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ABSTRACT OF THE DISSERTATION 

Specific roles of macaque parietal regions in making saccades and reaches 

by 

Eric A. Yttri 

Doctor of Philosophy in Biology and Biomedical Sciences  

(Neurosciences) 

Washington University in St Louis, 2011 

Professor Lawrence H Snyder, Chairperson 

 

A principle task of our brain is to guide movements, includng saccade (fast eye 

movements) and reaches towards things that we see.  Regions in the parietal cortex such 

as LIP and PRR are active during visually-guided movements.  Neurons in these areas 

respond differentially for saccades versus reaches, but in most parietal areas there is some 

response (in single unit recording as well as in fMRI imaging) with either type of 

movement.  This raises an important question.  What is the functional significance of the 

neuronal activity in parietal areas?  Recording and imaging studies can only show 

correlations; causal roles must be inferred.  The activity in any particular area could 

reflect where the subject’s spatial attention is directed, without regard for what behavior 

the subject will perform.  Stronger activity in one task compared to another could reflect 

differential allocation of attention.  For example, we might attend more strongly to a 

target for an eye movement than to a target for an arm movement, or vice versa. 

Alternatively, might play a causal role in driving only one type of movement. In this case, 

the weaker activity evoked during a different type of movement might serve no purpose 
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at all; it might represent a contingency plan to perform the non-selected movement; or it 

might be serve some other function unrelated to the specific movement – for example, 

weak saccade-related activity in an area with strong arm movement related signals might 

support play no role in driving eye movements, but instead provide timing information to 

the reaching system to support eye-hand coordination.    

To help resolve this mystery, we used an interventional approach.  We asked what 

happens to reaches and saccades when we reversibly lesioned specific areas in the 

monkey parietal cortex.  In order to establish what brain regions were affected in each 

inactivation experiment, we developed a novel technique to image the location of the 

lesions in vivo.  The results of this causal manipulation were clear:  LIP lesions delay the 

initiation of saccades and have no effect on reaches, while PRR lesions delay the 

initiation of reaches and have no effect on saccades.  We obtained further evidence for a 

more motoric role for parietal areas than previously suspected.  PRR was active for 

reaches of only the contralateral arm, aimed at targets in either hemisphere – similar to 

the typical profiles of motor but not visual sensory areas.  Interestingly, LIP lesions did 

influence reaches, but only when the animals were allowed to first look at the target 

before reaching for it. We believe that in this case, the reaching movement "waits" for the 

saccade system, and so the direct effect of the lesion on the saccades has an indirect 

effect on the reaches.   

      These results are important for several reasons.  First, they resolve a long-standing 

debate regarding the functional specificity of parietal areas with regard to particular 

movements and attention.  They provide new information on the circuits guiding eye 

movements, arm movements and eye-hand coordination.  Finally, our results underscore 
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the fact that measurements of neuronal activity can be misleading, and are only one of 

several tools that must be used in order to understand brain function. 
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Chapter 1:   Introduction 

 

1.1  Overview 

 Pick up this thesis.  This seemingly simple task requires the movement of the 

eyes, the movement of the arm, and a brain to organize a complex series of computations.  

As this example exhibits, we are perpetually taking in sensory cues, pulling out the useful 

information, and sorting through this information to react to the world around us.  Visual 

stimuli enter the nervous system through the eye, in the form of photons that cause the 

depolarization of photoreceptors in the retina. and this information is sent up through 

visual cortical areas, becoming more highly processed and specialized with each step. In 

the primary visual cortex, neurons are tuned simply to colors, orientations, and locations, 

while farther downstream, more elaborate properties are extracted.  For instance, in area 

MT, cells respond to objects moving in specific directions (Britten et al., 1993). This 

information is used to determine what is relevant, where to pay attention, and how to 

react to the visual world: a visuomotor transformation. The superior colliculus, for 

example, is a visuomotor area that uses visual information to encode shifts of gaze to an 

attended target (Sprague and Melkle, 1965).   

Straddling the visuomotor stream between “monkey see” and “monkey do” sits 

the posterior parietal cortex (PPC), where many sensory to motor transformations are 

thought to occur (Mountcastle et al. 1975; Andersen et al., 1993). Although nearly all 

PPC neurons respond to visual stimuli, there exists a division of labor between regions; 

different parts of PPC respond preferentially to different tasks (Colby and Duhamel, 

1991).  For example, lateral intraparietal area (LIP) on the lateral bank of the intraparietal 
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sulcus (IPS) responds strongly to a target instructing the performance of a saccade rather 

than to an arm movement, such as in LIP.  The opposite case is true in areas such as 

parietal reach region (PRR), wherein neuron responses are not only biased for reaches 

over saccades, but also reaches with the contralateral limb over reaches with the 

ipsilateral limb (Chang et al., 2008).   Putative functional homologues have been 

identified by MRI studies in humans.  These studies have found that human PPC also is 

incompletely biased, regions within PPC show more activity in connection with either 

eye and arm movements (Kertzman et al., 1997; DeSouza et al., 2000; Connolly et al., 

2003; Medendorp et al., 2003; 2005; Grefkes et al., 2004; Prado et al., 2005; Fernandez-

Ruiz et al., 2007, Hagler et al., 2007).  

 

1.2   The functional relevance of activity in parietal regions (The quandary of 

posterior parietal cortex?) 

A critical question about these data pertains to the functional significance of the 

incomplete specificity for effector, that is, preferential activity in relation to what is being 

moved.  For example, LIP is very active in the delay period preceding a planned saccadic 

eye movement, and somewhat less active in the delay period preceding a planned 

reaching movement. What roles does LIP have in preparing reaches or saccades?  Three 

types of interpretations could be posited for this spectrum of activity.  First, LIP could be 

completely effector specific, playing a role in saccades but not in reaching. In this 

scenario, the activity recorded prior to a reach would be non-functional or would serve a 

function unrelated to the actual reach. Second, LIP could be incompletely effector 

specific, playing a major role in saccades and a minor role in reaches. Third, LIP could be 
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completely effector non-specific. In this scenario, LIP activity reflects the subject's 

attentional locus or a salience map of the visual field. The reduced activity prior to a 

reach may reflect the possibility that subjects pay less attention to a planned reach target 

than to a planned saccade target. 

An equally important issue, the question of how space is represented at different 

stages of visuomotor transformation, can provide insight to the organization of the brain.  

Early visual areas receive input only pertaining to the contralateral visual hemifield.  

Objects are identified in this limited visual space and neural computations address the 

sensory issues of “where” and “what” in the surrounding world.   In later, more motoric 

regions, this spatial hemifield specificity is lost to an organization that represents both 

visual fields.  At this level, motor commands are generated, encoded relative to the 

extrinsic space of the effector and its muscles (Georgopoulos et al., 1986; Kalaska et al., 

1989, Kalaska et al., 1997; Schwartz and Moran, 2000).  Although the input and output 

ends of this transformation are well studied, we have not clearly identified the roles of the 

neural populations responsible for visuomotor transformations. 

A related question pertains to where motor commands become lateralized to the 

contralateral side of the body.  PRR activity is only weakly biased for reaches with the 

contralateral limb over the ipsilateral limb, as would be expected in a sensory area.  

However, the over-representation of the contralateral limb relative to the ipsilateral limb 

is suggestive of some degree of lateralization.  We can postulate similar hypotheses for 

limb laterality as those identified above for effector specificity.  The common thread to 

all of these issues is the inability to draw conclusions about function from neural 

responses.  
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This ambiguity is possible because unit recording and functional MRI can only 

demonstrate correlations.  Unfortunately, when using techniques that record the intensity 

of biological signals, the scientist becomes merely a passive observer, rather than an 

active experimenter inducing changes and measuring the subsequent differences in the 

dependent variables.  As a result, unit data and fMRI are not ideal tools for establishing 

the functional role of cortical regions.  This issue is an important one, and its analysis is 

vital to comprehending how and where the brain interprets stimuli and then formulates an 

appropriate response.    

Interventional methods, unlike observational measurements, provide a 

straightforward method to establish a causal relationship between PPC regions and 

behavior. To this end, we used experimenter-induced lesions to study the PPC.  Like any 

technique, the lesion experiments come with their own drawbacks.  As we’ll address in 

more detail later, the actual effects of the lesion do not directly indicate the role of the 

lesioned area, but rather they reveal how the brain functions without the region of 

interest.  This caveat is often made worse due to the non-specific nature of many lesions.  

Aspiration, resection, many pharmacological techniques and certainly natural lesions are 

generally difficult to confine to one region, and both the region of interest and fibers of 

passage traversing through the lesion are removed.  This can cause widespread damage to 

the brain, the combined affects of which are difficult to understand.  To counteract this 

latter issue, we used a more recent technique, injections of the GABAa agonist muscimol 

to temporarily inactivate neurons near the injection site.  Just like GABA, muscimol 

causes chloride channels to open, hyperpolarizing of the cell and preventing action 



 5 

potentials.  Because these GABAa channels are only located on the dendrites and soma 

(Takeuchi and Onodera, 1972), nearby fibers of passage are not affected by muscimol.   

Whereas electrophysiology can provide detailed information from individual 

neurons that can be correlated to behavior, inactivation provides causal connections 

between the affected area and behavior.  By observing the result of a temporary lesion of 

a particular area on the performance of a battery of tasks, we can characterize the role 

that area plays in each behavior.  This approach is well-suited for addressing my 

questions – not only is a cause-and-effect link established between the function of a 

particular area and a particular action, but the results produced are measured in absolute 

terms of actual behavior.  While the significance of small changes in neural activity may 

be debated or misinterpreted, changes in accuracy or reaction time provide objective and 

direct indication of what the region of interest is doing.   

 

1.3  The role of LIP in visually-guided movements. 

When a person reaches for an object, many things must happen.  First, any 

sensory cues must be processed in order to determine their identify and location.  Next, 

the “spotlight” of attention focuses in on the object as necessary. Next, movements of the 

eye and arm to the attended object are planned and executed.  If the eyes are involved in 

another task, for instance, reading the morning paper while you want to grab your coffee, 

the reach can be dissociated from the eye movement.  We perform this progression of 

activities many times each day, and area LIP in the PPC has been implicated in every step 

of it.  

LIP is a visuomotor area whose role is hotly contested. It has been implicated in 
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both visual attention (Colby et al., 1996; Gottlieb et al., 1998; Wardak et al., 2002; Bisley 

and Goldberg, 2003; Wardak et al., 2004) and motor planning (Lynch et al., 1985; 

Andersen et al., 1990; Barash et al., 1991; Snyder et al., 1997; Their and Andersen, 1998; 

Li et al., 1999), in addition to numerosity (Roitman et al., 2007), shape (Janssen et al., 

2007) and subjective value (Platt and Glimcher, 1999). These claims stem from the 

activity profile of LIP.  LIP consists of neurons that increase their activity in response to 

a visual cue, particularly in the contralateral visual field, and exhibit prolonged delay 

period activity prior to movements of the arm or eyes (Gnadt and Andersen, 1988; 

Goldberg et al., 1990; Snyder et al., 1997; Qian Quiroga et al., 2006).   

Although most neurons in LIP respond more strongly to saccades than reaches, 

one-fifth of LIP cells exhibit greater activity prior to a reach than a saccade (Snyder et al., 

1997). The contralateral field selectivity and similar activity in response to movements of 

different effectors may reflect a role in attention, suggesting that LIP may represent a 

salience map of potential targets to attend to (Colby et al., 1996; Gottlieb et al., 1998, 

Bisley and Goldberg, 2003; Constantinidis and Steinmetz, 2005).  The small preference 

for saccades over reaches would be the result of more attention being given to a potential 

saccade target.  The activity could also represent a pluripotent motor intention – an early, 

intermediate motor plan to move a yet undetermined effector.  In either case, downstream 

regions would be charged with specifying which effector(s) to move.  

On the other hand, the bias of activity could be indicative of a motor specific area.  

Saccades elicit a greater overall response than reaches, and this preferential firing may 

have a functional significance.  LIP could be primarily involved in the planning of 

saccades, with only some involvement in the planning of reaches.  Yet another possibility 
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is that LIP is saccade specific, with the reach-related activity playing no operative role.  

A variation on this theme is the hypothesis that LIP plays a role in the coordination of 

combined movements of the eye and arm.  Coordinated eye-arm movements are tightly 

coupled, such that the latencies for each movement are highly correlated (Prablanc et al., 

1979; Fisk and Goodale, 1985, Snyder et al., 2002; but see Abrams et al., 1990).  When a 

behavioral perturbation is introduced, the processing time of the movements increase in a 

coordinated fashion (Saslow, 1967; Herman et al., 1981; Bekkering et al., 1996; 

Boulinguez et al., 2001).  Neurons that represent both saccades and reaches would be 

ideally suited to yolk coordinated eye-arm movements (Fischer and Rogal, 1986; 

Lunenburger et al., 2008).  LIP provides an attractive neural substrate for the 

coordination of saccades and reaches. It is clear that causal evidence is necessary to 

address the issue of the functional role of LIP. 

 Beyond observational studies, LIP has been the subject of much interventional 

research.   Microstimulation has been used to inject current into LIP (Thier and Andersen, 

1998, Mushiake et al., 1999).  These studies found that LIP stimulation evoked saccades 

while leaving other effectors unaffected.  The ability to cause effector-specific 

movements was interpreted as a sign that LIP is a motor planning area.  However, 

microstimulation effects can be difficult to interpret. The applied current may spread 

along axons in the vicinity, directly affecting regions that were not intended to be 

stimulated. Additionally, stimulation may be subthreshold to evoke a movement, but still 

interfere with the normal processing. 

Another interventional approach to studying the brain is to use lesions.  By 

removing or inactivating part of the brain, we can assess what role the missing area 
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played in behavior.   Just as with other techniques, the inactivation studies of LIP have 

produced mostly contradictory results.  A study of rat PPC demonstrated that lesions 

induce slowed initiating of contralateral limb responses, while leaving attention and 

covert orienting intact (Ward and Brown, 1997).  In LIP inactivation studies in non-

human primates, resection (Stein, 1983; Lynch, 1992) or temporary inactivation (Li et al., 

1999) of LIP caused pronounced deficits on visually- and memory-guided saccades.  

However, these saccadic effects could be explained as being resultant of an impairment in 

attention.  In fact, Wardak and colleagues inactivated LIP and found no saccade deficits, 

but did report significantly increased response times during a visual search task (Wardak 

et al., 2002).  In a later study, this effect on the ability to quickly search for a specific 

target was dissociated from the saccadic report, fortifying the argument for an attentional 

role in LIP (Wardak et al., 2004). 

