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Abstract

This paper outlines a study of MPEG compressed video sequences and simulation
of multiplexed video traffic in the ATM environment. A number of statistical char-
acteristics including autocorrelation and variance of MPEG-1 compressed video
sequences are used to characterize the 16 sample traces used in this study. From
these measurements, a preliminary model is developed which utilizes basic mea-
surements of the individual component video sequences to predict bandwidth
requirements and cell loss of the multiplexed video traffic.
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1. Introduction

Advances in network technology offer new opportunities for multimedia communications sys-
tems which were not possible in the past. Much attention has been given to research into the
many issues which will affect multimedia communications, especially video transmission and
distribution. Buzz words like interactive television and video-on-demand services have be-
come commonplace in these discussions. However, to make such services possible, the manner
in which video will be incorporated into the network environment must first be determined
[32]. One of the primary issues which must be understood before this is possible is how large
scale video transmission will affect the network [31]. Models of cell loss, delay and other crit-
ical factors must be derived.

Recent research has shown that variable bit rate (VBR) video sources show significant long-
term and self-similar behavior [1,4,5]. This increases the already complex development of sta-
tistical models which are robust enough to accurately predict the behavior of video traffic in
the ATM network. In this study, a video distribution methodology will be described. The nature
and behavior of 16 MPEG coded video sequences will be explored using estimates of autocor-
relation, variance and distribution. Additionally, a number of different traffic simulations using
these sample MPEG video sources will be presented. A preliminary model will then be devel-
oped which will predict the behavior of MPEG traffic in the ATM environment. This model
provides a means of predicting the cell loss of the aggregate traffic using three simple measure-
ments from each component of the aggregate traffic.

2. Proposed Video Distribution

Video distribution in the ATM environment is likely to be deployed in a number of configura-
tions. However, this work focuses on the configuration illustrated in Fig. 1. The multimedia
server below feeds a number of video streams into a multiplexor which then relays the multi-
plexed aggregate video stream to the ATM network via a single link. The individual video
streams are then broadcast through the ATM network to a number of home receivers, enabling
video-on-demand and other interactive television services.

Multimedia Server

Home Receivers

Figure 1: Video Distribution Schematic



In a configuration similar to the one shown in Fig. 1, a transmission bottleneck is expected at
the link between the network and the multiplexor. To plan for efficient usage of network re-
sources, the number of video sources which can be sent reliably across a single link must be
computed. In order to compute the expected number of video sources which can be broadcast
across a single link, the statistical nature of the video traffic must be understood.

3. MPEG Image Coding Basics

The MPEG (Moving Pictures Expert Group) compression algorithm is a standard jointly de-
veloped by the International Organization of Standards (ISO) and the International Electrotech-
nical Commission (IEC). The MPEG algorithm utilizes the Discrete Cosine Transform (DCT)
and motion entropy coding to obtain extremely high compression ratios [12]. For this project,
a sample set of sixteen MPEG-1 compressed video sequences were studied to evaluate 2 num-
ber of measurement and traffic simulation techniques.

MPEG compressed video streams are composed of a number of hierarchical elements [13]. The
highest layer is the Sequence layer. This layer is made up of an arbitrary number of Groups of
Pictures (GOPs). In turn, each GOP is made up of a number of frames.

The MPEG compression standard defines three frame types. The first frame type is the Intra-
or I frame. This frame is coded with reference to the current frame only. The second frame type,
the Predictive or P frame differs from the I frame in that it is coded with reference to the current
frame and a previous I or P frame. The third frame type, the Bidirectional or B frame, is even
more complex because it is coded with reference to a past and a future I or P frame as well as
the current frame. These complex interrelationships are shown in Fig. 2.

Forward Predicticn »

Bidirectional Prediction

Figure 2: MPEG Frame Level Structure

Each frame consists of one or more slices which are made up of groups of macroblocks (MBs).
Motion compensation information is contained in the macroblock layer. Below the macroblock



layer is the final layer, the block layer, which contains the DCT coded image data [8,9].

