
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Spring 5-2009

Atomic Transfer for Distributed Systems Atomic Transfer for Distributed Systems

Haraldur Darri Thorvaldsson
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Thorvaldsson, Haraldur Darri, "Atomic Transfer for Distributed Systems" (2009). McKelvey School of
Engineering Theses & Dissertations. 354.
https://openscholarship.wustl.edu/eng_etds/354

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Feng_etds%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/354?utm_source=openscholarship.wustl.edu%2Feng_etds%2F354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Kenneth J. Goldman, Chair

Christopher D. Gill
Rudolf B. Husar
Robert E. Morley
William D. Smart

Jonathan S. Turner

ATOMIC TRANSFER FOR DISTRIBUTED SYSTEMS

by

Haraldur Darri Thorvaldsson

A dissertation presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009
Saint Louis, Missouri

ABSTRACT OF THE DISSERTATION

Atomic Transfer for Distributed Systems

by

Haraldur Darri Thorvaldsson

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2009

Research Advisor: Dr. Kenneth J. Goldman

Building applications and information systems increasingly means dealing with con-

currency and faults stemming from distribution of system components. Atomic trans-

actions are a well-known method for transferring the responsibility for handling con-

currency and faults from developers to the software’s execution environment, but

incur considerable execution overhead. This dissertation investigates methods that

shift some of the burden of concurrency control into the network layer, to reduce

response times and increase throughput. It anticipates future programmable network

devices, enabling customized high-performance network protocols.

We propose Atomic Transfer (AT), a distributed algorithm to prevent race conditions

due to messages crossing on a path of network switches. Switches check request

messages for conflicts with response messages traveling in the opposite direction.

Conflicting requests are dropped, obviating the request’s receiving host from detecting

and handling the conflict. AT is designed to perform well under high data contention,

ii

as concurrency control effort is balanced across a network instead of being handled

by the contended endpoint hosts themselves.

We use AT as the basis for a new optimistic transactional cache consistency algo-

rithm, supporting execution of atomic applications caching shared data. We then

present a scalable refinement, allowing hierarchical consistent caches with predictable

performance despite high data update rates.

We give detailed I/O Automata models of our algorithms along with correctness

proofs. We begin with a simplified model, assuming static network paths and no

message loss, and then refine it to support dynamic network paths and safe handling

of message loss.

We present a trie-based data structure for accelerating conflict-checking on switches,

with benchmarks suggesting the feasibility of our approach from a performance stand-

point.

iii

Acknowledgments

First of all I want to thank my thesis advisor, Ken Goldman, for his inexhaustible

patience with me throughout my doctoral journey. I have learned much from his calm

and careful thinking, and aspire to add some of that style to my own.

I would also like to thank the other members of my dissertation committee, Chris

Gill, Rudy Husar, Bob Morley, Bill Smart and Jon Turner, for the time and valuable

insights they contributed.

I want to thank the guys of Lunch Club, for all our great times together. Octav

Chipara and Paul Gross for good friendship, and Paul especially for our hours spent

in wise conversation and inane banter. Sajeeva Pallemulle, the oldest soul of us all,

for his friendship and enjoyable cooperation on all things Byzantine. Rohan Sen with

his boundless knowledge of all things WashU and beyond. Greg Hackmann for his

ready assistance with any problem. Also, Mart, Liang, Jamie, Radu, it was a pleasure

knowing you all.

My thanks also to the peerless administrative staff at the department: Myrna, Made-

line, Andrea and Sharon, I’ve greatly enjoyed your company and benefited from your

helpfulness.

Last but not least I thank my amazing wife, Anna Margrét, and my wonderful children

Halldór Alexander, Jökull Ari and Hugrún Eva. I’ve had to ask much of you, especially

during the last miserable months without you. From now on, I’m all yours.

Haraldur Darri Thorvaldsson

Washington University in Saint Louis

May 2009

iv

Dedicated to my family.

v

Contents

Abstract . ii

Acknowledgments . iv

List of Tables . ix

List of Figures . x

1 Introduction . 1
1.1 Motivation and Contributions . 1
1.2 Overview of Approach . 3

2 Background and Related Work . 7
2.1 Transactions and Concurrency Control 7
2.2 Atomic Actions . 13
2.3 Atomic Cache Consistency . 15
2.4 Name-based Routing and Multicast 17
2.5 Background: I/O Automata . 21

3 Atomic Transfer . 24
3.1 Atomic Switches and Atomic Transfer 25
3.2 FIFOChanneli, Channelc and AtomicSwitchi 28
3.3 Properties and Proofs . 32
3.4 End-to-End Atomicity . 38
3.5 Liveness . 43
3.6 Optimizations . 45

3.6.1 Permissible Message Reordering 46
3.6.2 Discarding doomed requests 46
3.6.3 Mixed Networks and Dynamic Shirking 47

3.7 Discussion and Related Work . 48
3.7.1 Performance Analysis . 49
3.7.2 Related Work: Isotach Networks 53

4 Transactional Cache using Atomic Transfer 55
4.1 Application Hosts, Data Server Hosts and Executions 55
4.2 Cache Consistency through Atomic Transfer 57
4.3 SimpleAppHosta and SimpleDataServerHostb 59

vi

4.4 Properties and Proofs . 62
4.5 Discussion and Related Work . 67

4.5.1 Performance Analysis . 67
4.5.2 Serializability for Abstract Data Types 68

5 Dynamic Subscriptions . 71
5.1 Subscriptions and Conflicts . 71
5.2 Names and Conflicts . 73
5.3 Names, Forwarding and Subscriptions 74
5.4 Overflow, Failures and Purging . 77
5.5 Subscription Consistency . 78
5.6 DynamicSwitchi . 80
5.7 Properties and Proofs . 88
5.8 Dynamic End-To-End Atomicity . 99
5.9 Liveness . 99
5.10 Discussion and Related Work . 101

5.10.1 Atomic Transfer and Reliable Multicast 101

6 Dynamic Atomic Cache and State Transfer 105
6.1 States, Names, Values, Updates and Conflicts 105
6.2 Responses and partial states . 107
6.3 Names and Caches . 108
6.4 Direct Cache Synchronization . 110
6.5 DynamicAppHosti and DynamicServerHosti 111
6.6 Properties and Proofs . 116
6.7 Liveness . 127
6.8 Optimizations . 128
6.9 Discussion and Related Work . 128

6.9.1 Responses and Abstraction Levels 129
6.9.2 Caching and Optimistic Concurrency Control 130
6.9.3 Adaptive Optimistic Concurrency Control (AOCC) 131

7 Scalable Cache Synchronization . 134
7.1 Cacher Hosts and Cacher-Aware Switches 134
7.2 Protocol Race Condition and Solution 136
7.3 CacherAppHosta and CacherAwareSwitchi 138
7.4 Properties and Proofs . 147
7.5 Discussion and Related Work . 160

7.5.1 Caching and Performance . 160
7.5.2 Cachers as Service Providers 162
7.5.3 Caches, Response Synch and Reliable Multicast 164

8 Prototype Implementation of Conflict Checking 165

vii

8.1 Hierarchical Naming Scheme . 165
8.2 Organizing Packets for Fast Conflict Detection 169

8.2.1 Multi-bit Tries and Tree Bitmaps 170
8.3 Tree Intersection Bitmaps . 171
8.4 Switches and Responses Sets . 177

8.4.1 Trie and Set Asymptotics . 181
8.5 Conflict Checking Performance Evaluation 182

8.5.1 Experimental setup . 182
8.5.2 Varying Conflict Locality . 185
8.5.3 Varying the Switch Trie Size 190
8.5.4 Varying Conflict Ratios . 191

8.6 Possible Optimizations . 192
8.6.1 Combining detection with Forwarding 193
8.6.2 Hardware, TCAMs and Parallelism 194

8.7 Discussion and Related Work . 198
8.7.1 Related Work on Tries . 198
8.7.2 Generalizing to Arbitrary Operations 199

9 Future Work . 201
9.1 Resilient Transfer . 202

9.1.1 Resilient Transfer protocol sketch 203
9.1.2 Recoverability through Resilient Transfer 206

9.2 Multi-server Requests . 208
9.2.1 Multi-packet Messages . 209
9.2.2 Handling Multi-server Requests 210
9.2.3 Global Consistency with Atomic Transfer 211
9.2.4 Global Serializability with Atomic Transfer 216

9.3 Optimizations for Cached Systems . 218
9.3.1 Request Short-Circuiting . 219
9.3.2 Request Pipelining . 221
9.3.3 Request Queueing for Liveness 222

9.4 Security and Replication . 223

References . 225

Vita . 242

viii

List of Tables

4.1 Invalidated-by relation for a simple read / write register. 69
4.2 Invalidated-by relation for a bank account ADT. 70

8.1 Conflict relation for a simple read / write register. 173

ix

List of Figures

3.1 The meeting of a request and response 37
3.2 the case of k > 1 . 42

4.1 Base case, inductive case and Lemma 4.1 64

5.1 configuring a forwarding hop for conflicting request/response q and r. 72
5.2 Lemma 5.3 illustrated . 91
5.3 Case 2 of Theorem 5.1 illustrated . 97

6.1 The publish/subscribe Intervals of Lemma 6.6 121

7.1 Diversion of value read request to a Cacher Host 135
7.2 Value message diversion, and naming for Lemma 7.3 150
7.3 Cacher Chain Lengths Illustrated . 157

8.1 Example mapping of names to nodes 166
8.2 Example tree bitmap encoding with stride n = 3 170
8.3 Tree Intersection Bitmap Block with three entries 173
8.4 TIB-blocks with overflowing lists and overflow blocks 174
8.5 Block intersection algorithm at a high level. 175
8.6 A TIB-block with two prefix extensions 176
8.7 High-level schematic of conflict-checking switch port p 178
8.8 Three tries with different localities 183
8.9 Performance as trie localities are varied. 185
8.10 Number of blocks compared. 187
8.11 Ratio of tries that conflict. 188
8.12 Number of memory chunks “fetched” in tries. 189
8.13 Number of memory chunks “fetched” per block. 189
8.14 Number of blocks in tries. 190
8.15 Number of bytes per name encoded in tries. 190
8.16 Performance as trie localities are varied, first-conflict only. 191
8.17 Average number of names in common to conflicting tries. 191
8.18 Performance as switch trie sizes varies. 192
8.19 Performance as conflict ratios vary (all conflicts). 193
8.20 Number of blocks compared as conflict ratios vary. 193
8.21 Performance as conflict ratios vary (first conflict only). 194

x

Chapter 1

Introduction

1.1 Motivation and Contributions

Humanity’s data, business processes and social interactions are rapidly moving on-

line. Before long, the pervasiveness of the Internet will be complete in the developed

world, with everyone permanently connected at work, home or on the go through a

wireless device. In the developing world, mobile phone technology is already making

a positive impact on people’s lives. But in general, the expectation is growing that

any information about anything should be accessible at any time from anywhere in

the world. These kinds of trends will likely continue, and thinking them through to

their logical conclusion we arrive at the following:

1. We want unfettered access to applications of arbitrary complexity from any-

where, with a user interface experience matching or surpassing that of applica-

tions installed on local workstations today.

2. We want to view fresh data, updated in our user interfaces not within minutes

or seconds but within milliseconds of changing. The intuitive illusion of every

data item having one global consistent copy should be maintained at all times.

3. We want to modify data in real time in collaboration with other people, regard-

less of physical location. The default mode of working with information should

be to observe it and interact with it, not distribute it or download it.

4. We want it to work! We should never lose time, work or data due to component

failures in our computing infrastructure.

1

Systems meeting these requirements will inevitably be distributed, due to the need

for global accessibility and scalability. Developing such systems is highly challenging

though, due chiefly to the concurrent execution and partial failures inherent in dis-

tributed systems. Attempts by multiple applications to modify the same data must

be reconciled and the transient or permanent failure of some of the tens or hundreds

of components that may partake in an application’s execution must be tolerated.

The futility of handling these issues on an ad-hoc basis has long been recognized by

the designers of large, mission-critical data processing systems. A widely adopted

solution for handling them is the atomic transaction [1, 2].

An atomic transaction is a collection of operations that must appear to execute to-

gether as a whole or not at all. In the first case a transaction is committed and

its effects on data are permanently recorded, while in the latter case it is aborted

and no data is affected. Furthermore, transactions are prevented from interfering,

so a transaction never sees the intermediate effects of any concurrently executing or

aborted transactions but only the consistent state left behind by committed transac-

tions. This is achieved through the use of concurrency control algorithms, that delay,

re-order, abort or otherwise manipulate transactions to ensure that the result of an

execution could have been produced by some total order of the transactions.

The performance overhead of concurrency control can be significant. Enterprise-

critical database systems and applications have long chosen to pay this price, as

the price of system failures is higher still. A failed fund transfer operation in the

computing system of a bank or financial institution, for example, could easily lead

to the loss of the transfer’s money and the firm’s reputation. But while Internet

applications commonly rely on a transactional database or data store behind the

scenes, transactions have yet to be adopted as the basis for software development in

general. We propose an architecture for network-centric concurrency control designed

to facilitate such a transition. The key architectural ingredients of our approach are:

1. An execution model that makes progress by executing atomic transactions.

2. Pervasive caching of persistent global data, with atomic cache consistency.

3. Publish/subscribe multicasting and forwarding of data as name/value pairs.

2

This dissertation makes the following primary contributions.

1. We propose an algorithm for distributed concurrency control with network

switch participation, enabling an aggressively speculative atomic request / re-

sponse protocol and reducing the load on servers imposed by concurrency con-

trol.

2. We develop a scalable atomic cache consistency protocol that relies on the guar-

antees provided by the network for safety.

We make certain forward-looking assumptions about the network. In particular, we

assume that we can customize the network’s routing and forwarding protocols and

functionality. While we do not advance the art of multicast routing or subscription

processing per se, our approach depends heavily on these elements.

We take atomic transactions and persistent data in a global namespace as the basis for

our approach. We take an optimistic approach to concurrency control, where applica-

tions first execute transactions on locally cached data before sending the transactions

to a server for commitment. Existing work suggests that this approach leads to good

performance and scalability [3]. This dissertation investigates ways to further improve

the performance of such systems. We provide a detailed model of our algorithms and

prove them to be correct.

We do not present a complete implementation, but we do evaluate the performance

of a data structure for the performance-critical processing that would take place on

network switches in an implementation of our approach.

1.2 Overview of Approach

Our novelty stems from recruiting the network layer into making distributed atomic

execution and cache consistency more efficient. Data networks have a graph-like struc-

ture, whose main components are switches1 connected via data links. This structure

1We use the term somewhat inaccurately to refer to both switches, routers and related devices.

3

is usually opaque to applications, which treat the network as a “cloud” that accepts

packets tagged with destination network addresses and delivers them to addressees,

sometimes losing, rearranging or duplicating packets in the process. We are mainly

concerned with packets containing operation requests and responses. Requests are

sent from application hosts to server hosts to invoke operations while responses are

sent from servers to report back operation results. We observe that the forwarding of

packets is an active computation process, performed by the switches along network

paths. Most importantly, packets navigating a network path between a pair of hosts

pass through the same switches.

This sets the stage for Atomic Transfer. We ask: what if requests could “collide” with

responses at the switch where they meet in the network, such that a request rendered

invalid by a recent response would be dropped and never reach its destination server?

For example, if a request to toggle the status of a bit from 0 to 1 encountered a

response noting that the bit has just been set to 1, the request would no longer be

applicable. With traditional concurrency control, the server would detect this situa-

tion and resolve it, for example by rejecting the latter request. But while the effort a

server expends on concurrency control is usually manageable, it can increase consider-

ably in the presence of heavy data contention, where many applications concurrently

attempt to access the same data in incompatible ways. By contrast, if most such

conflicts were resolved in the network, they would not consume any server resources

whatsoever.

While today’s switches perform fixed data routing and forwarding according to stan-

dard protocols, there is nothing that fundamentally precludes them from performing

other types of processing as well, such as checking packets for concurrency conflicts.

However, conflict checking can only add a very slight overhead to switch processing

before its gains are outweighed by increased normal-case forwarding costs. Our results

indicate that conflict checking can be sustained at multi-gigabit data rates, although

we’ve yet to verify this in a real implementation.

Atomic Transfer requires that application hosts receive the uninterrupted sequence

containing all responses that may conflict with their requests, to ensure that con-

flicting requests and responses meet in the network. For this reason, we assume

multicasting capability in the network, for efficient transmission of responses to a

4

large number of receiving applications. Although not widely deployed, multicasting

has been the focus of much research. Since we already assume that we can customize

switches and network protocols, assuming multicast does not seem contentious.

We make an important observation, that the threat of concurrency control overwhelm-

ing a server is especially acute with the family of algorithms known as Optimistic

Concurrency Control (OCC). At the same time, OCC works particularly well in con-

junction with application-side caching of data, while readily admitting the type of

speculative execution that can mask network latency to a large extent. We perceive

a beneficial synergy here: the multicast architecture required for Atomic Transfer

enables efficient maintenance of application caches, while Atomic Transfer may mit-

igate cache-friendly OCC’s principal weakness, i.e. its failure to cope with heavy

contention. We believe that an architecture utilizing Atomic Transfer-based cache

consistency could meet our high-level goal: scalable and low-latency access to shared

data and applications.

In our proposed model, application hosts are essentially stateless, but cache arbitrary

amounts of data from the servers tasked with persistent data storage. Application

hosts non-deterministically issue requests and apply server responses to their cached

data. We use the term “application” in a broad sense. For example, an application

host could correspond to a user device, with non-determinism stemming from user

input. As a different example, an application could correspond to a front-end host,

with non-determinism stemming from incoming legacy RPC calls [4, 5]. As a final

example, it could correspond to a proactive monitoring agent or workflow processing

controller, with non-determinism stemming from timing and ordering of responses and

scheduling decisions. In each case, the execution model presented to software devel-

opers2 is very simple: all data is globally scoped and is modified only by transactions,

that seemingly move the system from one global state to another.

To enable rapid conflict checking of requests and responses we require that data

be organized as global name / value pairs, such that requests invoke operations on

data names and responses report the results of operations on data names. In an

implementation, names would be encoded into packets in a standardized format such

as the one described in Chapter 8, enabling switches to perform conflict detection with

2And ultimately: application end-users and data owners.

5

limited knowledge of the semantics of requests and responses. In fact, our models go

a step further and assume that switches forward packets based on data names, not

host or network identifiers. While this is not strictly required for our approach, it

makes our protocols simpler, more self-contained and more highly abstracted.

This dissertation is organized as follows. Chapter 2 discusses related work at a rel-

atively high level. Additional related work is discussed in context, at the end of

each technical chapter. Chapter 3 models a network of switches that perform Atomic

Transfer of requests and responses and shows that they function correctly, assuming

certain well-formedness conditions are met by application and server hosts. Subse-

quent chapters present a series of refinements of the switches, applications and servers

comprising an atomic network. Chapter 4 adds servers and data-caching applications

to the network, and shows that application executions are atomic, or serializable, given

the appropriate operation conflict relation. The model in these chapters assumes a

reliable network and a static association between applications and servers. The sys-

tem of Chapter 5 relaxes these assumptions, permitting applications to dynamically

subscribe to servers and subscribe to only subsets of a server’s state. Furthermore,

it tolerates message loss, although with loss of performance. Chapter 6 improves on

the cache system of Chapter 4 for dynamic/partial subscriptions. Chapter 7 further

improves the scalability of the system of Chapter 6 by permitting hierarchical caches,

allowing applications to fetch data into their caches from the caches of other appli-

cations. Chapter 8 presents a concise, trie-based data structure that could serve as

the basis for high-performance conflict detection on switches, along with synthetic

micro-benchmarks for the data structure. Chapter 9 discusses future extension of our

work to multi-server transactions, as well as suggesting a few optimizations.

6

Chapter 2

Background and Related Work

This chapter gives an account of related work, organized around a discussion of our

architectural ingredients. It gives a relatively broad overview of relevant fields, while

the technical chapters present more detailed discussions of related work in the context

of the material presented in each chapter.

2.1 Transactions and Concurrency Control

A variety of formal and semi-formal definitions of transactions have been proposed,

but their essence is that an atomic transaction is a set of operations seemingly ex-

ecuting together as an indivisible whole, never executing partially nor interleaving

with operations from other transactions.

While the ideas underlying transaction processing originate with the development of

mainframe database systems in the late sixties [6], the terms and concepts began to

take shape in the early seventies [7]. The classic transaction papers [1, 2] describe the

notion of atomic transactions and serializability [8], as well as rules and implemen-

tation techniques for locking and distributed commit of multi-server transactions.

Concurrency control is a rich, mature field [9] and we do not attempt a complete

survey.

The defining properties of transactions are often known by the acronym ACID:

Atomic, Consistent, Isolated and Durable. Atomic, because partial results of trans-

actions that fail to commit are never visible to outside observers, Consistent because

7

a (correctly programmed) transaction moves a system from one consistent state to

another, Isolated because a transaction never sees intermediate results from other

concurrently executing transactions, and Durable because the effects of a committed

transaction survive transient system failures, such as crashes that lose the contents

of volatile memory.

The purpose of concurrency control is to permit multiple independent applications

to access shared data while preventing anomalies resulting from interfering data up-

dates. For example, if two fund transfer programs interfere in such a way that one

deposit is lost, that would be considered an anomaly. In general, it may be less

clear what constitutes an anomaly-free, correct execution. Various formal execution

correctness standards have therefore been developed, giving precise conditions for

which interleavings of operations in a concurrent execution are permitted. All are

based on the notion of a concurrent execution being consistent with some sequential,

non-concurrent execution of the same operations. Intuitively, an execution is cor-

rect if none of the participants in it can distinguish it from a sequential execution.

The most widely used standard in transactional systems is that of serializability [1],

which says that a concurrent execution is correct if its operations could be re-ordered

such that 1) each operation of each transaction appears before or after those of other

transactions, and 2) the re-ordered sequence is a correct sequential (serial) execu-

tion of the transactions. There are many subtle aspects to such definitions [9], with

important consequences for the consistency of state observed by transactions, the

rollback of aborted transactions (transaction recoverability) and the achievable levels

of concurrency and performance. Our algorithms are based on conflict serializability,

the variant most commonly used in practice, where only those operations defined as

non-conflicting may be re-ordered for correspondence to a sequential execution.

A notable alternative to serializability is linearizability [10], mainly used to reason

about correctness of concurrent data structures and algorithms in shared-memory

concurrent systems without recoverability. Another standard, originally defined in

terms of shared-memory multiprocessors, is that of sequential consistency [11].

A concurrency control algorithm constrains the execution of transactions at run-

time as to preserve an execution’s consistency. Concurrency control algorithms fall

into three main classes: algorithms based on (pessimistic) locking, timestamps and

8

(optimistic) validation. The first class is dominant in current practice, but many

hybrid schemes exist, combining elements from more than one class.

• In locking schemes, transactions obtain exclusive (write) or shared (read) locks

on data items before using them. A transaction attempting to obtain a lock

incompatible with an existing lock on an item becomes blocked and must wait

until the lock is released again. Alternatively, either transaction may be aborted.

Locking is a relatively straightforward, well-understood technique and handles

contention well, granted that locks are held for short durations of time. It

suffers performance loss from blocking, which increases rapidly with increased

transaction waiting times and contention [12]. This makes it less attractive for

distributed systems, where network latency may contribute to waiting times.

It also suffers the well-known drawbacks of locking, such as deadlocks and con-

voying.

• In timestamp schemes [13] the ordering of a transaction is decided as it is cre-

ated, by assigning to it a unique timestamp from a totally ordered domain. The

concurrency control algorithm then decides whether operations are permitted to

complete based on transaction timestamps. For example, if a transaction with

a lower (earlier) timestamp attempts to read a value written by a transaction

with a higher (later) timestamp, either one of the transactions must be aborted.

Pure timestamp schemes have been found to perform worse than locking or op-

timistic methods, owing to their conservativeness in permitting concurrency

and the scheduling rigidness resulting from choosing transaction ordering in ad-

vance. They are more commonly used as a part of other concurrency control

schemes [14], for example in the validation phase of optimistic schemes.