Our lab has used temporary inactivation to study LIP previously (Liu et al., 2010).  

Monkeys were trained in a memory saccade task as well as a search task in which the 

monkey had to make a single saccade from the fixation point to a designated shape 

among seven unique distractors of the same color and size.  Although the monkeys used 

saccadic report, we were able to distinguish between an oculomotor and attention effect 

by inserting trials at random in which no distractors were present.  Inactivation solutions 

were mixed with the manganese, an MR-lucent contrast agent.  This novel application of 

manganese-enhanced MRI (ME-MRI) provided in vivo localization of the inactivation 

site.  In a decisive finding, we found a functional division between the dorsal and ventral 

subdivisions of LIP (LIPd, LIPv).  Although there are previous reports identifying the 

anatomical division (Andersen et al., 1990; Lewis and Van Essen, 2000), most studies 
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continue to consider LIP a largely homogenous region.  When the experimental data were 

separated into injections that inactivated either the dorsal or ventral subregion, we found 

that only LIPv inactivation caused deficits in a covert visual search task, indicating that 

only LIPv may be involved in allocating attention.  Inactivation of either subregion 

caused increased latency in the saccade task, consistent with an oculomotor planning role.   

The subregions did differ in their effects, as LIPv inactivations caused slowing of 

saccades only into the contralateral visual hemifield, while LIPd inactivation slowed 

saccades in both hemifields.   These results in part explain the controversy in the field, 

and establish that oculomotor planning can exist apart from attention. 

However, this latest study leaves some important questions unanswered.  For 

either area, the distinction of ‘oculomotor planning region’, rather than “motor region” 

cannot be made without first dissociating saccades from other movements.  LIP strongly 

modulates its activity for both saccades and reaches, and it is possible that either division 

may play a role in reaching movements or coordinating eye-arm movements.  Similarly, 

the possibility exists that the saccade effect in LIPv is the result of a loss of attention 

resources, rather than the loss of the neural substrates for both sensory attention and 

motor intention.   By subtracting out the oculomotor effect from the search task, any 

additional effect we can attribute to the increased attentional demands of required to 

search among the distractors (Wardak et al., 2002, Liu et al., 2010).  However, this does 

not rule out that the original effect on saccades was not due to a deficit in attention.  

Remember, only movements into the contralateral hemifield were affected following 

LIPv inactivation, while saccades into either hemifield were slowed following LIPd 

inactivation.  This may reflect more sensory-attention and motor-intention roles, 
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respectively.   

The solution to the issues of both oculomotor/motor and attention/motor intention 

can be achieved if LIP is inactivated during a reach tasks.  There have been no lesion 

studies in which saccades and reaches were directly compared.  Not only is this paradigm 

essential to decipher the purpose of the reach signals found in LIP, but also the above 

claims about the function of LIPd/v can be tested.  LIP’s role in saccade, reach, and 

coordination can be directly assessed using tasks where the animal performs eye 

movements, arm movements, or coordinated movements of both the eye and arm, 

respectively.  Furthermore, if some degree of effector-specificity is found, the extent to 

which LIPv contributes to attention can be determined.  Deficits in visual attention should 

affect any cued movement similarly.  If whatever effector-specific effect in LIPd is 

abolished following LIPv inactivation, it can be assumed that the purported motor 

contribution of LIPv was actually the byproduct of a visual attention deficit.  Conversely, 

if no changes in motor specificity are found, we can conclude that LIPv contains separate 

motor planning and attention circuits, the latter of which is particularly susceptible to 

increased task demands.  

 

1.4 The role of PRR in reaching movements 

Across the sulcus from LIP in the medial and posterior portion of the IPS sits 

PRR.   PRR is a functionally defined region encompassing portions of MIP (Calton et al., 

2002) and V6a (Galletti et al., 1999; Lewis and Van Essen 2000b).   Neurons in PRR are 

characterized by visual responses following the appearance of a target within its receptive 
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field.  In addition, PRR is active during delay and movement aspects of a task (Colby and 

Duhamel 1991; Caminiti et al., 1996; Johnson et al., 1996; Fattori et al., 2001; Buneo et 

al., 2002). Consistent with its location in association cortex, PRR responds to targets 

presented in stimulus modalities, including auditory and visual (Cohen and Andersen, 

2000; Cohen et al., 2002).  Likewise, it encodes information about where in space a 

movement should be made, as well as non spatial information about what effector to 

move (Calton et al., 2002).  There is an interplay between response modalities, as activity 

is systematically modulated by the difference between eye and hand position (Buneo et 

al., 2002; Fattori et al., 2005; Marzocchi et al., 2008; Chang et al., 2009). Like LIP, PRR 

modulates its activity prior to both saccades and reaches; however, unlike LIP, PRR 

responds more strongly for reaches than saccades (Snyder et al., 1997; Cohen and 

Andersen, 2000; Kutz et al., 2003; Calton et al., 2002; Quian Quiroga et al., 2006).  There 

is an additional incomplete bias between the limbs.  Preceding a movement, roughly 1/3 

of PRR cells respond preferentially to movements of the contralateral limb.  Half of PRR 

neurons respond similarly to movements of either limb, while the remaining 1/6 of 

neurons fire more strongly for ipsilateral limb movements (Chang et al., 2008). 

The activity in PRR could be interpreted in one of three ways.  First, PRR might 

encode behaviorally relevant spatial locations, independent of the effector to be moved.  

In this scenario it is difficult to explain greater activity prior to a reach compared to a 

saccade.  Second, PRR might be partially effector specific, playing a major role in 

reaches and a minor role in saccades.  Finally, PRR might be completely effector 

specific, contributing to reaches but not saccadic eye movements.  In this last case, the 

activity seen in PRR that is associated with a planned saccade would not be relevant to 
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function or would serve a reach-related function; e.g., it might help coordinate eye and 

arm movements (Pesaran et al., 2006).  

 A related issue concerns the spatial organization of PRR.  Does PRR resemble an 

early visual area, receiving visual input from the contralateral hemifield and contributing 

equally to movements of ipsilateral and contralateral limbs?  Or is the organization more 

like a cortical motor area, receiving visual input from both hemifields and contributing 

primarily to movements of the contralateral limb?  Recording studies in PRR suggest an 

intermediate organization.  Visual responses reflect targets from both hemifields with a 

slight contralateral field bias (Fattori et al., 2005, Chang et al., 2008), and movement 

planning responses are slightly biased for the contralateral forelimb (Chang et al., 2008).   

The functional significance of these weak biases (reaching over saccades, contralateral 

limb over ipsilateral limb, contralateral field over ipsilateral field) is not known. 

Unlike saccades, reaching movements can be performed with individual effectors.  

The decision of which limb to move, rather than which effector to move, is a more 

complex, more specific motor plan.  Strong evidence for limb selection currently exists 

only in downstream visuomotor areas (Donchin et al., 1998; Hoshi and Tanji et al., 2002; 

Cisek et al., 2003). Based upon the proposed visuomotor hierarchy of Felleman and Van 

Essen (1991), it is unlikely that limb-specific processing would occur at the level of PRR. 

However, it is possible that the brain begins to turn the “sensorimotor corner” (Krauzlis 

and Halfed, 2007) earlier than expected.  The activity biases in PRR are suggestive of at 

least a potential bias in limb representation.  Additionally, the level of activity of PRR 

neurons is inversely proportional to the reaction time of the ensuing movement, but only 

when the movement is made with the contralateral, not ipsilateral limb (Chang et al., 
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2008).  However, if is difficult to determine how these activity correlations shape 

visuomotor processes. 

The functional relevance of neural signals can be tested using interventions.  

Across primate species there have been interventional studies of the contribution of PRR 

to behavior.  Our lab has previously attempted to use electrical microstimulation to evoke 

movements (Chang and Snyder, unpublished data), but no clear effect on any effector 

was found – even when injecting high currents over long durations.  Microstimulation 

effects can be difficult to interpret, and the absence of effect does not signify that the 

stimulated region plays no role in movements. Lesion studies provide a different 

interventional technique to determine the functional significance of a region.  However, 

those studies that included the medial bank alone are few. 

Lamotte and Acuna (1978) aspirated large tracts of the PPC, but focused their 

lesions around the medial bank.  These unilateral lesions caused contralateral limb-

specific deficits in reaching to targets in either visual hemifield.  When medial IPS 

regions MIP, area 5, and dorsal-lateral IPS area 7b were removed, reaches were impaired 

to remembered targets in the dark (Rushworth et al., 1997).  Most recently, V6a, an 

anatomical region within PRR, was lesioned, causing misreaching and misgrasping with 

the contralateral limb (Battaglia-Mayer et al., 2002).  Only reaching was examined in 

these studies, so it is impossible to determine if the affected regions contributed to other 

movements, such as saccades. 

To address these issues, we studied the effect of focal lesions in functional area 

PRR.  Monkeys were trained to perform memory-guided saccade and reach tasks. 

Performance was compared between control and lesion sessions.  With this approach, we 
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could directly probe the function of PRR.  If the neural activity related to saccades or 

reaches with either limb were functionally utilized, their absence should be expressed in 

the form of impairment of those respective movements.  If more than one effector 

demonstrates impairment, it is possible that the multiple effector signals reflect a salience 

map of potential targets.  To test for this possibility, the monkeys were also trained in a 

covert visual attention task in which a unique target had to be chosen from amongst 

several similar distractors.  We assessed the post-lesion performance in this battery of 

tasks to determine what role PRR plays in visuomotor processing 
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Figure 1.1: Borders of PRR, dorsal LIP and ventral LIP. Anatomical boundaries of PRR, 

LIPd, and LIPv and are shown on a flat cortical surface. A darkening of the image 

indicates depth. (generated from Lewis and Van Essen 2000 data, CARET, 

http://brainvis.wustl.edu, sum database: Macaque.F6.BOTH.Std-MESH.73730).  

 

A = anterior; P = posterior; L = lateral; M = medial.   

IPS = intraparietal sulcus; STS = superior temporal sulcus; POS =  parieto-occipital 

sulcus; MIP = medial intraparietal area; LOP = lateral occipital parietal area; PO = 

parietal-occipital area; V6A = area V6a. 
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Figure Error! No text of specified style in document..2: Muscimol+Mn-MRI technique. 

A) Schematic of the chamber coordinate system from a fiducial cylinder projected to the 

cortical surface. B) The recording grid, separated into one millimeter tracks, while the 

fiducial cylinder contains axial holes serving as physical landmarks, one in the center and 

three at offset locations (separated 4.5 mm center-to-center).  C, D) Sample muscimol-

mangaese injections resulting in a bright halo in the dorsal portion of the lateral bank of 

the IPS, seen here in a coronal slice (left) and horizontal slice (right). 
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Chapter 2: Reversible inactivation of posterior parietal area 

LIP affects reaches only when accompanied by a saccade 

 

2.1 Abstract 

 Visually guided movements use cues in visual space to create a motor plan for 

one or more effector.  Visual sensory cortex processes spatial information from the 

contralateral hemifield.  At the other end of the visuomotor processing stream, motor 

output areas demonstrate a contralateral corporal organization for movements towards 

targets in either visual field. LIP consists of neurons that increase their activity in 

response to a visual cue and exhibit prolonged delay period activity prior to a movement. 

The activity profile of LIP neurons is weakly biased such that saccades elicit a slightly 

stronger response than reaches. To determine the functional relevance of this bias, we 

compared the effects of LIP lesions in coordinated and dissociated saccade and reach 

behavior.  When comparing dissociated movements, the effects were saccade specific. 

Additionally, we found evidence that coordinated eye-arm movements are yoked at the 

neural level, and that reach latency is contingent upon saccade latency.  

 

2.2 Introduction 

 An important function of the brain is to take in visual information, to process that 

information, and then to react appropriately.  For primates like ourselves, reactions are 

often in the form of either a saccadic eye movement to foveate the target, an arm 

movement to manipulate the target, or both movements in a coordinated fashion.  
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Additionally, in order to perceive and plan movements to these targets, we must be able 

to pay attention to the targets.  Neurons in the posterior parietal cortex are active during 

visual tasks (Mountcastle et al., 1975; Robinson et al., 1978; Bushnell et al., 1981).  The 

lateral intraparietal area (LIP) is located on the lateral bank of the intraparietal sulcus 

(IPS), responds to visual stimuli (particularly in the contralateral visual field) and exhibits 

sustained activity in delayed response paradigms (Gnadt and Andersen, 1988; Goldberg 

et al., 1990).  There is substantial activation in saccade, reach and peripheral attention 

tasks, consistent with a role as a salience map of visual space (Colby et al., 1996; Gottlieb 

et al., 1998; Wardak et al., 2002; Bisley and Goldberg, 2003; Wardak et al., 2004; 

Constantinidis and Steinmetz, 2005).  However, activation is greater for saccades 

compared to reaches, and this may indicate a role in saccade planning (motor intention) 

(Lynch et al., 1985; Andersen et al., 1990; Barash et al., 1991; Snyder et al., 1997; Calton 

et al., 2002; Quian Quiroga et al., 2006).   

The experiments cited so far demonstrate only correlations of neuronal activity 

with behavior; establishing functional relevance requires a different approach (Wardak et 

al., 2006; Yttri et al., 2011; see Pierrot-Deseilligny et al., 2004 for review). Interventional 

approaches can provide direct links between brain and behavior.  Electrical 

microstimulation of LIP can evoke saccades, and reversible inactivation increases 

saccade latency (Thier and Andersen 1998; Mushiake et al., 1999; Constantin et al., 

2007; Li et al., 1999; see also Lynch, 1992).   However, when Wardak and colleagues 

repeated the inactivation study, saccades were unaffected but performance in an 

attention-demanding visual search task was impaired (Wardak et al., 2002, 2004).  Liu et 

al. (2010), using manganese-enhanced MRI imaging to localize each injection site, found 
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that inactivation of dorsal LIP (LIPd) impairs saccades but not search, while inactivation 

of ventral LIP (LIPv) impairs both saccades and search.  

The results of Liu et al. are consistent with a role for LIPd specifically in saccade 

planning, and a more general role for LIPv.  In the current study, we tested the roles of 

these areas in reaching, saccades, and the coordination of these two movements.  Reaches 

were affected only when they were accompanied by saccades, but not when they were 

performed in isolation.  Both LIPv and LIPd were saccade-specific in their deficits.  

Furthermore, there was no change in the coupling of coordinated saccade and reach 

latencies after inactivation. These results suggest that LIP is saccade-specific: the reach 

activity in LIP does not contribute directly to behavior and coordination of saccade and 

reach movements is produced in an area downstream to LIP. 

