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existing theoretical results cannot be used as they are. In this paper we motivate the need for new
scheduling schemes for multimedia protocol processing, and demonstrate their real-time performance in
our prototype implementation. We then explain the observed results by analysis and measurement. More
specifically, we show that using strict preemption can introduce overheads in protocol processing such as
more context switching and extra system calls. We present our scheduling scheme called rate-monotonic
with delayed preemption (RMDP) and show how it reduces both these overheads. We then develop the
analyitical framework to analyze RMDP and other scheduling schemes that lie in the region between strict
(immediate) preemption and no preemption. Byproducts of our analysis include simpler schedulability
tests for non-preemptive scheduling, and a variant of rate-monotonic scheduling that has fewer
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Abstract

This paper seeks to bridge the gap between theory and practice of real-time scheduling in the domain of
multimedia computer systems. We show that scheduling algorithms that are good in theory, often have practical
limitations. However when these algorithms are modified based on practical considerations, existing theoretical
results cannot be used as they are. In this paper we motivate the need for new scheduling schemes for multimedia
protocol processing, and demonstrate their real-time performance in our prototype implementation. We then
explain the observed results by analysis and measurement. More specifically, we show that using strict preemption
can introduce overheads in protocol processing such as more context switching and extra system calls. We present
our scheduling scheme called rate-monotonic with delayed preemption (RMDP) and show how it reduces both these
overheads. We then develop the analytical framework to analyze RMDP and other scheduling schemes that lie in
the region between strict (immediate) preemption and no preemption. Byproducts of our analysis include simpler
schedulability tests for non-preemptive scheduling, and a variant of rate-monotonic scheduling that has fewer
preemptions. Finally, we measure the overhead due to context switching on Pentium and Sparc-1 machines and
its impact on real-time performance. We show that when scheduling clock interrupts occur every 1 millisecond,
RMDP can lessen the overhead of context switching leading to an increase in utilization of as much as 8%.

1 Introduction

Multimedia applications represent an important class of network applications. These applications are enabled
by the availability of high speed networks, and affordable high performance personal computers and workstations.
We identify two important requirements of multimedia applications:

¢ Continuous media communication and processing must occur in real-time. In addition, both the network
and the endsystems must provide quality-of-service {QoS) guarantees to shield such applications from un-
predictable network and system loads.

¢ Multimedia applications are compute and data intensive. So they require high performance in terms of
both transmission speeds and processing power. Efficient use of network and compute resources is therefore
important.

This paper is concerned with operating system (0s) support for multimedia applications. An essential fea-
ture required of an 05 to support multimedia is real-time scheduling. However, providing guaranteed real-time
performance to applications without compromising their efficient operation in a practical implementation is an
interesting and elusive problem. This problem we believe points to a gap between theory and practice of real-
time scheduling in the following sense-scheduling algorithms that have a good theoretical basis are not the most
suitable choice from a practical standpoint, and scheduling schemes that are dictated by practical considerations
do not have theoretical results to guarantee their real-time operation.

The purpose of this paper is twofold. We first illustrate the above situation, that is we describe a real-time
scheduling scheme that is highly efficient but for which none of the existing theoretical results can be used as
they are. Second we present new theoretical results that can be used for our scheduling scheme as well as for a
variety of other efficient scheduling algorithms. More specifically, we show that traditional rate-monotonic (RM)



and earliest-deadline-first (EDF) scheduling lead to inefficiency due to their strict preemptive nature, and due to
excessive involuntary context switching. These two problems are especially true in the case of protocol processing
for multimedia applications. Strict preemption requires that distinct protocol tasks that share data (such as buffer
lists and packet queues) lock them before access. In a real-time scheduling environment lock operations must be
mediated by the 0s to prevent unbounded priority inversion [13]. Thus system calls for locking increase per packet
processing costs, counteracting efforts that have gone into speeding up packet processing. Likewise, involuntary
context switches due to strict preemption causes CPU cycles to be wasted and reduces useful utilization.

We present our modified RM scheme called RMDP (RM with delayed preemption) as an example that solves
both the problems mentioned above. The scheme is specially suitable for protocol processing as well as media
processing for multimedia applications. However a survey of existing theoretical results show that they either deal
with the case when preemption is immediate i.e., the instant a higher priority task arrives (fully preemptive), or
when there is no preemption (non-preemptive). The main contribution of this paper is a general technique to
analyze real-time scheduling schemes in the region that lies between the fully preemptive and the non-preemptive
cases. A new feature of our theoretical framework is the notion of a preemption policy. Qur proof method, that we
call idealized scheduler simulation, allows us to evaluate the impact of a given preemption policy on well known
scheduling algorithms such as kM and EDF.

Our study of preemption policies have led to other interesting results. One result consists of schedulability
tests for non-preemptive scheduling by treating it as a special case of our general preemption policies. Another
interesting result is a variant of RM scheduling (that we call mired scheduling) that uses an EDF preemption
policy and is able to achieve almost as few preemptions as EDF scheduling. All the results above are derived
assuming that context switching costs are zero. Since our main concern is efficiency issues in protocol processing,
it is essential to quantify the cost of context switching that arises due to real-time scheduling. We therefore
instrumented our implementation to measure and quantify the effect of context switching on performance. Qur
results show that in most cases, useful cpu utilization can be increased by using our efficient scheduling schemes.

The outline of the paper is as follows. Section 2 describes relevant aspects of our target environment that
includes the real-time upcall (RTU) facility, and its scheduling mechanism that we call RMDP (rate-monotonic
with delayed preemption). Section 3 presents existing results and shows why we cannot use them as they are to
analyze RMDP and similar schemes. Section 4 precisely defines what aspects of real-time scheduling we will examine
in this paper, and gives an overview of our experimental and theoretical results. The 155 method is presented in
Section 5 to analyze different preemption policies. Proofs relating to the 15s method are in Appendix A. The
next three sections apply the Iss methodology. Section 6 accounts for the effect of preemption policies on the
schedulability tests for RM and EDF. Sections 7 and 8 discuss extensions of these results to non-preemptive and
mixed scheduling respectively. Section 9 describes our experiments with the RTU facility on the Pentivm and
Sparc platforms to quantify context switching costs. We finally present our conclusions and future work.