• In optimistic schemes [15] a transaction is executed in isolation, with changes

made to a local buffer invisible to other transactions. Once ready to commit,

the transaction enters a validation phase that checks whether the transaction is

still serializable, that is: whether it has been invalidated by another transaction

in the meantime (backward validation) or alternatively: whether it would in-

validate some other as of yet uncommitted transaction (forward validation). If

not, it is committed and its changes are atomically propagated to the globally

visible state. In a distributed system, a requesting host must obtain the data

9

values read by a transaction and / or cache a copy of those values. If hosts cache

data across transactions, the concurrency control problem effectively becomes

that of ensuring cache consistency [16]: that the values read from cache could

have come from the original state.

Our algorithm falls under the rubric of optimistic transactional cache consistency

algorithms, as requesting applications execute transactions locally using cached data

and then send the request (and possibly its response) to the original server for vali-

dation. This results either in an update to the server’s global state or rejection and

rollback in the requester’s cache. An important difference between pessimistic and op-

timistic algorithms is that pessimistic transactions are ready to commit at any time,

since they’ve “stopped the world” to preserve their state assumptions. Optimistic

transactions execute blithely based on cached state, but can only commit following a

successful validation phase verifying that their assumptions still hold.

We state our models in terms of operation invocations on abstract data types [17, 18],

rather than low-level data reads and writes. Aside from generality, abstract data

types can support enhanced levels of concurrency, by supporting a wider range of

non-conflicting operations that can proceed in parallel [19].

As an important note, the models in this dissertation do not permit a transaction to

be distributed across more than one server, that is: all the operations of a transaction

must be executed at the same server. Multi-server transactions need additional pro-

cessing steps to ensure that a transaction commits at all the servers involved or none

of them, and that transactions can be serialized in compatible orders at all servers.

While multi-server transactions are a fundamental requirement for scalable trans-

actional systems, postponing their consideration simplifies our discussion and keeps

it focused on the novel contributions of this dissertation, which is Atomic Trans-

fer. However, we have begun work on extending our protocols to handle multi-server

transactions, using the network to accelerate distributed atomic commit, as discussed

in Chapter 9 on future work.

Transactions are today nearly synonymous with database systems and enterprise ap-

plications. Innumerable database systems have been built, academic and commercial.

10

Pioneering implementations such as IBM’s IMS [20] and System R [21] ran in main-

frame environments. In the eighties, research on scalable “database machines” shifted

the focus from custom hardware solutions [22] to shared-nothing architectures [23, 24]

and eventually to commodity hosts and interconnects, the platform of choice for to-

day’s commercial database systems.

Databases gain considerable implementation flexibility from the relational data model

[25], allowing automated partitioning of data and parallelization of (declarative)

queries, for example. However, despite many attempts at addressing it, an “impedance

mismatch” remains between databases and general-purpose programming languages

based on memory objects and pointers. Object-Oriented (OO) Databases [26, 27]

seek to meld OO programming into databases, while work on orthogonally persistent

programming languages [28, 29] seeks to meld databases into languages. While OO

databases have had some commercial success, they have had a limited impact on

general software development practice.

An alternative approach is to provide atomicity at a lower level, in language-agnostic

transactional data stores [30, 31, 32, 33], file systems [34, 35] or virtual memory [36].

Such systems suggest a more layered approach, as apposed to the fully integrated

approach of databases, and could provide a foundation for AT-base server implemen-

tations. There have been calls for more modular architectures for database systems

[37, 38].

Active Databases [39, 40] are yet another approach to bridging the gap, embedding

atomic application actions within a database’s execution environment. Actions are

executed according to Event-Condition-Action (ECA) rules, specifying the changes

(events) and a predicate (condition) for when an action may be scheduled to run, sim-

ilar to guarded commands [41]. These ideas have influenced mainstream databases,

most of which support ECA-like “triggers” for stored procedures executing within

the database. Our model would be suitable for ECA-structured applications, with

condition evaluation performed by application hosts in response to cache updates.

An interesting recent area of research is transactional memory (TM) [42, 43, 44], at-

tempting to provide transactional semantics for batches of memory location loads and

stores, using extensions to memory cache coherency logic (hardware TM), software

11

techniques (software TM) or both. TM is motivated by the ongoing shift to multi-

processors that require application-level concurrency for full utilization. TM has

reignited some interest in atomic language constructs [45, 46]. Our work is conceptu-

ally related to TM, if viewed as an extension of TM to clusters of hosts, treating the

network like a scalable cache coherency controller. Yet, performance of software TM

prototypes has been disappointing so far [47]. We conjecture that providing atomicity

at the low level of memory loads and stores suffers similar overhead characteristics as

do distributed memory systems (see Section 2.3).

ACID transaction have been criticized for being overly restrictive and unsuitable to

emerging types of applications, such as long-running work-flow processing systems

and intermittently connected mobile applications, e.g. This has spurred considerable

research into relaxed notions of atomicity [48, 49, 50]. A common technique is to use

compensating actions to undo the effect of transactions that were “prematurely” com-

mitted in order to unblock other activities. Although new models are being proposed

to this day, they have seen limited use as the basis for system implementation. In any

case, most such extensions rely on an underlying notion of atomicity of operations.

Similarly, systems that preserve availability during transient partitions3 by offering

weaker eventual consistency “guarantees” [52, 53, 54, 55], and attempt to reconcile

conflicting operations upon reconnection [56], also assume atomic actions as an un-

derlying framework. Many of the world’s most highly scalable data stores offer very

selective atomic guarantees, for example on a per-row or per object basis [57, 58, 59].

These systems relax consistency guarantees to achieve higher availability and lower

response times.

Our view is that full, “hard-nosed” atomic actions should always be available as a basic

system primitive, since their performance will suffice for all but the most demanding

of applications and any execution overhead will be paid back through significant

decreases in development and operational costs accruing from simplified programming

models and robust fault handling. When atomic actions are too expensive, one can

always relax the degree of consistency they provide by breaking large transactions

into smaller ones and handling any resulting scheduling, progress and consistency

issues on an ad-hoc basis or through some application-specific methodologies.

3A fundamentally unavoidable trade-off [51]

12

2.2 Atomic Actions

We have described transactions as an aggregation of individual operations. It is also

instructive to view them as a mechanism for matching the atomicity of an application’s

execution steps to the application’s structure and semantics, instead of matching it to

the structure of the computing hardware. A transaction turns a group of operations

into an atomic action [60, 61, 17], that captures the underlying structure of a program

as a set of discrete state transitions [41]. For example, writing a word of memory

may be atomic at the machine instruction level, but it might suit an application’s

semantics better to update some two particular words atomically together (or not at

all). Similarly, it better suits a banking application to have the debiting and crediting

of accounts involved in a fund transfer occur as a single indivisible step, instead of the

multiple separate steps of sending and receiving requests over a network, computing

balances and reading and writing data to non-volatile storage, etc.

This is the enduring attraction of atomic actions: the software developer implements

operations at an abstraction level and granularity that suits the task at hand, while

the execution environment ensures they appear to execute atomically. This largely

frees the developer from having to anticipate and handle failures and concurrent

interference, allowing her to pretend that actions runs sequentially in a failure-free

world.

The early eighties saw a flurry of transaction research, shoring up the formal founda-

tions of atomic execution while extending its definition in many ways, most notably

to hierarchically nested transactions [62, 63] that allow transactions to recursively

contain other, concurrently executing transactions. ARGUS [64, 65] was a pioneering

distributed transactional programming system, adding atomic execution constructs

to the CLU programming language. The Camelot [66] system had full support for

nested transactions. It was based on C and the C++ derived Avalon language. While

these systems were highly influential, they suffered from lackluster performance. The

follow-up to ARGUS, Thor [67], improved performance with new optimistic cache con-

sistency algorithms [14], among other things. Another notable system is Quicksilver

[35], a UNIX variant with atomic execution semantics for processes and a transac-

tional file system. Performance overhead was moderate and the researchers reported

13

positively on their experience with the use of transactions. Our work is directly in-

spired by these pioneering efforts, although we provide only a well-defined execution

model and refrain from dictating programming languages.

The advantages of atomic actions cannot be overstated. Anticipating every failure

and writing the code to roll back partial state changes is an error-prone and arduous

task. Anticipating and preventing undesirable interleavings of data accesses from con-

currently executing programs or threads is harder still [68], and even thorough testing

will likely leave some latent bugs undiscovered. Co-mingling failure-case and normal-

case code tends to obfuscate the latter, making maintenance hard and error-prone.

But in addition to their manifold benefits for developer productivity and system ro-

bustness, atomic actions directly reify the notion of application state transitions and

states. This significantly aids the implementation of replication[69], as two executions

can be kept synchronized by ensuring they execute the same sequence of actions4. It

also aids state migration and (dynamic) system reconfiguration [70, 71], as executions

can be readily halted in a well-defined state and restarted on a different host, after a

copy of the state has been installed on it.

A final and possibly underrated benefit of well-defined, relatively coarse-grained

atomic actions is their potential for turning any execution into a shared, multi-user

experience. An application based on atomic actions can be readily shared by several

hosts, each caching the application’s state and sending locally initiated operation re-

quests to the application’s server. Since the server’s concurrency control decides (or

restricts) the “official” order in which operations execute, the execution appears as

if all hosts execute operations sequentially on a single copy of the application, less

aborted actions. The sharing might take place at the level of the application’s data

structures, with the entire application cached at each host. Alternatively, it might

take place at the level of its user interface elements, with the elements translating

local user input into operation requests for the application’s server. The latter is an

interesting option, as it might allow a relatively low-powered devices to access re-

motely executing computationally demanding and / or data-rich applications. While

this dissertation does not further explore these scenarios, we believe our model, com-

bining distributed atomic actions with multicast-based cache synchronization, would

be a good fit.

4Assuming circumscription of non-determinism.

14

Why the world is not yet sold on programming with atomic actions may owe some-

thing to the fragmented and awkward architecture of contemporary information sys-

tems, with non-atomic, non-recoverable programs written in general-purpose pro-

gramming languages trading queries and messages with transactional databases and/or

atomic program snippets written in highly specialized and proprietary languages ex-

ecuting within the database domain. A tortuous mapping between the language’s

object model and the relational model is often involved. A common protocol for

atomic data operations might help break this logjam. But another important reason

may be the performance overhead of (distributed) transactions, perceived and real.

If our protocols succeed in lowering that overhead, this would strengthen the case for

atomic programming.

2.3 Atomic Cache Consistency

Data caching is indispensable for building high performance computing systems.

Caching plays a crucial role at every level of a computing system’s architecture, from

the memory caches built into modern CPUs and caching of disk data in memory to

the caching of remote data on proxy hosts and middle-tier database hosts. Indeed

the World Wide Web might not work quite as well as it does were it not for the

world-wide caching of pages in the “content delivery networks” of Akamai [72] and

similar providers.

Our models are based on a master/slave configuration, where each data item is hosted

on a particular server at any one time and all other copies of it are considered caches.

This model is simpler than replicated multi-master models, but can lead to the mas-

ter server becoming a bottleneck. Our contributions to this problem are twofold: a

network-based concurrency control algorithm that preserves the goodput of servers

under data contention and a multicast-based scalable caching architecture that un-

burdens the server from serving read requests while maintaining consistency despite

heavy data update rates. It goes without saying that any scalable system must even-

tually re-balance workloads to prevent server overload. However, executing atomic

actions across multiple independently failing and autonomous hosts is inherently more

15

costly than executing them within a single host (see Section 9.2) so it is prudent to

restrict executions to individual hosts as much as possible.

Caching can simultaneously lower data access latency and increase data access band-

width, while preserving capacity on original data host(s) and their channel(s) [73].

Furthermore, it can do so transparently, maintaining the illusion of homogeneously

accessible data with relatively good performance even as data is stored in a hetero-

geneous and possibly distributed fashion. This bears similarity to the way virtual

memory in modern operating systems provides the illusion of uniform ranges of bytes

in memory, while memory pages may in fact be swapped in and out from disk. In

summary, caching can significantly increase data access performance in a manner

transparent to those accessing the data.

A large body of work exists on distributed caching for file systems and the Internet [74,

75, 76]. For end-user browsing of web pages, temporary inconsistencies or staleness

of data are rarely an issue. To ensure atomic and serializable execution, however, the

illusion must be perfect; a transaction must never observe behavior that is inconsistent

with serial execution. This is the challenge of cache consistency.

These issues were explored in research on Distributed Shared Memory (DSM) systems

[77], seeking to extend virtual memory across a network of hosts, presenting them with

a shared global address space. But the overhead of ensuring uniformly sequential

consistency for all memory reads and writes proved too great, exacerbated by the

problem of false sharing resulting from unrelated data co-residing on large-granularity

data pages. Logically simple operations such as inserting an entry into a map, can

become expensive to share at the raw memory level, when arrays must be reallocated

or hash tables rehashed, for example.

Later systems [78, 79, 80] progressively relaxed consistency guarantees, requiring pro-

grammers to explicitly synchronize shared accesses with locks, semaphores or barriers,

e.g. They also shifted from memory-based coherency to finer-granularity, higher-level

type and object-based coherency [81, 82], blurring the distinction between DSM and

distributed object systems such as Thor. Some early systems (and, in a category

of their own, shared-memory “supercomputers”) used specialized hardware and op-

erating systems to accelerate communication and coherency operations, while later

systems are based on networked clusters of commodity “shared-nothing” hosts.

16

Most DSM systems are geared towards high performance for large, scientific com-

putations, treating fault-tolerance and availability as a secondary issue. They differ

along many dimensions, such as whether it is predominantly data or computation that

is shipped around, whether coherency is enforced through centralized or distributed

means and whether all replicated copies of data are equal or whether there is a master

copy to which other copies are subservient. The last point is important, because a

thin line divides coherent caching from more general replication.

We find it desirable, in general, for master copies to be stored in secure data cen-

ters rather than end-user access devices. However, moving all computation from

“dumb” access devices into remote servers may create a barrier for the performance

and responsiveness of applications. Network latency and bandwidth will continue to

be bound by geographic distances and the laws of physics. We believe that global,

atomic consistency caching strikes a good balance between restrictive, total central-

ization and free-wheeling complete distribution. We compare our approach to existing

atomic consistency caching algorithms at the end of Chapter 6.

In the “message-passing vs. shared-memory” argument, we side tend to with the

latter. While the low-level optimization opportunities afforded by message passing

may give it a performance edge in most cases, we believe that the intuitive abstraction

provided by globally shared data portends its adoption for general applications and

information systems. While global-scale systems can and are being built using highly

asynchronous message-passing programming styles, the difficulties are significant and

successes may be hard to replicate.

2.4 Name-based Routing and Multicast

Atomic Transfer is premised on switches rapidly detecting conflicts between requests

and responses. While Chapters 3 and 4 treat requests and responses as abstract

entities, subsequent chapters refine the model so a server’s state is partitioned by

data/variable names and conflicts between requests and responses imply that they

have a name in common.

17

Our models assume that servers can multicast [83] responses to applications, that

subscribe to the server. We could define our models in terms of end-to-end connec-

tions between servers and application hosts, but assuming multicast leads to more

elegant models and allows more of the concurrency control burden to be shifted to

the network, our original goal. Furthermore, multicast directly supports our cache

architecture, as multiple caches can efficiently receive streams of responses updat-

ing their contents. However, we must make the relatively strong assumption that

the multicast subsystem is reliable, delivering each response to all subscribers in the

order sent, with no response omitted. Scaling reliable multicast is non-trivial, but

numerous approaches have been proposed [84, 85, 86]. We leave integration of Atomic

Transfer with these solutions to future work. We note that while Chapter 5 presents

a refinement allowing safe dropping of response messages, it does so at a cost to

performance and availability.

We go further still and assume that messages are forwarded based on the names they

contain, not host network identifiers. Application hosts address transactions to the

data names on which operations are to be invoked and each response is multicast to

all receivers subscribed to names it affects. In effect, each name in the global data

name space is a multicast topic, and applications subscribe to the names involved

in their requests, ensuring that requests will meet any conflicting response in the

network. By extension, data servers expose state as name / value pairs5. While

implementations could instead resolve names to hosts before sending messages, this

presentation makes our models simpler and allows us to focus on the properties of

Atomic Transfer rather than the details of multicast routing.

Routing and forwarding based on application-level naming is not a new idea. Indeed,

tuple-spaces [87, 88] may represent the ultimate in communication abstraction, with

data transferred between processes based on predicate matching on tuple fields. Most

forms of network communications, though, involve some form of name resolution,

where a human-readable resource name is used to look up the network address(es) of

the host(s) providing access to that resource. The primary method for name resolu-

tion in the Internet is the Domain Name System (DNS) [89], which maps hierarchical

names such as www.wustl.edu to Internet IP addresses. There has been some in-

terest in pushing resource discovery and name resolution deeper into the network

5More specifically, a name corresponds to an Abstract Data Type, providing a set of operations.

18

[90, 91, 92, 93, 94], to increase flexibility while raising the abstraction level away from

network identifiers and towards identifiers meaningful to applications. This work ex-

plores the spectrum for the timing of name resolution, from late binding at message

forwarding time to early binding, for example before connections are established. It

also investigates the best division of labor between network elements and end-hosts.

Many proposed systems use consistent hashing [95] for routing towards a name’s home

node, in distributed hash tables (DHTs) [96, 97, 98, 99].

Van Jacobson has recently espoused the view that “Content-Centric Networking” is

the future of networking [100], arguing that globally named data should be the focus,

not the networks used to transmit that data.

Our formal models abstract from routing and the internal structure of names and

resource discovery is outside our scope. Chapter 8 does suggest an implementation

where names are variable-length bit sequences and parts of names are hierarchical,

with similar name suffixes indicating higher probability of resource co-location or

proximity in the network. We find it desirable for hosts to be able to construct and

send requests6 without having to consult name resolution services. Also we find it

important that names and their operations be abstract, to allow system components

freedom in choosing their internal representation details. Encoding pointers or other

machine-dependent data directly, as for example in DSM systems, reduces implemen-

tation flexibility and interoperability.

More generally, an abstract, name-based request/response protocol can serve as a

useful abstraction barrier, enabling diverse, evolving programming languages, network

architectures and host platforms to safely and efficiently share data with atomic

guarantees. The success of protocols such as IP, TCP and HTTP suggests that

conceptually clear network protocols are more likely than complex software libraries

to be adopted as a common ground for diverse distributed systems. In an age where

everything is networked, from powerful database servers to wireless earbuds, the only

thing devices will generally have in common is a network protocol.

There has been considerable interest in publish/subscribe data dissemination systems

[101] over the past decade. Earlier systems supported only topic-based subscriptions

6Possibly in user space, with minimal Operating System involvement.

19

[102, 103] but later systems allow content-based subscriptions [104, 105, 106] using

predicates over the data contained in event notifications. A multitude of academic

and commercial systems have been created. In our model, the only “event” of note is a

change in the state of a data server, and the only notifications are responses generated

by operation executions. We believe that programmers and system users are better

served by state-centric abstractions than event-centric ones, as the latter precipitate

the asynchronous, event-driven programming style. However, one can easily imagine

state-update responses feeding into dissemination networks.

Total order multicast algorithms [107, 108, 109] seek to ease the development of

distributed systems by providing powerful communication primitives guaranteeing

causal or total ordering (and sometimes atomicity) of messages exchanged between

a group of closely cooperating programs. This contrasts with state-centric models,

where ordering guarantees and atomicity are primarily enforced on an end-to-end

basis [110, 111]. Our approach is firmly in the second camp, with hosts interacting

only through shared state and servers acting as the roots of individual multicast

trees. In our model, state exists on its own beyond the scope of any program using

it, and concurrency control may have to mediate accesses from arbitrary programs.

Furthermore, whereas ordered multicast groups use rounds of message exchanges to

agree on delivery order, we basically expect the network to preserve the order of

messages multicast.

Expecting more than standard Internet functionality from global networks may be-

come more realistic in the near future. Our approach is partly inspired by the promise

of programmable switches and routers. While high-performance routers have tradi-

tionally used hardwired logic in Application Specific Integrated Circuits (ASICs) for

their most demanding forwarding functions, the trend is towards performing them

in software, using general-purpose specialized multiprocessors such as the (now de-

funct) Intel IXP line [112] or the proprietary 40-core Cisco Quantum Flow processor

[113]. While currently found only in academia [114], open programmable router plat-

forms may eventually become widely available. This could transpire, for example, if

general-purpose or embedded multi-core processors acquire the features needed for

high-performance router implementation, such as asynchronous memory access and

20

high-performance I/O interfaces coping with multi-gigabit data rates. In the mean-

time, research can be carried out using commodity PC routers [115, 116] and overlay

network testbeds [117].

Deployment of radically new network protocols in the Internet is currently a near-

impossibility [118, 119]. It is significantly easier to deploy novel protocols within

the confines of data centers, that have centralized control of network equipment and

configuration. At the time of this writing, the notion of renting host and network

resources from data centers has garnered much interest, under the moniker of cloud

computing. Our algorithms are highly applicable to data center settings and fit well

with the hierarchical network architectures they commonly employ. Such network

topologies facilitate content-based forwarding and multicasting as well as flexibility in

choosing “choke points” for concurrency conflict checking. The gateway switch into a

subnetwork, for example, is well placed to detect conflicts between operation requests

from (possibly high-latency) external requesters flowing into that sub-network. To

summarize, data centers built from commodity programmable switches and networks

would be a suitable foundation for scalable, atomic cloud computing infrastructures

based on our approach.

2.5 Background: I/O Automata

This section gives a short review of the I/O Automata [120, 121] formalism, which

we use to model and reason about our algorithms. Our summary below is adapted

from [122].

An I/O automaton is an (infinite) state machine whose state transitions are actions.

An I/O automaton signature S consists of a set of actions, denoted acts(S), parti-

tioned into input actions, output actions and internal actions, denoted in(S), out(S)

and int(S), respectively. Let ext(S) = in(S) ∪ out(S) be the external actions of S.

An automaton a is a tuple (sig, states, start, trans, tasks), with sig an automaton

signature, states a (potentially infinite) set of states, start a non-empty subset of

states, trans a state-transition relation, with trans ⊆ states × acts(sig) × states and

tasks an equivalence relation on ext(S). We abbreviate acts(sig(a)) as acts(a), and

similarly for in, out and so forth.

21

An execution fragment of a is a finite sequence s0, π1, s1, π2, . . . , πr, sr or an infinite

sequence s0, π1, s1, π2, . . . of alternating states and actions such that (sk, πk+1, sk+1) ∈
trans(a) for every k ≥ 0. An execution is an execution fragment beginning in a start

state. An execution α is fair if for each task partition C, α is finite and all actions in

C are disabled in α’s final state or α is infinite and there are either infinitely many

occurrences of actions from C in α or infinitely many occurrences of states in which

all actions in C are disabled. Let execs(a) and fairexecs(a) be the set of all executions

and fair executions of a, respectively.

The trace of an execution α of a, denoted trace(α), is the subsequence of α consisting

of all the occurrences of actions from ext(a). Any two finite execution fragments α, α′

of a where α′ begins with the last state of α may be concatenated (less the last state

of α) to yield another execution fragment of a, denoted α · α′. The occurrence of an

action π in an execution or trace is called a π event.

An action π ∈ int(a) ∪ out(a) is enabled in state s ∈ states if there exists transition

(s, π, s′) ∈ trans , for some state s′ ∈ states . Input actions are always enabled by

definition, so for every π ∈ in(a) and state s ∈ states there is a tuple (s, π, s′) for

some s′ ∈ states. The actions in in(a) ∪ out(a) are called the local actions of a, and

a is said to be quiescent in state s if none of its local actions are enabled in s.