 

2.3 Methods 

Four adult, male macaque monkeys were trained to make eye and/or arm 

movements to targets on a touch screen 17 cm away. Visual stimuli were back-projected 

onto the touch screen.  Eye movements were monitored with a scleral search implant 

(CNC Engineering).  Animals sat in complete darkness with their heads restrained in 

custom-made primate chairs (Crist Instruments).  The fronts of the chairs were 

completely open so that the animal had free range of movement of the forelimbs. All 

procedures were in accordance with the Guide for the Care and Use of Laboratory 

Animals and were approved by the Washington University Institutional Animal Care and 

Use Committee. 
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Behavioral task – Monkeys were trained to perform a memory-guided center-out 

reaching or saccade task (Fig. 2.1). For all tasks, trials started with the animal fixating 

and touching a central fixation cue (5.5º window for the eye, 6º for the hand).  Left and 

right limbs were used in alternating blocks while the other limb was blocked by a 

Plexiglas panel.  All animals were trained to perform a memory movement task either 

using eye, eye and arm (coordinated), or arm without eye (dissociated, monkeys G, S).  

After a 350 ms fixation period, a peripheral target was flashed for 150 ms in one of eight 

equally spaced locations 20º from the fixation point.  After a subsequent 1000 - 1600 ms 

delay, the fixation target was extinguished and the animal had 500 ms to saccade to 

within 10º of the remembered target location.  150 ms after the eyes acquired the 

peripheral window, the target reappeared and a corrective saccade to within 5º was 

required.  On coordinated trials, following the completion of a saccade, the animals had 

250 ms to reach to within 10º of the target.  150 ms after the initial landing of the hand in 

the peripheral window, the target reappeared and a corrective saccade to within 6.0º and a 

corrective reach to within 6.5º was required.  Dissociated trials were performed in the 

same manner but without the non-moving effector leaving the 5.5º fixation window.  

Accuracy and precision were computed for each target location. Accuracy was defined as 

the average Euclidian distance between the target location and the endpoint of each 

movement.  Precision was defined as the average Euclidian distance between the mean 

endpoint and the endpoint of each movement, expressed in degrees of difference.  

Reversible inactivation – In the four inactivation animals (G,Q,W,S), LIP was identified 

and localized with single-unit recording assisted by anatomical MR images, before 

making any intracranial injections. 0.5-2.0ul of the inactivation solution composed of 8 
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mg/ml muscimol and 0.1 M of the MRI contrast agent manganese (19.8 mg/ml 

MnCl2(H2O)4 mixed in sterile water) were injected through a 33g canula (SmallParts 

Inc.) attached to a 25ul Hamilton syringe.  Ten minutes after lowering the canula to the 

desired position, a microinjection pump (Harvard Apparatus) was used at a flow rate 

between 0.5 - 1.5 ul/min.  At the conclusion of the injection, the canula remained in place 

for ten additional minutes before slowly retracting it.  

Lesion localization with MRI  - Following the behavioral session (two to four hours 

post-injection), T1 weighted anatomical images were collected using a magnetization 

prepared rapid-acquisition gradient echo (MPRAGE) sequence conducted at 0.5
3
 mm

3
 on 

a 3T head-only system (Siemens Allegra).  A single surface coil was used.  Animals were 

lightly sedated with ketamine (3mg/kg) during the procedure. Injections were visible as a 

bright halo representing the Mn-induced T1 signal increase.  

Data processing- Behavioral data from injection sessions were compared to data from 

the two previous control sessions.  Control sessions never occurred the day following 

inactivation. To determine inactivation effects, we parcellated between-control-days and 

within-control-day variances, then used the within-control and injection means and 

variances.  

 

2.4 Results 

To determine LIP's role in visuomotor processing, we unilaterally inactivated LIP 

in 42 experimental sessions.  Four monkeys performed interleaved saccade and reach 

trials.  The reaches were either accompanied by a coordinated saccade (“coordinated 

reach”, monkeys G, Q and W) or performed alone while fixation was centrally 
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maintained (“dissociated reach”, monkeys G and S).  There were no significant 

differences between monkeys and we therefore focused our analysis on the pooled data.  

 LIP inactivation (Fig. 2.2) slowed reaction times (RT) of both coordinated reaches 

(8.0 ms, p = 0.007, two-tailed T test; n = 18 inactivations) as well as the saccades that 

accompanied those reaches (5.4 ms, p= 0.0028).  Movements into the contralateral 

hemifield were slowed more than those into the ipsilateral hemifield for both coordinated 

reaches (9.4 versus 6.5 ms, contralateral versus ipsilateral hemifield, respectively; p of 

difference = 0.02 paired t-test) and saccades (7.6 versus 3.0 ms; p = 0.18). However, note 

that the deficits were significant in each hemifield (p < 0.005 for all four conditions).  At 

the level of each individual inactivation, coordinated reach RTs were slowed in 12 out of 

18 sessions (p < 0.05 in 11 of 12 sessions, one-tailed t test). RTs were significantly sped 

up in only 1 session (p < 0.05, one-tailed t test).  The accompanying saccades were 

slowed in 15 sessions (p < .05 for 12 of 15 sessions, one-tailed t test).  Session by 

session, the effect of inactivation on coordinated reaches was correlated with the effect on 

their accompanying saccades (Pearson’s r = 0.59, p = 0.01). 

Previous studies in human and non-human primates have shown that the latencies 

of coordinated reaches and saccades are tightly coupled (Prablanc et al., 1979; Fischer 

and Rogal, 1986).  Indeed, this was the case in our control data (Fig. 2.2c, black).  We 

found strong correlations between coordinated reach and saccade RTs both at the 

individual trial level (Pearson’s r = 0.637, p < 0.000001, n = 3441) and across sessions 

(Pearson’s r = 0.869, p = 0.000003, n = 18,).  If LIP helps to mediate eye-arm 

coordination, this coordination should be reduced, if not abolished, by LIP inactivation.  

This was not the case (Fig. 2.2c, red).  Instead, the correlations of control and inactivation 
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trials were statistically indistinguishable from each other (across all inactivation trials: 

Pearson’s r = 0.625, p < 0.000001, n = 2061; p of correlation difference = 0.68, Fisher’s 

Z-transformed r test; across sessions: Pearson’s r = 0.914, p < 0.000001; p of correlation 

difference = 0.9, Fisher’s Z-transformed r test).  Thus the coupling of eye-arm latencies 

was uneffected by LIP inactivation.  

The similarity between saccade and reach effects could indicate that LIP plays a 

direct role in mediating both movements, for example, by providing a salience map that 

encodes spatial locations of special import (Colby et al., 1996; Gottlieb et al., 1998; 

Kusunoki et al., 2000; Bisley and Goldberg, 2003).  Alternatively, LIP may directly 

affect saccades and only indirectly influence reaches. When either human or non-human 

primates perform a coordinated eye-arm movement, the reach is typically delayed 50-100 

ms relative to the saccade, often not beginning until after the eye has already acquired the 

target (Angel et al., 1970; Biguer et al., 1982; Helsen et al., 1997; 1998; Snyder et al., 

2002; Song and McPeek, 2009).  It is conceivable that reach execution is withheld until 

after an accompanying saccade has begun, so that any delay of the saccade indirectly 

delays the reach.  In order to distinguish between direct and indirect effects on reaching, 

we tested the effect of LIP inactivation on dissociated reaches, that is, reaches that occur 

without an accompanying saccade.  

The slowing effect of LIP inactivation on reaches was completely abolished when 

the reach was dissociated from the saccade (-0.1ms, p = 0.93, n = 24 sessions; Fig. 2.3).  

When considered individually, neither of the two monkeys tested showed an effect 

(monkey G = 0.1; monkey S = -0.7 ms; p = 0.96 and 0.75, n=17 and 7, respectively).  

There was no effect when reaches into either hemifield were considered separately (0.2 
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and -0.2 ms, p =  0.81 and 0.84, contralateral and ipsilateral fields, respectively; Fig. 

2.3b).  Finally, there was no effect when reaches made with either limb were considered 

separately (0.2 and -0.4 ms for the contralateral and ipsilateral limb, respectively; p= 0.87 

and 0.82, n=24 and 17).  These results rule out a direct contribution of LIP to reaches, 

and instead suggest that impediments within the saccade planning circuit will affect 

concomitant motor plans.  The reach signal waits on the slowed saccade onset.  More 

generally, these data support previous studies demonstrating that any delay of the saccade 

will also delay an accompanying reach (Saslow, 1967; Bekkering et al., 1996; 

Boulinguez et al., 2001).  

Unlike reaches, the effect of LIP inactivation on saccades was independent of 

whether or not the saccade was part of a coordinated eye-arm movement.  Saccades were 

slowed 5.4 ms (p=0.00003, two-tailed t-test; Fig. 2.3) when unaccompanied by a reach.  

As with coordinated saccades, there was significant slowing of saccades to targets in each 

visual hemifield, although the effect was greater for contralateral targets (7.6 vs 2.8 ms, p 

< 0.002 for each hemifield; p of difference = 0.03, paired t test).  

Although RT was the most sensitive measure of the effect of LIP inactivation, 

other parameters were affected in a similar manner (Fig. 2.4).  We plotted the inactivation 

effect under coordinated (abscissa) or dissociated (ordinate) movement conditions, 

normalized to the maximum level of impairment.  Inactivation effects that are 

independent of movement condition will fall along the unity line, while effects that are 

specific to either coordinated or dissociated conditions will fall along the X or Y axis, 

respectively.  The data for error rate, accuracy and precision fell along the diagonal for 

saccades (see also Table 2.1).  In contrast, reach impairments either showed a significant 
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coordinated-specific effect - error rate (p = 0.04), accuracy (p = 0.05) or no change from 

controls.   We clearly show here that LIP inactivation causes saccade, rather than reach, 

specific deficits.  Furthermore, these data demonstrate that reaching movements and 

coordinated movements of the eye and limb are dissimilar, distinct motor behaviors that 

should not be considered equivalent.

Although the anatomical division of LIP into dorsal and ventral subregions has 

been known for many years (Pandya and Selzer, 1980; Blatt et al., 1990; Lewis and Van 

Essen, 2001), only recently have clear functional distinctions between the divisions 

emerged (Ben Hamed et al., 2002; Bakola et al., 2006; Liu et al., 2010, Patel et al., 2010). 

For example, LIPv inactivation causes deficits in visual search while LIPd inactivations 

do not (Liu et al. 2010).   From this, one might expect that lesions of LIPv (but not LIPd) 

would affect dissociated reaches.  In fact, dissociated reach was uneffected by lesions in 

either area (Fig. 2.4, Table 2.1).  We did, however, find differential effects on 

coordinated movements (Fig. 2.5, Table 2.2).  LIPd inactivation slowed both saccades 

and coordinated reaches to targets in either hemifield, while LIPv inactivation almost 

exclusively affected saccades and reaches to targets in the contralateral hemifield. 

 

2.5 Discussion 

The current study demonstrates that both LIPd and LIPv contribute specifically to 

saccade planning rather than comprising a general-purpose salience map or reach 

planning signal. The coordination of eye and arm movements does not occur in LIP, and 

is likely processed in downstream areas.  Finally, LIPv contributes only to contralateral 

saccades, while LIPd contributes to saccades into either hemifield.   
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The complete saccadic specificity revealed by functional inactivation contrasts 

with the small bias for saccades over reaching observed in LIP recording studies (Snyder 

et al., 2000).  The complete effector-specificity suggests that the effector choice for a 

forthcoming motor plan is specified in LIP.  This specificity could be imposed by an 

input from FEF, but direct a comparison of the magnitudes and time courses of the 

effector signals in the two regions suggests otherwise (Lawrence and Snyder, 2006).  

These inactivation results are in line with previous studies demonstrating that LIP activity 

reflects an upcoming motor plan (Platt and Glimcher, 1998; Snyder et al., 1998; 

Dickinson et al., 2003, Maimon and Assad, 2006).  

Although the coordinated reach effects provide insight as to how reaches are 

coordinated with saccades, we must emphasize that our results imply that LIP were 

saccade-specific in its motor role..  While it is difficult to train monkeys to perform a 

dissociated reaching task in an experimental setup, we perform these movements often 

and accurately in everyday life (i.e. reaching for a cup of coffee while reading the 

newspaper, playing sports).     However, coordinated eye-arm movements and 

independent reaches are often confused in behavioral studies.  The neural mechanisms for 

excuting limb movements are quite segregated from those used to generate saccades.   

Furthermore, reaches require limb-specific allocation of attention or the divergence of 

attention between foveated and non-foveated targets (Jonikaitis and Deubel, 2011).  As 

this study demonstrates, “reaching with the arm” and “contaminant eye-arm movements 

coordinated in time and space” are non-congruous processes in either the psychophysical 

or neural sense. 
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In a previous study, we found that LIPd inactivation caused deficits in a simple 

saccade planning task but not an attention-demanding search task, while LIPv 

inactivation affected both processes (Liu et al., 2010).  The contrafield bias in saccade 

generation and attention following LIPv inactivation (Wardak 2002, Liu et al., 2010) 

could be indicative of LIPv playing a stronger sensory role than LIPd.  While the overall 

role of LIP appears to be consistent, the distinct circuits within the dorsal and ventral 

subregions may subserve different elements of oculomotor planning.  

Both dorsal and ventral portions of LIP exhibited saccade selectivity.  However, 

there was a difference in spatial distribution of these effects between the dorsal and 

ventral subregions.  LIPd inactivation exhibited consistent deficits across targets in either 

hemifield, whereas LIPv inactivation deficits were restricted to the contralateral 

hemifield.  Previously, there have been conflicting lesion and unit activity reports as to 

whether LIP represented both visual hemifields equally (Platt and Glimcher, 1998) or 

with a strong contralateral hemifield bias (Blatt et al., 1990; Ben Hamed et al., 2001; 

Their and Andersen 1996; 1998). However, these studies did not differentiate between 

dorsal and ventral subregions, nor was accurate localization of each recorded neuron 

feasible.  It is possible that the contradictory findings are the result of recording from 

different subregions of LIP. 

Following LIP inactivation,, Balan and Gottlieb (2009) found deficits only related 

to targets in the contralateral hemifield, matching the pattern of our LIPv results.  

However, rather than saccadic report, the monkeys in their task used either limb to 

respond, and the absence of a limb-specific effect was interpreted to signify that LIP is 
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principally involved in visuospatial attention. However, we feel that these data actually 

support our findings. If LIP is motor specific for saccades, there should be no limb effect. 