In this study, the GOP and Frame layers will be considered, but this work will concentrate on
the GOP layer, primarily due to the findings in the following section.

4. GOPs and Frames as Network Traffic

A rudimentary method of evaluating the burstiness of MPEG streams in the ATM network is
to compare frame and GOP size traces for a number of video sequences. The frame and GOP
size traces shown in Fig.3 are representative of the 16 MPEG-1 sample traces used in this study.
The trace with the greater magnitude is the GOP size trace and the trace with the lesser magni-
tude is the frame size trace. The solid horizontal lines represent the average of the respective
trace while the dashed lines indicate values one standard deviation from the average value. The
regularly dashed line corresponds to one standard deviation above average while the irregularly
dashed line corresponds to one standard deviation below average. (The irregularly dashed line

for the frame trace is not shown because it is below zero.)
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Figure 3: GOP and Frame Size Trace from Bond

As can be seen in Fig. 3, the relative variance between GOPs is less than that for frames, giving
a visual idea of the traffic’s burstiness. This rudimentary estimation of burstiness at the frame
level versus that at the GOP level provides insight into one method of incorporating MPEG vid-
eo traffic into the ATM network. By smoothly pacing MPEG traffic out of the server at the
GOP level, the burstiness of the traffic can be reduced. This provides a means of implementing
VBR video in the ATM environment which offers promising statistical multiplexing gains

without the extreme burstiness of frame level traffic.



5. GOP Size Distribution

However, the feasibility of broadcasting MPEG video streams by transmitting ATM cells
which are smoothly paced through a GOP must be evaluated. Two important criteria must be
met before this method can be deemed acceptable. First, GOP level transmission cannot intro-
duce unacceptable transmission delays. Second, the buffer size at the decoder should not be in-
creased significantly. If either of these two requirements cannot be met, this method may prove
to be too inefficient or too expensive.

Given a buffer with adequate size to store an entire GOP, the first criteria can be met by pacing
the GOPs from the server at a rate which will ensure that the decoder will have a complete com-
pressed GOP in the buffer at the time it completes decoding of the previous GOP. The size re-
quired by the buffer must therefore be large enough to allow for decompression of the video
frames as well as to store a full GOP.

To provide adequate memory for decoding, the buffer must be large enough to store a mini-

mum of two decompressed video frames. The reason for this is that to decode a B frame, the
preceding and succeeding I or P frames must first be decoded and retained in memory. This

data will be used with the appropriate prediction information to decode the full B frame.

By studying the histogram of GOP sizes shown in Fig. 4, an estimate of the buffer size required
to store a compressed GOP can be calculated.
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Figure 4: Histogram of GOP Sizes

For this study, the frame size was set at 288 lines of 384 pixels each, or 110,592 pixels. This

requires 221,184 bytes (YUV 4:2:2) to represent each frame. A buffer which is capable of stor-
ing two frames will therefore require 442,368 bytes of memory. From the above histogram, a
GOP size estimate of approximately half the size required to store a single decoded frare will



accommodate almost all of the GOPs in the sample set. This estimate resulits in a calculation of
552,960 bytes. From this estimate, the buffer required to broadcast the MPEG-1 video streams
used in this study will be only 25% greater than the buffer size required for decoding (the size
of two decompressed frames).

6.  Development of Sample Set

Before proceeding with this discussion, a brief description of the sample set used in this study
is required. To this point, 16 different video traces have been considered. The subject matter of
the traces includes movies, cartoons, and sports. Each trace is the same length, 40000 frames,
and is digitized at a resolution of 384 by 288 pixels per frame. This translates to roughly 27
minutes of video per trace [28].

The GOP parameters used to encode the video sequences were set at a GOP size of 12 with a
GOP structure of IBBPBBPBBPBB. The MPEG quantizer scales were set at 10 for the I
frames, 14 for the P frames, and 18 for the B frames. Each frame consists of one slice and the
macroblocks are encoded using a logarithmic motion vector search.

