. 

Cell culture.  cSCKs mediated transfection was evaluated on HeLa cells (human 

cervical cancer cell line) by using the pEGFP-N1 as reporter gene or on pLuc705 Hela 

cells by luciferase expression.  Cells were maintained in DMEM containing 10% FBS, 

streptomycin (100 µg/mL), and penicillin (100 units/mL) at 37 ˚C in a humidified 

atmosphere with 5% CO2.  For pLuc705 HeLa cells, additional G418 (100 µg/mL) and 

hygromycin B (100 µg/mL) were also added.  

Luciferase antisense splicing correction assay.  pLuc705 HeLa cells were 

seeded in a 96-well microtiter plate at a density of 2 × 104 cells/well and cultured for 24 h 
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in 100 µL DMEM containing 10% FBS.  ps-MeON (phosphorothioate 2'-O-methyl-

oligoribonucleotide: CCUCUUACCUCAGUUACA) was complexed with cSCKs at 

predetermined N/P ratios in 20 µL opti-MEM solution and incubated for 30 min before 

use.  At the time of the transfection experiment, the medium was replaced with 80 µL of 

fresh medium, to which the cSCK/ps-MeON complexes were added.  Following 24 h 

incubation periods, 100 µL Steady-Glo® Luciferase assay reagent were added.  The 

contents were mixed and the plate was shaken for 3 min at 600 rpm, and then allowed to 

incubate at room temperature for 10 min to stabilize the luminescence signal.  

Luminescence intensities were recorded on a Luminoskan Ascent® luminometer (Thermo 

Scientific) with an integration time of 1 second per well. 

Fluorescence confocal microscopy.  HeLa cells (5 × 105) were plated in 35 mm 

MatTek glass bottom microwell dishes (MatTek Co.) 24 h prior to transfection.  pEGFP-

N1 (5.0 µg) was complexed with cSCKs at predetermined N/P ratios in 500 µL opti-

MEM solution and incubated for 30 min before use.  Prior to transfection, the medium in 

each well was replaced with 2.0 mL of fresh DMEM, to which cSCK/pDNA complexes 

were added.  6h later, 10 % FBS was added. The plates were then incubated at 37 ˚C for 

another 24.  Each plate was washed 3 times with PBS buffer and viewed under bright 

field and fluorescent conditions using a Leica TCS SP2 inverted microscope, with 

excitation by an argon laser (488 nm). 
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Flow cytometry.  The cell culture used for flow cytometry was the same as 

above.  Prior to analysis, cells were washed 3 times with 2.0 mL PBS, collected by 

trypsinization, pelleted, and resuspended in 0.5 mL PBS.  Flow cytometric analysis for 

the transfection using cSCKs was performed using an FACS-calibur (Becton Dickinson) 

equipped with an argon laser exciting at 488 nm.  For each sample, 20,000 events were 

collected by list-mode data that consisted of side scatter, forward scatter, and 

fluorescence emission centered at 530 nm (FL1).  The fluorescence was collected at a 

logarithmic scale with a 1024 channel-resolution.  CellQuest software (Becton 

Dickinson) was applied for the analyses. 

Cytotoxicity assay.  The cytotoxicity of the cSCKs was examined by CellTiter-

Glo Luminescent Cell Viability Assay (Promega Co.).  HeLa cells were each seeded in a 

96-well plate at a density of 2× 104 cells/well and cultured for 24 h in 100 µL DMEM 

containing 10% FBS.  Thereafter, the medium was replaced with 100 µL of fresh 

medium containing various concentrations of cSCKs, Lipofectamine 2000,Polyfect 

(positive control), or no additive (negative control).  After 24 h incubation at 37 ˚C, 100 

µL CellTiter-Glo reagent was added.  The contents were mixed and the plate was allowed 

to incubate at room temperature for 10 min to stabilize luminescence signals.  

Luminescence intensities were recorded on a Luminoskan Ascent® luminometer (Thermo 

Scientific) with an integration time of 1 second per well.  The relative cell viability was 

calculated by the following equation: 
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Scheme 5-1.   cSCKs with various shell compositions, including mixtures 
of primary/tertiary amines, mixtures of primary amines/carboxylic acids 
and mixtures of tertiary amines/carboxylic acids. 
 

Cell viability (%) = (luminescence(sample) / luminescence(negative control)) × 100 

Where luminescence(negative control) was obtained in the absence of particles and 

luminescence(sample) was obtained in the presence of cSCKs, Lipofectamine 2000, or 

Polyfect.  The LC50 was determined by non-linear least squares fitting to a Hill Slope 

function % viability = % viabilitymax/(1+([NP]/LC50)^slope). 

 

Results and Discussion 

The cSCK that we had originally designed consisted of a shell bearing primary 

amines.  To determine the extent to which the structure and basicity of the amines, as 

well as the net charge and buffering capacity of the shell would affect nucleic acid 
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binding and transfection, we prepared two general classes of modified cSCKs (Scheme 

1).  One class consisted of cSCKs with differing ratios of primary and tertiary amines, to 

maintain the same charge and the buffering capacity in the pH 5.5-7 range, but change 

the phosphate binding properties of the amines.  The second class consisted of cSCKs 

with differing ratios of amines and carboxylic acids, to change the net charge of the 

cSCK as well as its buffering capacity.  The required cSCKs were prepared by creating a 

library of modified precursor block copolymers, each of which was separately assembled 

into micelles and then chemically crosslinked.  The particles were 9-11 nm in diameter, 

as observed by TEM, and 14-18 nm in hydrodynamic diameter, as measured by DLS.  All 

particles were positively charged at pH 5.5 or pH 7.0, as determined by zeta potential 

measurements.  The positively-charged nature of the cSCKs was utilized to form 

cSCK/DNA complexes through electrostatic interactions. 

Binding affinity of the cSCKs for DNA.  The binding affinity of the cSCKs for 

DNA was measured by a gel retardation assay with a 5‘-32P-labeled oligodeoxynucleotide 

(ODN) at increasing N/P (cSCK nitrogen to DNA phosphate) ratios (Fig. 5-1).  While 

complete binding of the ODN could be achieved at an N/P ratio of 4:1 with the primary 

amine modified cSCK-pa100 (100% primary amine), an N/P ratio of 16:1 was required for 

the tertiary amine-modified cSCK-ta100.  The higher N/P ratio required for the tertiary 

amine-modified cSCK may result from steric hindrance to phosphate binding caused by 

the methyl groups.  Increasing the fraction of tertiary amines from cSCK-pa100 to cSCK-
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ta100 caused an increase in the N/P ratio for complete binding.  cSCKs containing 

carboxylic acids (cSCK-ca) required even higher N/P ratios for complete DNA binding.  

For example, cSCK-ta80-ca20 only showed a small degree of DNA binding at N/P of 32, 

while cSCK-pa50-ca50 showed no binding at all.  This is perhaps due to intra-nanoparticle 

ammonium-carboxylate salt bridge interactions that reduced the availability of the 

ammonium ions for interacting with the DNA phosphates. 

 

 
Figure 5-1.  Gel retardation essay of cSCKs/ODN complexes at different 
N/P ratios ranging from 0:1 to 32:1.  Radioactively 5‘-32P-labeled 
d(CCTCTTACCTCAGTTACA) (0.5 µM) was incubated with cSCK at 
N/P ratios of 0, 0.5:1, 1:1, 2:1, 4:1, 8:1, 16:1, 32:1  in PBS buffer for 30 
min and then loaded to 15% native polyacrylamide gel 
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Figure 5-2. TEM images of cSCKs/ps-ODN and cSCK/pDNA complexes 
at different N/P ratios.  A) cSCK-pa100/ps-ODN, N/P 6:1; B) cSCK-pa50-
ta50/ps-ODN, N/P 20:1; C) cSCK-ta100/ps-ODN, N/P 20:1; D) cSCK-pa70-
ca30/ps-ODN, N/P 30:1; E) cSCK-pa100/pEGFP, N/P 6:1; F) cSCK-pa50-
ta50 /pEGFP, N/P 20:1; G) cSCK-ta100/pEGFP, N/P 20:1; H) cSCK-pa70-
ca30/pEGFP, N/P 30:1. 

 

The binding of pDNA and ps-ODN to various cSCKs was also visualized by 

TEM (Fig. 5-2).  Whereas cSCK-pa-ta, cSCK-ta and cSCK-pa all formed complexes with 

pDNA or ps-ODN, the size of cSCK/ps-ODN complexes were much smaller than were 

the cSCK/pDNA complexes.  The larger size of the cSCK/pDNA complexes results from 

multiple cSCKs being required to bind to the large number of phosphates on the plasmid 

DNA.  With an excess of cSCK (N/P>6), the complexes of cSCK/pDNA are generally 

50-100 nm in diameter with irregular shapes, while the cSCK/ps-ODN complexes are ca. 

10 nm in diameter, appear circular in the two-dimensional TEM images, which suggests 

that the particles adopt a three-dimensional spherical morphology.  Decreasing the N/P 
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ratio below to 2 led to the formation of large aggregates (>800 nm) and further decrease 

resulted in macroscopic precipitation of the pDNA-cSCK complexes.  These large 

aggregates have been shown to be inefficient for cell transfection, perhaps due to 

difficulty in endocytosing large structures (21). 

 

Figure 5-3.  A) Relative buffering capacity for the cSCKs.  Each bar 
represents the number of amines per NP, as expected from the particle size 
and composition.  Grey area represents the fraction of amines that absorb 
protons when pH is changed from 7.0 to 5.5, calculated from 
potentiometric titration.  Other amines (white area) are either already 
protonated at pH 7.0, or are unable to be protonated at pH 5.5.  B) Zeta 
potential of the particles at pH 7.0 and 5.5. 
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Buffering capacity and charge of the cSCKs.  To determine the buffering 

capacity of the shells of each type of cSCK, potentiometric titration experiments were 

conducted.  The particles were found to have buffering ability across a pH region of ca. 

4-9, though only ability to absorb protons in the pH 5.5-7 range during endosomal 

acidification contributes to endosomal destabilization through the proton sponge effect.    

We calculated the total number of amines in the shell of each particle based on the 

particle size and composition, and the number of protons that each NP can absorb when 

pH is reduced from 7.0 to 5.5, using previously established methods (Fig. 5-3A) (21, 

34).1  The cSCKs with 100% amine modification (cSCK-pa100, cSCK-pa-ta and cSCK-

ta100), showed almost equal buffering capacity over this pH range, taking up approx. 4000 

protons per NP, while incorporation of carboxylic acids significantly decreased this 

number.  For example, cSCK-pa70-ca30 could only capture ca. 1200 protons.  Because all 

of the particles each have more than 5000 amines, those amines not participating in 

buffering could be either already protonated at pH 7.0, or unable to be protonated due to 

being close to the interior of the NP even at pH 5.5.  Calculations based on the titration 

curves over the range of pH from 4-9 support the former explanation. 