2 Target Environment

Our work is targeted towards protocol processing support for networked multimedia applications. It is therefore
important to understand some important details of this environment as shown in Figure 1. Processes 1, 2, and 3
are sample multimedia applications. Media processing and protocol processing for each connection are modeled
as periodic activity with certain compute and communication resources allotted each period. The cpu and the
network adaptor are the two resources shown. In our context, periodic activity in each process is implemented as
a real-time upcall (RTU). A downward pointing RTU takes user data, processes it to form packets, and enqueues it
at the output queues. An upward pointing RTU takes packets from its input queue, processes them, and possibly
causes the next outgoing packet to be processed. Each RTU has a period and a computation time. It is also
associated with a handler routine in the user program that gets upcalled by the kernel when the RTU is run.
The os performs a schedulability test to determine if all RTUs can complete before their deadlines i.e, before
their next period. The kernel makes an RTU runnable at the start of its period by placing it in the run queue.
From the run queue the RTU scheduler picks an RTU to run based on its priority. The priority is determined
by the scheduling policy used. The RTU scheduler uses RM priorities which means that smaller the period of an
RTU, higher is its priority. The key feature of the scheduling scheme is that it takes advantage of the iterative
nature of protocol processing to preempt a running RTU only at the end of an iteration. An iteration in this case
corresponds to processing one (or more} protocol data units (PDUs). To implement this preemption scheme, each
RTU and the kernel communicate via a data structure in shared memory. The kernel sets a flag in this shared
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Figure 1: System Model

structure to inform a running RTU that a higher priority RTU has become ready to run. The handler checks this
flag after each iteration and if it is set, it yields the GPU by returning from the handler. If the yielding RTU has
not completed its work for the current period, the kernel puts it back in the run queue. The RTU is invoked later
when it regains the highest priority status in the run queue. Because a running RTU can delay its preemption by
one iteration, we call this scheme RM with delayed preemption (RMDP). Since RMDP does not preempt a handler
asynchronously, RTU handlers do not need to lock shared data that is accessed only inside an iteration. Also we
show by experiment that RMDP reduces the number of involuntary context switches thus increasing useful cpu
utilization. Full details of the RTU implementation including security issues, system call interface, other efficiency
benefits, and protocol performance measurements can be found in {2, 4]. Other research groups have used periodic
real-time threads [15, 9] to implement protocol processing. However these solutions do not cater to the special
needs of protocol processing, leading to overheads caused by locking and context switching.

From an efficiency standpoint, two aspects are important in an actual implementation of real-time threads (or
in our case RTUs).

» Involuntary context switches : An involuntary context switch occurs when a thread with priority higher
than the running thread is inserted in the run queue. In UNIX this happens in the clock interrupt that
occurs periodically. In conventional time shared UNIX involuntary switches occur only at 100 millisecond
intervals, and the clock ticks 100 times per second. To support multimedia (such as audio), millisecond
granularity is required, and so the RTU facility uses a clock interrupt rate of 1000 times per second. In
an involuntary switch the state of the process containing the running thread must be saved, and restored
back when it is resumed. In a voluntary context switch that occurs when the running thread yields after
completion, save and restore operations are not required. Since involuntary switches can occur only during
the clock interrupt, a higher clock interrupt frequency should increase the number of such switches as we
show later. For sake of efficiency it is all the more important for the RTU facility to reduce the number of
involuntary context switches.

o System calls : A system call is made when a process performs an operation that reguires 0s intervention.
A system call involves crossing the user—kernel boundary. For our Pentium machine running NetBsD, this
overhead is about 770 processor cycles (or 280 instructions) [1}. As mentioned before, a lock operation in



Utilization Bound
Rate Monotonic Earliest-deadline-first
Fully Preemptive n(21/7 —1) 1.0
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Figure 2: Related Results

the real-time scheduling context entails a system call. Since PDU processing itself takes only a few hundred
instructions, getting and releasing a lock per PDU increases packet processing time manyfold.

Thus RMDP increases efficiency in at least two ways: it eliminates per packet system calls for locking, and reduces
involuntary context switching. To provide guaraniees we also need to have a schedulability test that takes
into account the preemption delay introduced by RMDP. In the next section we survey some of the scheduling
algorithms that have been studied in previous work and show why they cannot be used as they are to analyze
RMDP.

3 Related Work and their Limitations

From now on we refer to periodic activity (an RTU or real-time thread) as a task. A task has a period T and a
computation requirement C. The utilization of a task is C/T, and the total utilization I/ of a set of tasks is the
sum of their individual utilizations. We start with the well known RM and EDF scheduling algorithms introduced
in [11]. RM gives higher priorities to tasks with smaller periods, and EDF gives higher priorities to tasks with
earlier deadlines. The analysis in [11] assumed a uniprocessor system where tasks are independent, and deadlines
are equal to the periods. It also assumes that preemption is immediate i.e, a running task is preempted as soon
as a higher priority task becomes runnable and the context switch time is zero. We refer to such a scheduler as
an idealized scheduler.

Table 2 summarizes the relevant schedulability results for RM and EDF scheduling. The first row corresponds to
the fully preemptive case and is the most widely used. Each table entry gives the maximum task utilization that
can be supported by the scheduling scheme to guarantee schedulability (i.e, all tasks meet their deadlines). As
can be seen, EDF can support 100% cPU utilization. RM on the other hand limits utilization to n(21/* — 1), which
is about 69% for reasonable values of n (the number of tasks). The second row corresponds to the case when
there is no preemption. There are no simple schedulability tests for this case as there are in the fully preemptive
case. We discuss non-preemptive EDF scheduling in Section 7. The third row presents schedulability tests for RM
and EDF that take into account the effect of blocking. Blocking occurs when a task is prevented from running by
a lower priority task. Blocking that occurs when a lower priority task is in a critical section of code is considered
in [13]. It can be seen that blocking reduces the utilization bound compared to the idealized case. The reduction
is equal to the maximum value of B;/T; over all tasks, where B; is the time for which task i can be blocked, and
T; is its period. Blocking due to other system events such as periodic timer interrupts is considered in [7].