Physically, the video sequences were created using the scheme shown in Fig. 5 by Oliver Rose
at the University of Wuerzburg [28]. Because of the complexity of MPEG encoders, real-time
encoders remain expensive and not widely available. Due to this fact, digitization and compres-
sion were performed separately. A Sun Sparc 20 equipped with a SunVideo card was used to
digitize the analog video from the VCR. After the video was digitized, the UC Berkeley
MPEG-1 software encoder was used to create the MPEG video stream.

VCR

Sparc20 s .
Analog kﬁ w/SunVideo \Drgltlz:d Video Frames

Board
UC Berkeley
MPEG-1
Encoder
\ MPEG-1
MPEG Coded Video Video
Stream

Figure 5: MPEG Encoding Process

After the compressed MPEG streams were computed, frame size traces were calculated from
the number of bits required to store each compressed frame. This information became the foun-
dation for the statistical analysis of this study.



7.

Basic Statistical Profile of Video Sequences

To better understand the nature of the 16 MPEG coded video sequences used in this study, a
number of basic measurements were made. These measurements include the length of each
video sequence, the average size of each GOP in both bytes and bits per pixel, and the peak to
average ratio at both the frame level and the GOP level. Table 1 below lists these measurements

as well as other information for each of the video sequences.

Table 1: Basic Characteristics of 16 MPEG-1 Video Sequences

Brief . . Length Avg.' Avg.. GOP GOP Frame
Name ull Name Subject (MBytes) GOP Size ‘ SlZf: Peakh.ﬁwg. Peakf{’wg.
(kbytes) (bits/pixel) Ratio Ratio
ast Asterix; cartoon 112 34 TZ-OZI 4.02 ] 6.59
bond James Bond movie 122 36 0.2198 3.28 10.06
jp Jurassic Park movie 65 20 0.1183 4.00 9.15
mtvl MTV clip 1 television 123 37 0.2225 4.34 9.32
mtv2 MTV clip 2 television 99 30 0.1789 6.14 12.71
newsl News clip television 77 23 0.1389 6.05 12.36
race Formula | car race sports 154 46 0.2780 3.61 6.58
lambs Silence of the Lambs | movie 37 11 0.0661 5.27 18.36
simp Simpsons cartoon 93 28 0.1680 3.76 12.94
soccerl | Soccerclip 1 sports 136 41 0.2469 3.94 6.90
soccer2 | Soccer clip 2 sports 126 38 0.2270 3.89 7.58
star Star Wars movie 47 14 0.0842 4.02 13.40
sbowl Super Bowl sports 118 35 0.2125 3.01 5.99
talk! Talk show television 73 22 0.1314 270 7.34
tatk2 Political debate television 90 27 0.1620 321 7.41
term Terminator 2 movie 55 16 0.0986 311 7.30

These statistics provide a basic idea of the differences in the set of sample video streams. Of
particular interest are the peak to average ratios measured at both the GOP and frame level.

These values provide an estimate of the burstiness of a given video sequence [20] and indicate
the potential for statistical multiplexing gain in the ATM network for each stream.




8. Traffic Simulations

In order to study the behavior of these video streams at the link between the multiplexor and
the ATM network, three traffic simulation experiments were conducted. First, in order to better
observe the effect of highly correlated video traffic on the network, a traffic simulation consist-
ing of multiplexed traffic of 16 identical and synchronized video streams was designed. The
traffic trace in Fig. 6 illustrates the character of the simulated traffic for approximately two
minutes of the broadcast of the movie Jurassic Park.
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Figure 6: 16 Synchronized Jurassic Park Traces

As can be seen in Fig. 6, the multiplexed traffic is quite bursty, ranging from approximately
0.35 bits per pixel to about 0.07 bits per pixel. Jurassic Park’s average of 0.12 bits per pixel is
greatly exceeded by the peaks in this graph, indicating potential difficulties for the network.