A collection {ai}i∈I of automata may be composed to form a new automaton a if

the signatures of each pair ai 6= aj are compatible, meaning that each internal or

output action is under the control of a single automaton. Formally, a collection

{Si}i∈I of signatures (indexed by some countable set I) is compatible if for each

pair Si and Sj with i 6= j we have int(Si) ∩ acts(Sj) = ∅, out(Si) ∩ out(Sj) = ∅
and each action is contained in finitely many sets acts(Si). The signature of the

composed automaton a has out(a) =
⋃

i∈I out(ai), int(a) =
⋃

i∈I int(ai) and in(a) =
⋃

i∈I in(ai) − ⋃
i∈I out(ai). The states of automaton a are defined as the Cartesian

product of the states of its component automata, that is states(a) =
∏

i∈I states(ai).

Similarly, start(a) =
∏

i∈I start(ai). trans(a) is the set of triples (s, π, s′) such that for

all i ∈ I, if π ∈ int(ai) then (si, π, s′i) ∈ trans(ai) otherwise si = s′i, with si denoting

the part of state s “belonging” to ai. The task equivalence classes of the component

automata become the equivalence classes of a, that is:
⋃

i∈I tasks(ai).

22

Given an execution fragment α and some set of actions A we define the projection

of α on A, denoted α|A, as the subsequence of α comprised of all adjacent states

and transitions πr, sr where πr ∈ A. Similarly, for a trace β we define β|A as the

subsequence of β comprised of all actions in A. The projection α|ai of an execution

α of a composition automata a on one of its component automata ai is defined as

α|acts(ai), with each state sr replaced by the state of ai in sr. Similarly, the projection

β|ai of a trace β of a is defined as β|ext(ai). It can be shown that executions and

traces of a yield executions and traces of ai when projected on ai, for each i ∈ I.

Conversely, given an execution αi for each i ∈ I and a sequence β of actions in

ext(a) such that β|ai = trace(αi) for each i ∈ I, there is an execution α of a such

that trace(α) = β and α|ai = αi for each i ∈ I. Furthermore, if β is a sequence

of actions in ext(a) such that β|ai ∈traces(ai) for each i ∈ I, then β ∈ traces(a).

These theorems enable modular reasoning about executions and traces of composite

automata.

We describe the state transition relations of our automata using a mixture of pseudo-

code and formal expressions. Each output or internal action has a predicate char-

acterizing the states when the action is enabled. The effects of an action on state

are described as a collection of assignments to state components (fields) that occur

together, atomically. We use the convention that v denotes the “old” or current value

of a field v while v′ denotes its “new” value, which takes effect in the automaton’s

next state. If a field is not mentioned in a action it is assumed to retain its previous

value.

23

Chapter 3

Atomic Transfer

This Chapter introduces Atomic Transfer (AT), a new primitive in the network layer

that can be used to prevent race conditions due a pair of messages crossing on a path

of network switches. AT can be used, for example, to prevent an operation request

message from crossing “on the wire” with an update notification message that renders

the request invalid. This chapter defines the switches and channels comprising an

atomic network but leaves end-hosts undefined, except for well-formedness conditions

that they must uphold to ensure end-to-end atomic transfer.

In our system of discourse, host machines send requests to remote server host machines

and receive responses in return, over a network of Atomic Transfer switches. A

request can cause a state change on the server executing it, in which case the request’s

response notifies potential requesters about its effects. For example, a request may ask

for the value of a variable to be changed and the corresponding response would notify

of the variable’s new value. The switches in an atomic network provide guarantees

about request and response atomicity that are not provided by traditional network

switches.

We present I/O Automata defining these switches and the atomicity guarantees they

provide. We describe requests and response messages quite abstractly, leaving their

semantics undefined. The only thing we need is a relation containing all pairs of

requests and responses that conflict, in some abstract sense. Subsequent chapters

present more concrete refinements, where a request invokes operations on a set of

named variables and conflicts with responses notifying of changes to one or more of

those variables. For example, an operation may specify that it reads a certain variable

v. This puts it in conflict with any response notifying about a new value for v, caused

24

by the execution of some earlier request. An atomic switch can detect this conflict

as the request and response “meet” at the switch, by computing the intersection of

request and response variable name sets. The switch can then take actions such as

dropping the request, obviating the receiving end-host from detecting and handling

the conflict. This preserves the goodput of server hosts, particularly during periods

of heavy data contention, when many hosts concurrently send conflicting requests to

the server. But to simplify the discussion and focus on the essential properties of

Atomic Transfer, we use a completely abstract conflict relation in this Chapter.

Recall that this dissertation is limited in scope to single-server transactions, so each

transaction executes independently on a particular server. Furthermore, we implicitly

equate requests and response messages with network packets, that is: each request

and response fits within a single network transmission unit. Section 9.2 in Chapter 9

on future work outlines an approach for removing these restrictions.

3.1 Atomic Switches and Atomic Transfer

We model the system as an undirected graph S = (NODES, CHANNELS), where

NODES represent network nodes and CHANNELS represent bi-directional commu-

nication channels between them. The set of nodes is partitioned into the set HOSTS

of computer hosts and the set SWITCHES of atomic switches. Each host is incident

to exactly one node, which is a switch that we term the host’s home switch. Observe

that any pair of nodes have at most a single channel in common.

We lay out our basic definitions for networks and messages. Let M be the domain of all

messages and let Q and R be disjoint subsets of M corresponding to request messages

and response messages, respectively. A host can send a message q ∈ Q containing

an operation request to a destination host, which may send back a response r ∈ R

containing a response to the operation request. As a simple concrete example, request

set Q could be the set of messages “v := x” requesting the value of some variable v

be set to some value x, while response set R could be the set of messages “v = x”

notifying that a variable v has received the new value x. We will call a host a issuing

a request q the requester of q and the host b receiving request q and generating a

response r the responder of q / responder of r. We also say that host a calls b.

25

Incident nodes can exchange data messages directly through their common channel,

while non-incident nodes can exchange messages over a path of channels and switches.

As in any store-and-forward network, a switch must forward each message it receives

on a path leading towards its destination. For each switch i let CHANNELSi denote

the subset of channels in CHANNELS that are incident to i and let qHopi denote a

function Q → CHANNELSi, mapping any request q to a channel that leads to the

destination host of q. Intuitively, qHopi corresponds to the forwarding table that

switch i uses to move requests towards their destinations. We will restrict our discus-

sion in this dissertation to requests that are executed by a single destination host, so

let destination denote a function Q → HOSTS, mapping any request to its destina-

tion host. In Chapter 9 on future work, we discuss the relaxation of destination to a

general relation, allowing multi-server request to be forwarded to multiple destination

hosts.

Let fp(q) denote the forwarding path of a request q sent from a host a to a destination

host b, namely: the sequence of switches s1, s2, ..., sk such that s1 and sk are the

home switches of a and b, respectively, and for each i ∈ {1 .. k - 1} we have qHopi(q)

= (si, si+1). For notational clarity, we will often abbreviate a channel (si, si+1) to

(i, i+1) when it is clear from context that the channel connects two switches on a

particular path. Note that a forwarding path, if it exists, is uniquely determined for

a particular request and switch, since a request’s next hop is a function of the request

at each switch. We will assume, for convenience, that there exists a total function

sender: M → HOSTS, mapping each message m to the host a that originally sent it

(the host a with the send(m)c,a event causing each receive of m, in the model below).

Requests are unicast from a requester to its responder, while responses are multicast to

all subscribed hosts, including the requester. For each switch i let rHopsi be a relation

R × CHANNELSi, relating a response r to the channel(s) that lead toward the

host(s) that should receive r. We assume that the graph induced by rHopsi relations

is acyclic. Intuitively, the rHops relations correspond to multicast subscriptions to

state updates in hosts that occur in response to request execution. We will sometimes

refer to the hosts subscribed to a response r as the subscribers of r. Formally:

Definition 3.1 A host a is subscribed to a response r if there exists a sequence of

switches (s1, s2, ..., sk) such that s1 and sk are the home switches of a and sender(r),

26

respectively, (r, (a, 1)) ∈ rHops1 and for each i ∈ {2 .. k} we have (r, (i − 1, i)) ∈
rHopsi.

An Atomic Transfer (AT) is the transfer of a response message along a path of switches

and channels guaranteeing that if a request traveling the path in the opposite direction

conflicts with the response, then this will be detected and can be handled. A request

q could, for example, specify that the current values of some variables v1 and v2 were

assumed as q was issued. If q encountered a response r on its way to destination(q)

notifying of a change in the value of v1, then q is in conflict with r and cannot be

executed, since it has been invalidated by r. The handling of conflicts may vary, but

can include such actions as dropping the request, modifying it or rerouting it. In our

initial model, conflicting requests are simply dropped.

Note the asymmetric handling of requests and responses. Conflicting request mes-

sages may get dropped, in cases when they cannot be executed by their destination

responders anyway. Responses are reliably transported to their subscribers, as they

reflect a completed operation and actual state change in the system.

Atomic Transfer is implemented in switches using an acknowledgement scheme. Let A

be a sub-domain of M disjoint with both Q and R, corresponding to acknowledgement

messages (ACKs). Let ack be a total function M → A mapping a message to its

unique ACK. Conversely, let message be a function A → M mapping an ACK to the

unique message it acknowledges, so for any m ∈ M we have message(ack(m)) = m.

A request q ∈ Q and response r ∈ R conflict if they are related by a conflict rela-

tion, which we denote by (q, r) ∈ conflicts or conflicts(q, r). We place the following

restriction on the conflict relation and forwarding relations:

Definition 3.2 Conflict Locality: for any pair of messages q ∈ Q and r ∈ R where

conflicts(q, r) and any pair of switches i, j ∈ NODES: qHopi(q) = (i, j) ⇒ (r, (i, j))

∈ rHopsj.

In other words: if a switch i forwards a request q on to channel (i, j), then switch

j will forward each responses r that conflicts with q back on channel (i, j). This

ensures that conflicting requests and responses “meet” somewhere in the network so

27

the conflict is detected. The restriction implies that a host must be subscribed to all

possible responses to a request q as a precondition for sending q into the network.

The definition does not require all requests from a particular host to follow the same

path to a particular destination; by conflict locality, any conflicting response will

be sent back along all these paths. However, it is convenient for our discussion to

restrict all requests (and thus responses) between a pair of hosts to some unique path.

This allows us to unambiguously refer to the forwarding path fpab from any node a to

another node b, which is either uniquely determined or does not exist.

Assumption 3.1 Unique forwarding path: for any pair of requests q1, q2 ∈ Q and

any node i ∈ NODES: destination(q1) = destination(q2) ⇒ qHopi(q1) = qHopi(q2).

3.2 FIFOChanneli, Channelc and AtomicSwitchi

We provide I/O Automata for network channels and atomic switches below. We only

provide the signature (external events) of end-hosts, but will later specify a set of

well-formedness conditions for their behaviors. We use the dot operator · to denote

concatenation to the end of a sequence or queue. Given a queue or sequence Q, we

use head(Q) to denote the first element of Q and tail(Q) to denote the queue or

sequence resulting from removing head(Q) from Q. We abuse notation and use Q \C

to denote the queue or sequence resulting from removing from queue or sequence Q

all elements that are members of set C. Also, we take x ∈ s to mean that x appears

at least once in queue or sequence s. Similarly, let x 6∈ s mean x does not appear in

queue or sequence s.

We leave the precise action that a switch takes upon detecting a conflict unspecified

for now. A typical implementation might discard the conflicting request, possibly

sending an exception notification back to the sender.

FIFOChanneli,j

Models a unidirectional, reliable FIFO channel, connecting nodes i and j.

28

State:

outQueuei,j: a FIFO queue of messages from i to j currently in transit on the channel.

Input actions:

send(m ∈ M)c,i

Effect:

outQueue′i,j = outQueuei,j ·m

Output actions:

receive(m ∈ M)c,j

Precondition:

head(outQueuei,j) = m

Effect:

queue′i,j = tail(outQueuei,j)

Channelc

Models a bidirectional, reliable FIFO channel for edge c = (i, j) in CHANNELS, con-

necting nodes i and j. We define it as the I/O Automata composition of FIFOChanneli,j

and FIFOChannelj,i.

Hosti

The signature of host i, that sends and receives messages, including requests and

responses.

Input actions:

29

receive(m ∈ M)c,i

Output actions:

send(m ∈ M)c,i

AtomicSwitchi

Models the behavior of an Atomic Switch.

State:

for each c ∈ CHANNELSi

outQueuec: queue of messages outbound on c, initially empty

for each c ∈ CHANNELSi

responsesc: set of non-acknowledged responses sent or outbound on c, initially empty

Input actions:

receive(q ∈ Q)c,i

Effect:

// if the request conflicts with a response we’re buffering

if ∃r ∈ responsesc such that conflicts(q, r)

// do not enqueue it, but handle it somehow

handleConflict()

// else: enqueue the request on the appropriate output channel

else let d = qHopi(q) in

outQueue′d = outQueued · q

receive(r ∈ R)c,i

Effect:

30

// enqueue an ACK back

outQueue′c = outQueuec · ack(r)

for each d ∈ CHANNELSi such that (r, d) ∈ rHopsi

// forward response

outQueue′d = outQueued · r
// remember it, at outbound port

responses′d = responsesd ∪ {r}

receive(a ∈ A)c,i

Effect:

// the acking node is now responsible

responses′c = responsesc message(a) }

Output actions:

send(m ∈ M)c,i

Precondition:

head(outQueuec) = m

Effect:

outQueue′c = tail(outQueuec)

The receive(q ∈ Q)c,i action receives a request from channel c and enqueues it for

forwarding, but only if it doesn’t conflict with a response already enqueued for for-

warding on c. This behavior is the foundation for Atomic Transfer.

The receive(r ∈ R)c,i action receives a response and enqueues it for forwarding on

one or more outbound channels, as per rHopsi. It also remembers the response at the

outbound channels, so that conflicts with future requests arriving on those channels

can be detected. It enqueues an ACK back to the sender, to signal that the switch

has now assumed responsibility for detecting conflicts with the response.

31

The send(m ∈ M)c,i action sends the next message queued for channel c and re-

moves it from the outbound queue of c. It does not remove a sent response from

the responsesc set; removing a response at this point would allow the reception and

forwarding of a conflicting request currently in transit on channel c, for example.

The response cannot be removed from responsesc until an ACK for its reception has

been received from the other node incident to c, signaling that the node has taken

responsibility for detecting requests that conflict with the response.

The receive(a ∈ A)c,i action receives a response acknowledgement from channel c and

removes the corresponding response from the responsec set. Note that these ACKs are

for atomic transfer alone, not reliability; Channels are assumed to reliably transfer all

messages, including requests. An implementation using unreliable channels could use

a unified acknowledgement scheme for atomicity, reliability and possibly flow-control,

but our model abstracts from these considerations. Similarly, an implementation

could use message sequence numbers to obviate the need for ordered delivery by the

network.

3.3 Properties and Proofs

The Atomic Transfer theorem says, approximately, that once a responder has trans-

mitted a response, it is impossible for a requester to successfully transmit requests

that conflict with the response before receiving it. More precisely, we show that once

a response r has been injected into an atomic network, it will only deliver a conflicting

request q traveling in the opposite direction if the requester of q has acknowledged r.

For any pair of event occurrences e1 and e2 in an execution or trace E, we use the

notation e1 <E e2 (read “e1 occurs ahead of e2 in E”) to denote that the occurrence

of e1 in E is before the occurrence of e2 in E. We also say e1 <E e2 if e1 occurs in E

but there is no occurrence of e2 in E. The intuition for the latter case is that e2 would

have to occur after e1 in any sequence extending E. Note that <E is irreflexive and

transitive and that ¬(e1 <E e2) implies e2 <E e1. We use e1 <E e2 <E e3... <E en as

shorthand for e1 <E e2 ∧ e2 <E e3 ∧ . . . en−1 <E en.

32

Our first theorem shows that a network forwarding path composed of AtomicSwitch

and Channel automata provides atomic transfer. Our second theorem shows atomic

transfer end-to-end between requester and responder hosts, given certain well-formedness

conditions on the hosts. We begin with two simple lemmas, regarding the behavior

of individual switches and channels. They essentially say that switches do not invent

new requests and that channels do not invent new messages.

Lemma 3.1 (No spontaneous switch requests): In any execution or trace E, for

every send(q ∈ Q)d,i in E where i ∈ SWITCHES there is a distinct receive(q)c,i

earlier in E, for some channel c = (i, j) incident to i. We say that the earlier event

e1 causes the later event e2, denoted by e1 →E e2.

Proof: From the preconditions of AtomicSwitchi we see that a message m must be on

queue outQueued of i before send(m ∈ M)d,i can occur. The only way for a request or

response message m ∈ Q∪R to be added to outQueued is via a receive(m)c,i event for

some channel c ∈ CHANNELSi, so such an event must occur earlier in the trace.

Since the send(m)d,i removes m from outQueued, each receive(m)c,i event can cause at

most one send(m)d,i, so there must be at least as many receive(m)c,i events as there

are send(m)d,i events 2

Lemma 3.2 (no spontaneous channel sends): In any execution or trace E, for ev-

ery receive(m ∈ M)c,j in E where c ∈ CHANNELS there is a distinct send(m)c,i

event earlier in E. We say that the send event causes the receive event, denoted by

send(m)c,i →E receive(m)c,j.

Proof: From the preconditions of Channelc we see that message m must be on

outQueuei,j in c before receive(m)c,j can occur. The only way for m to be added

to outQueuej,i is via a send(m)c,i event. Since the receive(m)c,j removes m from

outQueuei,j, each send(m)c,i event can cause at most one receive(m)c,j, so there must

be at least as many send(m)c,i events as there are receive(m)c,j events 2

We extend →E to its reflexive, transitive closure. Hence, e →E e holds for any send

or receive event e and if there exists a subsequence of send and receive events α = s1,

r1, s2, r2, ..., sn, rn in some trace E such that sj →E rj for j ∈ { 1, 2, ..., n } and

33

rj →E sj+1 for j ∈ { 1, 2, ..., n-1 }, we say that e1 →E e2 for any pair of events e1, e2

∈ α where e1 <E e2. Contrariwise, if ¬(e1 →E e2), so no such subsequence exists, we

say that e1 does not cause e2, denoted by e1 6→E e2. The following Lemma highlights

the relationship between →E and <E:

Lemma 3.3 (Time ordering and causality): If e1 and e2 are distinct events in an

execution or trace then e1 →E e2 ⇒ e1 <E e2.

Proof: if e1 and e2 are related non-transitively by →E, then the definition of →E

implies that e1 occurs earlier in E than e2, so e1 <E e2. If they are transitively

related by →E, then for each pair of events (ei, ej) in the sequence of events S leading

from e1 to e2 occurs we have ei <E ej, so e1 <E e2, by transitivity of <E 2

Note that while →E may resemble Lamport’s happens-before relation [123], it is

different. It relates a send (receive) event precisely to the receive (send) events that

cause it, but not to unrelated events occurring on the same switch. Also note that

while →E is currently defined for request messages only, we extend the relation to

other message types in later chapters as needed.

Switches along a network path share the responsibility for detecting conflicts along the

path. We define the concept of responsibility intervals, corresponding to the period in

an execution during which a switch buffers a response and conflict-detects incoming

requests against it.

Definition 3.3 A state s of AtomicSwitchj is in a responsibility interval of r in j

with respect to a channel d ∈ rHopsj(r), denoted s ∈ resp-interval(r)d,j, exactly if r ∈
j.responsesd in state s. We say for an event e in X that e ∈ resp-interval(X, r)d,j

if se ∈ resp-interval(r)d,j, where se is the state preceding e in X. It is clear from the

definition of AtomicSwitchi that receive(r)c,j <X e <X receive(ack(r))d,j, where c is

the channel by which r is received at j.

From the definition of the receive(q ∈ Q)c,i action of AtomicSwitchj, we immediately

have the following:

34

Corollary 3.1 (Conflicting receives in responsibility intervals never cause sends):

In any execution X in which AtomicSwitchj appears, if receive(q ∈ Q)d,j ∈ resp-

interval(X, r)d,j for some r ∈ R and conflicts(q, r) then receive(q)d,j 6→X send(q)c,j,

for any channel c ∈ CHANNELSj.

The first Atomic Transfer Theorem is stated for a path of switches and channels, with

no reference to the behavior of hosts; this is deferred to Theorem 3.2.

Let AS Let be the I/O Automaton composed of an AtomicSwitchi automaton for

each switch si ∈ SWITCHES and a Channelc automaton for each channel c = (i,

j) ∈ CHANNELS. Let s1, s2, ..., sn denote the switches of fpab, the forwarding

path from host a ∈ HOSTS to some other host b ∈ HOSTS. We will use sk to

denote the k-th switch on the path, for any 1 ≤ k ≤ n. Note that requests travel

from lower-indexed switches to higher-indexed switches, while responses travel from

higher-indexed switches to lower-indexed switches. We have a straightforward Lemma

relating the responsibility intervals of adjacent switches in fpab.

Lemma 3.4 (Overlap of responsibility intervals): In any X ∈ execs(AS), events

send(r)(k,k+1),k+1, receive(r)(k,k+1),k and send(ack(r))(k,k+1),k are all in

resp-interval(X, r)(k,k+1),k+1.

Proof: the first event is caused by the receive(r)(k+1,k+2),k+1 event defining the begin-

ning of resp-interval(X, r)(k,k+1),k+1, the first causes the second, the second causes

the third and the third causes the receive(ack(r))(k,k+1),k+1 that defines the end of

resp-interval(X, r)(k,k+1),k+12

The lemma makes it explicit that the responsibility intervals on adjacent switches for a

response r overlap in any execution X, since receive(r)(k,k+1),k <X receive(ack(r))(k,k+1),k+1.

Theorem 3.1 says that if a switch i on path fpab receives request q ∈ Q via fpab in

an interval after a switch j further down fpab receives a conflicting response r but

before i receives the ACK for r, then request q is dropped and never delivered by j.

While the proof could appeal to Conflict Locality directly, a slightly weaker version

of it suffices, referring only to switches on path fpab. It is clear from our definition

35

that general Conflict Locality implies Path Conflict Locality for all forwarding paths.

Formally:

Definition 3.4 For any q ∈ Q, fp(q) has Path Conflict Locality for q if for any

r ∈ R where conflicts(q, r) and any pair of switches sk and sk+1 on fpab: qHopk(q) =

(k, k + 1) ⇒ (r, (k, k + 1)) ∈ rHopsk+1.

Theorem 3.1 (Path Atomic Transfer): For all X ∈ execs(AS), all i, j ∈ [1, n]

where i ≤ j and all r ∈ R and q ∈ Q where fp(q) has Path Conflict Locality:

receive(r)(j,j+1),j <X receive(q)(i−1,i),i <X receive(ack(r))(i−1,i),i ∧ conflicts(q, r) ⇒
receive(q)(i−1,i),i 6→X send(q)(j,j+1),j.

Proof: Assume for contradiction that there exists some X ∈ execs(AS) and some

r ∈ R, q ∈ Q where conflicts(q, r) such that receive(r)(j,j+1),j <X receive(q)(i−1,i),i <X

receive(ack(r))(i−1,i),i and receive(q)(i−1,i),i →X send(q)(j,j+1),j, where i, j ∈ [1, n] and

i ≤ j. Let I be the execution interval of X beginning after receive(r)(j,j+1),j and

ending after the receive(ack(r))(i−1,i),i.

Since receive(q)(i−1,i),i →X send(q)(j,j+1),j then for each switch sk on fpab: (q, (k,

k+1)) ∈ qHopk. Similarly, since conflicts(q, r) then by the Path Conflict Locality of

fpab for q, (r, (k-1, k)) ∈ rHopsk, that is: sk forwards r along fpab in the direction

opposite to q. Also, by the definition of → and the construction of AS there must be

a receive(q)(k−1,k),k event and a send(q)(k,k+1),k event in I for every i ≤ k ≤ j, where

receive(q)(k−1,k),k →I send(q)(k,k+1),k and send(q)(k−1,k),k−1 →I receive(q)(k−1,k),k. We

show that one of these events is not in I, which contradicts receive(q)(i−1,i),i →I

send(q)(j,j+1),j.

We define q-switch(q, X) as the index of the latest switch on fp(q) to receive a

request q ∈ Q in any execution interval X, or precisely: the largest k such that

receive(q)(k−1,k),k ∈ X, or i-1 if there is no such event in X. We similarly define

r-switch(r, X) as the index of the latest switch on fp(q) to receive response r ∈ R, or

precisely: the lowest k such that receive(r)(k,k+1),k ∈ X.