The functional differences between subregions could contribute to other aspects 

of visuomotor transformations.  Both our lesion results and unit recording data (Platt and 

Glimcher 1998) suggest that LIPd represents both hemifields.  Heiser and colleagues 

(Heiser et al., 2005) predicted that severing the callosal fibers in a macaque would 

eliminate spatial updating in LIP when the animal made saccades across hemifields.  If 

the spatial processing LIP were specific to the contralateral visual field, cross-hemifield 

spatial updating would be difficult to accomplish.   In fact, neurons ideally would have 

access to information located anywhere in visual space (Heisner and Colby, 2006), and 

we propose that the local connections within LIPd could quickly and easily supply this 

information. .  The representation of a both visual hemifields may explain why this 

characteristic of LIP was intact in the split-brain macaque.  

  

LIP does not contribute to eye-arm coordination 

Our data show that LIP inactivation does not affect the eye-arm coordination, 

neither at the level of individual injections nor individual trials.  Furthermore, reaches 

executed without a concomitant saccade were unaffected.  Removing the influence of the 

slowed saccade latency eliminated the slowed reach latency.  These data suggest that 

concomitant reaches “wait” for the saccade onset.   

Behaviorally, the influence of eye movements on a coordinated arm movement 

has been well studied (Prablanc et al., 1979; Gielen et al., 1984; Fisk and Goodale, 1985; 

Johansson et al., 2001).  When performing a coordinated eye-arm movement, primates 
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first saccade to a target, often landing at the target prior to reaching for it 

(Georgeopoulos, 1996; Land and Hayhoe, 2001). There has been much debate as to 

whether the difference in movement latencies is a result neural mechanism or physical 

constraints (see Henriques et al., 2002 for review).  The coordinated reach effect seen in 

our study was due to a neural linkage with the slowed saccade plan.  The delay between 

saccade and reach onset remained constant. These data support, though do not confirm, 

that the delay in coordinated reach onset is the product of neural processes.  

The latency coupling could be the result of the reach movement waiting for the 

saccade, potentially relying upon a corollary discharge from the superior colliculus (SC) 

to initiate the reaching movement  (Sommer and Wurtz, 2002; Reyes-Puerta et al., 2010). 

The coordinating SC discharge could reach frontal  motor areas such as, dorsal premotor 

cortex, through the mediodorsal nucleus (Goldman-Rakic and Porrino, 1985). Likewise, 

the integration of the saccadic efference copy into the reach plan could occur elsewhere 

(i.e. cerebellum) within the skeletomotor circuit (Kennedy, 1972). In either case, the 

increased saccade latency would directly contribute to the slowing of the coordinated 

reach onset. 

 

LIP’s role in attention 

 An apparent inconsistency in our data is the presence of effector specificity and 

visual attention (Wardak et al., 2002; 2004; Liu et al., 2010) in LIPv.  How can a salience 

map, usually thought to be supramodal (i.e. Posner and Dehaene, 1994) be oculomotor 

specific?   Functional inactivation of other oculomotor planning regions, such as the 

frontal eye fields (FEF) and superior colliculus (SC), have effects on both behavioral and 
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neuronal measures of attention (Wardak et al., 2006; Lovekoy and Krauzlis, 2010; 

Nummela and Krauzlis, 2010).  It is possible that activity in these oculomotor areas, 

including LIPv, reflects attention specific to the potential targets of saccadic movements.  

In turning the “sensorimotor corner” (Krauzlis and Halfed, 2007), there surely exist 

intermediate signals that reflect a specific motor plan and the attention dedicated to the 

target of said movement.  A recent study suggests that selective attention for concurrent, 

dissociated eye and arm targets is independent (Jonikaitis and Deubel, 2011).  More 

generally, the existence of attention that is specific to effectors is consistent with the 

premotor theory of visual attention (Rizzolatti et al., 1994), which suggests that attention 

is the driven by motor preparatory activity and not an independent sensory mechanism.   
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Figure 3.1: Behavioral task. After an initial fixation period, target was flashed at one of 

eight peripheral locations.  The target color instructed both movement type and location -

- green for reach and red for saccade (color not shown in figure). After a variable delay 

period, the central fixation point disappeared, cueing the animals to make a saccade, 

dissociated reach, or coordinated reach and saccade to the remembered target. Saccade-

alone trials and either dissociated or coordinated reach trials were randomly interleaved.   
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Figure 2.2:   Effect of LIP inactivation on coordinated saccades and reaches.  A) Bar plot 

of  the change in coordinated saccade (gray) and reach (black) reaction time compared to 

controls.  Error bars represent standard error of the mean.  B) Polar plot displaying 

inactivation effect to each of eight targets for saccades (gray) and reaches (black). The 

dashed inner circle represents no effect.  Eccentricity from the no effect circle represents 

changes in reaction time following inactivation. Significant effects (p < .05, two-tailed t 

test) to individual targets are indicated by filled circles.  Although the contralateral visual 
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field for all data is portrayed on the right side of the figure, this was only the case for 

monkeys Q and W. C) Scatter plot of individual coordinated eye-arm trials in control 

(black) and inactivation (red) sessions. 
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Figure 2.3: Effect of LIP inactivation on dissociated saccades and reaches.  A) Bar plot 

of the change in dissocaited saccade (gray) and reach (black) reaction time compared to 

controls.  Error bars represent standard error of the mean.  B)  Polar plot displaying 

inactivation effect to each of eight targets for saccades (gray) and reaches (black). The 

dashed inner circle represents no effect.  Eccentricity from the no effect circle represents 

changes in reaction time following inactivation. Significant effects (p < .05, two-tailed t 

test) to individual targets are indicated by filled circles. 
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Figure 2.4: Comparison of the effects of LIP inactivation on different aspects of 

performance.  The effect of inactivation is plotted for coordinated (abscissa) and 

dissociated (ordinate) movements.  Saccadic movements are shown in gray, reach 

movements are shown in black. Dashed line represents equivalent effect in coordinated 

and dissociated movement task.  All values are shown normalized percentage of the 

maximum absolute inactivation effect. Parameters are error rate (circle), reaction time 
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(square), duration (diamond), accuracy (triangle up), and precision (triangle down). 
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Figure 2.5:  Effects of LIP inactivation in dorsal and ventral LIP on coordinated 

movements.  Bar plot of the effect of  inactivation on reaction time for LIPd (left) and 

LIPv (right).  Results are further separated effects for movements into the contralateral 

(left) and ipsilateral (right) visual hemifields.  * represent significant changes from 

controls (p < 0.05).  Bracketed * represent significant differences between the effects in 

each hemifield. 
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Coordinated Dissociated  

Saccade Reach Saccade Reach 

Error rate (%) 2.2 (0.9) 2.3 (1.2) 2.1 (0.8) -2.9 (1.9) 

Duration (ms) 1.5 (0.5) -0.1 (2.4) 0.8 (0.3)  0.0 (1.6) 

Accuracy (deg) 0.1 (0.1 ) 0.2 (0.1) 0.2 (0.0 ??) 0.0 (0.3) 

Precision (deg) 0.2 (0.1) 0.1 (.1) 0.3 (0.2) 0.0 (0.1) 

 

Table 2.1: Inactivation effects on each movement type of either coordinated or 

dissociated movements. For each performance paramteter, data from the contralateral 

limb are in the left column, ipsilateral data are in the right column.  Itallics represent p < 

0.05, bold represents p <0.005, two-tailed t test. 
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Coordinated Dissociated 
 

Saccade Reach Saccade Reach 

LIPd (n==22) All 6.1 (2.2) 10.8 (2.8) 6.7 (1.5) -0.3 (1.2) 

 Contralateral 6.8 (1.7) 10.7 (2.2) 8.3 (1.2) -0.7 (1.3) 

 Ipsilateral 4.7 (1.3) 11.4 (2.5) 5.1 (1.1) -1.6 (1.4) 

LIPv (n=20) All 4.7(2.3) 5.4(4.4) 4.6 (1.6) 0.3 (1.4) 

 Contralateral 8.4 (1.7)  7.6 (3.2)   7.0 (1.5) 1.3 (1.5) 

 Ipsilateral 1.2 (1.6) 0.0 (3.4) -0.4 (1.3) 1.4 (1.2) 

 

Table 2.2:  RT effect on each task for inactivations of either LIPd or LIPv.  

Contralateral and ipsilateral refer to the visual hemifields.  All refers to these hemifields 

and the targets directly above and below the central fixation point.  Itallics represent p < 

0.05, bold represents p <0.005, two-tailed t test 
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Chapter 3: Resolving ambiguous neural signals in PRR with 

functional inactivation. 

 

3.1 Abstract 

 Neurons in the posterior parietal cortex are responsible for complex sensorimotor 

transformations.  Parietal reach region (PRR) significantly modulates its activity prior to 

visually-guided saccades and reaches with either limb.  This response profile could be 

interpreted as encoding attention, motor intention for an unspecified movement, or a 

selective motor plan for a single effector.   Because unit recording cannot provide a 

causal link to behavior, the functional relevance of these signals is ambiguous.  We 

inactivated PRR with the GABAa agonist muscimol and assessed the effects of the 

temporary lesion.  Contrary to the unit data, we found that only movements of the 

contralateral limb suffered any inactivation deficits.  Furthermore, we found that the eye 

signal in PRR does not contribute to eye-arm coordination.  Finally, we found in both our 

recording and inactivation data that PRR represents each visual hemifield.  These results, 

combined with contralateral limb specificity, suggest that motor-specific planning may 

exist earlier in the visuomotor pathway than previously thought. 

 

3.2 Introduction 

The posterior parietal cortex is an intermediate region in the dorsal visuomotor 

network that is thought to be primarily sensorimotor in function (Sakata et al., 1973; 

Mountcastle et al., 1975; Desmurget et al., 1999).   Knowing the role of individual 

parietal areas is fundamental to understanding how sensory inputs are transformed into 
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motor outputs.  The parietal reach region (PRR) is a visuomotor processing area whose 

exact role remains controversial.  PRR is a functionally defined region (Snyder et al. 

1997, Calton et al., 2002) that includes parts of anatomical areas V6A and MIP (Colby et 

al., 1988, Galletti et al., 1999) in the posterior portion of the medial bank of the 

intraparietal sulcus (IPS).  Single unit recording studies have found visual- and 

movement-related responses in PRR (Colby and Duhamel 1991; Caminiti et al., 1996; 

Johnson et al., 1996; Galletti et al., 1999; Fattori et al., 2001; Buneo et al., 2002).  PRR 

neurons increase their activity during the delay period preceding a planned reach, and to a 

lesser extent, prior to a saccade (Snyder et al., 1997, Cohen and Andersen, 2000; Snyder 

et al. 2000; Calton et al., 2002; Kutz et al., 2003; Quian Quiroga et al., 2006).  This delay 

activity is systematically modulated by the difference between eye and hand position 

(Buneo et al., 2002; Fattori et al., 2005; Marzocchi et al., 2008; Chang et al., 2009). 

The activity in PRR could be interpreted in one of three ways.  First, PRR might 

encode behaviorally relevant spatial locations, independent of the effector to be moved.  

In this scenario, the location of potential reach targets may be more salient to PRR 

neurons than potential saccade targets.  Second, PRR might be partially effector specific, 

playing a major role in reaches and a minor role in saccades.  Finally, PRR might be 

completely effector specific, contributing to reaches but not saccadic eye movements.  In 

this last case, the activity seen in PRR that is associated with a planned saccade would 

not be relevant to function or would serve a reach-related function; e.g., it might help 

coordinate eye and arm movements (Pesaran et al., 2006).  

 A related issue concerns the spatial organization of PRR.  Does PRR resemble an 

early visual area, receiving visual input from the contralateral hemifield and contributing 
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equally to movements of ipsilateral and contralateral limbs?  Or is the organization more 

like a cortical motor area, receiving visual input from both hemifields and contributing 

primarily to movements of the contralateral limb?  Recording studies in PRR suggest an 

intermediate organization.  Visual responses reflect targets from both hemifields with a 

slight contralateral field bias (Fattori et al., 2005, Chang et al., 2008), and movement 

planning responses are slightly biased for the contralateral forelimb (Chang et al., 2008).   

The functional significance of these weak biases (reaching over saccades, contralateral 

limb over ipsilateral limb, contralateral field over ipsilateral field) is not known 

Functional significance can be tested using specific interventions.  For example, 

lesion studies allow us to observe how the brain functions in the absence of a particular 

portion of the cortex, and this in turn provides clues as to the function of that tissue.  

Though few, lesions of the medial bank of the IPS have suggested that this region 

contributes to reaching with the contralateral limb (LaMotte and Acuna, 1978; Brown et 

al., 1983; Battaglini et al., 2002).  These studies used large surgical lesions, comprising 

multiple areas and potentially severing unrelated fibers of passage.  Additionally, testing 

typically occurred days after the surgery, allowing ample time for adaptive compensation.   

None of these studies measured eye movements, and therefore could not address the issue 

of effector specificity. 

We temporarily inactivated PRR with microinjections of the GABAa agonist 

muscimol in three monkeys performing reach and saccade tasks (Fig. 1).  We then 

compared the lesion results with electrophysiological data from a previous study (Chang 

et al., 2008).  The recording study showed modulation when reaches were planned with 

either the contralateral or ipsilateral forelimb, and reduced but significant modulation 
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when a saccade was planned.  We now report that PRR inactivation impairs only 

contralateral limb movements, not saccades or ipsilateral limb reaches, and that this effect 

is not specific to either visual hemifield. Thus our results provide direct evidence for a 

specialized role of PRR in reaching, and suggest that the organization of PRR has more in 

common with motor than visual sensory areas. In addition, our findings suggest that the 

results of correlative studies should be interpreted with caution.  

 

3.3 Methods 

Four adult, male macaque monkeys were trained to make eye and/or arm 

movements to targets on a touch screen 17 cm away. Visual stimuli were back-projected 

onto the touch screen.  Eye movements were monitored with a scleral search implant 

(CNC Engineering).  Animals sat in complete darkness with their heads restrained in 

custom-made primate chairs (Crist Instruments).  The fronts of the chairs were 

completely open so that the animal had free range of movement of the forelimbs. All 

procedures were in accordance with the Guide for the Care and Use of Laboratory 

Animals and were approved by the Washington University Institutional Animal Care and 

Use Committee. 