3.1 Inadequacy of Existing Results

None of the results in Table 2 can be directly used to model delayed preemption. The fully preemptive test
does not hold because it assumes tasks cannot be blocked. Using the non-preemptive test is a conservative
approach because it may reject task sets that are schedulable with delayed preemption. The blocking case at
first glance seems to capture the effect of delayed preemption. However its derivation assumes that during the
duration that a task is blocked, no task makes any progress. In other words, the blocking time is regarded as a
systemn overhead (somewhat like a high priority system activity). Thus it underestimates the utilization that can
actually be supported. Theoretically the amount by which this test can underestimate utilization in the worst
case can be upto 49% although in practice it will be lower. An example of the worst case is 2 tasks with periods
100 and 99, and with the same computation time of 49. If the lower priority task blocks the higher priority
task, then the loss due to blocking predicted by the test is around 49% whereas the two tasks can indeed be
scheduled using non-preemptive EDF. This shows that it is important to distinguish between blocking caused
due to overhead and blocking due to other tasks. Borrowing terminology in [8) we characterize existing results
as analyses of mechanism blocking i.e., concerned with overheads caused due to system activities. Our use of



T T1
l \l'ask Anivals/,l
4 v
\ N N
§. & & Delayed
S0 :---\: Haooog ;.._\: Preemption
CERENERRERIN .
R — Task i Timer
¢§1_> T; [Task 1 running § Handling
) Y/ Preemption
‘ / I p
§ Q N T |Task 2 running /4 Time
, \J
/ i i Exit time
L B Ty N B; 7 blocks T
B; Preemption saved
~ due to policy blocking
1 2 3 4 5 6 Periodic Timer Interrupts

Figure 3: Mechanism Vs. Policy Blocking

preemption policies on the other hand is an example of policy blocking and the distinction between the two is
made clearer in Section 4.

4 Problem Definition and Overview of Results

This section precisely defines the nature of the policy blocking that we wish to study, and presents experimental
results for RMDP to demonstrate the effect of policy blocking on schedulability. We then give a brief overview of
our results that will be used to explain our observations. Figure 3 shows essential features of a real-time scheduler.
Periodic timer interrupts cause tasks to arrive into the run queue. For example task m arrives at ¢ = 1, and
task 7 arrives at { = 2 and ¢t = 5. In the fully preemptive case (solid lines), r preempts 1, at ¢ = 2. When
finishes at ¢ = 4, 75 resumes and finishes at ¢ = 5. In the case of delayed preemption (shown on top with dotted
lines) 7y does not preempt 7 at ¢ = 2. Instead it runs until ¢ = 3 and then finishes, after which 7y runs. Thus 7,
experiences policy blocking for a duration shown as B;. During time B, 7 makes progress and actually finishes.
This is quite different from the mechanism blocking that is caused at every tick due to timer handling. Other
examples of mechanism blocking shown in Figure 3 are the time to cleanup after a task completes (exit time),
and the time to do a context switch (preemption time). An advantage of delayed preemption is that it can save
involuntary context switches an example of which is P;. The results in [7] only account for timer handling and
exit times, and makes a simplified assumption that every arrival causes a preemption. On the other hand, our
work studies policy blocking in a systematic manner. It also measures preemption costs with greater precision
and shows how it can be reduced.

In Section 5§ we show policy blocking caused by preemption policies reduces the utilization bound, just as
mechanism blocking does. However the savings in context switching due to the use of preemption policies increases
the utilization bound compared to the case when immediate preemption is used. The net effect is that there can
often be an increase in the useful utilization. We demonstrate this with an experiment in which we created 16
processes, each with 6 RTUs with periods ranging from 40 milliseconds (msec) to 90 msec in increments of 10 msec.
We compared two cases, one in which preemption was immediate, and the other in which preemption is delayed
until the running handler completes. The running time of each handler was 0.54 msec giving a total utilization
of 0.86. The experiment was run long enough (least common multiple of RTU periods) on a 100 Mhz Pentium
running the NetBsD 0s with a clock interrupt frequency (hz) of 1000. Figure 4 plots the smallest difference
measured between the deadline and completion time for each RTU. It can be seen that for RM with immediate
preemption, all the 90 msec have negative ordinates, which means that each of them finished after their deadline



in at least one invocation. In the case of RMDP, no RTU was found to miss its deadline. This result can be
interpreted as saying that the increase in utilization due to RMDP is equal to the utilization of the 90 msec RTUS.
This gain comes to around 9%. The rest of the paper essentially explains this result by analysis and measurement.
Section 5 develops the tools to quantify the effect of policy blocking. Section 9 quantifies the effect of reducing
the number of involuntary context switches by measurements.
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Figure 4: Increase in utilization by reducing context switching

4.1 Preemption Policies

Before we present preemption policies, we introduce some notation and describe how the scheduler operates
when a particular preemption policy is in effect. Tasks are represented as Jy,...,J,. A task J; has a period T}
and a CPU requirement (or usage requirement) of C;. We assume that tasks with smaller subscripts have smaller
periods. The utilization u; of task J; is given by C;/T;, and the total utilization I/ is the sum of the utilization
for all tasks. The scheduler operates as follows. When a task arrives, it is assigned a priority according to the
particular scheduling policy (RM or EDF} used. The task is then placed in the run queue which we assume is
ordered on the basis of priority. If the new task lands at the head of the queue (i.e it has the highest priority
among all runnable tasks in the system), the preemption policy is used to decide whether the running task should
be preempted or not. If a preemption decision is made the appropriate action is taken to move the running task
back to the run queue. In the case of RTUs, this would involve setting a flag in the shared data structure. The
CPU becomes available for the next eligible task some time after the preemption action was initiated. This time
delay is called the preemption interval. We assume that the preemption mechanism itself does not introduce any
delays and only the preemption policy can contribute to the preemption interval. Once the running task yields
the processor, the highest priority task in the run queue is assigned the processor. It must be noted that several
tasks can arrive during the preemption interval. These tasks are also placed in the run queue and are considered
when the choice for the next task to run is made.

We denote the running task by J» and an arriving task by J,. The threshold and delayed preemptlon policies
are formalized as follows.