We argue that the request q received on si and the response r received by sj must

meet somewhere along path fpij. Since each receive(q)(k,k+1),k+1 is caused by an earlier

36

send(q)(k,k+1),k event, a receive(q) event increases the value of q-switch by at most 1.

By similar reasoning, a receive(r) event can decrease the value of r-switch by at most

1. Furthermore, since Q and R are disjoint, no single event alters both q-switch and

r-switch. Since q-switch(q, λ) = i-1 but q-switch(q, I)= j, q-switch takes on every

value in [i, j] during I. Since r-switch(r, I ′) ∈ [i, j] for any prefix I ′ of I and is lowered

by at most 1 by any one event, there must be some prefix Ie of I ending with event

e after which q-switch(q, Ie) = r-switch(r, Ie) = k, for some k ∈ [i, j]. Let I ′e be the

prefix of I up to but not including e. There are two possible cases for event e (see

figure 3.1):

sk-1 sk
(k,k+1) sk+1

e = receive(r)(k,k+1),k

(k-1,k) (k+1,k+2)

receive(ack(r))(k,k+1),k+1
e = receive(q)(k-1,k),k

Figure 3.1: The meeting of a request and response

1. e = receive(q)(k−1,k),k, so e increased q-switch from k-1 to k. Since r-switch =

k, receive(r)(k,k+1),k ∈ I ′e but receive(r)(k−1,k),k−1 6∈ I ′e. By Lemma 3.4, e ∈ resp-

interval(I, r)(k−1,k),k, so by Corollary 1, receive(q)(k−1,k),k 6→I send(q)(k,k+1),k,

which is a contradiction.

2. e = receive(r)(k,k+1),k, so e decreases r-switch from k+1 to k. Observe that this

case only occurs for k < j. By Lemma 3.4, e ∈ resp-interval(I, r)(k,k+1),k+1. Since

q-switch = k, receive(q)(k,k+1),k ∈ I ′ and the ack(r) enqueued by receive(r)(k,k+1),k

is behind q in sk.outQueue(k,k+1). By the FIFO property of sk.outQueue(k,k+1)

and channel (k, k + 1), receive(q)(k,k+1),k+1 <I receive(ack(r))(k,k+1),k+1, so

receive(q)(k,k+1),k+1 ∈ resp-interval(I, r)(k,k+1),k+1. By Corollary 1,

receive(q)(k,k+1),k+1 6→I send(q)(k+1,k+2),k+1, which is a contradiction 2

Reversing the implication of Theorem 3.1, we obtain: For all i, j ∈ [1, n] where

i ≤ j, X ∈ execs(AS) and r ∈ R, q ∈ Q: receive(q)(i−1,i),i →X send(q)(j,j+1),j ⇒
¬conflicts(q, r) ∨ receive(ack(r))(i−1,i),i <X receive(q)(i−1,i),i ∨ receive(q)(i−1,i),i <X

receive(r)(j,j+1),j.

37

The first two clauses in the disjunction give us what we want: for any request and

response, either the first switch receives an ACK for the response ahead of the re-

quest or else the request and response do not conflict. But if neither of these cases

applies, the third clause reminds us that a request received at the first switch before

a conflicting response is received at the last switch can in fact be forwarded along

whole path and sent by the last switch. Hence, a responder host can receive a request

conflicting with a response the responder has created (and possibly sent) but which

has not yet been received by the responder’s home switch. The next section closes

this loophole.

Note that the proof makes no mention of requests other than q and only considers a

response r if it conflicts with q. In our model, other requests and responses that do

not conflict with q have no effect on whether q is delivered or not. This highlights the

fact that Atomic Transfer allows all concurrency permitted by the conflict relation

to take place; non-conflicting requests and responses do not interact. We state this

insight as a corollary.

Corollary 3.2 (Independence of non-conflicting requests and responses): let X1,

X2 ∈ execs(AS) be two executions such that no response in X1 conflicts with any

request in X2, and no response in X2 conflicts with any request in X1. Then any

interleaving of executions X1 and X2 is in execs(AS).

3.4 End-to-End Atomicity

Theorem 3.1 is stated in terms of the forwarding path of requests and responses

along switches and message channels. We now state two fairly unrestrictive well-

formedness conditions on requesters and responders and show that these ensure end-

to-end Atomic Transfer. For requesters, we require that they only acknowledge re-

sponses they’ve actually received.

Definition 3.5 ACK Well-Formedness (no spontaneous ACKs) An execution or trace

E is ACK Well-Formed for a requester a ∈ HOSTS if for every send(ack(r ∈ R))d,a

in E there is a distinct receive(r)d,a event earlier in E, where d is the channel incident

38

to a. We include these events in the →E causes relation, and say receive(r)d,a →E

send(ack(r))d,a.

We will furthermore assume that for any execution or trace E there exists a partial

function from the requests received at a responder b ∈ HOSTS to the responses sent

by b, defining the pairs of requests and responses (q, r) such that q is the response to r.

This function captures how requester implementations recognize the responses to their

own requests, using requester identifiers and request sequence numbers, for example.

If the function maps q to r then the receive of q at b = destination(q) must precede

the sending of r in E. We include events receive(q)(n,n+1),b and send(r)(n,n+1),b in the

causes relation and say receive(q)(n,b),b →E send(r)(n,b),b. The function is necessarily

partial, as some requests are dropped and never cause a response. We say that a

request that causes a response is successful.

The well-formedness safety condition for responders says that a responder must check

incoming requests for conflicts with the responder’s recently created responses. More

precisely: the responder must drop any request q received after the event er enqueu-

ing a response r that conflicts with q but before the responder receives the ACK for r

from its home switch. To model implementations that execute requests sequentially

in the order received, we can use the event receiving a request as event er, assuming

that event executes the request and enqueues its response. However, framing the

discussion more generally in terms of a (possibly internal) enqueueing event er per-

mits implementations to choose the order in which they execute their set of received

but not yet executed requests. Furthermore, it permits modeling of responders that

generate responses spontaneously, without external requests. This can be used to

model sources of original data, such as sensors or user input devices, as well as active

computation processes in responders.

A downside of using er is that it refers to the “enqueuing” of a response, a somewhat

vague notion when discussing an unknown responder implementation. But all we

need to know about the er is that it irrevocably commits to sending r, ahead of the

response to any request received after er. Formally:

Definition 3.6 Event er is an event that enqueues a response r ∈ R at a responder

b in an execution or trace E if er follows a send(r)(n,b),b event in E and for every

39

q ∈ Q: er <X receive(q)(n,b),b ⇒ send(r)(n,b),b <X send(rq)(n,b),b where rq is a response

such that receive(q)(n,b),b →E send(rq)(n,b),b and n is the home switch of b.

Responder Well-Formedness defines the responsibility of a responder for conflict-

checking requests against responses recently created by the responder. Formally:

Definition 3.7 Responder Well-Formedness (responder checks unacknowledged re-

sponses). For any X ∈ execs(AS), X is well-formed for a responder host b with

home switch n if for each r ∈ R enqueued by an event er at b and each q ∈ Q received

by b: er <X receive(q)(n,b),b <X receive(ack(r))(n,b),b ∧ conflicts(q, r) ⇒ receive(q)(n,b),b

6→X send(rq)(n,b),b, for any rq ∈ R.

Note that the condition does not restrict the processing order of two requests q1 and

q2 when the response to neither request conflicts with the other, allowing responder

implementations to process such requests concurrently. Also note that if b receives a

request qr that does not cause a response (because it conflicts and is dropped) then

Responder Well-Formedness holds vacuously and the reception of qr does not impact

other requests. Hence, in the case when the responses to two requests q1 and q2 do

(mutually) conflict, the responder can freely choose which one to execute and which

one to drop. For example, a highly concurrent server implementation, running on a

modern multiprocessor, might preserve well-formedness through some internal form of

concurrency control, using locks, transactional memory [42] or even Atomic Transfer!

A sequential responder, by contrast, can preserve well-formedness in a straightforward

way. For example, it can maintain a set of generated but un-acknowledged responses,

similar to responses sets on switches and only execute requests that do not conflict

with any response in that set. The server host models of Chapter 4, for example, use

this approach.

We have the following extension of Theorem 3.1, stating that if a requester a sends a

request on path fpab = s1, s2, ..., sn after responder b receives some request causing

a conflicting response but before a itself sends an ACK for that response, then the

request will not cause a response. In other words: if the request and a conflicting

response cross in transit, the request is dropped.

40

Theorem 3.2 (End-To-End Atomicity): For all X ∈ execs(AS) where X is well-

formed for hosts a, b ∈ HOSTS, each r ∈ R enqueued by an event er at b and all

q ∈ Q : er <X receive(q)(n,b),b ∧ send(q)(a,1),a <X send(ack(r))(a,1),a ∧ conflicts(q, r)

⇒ send(q)(a,1),a 6→X send(rq)(n,b),b, for any rq ∈ R.

Proof: Let X ∈ execs(AS) be an execution that is well-formed for hosts a, b ∈
HOSTS and let r ∈ R be enqueued by an event er at b and let q ∈ Q be a request

such that er <X receive(q)(n,b),b ∧ send(q)(a,1),a <X send(ack(r))(a,1),a ∧ conflicts(q,

r). We must show that send(q)(a,1),a 6→X send(rq)(n,b),b, for any rq ∈ R. We separate

the cases where request q is received at some switch on fpab before sn receives r

or after sn receives r. Let R-RCV-FIRST denote ∃g ∈ [1, n] : receive(r)(n,b),n <X

receive(q)(g−1,g),g.

1. If R-RCV-FIRST is false, then receive(q)(n−1,n),n <X receive(r)(n,b),n. Since

receive(r)(n,b),n enqueues ack(r), By FIFO we have receive(q)(n,b),b <X receive(ack(r))(n,b),b,

so we have er <X receive(q)(n,b),b <X receive(ack(r))(n,b),b, and by Responder

Well-Formedness, receive(q)(n,b),b 6→X send(rq)(n,b),b, for any rq ∈ R.

2. If R-RCV-FIRST is true, let k be the latest (greatest) k such that receive(r)(n,b),n

<X receive(q)(k−1,k),k. If there is no such k then q is not received at the first

switch and the Theorem holds trivially. Otherwise, we show that receive(q)(k−1,k),k

<X receive(ack(r))(k−1,k),k.

For k = 1, send(q)(a,1),a <X send(ack(r))(a,1),a directly implies receive(q)(a,1),1 <X

receive(ack(r))(a,1),1, as required. For k > 1 (see figure 3.2) observe that

by the definition of k, receive(q)(k−2,k−1),k−1 <X receive(r)(n,b),n, so we have

receive(q)(k−2,k−1),k−1 <X receive(r)(n,b),n <X receive(q)(k−1,k),k. By Lemma 3.3,

receive(q)(k−2,k−1),k−1 <X receive(r)(k−1,k),k−1, so by switch FIFO and ACK well-

formedness, send(q)(k−1,k),k−1 <X send(ack(r))(k−1,k),k−1 and by channel FIFO,

receive(q)(k−1,k),k <X receive(ack(r))(k−1,k),k. Hence we have receive(r)(n,b),n <X

receive(q)(k−1,k),k <X receive(ack(r))(k−1,k),k, and by Theorem 1, receive(q)(k,k+1),k+1

6→X send(q)(k+1,k+2),k+1.

In both cases, we have receive(r)(n,b),n <X receive(q)(k−1,k) <X receive(ack(r))(k−1,k),k,

and by Theorem 3.1, receive(q)(k−1,k),k 6→X send(q)(n,b),n. By the definition of

→X therefore, send(q)(a,1),a 6→X send(rq)(n,b),b 2

41

sk-1 sk
(k,k+1)(k-1,k)

rcv(q)

sn
(n,n+1)

rcv(r)

(k-2,k-1)

rcv(q)

rcv(r)

Figure 3.2: the case of k > 1

Note that we only invoke Responder Well-Formedness for the “loophole” case where a

request is received on the last switch before that switch receives a conflicting response;

if R-RCV-FIRST is true then the network path takes care of detecting the conflict.

By reversing the implication of Theorem 3.2 we get a corollary for the case when a

request is not dropped but successfully causes a response, namely:

Corollary 3.3 For all X ∈ execs(AS) where X is well-formed for hosts a, b ∈
HOSTS, r ∈ R enqueued by an event er at b and q ∈ Q: receive(q)(n,b),b →X

send(rq)(n,b),b ⇒ receive(q)(n,b),b <X er ∨ send(ack(r))(a,1),a <X send(q)(a,1),a ∨ ¬conflicts(q, r).

This justifies calling the transfer “atomic”: a successful request q is received at b

before any conflict-causing response r is enqueued or else requester a had already

sent an ACK for r before issuing q and so presumably took r into account when

issuing q. Informally, if we think of responses as carrying information and let each

request conflict with information that could have prevented the request from being

issued, then every successful request is based on up-to-date information. By analogy

with serializability of transactions [8], every execution of the network corresponds to

a serial execution where all non-conflicting requests are received in the same order

but only a single message is in-flight in the network at any one time.

Notice that once b has received the ACK for a response r, it can effectively behave as

if it had received the ACK from all the subscribers of r, no matter how many or far

removed they are. Since b does not need to track the identities of these subscribers,

Atomic Transfer should scale in a similar way as reliable multicast protocols.

Also note that AT by itself doesn’t enforce any particular correctness standard, such as

serializability. The consistency guarantees of AT depend entirely on the semantics of

42

requests and responses and the conflicts relation. The related work section of Chapter

5 presents an example of a simple read/write system that preserves serializability.

3.5 Liveness

We’ve shown the safety of Atomic Transfer, that is: a request cannot traverse a

path containing a conflicting response. We now show that this safety property is not

trivial, that is: a request that does not encounter a conflicting response is eventually

delivered to its receiver. This is straightforward, since the network behaves very much

like a normal store-and-forward network in this case.

We require for liveness that requesters never attempt to send a query that cannot be

forwarded (which is trivial if each qHopi is total).

Definition 3.8 An execution or trace E is Subscription Well-Formed for a requester

a ∈ HOSTS if for every event receive(q ∈ Q)(a,i),i in E at the home switch i of a,

qHopi(q) is defined.

Our proof shows that the distance between a message and its destination, measured

as the number of messages ahead of it in switch and channel queues on its forwarding

path, continues to decrease in any fair execution. Eventually, it falls to zero and

the message is delivered. We define message distances with respect to channels and

switches as follows:

Definition 3.9 For any message m ∈ c.outQueuei,j where c ∈ CHANNELS, let

distancec(m) be the number of messages in front of m on c.outQueuei,j.

Definition 3.10 For any message m ∈ i.outQueuec where i ∈ SWITCHES and

c ∈ CHANNELSi, let distanceci(m) be the number of messages in front of m on

i.outQueuec.

For every channel c = (i, j) ∈ CHANNELS we define the following tasks, recalling

the I/O Automata definition of tasks from Section 2.5:

43

• rcvc,i, containing all receive(m ∈ M)c,i actions.

• rcvc,j, containing all receive(m ∈ M)c,j actions.

• sndc,i, containing all send(m ∈ M)c,i actions.

• sndc,j, containing all send(m ∈ M)c,j actions.

This ensures that in any fair execution, a channel or switch enabled to send or receive

will always get a chance to make progress. We show that a message enqueued on a

channel is eventually delivered. A switch implementation would need to implement a

fair scheduling policy to preserve liveness, for example FIFO or else some fair queueing

discipline such as (weighted) round-robin.

Lemma 3.5 (Channel Liveness) For all X ∈ fairexecs(AS), for any message m ∈ M

such that m ∈ c.outQueuei,j in a state t ∈ X, where c ∈ CHANNELS, there is a

receive(m)c,j later in X.

Proof: Let d = distancec(m) at t and let X ′ denote the suffix of X beginning with t.

Each receive(m′ ∈ M)c,j event in X ′ decreases d = distancec(m) by 1, since it removes

the head of the queue. Since receive(m′ ∈ M)c,j is always enabled when the queue

is non-empty, it cannot become disabled before m is removed from the queue. Since

X is fair and receive(m′ ∈ M)c,j is in its own task, either there are infinitely many

occurrences of receive(m′ ∈ M)c,j in X ′ or there are infinitely many states where

receive(m′ ∈ M)c,j is disabled. In the first case, the events must eventually drive

d to zero, making m the head of the queue at the next receive event, receive(m)c,j.

In the latter case, the queue will eventually become empty, so X ′ must contain a

receive(m)c,j event that removes m. In each case, the Lemma holds 2.

Similarly, we show that a message enqueued on a switch is eventually sent. Note that

we used “cause” in the formal sense defined in Lemmas 3.1 and 3.2.

Lemma 3.6 (Switch Liveness) For all X ∈ fairexecs(AS), for any message m ∈
M such that m ∈ i.outQueuec in a state t ∈ X, where i ∈ SWITCHES and c ∈
CHANNELSi, there is a send(m)c,i later in X.

44

Proof: The proof proceeds almost exactly like the proof of Lemma 3.5, using distanceci(m)

as the progress metric and send(m′ ∈ M)c,i events 2.

Theorem 3.3 (Atomic Transfer Liveness) For all X ∈ fairexecs(AS), where X is

Subscription Well-Formed for a host a ∈ HOSTS with home switch i, for each event

e = send(q ∈ Q)(a,i),i such that no message caused by e is detected as a conflict in X,

there is a receive(q ∈ Q)(b,j),b event in X, where b =destination(q), and j is the home

switch of b.

Proof: Let let X ′ denote the suffix of X whose first event is e. Let fp(q) = s1, . . . , sn,

the forwarding path of q. By Lemma 3.5, every message enqueued on a channel is

eventually received. Since a is Subscription Well-Formed, qHops1(q) is defined. Since

q is never detected as a conflict, every receive(q)(k−1,k),k event caused by e adds q to

sk.outQueuek+1, for 1 ≤ k < n. By Lemma 3.6, every message enqueued on a switch

is eventually sent. Inductively, therefore, there must be a receive(q ∈ Q)(b,j),b event

in X ′ 2

One might wonder how a requester a knows whether a request q it issues is dropped

due to a conflict or not. Requester a can in fact infer the dropping of q if it recognizes

its own responses, that is: if it knows for any response r whether r is a response to q

(a reasonable implementation assumption). If q is dropped, it is due to a conflict with

some other response r′, and by Conflict Locality a is subscribed to r′. Requester a can

therefore store the latest request sent to each responder and conflict-check incoming

responses against that request. If a receives a response r′ that conflicts with q but is

not a response to q, then a knows that q was dropped.

3.6 Optimizations

This section presents a few enhancements for atomic switches, for better performance

or increased flexibility.

45

3.6.1 Permissible Message Reordering

Although the proofs for Theorems 3.1 and 3.2 assume strict FIFO communication

between nodes, we can relax these a bit, demonstrating that Quality of Service (QoS)

processing, such as assigning message priorities, is compatible with Atomic Transfer.

We describe the permissible reorderings of adjacent pairs of messages in channel or

switch queues. This captures how implementations would reorder messages by placing

them on one of a channel’s several outbound queues that have different priorities. The

main restriction is that the relative order of requests and ACKs from a particular

sender may not be altered.

A request q can swap place with an adjacent request or ACK m if q and m have

different senders. In this dissertation, we impose the restriction that a requester only

issue two requests concurrently if both can execute regardless of whether the other

one is dropped or not. Then, two requests q and q′ from the same sender can be

swapped, but a request q cannot be swapped with an ACK a from the same sender.

If q moved ahead of a, it might be erroneously detected as a conflict. Conversely, if

q moved behind a, it could have a conflict that is not detected.

A response r can swap place with an adjacent response or ACK m if r and m have

different senders. Two responses r and r′ from the same sender can be swapped if they

commute, that is: if it doesn’t matter to receivers in which order they are received.

Even if they don’t commute, their order can be swapped if the receiver can detect

that a response is missing when it receives an out-of-order response, and put them

back in the original order. A response r can swap places with a request q. Since q

and r are heading the same direction, q cannot be bound for the responder of r and

the messages are unrelated.

3.6.2 Discarding doomed requests

To reduce the number of messages processed, atomic switch implementations can

remove “doomed” outgoing requests as soon as a conflicting response is received,

without affecting the proofs of Theorems 3.1 and 3.2. This can be modeled as a

simple addition to the receive(r ∈ R)c,i action for AtomicSwitchi, as follows:

46

receive(r ∈ R)c,i

Effect:

outQueue′c = outQueuec · ack(r)

for each d ∈ CHANNELSi such that (r, d) ∈ rHopsi

outQueue′d = outQueued · r
responses′d = responsesd ∪ {r}

// remove requests that would be detected as conflicts on receiving switch

let CQ = { q ∈ outQueuec : conflicts(q, r) } in

outQueue′c = outQueuec \ CQ

Whether this optimizations helps in practice depends on whether the cost of the

additional detection of conflicting requests outweighs the gain from not having to

transmit them.

3.6.3 Mixed Networks and Dynamic Shirking

In our models, atomic switches are connected via reliable FIFO channels. These can

represent any reliable link, including end-to-end constructs such as TCP/IP connec-

tions. More generally, a channel may be composed of multiple links and switches, at a

lower level. Hence, Atomic Networks can be composed of a mixture of atomic switches

and normal, non-atomic switches, as long as assumptions about path uniqueness and

reliability are met. High-throughput switches in the network’s core, for example,

may not be able (or willing) to perform conflict-checking, while switches closer to

requesters and responders may be configured to conflict-check their requests and re-

sponses. In the limit, atomic requesters and responders can interact over a network

containing no atomic switches at all! In that case, all conflict detection takes place

on the responder and Atomic Transfer essentially reduces to an existing optimistic

concurrency control algorithm (see Section 6.9.2 in Chapter 6).

An atomic switch can in fact decide whether to behave as an atomic switch or normal

switch dynamically, on a response-by-response basis. A switch i can dynamically shirk

responsibility for checking a response r it receives, by forwarding r but not sending

an ACK for it nor entering it into a responses set. This way, the sender j of r remains

47

responsible for conflict-checking requests with r, with i essentially serving as a simple

FIFO channel with respect to r. Upon receiving the ACK for r, i forwards it back to

j, allowing j to remove r from its j.responses(i,j),j set. By shirking responsibility for

conflict-checking r, i shifts conflict-checking effort from itself to j. Shirking is easily

implemented when a response is bound for a single channel. If, on the other hand, it

is bound for multiple channels then additional steps must be taken to ensure that an

ACK is only forwarded back once all outbound channels have ACKed the response.

Hence, shirking adds state and/or complexity in the general case. We also observe

that shirking increases the retention time of responses, so high fan-out nodes with

long response-times to non-shirking switches might face a higher conflict-checking

burden.

Yet, dynamic shirking may be an important technique for obtaining a net perfor-

mance gain from Atomic Transfer. Since conflicts are generally rare, switches may

shirk responsibility as a general rule, incurring no forwarding overhead. In this case,

responders would hold onto their responses for a relatively long time and conflict

checking would be performed more or less end-to-end. However, switches would pref-

erentially hold onto responses affecting “hot” data, experiencing many conflicts. Re-

sponders could help, by measuring data temperatures and flagging responses they

generate that affect hot areas. This way, switches could focus their conflict-checking

efforts where they are most needed.

We keep our models simple in this dissertation by considering only “pure” atomic

networks, comprised only of atomic switches that do not shirk. A fuller investigation

of shirking awaits future work.

3.7 Discussion and Related Work

This section discuss Atomic Transfer design and performance issues in relation to

existing work.

48

3.7.1 Performance Analysis

The main overhead imposed by AT is the computation needed to check a request

against responses held on a switch. Chapter 8 presents an implementation with mod-

est time and space overhead. We note that AT does not increase messages residency

times on switches beyond what would be needed for hop-by-hop reliable transfer, for

example. Hence, the memory overhead of AT can be made modest.