 

                                                 
1  The total number of amines per particle is estimated based on the mean core size of the 
particles as measured from TEM images.  The number of protontated amines is calculated 
from the potentiometric titration curve. 
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Figure 5-4.  Luciferase splice correction activity of cSCK-psON at 
different N/P ratios, compared to the commercially available transfection 
agents Oligofectamine and Polyfect, after 24 h incubations with 0.5 μM 
ps-ODN.  From left to right:  Polyfect (2 μg),  Oligofectamine (0.5 μg), no 
transfection agent controls; cSCK-pa100 at 4:1, 6:1, 10:1, 20:1, cSCK-pa75-
ta25, cSCK-pa50-ta50, and cSCK-pa25-ta75 at 6:1; 10:1;20:1 ;30:1; cSCK-
ta100 at 6:1; 10:1; 20:1; 30:1, 40:1; cSCK-pa100 and cSCK-pa70-ca30 at 4:1, 
6:1, 10:1, 20:1; cSCK-ta80-ca20 at 6:1, 10:1, 20:1, 30:1, 40:1. 

 

Zeta potential values of the cSCKs were obtained at pH 7.0 and pH 5.5 (Fig. 5-

3B).  All particles were found to be positively charged at both pHs.  However, at pH 5.5, 

the zeta potential was generally 5-10 mV above that at pH 7.0, except for cSCK-ta80-ca20, 

which showed very little difference (23.4 mV at pH 5.5 and 23.8 mV at pH 7.0).  For the 

cSCK-pa-ta series, increasing zeta potential was observed with increasing tertiary amine 
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content at both pH 5.5 and pH 7.0; cSCK-ta100 showed the highest charge (31.8 mV at pH 

5.5 and 26.7 mV at pH 7.0), and cSCK-pa100 showed the lowest charge (21.7 mV at pH 

5.5 and 13.2 mV at pH 7.0).  Despite being more charged, cSCK-ta100 did not have higher 

binding affinity for DNA compared with cSCK-pa100, as evidenced in the gel retardation 

assay (vide supra), which is likely due to the steric hindrance of the N-methyl groups. 

Transfection of ps-ODN by cSCKs.  To rapidly and quantitatively compare the 

cell transfection efficiences of the modified cSCKS using ps-ODN, we adopted the 

luciferase splice correction assay developed by Kole and coworkers.  This assay relies on 

a luciferase gene (pLuc705) that results in a longer, mis-spliced mRNA that encodes a 

defective luciferase.  In the presence of a phosphorothioate 2'-O-methyl-

oligodeoxyribonucleotide (ps-MeON) CCUCUUACCUCAGUUACA, complementary to 

the aberrant splice site, correct splicing is restored in a dose-dependent and sequence-

specific manner, resulting in an active luciferase.  To determine the optimal N/P ratio for 

a given type of cSCK, we tested the splice correcting efficiciency of a range of cSCK/ps-

MeON ratios, using Oligofectamine and Polyfect as positive controls and cells with no 

additives as a negative control (Fig. 5-4).  The highest luciferase activities were observed 

for the 100% amine-containing cSCKs with 50:50 and 25:75 primary:tertiary amine 

ratios at N/P ratios of 10:1~20:1.  The best among these was cSCK-pa50-ta50 at an N/P 

10:1 which gave higher levels of transfection than both Polyfect and Oligofectamine.  

The N/P ratio at which a given cSCK achieved its maximum luciferase activity coincided 
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with the N/P ratio required to bind all the ps-ODN in the gel retardation assay.  This 

indicates that to achieve maximum luciferase activity, all the ps-ODN must be bound to 

the cSCK.  Differences in the maximum values suggest differences in endocytosis and/or 

endosomal release efficiencies, since the better-performing particles (cSCK-pa-ta) all 

have similar buffering capacities in the pH 5.5-7.0 range and,therefore, should all be able 

to disrupt the endosomes.  It may be that the cSCK with a 50:50 mix of primary and 

tertiary amines has an optimal binding affinity for the ps-MeON for delivery and 

subsequent release from the cSCK.  cSCKs with more tertiary amines may not bind the 

ps-MeON tightly enough for transport during endocytosis, or may not be endocytosed as 

efficiently.  Conversely, cSCKs with more primary amine may be better at endocytosis 

and/or bind too tightly to the ps-MeON and prevent release during endosomal disruption.  

These results agree well with the finding that acetylation of polyethylenimine enhances 

gene delivery by weakening polymer/DNA interactions (35). 

Introduction of carboxylates into the shell greatly reduced luciferase activity at all 

N/P ratios.  For cSCK-pa70-ca30 at an N/P ratio of 4:1, the luciferase activity was only 7% 

of the Oligofectamine control and only increased to about 25% at its maximum activity at 

an N/P ratio of 20:1.  For cSCK-ta80-ca20, maximum luciferase activity occurred at an N/P 

ratio of 20:1 and was only about 5% compared with Oligofectamine.  The poor efficiency 

of the particles containing carboxylic acids can be explained by their reduced buffering 

capacity in the pH 5.5-7 range, and lower affinity for binding the ps-MeON.  
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Figure 5-5.  Flow cytometry analysis of transfection of plasmid DNA by 
the cSCKs.  The green fluorescent protein encoding pEGFP-N1 (0.8 μg) 
was transfected into HeLa cells with various N/P ratios.   

 

Transfection of plasmid DNA by cSCKs.  To quantify the delivery of plasmid 

DNA by the cSCKs, we assayed the fluorescence of HeLa cells transfected with the 

EGFP expressing plasmid pEGFP-N1 by flow cytometry (Fig. 5-5).  In general, the 

higher the percentage of tertiary amine in the cSCK, the higher the EGFP expression 

level.  The highest level of EGFP expression was observed for cSCK-pa25-ta75 at N/P of 

20:1 to 30:1, which exceeded that for Lipofectamine 2000 and Polyfect, and the lowest 

level for cSCK-ta100 and cSCK-pa100.  The trend paralleled what was observed for ps-

ODN delivery.  Confocal microscopy showed similar results with cSCK-pa50-ta50 and 
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cSCK-pa25-ta75 at N/P ratios of 20:1 producing the highest numbers of transfected cells 

(Fig. 5-6).  The number of transfected cells appeared higher with the cSCKs than with 

Liopfoectamine 2000, although the mean of fluorescence of the cells is almost same.  We 

attribute this effect to the increased cytotoxicity of Lipofectamine 2000 (vide infra).  

Compared with Lipofectamine 2000, Polyfect showed low plasmid delivery, giving ca. 

20% mean fluorescence, although it outperformed Lipofectamine 2000 in oligo delivery.  

It is worth noting that the cSCKs with 50-75% tertiary amines gave higher transfection 

than both Polyfect and Lipofectamine 2000, in both oligo and plasmid delivery 

experiments. 

 
Figure 5-6.  Confocal laser scanning microscopy of HeLa cells transfected 
with pEGFP-N1 (4.0 μg) by cSCKs at specific N/P ratios.  A) No 
transfection agent, B) Lipofectamine 2000 (10 μg), C) Polyfect (20 μg), 
D) cSCK-pa100 at N/P = 10:1, E) cSCK-pa75-ta25 at N/P = 10:1, F) cSCK-
pa50-ta50 at N/P=20:1, G) cSCK-pa25-ta75 at N/P=20:1, H) cSCK-ta100 at 
N/P=20:1. 
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Figure 5-7.  Relative cell viability of HeLa cells in the presence of cSCKs 
and commercial transfection agents. 

 

cSCK cytotoxicity.  We evaluated the cytotoxicity of the modified cSCK in HeLa 

cells by a fluorescence assay for measuring cellular ATP concentration (Fig. 5-7).  All of 

the cSCKs were less toxic than Lipofectamine 2000 (LC50 = 10 ± 1 μg/mL), with the 

cSCK bearing all primary amines (cSCK-pa100) being the most toxic (28 ± 1.5 μg/mL).  

In contrast the cSCK bearing all tertiary amines (cSCK-ta100) was the least toxic (117 ± 

4 μg/mL) and was similar in toxicity to Polyfect (111 ± 9 μg/mL).  The cSCKs that 
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showed the best transfection efficiencies for ps-ON and plasmid (cSCK-pa50-ta50 and 

cSCK-pa25-ta75) were of similar or slightly less cytotoxicity (31 ± 2 and 42 ± 2 μg/mL 

respectively) to cSCK-pa100.  All cSCKs showed better than about a 25% loss in 

viability at 20 μg/mL compared to a 75% loss of viability with the same concentration of 

Lipofectamine 2000.  The results clearly show that the tertiary amines confer less 

cytotoxicity than the primary amines.  

 

Conclusions 

In summary, we have been able to increase the plasmid DNA- and ps-MeON-

transfection efficiency and minimize the cytotoxicity of cSCKs by introducing tertiary 

amines into the shell by chemical modification of the precursor block copolymer.  cSCKs 

with tertiary/primary amine ratios of 50:50 and 75:25 achieved equal or better 

transfection efficiency for ps-MeON at N/P ratios of ~10:1 - 20:1 compared to 

Oligofectamie or Polyfect, the current gold standards, with lower cytotoxicity than 

Lipofectamine 2000.  These same cSCKs also showed high plasmid transfection 

efficiencies, comparable to Lipofectamine 2000, at N/P ratios of ~20:1 - 30:1.  We 

ascribe the high efficiency of these particles to an optimum nucleic acid binding affinity, 

required to transport the pDNA or ps-MeON into the cell through endocytosis, and 

buffering capacity in the pH 5.5-7 range, to achieve endosomal disruption and subsequent 

release of nucleic acid.  These modifications and the resulting changes in transfection 
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efficiency have also helped to better elucidate the structure-activity relationships of the 

cSCKs.  Even higher efficiencies are expected when the particles are conjugated with 

appropriate ligands for receptor-mediated endocytosis such as the tripeptide RGD for 

integrin receptors, and moieties for enhancing endosomal release, which are currently 

under study. 
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Chapter 6 

 

Cationic shell-crosslinked knedel-like (cSCK) nanoparticles for highly 

efficient PNA delivery  

[Portions of this work have been published previously as Huafeng Fang, Ke Zhang, Gang 

Shen, Karen L Wooley and John-Stephen A. Taylor Mol. Pharm. 2009, 6(4), 615-626.] 

 

Abstract 

Peptide nucleic acids have a number of features that make them an ideal platform 

for the development of in vitro biological probes and tools.  Unfortunately, their inability 

to pass through membranes has limited their in vivo application as diagnostic and 

therapeutic agents.  Herein, we describe the development of cationic shell-crosslinked 

knedel-like (cSCK) nanoparticles as highly efficient vehicles for the delivery of PNAs 

into cells, either through electrostatic complexation with a PNA•ODN hybrid, or through 

a bioreductively cleavable disulfide linkage to a PNA.  These delivery systems are better 

than the standard lipofectamine/ODN-mediated method and much better than the Arg9-

mediated method for PNA delivery in HeLa cells, showing lower toxicity and higher 

bioactivity.  The cSCKs were also found to facilitate both endocytosis and endosomal 

release of the PNAs, while themselves remaining trapped in the endosomes. 
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Introduction 

Peptide nucleic acid (PNA) has a number of properties that make it an ideal 

platform for the development of antisense- and antigene-based diagnostic and therapeutic 

agents.(1-5)  PNA is highly resistant to degradation by biological systems, hybridizes to a 

complementary DNA or RNA strand with higher affinity than DNA, is able to invade 

regions of secondary structure, and does not activate RNase H, which would otherwise 

degrade a target mRNA sequence.  It is also readily amenable to synthesis by solid phase 

automated peptide synthesis, which allows the facile preparation of PNA-peptide hybrids 

and the incorporation of a wide variety of amino acid analogs and auxiliary agents.  