Delayed Preemption In this scheme, the computation time C; for a task is divided into equal sized quanta c;.
We allow J, to be preempted only at the end of a quantum. If the priority of J, is higher than that of J,,
action is initiated to preempt J, at the end of its current quantum. The fully preemptive case occurs when
the quantum size for all tasks is set to 0. The non preemptive case occurs when ¢; is set to C; for all tasks.

Threshold Preemption In this scheme, J, preempts J. if it has the highest priority among the runnable tasks
(including J,.), and the periods T, and T, are related by the inequality T, /7. < K, where the threshold
K, is given by 0 < K, < 1. It is easy to see that the fully preemptive case occurs when the value of the
threshold K, is set to 1. Similarly the non preemptive case occurs when K, is set to 71 /T,.. The idea behind



Preemption Policy Utilization Bound
Rate Monotonic Earliest-deadline-first
Threshold Preemption | n(2Y7 — 1) — max; <, <, - (1/K, — 1) 1 — maxi<r<n ur(1/K, — 1)
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Figure 5: Theoretical results at a glance

threshold preemption is that tasks that have almost equal periods are assigned the same priority. It can be
seen that threshold preemption does not always provide the locking benefits that delayed preemption does,
unless synchronization is needed only among tasks that satisfy the threshold condition.

Table 5 gives an overview of the scheduling results that we derive in this paper. It shows the two preemption
policies we have considered. For both these policies, it shows the modified schedulability tests for RM and EDF that
account for the blocking caused by these preemption policies. The table also lists the extensions to non-preemptive
scheduling (Section 7) and mixed (Section 8) scheduling.

5 Idealized Scheduler Simulation

We have developed idealized scheduler simulation {1ss) as a general method to analyze the effect of policy
blocking on the schedulability test of a scheduling algorithm. The basic idea behind Iss is to simulate the
essential operation of a blocking scheduler (the actual case) with an ideal scheduler (idealized case) that never
blocks. By essential operation, we mean that task invocations in the idealized case complete at the same time as
in the actual case. Thus if the tasks in the idealized case meet their deadlines, then they do so in the actual case
as well. The schedulability test for the idealized case can therefore be adopted for the actual case. To go from
the actual case to the idealized case in 1ss, the computation requirements of the tasks are modified while keeping
their periods the same. For each blocking event that occurs when a task delays its preemption (the blocking
task), the 15s method does the following steps.

1. It determines which tasks need to be modified in the idealized case so as to simulate the essential operation
of the actual scheduler. Lemma 1 shows that we only need to modify tasks that have priority higher than
that of the blocking task.

2. For the higher priority tasks it determines by how much the original computation requirements must be
changed and this is shown in Lemma 2.

3. Due to these changes, the requested utilization of the modified task set becomes artificially higher than
that of the original task set. Since the upper bound on utilization is fixed by the scheduling policy (RM
or EDF), some utilization becomes unavailable. Lemma 3 shows how to calculate this upper bound on the
unavailable utilization.

4. Finally the schedulability test for the blocking case is obtained by taking the maximum of the unavailable
utilization due to all blocking tasks, and subtracting this from the utilization bound of the idealized case.

In this section we state Lemmas 1, 2, 3, and discuss them informally. The proofs are only of technical importance
and are in Appendix A.

We begin with some notation. A task J; in the actual case has a corresponding task J! in the idealized case.
The tasks J{ have modified computation requirements as per the 155 method. We can imagine two schedulers,
one that runs the tasks J;, and the other that runs the tasks J!. We parameterize the time duration for which
a running task J. can block other tasks (the preemption interval) as A,. For example, in the case of threshold
preemption we have 0 < A, <, and in the case of delayed preemption we have ( < A, < ¢,. We now compare
a running task J;, and its counterpart J; in the following lemma.

Lemma 1 Suppose that corresponding invocations of J. and J| are running (in their respective schedulers) at
a gwen time, and a task with higher priority arrives. Suppose J, continues to run for a duration A, thereby



gaining a usage of A, compared to J;. Then at the instant that J, resumes ezecution, J. would have resumed
and regained exactly the amount A, in usage.

Proof: In Appendix A.

An important consequence of this lemma is that in both the actual and the idealized cases, the time at which
the CPU becomes available to tasks with priority lower than J, is the same. Hence only tasks with priority higher
than J. are affected by delayed preemption.

We next identify the set of higher priority tasks that actually get affected by the blocking due to J,. Identifying
this set is necessary to isolate and study the effect of the blocking caused by J,.. This set W,, consists of tasks
that arrive during the preemption interval of J, and are blocked by J,, but which run in the idealized case that is
simulating the essential behavior of the actual case. While analyzing a particular preemption policy we will have
to determine the set W,. Examples are shown in Sections 6.2 and 6.1 where we apply Iss to analyze RM and EDF
scheduling.

In general, we define the set W, = {J,,,...J,,,...J,.}, and the set W/ as the set that contains for each
invocation Jr,; in W, its counterpart J;,. The tasks in W, are listed in order of decreasing priority. For each
invocation J;, let the amount of usage that it obtains within the delay interval be d,,. It can be seen that the
sum of these usages > d,, = A,.

Lemma 2 Consider corresponding invocations in W, and W!. At the end of the preemption interval, each
invocation J/. has got an extra d., amount of usage compared to J.,. If the usage requirement of each Jy;, is
increased by an amount d,,, then both J.. and J., complete execution at the same time. In addition, if a task Jy,
meets its deadline with this increased requirement, then so does the task J,,.

Proof: In Appendix A.

The above lemma determines the amount by which the usage requirements of tasks should be increased so that
they complete (in the idealized case) at the same time as the corresponding tasks blocked by J, in the actual
case. We also note that if the usage requirement of the task J; is reduced by the amount A, then it will complete
at the same time as J,. With these changes, the essential operation of the simulated and actual cases would be
identical. The unavailable utilization due to these modifications is given next.

Lemma 3 The amount of unavailable utilization N, due to blocking by J, is bounded by A.(1/T,, — 1/T;).

Proof: In Appendix A.