The main motivation for Atomic Transfer is to enable atomic cache systems based

on Optimistic Concurrency Control (OCC) to better handle heavy data contention

[16]. As data contention increases at a responder host using traditional OCC, the

ratio of requests that fail validation rises and the useful throughput of the responder

host falls. The loss of goodput leads to a rise in request response times, increasing

the probability of conflicting responses being issued. This can create a negative

performance feedback loop. We note that even if conflict checking is fast, which

it must be in order to run on switches, a host’s reception of a message may by

itself require significant processing, including the copying of data between buffers and

crossings of operating system protection domains, etc.

The basic idea behind Atomic Transfer is to drop most conflicting requests before they

reach a responder, protecting responders from overload due to a deluge of conflicting

requests during periods of high contention. One might ask whether this cannot be

achieved by simply slowing the influx of requests using per-connection flow-control, as

responder multiprogramming and load levels rise above desired levels. This is a poor

option, though, because barring information about the accesses of requests awaiting

delivery7 it would mean a uniform slowdown of delivery of all requests, not only

those accessing contended data. Even if only a small fraction of a server’s data were

contended, its overall performance for all requests would be adversely affected. By

contrast, Atomic Transfer filters out the conflicting requests, delivering an unimpeded

flow of (mostly) conflict-free requests even if some data are heavily contended. This

is particularly important for multi-processing and/or virtualized [124] servers, that

process multiple unrelated requests in parallel.

7It could be known if certain connections have relatively static affinity for certain data, e.g.

49

Theorem 3.1 shows that the only way for a request q to reach a responder host b

and be detected as a conflict with a (recently created) response r at b is for q to be

received at the home switch i of b before r is received at i. If r is created in response

to a request q′, then q must be received at i within rttib + pq′ time units of q′ being

sent from i, where rttib is the round-trip-time between i and b and pq′ is the amount

of time it takes b to process q′ and generate response r. If q is received later than

this, then r has been received at i and q will be detected as a conflict on i. Let δb

denote pb + rttib, where pb is the average time it takes b to process a request.

Let q and q′ be two conflicting requests issued to a responder b, or more precisely:

where the response r′ to q′ causes q to be dropped at b. Let a and a′ be the requesters

of q and q′, respectively, and let t and t′ be the round-trip-times to b from a and a′,

respectively. Since q is detected as a conflict and dropped at b, it must be sent by a

no later than 1
2
t + δb + 1

2
t′ time units after a′ sends q′, since otherwise r′ will reach

a before it issues q and prevent q from being issued. If we assume that a is equally

likely to issue q at any point in this period after q′ is sent, then the probability that

q will be received at i within δb time units of q′ and be detected as a conflict at b is:

δb
1
2
t + δb + 1

2
t′

(3.1)

If we assume t ≈ t′ then the equation simplifies to δb/(δb + t). Hence, the probability

of a conflict being detected at the server is the ratio of responder response time δb

to round-trip request / response time. Equation 3.2 confirms the intuition that the

efficacy of Atomic Transfer in shielding responders from wasting effort on validating

conflicting requests depends substantially on the relationship between network latency

and request processing times.

In general we expect rttib to be low in relation to t, e.g. on the order of tens or

hundreds of microseconds. In current systems, the factor pb for processing would

usually dominate. For example, if a request involves one or two hard disk accesses,

then pb could be on the order of 10ms. If requesters were widely distributed, with

average round-trip-time of around 100ms, b would have to detect about about one out

50

of ten conflicts. If requesters were in the same LAN, however, with average round-

trip-time of around 1ms, then b would have to detect the conflict in nine out of ten

cases.

There are reasons to believe that processing times for transactional requests will

decrease significantly in the near future. Historically, the time needed to force-write

state updates or log entries [125] to a hard disk has contributed at least several

milliseconds of latency to atomic operation response times. Scattered data reads from

hard disks are similarly expensive. Emerging storage technologies such as solid-state

disks (SSDs) reduce this latency by one to two orders of magnitude. Furthermore,

non-volatile memory capacities have grown to the point that many databases fit

entirely in main memory [126], largely obviating the need for disk reads. Techniques

have also been suggested for building persistent stores from volatile memory, using

battery back-up, software protection [127] and/or redundancy [128]. By contrast,

while network bandwidth has been growing apace, network latency cannot decrease

to the same measure [129, 130].

More importantly, though, equation 3.2 concerns a pair of conflicting requests. For

server concurrency control performance, what matters is the proportion of all con-

flicting requests that are detected at the server instead of the network. Since a single

response can cause an arbitrary number of conflicting requests to be dropped in the

network, this proportion actually falls as contention increases. More precisely, let

pq = δb/(δb + t) be the probability that a conflicting request q is dropped at b, as

defined for the derivation of equation 3.2 assuming uniform network round-trip time

t. If k conflicting requests are issued no earlier than δb + t time units before q and

arrive at the home switch i of b ahead of q, the probability of q being dropped at b

is the probability of q and the other k requests arriving at i within δb time units of

each of other. Hence, the probability of q being dropped at b as a function of k is pk
q .

If we assume that n requests that conflict with q are issued on average during any

time period δb + t, the probability that j of these requests are received ahead of q at

i is 1/n, for 1 ≤ j ≤ n. Hence, the probability that request q is dropped at b as a

function of n is:

n∑

k=1

1

n
· pk

q =
1

n
· pn+1

q − pq

pq − 1
(3.2)

51

This is also the proportion of conflicting requests dropped at b, tending to 0 as pq tends

to 0 and 1 as pq tends to 1. Hence, even for a relatively high pair-wise probability

of pq = 0.9, the proportion of conflicts detected at b is only around 0.73, 0.58 and

0.08, for n = 5, 10 and 100, respectively. A more favorable ratio of pq = 0.25 yields

ratios 0.07, 0.003 and close to zero, respectively. The expected number of conflicting

requests detected at b per unit of time is proportional to (pn+1
q − pq)/(pq − 1), which

tends to pq/(1−pq) as n tends to infinity, for |pq| < 1. Given these somewhat idealized

assumptions and simplified case, the number of conflicting requests reaching b and

wasting its resources therefore stays relatively constant, regardless of data contention

levels.

These calculations also assume that requesters are equally likely to issue their con-

flicting requests at any point in the interval before q is issued. That assumption can

easily be violated in practice if requests are correlated, for example if requesters are

equidistant from b and react to the same responses with the same reaction times.

Requesters could attempt to detect such situations and resolve them by adding a

random delay on the order of δb to their reactions, similar to the randomized backoff

delays used in the physical layer in some shared-medium network protocols8. As an

alternative, Section 9.3.1 of Chapter 9 on future work sketches an approach that may

help in such cases, by completely obviating b from conflict-checking.

We observe that in our model, the maximum rate of mutually conflicting requests that

a server can execute is 1/(δb + t), the inverse of the time for request execution and a

network round-trip. This is because the next conflicting request that is successfully

executed can only be issued after its requester receives the response for the prior

request, or else it will be detected as a conflict. Note that this limit is independent

of the number of concurrent requesters. Also note that his is not an artifact of our

approach, but a more general limit imposed by a requester’s need to receive recent

enough state information to issue a request that can be serialized. Still, Section 9.3.2

of chapter 9 on future work suggests ways to permit servers to surpass the throughput

limit imposed by round-trip delays in the non-contended case, by allowing requesters

to pipeline requests to a server.

8Note that there is no possibility for livelock, since a request is only dropped due to a successfully
executed request

52

3.7.2 Related Work: Isotach Networks

While supercomputers and other specialized multiprocessor systems are often de-

signed around specialized interconnect networks, the only relatively general work

we’re aware of that specifically seeks to use networks to accelerate concurrency con-

trol are Isotach Networks [131]. The idea is to ensure that the network delivers

messages in an order consistent with logical time [123]. Furthermore, the network

preserves the isotach invariant, which says that a message takes exactly one unit

of logical time to travel from one switch to another. This allows a node that has

knowledge of a network’s topology to ensure that a set of messages are delivered at

multiple destinations at the same logical time, by setting the logical time of each send

event es to er−d, where er is the desired receive logical time and d is the distance (in

logical time units / network hops) to the receiver of the message. A set of messages

can be bundled together as an isochron, so they are delivered (in a sender-specified

order) at the same instant of logical time. Switches and network interface adapters

delay messages as to ensure that messages are received and delivered in logical time

order. Isotach Networks can readily preserve sequential consistency [11] and imple-

ment totally ordered multicast, but they cannot directly ensure serializability, as write

operations have no dependencies associated with them but simply overwrite values.

New operations are introduced for this purpose: a SCHED operation that effectively

locks variables and an ASSIGN operation that updates them.

This approach is quite different from ours. Incrementing and comparing logical times-

tamps is faster than comparing requests and responses. However, while simulations

show impressive gains over locking [131], assigning a single logical clock to each host

creates an artificial ordering on otherwise independent activities on the host. By

contrast, in our approach, unrelated (non-conflicting) requests and responses do not

impede one another. We believe the ability to run multiple, unrelated applications

on the same host is important for flexibility and high host utilization. Also, delay-

ing messages in the network is problematic. At higher (gigabit) data rates, storing

messages for even a short time requires significant amounts of memory. Indeed, the

prototype Isotach implementation [132], on top of a reliable Myrinet interconnect,

does not delay messages but buffers them at end-points and essentially performs Iso-

tach processing end-to-end.

53

End-to-end arguments [133] loom large over any suggestions to add functionality to

the network layer. Ultimately, Atomic Transfer is only justified if it improves per-

formance. Operation conflict-detection can certainly be done end-to-end. However,

the algorithm of Chapter 7 for hierarchical consistent caching takes direct advan-

tage of network topology and in-network processing in a way that does not seem to

have an efficient end-to-end counterpart. As a general thought, in the uphill struggle

against latency [130], it seems significant that the earliest time conflicting requests

and responses can physically meet in a networked system is within the network.

54

Chapter 4

Transactional Cache using Atomic

Transfer

As our main and motivating example of the application of Atomic Transfer, we show

how to build a system of application hosts that send atomic operation requests to data

server hosts. The system ensures that concurrent operations from one host do not

cause errors by interference with those of other hosts. An application host executes

each request optimistically using locally cached server state and subsequently sends

the request to its server, which executes it and/or incorporates it into the server’s

state, barring conflicts.

4.1 Application Hosts, Data Server Hosts and Ex-

ecutions

Let HOSTS now be partitioned into the sets APPS and DATAS of application hosts

and data server hosts, respectively. As a starting point in this simple system, an

application host has no state of its own but caches a complete copy of a recent

state of each data server it calls. Initially, we assume that each application host

is permanently subscribed to the responses of each data server host it calls. We

remove this assumption in Chapter 5, where we describe a protocol allowing hosts to

dynamically vary their subscriptions.

55

As a concrete example of a system environment, application hosts and data servers

might be hosted in the same data center, with multiple ongoing applications con-

tending for their data. Additional application hosts might connect from outside the

center, executing interactive applications used by remote and / or mobile end-users.

The low-latency atomic execution afforded by AT caching would be highly suitable

for interactive multi-user applications such as shared document editing, conferencing

and multi-user virtual worlds, for example.

Associate with each server b ∈ DATAS a (possibly infinite) state space STATESb and a

unique start state startb ∈ STATESb. As before, each request is handled entirely by

one data server. Requests spanning multiple hosts require an atomic commit protocol

such as two-phase commit [2] to ensure that a transaction is committed at one host if

and only if it is committed at all the other hosts. Chapter 9 on future work outlines

how to incorporate such a protocol into our model.

For each server b ∈ DATAS let executeb be a relation STATESb × Q × R, relating

states of b and requests to possible responses given that state. We use executeb(s, q)

to denote the set of possible responses to q in state s, so r ∈ executeb(s, q) ⇔ (s, q,

r) ∈ executeb. For convenience, we define executeb to be total for any pair of state

and request, returning designated error responses for requests that are malformed for

the server or otherwise invalid in the current state.

When a server b ∈ DATAS executes a request q it moves to a new state according

to a deterministic state transition function TRANSb: STATESb × R → STATESb,

known to all application hosts that call b. We define TRANSb as total, returning

a designated error state errorb ∈ STATESb for responses that are malformed or

otherwise invalid for a state. We also stipulate that STATESb is the identity mapping

for error responses.

Note that the state transition takes a response as an argument, not a request; a

server’s mapping from requests to responses is defined by executeb. The TRANSb

function roughly correspond to the part of an implementation and protocol that up-

dates state caches in applications and keeps them synchronized, while the executeb re-

lation corresponds to (possibly non-deterministic) server-side software. A server may

also update its state and create a response spontaneously, without being prompted

by an external request.

56

4.2 Cache Consistency through Atomic Transfer

We use Atomic Transfer to prevent requests based on stale cache information from

being executed. More specifically, the AT cache system drops requests whose set

of possible responses may be different from what the application expected, due to

concurrent interference. To this end, we define the conflict relation conflicts-inv as

containing all pairs of requests and responses (q, r) such that r can invalidate q, by

altering the set of possible responses to q. Precisely:

Definition 4.1 conflicts-inv = { (q ∈ Q, r ∈ R) | ∃s ∈ STATESb :

executeb(s, q) 6⊆ executeb(TRANS b(s, r), q)}, where b = destination(q).

In the case where executeb is deterministic for q, the condition simplifies to: exe-

cuteb(s, q) 6= executeb(TRANSb(s, r), q). The conflicts-inv relation may be conser-

vative: the presence of a pair implies that a particular response can invalidate a

particular request, depending on the server state. On the other hand, the absence of

a pair means that the response can never invalidate the request, in any server state.

As a simple but concrete example of an application adhering to this model, let re-

quests be sets of variable reads and writes and let responses be notifications about

variable value changes. In this case, the state transition function is simply the func-

tion yielding the old state with the component corresponding to the updated variables

replaced with new values. The conflicts-inv relation could include all requests and

responses where the response has a variable name in common with a read in the re-

quest. However, our model does permit a wider range of requests and response types,

corresponding to more complex conflict relations. We further discuss this and related

work in Section 4.5.

The system we present may seem somewhat constrained, with stateless applications

that maintain caches of data and do not even keep track of the requests they have

issued! But keep in mind that application hosts can cache large amounts of data for

arbitrary lengths of time, and that transactions access this data with performance

similar to a purely local application. When contention is light the overhead can

be made very small, but when data sharing and contention arises the concurrency

57

control ensures that executions interleave in a correct, serializable manner. Also,

at the implementation level, an application will likely keep track of its outstanding

requests and, possibly, their (predicted) effects on its cached state. However, effects

do not take permanent effect until a response is received.

We note that our model as presented does not guarantee starvation-freedom: an

application can fail to make progress in the case where its requests repeatedly conflict

with responses from other applications. The network’s topology can influence the

likelihood of this occurring. For example, if several applications react to the same

state change, the application host closest to the data server in the network is most

likely to get its request executed. In cases where this is undesirable, techniques where

losing request queue up for a chance at re-execution can be used to enforce fairness

[134]. Conflict checking might play a role in establishing the queuing order. Section

9.3.3 in Chapter 9 on future work sketches how this might work.

Applications are permitted to have more than one request outstanding at a time,

but only if the requests are independent, that is: if a response to neither request

can conflict with the other. This assumption can be lifted to allow applications to

“pipeline” dependent requests, as we discuss in Chapter 9 on future work.

We contend that atomic caching is a flexible building block for scalable systems and

a sound basis for dynamic balancing of workloads across a collection of hosts. Hosts

in today’s data centers are woefully underutilized, often running at 3-10% of capacity

[135], which is wasteful since they draw significant power even as they idle or perform

at low levels. Atomic, “stateless” applications can be migrated between hosts with

relative ease to maintain efficient load levels and additional copies of applications can

be swiftly started and stopped to meet fluctuating demands. Conversely, when loads

are low, applications can migrate closer to the servers hosting their data and in the

limit, onto the same hosts. Such techniques are widespread for simple applications

such as serving of Web content, but challenging for more demanding applications

that both read and update shared state. While various ad-hoc techniques have been

used to scale such systems, we believe that the vision of universally accessible and

shareable applications needs a stronger and more rational foundation. We believe

atomic execution models and high-performance, transparent caching to be such a

foundation.

58

4.3 SimpleAppHosta and SimpleDataServerHostb

We provide I/O automata for application hosts and data server hosts below. We then

show that composing these with atomic switches and channels results in a system

where the cached state on application hosts stays synchronized with the corresponding

server(s) and invalid requests are never executed.

SimpleAppHosta

Models an application host, that issues requests and consumes responses by updating

its cached state for the server sending the response. Non-deterministically chooses

(valid) requests to issue to servers.

State:

for each b ∈ DATAS that SimpleAppHosta calls

stateb: a state from STATESb, initially startb.

outQueue: queue of outbound messages, initially empty.

Input actions:

receive(r ∈ R)c,a

Effect:

// update cached state

state′b = TRANSb(stateb, r), where b = sender(r)

// enqueue an ACK back

outQueue′ = outQueue · ack(r)

Internal actions:

createRequest(q ∈ Q)a

Precondition:

// q must be valid, given the current cached state

59

∃r ∈ R : (stateb, q, r) ∈ executeb, where b = destination(q)

Effect:

// enqueue a request

outQueue′ = outQueue · q

Output actions:

send(m ∈ M)c,a

head(outQueue) = m

Effect:

outQueue′ = tail(outQueue)

The receive(r ∈ R)c,a action receives a response and updates the corresponding data

server’s cached state, using the server’s state transition function. Note that the

application host behaves the same way whether the response is due to its own request

or not. The action also enqueues back an ACK, that will allow the home switch to

remove the response from its responses set.

The createRequest(q ∈ Q)a action enqueues an arbitrary request, with the sole re-

striction that it must be possible to execute the request in the cached version of the

destination data server’s state.

The send(m ∈ M)c,a action moves a pending message to the outbound channel.

SimpleDataServerHostb

Models a data server host, that executes requests and creates responses.

State:

state: the state of the data server ∈ STATESb, initially startb.

outQueue: queue of outbound responses, initially empty.

60

responses: set of non-acknowledged responses, initially empty.

Input actions:

receive(q ∈ Q)c,b

Effect:

// if the request conflicts with an un-acknowledged response we’ve created

if ∃r ∈ responses such that conflicts-inv(q, r)

// do not enqueue it, but handle it somehow

handleConflict(q)

else let r ∈ R be a response such that (q, state, r) ∈ executeb in

// update state, as per response r

state′ = TRANSb(state, r)

// enqueue response

outQueue′ = outQueue · r

// remember response, for conflict checking

responses′ = responses ∪ {r}

receive(a ∈ A)c,b

Effect:

responses′ = responses \ {message(a)}

Output actions:

send(r ∈ R)c,b

Precondition:

head(outQueue) = r

Effect:

outQueue′ = tail(outQueue)

61

The receive(q ∈ Q)c,b action receives and executes a request, but only if it doesn’t

conflict with an unacknowledged response. If the request is executed, the correspond-

ing response is enqueued for sending. It is also added to the set of unacknowledged

responses.

The receive(a ∈ A)c,b action removes the acknowledged response from the set of

unacknowledged responses, since responsibility for conflict-checking the response has

shifted to the home switch and, ultimately, the tree of network paths leading to

subscribing application hosts.

The send(m ∈ M)c,b action hands a pending message to the outbound channel.

4.4 Properties and Proofs

Let CS be the I/O automaton composed of an AtomicSwitchi automaton for each

switch si ∈ NODES, a SimpleAppHosta automaton for each application host a ∈
APPS, SimpleDataServerHostb automaton for each data server host b ∈ DATAS and

a Channelc automaton for each channel c = (i, j) ∈ CHANNELS.

We first prove some straightforward lemmas, showing that requesters receive a server’s

responses in the order that the server sends them. We subsequently use those results

to show that application caches accurately reflect recent server states. Note that these

lemmas concern the FIFO properties of channels and switches, not Atomic Transfer.

The proof of atomicity follows from Theorem 3.2 in a straightforward manner. We

begin with some notation. We define a function to allow us to refer to the message

associated with a send or receive event.

Definition 4.2 For all events e = send(m ∈ M)c,i or receive(m ∈ M)c,i events and

any c ∈ CHANNELS and i ∈ NODES, let messageOf(e) = m. We extend messageOf

to function messagesOf over sequences of these two types of events in the obvious way,

mapping a sequence of events to the sequence of the messages of each event parameter.

62

We also introduce a function to easily refer to send and receive events to and from

particular switches and hosts.

Definition 4.3 For any execution or trace E, i, j ∈ NODES and message set G ⊆ M ,

let sndSeqc,j(E, i,G) (rcvSeqc,j(E, i,G)) denote the maximal subsequence of trace(E)

or E, respectively, consisting of send(m ∈ G)c,j events (receive(m ∈ G)c,j events) that

are caused by send(m ∈ G)d,i events, for some c ∈ CHANNELSj, d ∈ CHANNELSi.

Note that if i ∈HOSTS then for each receive(m)c,j in rcvSeqc,j(E,i,G) we have i =

sender(m). Finally, we define a prefix comparison operator as follows:

Definition 4.4 Let ¹ denote the relation containing sequences s′ and s exactly if

they are equal or if s′ is a prefix of s, so we write s′ ¹ s.

We begin with a Lemma showing that a network path maintains FIFO order of

responses from a particular server. More precisely, we show that the sequence of

responses sent from a server b to an application a by the home switch of a is a prefix

of the sequence of responses received from b by the home switch of b. Note that

the Lemma appears “reversed” with respect to ¹, since it talks about the responses

sent by an applications home switch and received by a server’s home switch, not the

responses received by an application and sent by a server.

Lemma 4.1 (switch response order): For each E ∈ traces(CS), any application host

a ∈ APPS with home switch i and any data server host b ∈ DATAS with home switch

j, messagesOf(sndSeq(a,i),i(E,b,R)) ¹ messagesOf(rcvSeq(j,b),j(E,b,R)).

Proof: If a is not subscribed to b then sndSeq(a,i),i(E,b,R) is empty and the result

holds vacuously. Otherwise, we proceed by induction on path fpab = i, s2, s3, ..., j,

the (unique) forwarding path in CS from host a to b.

The base case (Figure 4.1a) is the path comprised of a single switch s. Since the

send(r ∈ R)d,s action consumes, in order, each response enqueued on outQueued by the

receive(r ∈ R)c,s action, messagesOf (sndSeqd,s(E,b,R))¹messagesOf (rcvSeqc,s(E,b,R)).

63

s
d c

sk sk+1

rcv(r)snd(r)

si sj

(j, b)

rcvj

…a b
(a, i)

a)

b)

c)

sndi

snd(r) snd(r)rcv(r) rcv(r)

(k, k+1) (k+1, k+2)

Figure 4.1: Base case, inductive case and Lemma 4.1

For the inductive step (Figure 4.1b), let fp′= i, ..., sk, sk+1 denote the first k+1

switches of fpab, where k is less than the length of fpab. Let rcvk+1 = message-

sOf (rcvSeq(k+1,k+2),k+1(E, b, R)) and let sndk+1 = messagesOf (sndSeq(k,k+1),k+1(E, b, R)).

Since the send(r ∈ R)(k,k+1),k+1 action consumes, in order, each response enqueued

on outQueued by the receive(r ∈ R)(k+1,k+2),k+1 action, sndk+1 ¹ rcvk+1. Now let

rcvk = messagesOf (rcvSeq(k,k+1),k(E, b, R)). By Channel FIFO, rcvk ¹ sndk+1. By

the inductive hypothesis, the lemma holds for the path comprised of the first k

switches of fp′, so sndi ¹ rcvk, where sndi = messagesOf (sndSeq(a,i),i). We have

sndi ¹ rcvk ¹ sndk+1 ¹ rcvk+1, which completes the induction (Figure 4.1c) 2

Lemma 4.1 concerns a path of atomic switches. We can readily extend it to the

sequence of responses received by an application host and the sequence of responses

sent by a server.

Definition 4.5 For any execution or trace E, any i, j ∈ NODES, let snd-seq-ri(E) =

messagesOf(sndSeqc,i(E, i, R)) and let rcv-seq-rji(E) = messagesOf(rcvSeqd,j(E, i, R)),

where c and d are channels incident to i and j, respectively.