Despite these advantages, its poor membrane permeability has limited its widespread 

application for in vitro and in vivo purposes.  There have been numerous attempts to 

improve PNA's ability to enter cells, which have largely focused on the use of cationic 

lipids in conjunction with a complementary ODN, (6, 7) and covalently attached cell 

penetrating peptides and lipids.(5, 8-10).   

 Since their inception, nanoparticles have been investigated as carriers and 

intracellular delivery agents for antisense oligonucleotides, siRNA, and DNA with 

varying degrees of success.(11-15)  We have previously shown that shell crosslinked 

knedel-like nanoparticles (SCKs) can be made to efficiently enter cells when derivatized 

with a cell penetrating peptide.(14, 16, 17)  SCKs are a member of a large family of 

cross-linked block copolymer micelles that have shown great potential and versatility for 
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biotechnology and medicine due to the ease by which the shape, composition, 

functionality, and properties can be tailored for a particular purpose.(18) Herein, we 

report the use of a newly developed class of SCK nanoparticles, called cationic SCKs, or 

cSCKs, to deliver PNAs into cells without the need to attach cell penetrating peptides. 

 cSCKs are nanoparticles consisting of a hydrophobic core and a positively 

charged, highly functionalizable crosslinked shell.  We have recently found that these 

nanoparticles greatly facilitate the entry of plasmid DNA and phosphorothioate 2-O-

methyloligoribonucleotides into cells through a likely endocytotic mechanism mediated 

by the positively charged shell.(19)  cSCKs are prepared in a multistep process involving 

the synthesis of an amphiphilic block copolymer, in this particular example, consisting of 

a polystyrene block linked to a poly(acrylic acid) segment, the carboxylic acids of which 

are then elaborated into primary amines by coupling to a mono-protected diamine, 

followed by deprotection.  At pH 7, these amines are largely protonated, facilitating the 

formation of a micelle consisting of a hydrophobic polystyrene core and a hydrophilic, 

positively-charged shell.  The micelle is then stabilized by covalently crosslinking of the 

shell by amide formation between chains with an activated diester.  In this paper, we will 

show how cSCKs can be used to efficiently deliver PNAs into cells via electrostatic 

complexation with a negatively charged PNA•ODN hybrid, and via covalent attachment 

of a PNA through a bioreductively cleavable disulfide bond (Fig. 6-1).  We also show 

that cSCKs are able to both facilitate endocytosis and endosomal release of the PNAs. 
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Experimental Procedures 

Materials.  All solvents and chemicals were purchased from Sigma-Aldrich and 

used without further purification, unless otherwise indicated.  N-

hydroxybenzotriazole·H2O (HOBt) and 2-(1H-benzotriazole-1-yl)-1, 1, 3, 3-

tetramethyluronium hexafluorophosphate (HBTU) were purchased from EMD 

Chemicals, Inc.  The amphiphilic block copolymer, poly(acrylic acid)128-block-

polystyrene40 (PAA128-b-PS40), was prepared using atom transfer radical polymerization 

of (protected) monomer precursors followed by deprotection, according to literature 

reported methods.(20)  This polymer was then transformed into 

poly(acrylamidoethylamine)128-block-polystyrene40 (PAEA128-b-PS40) and used for the 

creation of the cSCKs, according to the literature reported sequence of procedures.(19)  

The pLuc705 HeLa cell line was a generous gift from Dr. R. Kole (University of North 

Carolina, Chapel Hill, NC).  Lipofectamine 2000 was obtained from Invitrogen Co.  

Polyfect® was purchased from Qiagen Inc.  Steady-Glo® Luciferase Assay reagent and 

CellTiter-Glo® Luminescent Cell Viability Assay Kit were purchased from Promega Co.  

All cell culture media was purchased from Invitrogen, Inc. 

 Measurements.  1H NMR and 13C NMR spectra were recorded on a Varian 300 

MHz spectrometer interfaced to a UNIX computer using Mercury software.  Chemical 

shifts were referenced to the solvent resonance signals.  IR spectra were recorded on a 

Perkin-Elmer Spectrum BX FT-IR system, and data were analyzed using Spectrum v2.0 
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software.  Tetrahydrofuran-based gel permeation chromatography (THF GPC) was 

conducted on a Waters Chromatography, Inc. (Milford, MA) model 1515, equipped with 

a Waters model 5414 differential refractometer, a Precision Detectors, Inc. (Bellingham, 

MA) model PD-2026 dual-angle (15˚ and 90˚) light scattering detector and a three-

column set of Polymer Laboratories, Inc. (Amherst, MA) gel mixed-bed styrene-

divinylbenzene columns (PLgel 5µm Mixed C, 500 Å, and 104 Å, 300 x 7.5 mm 

columns).  The system was equilibrated at 35 ˚C in tetrahydrofuran (THF), which served 

as the polymer solvent and eluent (flow rate set to 1.00 mL/min).  An injection volume of 

200 µL was used.  System calibration was performed using polystyrene standards.  Data 

were analyzed using Precision Detectors, Inc. Discovery 32 software.  N, N-

Dimethylformamide-based gel permeation chromatography (DMF GPC) was conducted 

on a Waters system equipped with an isocratic pump model 1515, a differential 

refractometer model 2414 and a two-column set of Styragel HR 4 and HR 4E 5 µm DMF 

7.8 x 300 mm columns.  The system was equilibrated at 70 ˚C in pre-filtered N, N-

dimethylformamide (DMF) containing 0.05 M LiBr, which served as polymer solvent 

and eluent (flow rate set to 1.00 mL/min).  Polymer solutions were prepared at 

concentrations of ca. 3 mg/mL and an injection volume of 200 µL was used.  Data 

collection and analysis was performed with Empower Pro software.  The system was 

calibrated with poly(ethylene glycol) standards (Polymer Laboratories, Amherst, MA) 

ranging from 615 to 443,000 Da.  Samples for transmission electron microscopy (TEM) 
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measurements were diluted with a 1 % phosphotungstic acid (PTA) stain (v/v, 1:1).  

Carbon grids were exposed to oxygen plasma treatment to increase the surface 

hydrophilicity.  Micrographs were collected at 50,000 and 100,000 × magnifications.  

Hydrodynamic diameters (Dh) and size distributions were determined by dynamic light 

scattering (DLS).  The DLS instrumentation consisted of a Brookhaven Instruments 

Limited (Worcestershire, U.K.) system, including a model BI-200SM goniometer, a 

model BI-9000AT digital correlator, a model EMI-9865 photomultiplier, and a model 95-

2 argon ion laser (Lexel Corp.) operated at 514.5 nm.  Measurements were made at 25 ± 

1 ˚C.  Scattered light was collected at a fixed angle of 90˚.  A photomultiplier aperture of 

100 μm was used, and the incident laser intensity was adjusted to obtain a photon 

counting of between 200 and 300 kcps.  Only measurements in which the measured and 

calculated baselines of the intensity autocorrelation function agreed to within 0.1 % were 

used to calculate particle size.  The calculations of the particle size distributions and 

distribution averages were performed with the ISDA software package (Brookhaven 

Instruments Company).  All determinations were repeated 5 times. 

 PNA Synthesis.  All PNAs and conjugates were synthesized on an Expedite 8900 

PNA synthesizer on 2 μmol Fmoc-PAL-PEG-PS according to the standard automated 

Fmoc PNA synthesis procedure utilizing commercial monomers (Panagene Inc., Korea).  

Following the final step of automated synthesis the resin was washed with dry DMF (2 × 

3 mL) and dry CH2Cl2 (2 × 3 mL), followed by drying under a stream of N2. The resin 
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was then shaken in a vial with trifluoroacetic acid (300 μL) and m-cresol (100 μL) at 

room temperature for 2 h to release and deprotect the PNA.  The solution was filtered 

from the resin, and added into ice-cold Et2O (5 mL) and kept at 4 °C for 1 h.  The 

resulting precipitate was collected by centrifugation and purified by reverse-phase HPLC 

on a Varian Microsorb-MVTM C18 column (300 Å) with buffer A [0.1% TFA in H2O] 

and buffer B [0.1% TFA in CH3CN] on a Beckman System Gold instrument equipped 

with a UV-vis array detector. The fractions were collected and concentrated to dryness in 

a SpeedVac (Savant) and characterized by UV-vis and MALDI-TOF was carried out on a 

PerSpective Voyager mass spectrometer with α-cyano-4-hydroxycinnamic acid as the 

matrix and insulin as the external reference. 

 PNA.  The PNA H-CCTCTTACCTCAGTTACA-NH2 was synthesized and 

purified by the general procedure described above.  MALDI:  average [M+H]+ expected: 

4766.6, found: 4764.4. 

 HO2C-PNA.  Following automated PNA synthesis of H-

CCTCTTACCTCAGTTACA-NH2 and washing, but prior to cleavage and deprotection, 

the resin was removed from the column and shaken in piperidine (1 mL) and dry DMF (4 

mL) for 30 min. The resin was then filtered and washed with dry DMF (2 × 3 mL), dry 

CH2Cl2 (2 × 3 mL), and dried under a stream of N2.  The resin was removed from the 

column and suspended in dry DMF (100 μL) to which succinic anhydride (20 μmol, 2.0 

mg) was added, followed by diisopropylethylamine (20 μmol, 3.5 μL). The mixture was 
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shaken for 12 h before cleavage and deprotection.  MS: average [M+H]+ expected: 

4866.7, found: 4867.8. 

 HO2C-SS-PNA.   Following automated PNA synthesis of H-

CCTCTTACCTCAGTTACA-NH2 and washing, but prior to cleavage and deprotection, 

the resin was removed from the column and shaken in piperidine (1 mL) and dry DMF (4 

mL) for 30 min. The resin was then filtered and washed with dry DMF (2 × 3 mL), dry 

CH2Cl2 (2 × 3 mL), and dried under a stream of N2.  To a suspension of the resin in dry 

DMF (100 μL) was added 3,3’-dithiodipropionic acid (20 μmol, 4.2 mg) (Aldrich), 

followed by 4-dimethylaminopyridine (20 μmol, 2.4 mg) and N, N’-

dicyclohexylcarbodiimide (20 μmol, 4.1 mg). The mixture was shaken for 12 h before 

filtration and final deprotection. MALDI:  average [M+H]+ expected: 4958.9, found: 

4960.0. 