The above result can be explained simply as follows. The 155 method increases the computation requirement
of the highest priority task that can be blocked by J;. by an amount A, and reduces the computation requirerment
of Jr by A.. The unavailable utilization is the (artificial) increase in utilization of the blocked task minus the
{artificial) decrease in utilization of J,. Knowing the minimum period 7}, (from W,), and the maximum value
of A, for the task J,, the value of N, can be computed using the above formula. To determine the sufficient
condition for the task set to be schedulable, the worst case value of N, must be determined for all tasks in the
task set and subtracted from the utilization bound of the scheduling algorithm used.

6 Analysis of Preemption Schemes

We now apply the 15s method to analyze various preemption policies introduced earlier. The general technique
is to determine the set W, for the particular scheduling policy (RM or EDF) and the preemption policy (TP or DP)
being used. These can then be used to compute N, in Lemma 3.
6.1 Delayed Preemption

In the case of delayed preemption, a task J. can block any higher priority task. Thus W, can potentially
include all tasks with priority higher than J.. In the rate-monotonic case this implies all tasks with periods
smaller than that of J. are part of W,. The situation is the same in the earliest-deadline-first case as well. This
is because tasks with periods bigger than that of J. will have deadlines later than that of J,. Thus the value of
the smallest period in W, is T} in both the cases. Since the maximum time for which J, can block others is ¢,
N, is bounded by

N,— S c,(l/Tl - I/Tr)



The schedulability test for RM is given by 1 and the test for EDF is given by 2.

U<n@/*-1)- max ¢ (1/T1 - 1/T;) (1)
U<1- llélraécn e (/71 - 1/T;) (2)

The above results give an increased utilization bound compared to [13] where the reduction in utilization due
to blocking would be cpqr /T5.
6.2 Threshold Preemption

In this scheme a task J, can block another task for a maximum time C,. Thus A, < Cy. To determine W, we
have to consider the RM and EDF policies as shown next.

Rate Monotonic Policy In RM an arriving task J, has higher priority if T, < T,. However J, does not
preempt J, if T, > K, T,. Thus in this case the set W, includes all tasks T, with periods less than T} such that
T, > K,T.. The period of the task with the smallest period in W, is given by T,, > K, T.. Thus N, is bounded
by

N, <C,(1/K. T, - |/T;) = u.(1/K, - 1)
It must be noted here that if W, is empty (as it is when » = 1), then N, = 0 regardless of the value of U,. The
schedulability test can therefore be written as

n
= P < n _ 1y - -
U gu < n(2 1) 1rsnr::tsxﬂ ur(1/K, — 1) (3)
It can be easily seen that for K, = 1 the test reduces to the standard result in [11]. It must be noted that the
above result holds for any combination of task periods. For a particular task set, the value of T,, may be larger
than K, T, and so we may get a smaller value of N,, and consequently a better utilization bound.

Earliest Deadline First Policy We determine the set W, as follows. To decide if a task J, that arrives during
J}s preemption interval should be included in W, or not, we consider two cases

T, 2 K;Tr: We first consider the case when J, has the highest priority among all runnable tasks (including
Jr). When it arrives, J, is blocked by J, because of the threshold condition. However in the idealized case,
Ja preempts J, and therefore it is included in W,. On the other hand if J, at the time of its arrival is
not the highest priority task among the runnable ones, then it does not cause a preemption in the actual
case. In the idealized case, the counterpart of the highest priority task in W, should be running when J,
arrives. This is because the 155 method would have increased its usage requirement in such a way that it
can complete only after the delay interval. Thus there is no preemption in the idealized case either, and so
Ja should not be a member of W,.

I, < K¢Tp:  Jg cannot belong to W, in this case because of the following reasons. If J,, when it arrives, has
the highest priority among all runnable tasks (including J,) then it preempts the running task both in the
idealized, and in the actual case. In fact the delay interval A, ends at the instant this preemption occurs.
So J, does not belong to W, in this case. On the other hand if J, at the time of its arrival is not the
highest priority task among the runnable ones, then it does not preempt J, in the actual case by definition
of the preemption policy. As in the previous case the counterpart of the highest priority task in W, should
be running in the idealized case and so J, does not cause a preemption in the idealized case either. Thus
Ja cannot be a member of W,.

Hence the value of the smallest period in W, is such that 7}, > K, T,. Thus N,, is bounded by
N < G(U/KT - 1/T)=u (1/K, - 1)
As before if W, is empty (as it is for » = 1), then N, = 0 regardless of the value of U,. The schedulability test

can therefore be written as n
U= w< 1-121rasxnu,(1/1{, —-1) (4)

i=1



6.2.1 Improvement over Existing Results

For both RM and EDF scheduling, the improvement in utilization compared to the result given in [18] is equal to u,.
As K, approaches 1.0, the unavailable utilization given by [13] approaches u, whereas in our case it approaches
0. Intuitively our result shows that in the limit when X, approaches 1.0, there is no blocking and consequently
there should be no reduction in utilization.

7 Analysis of Non-preemptive EDF Scheduling

In this section we show that non-preemptive scheduling can be treated as a special case of both the threshold
preemption and delayed preemption schemes. Non-preemptive scheduling schemes have many practical advantages
from the implementation standpoint. As stated in [5], they are easier to implement, and their overheads are easier
to characterize. A necessary and sufficient condition is also derived in [5] to determine if a task set is schedulable
under a non-preemptive EDF scheduling scheme. These conditions are stated as—

1 Seym <t
=1

2. vz',1<i5n;VL,T1<L<1E'=LZC='+Z;;11 lLT__,lJC-"

The above tests are derived by computing upper bounds for the processor demand over an interval of time, and
checking to see if this demand can be met by the EDF scheduling scheme within this interval.

The problem with the above test is that the time complexity of evaluating the second condition is polynomial
in the maximum task period [5]. This is because the test has to consider all task arrivals for a duration equal to
the maximum task period. We have obtained a much simpler test for non-preemptive EDF by considering it as a
special case of the threshold and delayed preemption schemes. We illustrate this below:

o Threshold preemption: For each task J;, we set its threshold K; such that it cannot be preempted even by
the task with the smallest period. Since T is the smallest period, if we set K; to the value T} /T, then no
task can preempt .J;.

e Delayed preemption: For each task J;, we set the quantum size ¢; equal to C;. Therefore J; can never be'
preempted by any higher priority task.