Lemma 4.2 (End-to-end response order): For any trace E ∈ traces(CS),

rcv-seq-rab(E) ¹ snd-seq-rb(E).

64

Proof: If a is not subscribed to b then rcv-seq-rab(E) is empty and the result holds vac-

uously. Otherwise let i, s2, s3, ..., j = fpab. Let rcvc(E) = messagesOf (rcvSeqc,j(E,b,R)),

where c = (j, b). By Channel FIFO, rcvc(E) ¹ snd-seq-rb(E). By Lemma 4.1, se-

quence sndi(E) = messagesOf (sndSeqd,i(E,b,R)) ¹ rcvc(E), where d = (a, i). By

Channel FIFO, sequence rcv-seq-rab(E) = messagesOf (rcvSeqd,a(E, b, R)) ¹ sndi(E),

so we have rcv-seq-rab(E) ¹ sndi(E) ¹ rcvc(E) ¹ snd-seq-rb(E) 2

Since responses are delivered in FIFO order, we can show that the states cached by an

application correspond exactly to those on the original server. We define the sequence

of values (states) taken on by caches and servers, as well as the sequence of responses

generated, as follows:

Definition 4.6 For any execution X ∈ execs(CS) and server b ∈ DATAS, let state-

seqb(X) denote the sequence of values of b.state (the state field of server host b)

from states following receive(q)c,b events in X. Similarly, let cache-seqab(X) denote

the sequence of values of a.stateb (the stateb field of application host a) following

receive(r)d,a events in X. Let resp-seq-rb(X) denote the sequence of responses chosen

by the receive(q ∈ Q)c,b action of SimpleDataServerHostb in X.

Lemma 4.3 (Cache synchronization): For each X ∈ execs(CS) and any application

host a ∈ APPS that subscribes to a server b: cache-seqab(X) ¹ state-seqb(X).

Proof: For each response r ∈ resp-seq-rb(X), in order from first to last, b assigns

TRANSb(b.state, r) to b.state while simultaneously enqueuing r on b.outQueue. By

the FIFO property of b.outQueue, snd-seq-rb(X) ¹ resp-seq-rb(X).

For each response r in rcv-seq-rab(X), in order from first to last, a assigns TRANSb(a.stateb,

r) to a.stateb. Since TRANSb is a (deterministic) function, since b.state = a.stateb in

the start state of CS and since rcv-seq-rab(X) ¹ resp-seq-rb(X), the result follows 2

Before invoking Theorem 3.1, we must establish that SimpleAppHosti and SimpleDataServerHosti

preserve well-formedness.

Lemma 4.4 SimpleAppHosta preserves ACK Well-Formedness.

65

Proof: Immediate, since the only action in SimpleAppHosta that enqueues ack(r) is

receive(r)d,i, where d is the channel incident to a 2

Lemma 4.5 SimpleDataServerHostb preserves Responder Well-Formedness.

Proof: Let r ∈ R be the response sent by b in response to a request qr ∈ Q and

let q ∈ Q be a request received by b, such that receive(qr)c,b <X receive(q)c,b <X

receive(ack(r))c,b ∧ conflicts(q, r), with c the channel incident to b.

We see from SimpleDataServerHostb that following the receive(qr ∈ Q)c,b event we

have r ∈ b.responses, up to the receive(ack(r))c,b event that removes r from b.responses.

Hence, r ∈ b.responses at receive(q)c,b and the receive(q)c,b action drops q 2

The SimpleDataServerHostb has only one type of event that enqueues requests, as

defined in Chapter 3. Since SimpleDataServerHostb executes a request q and enqueues

its response r in a receive(q)d,b event, that event is the enqueuing event er for r.

Observe that this is the only event that modifies the server’s state field.

We are now ready to state the main result of this section, which says that if a server

executes a request q then the response is among those possible given the application’s

cached state at the time the application issued q. Our proof shows that otherwise the

intervening execution of the request that altered the server’s state would have caused

a response that conflicted with q and q would have been dropped.

Theorem 4.1 (Cache Operation Atomicity): For any execution X ∈ execs(CS),

application a ∈ HOSTS, server b ∈ DATAS and channels d and c incident to a and

b, respectively: send(q ∈ Q)d,a →X send(rq ∈ R)c,b ⇒ rq ∈ executeb(sa, q), where sa

is the value of a.Stateb at the createRequest(q)d,a event enqueuing q.

Proof: Assume for contradiction that there exists some execution X ∈ execs(CS) and

server b ∈ DATAS where send(q)d,a →X send(rq ∈ R)c,b but rq 6∈ executeb(sa, q).

From Lemma 4.3 we have cache-seqab(X) ¹ state-seqb(X), so b.state has value sa at

a point in X before the receive(q)c,b event that executes q. Therefore, there must be

an event er at b preceding receive(q)c,b that assigns to b.state a value sb such that rq 6∈
66

executeb(sb, q). If we let r be the response enqueued by er, then by the definition of

conflicts-inv, conflicts-inv(q, r). Since a.stateb = sa at the createRequest(q)a event

issuing request q, we have createRequest(q)a <X receive(r)d,a and therefore by FIFO

send(q)d,a <X send(ack(r))d,a. This gives us er <X receive(q)c,b ∧ send(q)d,a <X

send(ack(r))d,a. Since by Lemma 4.4 a is ACK Well-Formed and by Lemma 4.5 b

is Responder Well-Formed, by Theorem 3.2 we have send(q)d,a 6→X send(rq)c,b, a

contradiction 2

4.5 Discussion and Related Work

This section discuss performance issues and related work in concurrency control for

Abstract Data Types.

4.5.1 Performance Analysis

Theorem 4.1 shows that CS implements a cache consistency algorithm, as requests

based on stale cache information are dropped, either in the network or at the des-

tination server. The host and server automata are fairly simple, depending on the

guarantees of Atomic Transfer for their correctness. We claim that cache consistency

based on Atomic Transfer is efficient in at least two respects.

First it admits all the concurrency afforded by the conflict-resp relation, since non-

conflicting requests are never dropped. Schemes based on timestamps or logical time

are more conservative and will generally reject some valid requests because they might

be invalid given their timestamp or assigned logical time, reducing concurrency and

performance.

Second, successful requests complete with minimum latency, in the sense that no

message hops are added beyond those needed to get a message to the server and

back again. An algorithm based on locking, by contrast, would require at least two

round-trips: one to request and receive back the confirmation of a lock and another

round-trip to issue the actual request and release the lock. Locking can also block

67

and delay requests from other servers, reducing concurrency. Finally, locking can lead

to deadlocks, while our method is deadlock-free.

We observe that since responses atomically update the cache, an application always

has a consistent cache, corresponding to the current or, when stale, recent state of

the server.

4.5.2 Serializability for Abstract Data Types

Our model is defined in terms of abstract requests and responses, rather than simple

reads and writes of variables. Aside from generality and concord with Abstract Data

Types (ADTs) and encapsulation, abstract operations can achieve higher levels of

concurrency than simple reads and writes. For example, commutative operations

such as addition can be defined as being non-conflicting and allowed to proceed in

parallel. Adding a constant i to a state variable v using reads and writes, by contrast,

requires a request that reads (depends on) v having a certain value x and then writes

the new value x + i. All such operations on v must be totally ordered, so if v is

contended it can become a hot spot, a concurrency control bottleneck in the system.

By contrast, the TRANSb relation permits arbitrary response semantics, as long as

the computation of a new state is a function of the old state and the response.

Hence, responses may be defined at a relatively high level, performing complex state-

dependent processing such as deleting all values satisfying a certain predicate or

transforming a 3D model according to some complex method, etc. This can lead to

smaller response messages than explicit encoding of all values modified by a response.

But defining conflict relations that preserve an appropriate consistency standard for

applications is a challenge. Classic serializability theory [8] deals with reads and

writes, not abstract operations. However, Weihl and Herlihy have developed a theory

of concurrency control for ADTs [19, 18] which is highly applicable to our model.

Simplifying somewhat, let a request be comprised of a group of operation invocations

on a group of typed objects (we will in fact model requests thus in the following Chap-

ters). For each ADT we define an invalidated-by conflict relation such that operations

p′ and p are related if inserting p′ into some valid execution ending with p renders the

68

execution invalid. Using a generalization of serializability to ADTs [18, 63], Herlihy

and Weihl prove several concurrency control algorithms, pessimistic, optimistic [136]

and hybrid, using only the algebraic properties9 of (arbitrary) conflict relations. The

theory can also be applied to systems where objects use heterogeneous concurrency

control methods. This may aid the interfacing of highly concurrent shared-memory

hosts with Atomic Networks, since locking is often the preferred method for concur-

rency control within such hosts.

The theory can provide a foundation for deriving conflict relations for ADTs in sys-

tems based on Atomic Transfer. Transactions whose operations do not conflict may

execute in parallel, while conflicting transactions must be totally ordered. Table 4.1

shows an example conflict relation, for a “register” ADT with only simple read and

write operations. Operations are shown as invocation/reply pairs, and the operation

in a row depend on the operation in a column when the condition in that row/column

is true.

read()/v write(v)/OK

read()/v′ v 6= v′

write(v′)/OK

Table 4.1: Invalidated-by relation for a simple read / write register.

A read can be invalidated by an earlier write using a different value, so a read depends

on such writes. If we replace v 6= v′ with “true”, this corresponds to classic serial-

izability. But invalidated-by relations may also be defined in terms of return values

of operations, which can be exploited to yield smaller relations, that is: that define

fewer operations as conflicting. For example, the example from Herlihy [136] in Table

4.2 gives a conflict relation for a bank account ADT, with debit and credit operations

where the latter can return “over” to indicate insufficient funds for a debit.

Credits can proceed in parallel, but one debit may invalidate another, by lowering the

balance so that the latter results in overdraft. A debit that results in an overdraft,

on the other hand, conflicts with a credit, since the credit may turn the debit into a

successful one. A conflict relation using only reads and writes would have to define

9The fact that they are serial dependency relations [19]

69

credit(n)/OK debit(n)/OK debit(n)/over

credit(m)/OK
debit(m)/OK true
debit(m)/over true

Table 4.2: Invalidated-by relation for a bank account ADT.

debits as being in conflict. This relation could be extended further to allow some

degree of concurrency among credits [136, 137], should the need arise.

To use this type of conflict detection with AT caching, a requester would include its

expected replies in its requests, that is: the replies generated by the local execution

using cached state. Conversely, responses would include the invocation for each of

the replies they contain. Switches would then check whether operations on the same

datum conflict or not, which can be done efficiently by arranging operation codes in

bitmap masks, for example (see Chapter 8 for one possible approach).

Striking a good balance between ADT operation expressivity and the complexity of

the implementation of conflict checking on switches may be a challenge. In general, we

expect programmers to re-use existing ADTs and conflict relations more often than

they invent new ones. In many cases the choices might be constrained by the available

programming languages, compilers and libraries, as well as the conflict relation types

supported on the switches in a network.

In summary, basing our execution model on abstract request is a better fit with

abstraction in programming languages, defined in terms of queues, sets, relations and

other ADTs instead of simple reads and writes. It also and creates opportunities for

networking and concurrency control optimizations, which can be used to solve “hot

spot” problems without abandoning atomicity.

70

Chapter 5

Dynamic Subscriptions

Our models have hitherto used the qHopi and rHopsi relations for message forwarding

and assumed that requesters are subscribed to every message of each responder they

call throughout any execution. This section relaxes these impractical assumptions,

allowing requesters to dynamically vary their subscriptions. Furthermore, they may

subscribe to only a subset of a responder’s responses. We show that our dynamic

subscription protocol preserves Atomic Transfer. We also relax the assumption that

switches never drop messages, but use Atomic Transfer to prevent conflicts from

escaping detection when this happens. This provides a safe way for switches to

discard responses during overload or error conditions, for example.

5.1 Subscriptions and Conflicts

A static switch i of Chapter 3 forwards messages based on the static qHopi and rHopsi

relations. A dynamic switch i, on the other hand, uses dynamic relations stored in its

qHop and rHops fields. Requesters configure these fields using a multicast subscription

protocol, establishing and tearing down the network paths that carry their requests

and the responses to those requests. In general, a requester a must provide its home

switch with some representation of the domain Qa ⊆ Q of requests that the requester

wishes to be able to make, as well as some representation of the set Ra ⊆ R of

responses that conflict with requests in Qa. Our particular protocol’s representation

for subscription requests in fact captures both domains.

71

The main restriction on a multicast protocol for atomic switches is that it preserve

Conflict Locality. Restated in terms of the new fields, Conflict Locality requires for

each pair of adjacent switches i and j that if an entry (q, j) is present in i.qHop,

then for every response r such that conflicts(q, r) there is an entry (r, i) in j.rHops.

Since fields in distinct switches cannot be updated atomically, this means that when

configuring a forwarding hop from i to j, the conflicting response entries must be

added to j.rHops before the request entry for q is added to i.qHop. Conversely, when

tearing down a forwarding hop from i to j, the entry for q must be removed from

i.qHop before the corresponding entries of j.rHops are removed. This is illustrated

in Figure 5.1. As we will show, if Conflict Locality is upheld on the forwarding path

fp(q) of a request q then the Atomic Transfer safety guarantees of Theorem 1 hold

for q.

ji ji

(r, i)

(q, j)

Adding a new forwarding hop

Removing a forwarding hop

ji

(r, i)

Figure 5.1: configuring a forwarding hop for conflicting request/response q and r.

Instead of developing Dynamic Atomic Transfer in terms of purely abstract requests

and responses, we do it for a system where the dependencies and effects of requests

and responses can be related to independent subcomponents of responder states. We

introduce the notion of names and values, for this purpose, basically corresponding

to variable names and values (or seen another way, object identities and states).

The refined switch introduced in this section forwards messages based on the names

contained in them. As well as simplifying our presentation, names abstract away

from host identities, allowing seamless subscriptions to subsets of host names as well

as to names hosted across multiple hosts. The performance objectives informing the

design of our subscription protocol are:

1. To minimize the delay from when a requester host initiates a subscription to a

responder host until the requester can start issuing request to that responder.

72

2. To keep that delay relatively independent of the load on the responder and the

rate at which the responder is sending out responses.

3. To keep that delay relatively independent of the number of requesters concur-

rently in the process of subscribing to the responder.

The protocol defined in this Chapter does well with respect to the first of these

objectives, but the second and third one are only fully addressed in the scalable

refinement of the algorithm presented in Chapter 7.

5.2 Names and Conflicts

To support partial subscriptions to subsets of the responses sent by a host, the host’s

state must be partitioned in such a way that a requester can execute correctly while

observing only responses for those partitions containing data relevant to the requester.

A relational database, for example, could be partitioned along tables, rows and/or

columns, while hierarchical data such as XML files or virtual worlds may be parti-

tioned along sub-hierarchies.

We use a simple scheme for partitioning hosts, akin to those commonly used for

operational definition of simple programming languages. For each host b ∈ HOSTS,

let NAMESb be some countable set of names, disjoint from the name sets of all other

hosts. Let VALUES be the set of values for names. Let NAMES be the union of all

NAMESb sets, for each b ∈ HOSTS, and for any n ∈ NAMES let host(n) denote the

host b ∈ HOSTS such that n ∈ NAMESb. We say that host(n) is the host of n, or

that name n is hosted on host(n). Note that we do not impose types on names or

values, as this is outside our scope.

For every request q ∈ Q, we define the dependency set of q, denoted depends(q), as the

subset of NAMESb of host b = destination(q) whose values may affect the execution

of q. For every request r ∈ R, we define the effect set of r, denoted effects(r), as

the subset of NAMESb of responder b = sender(r) potentially affected by r. While

Chapter 6 gives a more concrete refinement for a dynamic atomic cache system, this

section does not further specify the semantics of dependency or effect sets. Our only

73

requirement for now is that conflicting requests and responses always have a name in

common, that is:

Assumption 5.1 Names and Conflicts: for any q ∈ Q, r ∈ R: conflicts(q, r) ⇒
effects(r) ∩ depends(q) 6= ∅.

Note that the converse need not be true in general; even if we have effects(r) ∩
depends(q) 6= ∅ there may exist responder states where response r does not affect the

outcome of executing q.

The reversal of the implication, however, does tell us that if effects(r) ∩ depends(q)

= ∅ then q does not conflict with r. Hence, the set of all responses whose effect

includes some name in the dependency set of q contains all responses that conflict

with q. Formally, for any set Nb ⊆ NAMESb for some b ∈ HOSTS, let effect-resp(Nb)

be the set { r ∈ R | effects(r) ∩Nb 6= ∅ }. Then:

Corollary 5.1 conflicts(q, r) ⇒ r ∈ effect-resp(depends(q)).

Hence, if a host issues a request q and the host is subscribed to depends(q), then it

is subscribed to all responses that conflict with q and any conflict will be detected.

This is the crucial connection between name sets, requests and responses upon which

our Dynamic Atomic multicast subscription protocol depends.

5.3 Names, Forwarding and Subscriptions

This section discusses the setting up and tearing down of subscriptions. While multi-

casting is not our focus, we fundamentally assume it as the basis for Atomic Transfer

and need to include subscription management in our models in order to reason about

their interactions with Atomic Transfer. We strive keep the multicasting aspects of

our protocol abstract and simple, yet somewhat representative of well-known multi-

cast algorithms [138, 139, 140].

74

Dynamic switches forward requests and responses based on their name sets: depen-

dency sets and effect sets, respectively. To abstract from network routing, for each

switch i ∈ SWITCHES let nHopi be a total routing oracle function : NAMES →
CHANNELSi, mapping from each name n to a channel that leads toward host(n),

for example the next channel on the shortest path towards the host. It represents

the network knowledge that a switch implementation would acquire through some

unspecified routing protocol. We assume the absence of circular forwarding paths.

Note that since nHopi is a function, there is a unique forwarding path from each node

to the host of a name. As a notational aid, for any c ∈ CHANNELSi let nHopi(c)

denote the set of names that i forwards on channel c, that is: { n ∈ NAMES : (n, c)

∈ nHopi}.

Since hosts may potentially subscribe to any set of names and issue requests depending

on them, we redefine qHopi in terms of nHopi, that is: qHopi= { (q, c) | depends(q)

⊆ nHopi(c) }. Since nHopi is a function, request forwarding paths are unique, as in

Chapter 3. We also redefine rHopsi, as the relation that forwards all responses along

each path away from the sending responder, that is: rHopsi= { (r, c) | effects(r) ∩
nHopi(c) = ∅ }. Since requests always travel towards their responders, this implies

Conflict Locality for qHopi and rHopsi.

Note that the nHopi oracle is static and that our model does not capture dynamic

route changes. A practical Atomic Network implementation would have to adapt to

changes in network topology, but any re-routing must be carefully choreographed as

to preserve Conflict Locality. Since switches forward messages based on data names,

network re-routing, renaming of data and migration of data between hosts must be

made to appear atomic with the corresponding changes in the forwarding tables on

switches. We leave investigation of these issues to future work.

A host or switch o ∈ NODES subscribes to some set of names at each adjacent switch

i, termed the subscription of o at i and denoted by subo(i). To add names to its

subscription, o sends a subscription request message to i, specifying the set of names

it now wants forwarded to itself. If switch i is not already subscribed to some of the

names requested then i must in turn add to its subscription(s) at adjacent switches.

This chain of events may lead all the way to the home switches of one or more

responder hosts. Home switches receive all their hosts’s responses by our definition.

75

However, as in most scalable multicast subscription protocols, a subscription request

only travels as far as needed; as soon as it reaches a switch that is already subscribed

to the requested names, no further subscription requests are sent by that switch.

A DynamicSwitch automaton si, as defined in Section 5.6, has a field outNamesc for

each c ∈ CHANNELSi, storing the subscription subj(i) of the other node j incident

to c, and a field inNamesc storing a copy of the switches own subscription subi(j)

at j. The field names remind us that the fields contain the names being sent “out”

to other switches and the names that funnel “in” to the switch, respectively. Note

that at any time, the union of the inNamesc fields of si must contain the union of the

outNamesc fields of si, in order for si to receive all the data needed by its subscribers.

In the I/O Automata we define the qHop and rHops fields of a switch i as variant

functions of the subscriptions of i. There is an entry (q, d) ∈ i.qHop for each (q, d) ∈
qHopi where the dependency set of q is contained in i.outNamesc, with c the channel

on which q is received at i. There is an entry (r, c) ∈ i.rHops for each (r, c) ∈ rHopsi

such that i.outNamesc contains a name affected by r.

Let a be a requester that subscribes to the name set NQa containing all names in the

union of the dependencies of the set of requests Qa ⊆ Q that a may issue, that is:

NQa = { n ∈ NAMES | ∃ q ∈ Qa: n ∈ depends(q) }. Switch i forwards each response

r it receives onto each channel c ∈ CHANNELSi such that subscription outNamesc

has a name in common with effects(r). By Corollary 5.1, if a is subscribed to Qa

then switch i will forward every response conflicting with requests issued by a a.

A switch i does not add a name n to its subscription set i.inNamesc for channel c =

nHopi(n) until it receives a subscription confirmation messages for n from the switch

j incident to c. This ensures that a name n is added to j.outNamesc and hence the

j.rHops relation of j before it is added to i.qHop, preserving Conflict Locality. A

confirmation message with a name set N therefore signals that a forwarding path has

been established all the way to the host(s) of N .

76

5.4 Overflow, Failures and Purging

Conflict Locality implies that all responses must be forwarded to each receiver and

never be dropped. This may be hard to achieve in practice, since bursts in traffic can

exceed network capacity, causing packet queues on switches to overflow and forcing

switches to discard packets. Switches can preclude this scenario through some form

of lossless flow control [141], especially if the flow control creates backpressure on re-

sponders to slow down their execution rate and response generation as capacity nears

exhaustion. While such schemes may apply within a single autonomously managed

subnetwork, they may not be applicable in general, since they can lead to the slowest

receiver dictating the flow of responses in the entire network of subscribers10. Last but

not least, real-world switches and links occasionally fail, losing all responses buffered.

For Atomic Transfer to be practical, it must be able to handle these issues.

The solution comes from noting that a response r can be safely dropped as long as all

in-flight requests conflicting with r are dropped as well. We achieve this by purging

names from subscriptions at the dropping switch, as to prevent conflicting requests

from being forwarded. In effect, the switch can safely breach its obligation to forward a

response by severing the paths for conflicting requests from the response’s subscribers.

Allowing switches to unilaterally purge subscriptions has another practical use, since

it supports the common practice of maintaining subscription and forwarding tables in

switches as soft-state, that expires and is discarded after some length of time and/or

disuse.

There is a potential pitfall, though: a forwarding path could be re-established without

some subscriber noticing that it was severed in the first place. The subscriber might

then receive a stream of responses where one or more responses have been omitted,

which could violate Atomic Transfer of a request conflicting with names in an omitted

response. In addition to local purging and severing of forwarding paths, all affected

requesters must be made aware of the purge.

We handle the problem as follows. When a switch unilaterally purges a subscrip-

tion to some set of names, it sends a special cancellation notification message on

all affected channels, which ultimately propagates to all subscribers of the names.

10Allowing any receiver to dictate the flow would also enable easy denial-of-service attacks.

77

These notifications are defined as responses with the purged names in their effect set,

and they are defined to conflict with all requests that have a name in common with

that set. As we will show, cancellation responses ensure that all request/response

conflicts are detected, regardless of the timing of a forwarding path’s severing and

re-establishment.

A switch that fails can similarly notify its neighbors and subscribers when it recovers

again, by sending a cancellation response for the universal set NAMES on each of its

channels. This causes all subscriptions passing through the switch to be reset and all

requests heading its way to be dropped. We do not explicitly model a switch failing,

but such an event can be represented in an execution as a sequence of consecutive

purge events for NAMES and all queued responses on each of its channels.

5.5 Subscription Consistency

To model subscription processing messages, let SQ ⊆ Q, SR ⊆ R be the designated

sets of subscription request messages and subscription response messages, respectively.