 HO2C-SS-PNA-Lys(FITC). Following automated synthesis of H-

CCTCTTACCTCAGTTACA-L-Lys(εMtt)-NH2 using N-α-Fmoc-N-ε-4-methyltrityl-L-

lysine (AnaSpec) but prior to Fmoc deprotection, the resin was removed from the column 

and treated multiple times with 2% trifluoroacetic acid in methylene chloride (5 mL) until 

the solution was colorless to selectively remove the Mtt group.  The resin was then 

washed with dry DMF (2 × 3 mL) and dry CH2Cl2 (2 × 3 mL), and dried under a stream 

of N2. To a suspension of the resin in dry DMF (100 μL) was added FITC (fluorescein 

isothiocyanate, isomer I, Aldrich) (20 μmol, 7.8 mg), followed by diisopropylethylamine 
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(20 μmol, 3.5 μL) and shaken for 12 h. The resin was then washed with dry DMF (2 × 3 

mL) and dry CH2Cl2 (2 × 3 mL), followed by drying under a stream of N2 prior to 

coupling with 3,3’-dithiodipropionic acid as described above. 

 General procedure for the conjugation of PNA to PAEA128-b-PS40 and 

formation of micelles.  PNA (0.68 µmol) was dissolved in dry DMSO (300 µL), to 

which 20 µL DMSO solution containing 4 equiv. of 1:1 (mol:mol) HBTU/HOBt was 

added to activate the carboxylic termini of the PNAs.  After 30 min, 0, 9, 92 and 185 µL 

of the activated PNA solution was added to 4 vials, each containing 2 mg PAEA128-b-

PS40 9 µL DIPEA (4 equiv. to the polymer NH2 residues) in 386 µL DMSO and.  The 

vials were then sealed and the solutions were allowed to stir for 48 h.  Following the 

allocated reaction times, DMSO was added to each vial to give a final volume of 1 mL, 

and the mixtures were transferred to dialysis tubing (MWCO: 15 kDa) and dialyzed 

against 300 mM NaCl solution for 4 days, then nanopure water (18 MΩ·cm) for 2 days, 

to give the micelle precursor for the cSCK and cSCK-PNA conjugates.  The final 

polymer concentration was 0.70 mg/mL.  The number of PNA per polymer was 

calculated to be 0, 0.1, 1 and 2, based on UV-vis measurement of the PNA absorption at 

260 nm.  For the preparation of cSCK(Alexa Fluor 633)-SS-PNA(FITC)2, Alexa Fluor 

633 succinimidyl ester (Invitrogen) was added to the reaction mixture following the 

addition of HO2C-SS-PNA(FITC). 
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 General procedure for the crosslinking of cSCK and cSCK-PNA micelles.  

The diacid crosslinker (5.0 mg, 14 µmol) was activated by mixing with 2.2 equiv. of 

HOBt/HBTU (4 mg/12 mg, 1:1, mole:mole) in DMF (400 µL) and allowing to stir for 1 

h.  The activated crosslinker solution (0.67 µmol/19 µL, equiv. to 5% of polymer NH2 

groups) was then added slowly with stirring to 2.9 mL of the aqueous micelle solutions 

(~0.7 mg/mL), which had been adjusted to pH 8.0, using 1.0 M aqueous sodium 

carbonate, and cooled to 0 ˚C, using an ice bath.  The reaction mixture was allowed to stir 

overnight, and was then transferred to dialysis tubing (8 kDa MWCO) and dialyzed 

against nanopure water (18 MΩ·cm) for 2 days.  Clear solutions containing the cSCKs 

and cSCK-PNA conjugates with a final polymer concentration of 0.65 mg/mL were 

obtained. 

 Cell culture.  cSCK-mediated PNA delivery was evaluated on pLuc705 HeLa 

cells.  Cells were maintained in DMEM containing 10% FBS, streptomycin (100 µg/mL), 

penicillin (100 units/mL), G418 (100 μg/mL) and hygromycin B (100 μg/mL) at 37 ˚C in 

a humidified atmosphere with 5% CO2. 

 Splice correction assay.  pLuc705 HeLa cells were seeded in a 96-well microtiter 

plate at a density of 2 × 104 cells/well and cultured for 24 h in 100 µL DMEM containing 

10% FBS.  For delivery of covalent cSCK-PNA conjugates, pLuc705 cells were treated 

with 100 µL/well the cSCK-PNA solution in DMEM medium (10% FBS) for 24 h.  For 

PNA/ODN heteroduplex (electrostatically associated) delivery, PNA/ODN duplexes were 
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formed prior to addition to the cell plates.  Formation of PNA/ODN heteroduplexes was 

performed by gradual mixing of PNA (H-CCTCTTACCTCAGTTACA-NH2) and 

complementary (underlined) ODN (5'-AATATGTAACTGAGGTA-3').  The PNA/ODN 

heteroduplex was then incubated with Lipofectamine 2000, Polyfect or cSCK in 20 µL of 

OPTI-MEM for 15 min, before addition to pLuc705 cell wells containing 80 µL of fresh 

culture medium.  After 24 h incubation, 100 µL of Steady-Glo® Luciferase assay reagent 

were added.  The contents were mixed and allowed to incubate at room temperature for 

10 min to stabilize luminescence.  Signals were recorded on a Luminoskan Ascent® 

luminometer (Thermo Scientific) with an integration time of 1 second per well. 

 Cytotoxicity assay.  Cytotoxicities of the cSCK and cSCK-PNA conjugates were 

examined by CellTiter-Glo Luminescent Cell Viability Assay (Promega Co.).  HeLa cells 

were seeded in a 96-well plate at a density of 2 × 104 cells/well and cultured for 24 h in 

100 µL DMEM containing 10% FBS.  Thereafter, the medium was replaced with 100 µL 

of fresh medium containing various concentrations of cSCKs, cSCK-PNA conjugates, 

Polyfect, Lipofectamine 2000 (positive controls), or no additive (negative control).  After 

24 h incubation at 37 ˚C, 100 µL of CellTiter-Glo reagent were added.  The contents 

were mixed and the plate was allowed to incubate at room temperature for 10 min to 

stabilize the luminescence signals.  Luminescence intensities were recorded on a 

Luminoskan Ascent® luminometer (Thermo Scientific) with an integration time of 1 

second per well.  The relative cell viability was calculated by the following equation 
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where luminescence(negative control) is in the absence of particles and where 

luminescence(sample) is in the presence of particles. 

 Cell viability (%) = (luminescence(sample) / luminescence(negative control)) × 100 

 RT-PCR.  pLuc705 HeLa cells were seeded in a 24-well plate at a density of 5 × 

104 cells/well and treated as described above for the splice correction assay.  Total RNA 

was isolated using Trizol® (Invitrogen, Inc.) following the manufacturer’s instructions.  

cDNA was synthesized with SuperScript™ II (Invitrogen Inc.), after TURBO® DNase 

(Ambion, Inc.) treatment.  The cDNA was then used as a template for PCR, which was 

carried out using GoTaq® Flexi DNA Polymerase (Promega, Inc.).  Primers for PCR were 

as follows: forward primer, 5′-TTGATATGTGGATTTCGAGTCGTC-3′; reverse primer, 

5′-TGTCAATCAGAGTGCTTTTGGCG-3′.  Forward primer was labeled by [γ-32P]-ATP 

with T4 Polynucleotide Kinase.  The PCR program was as follows: (95 ˚C, 2 min) × 1 

cycle, (95 ˚C, 0.5 min; 55 ˚C, 0.5 min; 72 ˚C, 0.5 min) × 24 cycles, (72 ˚C, 5 min) × 1 

cycle. The PCR products were analyzed on 8% native polyacrylamide gel with 1 × TBE 

buffer.  Gel images were scanned by a BioRad Phosphorimager and analyzed by Quantity 

One software (Bio-Rad Co.). 

 Fluorescence confocal microscopy.  HeLa cells (5 × 105) were plated in 35 mm 

MatTek glass bottom microwell dishes (MatTek Co.) 24 h prior to transfection.  At the 

time of transfection, the medium in each dish was replaced with 2 mL of fresh medium.  

Then, cSCK(Alexa Fluor 633)-SS-PNA(FITC)2 (80 µL) was added.  The dishes were 
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then returned to the incubator to incubate at 37 ˚C for 1 h or 24 h.  Each dish was washed 

3× with PBS buffer and viewed under bright field and fluorescence conditions using a 

Leica TCS SP2 inverted microscope, with excitation by an Ar laser (488 nm) and a HeNe 

laser (633 nm). 

Results and Discussion 

PNA Transfection Strategies.  We investigated two strategies for introducing 

PNAs into cells that make use of the unique properties of the cSCKs (Fig. 6-1).   The 

cSCKs were designed to resemble histone core particles in their nanoscopic size, 

positively-charged surfaces, and DNA packaging ability, while also possessing 

characteristics that would lead to their use as synthetic vectors for gene delivery.  We 

have recently shown that cSCKs efficiently deliver negatively-charged plasmid and 

oligonucleotides into cells through an endocytotic mechanism, most likely 

macropinocytosis. (19)  Therefore, in this current study, the first strategy was to deliver 

PNA through electrostatic complexation with the cSCK by hybridizing it to a negatively 

charged complementary ODN (Fig. 6-1a).  The second strategy was to deliver the PNA 

through covalent attachment of the PNA to the cSCK (Fig. 6-1b).  Because the cSCKs are 

large (about 10 nm in diameter) relative to the PNAs, a covalently attached PNA might 

be engulfed by the nanoparticle, thereby, being unable to enter the nucleus and/or bind to 

the splice correction site.  In addition, it was recognized that, should the cSCKs be 

trapped in intracellular compartments, having an ability to disconnect the PNA from the 



145 
 

cSCK nanostructure would be important.  We, therefore, decided to attach the PNA via a 

bioreductively cleavable disulfide linkage.  This linkage is expected to be stable in serum, 

but upon exposure to the cytosol be reduced, thereby, liberating the PNA. 

 
Figure 6-1.  Strategies for the development of electrostatic and covalent-
based nanoparticle agents for transfection of PNA.  A) Electrostatic 
system, B) Bioreductively cleavable covalent system.  At pH 7 most of the 
amines of the cSCK are protonated resulting in a cationic shell that 
facilitates both electrostatic binding of PNA•ODN duplexes and 
macropinocytosis.  The remaining basic groups act as a proton sponge that 
acquire additional protons and counterions thereby causing disruption of 
the endosome.  In system A, this disruption causes release of the 
PNA•ODN into the cytoplasm from where it can translocate into the 
nucleus.  Binding of the PNA to the mis-splicing site in the pLuc705 
luciferase gene corrects the splicing which results in active luciferase 
which can be assayed by the production of light in the presence of 
luciferin.  In the case of the covalently linked system B, disruption of the 
endosome exposes the cSCK to reducing agents which cleave the disulfide 
bond and cause the release of the splice-correcting PNA. 
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Figure 6-2.  Synthesis of the electrostatic and covalent-based nanoparticle 
transfection agents.  The starting material consisted of a block copolymer 
having a hydrophobic styrene block and a hydrophilic primary amine-
bearing block (PAEA128-b-PS40).  Micellization of this block copolymer 
by dialysis of its DMSO solution against water followed by crosslinking 
with an activated diester affords the cSCKs.  Subsequent electrostatic 
association with PNA•ODN gives the cSCK carrying PNA via non-
covalent PNA absorption.  To make the covalently linked cSCK-SS-PNA 
nanoparticles, the block copolymer was coupled to a carboxy-terminated 
disulfide-linked PNA and then micellized and crosslinked. 