Substituting these values into Equations 4, and 2 we obtain a simple sufficiency condition for non-preemptive EDF
scheduling given by Equation 5 below.

U < 1= max C(1/Ti~1/T,) (5)

Equation 5 has a time complexity of O(n) which is a vast improvement over the test in [5]. However our test only
gives a sufficient condition for schedulability whereas the test in [5] provides a necessary and sufficient condition.
In the next section we simulate task sets of different characteristics to see how close our sufficient condition is to
the optimal condition given in [5].

7.1 Comparing the Sufficient and Optimal Conditions

We compare the simple utilization based sufficiency condition (Equation 5) to the optimal, but more complex
necessary and sufficient conditions derived in [5]. We make the comparison by generating task sets based on
some criteria, and determining the breakdown utilization [7] predicted by the two tests. Breakdown utilization is
defined as follows. The execution time for each task is multiplied by a constant scaling factor a while the periods
remain fixed. The utilization point at which any further increase in o causes the schedulability test to be violated
is the breakdown utilization. The difference between the breakdown utilizations for the two tests is a measure of
the amount by which the simple sufficiency condition underestimates the scheduling capacity. For evaluating the
conditions in [5] we used a simplified method suggested in [6].

We vary two parameters while generating a task set-the number of tasks per task set, and the range of periods
of tasks in a given task set. In the first simulation we fix the number of tasks per task set to be 5, and try out
different ranges for task periods in each set. In the second simulation, the task periods range from 100 to 1000,
but the number of tasks per set is varied.
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Figure 6: Accuracy of Sufficiency Condition

o Simulation 1: The ratio of the maximum task period to the minimum task period was varied over different
runs in the range 2 to 10. For each run, 100 task sets were generated with task periods chosen according
to a uniform distribution between the minimum and maximum periods. The computation requirement for
each task was uniformly distributed between 1 and the minimum period. The breakdown utilization for the
two schedulability tests was computed, and the difference between the two was obtained. This is shown in
the first part of Figure 6. The x-axis has different values of this difference (or error). For a given error ¢,
the y-axis shows for what percentage of task sets belonging to a particular period range, the error in our
simple test was less than e. As can be seen, when the range of periods in the task set is small, the majority
of the task sets have errors in the lower ranges. As the range of periods increase, higher error ranges are
more prevalent. The absolute error however can be as high as 45%, which indicates that the sufficiency
bound alone cannot give good utilization in all cases. A reasonable strategy would be to apply the simple
test first while admitting a new task. This is a constant time operation. If the sufficiency condition fails,
the more sophisticated optimal condition can be checked.

¢ Simulation 2: Here we investigate the effect of increasing the number of tasks in a task set on the accuracy of
the sufficiency bound. The tasks were generated as before and the difference of breakdown utilizations was
obtained. It can be seen (second part of Figure 6) that as the number of tasks are increased, the accuracy
of the test increases steadily. When the number of tasks per set is 50 and above, the error is within 10% for
all task sets, We therefore conclude that the sufficiency bound is very useful for larger task sets. It must be
noted that the complexity of evaluating the necessary condition in [5) increases with the number of tasks,
which makes our simpler test even more preferable.

8 Mixed Scheduling—A Modification to RM

In this section we use our earlier results to analyze a simple variation of the rate monotonic scheme. In this
variation, tasks are assigned priorities according to the RM scheme. However, a task arrival that has higher
priority than the running task preempts it only if its deadline is earlier than that of the running task. In other
words, tasks are chosen to run according to the rate monotonic policy, but the preemption decision is based on
an earliest deadline first policy. We refer to this as the mized policy. We show that any set of tasks that are
schedulable by the RM policy, are schedulable by the mixed policy.

An interesting feature of the mixed policy is that it has fewer context switches compared to RM. In fact it
is shown in [12] that EDF has fewer context switches than the RM for periodic tasks. One can see that when
a preemption occurs in the EDF policy, the period of the arriving task must be smaller than the period of the
running task, which implies that a preemption should occur in the RM policy as well. However, every preemption
in RM does not imply a preemption in EDF. The same argument can be made for the mixed policy, and it turns
out that it has almost as few context switches as EDF.
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8.1 Analysis of mixed scheduling

We show that any task set that is schedulable by RM is also schedulable by mixed scheduling. We use Lemma 1
which proves that if a running task J, delays yielding the processor, then its usage at the time instant it resumes!,
is the same as that of its counterpart in the idealized simulation. We consider two cases—

1. All higher priority tasks that arrive have deadlines later than that of J,: In this case J, runs to completion
before yielding the processor. When J, resumes by definition all the blocked tasks should have completed.
By Lemma 1 J; also completes at this time. Since J! meets its deadline, so do the blocked tasks since they
have deadlines later than J;.

2. Some tasks have deadlines earlier than that of J.: An arrival that has an earlier deadline would also have a
smaller period than that of J,. (since deadlines are equal to periods for periodic tasks). When J, resumes,
by definition all higher priority blocked tasks would have completed, and by Lemma 1 J, will have the
gotten the same usage as J/. After this instant either both J. and J! complete execution without further
higher priority task arrivals, or there is a higher priority task arrival and the above two cases repeat again.

Performance of Mixed Scheduling We simulated randomly generated task sets to compare the number of
context switches in the RM, EDF, and mixed scheduling policies. The task periods and computation times were
uniformly distributed as before. The utilization of the task sets was increased in each run until the breakdown
utilization was reached. A count of the number of context switches for each policy was recorded in each run. The
count for each utilization point was averaged over several task sets. The averaged number of context switches
saved in the EDF and mixed policies compared to RM, normalized with respect to the number of context switches
in the RM policy is plotted at different utilization points in Figure 7. Each task set was simulated long enough so
that these values stabilized.