Jurassic Park was selected for this simulation because it displays some of the longer correla-
tions of the sample group. Sixteen synchronized copies of the movie were broadcast to facili-
tate comparison with multiplexed traffic simulations consisting of one copy of each video
stream in the sample group.

The second experiment used to measure the behavior of multiplexed MPEG traffic in the link
differs only sightly from the first. In the second simulation, 16 copies of the same video se-
quence were again multiplexed and broadcast to the network. This time the video sequences
were not synchronized. Instead, the start times of each video sequence were staggered 1.4 min-
utes from the previous start time (1.4 = 1/16 of the length of the entire video sequence).

By starting a new movie every 1.4 minutes and running them in a circular manner, 16 copies
of the video were always multiplexed into the network traffic. As shown in Fig. 7, staggering
the video streams in this manner reduces the burstiness of the resulting network traffic, despite



the fact that the video streams are identical and possess significant long-term correlations.
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Figure 7: 16 Staggered Jurassic Park Traces

Comparing the traffic trace in Fig. 6 with that in Fig. 7 shows a significant decrease in bursti-
ness when the start times are staggered. The same two minute portion of the video trace in Fig.
7 shows a range from approximately 0.15 bits per pixel to 0.09 bits per pixel while the trace in
Fig. 6 ranges from 0.35 to 0.07 bits per pixel. Staggering the traces decreases the effects of the
correlations in the video stream and yields smoother traffic.

To see how this result carries over to traffic which consists of different video sources, the third
experiment is a traffic simulation of 16 independent video sequences. As in the first experi-
ment, the video sequences of the third experiment have synchronized start times. However,
each stream is different from the others. The trace in Fig. 8 illustrates the behavior of the sim-

ulated traffic of the third experiment.
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Figure 8: 16 Different Synchronized Traces

The traffic trace in Fig. 8 closely resembles the traffic trace in Fig. 7. There is little quantitative
difference between the two traces. The trace of Fig. 8 yields a peak to average ratio of 2.4 while
the trace of Fig. 7 yields a peak to average ratio of 2.0. The larger magnitude of the trace of Fig.
8 is attributable to the fact that Jurassic Park’s average GOP size is one of the smallest in the
sample set. The average of each of the three traces can be calculated from the characteristics of
its component video streams.

When compared to the trace in Fig. 6, the trace in Fig. 8 exhibits relatively smooth behavior.
Comparing the traces in Fig. 7 and Fig. 8, it can be observed that the long term correlations do
not seem to be significant. In order to better study this correlation, however, it is useful to look
at other measurements for each of the samples.

9, Autocorrelation Functions

One of the characteristic measurements used to describe video sequences is the autocorrelation
function [20,21,33]. This function provides insight into the nature of any long term correlations
which may exist in the video stream. When normalized by the variance, this function takes the
form:

CELG() =8 G+) -D] Eq (1
pl) = PO A

For a stationary process, this yields an R(j) dependent only on the lag j and independent of the
sampling time.



To evaluate each of the sixteen traces, the normalized autocorrelation function was fit to a sin-
gle exponential. Plotting the curve which represents the single exponential fit with the normal-
ized autocorrelation function shows that most of the traces exhibit a decay which cannot be

expressed as a single exponential, as can be seen in the plot of the autocorrelation function of
Jurassic Park in Fig. 9 below (and in the plots of Appendix C).
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Figure 9: Normalized Autocorrelation Function with Single Exponential Fit for Jurassic
Park

Though not explicitly shown in Fig. 9, the autocorrelation of this trace and the others plotted
in Appendix C have largely vanished after 1.4 minutes. Table 2 lists the decay constants for the
single exponential approximation of the autocorrelation function for all sixteen traces.