 

Design and synthesis of the cSCK and constructs.  The particular cSCK was 

chosen for its ability to efficiently transfect negatively charged plasmid DNA and 2'-O-

methyl phosphorothioate oligoribonucleotides.(19)  The cSCK was synthesized by 
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micellization and crosslinking of a block copolymer consisting of a 40-mer polystyrene 

block and a 128-mer poly N-(2-aminoethyl)acrylamide block (Fig. 6-2).  The block 

copolymer was prepared by sequential atom transfer radical polymerization of protected 

monomers followed by three steps of post-polymerization modifications.  The lengths of 

the blocks were estimated from GPC and 1H NMR spectroscopy after each step of 

polymerization.  Micellization was carried out by rapid dilution of a DMSO solution of 

the block copolymer into water at pH 6.  The shell is then crosslinked by the addition of 

an activated diester.  The cSCKs were characterized by DLS, TEM and ζ potential 

measurements.  They were found to be of a globular morphology having a number-

average diameter of approximately 10 nm (TEM) and with a ζ potential value of 21.3 

mV.  From TEM measurement of the particle core size, each cSCK is estimated to be 

comprised of ca. 60 chains, or ca. 7700 amines. 

 The cSCKs bearing a covalently linked PNA were prepared by linking of a 

carboxy terminal PNA with the block copolymer, facilitated by HBTU/HOBt, prior to 

micellization.  The PNAs were coupled so as to give 0.1, 1 or 2 PNAs/polymer chain and 

purified by extensive dialysis against 300 mM NaCl solution, and then against nanopure 

water.  The amount of PNA per chain was calculated from the estimated molar absorption 

coefficients for the PNA.  The polymer-PNA conjugates were micellized by the same 

procedure as for the cSCK and similarly characterized by DLS, TEM and ζ potential 

measurement.   They were found to be indistinguishable in size and surface charge from 
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the non-PNA-conjugated cSCKs.  Three types of construct were prepared.  One with a 

non-bioreductively cleavable linker, cSCK-PNA, one with a bioreductively cleavable 

disulfide bearing linker, cSCK-SS-PNA, and one with a Alexa Fluor 633 label on the 

cSCK linked to a FITC labeled PNA via a disulfide linker, cSCK(Alexa Fluor 633)-SS-

PNA(FITC)2. 

 PNA Transfection Efficiency Assays.  To rapidly and quantitatively assay for 

the effectiveness of our two PNA transfection strategies, we adopted the luciferase splice 

correction assay developed by Kole and coworkers (21) and later used to evaluate 

PNAs.(8)  This assay relies on a luciferase gene (pLuc705) that results in a longer, mis-

spliced mRNA that encodes a defective luciferase (Fig. 6-1).  In the presence of a PNA 

complementary to the aberrant splice site, correct splicing is restored, resulting in a 

shorter mRNA and an active luciferase.  The extent to which splicing is corrected can 

then be monitored easily in a high throughput fashion, by measuring the light produced 

by the luciferase enzyme in the presence of luciferin.  The light output is, thus, a function 

of the transfection efficiency and cytotoxicity.  The extent of splice correction can also be 

directly and quantitatively assayed by RT-PCR.  To evaluate the cytotoxicity of the 

agents, we relied on cell viability measurements based on quantification of the amount of 

ATP produced by metabolically active cells. 
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Figure 6-3.  Bioactivity and cytotoxicity of electrostatically-mediated 
PNA•ODN delivery by cSCKs and conventional agents.  Splice-correcting 
PNA that was hybridized to an equimolar amount of partially 
complementary ODN and then was mixed with 10 μg/mL of 
Lipofectamine 2000, 20 μg/mL Polyfect, or 20 μg/mL cSCK to give 0.2, 
0.5, 1 μM final concentration of PNA.  A) pLuc705 HeLa cells were 
incubated with transfection agent for 24 h, and then assayed for PNA 
bioactivity via luciferase activity. B) Cell viability was assayed by an ATP 
assay and shown as a percentage of the viability of the control cells.  C) 
Percentage splice correction by an RT-PCR assay for the different 
PNA•ODN concentrations.  The upper band corresponds to a 268 bp 
fragment from mis-splicing, while the lower band corresponds to a 142 bp 
fragment from correct splicing.  

 

PNA/DNA   0     0.2   0.5   1.0     0    0.2  0.5   1.0     (μM)

Correction   1.5   34    45   64    1.9   32    37   94    ( % )

Lipofectamine cSCK

C

A B
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 Transfection of PNA•ODN hybrids by cSCKs.  Cationic transfection agents 

have been developed that can efficiently deliver negatively-charged nucleic acids into 

cells in culture, but cannot deliver PNAs because of their lack of charge.  A simple 

solution to this problem is to hybridize the PNA to a partially complementary 

oligodeoxynucleotide (ODN) prior to transfection with a cationic agent, and in this 

particular case, the cationic lipid Lipofectamine.(6)  Many factors have been found to 

affect the bioactivity of pLuc705 PNA•ODN hybrids, such as the length, sequence, and 

complementarity of the ODN, the PNA/ODN ratio, and the ratio of the PNA•ODN to the 

cationic transfection agents, Lipofectamine and PEI, and their cytotoxicity.(8)  We 

selected the PNA•ODN hybrid found to have the highest bioactivity in that study and 

compared its bioactivity in the presence of cSCK to Lipofectamine 2000, and Polyfect, a 

cationic dendrimer (22) (Fig. 6-3A).  At a low concentration of PNA•ODN 0.2 μM, the 

bioactivity was two times higher with Lipofectamine 2000 than with cSCK, both of 

which were better than Polyfect.  Increasing the amount of PNA•ODN  to 1.0 μM 

decreased slightly the bioactivity with Lipofectamine 2000, perhaps due to an increase in 

cytotoxicity, as indicated by a drop in cell viability from 58% to 30% (Fig. 6-3B).  In 

contrast, increasing the PNA•ODN concentration 5-fold from 0.2 μM to 1.0 μM, 

increased the bioactivity about 7-fold when cSCK was used, without increasing the 

cytotoxicity.  The bioactivity for the 1 μM PNA•ODN in the presence of the cSCK was 

about 5-fold greater than observed for Lipofectamine 2000.  Polyfect was not found to be 
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effective for PNA•ODN delivery at any concentration even though its cytotoxicity is 

lower than Lipofectamine 2000 and cSCK. 

 The correlation between bioactivity in the luciferase assay and splice correction 

was investigated by RT-PCR analysis of the luciferase mRNA (Fig. 6-3c).  Whereas 

increasing the PNA•ODN concentration from 0.2 μM to 1.0 μM in the presence of 10 

μg/mL of Lipofectamine 2000 resulted in a slight decrease in bioactivity, the amount of 

splicing increased 2-fold from 34 % to 64 %.  This result is consistent with the greater 

cytotoxicity at the higher PNA•ODN concentrations, which would reduce the number of 

viable cells and hence the light output (bioactivity).  In contrast, the increase in 

bioactivity with increasing PNA•ODN concentration in the presence of 20 μg/mL of 

cSCK correlated better with the amount of splice correction, consistent with a minimal 

change in cytotoxicity.  Changing the concentration of PNA•ODN 2-fold from 0.5 μM to 

1.0 μM increased the bioactivity about 3-fold, while the amount of splice correction 

increased 2.6-fold.  The non-linear increase in splice correction with PNA•ODN 

concentration may reflect changes in the cell penetrating properties of the cSCK when 

loaded with increasing amounts of PNA•ODN.  It may also be due to a reduced binding 

affinity of the cSCK for the PNA•ODN at higher loadings, due to a reduction in the 

number of excess positive charges that would facilitate release of the PNA•ODN in the 

cell. 
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Figure 6-4.  Relative cellular luciferase antisense activity and cytotoxicity 
in HeLa pLuc705 cells of cSCK-PNA•ODN complexes.  Cells were 
incubated with 0.5 μM PNA/ODN hybrids complexed to the indicated 
amount of cSCK.  A) PNA bioactivity as measured by luciferase activity  
B) cell viability. 

 

The optimal bioactivity for transfection with the cSCK results from a delicate 

balance between transfection efficiency and cytotoxicity (Fig. 6-4).  The bioactivity of 

0.5 μM PNA•ODN increased from 10 to 1200 RLU as the concentration of the cSCK 

B

A
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was increased from 0 to 30 μg/mL, then dropped on going to 40 μg/mL (Fig. 6-4A).  The 

cytotoxicity increased over these concentrations, with the cell viability dropping almost 

linearly from 90% at 10 μg/mL to about 20% at 40 μg/mL of cSCK (Fig. 6-4B).  The 

large increase in bioactivity on going from 10 μg/mL to 20 μg/mL may be indicative of 

the capacity of the cSCK to bind to 0.5 μM PNA•ODN, or may be due to a change in 

size or charge that facilitated cell entry.  The leveling off of the bioactivity at 30 μg/mL 

might then be due to an otherwise further increase in transfection by the cytotoxic effect, 

which then dominates at 40 μg/mL.  The optimal transfection conditions in terms of 

bioactivity and cell viability would, therefore, appear to be between 10 and 20 μg/mL 

with 0.5 μM PNA•ODN. 

 Synthesis of the covalently linked cSCKs.  The second transfection system that 

we explored involved covalent attachment of the PNA to the cSCK via a bioreductively 

cleavable linker.  We chose the disulfide linkage because it has been found to be 

relatively stable in serum, but easily cleaved under the reducing conditions found inside 

cells and has been used to deliver PNAs conjoined to other delivery agents.(23, 24)  

PNAs were covalently linked to the block copolymer prior to micelle formation and 

crosslinking in a 1:1 and 2:1 ratio.  The amount of PNA bound could be assayed by the 

UV absorptivity at 260 nm (Fig. 6-5A).  Treatment of the cSCK-SS-PNA with DTT 

followed by dialysis removed 77% of the PNA, as judged by the decrease in absorbance 

at 260 nm (Fig. 6-5B).  TEM of cSCKs and cSCKs conjugated with increasing amounts 
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of PNAs showed no noticeable differences in size, ruling out any size effects on the 

efficiency of cell uptake and subsequent bioactivity (Fig. 6-5C & D). 

 

Figure 6-5.  A)  UV characterization of the cSCK-PNA conjugates.  B)  
UV assay before and after reductive cleavage of the disulfide with DTT 
and extensive dialysis.  TEM images of cSCK-SS-PNAs at C) 2 
PNA/polymer chain and D) 0.1 PNA/polymer chain. 

 

 Transfection of PNAs covalently linked to cSCKs.  We determined the 

bioactivity of the bioreductively cleavable cSCK-SS-PNA and cSCK-SS-PNA2 with one 

and two PNAs/chain, respectively, in comparison to the non-cleavable cSCK-PNA by the 

splice correction assay.  Both cSCKs with 1 and 2 PNAs/chain showed comparable 

bioactivity at 0.2 and 0.5 μM PNA concentration (Fig. 6-6A).  The cSCK with one  

DC

BA
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Figure 6-6.  Splice correcting ability and cell viability of covalently linked 
cSCKs.  A) Splice correction efficiency of the bioreductively cleavable 
cSCK-SS-PNA and cSCK-SS-PNA2 containing 1 and 2 PNAs/chain 
respectively and the non-cleavable cSCK-PNA as a function of total PNA 
concentration.  For a PNA concentration of 0.5 μM, the cSCK-SS-PNA2 
concentration was 12 μg/mL. B)  Cell viability as a function of 
concentration of the delivery agent in μg/mL.  C) Splice correction 
efficiency for cSCK-PNA and cSCK-SS-PNA2. 