It can be seen that the numnber of context switches saved in EDF is only slightly more than in the mixed policy.
These two curves track each other closely in the utilization range shown. We also see that as the number of
tasks in the task set increases, the relative savings in context switching diminish for both the EDF and mixed
policies. As expected the savings in context switches increase at higher utilizations. The difference between the
EDF and the mixed policies is more at higher utilizations but maximum difference did not exceed 2%. From this
we conclude that the mixed policy is almost always preferable to the RM policy if reducing context switching is

LT it completes execution when it yields the processor, we assumec that it resumes but runs for zero time
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of concern. The only extra operation in the mixed scheme compared to RM is the deadline comparison which is
a constant time operation. In EDF on the other hand the arriving task must be inserted in a queue sorted by
deadline and this takes O(logn) time. The mixed policy therefore combines the simplicity of RM with the context
switching performance of EDF.

9 Accounting for Context Switching Costs

Our analysis of preemption policies shows that the blocking caused by them reduces utilization. However
our experimental results with RMDP indicate that we can support task sets with higher utilization than the case
when we use immediate preemption. It follows that the reduction in the number of involuntary context switches
offsets the loss of utilization due to blocking. We have verified this fact experimentally on the Sparc and Pentium
platforms. We first describe our experiment to measure the context switch time using the RTU mechanism. We
then measure the rate at which involuntary context switches occur when the task set is run. This rate depends
on the clock interrupt frequency. Finally we calculate the loss of utilization due to context switching and how
much we gain by using RMDP.
9.1 Measuring Context Switch Time

The RTU facility helps us measure context switch time using user level programs. We ran two experiments, one
to measure context switch time between RTUs in two different processes (inter-process), and the other to measure
the time to switch between RTUs in the same process (intra-process). We created two RTUs, one with a period of
10 msec and the other with a period of 20 msec. In one case these RTUs were created in different processes and in
the other case they were in the same process. The 20 msec handler goes into a loop polling the flag in its shared
memory structure which is set by the kernel when the 10 msec handler becomes runnable. When the handler
detects the flag to be set, it records the time and yields the cPU. The kernel saves the state of the yielding process
and switches in the process that has the 10 msec RTU. The handler of the 10 msec RTU is written to return as
soon as it is called. The 20 msec handler that had yielded earlier is still in the run queue at this point. The
kernel switches in the process that contains the 20 msec RTU and invokes its handler. When the handler resumes,
it records the resumption time. The difference between these times gives the time for two context switches, i.e,
from the 20 msec RTU to the 10 msec RTU, and back. Half of this gives the context switch time. The context
switch times as measured on a 100 Mhz Pentium and on a 25 Mhz Sparc-1 are shown in Table 8. We can see
that with a 1 msec clock rate, preemptions on the Sparc-1 will impose too much overhead. We expect that newer
Sparc machines will not have this problem. For now, all experiments are reported for the Pentium machine.
9.2 Measuring Number of Context Switches

We now go back to our experiment in Figure 4 to explain why the 90 msec RTUs were missing their deadlines
when we used immediate preemption (IP) but were able to meet their deadlines when we used non-preemptive
(NP) scheduling. Consider the 1P case shown in Figure 9. A 90 msec RTU J, arrives at ¢, but is unable to complete
before 14 + 90. Let f,,¢, be the time at which the previous invocation of J, completes. J, can be affected due to
preemption in the following two ways:

e If P, preemptions occur between tpre, and ¢,, the higher priority RTUs (dashed lines) that are in the run
queue at £, get delayed by the time for P, preemptions. Since J, can run only after the higher priority
tasks complete, J; also gets delayed by P, preemptions.

e If P preemptions occur between ¢, and t, + 90 then J, gets further delayed by time for Py preemptions.

We need to measure P; and P, in the worst case. We measured tprev t0 be t4 — 70 msec. Therefore we need
to measure the number of preemptions that occur in the worst case in an interval of length 70 + 90 = 160 msec.

We measured the number of preemptions in any interval / msec in the following manner. The scheduler
maintains a moving window with [ slots, one for each tick. Each slot records a “hit” if a switch occurred on that
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clock tick. By moving this window across the “tickline” we counted the maximum number of hits in any J msec
interval. For I' = 160 this number was as high as 110. Each preemption costs 2 context switches. Using the values
shown in Table 8 for Pentium, each preemption costs 0.07 msec which results in a delay of 110 * .07 = 7.7 msec.
9.3 Interpreting Experimental Results

The above measurements show that preemptions can cause delays which could lead to missed deadlines. By
reducing the number of preemptions using a scheduling scheme such as RMDP, we can offset the reduction in
utilization that is predicted by our analysis. In the experiment above, the reduction due to blocking given by
Equation 1 was 0.54(1/40 — 1/90) = 0.75%. On the other hand by avoiding the overhead due to preemption
we can increase available utilization by upto 7.7/90 = 8.5%. Our goal is to be able to predict the gain due to
reduction in preemptions not only for the non-preemptive case shown above, but also for other cases. We are
currently looking into ways to do this.

Estimating gains from saving system calls The measurements presented earlier only consider gains due to
reduction in preemptions. We can also model the gains due to saving on locking system calls in a simple manner.
If we assume from [1] that each system calls is 770 cycles, then one pair of lock set/release operations should
take (assuming cycle time is 10 nanoseconds) 770 + 2 % 10 = 0.015 msec. Even if one lock is acquired and released
per period by each RTU the total utilization due to locking is .015 % 16 # (1/40 + - - - + 1/90) = 2.4%. Typically
locking is done per packet (or a batch of packets), and thus the cost of locking increases linearly with the number
of batches processed per period. If we assume a 10Mbps link speed, at least 1 1KB packet must be processed
per msec to fully utilize the link. In this case a lock per packet represents 1.5% of cPu time. This cost increases
linearly with link speeds assuming packet sizes remain the same. Since speeds of 100 Mbps are not uncommon,
this linear increase can reduce throughput seen by applications. Thus schemes such as RMDP that do not incur
additional per packet costs will scale well to higher speeds.