Behavioral task – Monkeys were trained to perform a memory-guided center-out 

reaching or saccade task (Fig. 3.1). For all tasks, trials started with the animal fixating 

and touching a central fixation cue (5.5º window for the eye, 6º for the hand).  Left and 

right limbs were used in alternating blocks while the other limb was blocked by a 

Plexiglas panel.  All animals were trained to perform a memory movement task either 

using eye, eye and arm (coordinated), or arm without eye (dissociated, monkeys G).  
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After a 350 ms fixation period, a peripheral target was flashed for 150 ms in one of eight 

equally spaced locations 20º from the fixation point.  After a subsequent 1000 - 1600 ms 

delay, the fixation target was extinguished and the animal had 500 ms to saccade to 

within 10º of the remembered target location.  150 ms after the eyes acquired the 

peripheral window, the target reappeared and a corrective saccade to within 5º was 

required.  On coordinated trials, following the completion of a saccade, the animals had 

250 ms to reach to within 10º of the target.  150 ms after the initial landing of the hand in 

the peripheral window, the target reappeared and a corrective saccade to within 6.0º and a 

corrective reach to within 6.5º was required.  Dissociated trials were performed in the 

same manner but without the non-moving effector leaving the 5.5º fixation window. 

Reversible inactivation – In the three inactivation animals (G,Q,W), PRR was identified 

and localized with single-unit recording assisted by anatomical MR images, before 

making any intracranial injections. 0.5-2.0ul of the inactivation solution composed of 8 

mg/ml muscimol and 0.1 M of the MRI contrast agent manganese (19.8 mg/ml 

MnCl2(H2O)4 mixed in sterile water) were injected through a 33g canula (SmallParts 

Inc.) attached to a 25ul Hamilton syringe.  Ten minutes after lowering the canula to the 

desired position, a microinjection pump (Harvard Apparatus) was used at a flow rate 

between 0.5 - 1.5 ul/min.  At the conclusion of the injection, the canula remained in place 

for ten additional minutes before slowly retracting it.  

Lesion localization with MRI  - Following the behavioral session (two to four hours 

post-injection), T1 weighted anatomical images were collected using a magnetization 

prepared rapid-acquisition gradient echo (MPRAGE) sequence conducted at 0.5
3
 mm

3
 on 

a 3T head-only system (Siemens Allegra).  A single surface coil was used.  Animals were 
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lightly sedated with ketamine (3mg/kg) during the procedure. Injections were visible as a 

bright halo representing the Mn-induced T1 signal increase.  The data from injections 

with halos outside our area of interest were excluded (for examples, see Fig. S3.1).   

Recording data – The unit-recording procedure has been previously described in Chang 

et al., 2008.  Briefly, using a visually-guided center-out task, directional tuning curves 

were mapped out for each of 90 PRR neurons in two animals, including monkey G (60 

neurons).  The reported neural activity was measured during the delay period prior to the 

movement described in the task described above. 

Data processing- Behavioral data from injection sessions were compared to data from 

the two previous control sessions.    Control sessions never occurred the day following 

inactivation. To determine inactivation effects, we parcellated between-control-days and 

within-control-day variances, then used the within-control and injection means and 

variances.  

 

3.4 Results 

To examine the contribution of PRR to movement planning, we reversibly 

inactivated PRR in three monkeys in 20 separate injection sessions.  Lesion location was 

confirmed by magnetic resonance imaging of co-injected manganese (see Methods).  We 

measured the inactivation-induced changes in performance, including effects on reaction 

time (RT), duration and accuracy, in interleaved memory-guided saccade and reach trials.  

The clearest effect was on the reaction time for reaches with the contralateral limb.  

Across sessions, the mean effect was a 5.7 ms slowing (p=0.0007, two-tailed t-test; Fig. 

3.2a).  Within individual sessions the effect ranged from a 20.3 ms slowing to a 4.1 ms 
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speeding, with 17 out of 20 sessions slowed.  The slowing was statistically significant in 

11 sessions, and in no session was there a significant speeding of RT (p < .05).  

 In contrast to the contralateral limb, there was no effect of inactivation on reaches 

with the ipsilateral limb (mean = 1.1 ms, p = 0.5, range = -12.0 to 16.0 ms) or saccades 

(mean = -1.2 ms, p = 0.2, range = -9.9 to 8.2 ms).   

These effects were consistent across individual animals, with significant slowing 

of reaches with the contralateral limb in one animal and a strong trend in the others, and 

no effect on ipsilateral reaches or saccades in any individual animal (Table 3.1).  Other 

movement parameters showed similar specificity (Table 3.2).  Movement velocity was 

significantly slowed for reaches with the contralateral limb (3.6 deg/s, p = 0.026), but not 

for ipsilateral limb reaches or saccades (0.8 deg/s and 0.2 deg/s, respectively).  

Inactivation caused a trend towards decreased precision (0.2 deg, p = 0.54).  Similarly, 

the duration of reaches with the contralateral limb showed a trend toward impairment (3.8 

ms, p = 0.12), Ipsilateral limb reaches and saccades were unaffected for either of these 

parameters. In sum, the results of PRR inactivation were strongly effector specific, 

degrading reaches performed with the contralateral limb while leaving ipsilateral limb 

reaches and saccades intact.  

We compared these reversible inactivation results to electrophysiological 

recordings of delay period activity in an identical interleaved memory saccade and reach 

task from 90 PRR neurons in a previous study (Chang et al., 2008).  In contrast to the 

effector specific results of inactivation, cell activity was only slightly biased, with 

significant modulation in association with reaches with either limb and also with saccades 

(Fig. 3.2b).  Prior to a reach made with the contralateral limb towards a target in each 
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neuron’s preferred direction, firing rate increased on average 12.1 +/- 1.0 sp/s (p < 

0.00001).   With the ipsilateral limb, firing increased 10.1 +/- 1.2 sp/s (p < 0.00001).  The 

difference in activity was not significant (p = 0.115, paired t test).  At the individual cell 

level, the activity increase was significant in 89% of cells for the contralateral limb and 

72% of cells for the ipsilateral limb.  (Note that cells were only included in this study if 

they were active during the delay period with movements of at least one limb.)   Across 

the population, 32% of cells had significantly higher activity for a contralateral compared 

to ipsilateral limb reach, while 21% showed the reverse effect. In contrast to this weak 

preference for the contralateral over the ipsilateral limb, there was a clear preference for 

reaches over saccades.  Prior to a saccade, firing increased by only 3.8 sp/s.  This increase 

was statistically significant (p = 0.00002), but significantly less than the increase prior to 

a reach (p < 0.00002).    

A fair comparison of lesion effects to evoked activity requires that the same tissue 

be sampled in each case.  In order to establish the injection location, we co-injected 

manganese (0.1 M) with muscimol and then visualized the center and approximate extent 

of each injection in vivo using magnetic resonance imaging (Liu et al. 2010).  Only those 

injections centered in the posterior portion of the medial bank of the intraparietal sulcus, 

with minimal or no spread across the parietal-occipital sulcus, were included in the study.  

(Examples of excluded inactivations are shown in supplemental Fig. S3.1.)  We then 

overlaid our PRR recording sites on our injection images to confirm the overlap (Fig.  

3.3).    

 

Both hemifields are represented in PRR 
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Lesion effects did not depend on target location.  Figure 3.4a depicts the RT effect 

for each of eight targets.  Reaches with the contralateral limb were slowed without regard 

for target direction (p<.05 for all but one direction, one tailed t test; p=0.52, Rayleigh’s 

test for uniformity).  In particular, there was no significant difference for reaches made 

with the contralateral limb to targets in the contralateral versus ipsilateral hemifield (2.0 

ms, p= 0.21, two-tailed paired t-test).  Reaches made with the ipsilateral limb, in contrast, 

were not slowed for any target direction.  Figure 3.4b shows the individual injection data. 

The limb biases (ordinate) are mostly positive (p = 0.007, !2 test), indicating greater 

slowing of reaches with the contralateral compared to ipsilateral limb.  The field biases 

(data from both limbs, abscissa), however, are evenly distributed around 0 (p = .82).  It 

was not the case that the limb biases from individual inactivations were correlated with 

the hemifield biases (Pearson’s r = -0.06, p= 0.82 !2 test).  

Like the lesion results, single unit recording indicated that PRR represents both 

visual hemifields.  However, unit recording showed a strong effect of vertical target 

location.  Figure 3.4c illustrates recording data analogous to the lesion data in Figure 

3.4A.  For each target, we summed the firing rates of cells whose preferred directions 

were to that particular target.  This measurement combines the number of cells with a 

particular preferred direction with their strength of discharge.  The results show that, 

unlike the lesion effect, evoked activity was similar for the two limbs (p = 0.81, Rao’s 

test for Homogeneity) and had a strong lower hemifield bias (p < 0.000001 for each limb, 

!2 test comparing responses to upward versus downward targets).  There was also a 

small but significant bias for contralateral limb reaches into the contraversive compared 

to the ipsiversive visual field (p < 0.002, !2 test; p = 0.64 for the ipsilateral limb).   
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Inactivation effects are not due to impaired attention 

 IPS regions, and in particular the lateral intraparietal area, have been suggested to 

be involved in directing attention to salient targets (Wardak et al., 2002; 2004).  We 

tested PRR for its role in attention using a covert search task.  The monkeys were trained 

to fixate centrally while 1 target and 8 distractors appeared in the periphery (Fig. 3.5a).  

The target and distractors were the same size and color.  The shape (square) indicated 

which location was the target.   The animals were instructed to quickly make one saccade 

to the target after the stimuli were presented. Trials in which the animal made a saccade 

to a distractor or double saccade were immediately terminated and counted as errors. 

PRR inactivation did not impair performance in this search task (Fig. 3.5b).  

Deficits in attention most often cause increases in errors, particularly for targets in the 

contralateral hemifield (Wardak et al., 2002; Liu et al., 2010).  Although there was a 

slight increase in error rate (red) to targets in the contralateral field (1.0% increase in 

error rate), it did not approach significance (p = 0.57).  Furthermore, RT (blue) actually 

improved across targets (speeding of RT to all targets = -1.9, contralateral targets = -2.3, 

ipsilateral targets = -1.7;  p = 0.044, 0.16, and 0.33, respectively).  These results provide 

further evidence that PRR does not contribute generally to the processing of salience 

maps. 

 

PRR inactivation does not affect eye-hand coordination 

Humans and monkeys typically coordinate a saccadic eye movement along with a 

reach, with gaze arriving on target shortly before the reach is completed (Prablanc et al., 
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1979; Biguer et al., 1982, Rogal et al., 1985; Dean et al., 2011; but see Abrams et al., 

1990 and Smeets et al., 1996).  The onset latencies for these coordinated saccades and 

reaches are correlated on a trial-by-trial basis (Fisk and Goodale, 1985, Fischer and 

Rogal, 1986).  If PRR plays a role in coordinating eye and limb movement, PRR 

inactivation should decrease this correlation.  Figure 3.4a shows that this was not the 

case.  PRR inactivation had no significant effect on the correlation (contralateral limb, r= 

0.36 (control) to 0.34 (lesion); ipsilateral limb: r = 0.45 to 0.46; p = 0.68 and p = 0.77, 

Fisher r to Z transformation, for contralateral and ipsilateral limbs, respectively.  The 

finding of no change in contralateral limb-eye correlations held even when the data were 

restricted to just those sessions with significant increases in reach reaction times (p > 

0.42), as well as  when the data were restricted to movements into the contraversive field 

(p = 0.61).  These results provide strong evidence that the coordination of saccade and 

reach timing is not dependent on an intact PRR. 

Unlike Fig. 4a, the data presented in Figures 3.2 and 3.4 reflect a mixture of 

coordinated and isolated movements, that is, reaches made with and without an 

accompanying saccade to the same target.  When the data are separated and compared, 

we found no differences in the effects of inactivation on either reaches or saccades (Fig 

3.6b).  For the contralateral limb, coordinated and dissociated reach RTs were slowed by 

similar amounts (6.4 and 4.5 ms over 11 and 9 sessions, respectively; p of difference = 

0.39).  For the ipsilateral limb, neither coordinated nor dissociated reaches were 

significantly slowed (2.2 and -0.2 ms, respectively; p = 0.42).  Finally, neither dissociated 

nor coordinated saccades were significantly slowed by inactivation (-1.0 and -1.4 ms, 

respectively; p = 0.8; also true for saccades made in coordination with movements of 
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either the contralateral or ipsilateral limb, considered separately). In two experiments, 

both coordinated and dissociated movements were performed within the same session.  In 

this case, the effect on coordinated and dissociated reach RT differed by only 0.2 ms (4.3 

and 4.5 ms, respectively; p = 0.9 paired t test; data not shown). 

 

3.5 Discussion 

 Single unit recording is often considered to be the gold standard for understanding 

how the brain functions at a neuronal level. However, recording cannot directly assess 

how or even what a particular area contributes to behavior.  Reversible lesions can 

provide evidence in this regard.  Our study on the effects of PRR lesions on reaches and 

saccades revealed three major findings.  First, PRR appears to contribute only to 

contralateral and not ipsilateral limb movements. Second, the spatial organization of PRR 

is more congruent with motor than with sensory cortical areas.  Finally, PRR does not 

appear to play a direct role in coordinating saccades and reaches. We will consider each 

of these points in turn. 

 

PRR inactivations affect only the contralateral limb  

Reversible inactivations of PRR impair reaching with the contralateral limb, but 

have little or no effect on reaches with the ipsilateral limb or on saccades (Figs. 3.2a, 3.4b 

and 3.6b).  Strong deficits were observed in reaction time, along with deficits in mean 

velocity, duration, and precision.  This suggests that PRR may contribute more to the 

planning than the execution of reaches.  Our findings concur with previous studies 

demonstrating contralateral limb deficits following PPC ablation (LaMotte and Acuna, 
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1978; Brown et al., 1983, Battaglini et al., 2002).  Additionally, Rushworth and 

colleagues (1997) demonstrated that bilateral removal of areas 5, 7b and MIP resulted in 

reach performance deficits specific to a memory-guided reaching task, but did not affect 

visually-guided reaches.  

In contrast to inactivations, single unit recordings from PRR reveal substantial 

activity associated with both contralateral and ipsilateral limb movements (Fig. 3.2b).  