 

PNA/chain showed significantly less bioactivity, however, at 1 μM PNA concentration 

compared to the one with two PNAs/chain.  The 3-fold lower bioactivity of cSCK-SS-

PNA than cSCK-SS-PNA2 at 1 μM PNA can be explained in part by the higher 

cytotoxicity of the 2-fold higher concentration of the cSCK-SS-PNA (48 μg/mL) needed 

to deliver 1 μM PNA (Fig. 6-6B).  It is not clear, however, why the bioactivity is the 

same for 0.5 μM PNA concentration, when the 24 μg/mL concentration of cSCK-SS-

Correction   1.1     1.0     0.9      1.6     1.1     1.6      53     85   ( % )

cSCK‐SS‐PNA2cSCK‐PNA2
PNA       0       0.2     0.5     1.0       0        0.2     0.5 1.0     (μM)
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PNA is much more toxic than the 12 μg/mL concentration needed for cSCK-SS-PNA2.  

Splicing correction with cSCK-SS-PNA2 is more efficient at 1 μM PNA than at 0.5 μM 

PNA (85% vs. 53%) (Fig. 6-6C) but comes at the expense of higher cytotoxicity (40% 

viability vs. 80% viability, respectively) (Fig. 6-6B). 

 
Figure 6-7.  Effect of endosomal disrupting agents on PNA bioactivity as 
measured by luciferase activity.  Cells were treated with 1 μM Arg9-PNA, 
with 0.2 or 0.5 μM PNA from cSCK-SS-PNA2, or with cSCK-PNA in the 
presence or absence of 100 μM chloroquinone. 

 

Effect of endosome disrupting agents on bioactivity.  It has been found that the 

antisense activity of PNA conjugated with cell penetrating peptides such as the TAT 

peptide or Arg9 is significantly augmented by chloroquine, calcium ions, or by 

photochemical internalization (PCI) using photosensitizers, all of which are known to 

promote endosome disruption.(25-27)  Since it was likely that the cSCKs were also 
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entering cells by an endocytotic mechanism, we were interested to see whether or not 

these agents would also enhance the bioactivity of the cSCK-PNA conjugates.  The pLuc 

HeLa cells were, therefore, treated with cSCK-SS-PNA conjugates in the presence or 

absence of 100 μM chloroquine in comparison to PNA-Arg9 (Fig. 6-7).  As expected, 

chloroquine greatly enhanced the bioactivity of PNA-Arg9 by two orders of magnitude.  

On the other hand, the cSCK-SS-PNAs were orders of magnitude more active than PNA-

Arg9 and chloroquine had little (2-fold) or no effect on the activity of cSCK-SS-PNA2 at 

0.2 and 0.5 μM PNA, respectively.  In contrast, the non-cleavable cSCK-PNA showed 

much less activity that was also not enhanced by chloroquine.  One interpretation of  

these results is that the cSCK not only facilitates endocytosis, but also endosomal escape 

of the PNA and/or the PNA-cSCK conjugate, without the need for chloroquine.  The 

lower activity of the non-cleavable cSCK-PNA either suggests that the cSCK-PNA is not 

able to escape, or that the cSCK-PNA is not able to enter the nucleus and/or bind to the 

RNA due to inaccessibility of the PNA in the shell.   

 Tracking cSCK mediated PNA delivery and release inside cells.  To track the 

intracellular path of the cSCK-SS-PNA2 and its bioreductive cleavage products, we 

prepared a dual fluorescently labeled particle.  The cSCK was labeled with Alexa Fluor 

633 and the PNA was labeled at the ε-amino group of a carboxy terminal lysine with 

fluorescein isothiocyanate (FITC).  The pLuc705 HeLa cells were incubated with the 

dual labeled cSCK(Alexa Fluor)-SS-PNA(FITC)2 and examined by confocal microscopy  
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Figure 6-8.  Cell localization of cSCK-SS-PNA and products.  pLuc705 
HeLa cells were incubated with a dual fluorescently labeled cSCK(Alexa 
Fluor 633)-SS-PNA(FITC)2, having Alexa Fluor 633 (excitation 633 nm, 
emission 650 nm) on the cSCK and FITC (excitation 488 nm, emission 
510 nm) on the PNA.  Row A:  24 h incubation.  Row B: 1 h incubation.  
Row C: 1 h incubation with DTT-pretreated nanoparticles. 

 

after 1 h and 24 h (Fig. 6-8).  After 1 h, cSCK and PNA fluorescence were co-localized 

and concentrated near the membrane surface (Fig. 6-8b).  After 24 h, cSCK fluorescence 

was exclusively concentrated in endosomal and/or lysosomal-like vesicles, whereas PNA 

fluorescence was observed in the nucleus as well as being partially co-localized with the 

cSCK fluorescence in the vesicles (Fig. 6-8a).  Transfection following reductive cleavage 
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with DTT and dialysis shows only the cSCK fluorescence localized in vesicles, and little 

PNA fluorescence (Fig. 6-8c).  We interpret these data to support a model (Fig. 6-1B) in 

which a cSCK-SS-PNA binds to the membrane surface and is then slowly endocytosed.  

Endosomal acidification then causes cSCK-mediated destabilization of the endosome and 

exposes the cSCK-SS-PNA to cytoplasmic reducing environment, causing release of the 

PNA, which then binds to the RNA mis-splicing site in the nucleus.  The destabilization 

is not sufficient, however, to enable release of the cSCK, which remains trapped in the 

endosomes, or of sufficient duration to allow all of the PNA to be bioreductively cleaved 

and escape from the endosome.  The inability of the cSCKs to efficiently escape the 

endosome would explain the lower activity of the non-cleavable cSCK-PNA.  Given that 

the precleaved cSCK also remains trapped in the endosomal compartments, it is likely 

that transfection of PNA•ODN by cSCK also proceeds by a similar mechanism in which 

either the PNA•ODN or the PNA alone escapes from the endosome (Fig. 6-1A). 

 The ability of the cSCK to promote endosomal escape of the PNA could be 

ascribed to a “proton sponge” effect,(28) in which the remaining basic amino groups on 

the cSCK react with protons produced during endosomal acidification.  As a result of this 

buffering reaction, the cSCK further enhances the influx of protons, chloride counterions, 

and water leading to endosomal destabilization and permeabilization by the increased 

osmotic pressure within the endosome.  This process either causes the cSCK-SS-PNA2 to 

be released into, or exposed to, the cytoplasm whereupon the disulfide linkage is cleaved 
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allowing translocation of PNA to the nucleus.  The proton sponge effect has also been 

recently used to enhance cytosolic delivery of core-shell nanoparticles bearing otherwise 

impermeable molecules (29) and quantum dots.(30, 31) 

 

Conclusions 

We have demonstrated that cationic shell crosslinked knedel-like nanoparticles 

are highly efficient agents for the delivery of bioactive PNAs into HeLa cells by both 

electrostatic complexation with PNA•ODN hybrids, or by conjugation of the PNA via a 

bioreductively cleavable linker.  The cSCK at 20 μg/mL results in three times more 

bioactivity and two-fold less toxicity than Lipofectamine 2000 at 10 μg/mL when 

delivering 1 μM PNA•ODN into HeLa cells, and results in a much higher splicing 

correction efficiency (94% vs 64%).  The bioreductively cleavable cSCK-SS-PNA2 

conjugates are similarly effective for HeLa cells at 1 μM PNA, showing only slightly 

higher cytotoxicity and slightly lower splicing efficiency (85%), but are orders of 

magnitude better than Arg9-mediated delivery.  The cSCK-SS-PNA system may be very 

useful for in vivo applications, where it would be important to minimize dissociation of 

the PNA from the cSCK prior to reaching the target cell.  Initial mechanistic studies 

indicate that the cSCK is not only able to facilitate endocytosis, but also endosome 

disruption, thereby facilitating release of the PNA into the cytoplasm from where it can 

translocate into the nucleus, while the cSCK remains trapped in the endosomal/lysosomal 
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compartments.  This type of delivery mechanism may also be quite attractive for in vivo 

purposes if the cSCK can be later exocytosed and excreted, thereby preventing it from 

accumulating within the cytoplasm of cells.  If not, acid- or bio-degradable nanoparticles 

under development could be used.  For in vivo experiments, we will incorporate DOTA 

into the polymer side chains to bind 64Cu for PET imaging of cSCK biodistribution and 

pharmacokinetics.  Based on prior experience with SCKs, (32) we also expect that PEG 

chains will also have to be attached to minimize detection by the RES system and 

enhance the bioavailability of the cSCKs.  The bioactivity of the PNAs could then be 

assessed through the use of the EGFP-654 transgenic mouse that utilizes EGFP as a 

reporter for splicing correction .(33)  In this way we will be able to determine the extent 

to which the bioactivity correlates with the bioavailability of the cSCK for different 

tissues. 
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Chapter 7 

 

Composite soft-matter nanoscale objects:  nanocylinder-templated 

assembly of nanospheres 

[Portions of this work have been published previously as Ke Zhang, Huafeng Fang, Zhou 

Li, Jun Ma, Sophia V. Hohlbauch, John Stephen A. Taylor and Karen L. Wooley Soft 

Matter 2009, 5(9), 3585-3589.] 

 

Abstract 

We extend the surface layer-by-layer self-assembly strategy to the preparation of 

block copolymer-based composite nanoconstructs utilizing nanoscale building blocks.  

These composite materials are well-defined, hierarchically-organized nanoscale objects 

of a cylindrical form and core-shell morphology, having an outer coating of cationic 

shell-crosslinked knedel-like nanospheres (cSCK).  In addition to standard 

characterization techniques, a fluorescent resonance energy transfer (FRET) experiment 

is designed and used to study the coating of anionic cylinders by cationic spheres.  