10 Conclusions

With the rapid deployment of multimedia applications, the need for real-time scheduling in general purpose
computers continues to increase. We have implemented the RMDP scheduling mechanism so that protocol pro-
cessing can be done efficiently. RMDP lowers the costs of context switching, and eliminates the need for locking
operations in protocol processing. To be able to use RMDP and other practical scheduling schemes that operate
in the region between strict preemption and non-preemption, we have developed analytical tools based on the
idealized scheduler simulation methodology. Using this we were able to derive simple schedulability tests for
rate-monotonic and earliest-deadline-first scheduling that apply in cases when preemption is not immediate. The
use of preemption policies such as delayed preemption has the potential to reduce context switching costs. To
quantify these savings, we measured context switching costs on the Sparc-1 and Pentium platforms. From the
measured values we conclude that the Sparc-1 platform will perfortn poorly specially when clock interrupts occur
every 1 msec. We then estimate the gains due to savings in system calls during protocol processing. We show
that these costs are substantial and increase with transmission speeds, and so eliminating them makes RMDP scale
well to high speeds.
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A Appendix

This section contains the proofs of Lemmas 1, 2, 3 on which the Iss method is based. We restate the lemmas
that appeared in Section 5.

Lemma 1 Suppose that corresponding invocations of J. and J| are running (in their respective schedulers) at
e given time, and a task with higher priority arrives. Suppose J, continues to run for a duration A, thereby
gaining a usage of A, compared to J!. Then by the time J. resumes execution, J. would have resumed and
regained exactly the amount A, in usage.

Proof: We assume that both J; and J, resume execution after the higher priority task completes execution. (If J,
were to complete its execution in the time A,, it would normally not resume. However for the sake of uniformity,
we assume that J. does resume, but it runs for 0 time before completing).

Figure 10 shows the times b and a at which J, and J] are preempted, and the times d and ¢ at which they first
resume execution. We note that the usage requirement of higher priority arrivals is the same in both schedulers.

There are two cases to consider.

15



Sk EEEEEREE IEEEEEEET R T TS \f 42
=
|8
-------- L il LR LR L LR EEE R B I 5
a b c d a0
L 1 1 |8
1 O T 1e
Ar &
(a)
olbeseoe o peoeen- R ERRCRIEETS S
e 'g
________________________________________ I. .
. | | i |£
2 ¢ Ej
- —H 18
A, g
(b)

Figure 10: Effect of Delaying Preemption

¢ There is no higher priority arrival between ¢ and d. In this case the amount of demand for cPu by higher
priority tasks between @ and ¢ is the same as that between @ and d. Since J! resumes at ¢, the time for higher
priority tasks to complete their execution is ¢—a. Hence d —b must equal c—a and hence d—¢ = b—a = A,.
Therefore at time d, J; has got back exactly A, of CPU time after resumption. This also means that J, and
J! have obtained the same usage between @ and d.

¢ There are higher priority task arrivals between c and d. This case is shown in Figure 10(b) where there is a
higher priority task arrival at e with a service time requirement of €. After J! resumes at ¢, it runs until e
and then resumes after an interval e. However, J, must also wait for the arrival at e to complete its work.
Hence d — b= c—a+ ¢ and hence d — ¢ = A, + €. Since J! resumes at ¢ and it takes A, + ¢ time after this
for it to accumulate A, amount of usage, the time at which this happens is d which is the time at which J,
resumes. Therefore in the interval [a, d] both J, and J! have got the same amount of usage namely A,.

O

One implication of this lemma is that the relationship between the CPU usage of J. and J! that exists at
the time when a higher priority task arrives is restored once the higher priority arrival completes its execution
requirement and both invocations resume execution. Another consequence of the above lemma is that regardless
of whether a task blocks other tasks, the time at which the cPU becomes available to lower priority tasks is the
same. Hence we only need to consider higher priority tasks that get blocked because of the blocking caused by
Jr.

The next lemma uses the set W,, and W/ that was explained in Section 5. The tasks in W, are listed in order
of decreasing priority. For each invocation J; , let the amount of usage that it obtains within the delay interval
be dy,. It can be seen that the sum of these usages 3 d,, = A,. We will refer to the time at which an invocation
J;, completes its execution to be the “normal” completion time. We relate the members of W, and W/ in the
following lemma.

Lemma 2 Consider corresponding invocations in W, and W/, At the end of the delay interval, each invocation
J;.. has got an extra d,, amount of usage compared to J.,. If the usage requirement of each Jy. is increased by
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an amount d,,, then both J; and J,, complete ezecution at the same time. In addition, if a task Ji, meets its
deadline with this increased reqmrement then so does the task J,,.

Proof: We prove this by induction on the index 7 in r;. We first consider i = 1. After the preemption interval,

the task J;, begins execution, and at this point J;, would have got a usage of d,, since its arrival.
We first consider the case when there is no higher pnorlt.y invocation arrival until J, completes. In this case, J,,
will have to run for a time d,, after the normal completion time in order to satisfy 1ts usage requirement. However
if the usage requirement of J] were to be increased by an amount d,.,, then both Jr, and J,, will have the same
CPU requirement at the end of the delay interval and they will therefore complete at the same time. If the total
utilization is such that this increase in usage requirement does not increase the total utilization beyond the bound
given by the schedulability test, then the task J! meets its deadline and hence J,, also meets its deadline. In
addition they both complete at the same time.

If we allow higher priority arrivals before J; completes, then J., could delay yielding the cPU by an amount
A,,. However according to lemma 1, the relationship in usage between J,, and J}, is restored after they both
resume. Therefore the argument in t.he previous case applies also to this case. Thus Jr, meets its deadline and
it completes at the same time as J/, even when we allow preemptions.

We now assume that the result holds for all invocations upto Jr,_,. Since J;,_, and J/ _ complete at the same
time, Jr, and J, get the cPU at the same time. At this time the difference in usage between them is exactly
dy,. Therefore the argument for ¢ = 1 again applies, and as before holds good even if we consider preemptions.
Therefore they complete at the same time and the invocation J;, meets its deadline provided Ji, meets its
deadline.

a

Lemma 3 The amount of unavailable utilization N, due to blocking by J. s bounded by A, (1/T;, — 1/T).

Proof: The unavailable utilization due to J. is the amount by which the utilization of the task set has been
artificially increased by modifying the usage requirements. ‘This is given by

Ne = (do/Toi 4. +dr, /T0 ) — AT,
< Ti(dr. +...+d,) - AT,
= AT, - 1/T}) (6)
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