The striking disparity between the effects of lesions (contralateral limb only) and single 

unit recording (both limbs) is somewhat mitigated by two factors.  First, there is a small 

contralateral limb bias in the unit recording, and second, activity recorded prior to the 

movement varies inversely with the RT of the contralateral but not ipsilateral limb 

(Snyder et al., 2006; Chang et al., 2008).  RT-correlated preparatory set activity is a 

common finding in motor areas ( M1 -Tanji and Evarts, 1976; Lecas et al., 1986; PM – 

Kurata, 1993; Riehle and Requin, 1993;  SC - Basso and Wurtz, 1997; FEF and SEF – 

Schall, 1991). PRR projects to premotor area PMd (Pandya and Seltzer, 1982). Like PRR, 

PMd shows modulations prior to both reaches and saccades (Fujii et al., 2000; Pesaran 

2010), but preparatory set activity is specifically correlated with reach RT (cite) and 

disruption of this activity causes a reach-specific increase in RT (Churchland and 

Shenoy, 2007).  Like the current results, these findings suggest that preparatory set 

activity (defined as a relationship between firing rate and reaction time, Riehle and 

Requin, 1993), may be a more reliable indicator of function than increases in firing rate 

that are not correlated with RT.  

One important caveat remains.  Our lesion study may underestimate the 

contribution of PRR to reaches performed with the ipsilateral limb.  Unit recording 
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suggests a stronger contribution from contralateral PRR than from ipsilateral PRR.  It is 

conceivable that the intact contralesional? PRR is able to fully compensate for the effect 

of the lost PRR, but that the reverse is not true.  This could explain the pattern of deficits 

we have reported.  The substrate for such an effect exists; PRR has cross-collosal 

connections with itself as well as contralateral PMd (Pandya and Vignolo 1969; Pandya 

and Seltzer, 1983).   Bilateral PRR inactivation could be used to test whether 

interhemispheric compensation is in fact at play.  If compensation is present, the effect of 

a bilateral inactivation (on both limbs) should be substantially greater than the effect of a 

unilateral inactivation on the contralateral limb.   

 

The organization of spatial information in PRR resembles motor rather than sensory 

areas 

In the cortex, motor regions are generally organized according to the effector to 

be moved and without regard to where the sensory information giving rise to the 

movement was located.  In contrast, visual sensory areas generally process sensory 

information from the contralateral hemifield, without regard for which effector will 

ultimately be engaged in connection with the information.  PRR represents visual 

information from either visual hemifield, and routes this information to the forelimb on 

the contralateral side of the body.  This organization of spatial information is more 

consistent with that of motor areas than with sensory areas.  One might have expected 

that, as one ascends in the dorsal visual processing stream (Felleman & Van Essen, 

1991), one would encounter regions with intermediate characteristics, e.g., responses to 

visual inputs from either hemifield and involvement in effectors from either side of the 



 54 

body.  Instead, PRR appears to constitute an abrupt change from the sensory-organized 

areas from which it receives input (e.g., areas PIP, V3a). (for review see Ferraina et al., 

2009). Thus it appears that in the monkey the transformation from a general purpose 

visual signal to an intention signal for a reach occurs abruptly, and within PRR.   

 

Comparisons with human PRR homologues 

Functional MRI has revealed regions in human parietal cortex (SPOC, AG and 

mIPS) that appear analogous to PRR in monkeys.  These regions exhibit increased blood 

oxygen levels when subjects plan reaches or a saccades, with greater increases for 

reaches (Connolly et al., 2003; Medendorp et al., 2003; 2005; Prado et al., 2005; 

Fernandez-Ruiz et al., 2007, Hagler et al., 2007).  When perturbed using TMS, only 

SPOC stimulation showed performance deficits specific to reaches, while mIPS and AG 

stimulation caused both reach and saccade deficits (Vesia et al. 2010, but see Trillenberg 

et al., 2007 for reach specific effects following mIPS lesion).  To the extent that TMS 

provides a reliable indicator of function, this suggests that, like single unit recording, 

imaging results can be misleading with regard to function, unless the results are 

confirmed by either a demonstration of preparatory set signals (that is, trial-by-trial 

correlations with reaction time) or an interventional technique such as TMS.  

The relationship between parietal regions in monkeys and humans remain unclear.  

The human reach regions (SPOC, mIPS) are involved primarily in reaching for targets in 

the contralateral hemifield (Vesia, et al. 2010).  Monkey PRR, in contrast, shows almost 

no hemifield bias (unit recording, lesion studies; Fig. 3.4 a and b).  Interestingly, this is 

the reverse of what is seen for eye movement areas.  In humans, the parietal eye fields 
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show only a weak hemifield bias (fMRI), while in monkeys, area LIP is strongly 

contralaterally specific (single unit recording: Barash et al; fMRI imaging: Patel et al. 

2010; lesion studies: Duhamel et al.; Liu et al.).  

 

PRR lesions do not affect eye-hand coordination 

 Our animals were trained to make reaching movements either with or without an 

accompanying saccade.  When unconstrained, subjects usually make a saccadic eye 

movement first and hold fixation until the hand arrives at the target (but see Abrams et 

al., 1990).  Typically, such coordinated reaches and saccades are tightly temporally 

coupled (Prablanc et al., 1979; Rogal et al., 1985).  It has been suggested that, in the 

monkey, the saccade signals found in PRR may be used to achieve this tight coupling 

(Boussaoud et al., 1998; Battaglia-Mayer  et al., 2001; Pesaran et al., 2006).  If this were 

the case, we would predict that inactivating PRR would result in looser coupling, 

manifest as a decrease in the correlation coefficient between coordinated saccade and 

reach reaction times.  Alternatively, we might see no change in correlation but a trial-by-

trial slowing of saccadic reaction times that matches the slowing of reach reaction times.  

We saw neither of these two effects, suggesting that PRR does not play a major role in 

coordinating saccade and reach reaction times, and provides another example of how 

relying exclusively on patterns of evoked activity to draw conclusions regarding function, 

without testing those conclusions using an interventional technique, may lead to 

erroneous conclusions. 
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Figure 3.1: Behavioral task. After an initial fixation period, target was flashed at one of 

eight peripheral locations.  The target color instructed both movement type and location -

- green for reach and red for saccade (color not shown in figure). After a variable delay 

period, the central fixation point disappeared, cueing the animals to make a saccade, 

dissociated reach, or coordinated reach and saccade to the remembered target. Saccade-

alone trials and either dissociated or coordinated reach trials were randomly interleaved.  

INSERT) Horizontal MR image taken from a representative PRR injection.  Bright white 

sphere indicates the location of the manganese + muscimol injection into the medial bank 

of the IPS.
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Figure 3.2:  Comparison of inactivation effect on RT (Top) and neural responses 

(Bottom) in PRR.  Mean and standard error are shown for each effector density map of 

muscimol inactivations.  
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Figure 3.3: Anatomical comparison of inactivation and recording sites. A) Individual 

injection halos from one animal were aligned and superimposed on a single anatomical 

MR image.  Darker colors signify tissue that was inactivated in more sessions.  B) PRR 

recording tracks from the same animal are projected onto an MR atlas.  Darker colors 

indicate that more PRR neurons were found along that recording track.  Figure only 

shows tracks in which at least 2 PRR neurons were isolated. 
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Figure 3.4:  Laterality of limb and field in inactivation and neural data.  A) Polar plot of 

the inactivation effect to each of eight targets for contralateral (black) and ipsilateral limb 

(gray). The inner, dashed circle represents no effect.  Eccentricity from the no effect 

circles represents inactivation-induced changes in RT. Significant effects (p < .05, one-

tailed t test) are indicated by filled circles.  Although the contralateral visual field for all 

data is portrayed on the right side of the figure, this was only the case for monkeys Q and 

W. B) Laterality of arm and hemifield effects for individual inactivations.  For each 

inactivation, the difference in mean inactivation effect (ms) in the contraversive (positive) 
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and ipsiversive(negative) visual fields is plotted against the difference in effect for the 

contralateral (positive) and ipsilateral (negative) arms.  Filled circles represent 

inactivations in which there was a significant contralateral limb effect. C) Polar plot of 

delay-period activity for the contralateral (black) and ipsilateral (gray) arms.  Eccentricity 

from the center represents change in preferred direction-normalized rate modulation from 

baseline.  
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Figure 3.5:  Effect of PRR inacivation on visual search task.  A) Behavioral tastk.  

Monkeys were trained perform a single saccade as quickly as possible to the target 

(square) upon presentation of the shapes.  Trials in which the animal made a saccade to a 

distractor or double saccade were immediately terminated and counted as errors.  B) 

Mean changes in error rate (red) and reaction time (blue) are shown for all targets (left), 

only contralateral field targets (middle) and only ipsilateral field targets (right).  Error 

bars represent SEM.  Only the improvement in reaction time across all targets was 

statistically significant (p < 0.05).
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Figure 3.6: Comparison of inactivation effect on coordinated and dissociated reaches.  A) 

Comparison of coordinated saccades and reaches.  Saccade (abscissa) and reach 

(ordinate) latencies are plotted for each trial from control (above) and inactivation 

(below) sessions.  B) Bar plot of inactivation effect on each of effector during the 

coordinated (black) and dissociated (gray) reach tasks.  Coordinated saccades were those 

saccades made in conjunction with a reach.  
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Table 3.1:  The mean control reaction time and the PRR inactivation-induced change are 

displayed for individual animals.  SEM are in parentheses.  Bold values indicate 

significant inactivation effects  (p < 0.05, two-tailed t-test). Italics represent trends 

(p<0.15).   

 

Monkey (n,  

side of 

inactivation) 

Contralateral Limb RT  Ipsilateral Limb RT  Saccade RT  

 Control Change Control Change Control Change 

G (9 right) 212.2 (6.0)     4.5 (1.2) 208.7 (5.2)    - 0.2 (1.2) 192.2 (4.9)     - 1.1 (1.1) 

Q (5 left) 264.8 (2.9)     3.9 (1.5) 269.1 (5.3)      1.7 (3.5) 201.5 (3.3)       -0.4 (1.6) 

W (6 left) 302.8 (3.0)     9.0 (4.1)  276.9 (3.9)      2.6 (4.2) 229.0 (0.9)     - 2.2 (2.5) 

All (20) 249.8(8.6)     5.7 (1.4) 244.3 (7.9)      1.1 (1.5) 205.6 (4.3)     - 1.2 (0.9) 
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Table 3.2:  Control means and inactivation effects for velocity, duration and precsion 

effects. SEM are displayed in parentheses.  Italics indicate non-significant trends  (p < 

0.15, two-tailed t-test).   

 

 Contralateral Limb  Ipsilateral Limb  Saccade  

Mean velocity (deg/s)  118.1      -3.6 (1.5) 122.2        0.8 (2.0) 310.2     0.2 (3.6) 

Duration (ms) 123.3        3.8 (2.1) 116.0        -0.2 (2.5) 62.8      -0.1 (0.5) 

Precision (deg) 4.8            2.1 (1.3) 5.1            1.0 (1.2) 3.4        -0.6 (0.6) 
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Supplemental Figure S1: Two examples of excluded inactivations.  Exclusions were done 

by a review that was blind to the inactivation results.  On the left, the halo extends 

posteriorly into V3a.   This lesion caused impairment to saccades and reaches with either 

limb, consistent with the visual role ascribed to the region.  On the right, the halo extends 

into cIPs / posterior LIP.  There were small increases of saccade RT and no effect on 

reach RT. 

 

 



 66 

 

Chapter 4: Strong contralateral limb specificity in posterior 

parietal cortex.  

 

4.1 Abstract 

 Parietal reach region (PRR) is a functional region that is active preceding 

movements of either limb.  However, our lab has found that unilateral inactivation of 

PRR only causes impairment of movements with the contralateral limb.  A possible 

explanation for discrepancy between neural activity and lesion findings could be that the 

opposite, intact PRR is able to compensate for the limb contralateral to the inactivation.  

Another possibility is that the activity related to the ipsilateral limb does not directly 

contribute to limb movements.  To determine the cause of the contralateral limb specific 

effects following unilateral PRR inactivation, as well as the function of the ipsilateral 

limb activity, we inactivated PRR bilaterally.  Inactivations were performed serially, such 

that the effect of the first inactivation could be directly compared to the second.  We 

found no change in the effect on the original contralateral limb following bilateral 

inactivation, consistent with the hypothesis that ipsilateral limb activity dos not influence 

behavior.    

 

4.2 Introduction 

 A number of brain areas in the posterior parietal cortex and particularly on the 

medial bank of the intraparietal sulcus (IPS) are involved in visually-guided reaching 

(Mountcastle et al., 1975; Lynch et al., 1977; Kalaska et al., 1997; Desmurget et al., 
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1999; Johnson et al., 1996; Snyder et al., 1997, Batista et al., 1999).  The parietal reach 

region (PRR), for example, which overlaps anatomical areas MIP and V6a, shows a 

modulation in single neuron activity when reaches are planned with either arm (Colby 

and Duhamel 1991; Caminiti et al., 1996; Johnson et al., 1996; Fattori et al., 2001; Buneo 

et al., 2002; Calton et al., 2002; Snyder et al., 1997;  Cohen and Andersen, 2000; Snyder 

et al. 2000; Calton et al., 2002; Kutz et al., 2003; Quian Quiroga et al., 2006).  In either 

hemisphere, activity is only slightly higher for movements of the contralateral compared 

to ipsilateral limb, suggesting that limb movements are represented in PRR bilaterally 

(Fattori et al, 2005; Chang et al., 2008; Yttri et al., 2011).  Surprisingly, however, 

unilateral lesions in and around the IPS medial bank specifically impair movements of 

the contralateral limb  (LaMotte and Acuna, 1978; Brown et al., 1983; Battaglini et al., 

2002, Yttri et al., 2011).  Thus there is an apparent discrepancy between unit recording 

and lesion results (Yttri et al. 2011). 

 Posterior parietal areas may play a causal role in driving only contralateral limb 

movements.  Activity associated with ipsilateral limb movements, like the activity 

associated with saccadic eye movements that can also be found in other areas, like dorsal 

premotor cortex (Pesaran et al., 2010) and the frontal eye fields (Mushiake et al., 1996), 

may be present to help inform the movement of the contralateral limb.  For example, 

information about ipsilateral limb movements may be present in order to help coordinate 

the contralateral limb with the ipsilateral limb (bimanual coordination) (Kermadi et al., 

1998; 2000)).  (This explanation is analogous to the idea that saccade-related activity in 

PRR may drive contralateral arm movements during eye-hand coordination, or may be 

used to help update eye-centered target locations after an eye movement [Marzocchi et 
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al., 2008].)  If this “contralateral control” model is correct, then a bilateral lesion should 

produce exactly the same effect in each arm that a unilateral lesion creates in the 

contralateral arm (Fig. 4.1, top row).  