Expedited HeLa cell uptake is found for the composite nanostructures compared with the 

non-coated cylinders, indicating that this simple assembly strategy is a facile method to 

allow the secondary structure to inherit properties from its individual building blocks. 
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Introduction 

New frontiers in nanomaterial research are evolving towards the development of 

nanoparticles (NPs) that are of greater complexity in structure and function (1).  This 

increase in complexity may refer not only to the nanocolloids themselves, which often 

combine one or two materials, such as NPs made from polymer blends (2-3), or inorganic 

NPs stabilized with functional organic ligands (4-5), but also to the super-structures of 

their assemblies (6-11).  Self-assembly of nanostructures has proven to be an efficient 

and rapid method to create higher order complexities and functions.  For example, the 

organization of nanocrystals in multi-dimensional superlattices shows remarkable 

collective properties from their individual isolated counterparts (12).  This strategy is also 

commonly used in Nature in creating three-dimensional, complex biological structures 

such as multi-subunit proteins or viruses, which have genes made from either DNA or 

RNA, and a self-assembled protein coat to protect these genes.  However, although the 

assembly of nanostructures on macroscopically-flat surfaces has been studied extensively 

(13-14), which has resulted in many key developments in optical materials, electronic 

devices, sensing devices and biological applications, the templated assembly of 

nanostructures on a curved, three-dimensional nanoscopic substrate is only recently 

emerging as a technique to prepare intelligent nanoscale constructs (15).  A few 

interesting examples include the use of carbon nanotubes to template the self assembly of 

metal nanospheres and nanorods (16-18), metal oxide nanoparticles (19) and polymerized 
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lipid assemblies (20); the assembly of oligonucleotide-functionalized gold nanoparticles 

on living fungi templates (21); multilayer assembly of TiO2 nanoparticles on electrospun 

polymer nanofibers (22); selective permeable nano-micro colloidosomes from colloidal 

nanoparticles assemblies (23), and silver nanoparticle assemblies along silver nanowires 

(24).  However, a component still largely missing from the current systems are 

completely soft-matter-based, hierarchically-organized nanoscale objects, which are 

potentially useful in a broad range of biomedical applications, such as drug/gene delivery, 

due to their tunability in chemistry which in turn can provide many appealing properties 

such as rapid biodegradation (25). 

In self-assembly, specific non-covalent forces are essential in organizing 

macromolecular or nanoscopic entities into spontaneously forming multi-dimensional, 

hierarchical and complex structures.  Among the many kinds of such non-covalent 

interactions, such as hydrogen bonding, van der Waals interactions, wettability at 

interfaces, and magnetic force, electrostatic attractions provide versatile, effective and 

inexpensive approaches to the formation of higher-order structures.  For example, 

functional thin films are conveniently prepared by alternate adsorption of oppositely-

charged species from aqueous solutions, a process that is commonly termed layer-by-

layer (LbL) adsorption, resulting in unique thin films containing a number of different 

functional organic/inorganic materials, including NPs (26-27).  Recently, this LbL 

strategy has also been applied to the formation of versatile hybrid NPs with a gold core 
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and multiple shell layers, which render a number of desired properties to the NPs, such as 

bio-stealthiness and triggerable release of drug (28).  In this chapter, we expand on this 

concept of functional organization and report the assembly of cationic shell-crosslinked 

knedel-like nanospheres (cSCK) on anionic shell-crosslinked nanocylinder templates to 

afford hierarchically-organized nanoscale objects of cylindrical form and core-shell 

morphology having an outer coating of spheres.  The cSCK is known to undergo rapid 

cell internalization and lead to transfection if carrying genes (29-30).  In this chapter, the 

cSCK cell entry characteristics are shown to be transferred to the nanocylinders upon 

assembly.  The final assembled products were imaged by Transmission Electronic 

Microscopy (TEM) and Atomic Force Microscopy (AFM).  Zeta potential analysis and a 

fluorescent resonance energy transfer (FRET) experiment were designed and used to 

monitor and quantify the involvement of charged groups of both the nanocylinders and 

the cSCKs during the assembly process.  In addition, cell uptake of the complexes was 

studied as a demonstration of the modified biological properties that result for the 

nanocylinders upon coverage by the cSCKs. 

 

Experimental Section 

Block copolymers and nanostructures were prepared according to literature 

reported procedures (30-32).  All other reagents and buffers were purchased from Sigma 

Aldrich and Invitrogen, Inc.  cSCK-mediated cylinder cell uptake was evaluated on 
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Chinese Hamster Ovary (CHO-K1) cells.  Cell were incubated in Ham’s F-12K 

containing 10% fetal bovine serum (FBS) and 1% antibiotics (penicillin–streptomycin, 

10,000 U/mL) at 37 °C in a humidified atmosphere containing 5% CO2 prior to assay. 

TEM images were obtained on a Hitachi H600.  Samples for TEM were diluted 

with a 1% phosphotungstic acid (PTA) stain (v/v, 1:1), and air-dried on a plasma-treated 

carbon-coated copper grid.  AFM images were obtained on a Asylum Research MFP-3D 

BIO mounted onto a Nikon Eclipse TE2000-U.  All images were acquired in AC mode in 

pure water using 100 µm long Olympus cantilevers, model TR400PSA.  Samples 

containing the cationic spheres and sphere/cylinder complexes were prepared by 

incubating them onto freshly cleaved mica for 10 minutes.  The anionic nanocylinders 

were incubated onto AP-mica for 10 minutes before imaging.  Fluorescence spectroscopy 

measurements were performed using a Varian Cary Eclipse fluorescence 

spectrophotometer.  LSCM images were obtained on a Leica TCS SP2 inverted 

microscope.  CHO cells (5 × 105) were incubated at 37 °C with sphere/cylinder mixtures 

of various concentrations in the presence of 10% FBS in 35 mm MatTek glass bottom 

microwell dishes (MatTek Co.) for 4 h.  Each plate was washed 3 times with phosphate 

buffered saline and viewed under dark field and fluorescent conditions.  The labeling of 

the paritcles with fluorescent tags was achieved following literature reported protocols 

(30, 32). 
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Figure 7-1.  TEM images of the polymer-based cationic spheres (A), 
anionic spheres (B) and anionic nanocylinders (C).  Upon mixing, the 
cationic spheres assembled on the nanoscopic curved surfaces of the 
nanocylinders and form a close-packed dense layer, for which the entire 
assembled morphology is observed by TEM imaging (D-H).  In contrast, a 
mixture of anionic spheres and cylinders does not form assembled 
structures (I), rather, discrete cylinders and spheres are observed by TEM, 
confirming electrostatic interactions to be the driving force for assembly. 

Our initial interest was to test whether the cSCKs having surface amine groups 

would exhibit high affinity for the nanocylinders with surface carboxylic acids, and as 

such, could form nanoscopic complexes upon mixing (Scheme 1).  For this experiment, 

spheres were gradually mixed with cylinders at different sphere:cylinder, 

amine:carboxylate ratios (N/C ratios), and were imaged by TEM (Fig. 7-1D-H).  A dense,  
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Figure 7-2.  AC-mode AFM images collected under solution:  (A) a 
sphere/cylinder complex, with the section analysis shown below,  (B) 
cylinders alone (without added spheres), with a histogram of the height 
distribution, and (C) spheres alone, with a histogram of the height 
distribution. 

close-packed layer of cSCKs over the surface of the nanocylinders, completely covering 

the cylinders, was observed.  Sometimes, especially at lower N/C ratios (2-6), multiple 

cylinders were observed as aggregates with the spheres in between them, binding to both 

cylinders (Fig. 7-1E and G).  This effect could be minimized by using larger excesses of 

spheres (N/C of 10 or higher) while keeping the concentration of the cylinders constant.  

In contrast, control mixtures involving the use of anionic nanospheres and nanocylinders, 

each having carboxylates in their shells and possessing anionic surface charges, showed 

no templated-assembly behavior (Fig. 7-1I), thus, confirming electrostatic interactions to 

be the driving force for assembly.  The average height of the nanocomplexes, measured 

by solution-state AFM, was 33 nm (Fig. 7-2A), roughly coinciding with the sum of the 
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height of a cylinder (17 nm, Fig. 7-2B) plus the combined height of two spheres (7 nm 

each, Fig. 7-2C).  Although AFM could not distinguish the entire internal morphology, 

individual spheres could be recognized upon the surface of the overall complex, and the 

total height was in agreement with the TEM diameter. 

 

Figure 7-3.  (A) Fluorescence intensities of fluorescein-tagged cSCKs at 
different concentrations in the presence (■) and absence (▲) of 100 µM of 
rhodamine-labeled nanocylinders.  The inset shows the fluorescence 
spectra of the complexes at different N/C ratios (cSCK:nanocylinder 
stoichiometries).  (B)  Zeta potential values for the mixtures from (A).  
The charge-inversion region (200-350 µM) of the zeta potential data of 
(B) coincides with the concentration at which the slope change occurs for 
the donor fluorescence data of (A), considered to be the end-point at 
which the anionic nanocylinders became coated by cationic nanospheres. 
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To better understand the cSCK/nanocylinder assembly, it is of interest to 

investigate the stoichiometry of the NPs and the utilization of the charged species of each 

kind of NP.  In related work that involves the co-assembly of cSCK with negatively-

charged DNA, the stoichiometry can be measured easily as cSCK amine:DNA phosphate 

molar ratios (N/P ratios) by a gel retardation assay.  Upon binding with cSCKs, some 

DNA becomes immobilized while free DNA remains mobile during gel electrophoresis.  

By varying the cSCK:DNA stoichiometry, the N/P value varies, and an “end-point” of 

complete DNA binding can be determined.  However, such an assay is not suitable for 

the cSCK/nanocylinder complexes, because the cylindrical nanostructures are immobile 

in the gel.  To circumvent this problem, we instead designed a FRET experiment to 

determine the end-point.  The nanocylinders were labeled with an acceptor fluorescent 

tag (rhodamine) and the cSCKs were labeled with a donor (fluorescein).  Then, the two 

NP solutions were mixed at different cSCK amine:cylinder carboxylate ratios (N/C 

ratios).  Upon assembly, donor fluorescence is attenuated by transferring a portion of the 

fluorescence energy to the acceptor due to spatial proximity.  As a result, donor (cSCK) 

fluorescence increases with regard to its concentration at a lower rate before the 

nanocylinder surface is consumed, and at a higher rate thereafter.  Each stage appears to 

have a linear relationship.  By plotting the donor fluorescence against various donor 

concentrations, in the presence of a fixed amount of acceptor, the end-point, that is, when 

the surface of the nanocylinders becomes completely occupied, can be identified (Fig. 7-
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3A).  For the cSCK/nanocylinder complexes, the end-point N/C value was calculated by 

extrapolation to be 2.5.  At N/C ratios between 2.0 and 3.5, precipitation of the 

nanocomplexes prevented acquiring data in this range.  This end-point N/C value is of 

importance not only because it provides stoichiometric information regarding the 

numbers of each kind of NPs associated with the assembly, but also because it is a 

function of the two particles’ binding affinity and the availability of amine and 

carboxylate groups on the NP surfaces for binding, thus providing structural information.  

For example, previous studies measured the end-point N/P ratio for the cSCK/DNA 

complexes to be 2.0 (30), likely because many amines buried beneath the cSCK surface 

are unable to bind to the phosphates along the DNA backbone.  Following this logic, the 

cSCK/cylinder complexes should have an N/C value lower than 2.0, because the 

cylinders also have such steric effects, leading to incomplete consumption of the 

carboxylates.  The unexpectedly increased N/C value of 2.5 indicates that, unlike in 

cSCK/DNA complexes, the utilization of amines in cSCK/cylinder complexes is much 

reduced, likely because of the rigidity of the nanocylinder, relative to the flexibility of 

DNA, and also because of close-packing of the cSCKs along the cylinders. 