A subscription request contains a set of names that should be added to the sender’s

subscription and a set of names that should be removed from it. Let total function

SQ(Ns, Nu): 2NAMES × 2NAMES → SQ returns the unique message sq ∈ SQ such

that functions sub: SQ → 2NAMES, unsub: SQ → 2NAMES and names: SQ →
2NAMES map sq to Ns, Nu and Ns∪Nu, respectively. A subscription response contains

the set of names that were added or removed from a subscription (due to an earlier

subscription request, for example) as well as the set of names that are pending for

subscription but whose forwarding path has not yet been fully established. Let total

function SR(Ns, Nu, Np): 2NAMES × 2NAMES × 2NAMES → SR return the unique

message sr ∈ SR such that functions sub: SR → 2NAMES, unsub: SR → 2NAMES,

pend: SR → 2NAMES and names: SQ → 2NAMES map sr to Ns, Nu, Np and Ns∪ Nu

∪ Np, respectively. The SQ and SR functions are only defined for mutually exclusive

argument sets, i.e. with no names in common.

We permit a DynamicSwitch i to arbitrarily drop a queued request, using the non-

deterministic internal action drop(m ∈ Q)c,i. We keep assuming reliable FIFO chan-

nels, as modeling the acknowledgement/retry protocols generally used to overcome

78

failure-prone links adds no insight to our discussion and is better done in conjunction

with modeling of lower-level network protocols. We leave the question of how hosts

learn about dropped requests and responses undefined, but one solution would be to

use a time-out and a retransmission.

Modeling dropped requests increases the complexity of subscription processing, since

subscription requests may then also be dropped. Switches and applications must

resend subscription requests to overcome such message loss, but the asynchronous

modification and unilateral purging of subscriptions invites race conditions. Further

race conditions may result from the fact that switches cannot satisfy all subscription

requests immediately but must sometimes add names to their own subscriptions first.

Subscription and unsubscription requests and responses can interact in subtle ways

with such pending subscriptions. Furthermore, even if all switches were to eventually

reach a state where their inNames were consistent with the outNames of all adjacent

nodes, this does not suffice. The reason is that we must also ensure Conflict Locality

at all times, lest a conflicting request were to escape detection.

We address the problem using Atomic Transfer. Using the terminology of Chapter

4, we let each switch act like a data server with respect to its outNames sets and

like an application with respect to its inNames sets, treating each inNamesc field

as a cached version of the outNamesc field of the adjacent node incident to channel

c. A subscription request inbound on channel c, therefore, is simply a request to

modify outNamesc, with the switch replying with a subscription response encoding

the changes, similar to how a data server would respond. For each name n in the

request, the response either confirms the requested change of n to a subscribed or

unsubscribed status or else to a pending status, meaning that the switch will complete

the change later, upon adding n to its own subscription. The switch completes the

change in a non-deterministic action predicated on inNames sets containing names

tagged as pending in outNames sets.

We define switches as being permanently “subscribed” to the outNames sets of their

neighbors. This guarantees Conflict Locality for subscription requests and responses

between adjacent switches and allows us to invoke Theorem 3.1 for requests and re-

sponses going between the switches. We take as our conflict relation the relation such

that all subscription requests and responses that have names in common conflict. We

79

then use similar argument as used for Theorem 4.1 to show that all (successful) sub-

scription requests are based on an up-to-date view of adjacent subscriptions, leading

to consistent behavior. We require each subscription response to conflict with all

requests sharing a name with, that is:

Assumption 5.2 For all q ∈ Q, sr ∈ SR :

names(sr) ∩ names(q) 6= ∅ ⇒ conflicts(q, sr)

It would suffice for ordinary requests to conflict with the unsub names of subscription

responses, for the purposes of ensuring safety of subscription purges. Conflicts with

other parts of a subscription response would imply an erroneous sender, forwarding a

request without being fully subscribed to its dependency set. But since we will rule

out such erroneous nodes, we use this simpler definition.

5.6 DynamicSwitchi

We now define DynamicSwitchi, the dynamic version of the AtomicSwitchi automa-

ton. We model the decision of a switch i to purge subscriptions on a channel c ∈
CHANNELSi with the non-deterministic internal action purge(N)i,c, which is en-

abled whenever the subscription of channel c is non-empty. To capture the steps

a real switch might take in response to a channel failure or overflow, we allow the

action to simultaneously purge some subset of the responses queued for c, but only

if no adjacent node will be subscribed to any of those responses following the purge.

Purged responses are replaced in the queue with a subscription cancellation message

for N .

Dynamic switches also forward messages in the sets V Q ⊆ Q, VR ⊆ R of value

read request messages (value requests) and value response messages (value messages),

respectively, disjoint with subscription requests and responses, respectively. These

messages are used in the Dynamic Atomic Cache system of Chapter 6, for hosts to

request the current values of names and respond with messages carrying name values.

For the purposes of this section, all we need to know is that a value request or response

message m has an associated set of names names(m) ⊆ NAMES, and that for any

80

N ⊆ NAMES we let V Q/V R(N) denote the unique value request/response message

such that names(m) = N . Furthermore, the conflicts relation does not include any

members of V Q or V R, so these messages never conflict with other messages.

Note that the receive(q ∈ Q \SQ \ V Q)c,i, receive(r ∈ R \SR \ V R)c,i and send(m ∈
M)c,i actions of DynamicSwitchi, for normal requests and responses, are virtually

identical to those of AtomicSwitchi. Indeed, our proofs essentially argue that if all

subscriptions for depends(q) on the forwarding path fp(q) of a request q are stable

during an execution interval, then the dynamic switches of fp(q) behave as if the path

were made up of static atomic switches. When subscriptions are unstable and change,

we show that cancellation responses ensure that Atomic Transfer safety is preserved.

DynamicSwitchi

Models the behavior of an atomic switch supporting dynamic name subscriptions.

Note that some fields are defined as variant functions of the switch’s current sub-

scription state. Let SUBSTATUS denote the set { sub, unsub, pend }, of possible

subscription statuses of a name at a node: subscribed, not subscribed or pending

(waiting to become subscribed).

State:

for each c ∈ CHANNELSi

outQueuec: same as in AtomicSwitchi.

responsesc: same as in AtomicSwitchi

outNamesc: a total function NAMES → SUBSTATUS

returning the subscription status of n at i, initially unsub, for all n ∈ NAMES.

inNamesc: a total function NAMES → SUBSTATUS

returning the subscription status i caches for o.outNamesc,

where o is the other node incident to c.

If o ∈ SWITCHES then initially unsub, for all n ∈ NAMES.

Else, initially inNamesc(n) = sub for each n ∈ nHopi(c), unsub for the rest.

Derived State:

81

for each c ∈ CHANNELSi

// the subscriptions this switch serves / receives

outSubc / inSubc = { n ∈ NAMES | outNamesc(n) / inNamesc(n) = sub }.
// the subscriptions pending at this switch / other switches

outPendc / inPendc = { n ∈ NAMES | outNamesc(n) = pend / inNamesc(n) = pend }.
inSubs/outSubs/inPends/outPends: the union of inSubc/outSubc/inPendc/outPendc,

for each c ∈ CHANNELSi.

// the subset of qHopi for which the switch has sufficient subscriptions

qHop: Q → CHANNELSi = { (q, d) ∈qHopi | depends(q) ⊆ outSubc },
where c is the channel on which q is received at i.

// the subset of rHopsi for which the switch has subscribers

rHops: R × CHANNELSi = { (r, d) ∈ rHopsi | outSubd ∩ effects(r) 6= ∅ }

Input actions:

receive(q ∈ Q \ SQ \ V Q)c,i

Effect:

// the same as in AtomicSwitchi

if ∃ r ∈ responsesc such that conflicts(q, r)

handleConflict(q)

else let d = qHop(q) in

outQueue′d = outQueued · q

receive(r ∈ R \ SR \ V R)c,i

Effect:

// the same as in AtomicSwitchi

outQueue′c = outQueuec· ack(r)

for each d such that (r, d) ∈ rHops

outQueue′d = outQueued · r
responses′d = responsesd ∪ { r }

receive(a ∈ A)c,i

Effect:

82

// the same as in AtomicSwitchi

responses′c = responsesc\ {message(a)}

receive(sq ∈ SQ)c,i

Effect:

if ∃ r ∈ responsesc such that conflicts(sq, r)

handleConflict(sq)

else

// update the subscription status of the names

let subready = sub(sq) ∩ inSubs, subpend = sub(sq) \ inSubs in

∀n ∈ NAMES: outNames′c(n) =

outNamesc(n), if n 6∈ names(sq),

sub, if n ∈ subready,

pend, if n ∈ subpend,

unsub, if n ∈ unsub(sq).

// send back a subscription response for all affected names

let sr = SR(subready, subpend, unsub(sq)) in

outQueue′c = outQueuec · sr
responses′c = responsesc ∪ { sr }

// send out subscription requests for newly pending names

for each d ∈ CHANNELSi where subpend ∩ nHopi(d) 6= ∅
outQueue′d = outQueued · SQ(subpend ∩ nHopi(d), ∅)

receive(sr ∈ SR)c,i

Effect:

// enqueue an ACK back for the response

outQueue′c = outQueuec · ack(sr)

// update the cached status of the names

∀n ∈ NAMES: inNames′c(n) =

inNamesc(n), if n 6∈ names(sr),

sub, if n ∈ sub(sr),

pend, if n ∈ pend(sr),

unsub, if n ∈ unsub(sr).

// for each channel whose subscription is affected by this change

83

let subd = sub(sr) ∩ nHopi(d), unsubd = unsub(sr) ∩ nHopi(d) in

for each d ∈ CHANNELSi where subd ∪ unsubd 6= ∅
// update the subscriptions, for names we’ve lost or added to ours

∀n ∈ NAMES: outNames′d(n) =

outNamesd(n), if n 6∈ subd ∪ unsubd,

sub, if n ∈ subd,

unsub, if n ∈ unsubd.

// send a subscription response, notifying of the change

let sr = SR(subd, ∅, unsubd) in

outQueue′d = outQueued · sr

responses′d = responsesd ∪ { sr }

receive(vq ∈ V Q)c,i

Effect:

// forward value request

for each d such that names(vq) ∩ nHopi(d) 6= ∅
outQueue′d = outQueued · vq

receive(vr ∈ V R)c,i

Effect:

// forward value response

for each d such that names(vr) ∩outSubd 6= ∅
outQueue′d = outQueued · vr

Internal actions:

purge(N ⊆ NAMES)c,i

Precondition:

N ⊆ (outSubc ∪ outPendc) ∧ N 6= ∅
Effect:

// set the status of all the names to unsubscribed

∀n ∈ NAMES:

outNames′c(n) =

outNamesc(n) if n 6∈ N ,

84

unsub, otherwise.

// remove and notify about cancellation

// while possibly purging a suffix of responses no node subscribes to anymore

let ρc be any suffix of outQueuec where ∀r ∈ ρc : effects(r) ∩ outSub′c = ∅ in

let Rc = { r ∈ ρc } \ SR, sr = SR(∅, ∅, N) in

outQueue′c = (outQueuec \ Rc) · sr

responses′c = (responsesc \ Rc) ∪ { sr }

drop(q ∈ Q)c,i

Precondition:

q ∈ outQueuec

Effect:

outQueue′c = outQueuec\ { q }

unsubscribe(N ⊆ NAMES)c,i

Precondition:

N ⊆ (inSubsc ∪ inPendsc) \ outSubs ∧ N 6= ∅
Effect:

// spontaneously request to unsubscribe to some names

outQueue′c = outQueuec · SQ(∅,N)

Output actions:

send(m ∈ M)c,i

Precondition:

head(outQueuec) = m

Effect:

outQueue′c = tail(outQueuec)

The receive(q ∈ Q \ SQ \ V Q)c,i action is the same as the receive(q ∈ Q)c,i action

of AtomicSwitchi, except it refers to the qHop field instead of the static qHopi rela-

tion. We do not specify the case when (q, d) 6∈ qHop since, as our proofs show, this

85

case cannot occur in the system we model unless there is a cancellation response in

responsesc that conflicts with q.

The receive(r ∈ R \ SR \ V R)c,i and send(m ∈ M)c,i actions are exactly the same

as the receive(r ∈ R)c,i and send(m ∈ M)c,i actions of AtomicSwitchi, respectively,

except that receive(r ∈ R \ SR \ V R)c,i refers to the rHops field instead of the static

rHopsi relation.

The receive(a ∈ A)c,i action is the same as in AtomicSwitchi.

The receive(sq ∈ SQ)c,i action receives a subscription request from the node inci-

dent to channel c and modifies the subscription outNamesc for c. Note that the

action conflict-checks the request, just like any other request. It immediately tags

the names of unsub(sq) as not subscribed. However, it only tags a name n in sub(sq)

as subscribed if the switch is already subscribed to n. Otherwise it tags n as pending,

not upgrading it to subscribed status until the switch itself becomes subscribed to n.

The action enqueues back a subscription response, containing the new status of the

requested names. Also, for each channel leading to a newly pending name(s), it sends

a subscription requests for the name(s).

The receive(sr ∈ SR)c,i action receives a response notifying of changes to the sender’s

outNamesc set, and updates the “cached” inNamesc set of i accordingly. The changes

could be due to an earlier subscription request from i or due to a purge event on some

other switch. The action acknowledges the response, like any other response message.

For each channel subscribed to name(s) whose status is changing to subscribed or

unsubscribed, the action updates the channel’s subscription with the new status of

the name(s) and enqueues a subscription response with the changes. There is no need

to forward names that are becoming pending: these names will already be tagged as

such in any outNames set they are present in.

The receive(vq ∈ V Q)c,i action receives a value request message and forwards it

toward the appropriate host(s). The action could split the message and forward

different subsets of it on different channels, but we model it simply here.

The receive(vr ∈ V R)c,i action receives a value response message and forwards it

towards the appropriate subscribers. The action could forward different, possibly

86

overlapping subsets of the message onto different channels, but we model it simply

here.

The purge(N)c,i action models the switch-initiated purging of a subset of the subscrip-

tion on some channel c, possibly along with one or more of the responses enqueued

for c, as captured by the non-deterministic Rc set. A soft-state subscription time-out

might remove no responses, while a link failure or overflow might remove all of them.

The action sends a cancellation subscription response message for any names removed

and adds it to the responsesc set.

As the definition of Rc reflects, a response can be removed only if the channel will no

longer be subscribed to any name in its effect set, as this guarantees that no conflicting

requests received via c will be forwarded by the switch. Also note that the action

removes responses from the tail of the queue only. This ensures that subscribers never

see a sequence of responses where one or more responses have been omitted. This is

not required for Conflict Locality, as any request depending on an omitted response

will be detected as a conflict with the corresponding cancellation response. However,

this stronger guarantee is needed in Chapter 6 and may be generally useful for other

types of end-system hosts as well, since they may otherwise receive requests that are

not applicable to their current state, before receiving the cancellation response.

The drop(q ∈ Q)c,i action models the switch dropping a request, for example due to

an overflowing packet queue. As mentioned before, we opt to model such drops in

the switch rather than the channels. These actions highlight the fact that delivery

of these types of messages is not guaranteed, and such guarantees are not needed for

safety.

The unsubscribe(N ⊆ NAMES)c,i action takes some subset of set of names the switch

needlessly subscribes to on c (after one or more adjacent nodes have unsubscribed

to the names, for example) and sends a request to remove them from its subscrip-

tion. It does not remove them from its subscription set immediately, as the sub-

scription request may yet dropped due to a conflicting subscription response. We

model unsubscriptions as a separate non-deterministic action to give implementa-

tions the freedom to perform them at their own chosen time scales and granularity

levels. They could, for example, sometimes defer unsubscriptions in anticipation of

future re-subscriptions, to avoid subscripton/unsubscription hysteresis.

87

5.7 Properties and Proofs

Let DAS be the I/O Automaton composed of an DynamicSwitchi automaton for

each switch i ∈ SWITCHES and a Channelc automaton for each channel c = (i, j)

∈ CHANNELS. The definition of responsibility intervals is the same as in Chapter

3 and Corollary 3.1 from that Chapter still applies, stating that conflicting receives

in responsibility intervals never cause sends. In particular, it holds for cancellation

responses, since they are a subset of the set R of responses.

The event ordering relation <E and causes relation →E for an execution or execution

trace E are the same as before, with the addition to →E of each send(sr′ ∈ SR)d,i

event caused by a receive(sr ∈ SR)c,i event. Note that the message sent is generally

not the same as the one received, but the ordering is nonetheless well-defined. We

begin with a simple invariant, stating that a switch is subscribed to all names for

which adjacent nodes have subscriptions at the switch.

Lemma 5.1 In every state of DynamicSwitchi : i.outSubs ⊆ i.inSubs.

Proof: Only the receive(sq ∈ SQ)c,i and receive(sr ∈ SR)c,i actions change names in

i.outNames to subscribed status, and these names are already in i.inSubs or are being

added to i.inSubs, respectively. Only the receive(sr ∈ SR)c,i action changes names

in i.inNames to unsubscribed status, and these names are changed to unsubscribed

status in i.outNames at the same time. 2

Conflict Locality for dynamic switches differs slightly from that of Chapter 3, as it is

not a constraint on static relations but an invariant on the value of asynchronously

varying qHop andrHops fields in switches. When a switch decides to purge a sub-

scription, for example, the adjacent switches do not learn about it until they receive a

subscription response message. We will refer to Conflict Locality as defined in Chap-

ter 3 as Static Conflict Locality, from here on. Our correctness condition, therefore,

88

requires either that Static Conflict Locality holds for every conflicting request and re-

sponse pair on each pair of adjacent switches, or else that a cancellation subscription

response is en route, signaling that the forwarding path has been severed. Formally:

Definition 5.1 Dynamic Conflict Locality: for any pair of messages q ∈ Q and r

∈ R where conflicts(q, r) and any pair of switches i, j ∈ NODES: i.qHop(q) = (i, j) ⇒
(r, (j, i)) ∈ j.rHops ∨ (∃ sr ∈ j.responses(i,j) ∩ SR : conflicts(q, sr)).

Our proof strategy is to show that Dynamic Conflict Locality holds in the executions

of DAS. We then argue that either Static Conflict Locality and hence Theorem 3.1

holds on a request’s forwarding path or else the request will have a conflict with a

subscription response and be dropped. In fact we show that it is sufficient for Static

Conflict Locality to hold on the suffix of the path where the request has not yet been

received; a purge on the part of the path “behind” a request does not affect it.

We introduce a new invariant called Name Conflict Locality, which implies Dynamic

Conflict Locality but is easier to work with. We begin with precise definitions of what

it means for a node to be subscribed to a name.

Definition 5.2 For any node o ∈ NODES adjacent to a switch j ∈ SWITCHES

and any n ∈ NAMES, let subscribedo,j(n, t) be true in state t ∈ execs(DAS) ex-

actly if n ∈ j.outSub(o,j) ∨ ∃ cr ∈ j.responses(o,j) ∩ SR : n ∈ names(cr). We say

that o is dynamically subscribed to n in t. For notational convenience, we define

subscribedo,c(n, t) to be equivalent to subscribed(o,j)(n, t) for channel c = (o, j).

A host a ∈ HOSTS, in particular, is dynamically subscribed to a name n ∈ NAMES

in t, denoted subscribeda(n, t), exactly if subscribed(a,i)(n, t), where i is the home

switch of a.

One way of reading these definitions is that either n ∈ j.outSub(o,j) or else t is in

the responsibility interval of a conflicting cancellation response cr, that is: t ∈ resp-

interval(cr)(o,j),j where n ∈ names(cr).

Name Conflict Locality says that if a switch i believes itself to be subscribed to a

name n at an adjacent switch j then either j is forwarding responses affecting n to

89

i or else j has a cancellation response bound for i that contains n. We define Name

Conflict Locality and show that it implies Dynamic Conflict Locality.

Definition 5.3 Name Conflict Locality holds in a state t ∈ states(DAS) exactly if

for all pairs of switches i, j ∈ SWITCHES: n ∈ i.inSub(i,j) ⇒ subscribed(i,j)(n, t).

Lemma 5.2 (Name Conflict Locality implies Dynamic Conflict Locality): if Name

Conflict Locality holds in a state of t of DAS then Dynamic Conflict Locality holds

in t.

Proof: Fix any pair of messages q ∈ Q and r ∈ R where conflicts(q, r) and a pair

of switches i, j ∈ NODES such that i.qHop(q) = (i, j) = c. Then depends(q) ⊆
i.outSubd where d is the channel on which i receives q, by the definition of qHop

(noting also that depends(q) ⊆ nHopi(c), by the definition of qHop). By Lemma 5.1,

depends(q) ⊆ i.outSubs ⊆ i.inSubs. By Name Conflict Locality, therefore, for each

n ∈ depends(q) either n ∈ j.outSubc or j.responsesc holds a cancellation response

cr such that n ∈ names(cr). In the first case (r, c) ∈ j.rHops, by the definition of

j.rHops. In the second case conflicts(q, cr) is true, by the definition of conflicts for

cancellation responses. In both cases, the consequent of Dynamic Conflict Locality is

satisfied 2

To show that Name Conflict Locality holds in DAS we use the following Lemma,

which says that once a switch enqueues a subscription response confirming the addi-

tion of a name to a subscription, the response’s receiver is guaranteed to be subscribed

to the name until the switch receives the acknowledgement for the response. Recall

that the term “causes” refers to the →X causes relation.

Lemma 5.3 (Safety of Switch Subscription Expansion): Let e be an event receive(sr ∈
SR)c,i in any execution X ∈ execs(DAS), where i, j ∈ SWITCHES and c = (i, j).

Let eenq be the event enqueuing the sr enabling the send(sr ∈ SR)c,j causing e and let

ea be the receive(ack(sr))c,j caused by the enqueuing of ack(sr) by e (see figure 5.2).

Then for each n ∈ sub(sr) subscribedi,j(n, t) holds in each state t in the interval of

X beginning after eenq and ending immediately after ea, in particular after e.

90

Proof: Inspecting DynamicSwitchj, eenq must either a receive(srd ∈ SR)d,j event with

n ∈ sub(srd) and some d ∈ CHANNELSj or a receive(sq ∈ SQ)c,j event with n ∈
sub(sq). By inspecting these actions, it is clear that n ∈ j.outSubc in the state imme-

diately after eenq. If n is not removed from j.outSubc before ea, then subscribedi,j(n, t)

holds as asserted. Otherwise, n is first removed from j.outSubc after eenq by some

intervening event en, where eenq <X en <X e. Inspecting DynamicSwitchi, event

en must be one of receive(sr′∈ SR)g,j with n ∈ unsub(sr′) and g ∈ CHANNELSj,

purge(Np ⊆ NAMES)c,j with n ∈ Np or receive(sq ∈ SQ)c,j with n ∈ unsub(sq). In

each case, en adds a subscription response srn to j.responsesc, where n ∈ names(srn).

Since e enqueues ack(sr), by FIFO ea <X receive(ack(srn))c,j. Since subscription re-

sponses are never purged, srn ∈ j.responsesc in the interval of X beginning after eenq

and ending immediately after ea, so subscribedi,j(n, t) holds in every state t in that

interval 2

e = receive(sr SR)c,i

i

j

en

removes n from j.outSubc

enqueues sr: eenq ea = receive(ack(sr))c,j receive(ack(srn))c,j

Figure 5.2: Lemma 5.3 illustrated

We now prove that Name Conflict Locality is invariant in executions of DAS.

Lemma 5.4 (Name Conflict Locality in DAS): In each state t of X of any execution

X ∈ execs(DAS), Name Conflict Locality holds in t.

Proof: Fix any X ∈ execs(DAS) and any pair i, j of distinct switches from SWITCHES.