 Alternatively, an area may be capable of driving movements of either arm, but the 

contralateral pathways may be dominate in an intact animal.  In this case, losing a (weak) 

ipsilateral influence after a unilateral lesion is masked by the (strong) influence of the 

intact contralateral area, so that the limb ipsilateral to the lesion may continue to look 

normal (Fig. 4.1, middle row).  In the opposite limb, however, the normally weak drive 

from the ipsilateral cortex may take on a larger role and partially compensate for the 

contralateral lesion.  There is evidence from experimental and clinical lesions to support 

this "compensation" model (Faugier-Grimald et al., 1978; 1985; Calautti and Baron, 

2003; Krainik et al., 2004; O'Shea et al., 2007).  If this model is correct, then a bilateral 

lesion should produce a greater effect than the unilateral lesion. 

 A third model posits that the effect of unilateral lesions reflect hemispheric 

imbalance.  After a unilateral lesion, a second lesion on the opposite, intact side can 

paradoxically ameliorate the original deficit (Fig. 4.1, bottom row). The Sprague effect 

was originally shown in cats, but also occurs in humans (Sprague, 1966; Wallace et al., 

1990; Oliveri et al., 2001; Hilgetag et al., 2001). There is thought to be balanced 

inhibition across the two hemispheres and strict contralateral control.  When a lesion 

reduces the inhibition from one side, the resulting disinhibition and loss of inhibitory 

balance results in the complete suppression of the damaged hemisphere by the intact 

hemisphere.  This suppression, not the original lesion, results in a contralesional deficit.  

Damage to the intact hemisphere restores the balance and the deficit is abolished.  If this 
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model is correct, then a bilateral lesion should completely abolish the deficit seen with a 

unilateral lesion.   

While recognizing that the three models are not mutually exclusive, we sought the 

dominant mode by serially lesioning PRR in each hemisphere and testing reaching 

behavior before and after each lesion. In each experimental session, PRR was lesioned in 

a staggered fashion, first unilaterally, and then bilaterally. Using this approach, the effect 

of unilateral lesions could be evaluated with and without the presence on the intact, 

contralesion PRR.  For the purposes of this manuscript, the distinctions of contra- and 

ipsilesional will be in reference to the first, unilateral lesion, unless otherwise noted. We 

found that the elimination of the contralesion PRR had no additional affect on reaches 

with the contralesion limb, strongly supporting the “contralateral” model (Fig. 4.1).  

More generally, these results suggest that motor planning in parietal cortex may be more 

lateralized than previously thought. 

 

3.3 Methods 

Two adult, male macaque monkeys were trained to make eye and/or arm 

movements to targets on a touch screen 17 cm away. Visual stimuli were back-projected 

onto the touch screen.  Eye movements were monitored with a scleral search implant 

(CNC Engineering).  Animals sat in complete darkness with their heads restrained in 

custom-made primate chairs (Crist Instruments).  The fronts of the chairs were 

completely open so that the animal had free range of movement of the forelimbs. All 

procedures were in accordance with the Guide for the Care and Use of Laboratory 
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Animals and were approved by the Washington University Institutional Animal Care and 

Use Committee. 

Behavioral task – Monkeys were trained to perform a memory-guided center-out 

reaching or saccade task (Fig. 4.1). For all tasks, trials started with the animal fixating 

and touching a central fixation cue (5.5º window for the eye, 6º for the hand).  Left and 

right limbs were used in alternating blocks while the other limb was blocked by a 

Plexiglas panel.  All animals were trained to perform a memory movement task either 

using eye, eye and arm (coordinated), or arm without eye (dissociated, monkeys G).  

After a 350 ms fixation period, a peripheral target was flashed for 150 ms in one of eight 

equally spaced locations 20º from the fixation point.  After a subsequent 1000 - 1600 ms 

delay, the fixation target was extinguished and the animal had 500 ms to saccade to 

within 10º of the remembered target location.  150 ms after the eyes acquired the 

peripheral window, the target reappeared and a corrective saccade to within 5º was 

required.  On coordinated trials, following the completion of a saccade, the animals had 

250 ms to reach to within 10º of the target.  150 ms after the initial landing of the hand in 

the peripheral window, the target reappeared and a corrective saccade to within 6.0º and a 

corrective reach to within 6.5º was required.  Dissociated trials were performed in the 

same manner but without the non-moving effector leaving the 5.5º fixation window. 

Reversible inactivation – In the two inactivation animals (G,Q), 0.5-2.0ul of the 

inactivation solution composed of 8 mg/ml muscimol and 0.1 M of the MRI contrast 

agent manganese (19.8 mg/ml MnCl2(H2O)4 mixed in sterile water) were injected through 

a 33g canula (SmallParts Inc.) attached to a 25ul Hamilton syringe.  Ten minutes after 

lowering the canula to the desired position, a microinjection pump (Harvard Apparatus) 
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was used at a flow rate between 0.5 - 1.5 ul/min.  At the conclusion of the injection, the 

canula remained in place for ten additional minutes before slowly retracting it.  After the 

ensuing behavior session, the process (inactivation and behavioral block) was repeated 

for the opposite PRR.   

Permanent Lesion – In Monkey G, a 15 mg/ml solution of ibotenic acid mixed with 

manganese (19.8 mg/ml MnCl2(H2O)4 mixed in sterile water) was injected through a 32g 

Hamilton needle attached to a 25ul Hamilton syringe.  The injection procedure was the  

same as that for temporary muscimol inactivation. At least one week of behavioral 

session was collected following each permanent lesion.  Data from the day of the lesion 

was excluded. 

Lesion localization with MRI  - Following the behavioral session (two to four hours 

post-injection), T1 weighted anatomical images were collected using a magnetization 

prepared rapid-acquisition gradient echo (MPRAGE) sequence conducted at 0.5
3
 mm

3
 on 

a 3T head-only system (Siemens Allegra).  A single surface coil was used.  Animals were 

lightly sedated with ketamine (3mg/kg) during the procedure. Injections were visible as a 

bright halo representing the Mn-induced T1 signal increase.  The data from injections 

with halos outside our area of interest were excluded.   

Data processing- Behavioral data from injection sessions were compared to data from 

the two previous control sessions.  Control sessions never occurred the day following 

inactivation. To determine inactivation effects, we parcellated between-control-days and 

within-control-day variances, then used the within-control and injection means and 

variances.  
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4.4 Results 

 To evaluate the effect of bilateral PRR lesion, we inactivated PRR first 

unilaterally, and then bilaterally in 23 separate injection sessions.  Following each 

inactivation, the monkeys  

(n = 2) performed memory-guided saccades and reaches. All data collection was 

complete within 2.5 hours of the first inactivation, well within he period of maximum 

efficacy for muscimol (Arikan et al., 2002)   In control sessions, the number of trials and 

the time between behavioral blocks was kept identical, but there was no injection.   We 

measured reaction time (RT), duration, accuracy and precision of movements in control 

and inactivation sessions.  Performance in the behavioral blocks following each 

inactivation was compared to matched control behavioral blocks (for more details, see 

Methods).    

  Following unilateral inactivation, reaches with the contralesion limb were slowed 

4.8 ms (p=0.073, two-tailed t-test; Fig. 4.3a). Neither ipsilesion reaches nor saccades 

were affected (ipsilateral arm RT effect = 0.3 ms, p = 0.9, saccade RT effect = 0.8 ms, p 

= 0.48). This specific impairment of reaches with the contralesion limb is consistent with 

previous studies of unilateral medial IPS lesions (Lamotte and Acuna, Brown, 1983; Yttri 

et al., 2011). 

Following bilateral inactivation, reaches with both arms were slowed 4.8 ms (p = 

0.011), exactly the same as after unilateral inactivation (p = 0.99, paired t test).  This is 

consistent with the contralateral model, not the compensation or the Sprague models (Fig. 

4.1).  The result did not depend on the order of inactivation.  After the second lesion, the 

limb that was contralateral to the first lesion was slowed by 4.9 ms compared to controls, 
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while the limb that was ipsilateral to the first lesion slowed by 4.7 ms compared to 

controls (p of the difference = 0.9).  Finally, there were also no effects of absolute 

laterality.  The right and left limbs were slowed by equivalent amounts (4.5 and  5.3 ms, 

respectively; n = 11 and 12 sessions; p of the difference = 0.32). 

 The two animals performed slightly different tasks. Monkey G performed a 

dissociated reach in which only the limb moved to the target while the eyes maintained 

central fixation. Monkey Q performed a coordinated reach and saccade task, moving both 

the arm and eyes to the target.  Inactivation effects were nonetheless similar for unilateral 

(Monkey G: 6.7 ms , p = 0.37; Monkey Q:  4.0 ms, p = 0.11 ; p of difference = 0.68) and 

bilateral inactivations (Monkey G: 7.9 ms, p = 0.14; Monkey Q: 3.6, 0.019, p of 

difference = 0.63)    

When arm and eye movements are coordinated, the latencies of the  movements are 

correlated (Prablanc et al., 1979).  We previously tested the effect of unilateral PRR 

inactivation and found that it does not affect the temporal coupling of eye-arm 

movements with either limb (Yttri et al., 2011).  We now provide further evidence that 

PRR does not contribute to eye-arm coordination.  In control sessions, eye-arm RT 

correlation was consistent across sessions (r of control trials = 0.16, p < 0.000001).  

Bilateral inactivation of PRR did not affect the correlation (r of injection trials = 0.17; p < 

0.000001; p of difference = 0.82 Fisher r to Z transformation).  The degree of correlation 

was low compared to previous reports (Lunenburger et al., 2000; Dickinson and Snyder, 

2002). However, the correlation of eye-arm coordinated movements has been shown to 

greatly decrease as an animal learns the task (Dean et al., 2011), and our correlation 

values for both control and injection trials are highly significant. 
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 As a technique, temporary pharmacological inactivation has many advantages.  

Temporary lesions can be repeated in the same animal multiple times, and their 

impermanent nature prevents long-term changes in brain (Chowdhury and DeAngelis, 

2008).  Permanent lesions, in contrast, cannot be repeated within the same animal, but 

they more closely mimic the effects of naturally occurring lesions and ensure a more 

complete lesion.  We lesioned PRR permanently using the excitotoxin ibotenic acid.  

Like muscimol, ibotenic acid spares fibers of passage, ensuring that lesion effects reflect 

the loss of PRR and fibers of passage.   

We confirmed the initial spread of the injected lesion solution using MR imaging 

(Fig. 4.5a).  Lesions were largely restricted to the medial bank of the IPS, extending 

posteriorly into V6a, with only minimal spread across the sulcus into caudal IPS.  Using 

an experimental design similar to that which we employed for the temporary 

inactivations, we serially lesioned the PRR of monkey G on each side of brain.  A 

unilateral permanent lesion with ibotenic acid (Fig. 4.5b, left) significantly increased 

contralateral limb RT (5.2 ms, p = 0.003).  There was also an increase in ipsilateral reach 

RT, but the increase was not significant (2.4ms, p = 0.2).  There was no effect on 

saccades (-1.2 ms, p = 0.32; data not shown).  After a bilateral permanent lesion, the 

slowing of the two limbs (5.1 ms, p=0.002) was not significantly different from the 

unilateral lesion effect on the contralesion limb (p= 0.98), confirming the results of the 

temporary inactivations. 
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4.5 Discussion 

 The visuomotor processing regions of the macaque brain are often thought to be 

primarily concerned with movements of the contralateral limb.  However, the movement 

of either limb has been shown to increase PRR activity bilaterally.  Indeed, in both 

human and non-human primates, each hemisphere has been suggested to interact with the 

other and to contribute to motor behaviors of either limb (Brinkman and Kuypers, 1972; 

Busan et al., 2009).   Yet when medial IPS regions are lesioned unilaterally, the effects 

are generally restricted to reaches with the contralateral limb (LaMotte and Acuna, 1978; 

Brown et al., 1983; Battaglini et al., 2002, Yttri et al., 2011).   In the current paper we 

asked about the neural architecture underlying these effects.  We offered various models 

that could account for the contralateral-limb specific effect.  Each model represents a 

different functional organization for PRR and the visuomotor pathway.  

To examine the contribution of the contralateral PRR to reaching movements, we 

sequentially lesioned the PRR bilaterally.  As previously shown, the first lesion produced 

contralesion limb specific deficits.  A second lesion in the opposite hemisphere did not 

alter the contralesion effect of the first lesion, and there was no order effect – the lesion 

effects were the same in both limbs.  Finally, permanent lesions made with ibotenic acid 

produced the same results as temporary inactivations made with muscimol.   

These results support the contralateral limb-specific model of PRR (Fig. 4.1, first 

row).  Despite the presence of ipsi- and bi-lateral limb cells and interhemispheric 

connections (Chang et al. 2008; Fattori et al., 2005; Passarelli et al., 2011), we conclude 

that PRR contributes solely to the planning of movements with the contralateral limb (but 

see below). This finding is supported by earlier studies.   While preparing for a 
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movement, the activity of individual PRR neurons predicts RT, but only for contralateral 

limb movements (Snyder et al., 2006, Chang et al., 2008).  More generally, in a series of 

studies by Gazzagina (1966; 1968), only the contralateral hemisphere was shown to 

provide visuomotor control of limb movements. 

 This was a surprising result. During the delay period preceding a movement, half 

of the cells in PRR respond roughly equally to movements with either limb, and one-sixth 

fire preferentially for movements of the ipsilateral limb (Chang et al., 2008).  Thus a 

majority of cells are active prior to movements of the ipsilateral limb.  From this, we 

expected that bilateral inactivation would result in a substantial increase in contralateral 

limb impairment, consistent with a role of PRR in movements of both limbs 

(compensation model, Fig. 4.1, second row). 

 An important issue is what role, if any, these bilateral and ipsilateral limb cells 

play.  Our data indicate that PRR contributes only to movements of the contralateral limb.  

However, PRR has only been studied in the context of reaching with a single limb.  The 

preponderance of bilateral limb cells suggests that PRR may be involved in executing 

bimanual movements.  We often reach towards objects with both limbs or use both limbs 

together in a single concerted action.  In order to be effective, these movements must be 

coordinated in time and space. Bimanual neurons also exist in dorsal premotor cortex 

(PMd), supplementary motor area (SMA), and M1, and these neurons of these areas 

exhibit different activity patterns for coordinated bimanual or unimanual movements 

(Donchin et al., 1998; 2002; Kermadi et al., 1998; 2000).  The modulations related to 

ipsilateral limb movements in PRR might contribute to planning and execution of 

contralateral limb movements during a bimanual coordinated action.  It is also possible 
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that PRR neurons influence ipsilateral limb movements (only) during bimanual 

coordinated movements. One final possibility is that PRR contributes to ipsilateral limb 

movements in a way that we have not tested.  For example, PRR might contribute to the 

on-line response of the ipsilateral limb to a perturbation, or to the trajectory of ipsilateral 

limb movements.  Further experiments will be required to investigate these possibilities. 