The end-point as determined by FRET coincides with the charge inversion region 

from negative to positive values in zeta potential analysis (Fig. 7-3B).  As the N/C ratio 

increased, increasingly negative character was observed initially, possibly due the 
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formation of multi-cylinder aggregates.  Further increasing the N/C ratio led to an 

inversion of charge.  Finally, at a large excess of spheres the zeta potential value became 

equal to that of the cSCK.  Although zeta potential analysis conveniently identified a 

range N/C ratios in which the end-point is located, it does not provide an accurate 

determination due to both the non-linear relationship between zeta potential and cSCK 

concentration, and to the unstable nature of the complexes near the end-point. 

 

Figure 7-4.  Dark field and confocal fluoresence images of dual-labeled 
cSCK/nanocylinder complexes (A-C) and fluorescein-labeled 
nanocylinders (D-F).  After incubation with CHO cells at 37 °C for 4 h, 
the cylinders showed no signal in the green channel (cylinder) (B) or the 
blue channel (cSCK) (C), while the cSCK/cylinder complexes show 
signals in both channels (E, F).  A composite image (G) shows the details 
of internalized complexes, with an expanded view. 

It has been demonstrated that the nanoparticle size, shape and surface chemistry 

play critical roles in their cellular internalization pathways (33).  The negatively-charged 

cylinders used in this study have been shown previously to be unable to undergo cell 



180 
 

internalization within eight hours, due to their relatively large sizes and negative surface 

charge.  Upon conjugation with the protein transduction domain (PTD) peptide of the 

HIV Tat protein, the cylinders were able to be taken up by CHO cells (32).  It has been 

postulated that the positively-charged peptide sequence associates with the plasma 

membrane in a non-specific manner, similar to polyethyleneimine, which is known to 

interact with negatively-charged cell surfaces via heparan sulfates (34).  Also being 

highly positively charged, the cationic spheres were expected to serve similar functions in 

helping to transport the cylinder into the cell.   

To test our hypothesis, the spheres were labeled with Alexa Fluor (AF) 633, 

which then assembled onto fluorescein-labeled cylinders to give solution-stable 

nanocomplexes at an N/C ratio of 3.7, allowing for the tracking of each individual 

component by laser scanning confocal microscopy (LSCM).  The complex structures 

were then incubated with CHO cells for 4 h at a series of concentrations.  Control 

samples, using only the cylinders without the cSCK coating, were also prepared.  Indeed, 

compared to the control samples, which shows no signal in either the fluorescein 

(cylinders) or the AF 633 (spheres) channel, the complex nanoassemblies exhibited 

fluorescence in both channels, suggesting that the nanocylinders had inherited the 

properties from the cSCKs, i.e. the ability to translocate across the plasma membrane, 
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despite the overall larger size of the complexes than either the cylinders or spheres alone 

(Fig. 7-4). 

 

Conclusions 

In summary, we have described a facile method to prepare templated nanoscale 

objects of cylindrical form having an outer coating of spheres via the self assembly of 

shell-crosslinked polymer nanospheres on oppositely-charged nanocylinders.  TEM and 

AFM visualized a closely-packed layer of nanospheres on the surface of nanocylinders.  

Independently, zeta potential analysis and a FRET experiment determined the 

stoichiometry for the saturation point of the cylinders’ surfaces for binding by the 

spheres, while the FRET experiment also identified a cSCK amine-to-nanocylinder 

carboxylate (N/C) ratio of 2.5 at this point.  By labeling the respective particles with 

fluorescein and AF 633, the cationic sphere-coated cylinders were tracked by LSCM and 

were observed to undergo cell internalization, while the non-coated cylinders were not 

able to be taken up by CHO cells.  It was demonstrated, therefore, that the characteristics 

of the original cylindrical nanoscale template could be modified by a simple surface 

assembly process, using nanoscale objects as each of the building blocks.  It is expected 

that, by enabling each parent building block with different properties, such as nucleic 

acid delivery and receptor-targeting ability, a multi-functional complex NP could be 
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accessed by this method in a facile, modular fashion.  This procedure resembles the layer-

by-layer assembly technique that has become common for polymer components.  We 

believe this general method for preparing electrostatic assemblies of oppositely-charged 

nanostructures is of broad interest as a means to assemble complex nanoscale objects that 

combine function from the individual components.  Such a technique may be useful for 

the construction of complex materials that can serve in a variety of applications, such as 

drug delivery, environment and energy, catalysis, and bio-sensing.  Furthermore, the 

nanocylinder template could be replaced with a selective degradable material, which 

upon degradation may release the surface-bound cSCKs, leading to a triggered 

disassembly.  If the cSCKs are inter-crosslinked, then a soft, hollow nanocage material is 

also possible. 
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Chapter 8 

Conclusions 

 

This dissertation has focused on developing block copolymer-based 

nanostructures as intracellular delivery vehicles, with the ultimate purpose of using them 

as integrated systems for diagnosis and therapy.  Because of the many kinds of 

“passengers” (ions, small molecules, DNA, etc.) and “destinations” (cell lines, tissues, 

etc.), the “vehicles” must be designed to incorporate specific characteristics accordingly.  

The first part (Chapters 2 and 3) of the dissertation discusses the use of spherical and 

cylindrical SCKs with poly(acrylic acid) shells as the base upon which functionalization 

was performed.  Depending on the chemical moiety that was attached to the surface of 

the nanoparticles, PTD or folate, a different trend in cell internalization with regard to the 

particle size/shape was observed.  The spherical PTD-SCK was internalized by HeLa 

cells more rapidly compared with its cylindrical counterpart, while the spherical folate-

SCK showed less KB cell uptake than the cylindrical folate-SCK.  This information may 

be useful in drug delivery applications.  For example, assuming the cores of the SCKs are 

loaded with a therapeutic, to be delivered to cancerous tissues via recepted-mediated 

endocytosis, a cylindrical morphology may be more beneficialto maximize selectivity 

and efficiency of delivery.  On the other hand, if the therapeutic was to be delivered 

intracellularly in a systemic fashion, a smaller, spherical PTD-functionalized SCK may 

be a better suited delivery vehicle. 

Chapters 4 - 6 form the second part of the dissertation.  In this part, the 

“passengers” are more specified: genetic materials capable of altering gene expression or 
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being expressed inside a living cell.  Such genetic materials may include DNA, RNA or a 

synthetic mimic, PNA.  Because DNAs carry the same negative charge as the 

poly(acrylic acid) shells of the SCKs, simple mixing does not allow the formation of 

complexes between the SCK and the DNA.  In Chapter 4, a cationic SCK, or cSCK, was 

described, which was made to bear primary amines that upon protonation render the 

particles a positively charged character.  These cSCKs not only serve as an object around 

which DNA could wrap, which allows for the DNA to be protected from enzymatic 

degradation, the primary amines were also capable of disrupting the endosomes through a 

proton-sponge effect, thereby releasing the DNA into the cytoplasm.  The efficiency of 

DNA delivery was then conveniently quantified by its bioactivity, through a luciferase 

splice correction assay (oligo) or an EGFP expression assay (plasmid).  Chapter 5 builds 

upon the ideas developed in Chapter 4, and further explores the structure-activity 

relationships between various modified cSCKs and their transfection/cytotoxicity.  It was 

realized that the chemical composition of the cSCK’s shell affected its ability to bind to 

DNA, to disrupt the endosome, and ultimately, to deliver DNA.  By optimizing the 

particle buffering capacity and DNA binding affinity through fine-tuning of 

primary/tertiary amine ratio, a more refined “vehicle” was developed, which exhibited 

much higher transfection efficiency and lower cytotoxicity compared to the original 

cSCK and other commonly available transfection agents.  Even better performances are 

expected when the particles are conjugated with appropriate ligands for receptor-

mediated endocytosis such as the tripeptide RGD for integrin receptors, and moieties for 

enhancing endosomal release. 
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Having backbones made of peptide bonds, the PNAs lack the negative charge 

associated with DNAs.  As such, these special “passengers” required unique approaches 

to be loaded onto the cSCKs.  Two strategies were employed in Chapter 6 to achieve this 

purpose: either through electrostatic complexation with a PNA•ODN hybrid, or through a 

bioreductively-cleavable disulfide linkage to a PNA.  These delivery systems are much 

better than the standard lipofectamine/ODN-mediated method and superior to the Arg9-

mediated method for PNA delivery in HeLa cells, showing lower toxicity and higher 

bioactivity.  The cSCK were also found to facilitate both endocytosis and endosomal 

release of the PNAs, while themselves remaining trapped in the endosomes.  Such cSCK-

PNA systems may be very useful for in vivo applications, where it would be important to 

minimize dissociation of the PNA from the cSCK prior to reaching the target cell. 

The last part of this dissertation, Chapter 7, challenges a more daunting task: can 

something as large as a cylindrical nanoparticle be carried by the cSCKs into the cells?  

The cylindrical SCKs, as found in Chapter 2, did not undergo rapid cell uptake after 24 

hours of incubation with HeLa cells, even when conjugated with PTD.  In Chapter 7, a 

strategy involving the use of a cSCK coating was exploited.  Instead of conjugating PTD 

moieties to nanoparticles to assist cell uptake, cSCKs were used as a coating, which 

formed a closely packed layer on the surface of the cylinders.  These nanocomplexes 

resemble the morphology of a virus, which are essentially DNA/RNA packed inside a 

protein coat.  The cSCKs are very efficient in cell entry, as reported in Chapters 3-6, due 

to its positively charged shell.  This simple strategy allowed the cylinders to inherit the 

cell entry capabilities of the cSCKs, which assisted the cylinders to populate the cellular 

interior in less than 2 hours.  Although it was not demonstrated in this chapter, it may be 
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speculated that other characteristics of the spheres, if installed, may also be transferred to 

the final assembled structure.  For example, if targeting spheres, reporting spheres and 

endosome-disrupting spheres are all assembled onto one common cylinder, which may be 

loaded with drugs itself, a truly hierarchical, complex, multifunctional nanostructure can 

be synthesized in a facile, modular fashion, obviating the need for multi-step, 

complicated chemical synthesis.  The connecting region between the cationic and anionic 

particles may also be crosslinked reversibly or irreversibly, if needed, to prevent 

premature dissociation of the functional spheres from the cylinders when ionic 

strength/pH of the solution changes.  If crosslinked irreversibly, the cylinder may also be 

chemically etched to afford a cage-like, hollow material that may have potential 

application in nanomedicine. 

It is hoped that this dissertation has conveyed the notion that nanomedicine is a 

highly promising field that could benefit the lives of generations to come.  Many unusual 

and unique properties from being small in size are beginning to be recognized and 

utilized.  At an early stage, nanomedicine already demonstrates broad applications and 

profound impact.  The National Nanotechnology Initiative expects new commercial 

applications in the pharmaceutical industry that may include advanced drug delivery 

systems, new therapies, and in vivo imaging.  Neuro-electronic interfaces and other 

nanoelectronics-based sensors are another active area of research.  Further down the line, 

the speculative field of molecular nanotechnology believes that cell repair machines 

could revolutionize medicine and the medical field.  Before any of these goals can be 

fully realized, however, much still remains to be explored, including understanding the 

issues related to toxicity and environmental impact of nanoscale materials. 
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