Table 2: Exponential Decay Constants for the 16 MPEG-1 Traces

Brief Name | Decay | BriefName | Decay | BriefName | Decay | Brief Name | Decay
—— — —
ast 0.8196 miv2 0.8193 simp 0.7232 sbowl 0.8648
bond 0.8804 newsl 0.8995 soccerl 0.8257 talkl 0.8981
ip 0.8538 race 0.8403 soccer2 0.8378 talk2 0.9284
mtvl 0.7321 lambs 0.9094 star 0.8742 term 0.6835

To better understand the correlation effects of a single video sequence, double exponential
curves were fit to the different autocorrelation functions. The general form of the double expo-

nential fit was:

p(j) =api + (1-a)pj

Eq. (2)

10



For the fit of Jurassic Park shown in Fig. 10, a = 0.716, p; = 0.854 and p, = 0.997.
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Figure 10: Normalized Autocorrelation Function with Double Exponential Fit for Jurassic
Park

Representing the autocorrelation function as a sum of exponents provides a significant benefit
for video traffic modelling. If the autocorrelation function must be represented by a hyperbolic
function, any resulting traffic models must conform to the requirements of self-similar statistics
(32]. An approximation of the autocorrelation function can be made by taking the sum of a
large number of exponentials [1]. However, if the double exponential fit proves to adequately
approximate the autocorrelation function, traffic prediction calculations can be simplified sig-
nificantly.

10. Proposed Traffic Model

Another method which is frequently used to illustrate long-term correlations in video sequenc-
es is the Variance-Time plot [32]. By plotting the variance against the number of GOPs aggre-
gated together (7 in Eq. 3) using log-log axes, the independence, or lack thereof, in a data set
can be observed. Plotted in this way, the variance-time plot of a statistically independent data
set will have a slope of -1.0. Data sets exhibiting long-term dependency will have a slope less
steep than -1.0.

Using the double exponential fit described in Section 9, a model of the variance-time plot of a
video sequence can be derived. Using the same variables from the double exponential fit of

11



Eqg.2, the model takes the form of:

my a(l-I-Pl 2p, 1-p] )J,(l_a)[l”fpszz 1-p } Eq. (3)

o2 I{1-p, T (1-p)?2 I {1-p, T (1-py?

‘=
o 1

where ;n_f is the variance of the sample means of all the aggregated GOPs in a sequence. The
full derivation for this model is shown in Appendix A. The variables a, p; and p, are deter-
mined from the double exponential fit to the autocorrelation function.

In the plot of Fig. 11, the lower curve is the variance-time plot from the trace of GOP sizes for
the Jurassic Park sequence. The upper curve is the proposed model defined by Eq. 3.
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Figure 11: Variance-Time Plot and Proposed Model for Jurassic Park

An important observation which can be made concerning the plot in Fig. 11 is that the variance
begins to fall linearly only after the aggregation size has reached 1000. At that point, the cor-
responding autocorrelation is below 0.1, Also, it should be noted that with only 3333 data
points (the number of GOPs in the trace), as the aggregation size exceeds 1000 the data be-
comes unreliable. To see how well the model fits as the variance is falling linearly, larger sam-
ple sets are required.

As can be seen in Fig. 11, the model fits the experimental data reasonably well. This model will
be especially useful in near-video-on-demand (NVOD) applications. In such applications, mul-
tiple copies of the same video are broadcast at regular intervals and long-term correlations be-
tween video sequences are possible since each broadcast is a time-shifted copy of a previous

sequence. To determine how closely spaced in time such copies can be without losing any gain
in statistical multiplexing, the model of Fig 11. can be used without having to rely on self-sim-
ilar statistics. This approach leads to a simplification in the management of network traffic in

12



NVOD applications.
11. GOP Size Histograms

Another important characteristic of MPEG video traffic is its distribution. The histogram of the
simulated traffic created from 16 different MPEG-1 traces, as shown in Fig. 4, provides impor-
tant insight into the statistical nature of MPEG video traffic. By fitting the distribution to a
number of different statistical distributions, it was observed that the distribution might fit most
of the histogram very well while not adequately accounting for the entire histogram.