 Our results may be influenced by the overtraining of our subjects. With 

overtraining, behavior can become automated and stereotyped.  This may explain why 

lesions produced only a slight impairment (5-10 ms slowing). Furthermore, brain 

plasticity or connectivity changes may occur with extensive practice (Cooke, 1980; 

Meyer et al., 1988; Tang et al., 2009).  However, the cortical representations of 

movements typically increase with training (Nudo et al., 1996; Kleim et al. 1998).  It is 

possible that our results reflect the effect of PRR inactivation on habitual tasks, rather 

than individual movements (Roland, 1984; Wise et al., 1996; Graybiel 1998; Pasupathy 

and Miller, 2005). It would be difficult to perform these experiments in an animal that 

was not extensively trained.  However, studies of human parietal lesions can offer insight 

on the effects of lesions in the absence of repetitive training. 

Functional MRI and lesion studies have identified regions of human parietal 

cortex that might be homologous with PRR in monkeys.  These regions exhibit increased 

blood oxygen level dependent (BOLD) signals when subjects plan reaches or a saccades, 

with stronger modulation for reaches (Astafiev et al., 2003; Connolly et al., 2003; 

Medendorp et al., 2003; 2005; Prado et al., 2005; Fernandez-Ruiz et al., 2007).  In a 

patient whose blood supply to the medial IPS was surgically occluded, the resulting 

bilateral lesion caused only reach deficits (Trillenberg et al., 2007). With unilateral 
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lesions, deficits are primarily contralesional.  Two patients with unilateral superior 

parietal lobule lesions (one left hemisphere, one right hemisphere) were shown to have 

contralesion limb-specific impairments to targets in either hemifield,  while retaining 

ipsilesion limb and oculomotor abilities (Heilman et al., 1986; Danckert et al., 2009).  

Because of the individual variances between lesions, and brain, effects of different brain 

traumas are difficult to compare.  However, we show here that a subset of human medial 

parietal lesions appear to cause contralesion limb impairments. 

 Transcranial magnetic stimulation (TMS) can be used to induce temporary lesions 

in humans.  Unilateral stimulation causes a range of impairments, depending on the 

stimulation site.  Stimulation of a large portion of posterior parietal cortex resulted in 

deficits in on-line adjustments of reaching with the contralateral limb, and no effects on 

saccades or ipsilateral limb reaches (Desmurget et al. 1999).  More focal perturbation of 

medial IPS or the angular gyrus caused contralateral limb deficits along with saccade 

impairment. Superior parieto-occipital cortex stimulation caused reaching deficits in both 

the contralateral and ipsilateral limbs (Vesia et al., 2010).  
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Figure 4.1:  Simplified schematics for contralateral-specific (top row), hemispheric 

compensation (middle row), and cortical imbalance (bottom row) models of contralateral 

limb specificity following unilateral PRR lesion (in this case, the right PRR,).  Columns 

represent the visuomotor pathway in its intact, unilaterally and bilaterally lesioned states.  

Dashed lines represent contributions eliminated following inactivation.  Rightmost 

column represents the degree of impairment for each arm (contralateral to first lesion = 

black, ipsilateral to first lesion = gray) in each lesion condition. 
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Figure 4.2: (A) Behavioral task. After an initial fixation period, target was flashed at one 

of eight peripheral locations.  The target color instructed both movement type and 

location -- green for reach and red for saccade (color not shown in figure). After a 

variable delay period, the central fixation point disappeared, cueing the animals to make a 

saccade, dissociated reach, or coordinated reach and saccade to the remembered target. 

Saccade-alone trials and either dissociated or coordinated reach trials were randomly 

interleaved.  (B) Horizontal MR image taken from a representative PRR injection.  Bright 

white sphere indicates the location of the manganese + muscimol injection into the 

medial bank of the IPS. 
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Figure 4.3:  Effect on reaction time (RT) following unilateral PRR inactivation.  Bar plot 

of the change of RT for movements of the contralateral limb (black), ipsilateral limb 

(gray), and saccade (white) compared to controls.   Error bars represent standard errors of 

the mean (SEM). 

 

 



 82 

 

Figure 4.4:  Effect of bilateral inactivation on each limb. A) Bar plot of the change in RT 

relative to control sessions (contralateral to first lesion = black, ipsilateral to first lesion = 

gray).  B) Change in RT relative to the first lesion.  Negative values represent a 

difference in the unilateral and bilateral lesion means such that RT was less strongly 

affected following the bilateral lesion.  For comparison, the effect of unilateral lesion on 

each of the limbs is shown in the leftmost columns.  
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Figure 4.5: Effects of bilateral permanent lesion. A) Location of ibotenic acid lesions 

used to permanently lesion PRR first unilaterally (left), then bilaterally (right).  B) Effect 

of permanent lesions on reaction time for unilateral(leftmost columns, contralateral to 

first lesion = black, ipsilateral to first lesion = gray) and bilaterally lesions (rightmost 

column, limbs combined as the condition of the brain is identical). 
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Chapter 5:  Conclusion 

 

 

“Are parietal … neurons sensory or motor?  Is the question worth asking?”  

- John Schlag, MD, 1980 

 

 

This dissertation attempts to help answer a question older than its author:  What 

does the parietal cortex do?    It is accepted that parietal cortex, in particular the IPS, 

plays a critical role in visuomotor transformations.  Understanding the nature of the 

contribution of each region is important not only to the internal debate between scholars 

(Gottlieb and Snyder, 2010), but to all systems and computational neuroscientists who 

aim to decipher how the brain works.  Exploring “sensory or motor?” and the more subtle 

intricacies within these ideas can provide vital insight as to how we extract salient 

information and generate plans to interact with what we perceive.   

In sum, our work has demonstrated that IPS regions are much more motor than 

sensory.   To say that these regions, LIP and PRR, are more motor than sensory is striking 

in two ways.  First, based upon correlations with neural activity, these regions in sensory 

association cortex were ascribed sensory roles, such as attention (Colby et al., 1991;).  It 

was thought that motor plans did not arise until later premotor areas.  However, our 

results suggest that a clear motor plan is already taking shape in PPC regions.  Later 

motor areas, like PMd, may process finer aspects of the movement or coordination 

(Pesaran et al., 2010).  
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Second, our findings suggest that the change from sensory to motor processing 

may occur abruptly.  Although, the motor contributions of those areas upstream from LIP 

and PRR have not been extensively studied, there is no evidence that these areas 

contribute to a motor plan (Lisberger, 2010).  That PRR appears to not only be purely 

motor, but also effector- and limb-specific adds additional weight to these findings.  The 

work presented here underscores the fact that measurements of the activity of neurons 

may not accurately reflect their functional contribution.  We possess several tools that can 

be combined in order to better understand brain function. 

The worth of a question is relative to the value of the potential answers on might 

receive.  At a superficial level, neuroscience as a field disagrees with Dr. Schalg (his vote 

was “no”), as there have been nearly as many articles published on parietal cortex 

processing in the first month of this year as there were in the entire year his question was 

originally posed.   More meaningfully, delving into the visuomotor question has produced 

valuable clinical and basic science results. 

Many of the deficits I have reported or cited here have very similar clinical 

analogs (Grefkes and Fink, 2005).  Balint’s syndrome may best embody these psychic 

deficits. Balint’s syndrome is most often caused by parietal damage resulting from stroke, 

Alzheimer’s disease, intracranial tumors or traumatic brain injury.  Often, both lateral and 

medial portions of human IPS are affected.  It is characterized by optic ataxia (OA) 

(incoordination of hand and eye movement) and oculomotor apraxia (difficulty initiating 

task-oriented saccades) (for review, see Rizzo, 1993).   Interestingly, most patients also 

present with simultanagnosia, or the inability to perceive more than one object at a time – 

particularly those objects which are not foveated.  This deficit provides a clear connection 
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with work done on covert attention (Gottlieb et al., 1998; Wardak et al., 2002; Bisley et 

al., 2003), and the continued study of LIPv’s contribution to this behavior may yield 

translational benefits. 

Lesion studies in monkeys can help inform behavioral therapies. When no visual 

feedback is available, lesions of medial IPS in the monkey cause deficits in reaching 

(Chapter 3; 4); however, this effect is mostly abolished when visual feedback is available 

(Rushworth et al., 1997). Recently, rehabilitation from Balint’s syndrome, and OA more 

generally, has benefited from observations made in non-human primates. OA-related 

misreaching and misgrabbing to centrally located targets is alleviated when the patients 

look at their hand (Pisella et al., 2009).  Similarly, looking near your hands aid in the 

formation of movements with the limb (Bekkering and Neggers, 2002; Abrams et al., 

2008).  

One of the beautiful yet terrible aspects of the human brain is its complexity. 

Because of this, it is difficult to predict the exact deficits of human lesions. Compared to 

the macaque monkey, the human PPC is one of the brain areas that has undergone the 

most evolutionary development (Hill et al., 2010).  These changes place some restrictions 

on the translational value of non-human primate parietal cortex research, but information 

and techniques gleaned from the non-human primate studies is still useful.  Paradoxically, 

we have identified more parietal subregions in monkeys than we have in man (Caminiti et 

al., 2010).  Our novel inactivation-imaging technique provides further ability to discern 

functional and anatomical differences between areas of cortex.  With the advent of 

different investigative techniques, both to assess functional deficits and to explore 

functional anatomy, such as electrocorticographic frequency alteration mapping 
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(Breshears et al., 2010), we will expand our understanding of the location and types of 

computations that occur in the human brain.   

 Among these techniques, transcranial magnetic stimulation (TMS) may be the 

most powerful.  TMS uses magnetic eddy currents to generate electrical currents within 

the intact human brain, although the exact neurophysiological changes and extent of 

stimulation are not well-characterized (for review, see Rossini and Rossi, 2007).  TMS 

can be used to focally perturb cortex in healthy subjects, simulating the effects of lesions.  

There is obvious research value in studying experimentally-induced, localized, temporary 

lesions in subjects whose performance can be monitored before and after stimulation (for 

review, see Dimyan and Cohen, 2010).  However, the potential for may extend to the 

direct treatment of brain disorders.   Stimulation may assist in motor rehabilitation 

following a stroke (Nowak et al., 2009; Popovic et al., 2009).  Additionally, repetitive 

TMS has shown promise in treating depression (Gross et al., 2007), autism (Enticott et 

al., 2010) and Parkinson’s disease (Lefaucheur, 2009).  TMS as a neurorehabilitation 

technique is still in its infancy and may provide insight and relief from a variety of neural 

issues.  

To examine the role of LIP in motor planning, we inactivated the LIP of four 

monkeys while they performed saccade and reach tasks.  We found that LIP inactivation 

only affected saccades, while reaches showed no change. Additionally, we found that 

when saccades and reaches were coordinated into combined eye-arm movements, both 

effectors were impaired.  The effect on coordinated reaches was proportional to that on 

saccades within individual trials and across sessions.  Finally, we found that the effector 



 88 

specificity was consistent across LIP subregions, but the spatial specificity of effects 

differed between dorsal and ventral regions.  

 These results argue that LIP is a oculomotor-specific planning area.  Although 

coordinated reach RT were slowed following inactivation, we show that this is not due to 

LIP inactivation directly, but likely the result of other brain areas wait on the delayed 

saccade onset.  Additionally, the onset coupling was not affected by inactivation, 

suggesting the LIP does not play a role in eye-arm coordination.   

We temporarily inactivated PRR with microinjections of muscimol in three 

monkeys performing reach and saccade tasks and visual search tasks. We then compared 

the lesion results with electrophysiological data from a previous study of PRR (Chang et 

al., 2008).  The recording study showed modulation when reaches were planned with 

either the contralateral or ipsilateral forelimb, and reduced but significant modulation 

when a saccade was planned.  We found that PRR inactivation impairs only contralateral 

limb movements, not saccades, ipsilateral limb reaches, or covert visual attention. There 

was no specificity of effect to either visual hemifield. Thus our results provide direct 

evidence for a specialized role of PRR in reaching, and suggest that the organization of 

PRR has more in common with motor than visual sensory areas.  In addition, our findings 

suggest that the results of correlative studies should be interpreted with caution.  

We followed this study with the bilateral PRR inactivation experiments.  We 

lesioned PRR bilaterally in a staggered fashion; one hemisphere at a time, measuring 

changes in behavior between each injection.  These experiments were conducted to 

determine what influence, if any, the intact PRR of the opposite hemisphere was had on 

our unilateral lesion effects.  The answers provided insight about the ipsilateral signals of 
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PRR as well as the interhemispheric interplay in visuomotor processing.   Following 

bilateral inactivation, there was no increase in effect compared to that of unilateral 

inactivations on the contralateral limb.  These results are indicative of a lack of 

interaction between hemispheres following unilateral lesion, neither positive nor 

negative.  Furthermore, the data support our initial assessment that ipsilateral limb 

activity in PRR does not contribute directly to behavior. 

Our effects are modest, but consistent and highly significant.  In our examination 

LIP (Liu et al., 2010, Chapter 2) and PRR (Chapters 3 and 4), the effects were reproduced 

in specificity and magnitude with different datasets.   It is also interesting that, between 

the two regions, the magnitude of the negative effect is similar.  

 Some lesion studies of IPS regions have induced relatively larger effects (Li et al., 

1999; Faugier-Grimald et al., 1985).  Our tasks were not especially difficult, and special 

emphasis was placed on reaction time. Additionally, unlike these studies we discarded 

lesions that spread beyond our region of interest.  We were able to discern the location of 

lesions because of our novel muscimol-manganese imaging technique.  In the future, we 

may be able to balance our experiments better, such that performance in control sessions 

is at a critical point, thereby increasing the sensitivity of our tasks. When compared to the 

devastating effects of V1 (Stoerig, 2006), M1 (Ward, 2004), or cerebellar lesions 

(Holmes, 1917), the slowing of initiation even by hundreds of milliseconds is relatively 

trivial.  It is likely that there is redundancy in intermediate visuomotor areas.  This 

redundancy may be at least partially responsible for the differences in effect between 

parietal and primary cortical lesions. 
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 This body of work has examined the visuomotor processes that occur in IPS 

regions LIP and PRR.  Future work will expand into other IPS regions in an effort to 

better characterize IPS function.  Additionally, I hope to use the inactivation technique to 

study the contribution of LIP and PRR to other neural processes, such as decision value 

(Platt and Glimcher, 1999) and bimanual reaching (Donchin et al., 1998). 
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