In looking at the different statistical distributions, it was observed that neither the Gaussian dis-
tribution nor the gamma distribution provides an adequate fit for the histogram of the experi-

mental data [6,28]. However, the gamma distribution provides, for the most part, a very close
approximation to the histogram of the simulated traffic. As shown in Fig. 12, the gamma dis-

tribution accounts for the behavior of the histogram reasonably well until the upper five or ten
percent of the data.
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Figure 12: GOP Size Histogram with Gamma Fit

Since the gamma distribution cannot adequately account for the details of the tail, it becomes
necessary to find another expression which can account for the long tail of the traffic. The pri-
mary reason this is important is that the tail of the histogram will be used to determine the band-
width required at the muitiplexor network link.

To better account for the slower decay of the tail a theoretical distribution was derived. From
the derivation in Appendix B., it was found that the sum of the individual gamma distributions,
representing each of the 16 video sequences leads to an expression for the tail which will be
referred to as the gamma tail. As shown in Fig. 13, when compared to the tail of the gamma

13



distribution, the gamma tail expression provides a more conservative fit to the upper five per-
cent of the traffic histogram when estimating bandwidth utilization.
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Figure 13: Data, Gamma Distribution(dashed) and Gamma Tail(solid)

The most important property of this representation of the traffic distribution is that the trace
with the largest autocorrelation decay constant determines the expression of the gamma tail.
Even though both the gamma distribution and the gamma tail are based on the gamma function,
their curves are not identical because the gamma distribution is based on the mean and variance
of all traces in the sample set while the gamma tail is based only on the mean and variance of
the trace with the largest autocorrelation decay constant.

To predict the bandwidth required by the video traffic, it is necessary to know the autocorrela-
tion decay constants, the mean, and the variance of each of the broadcast video sequences. It is
then possible to calculate the tail of the traffic distribution using only these simple measure-
ments to characterize the aggregate traffic sent to the link.

12, Link Bandwidth Utilization

Once the required bandwidth for the link has been calculated, it is necessary to determine the
percentage of the bandwidth which can be utilized for video transmission. Because of the burst-
iness of VBR video sources, there will be periods of low bandwidth utilization. During these
periods, network efficiency can be increased by filling in the remainder of the available band-
width with ABR or best effort traffic. However, the degree of utilization will remain somewhat
less than one hundred percent or else increases in the bandwidth required by the video traffic
will cause an unacceptable increase in cell loss in the filler traffic.
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To study the limits of bandwidth utilization another traffic simulation experiment was conduct-
ed. In this experiment, a certain bandwidth was requested based on the tail calculations de-
scribed above. With this bandwidth requested, the video traffic was then given priority over the
filler traffic. Two levels of bandwidth utilization were then set. One, shown in Fig. 14, was set
at 90 percent. The second, shown in Fig. 15, was set at 95 percent.

1432 4 100 %

Data Rate (Mbits/sec)

1333 14.00 14,67 15.33 16.00 16567
Time (minutes)

Figure 14: 90% Bandwidth Utilization

15.73

1432 - 100 %

95 %
1289

11.46
10.02 1
8.59
716
573

430

Data Rate {Mbits/sec)

286

143

0.00
13.33 14,00 1467 1533 16.00 1667

Time (minutes)
Figure 15: 95% Bandwidth Utilization

Cell loss occurs in both Fig. 14 and Fig. 15 any time either or both of the data types exceed the
requested bandwidth calculated using the expression for the gamma tail, in this case, 14.32
Mbit/sec. As can be seen in Fig. 15, with the bandwidth utilization set at 95 percent in this
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rough simulation, cell loss in the filler traffic becomes significant with over five percent of the
peaks exceeding the requested bandwidth. Decreasing the bandwidth utilization to 90 percent
greatly reduces the probability of cell loss, as shown in Fig. 14.

However, this may present an exaggerated estimation of the cell loss in the actual link, because
of the nature of the two data types. Pacing the video data into the network at the GOP level
means each data point will have a duration of approximately 0.4 seconds. Because of the higher
temporal grain which can be achieved by the filler traffic, the cell loss shown as lasting 0.4 sec-
onds will actually last a fraction of that, reducing the duration of overly large peaks.

Also, a number of more complex schemes can be employed to determine the amount of filler
traffic to be sent in the next time segment. The scheme used for this simulation was especially
crude. It simply set the filler rate for the next time slot equal to the difference between the avail-
able bandwidth at the current time and the current bandwidth required by the video sequence.
With a response time of less than 0.4 seconds, the filler traffic can certainly do better than that.

13. Preliminary Cell Loss Model

To determine the degree of cell loss expected in the network, a preliminary cell loss model has
been developed using the gamma tail model explained previously. Again, of primary impor-
tance is the fact that the component with the slowest decay (see Appendix B) controls the tail
of the distribution of the aggregate traffic. This method allows for recalculation of required
bandwidth any time a new movie starts or another movie finishes. The predicted cell loss and
required bandwidth can then be calculated dynamically based on the video sequences currently
being broadcast.

The effectiveness of this model in providing a conservative prediction of cell loss in MPEG
video traffic can be observed from Fig. 16.

0.007

0.006

- =

6.004 9

//

0.003 e

B

Cell Loss

0.001 =]

0.002 A
) /

0 0.001 0.002 0.003 0004 0.005 0.006 0.007

Predicted Cell Loss
Figure 16: Cell Loss Model

In the above figure, the predicted cell loss is represented by the straight upper line. The cell loss
resulting from offered load to the network that exceeds the bandwidth available is represented
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by the lower line. For both lines, the horizontal axis is the predicted cell loss. If there were per-
fect agreement between the data and the model, the data points would fall on the predicted line.
The fact that the predicted line is consistently higher than the data line indicates that the model
provides a conservative estimate of the cell loss.

From Fig. 16 it is apparent that the model predicts cell loss reasonably well. Because of the lim-
ited sample set of this experiment, this preliminary result cannot be considered conclusive. To
thoroughly test the effectiveness of this model it is important that it be evaluated with larger
data sets and longer traffic simulations to see how well it behaves for a more representative
sample group. Beyond MPEG-1 compressed video traffic, MPEG-2, JPEG and HDTV trans-
missions must be considered to determine the method’s independence of codec type, picture
size, and video sequence length.

14. Conclusion

During the course of this study, it has become clear that an effective way of incorporating
MPEG video traffic into the ATM environment is to transmit MPEG video through the network
as evenly paced, prioritized GOPs. ABR or best effort traffic can be used as filler traffic to in-
crease bandwidth utilization without increasing the probability of cell loss in the MPEG traffic
or incurring significant cell loss in the filler traffic. The degree of cell loss can be predicted us-
ing simple measurements from each of the component video sequences. With measurements of
mean cell rate and variance for each of the component sequences, cell loss for the aggregate
traffic can be accurately predicted. However, this study is by no means conclusive. Rather, it
represents a preliminary development and must be tested against a much larger library of sam-
ple videos. This library must include video sequences encoded with a number of different VBR
codecs and the video sequences must be of sufficient length to adequately study lags of thou-
sands of GOPs. We believe this is a promising method which may significantly simplify VBR
video modeling.
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A.  Derivation of the Double Exponential Traffic Model

Given x, a random variable in the interval [0,c=) with a probability density p(x); define a ran-
dom process that is a sequence of consecutive samples of the random variable x which we will
call x; (i=0,1,2,3,...). The mean of the i* sample is

A_T;- = J:xip (x;) dx; (1)

and the covariance of the i and { i+j)'h sample is

RG,i+j)y =xx, .= EJ:x,.xij (xpx;, ) dxidx; (2)

where p(x;, x;,;) is the joint density for the i and ( i_-l_-j)"‘ samples. If we assume stationarity of
the random process so thatx, = % and R (i, i) = x? = x%, then

R(‘sl'{'.’) = (xl'_i'!'j) (x£+j—i+i) (3)
R(i,i+j) = (x;—-X) (xi”-—-i:) +(%)2 4)
R(i,i+)) = p(Ho?+32 &)

where p () is the normalized autocorrelation function defined in Eq. 2 of Section 9.

pU) =ap{+ (1-a)pj (6

giving a decay which falls off exponentially with j for each of the two terms that make up the
approximation. Note that p (0) = 1 = a+ (1 —a) . Substituting the approximation into (5)
we get

R(i,i+j) = apjol+ (1-a)plo?+x2 D
If x; and x;, ; were statistically independent
XX, ;= _;l.xH_j =X2; py) = 8j0 and x2 = 0’3 + x2 &

Given the sample mean:

2 o ©
iel,

over I samples in the kh group of I samples such that J, = {kLkI+1,...,(k+1)I-1}, the mean

] —
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squared value of the sample mean is

m} = ,22 2 % = ZZR(H) ;1-2 Zp(i-t)cgmz (10)

iellel, :e.!,‘le.l,

Where (5) has been used to introduce the normalized autocorrelation function, p (i -/) and
[=i+j. The double summation in (10) can be visualized as a real, Ix square array in Toeplitz
form. Utilizing the identity and symmetry of the elements along diagonals parallel to the ar-
ray’s major diagonal we can write

2

— ©
m¢ = ﬁx[Ip(O) +2(-Dp() +...+2p(I=-1)] +x2
-1 2
c:
M=%, (I-)py)ot-—=+5 an
12
j=0
Now substituting for p () cf from (6) and carrying out some straightforward summations for
geometric series we get
2 i
1+ 2p\ 1-p;
=13 o p ( p,) p! an (12)
1 I/7(1-p))

i=1

2
where o = a2 and ng = (1-a)o2.
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B. Derivation of the GammaTail

The gamma probability density p (n, A, x) is defined as

_ )‘(M)n-le—h (1)
P (n: A',x) - l-(n)
whose characteristic function M (n, A, u) is:
;\'n
M(n 2 u) = . 2
( (A-juy"
Note that when n=1,
A
M(lL,LAu) = ——— (3)
A9 = T
and
an-l(__.!_)
- (M(LAw/A) _ A—ju) _ ('”"']r(n) 4)
oAn-1 oAn-1 (A=ju)®
Thus
_=(=Mrar- (M (1, A u) /M) 5)
R O T
—(=1) -1\ (n) Ar
M = =
N O [ LR WY
Similarly,
_ =M=l (p(1, A u) /N (6
p(n,?t.,x) - r(n) a?L"'l
B _(_l)nan—le—lx _ l(h)n—le-u
p(n’ A'sx) - l-\(n) aln_] - r(n)
I-1
Now consider s = Z x; where the x; are statistically independent. Then the characteristic
i=0
function for the s is
I-1 -1 A
M(n, A u) = HM(”,-:lg:u) S H—‘——"' 9
i=0 i=o (hy—ju)™

20



Let us assume that the A, are distinct and increasing (A<, ..., A, _; <A, ) . Furthermore,
expand the characteristic function into partial fractions ' '

-1 n
8)
Mahw =Y Y 4t (
e (l -Ju)f
The probability density for the sum s becomes
I-1 n g —A5
: (l‘.s)f"’e i
plads) =3 Y a; S )

i=0j=0

In the right-hand tail (s — «) only the term with the smallest A, (i.e. A,)) which also has the
largest j (i.e. n,) will predominate. Thus,

(lOS) ny— le—los

li nis) =a l (10)
where
Ay —Jju h I-1 A
. (] ]
a, = lim M(n, L,u)] = (11)
O J‘u—ﬂo[{ Ao J ,-I:II Ai=hg
x, x )
Notethat A, = — and n, = [ — | so a,, and the tail probability density can be evaluated
i G2 i G. Ony
i :

from the first two moments of the component distributions.
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C. Autocorrelation Plots for the 16 Samples
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Figure 1C: Autocorrelation Plots for ast (1) and bond (r)
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Figure 3C: Autocorrelation Plots for mtv2 (1) and newslI (r)
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