Without loss of generality, we use i to denote the switch requesting subscriptions and

sending requests, j to denote the switch satisfying subscription requests and forward-

ing responses and c to denote channel (i, j). We proceed by induction on the prefixes

of X, to show that n ∈ i.inSub(i,j) ⇒ subscribed(i,j)(n, t) for any t ∈ X and n ∈
NAMES, as required. As our base case, Name Conflict Locality holds in the start

91

state of X, since the inSubc sets of the switches are empty. For the inductive step,

assume the theorem holds in the final state tx of some prefix X ′ of X such that X ′ ·e
· t = X, where (tx, e, t) ∈ trans(DAS) . We show that DAS preserves Name Conflict

Locality, that is: the invariant still holds in the state t following e, which completes

the induction. We claim that for each action e of DynamicSwitchi enabled in tx the

invariant still holds in t because:

1. If e = receive(q ∈ Q \ SQ \ V Q)c,j, receive(vq ∈ V Q)c,j, receive(vr ∈ V R)c,j,

drop(q ∈ Q)c,j, unsubscribe(N ⊆ NAMES)c,i or send(m ∈ M)c,j, then e affects

no j.outSub , j.inSub or j.responses set, preserving the invariant.

2. If e = receive(r ∈ R \ SR \ V R)c,j, then e affects no j.outSub or j.inSub sets,

preserving the invariant. It may add r to one or more j.responses fields, but

adding responses to a responses set cannot falsify subscribedi,j(n, t), preserving

the invariant.

3. If e = receive(sq ∈ SQ)c,j then e affects no j.inSub fields and e can only add

a response to j.responses, preserving the invariant. It may add names from

sub(sq) to j.outSubc, preserving the invariant, but it may also remove names N

= unsub(sq) from j.outSubc. But then e also adds a cancellation response cr

with unsub(cr) = N to j.responsesc, so the invariant is preserved.

4. If e = receive(sr ∈ SR)c,i then e only adds response to i.responses fields, pre-

serving the invariant. It may also add names from sub(sr) to i.outSub fields,

preserving the invariant. If e adds a non-empty set N = sub(sr) to i.inSubc,

then by Lemma 5.3, subscribedi,j(n, t) holds for each n ∈ N after e, preserving

the invariant. If e removes a set Nd = unsub(sr) ∩ nHopi(d) from j.outSubd for

a channel d ∈ CHANNELSi incident to a node o, then e also adds a cancellation

response sr where unsub(sr) = Nd to i.responsesd, so subscribedo,i(n, s) holds

for each n ∈ Nd, preserving the invariant.

5. If e = receive(a ∈ A)c,j then e affects no j.inNames or j.outNames fields, pre-

serving the invariant, but removes response ra = message(a) from j.responsesc.

If ra 6∈ SR then e cannot falsify subscribedi,j(n, t), preserving the invariant.

Otherwise, ra ∈ SR and a is enqueued by an event er = receive(ra ∈ SR)c,i. By

lemma 5.3 (with e = er and ea = e), subscribedi,j(n, t) holds after e, preserving

the invariant.

92

6. If e = purge(N ⊆ NAMES)c,j then e affects no j.inNames fields and removes

no subscription responses from j.responses fields, preserving the invariant. It

does remove set Nc = N ∩ nHopi(c) of names from j.outSubc, but it also adds

subscription response SR(∅, Nc) to j.responsesc, so subscribedi,j(n, s) holds for

each n ∈ Nc.

Since all possible extensions of X ′ preserve Name Conflict Locality, Name Conflict

Locality is preserved for X, completing the induction 2

Consider the case when a receive(q ∈ Q)c,j event occurs and q 6∈ j.qHop but where

there is no conflicting cancellation response in j.responsesc. We claim that if Name

Conflict Locality holds then q cannot have been forwarded to j from a switch. If we

suppose for contradiction that q is forwarded from a switch i then (q, c) ∈ i.qHops,

so depends(q) ⊆ i.outSubd for the channel d ∈ CHANNELSi on which q is received

at i. Since by Lemma 5.2 i.outSubd ⊆ i.inSubc, by Name Conflict Locality we have

subscribed(i,j)(n, t) for each n ∈ depends(q). Since q 6∈ j.qHop, there is a name

n ∈ depends(q) such that n 6∈ j.outSubc and by Name Conflict Locality j.responsesc

holds a cancellation response conflicting with n, which is a contradiction. We state

this insight as a corollary.

Corollary 5.2 At each event e = receive(q ∈ Q)c,j event in any execution X ∈
execs(DAS) where e is caused by a switch : q ∈ j.qHop.

From the definition of qHop we see that the qHopi relation dictates which mappings

may appear in the i.qHop fields of each switch i ∈ SWITCHES and hence the for-

warding path fp(q) of any request q ∈ Q. However, a forwarding path is not effective

unless each switch along actually has an entry for q in its i.qHop field at the time it

receives q. Let fpi(q) denote the suffix of fp(q) beginning with switch si ∈ fp(q). We

define the effective part of a dynamic forwarding path as follows:

Definition 5.4 For any state t ∈ states(DAS) and any q ∈ Q let dfpi(q, t), the

dynamic forwarding path of q in t, be the (possibly empty) longest prefix si, si+1,

..., sm of forwarding path fpi(q) = si, si+1, ..., sn of switches such that for each

k ∈ [i,m] : sk.qHop(q) = (k, k + 1).

93

Note that dfpi(q, tstart) = λ for all q ∈ Q, i ∈ SWITCHES in any start state tstart

of DAS. Dynamic / Name Conflict Locality yields the following result, saying that

if a switch i has a qHop entry for a request q in a state t reachable in DAS, then

either dfpi(q, t) = fpi(q) or else some switch in fpi(q) holds a cancellation response

conflicting with q. This captures the fundamental intuition about dynamic atomic

subscriptions: if some name n is in i.inSubc at a switch i for the channel c leading

towards host(n), then all the switches along the path are subscribed to n or else the

path has been (recently) severed and a cancellation response containing n is traveling

back along the path, i.e. the response is buffered on at least one switch on the path.

Definition 5.5 Let hasCR(fp, q, t) be true for a path of switches fp = s1, s2, ..., sn,

q ∈ Q and t ∈ states(DAS) exactly if in state t : ∃ sk ∈ fp : (∃ cr ∈ sk.responses(k−1,k)∩
SR : depends(q) ∩ names(cr) 6= ∅).

Lemma 5.5 (dfp transitivity) In each reachable state t ∈ states(DAS), for each

q ∈ Q and any switch si ∈ fp(q) = s1, s2, ..., sn: si.qHop(q) = (i, i + 1) ⇒ dfpi(q, t)

= fpi(q) ∨ hasCR(fpi, q, t).

Proof: Fix any q ∈ Q, switch si ∈ fp(q) and reachable state t ∈ states(DAS) where

si.qHop(q) = (i, i+1). The invariant holds if hasCR(fpi, q, t) is true, so consider

the case when it is false, meaning no switch on fpi(q) has a cancellation response

conflicting with q. We must show in this case that dfpi(q, t) = fpi(q). We proceed

by induction, showing that if sk ∈ dfpi(q) then sk+1 ∈ dfpi(q), for k ∈ [i, n].

As our base case, sn ∈ dfpi(q, t), since sn.qHop(q) = (n, destination(q)), by the

antecedent. As our inductive hypothesis, assume sk ∈ dfpi(q, t) for some i ≤ k < n.

Then sk.qHop(q) = (k, k + 1) and depends(q) ⊆ sk.inSub(k,k+1), by Lemma 5.1 and

the definition of qHop. By Lemma 5.4 and Name Conflict Locality, either depends(q)

⊆ sk+1.outSub(k,k+1) or ∃ cr ∈ sk+1.responsesc ∩ SR : depends(q) ∩ names(cr) 6= ∅.
Since the latter is false in our case (k ≥ i), the former holds, that is: depends(q) ⊆
sk+1.outSub(k,k+1). Since sk+1 ∈ fp(q), qHopk+1(q) = (k+1,k+2) and so depends(q) ⊆
nHopsk+1((k+1,k+2)), by the definition of qHopk+1. This implies that sk+1.qHop(q)

= (k+1,k+2), by the definition of sk+1.qHop, and hence sk+1 ∈ dfpi(q), completing

the induction 2

94

By Lemma 5.5 and Dynamic Conflict Locality, if no switch on forwarding path fpi(q)

holds a cancellation responses conflicting with q, then for any r ∈ R where conflicts(q,

r) and any pair of switches i, j on the path: i.qHop(q) = (i, j) ⇒ (r, (j, i)) ∈ j.rHops.

Since by definition i.qHop and j.rHops contain subsets of qHopi and rHopsj, respec-

tively, this implies Static Path Conflict Locality for fpi(q), as per Definition 3.4 on

page 36. We have the following corollary:

Corollary 5.3 (Dynamic Path Conflict Locality) For each reachable state t ∈ states(DAS)

and any switch si ∈ fp(q) = s1, s2, ..., sn for some q ∈ Q: si.qHop(q) = (i, i + 1) ∧
¬hasCR(fpi(q), q, t) ⇒ Static Path Conflict Locality holds on fpi(q) in t.

That switches can purge responses may lead one to worry that a conflicts might go

undetected. However, switches don’t really purge responses but rather subsume them

with new subscription cancellation responses, whose unsub sets contain the union of

any name sets removed. Hence, if an incoming request conflicts with a response in a

response set in a state before a purge event e, it will also conflict with a response in

that set in the state following e, as we now show.

Lemma 5.6 (safety of response purges) In any state t ∈ states(DAS), for any switch

i ∈ SWITCHES: if ∃ q ∈ Q such that depends(q) ⊆ i.outSubc and ∃ r ∈ i.responsesc

such that conflicts(q, r) in t for any c ∈ CHANNELSi, then ∃ r′ ∈ i.responsesc

such that conflicts(q, r′) in any state t′ such that (t, purge(N ⊆ NAMES)c,i, t
′) ∈

trans(DynamicSwitchi).

Proof: Let r ∈ R be any response in i.responsesc at t such that conflicts(q, r), for

some q ∈ Q where depends(q) ∈ i.outSubc. If r is not a member of the set Rc non-

deterministically chosen in the purge action, then the invariant trivially holds with r′

= r. On the other hand, if r ∈ Rc then let Np = effects(r) ∩ N , that is: those names

in the effect set of r that are being purged from the subscription. Since conflicts(q,

r) then depends(q) and effects(r) have some non-empty set Nqr of names in common,

by assumption 5.1. Observe that Nqr ⊆ depends(q) ⊆ i.outSubc. Since effects(r) ∩
i.outSub′c = ∅ then Nqr ∩ i.outSub′c = ∅, implying Nqr ⊆ Np, that is: all the names

that q and r have in common are purged. This also shows that Np is non-empty.

95

Since Nqr ⊆ Np ⊆ N , Nqr ⊆ unsub(sr), with sr = SR(∅, ∅, N), the cancellation

response that the purge action adds to i.responsesc. Since conflicts(q, sr), by the

definition of cancellation responses and conflicts, the invariant holds with r′ = sr 2

Note that cancellation responses are never purged. Practically speaking, it would be

straightforward to show that replacing a set of cancellation responses C ⊆ i.responsesc

with a single cancellation response cr such that
⋃

r∈C effects(r) ⊆ effects(cr) preserves

Name Conflict Locality.

We can now show the main result of this Section, a Path Atomic Transfer theorem

for dynamic atomic system DAS. It says that Path Atomic Transfer (Theorem 3.1)

holds in the dynamic system. Let fpab = s1, s2, ..., sn, for some nodes a, b ∈ NODES

and let sk denote the k-th switch on fpab. Our proof is structured in a similar way as

the proof for Theorem 1.

Theorem 5.1 (Dynamic Path Atomic Transfer): For all X ∈ execs(DAS), all

i, j ∈ [1, n] where i ≤ j, and all r ∈ R, q ∈ Q with forwarding path fp(q) = fpab:

receive(r)(j,j+1),j <X receive(q)(i−1,i),i <X receive(ack(r))(i−1,i),i ∧ conflicts(q, r) ⇒
receive(q)(i−1,i),i 6→X send(q)(j,j+1),j.

Proof: Suppose for contradiction that there exists some X ∈ execs(DAS) and some

r ∈ R, q ∈ Q where conflicts(q, r) such that receive(r)(j,j+1),j <X receive(q)(i−1,i),i <X

receive(ack(r))(i−1,i),i and receive(q)(i−1,i),i →X send(q)(j,j+1),j, where i ≤ j. Let I be

the interval of X beginning after receive(r)(j,j+1),j and ending after receive(ack(r))(i−1,i),i.

Observe that since receive(q)(i−1,i),i →X send(q)(j,j+1),j, there is no drop(q) event in I.

We define q-switch(q, E) and r-switch(r, E) the same way as in the proof of Theorem

3.1 in Chapter 3 on page 36.

We separate the cases when Static Path Conflict Locality holds and when it doesn’t

hold on the part of the forwarding path where cancellation responses can affect the

forwarding of q and r. For any finite execution or trace E let fpqr(E) denote the

relevant path of q and r after E, the interval sk+1, ..., sm of fpi(q) where k = q-

switch(q, E) and m = r-switch(r, E). In other words, the path starts with the next

switch after the one where q was last received in E and ends at the switch where r

was last received in E, as illustrated in figure 5.3 a). Let PCL(I) be the predicate

96

a
a)

sk sm
…

sk+1
…

sn b

q r

fpi(q)

fpqr(q)

si
…

b)

s1
…

a Sg-1
sm

…
sg

…
sn b

q r

sj
…

s1
…

Sk

cr

fpqr(q)

I

receive(r)(j,j+1),j

sj
…

receive(ack(r))(i,i-1),i

I’ Irest

Ie

Figure 5.3: Case 2 of Theorem 5.1 illustrated

that is true exactly if for each prefix I ′ of I : ¬hasCR(fpqr(I
′), q, tI′), where tI′ is

the last state of I ′. In other words, PCL is true for an execution interval I exactly if

¬hasCR holds for the relevant path of q and r in each state of I, so at no point in I

are there any cancellation responses conflicting with q on the path between q and r.

1. If PCL is true, then by Corollary 5.3 Static Path Conflict Locality holds on

fpqr(I
′) in the final state tI′ of every prefix I ′of I, so sk.qHop(q) = qHopk(q)

and sk.rHops(r) = rHopsk(r) at every switch sk ∈ fpi(q) at its receive event

for q and r. By comparing the receive(q ∈ Q\ SQ \ VQ)c,i, receive(r ∈ R\ SR

\ VR)c,i and receive(a ∈ A)c,i actions of DynamicSwitchi to the corresponding

actions in AtomicSwitchi, we see that each pair of actions behaves the exactly

the same in this case.

There may be a purge(N ⊆ NAMES)c,g event at some switch sg ∈ fpqr(I
′)

during I, but it doesn’t purge r since by the definition of qHops, depends(q)

⊆ sg.outSub(g−1,g) in the last state of I ′, and so by Lemma 5.6 the resulting

cancellation response would conflict with q, contradicting ¬hasCR.

97

Response r is therefore not discarded but forwarded in the opposite direction to

q along fpi(q) and by the same reasoning as for Theorem 3.1, there must be some

prefix Ie of I with a last event e after which q-switch(q, Ie) = r-switch(r, Ie) = k,

for some k ∈ [i, j]. Event e must be one of receive(q)(k−1,k),k or receive(r)(k,k+1),k,

so repeating the subsequent argument of Theorem 3.1, receive(q)(k−1,k),k 6→I

send(q)(k,k+1),k, a contradiction.

1. If PCL is false then there exists some prefix I ′ of I such that in the last state

tI′ of I ′ : ∃ sg ∈ fpqr(I
′) : ∃ cr ∈ sg.responses(g−1,g) ∩ SR : depends(q) ∩

names(cr) 6= ∅, for some g where q-switch(q, I ′) < g ≤ r-switch(r, I ′). Let

I ′ be the shortest such prefix. Note that other cancellation responses may get

added to path fpqr during the remainder of I due to non-deterministic purge

events, but observe that purge events remove neither requests nor cancellation

responses. For any finite execution fragment E, let cr-switch(E) denote the

index g of the first switch on fpqr(E) that has held a cancellation response cr

∈ SR in E where conflicts(q, cr), that is: the lowest g, q-switch(q, E) < g ≤ r-

switch(r, E), such that receive(cr)(g,g+1),g ∈ E with conflicts(q, cr) or purge(N ⊆
NAMES)(g−1,g),g ∈ E with depends(q) ∩ N 6= ∅.
Recall that q-switch only increases in steps of 1. Observe that each receive(cr ∈
SR)(g,g+1),g event similarly decreases cr-switch by at most 1, since each such

event is caused by a prior send(cr ∈ SR)(g,g+1),g+1 event. A purge(N ⊆
NAMES)(g−1,g),g can decrease cr-switch directly to g, but then g > q-switch by

the definition fpqr, so purge events can only move cr-switch closer to q-switch

without reaching it or going below it. In figure 5.3 b), for example, either a

receive(cr)(g−1,g),g−1 event or a purge(N ⊆ depends(q))(g−2,g−1),g−1 event could

change cr-switch from g to g-1, but a purge(N ⊆ depends(q))(j−1,j),j event would

not change cr-switch, since j 6∈ fpqr at that point.

Let Irem denote the suffix of I starting with the last state of I ′, as illustrated in

figure 5.3 b). Let iq and icr denote q-switch(q, I ′) and cr-switch(I ′), respectively.

We have iq < icr ≤ j. Since q-switch(q, I ′)= iq but q-switch(q, I) = j, q-switch

takes on every value in [iq, j] during Irem . Since cr-switch(I ′) ∈ [cr-switch(I),

icr] in every state of Irem, where cr-switch(I) ≥ icr, there must be some prefix Ie

of Irem with last event e after which q-switch(q, Ie) = cr-switch(Ie) = k, for some

k ∈ [iq, j]. Event e must be one of receive(q)(k−1,k),k and receive(cr)(k,k+1),k,

98

so repeating the subsequent argument of Theorem 3.1, receive(q)(k−1,k),k 6→I

send(q)(k,k+1),k, which is a contradiction 2

5.8 Dynamic End-To-End Atomicity

We now show that an application’s requests are executed on a server only if they do

not conflict with other concurrently issued requests. Theorem 5.2 is stated in terms

of the network of switches and channels, with no reference to the end-host attached

to it. For End-to-End Atomicity to hold, requesters must ACK Well-Formed and

responders must be Responder Well-Formed, as in Section 1.

The theorem can now be stated, and easily proven since Theorem 5.1 provides exactly

the guarantees needed to reprise the proof of Theorem 3.2.

Theorem 5.2 (End-To-End Atomicity): For all X ∈ execs(DAS) where X is well-

formed for hosts a, b ∈ HOSTS, all r ∈ R enqueued by an event er at b and all

q ∈ Q : er <X receive(q)(n,b),b ∧ send(q)(a,1),a <X send(ack(r))(a,1),a ∧ conflicts(q, r)

⇒ send(q)(a,1),a 6→X send(rq)(n,b),b, for any rq ∈ R.

Proof: Since Theorem 5.1 provides identical guarantees as Theorem 3.1, the proof of

Theorem 3.2 for AS applies 2

5.9 Liveness

Recall from Corollary 5.2 that the case q 6∈ j.qHop at a receive(q)(o,j),j event in a

switch j cannot occur if o is a switch. However, this case can occur if o is a host in a

state where depends(q) 6⊆ o.inSub(o,j). But this means that host o is issuing a request

without being subscribed to its entire dependency set. We consider such hosts to be

in error and rule them out by placing a technical well-formedness condition on the

environment of DAS, roughly corresponding to the Subscription Well-Formedness of

Chapter 3 (Definition 3.8 on page 43).

99

Definition 5.6 An execution X ∈ execs(DAS) is Dynamic Subscription Well-Formed

for a host a ∈ NODES with home switch i if at each event e = receive(q ∈ Q)(a,i),i in

X, subscribeda(n, t) holds for each n ∈ depends(q) in the state t preceding e.

As before, the reason for this condition is to exclude cases where qHop is undefined

for a request, which is the same property we ensured for Theorem 3.3 of Chapter 511.

In fact, the theorem is very similar to that Theorem.

Theorem 5.3 (Dynamic Atomic Transfer Liveness) For all X ∈ fairexecs(DAS),

where X is Dynamic Subscription Well-Formed for a host a ∈ HOSTS, for each event

e = send(q ∈ Q)(a,i),i such that no message caused by e is detected as a conflict in X

and q is not dropped by a drop(q) event, there is a receive(q ∈ Q)(b,i),b event in X,

where b =destination(q).

Proof: Let let X ′ denote the suffix of X whose first event is e. Let fp(q) = s1, s2, . . . , sn

be the forwarding path of q, and let I be the shortest suffix of X ′ containing every

event caused by e. For any finite execution or trace E let fpqb(E) denote the rele-

vant path of q after E, the interval sk+1, ..., sm of fp(q) where k = q-switch(q, E). Let

PCL(I) be the predicate that is true exactly if for each prefix I ′ of I : ¬hasCR(fpqb(I
′), q, tI′),

where tI′ is the last state of I ′. Since q is never detected as a conflict, PCL(I) must

hold. Hence, Static Conflict Locality holds on fpqb throughout I. Therefore, Lemma

3.6 still holds and every message enqueued on each switch sk ∈ fpqb(I) is eventually

sent. By Lemma 3.5, every message enqueued on a channel is eventually received. Fur-

thermore, since a is Dynamic Subscription Well-Formed, qHopi(q) is defined. Since

by assumption q is not dropped by a drop(q) event, the argument for Theorem 3.3

still applies, and every receive(q)(k−1,k),k event caused by e adds q to sk.outQueuek+1,

for 1 ≤ k < n. Therefore, there must be a receive(q ∈ Q)(b,i),b event in I 2

This is a fairly weak liveness condition, essentially saying that when no conflicts

or network problems occur, requests will complete. Any stronger guarantee must

make some assumptions about the occurrences of drop(q) failure events. Time-out

and retransmission schemes can be added for request reliability and starvation due to

11Another approach that would suffice for safety would be to let receive(q ∈ Q) drop a request
that cannot be forwarded, as a switch implementation would likely do anyway.

100

repeated conflicts alleviated by giving a preference to re-issued requests, as mentioned

at the beginning of this chapter. While liveness and fairness issues can be treated

orthogonally to Atomic Transfer, it could be worth investigating whether conflict

checking and cancellation responses can contribute to efficient algorithms for tackling

these issues.

5.10 Discussion and Related Work

This section discusses the relationship between Atomic Transfer and reliable multi-

cast, and work related to reliable multicast.

5.10.1 Atomic Transfer and Reliable Multicast

Reliable multicast is a fundamental part of our approach. Requests “swim upstream”

towards the root of the multicast trees of destination hosts, and are dropped by any

conflicting responses they encounter along the way.

The choice of underlying multicast routing protocol is mostly orthogonal to Atomic

Transfer. Our multicast model is closest to the source-specific multicast or core-based

tree models [138, 139, 142], since the host of a set of names is the root of the multicast

tree for those names. Holbrook and Cheriton [139] argue that this model is simpler

to implement than multi-source models [143, 144] oriented towards group communi-

cation, since it can reuse the existing unicast (e.g. IP) routing infrastructure directly.

They argue that one-to-many multicast suffices for most applications, especially the

large-scale ones that might benefit most from it, such as Internet broadcasting and

content distribution. Our design would seem to agree with that viewpoint.

Atomic Transfer requires reliable multicast, but scalable and reliable multicast is non-

trivial and still an active area of research [145, 144, 146, 147, 84]. Methods for reliable

transmission and flow control of unicast (point-to-point) links do not easily transfer

to multicast settings, as different receivers may receive different subsets of messages

and have wildly different network latencies, bandwidth and congestion conditions.

Treating n multicast receivers as n instances of reliable point-to-point connections

101

does not scale well, as the source host must track membership and reception progress

for all receivers. Also, receiver ACKs lead to congestion as they “implode” back onto

the source host. This problem can be somewhat alleviated by having receivers send

only negative acknowledgements or repair requests for messages they fail to receive,

but ultimately a protocol that relies on the source host for all retransmission repairs

for missing data cannot scale. This has prompted research on receiver-based reliable

multicast [148, 144, 147, 149, 84], where one or more nodes in the system log messages

and receivers are responsible for obtaining missing messages from such nodes. Such

protocols must consider various issues, such as minimizing the number of redundant

repair requests and responses, localizing repair message traffic to the area of network

affected by a message loss and minimizing repair latency, for example. We discuss

these aspects somewhat further in Section 7.5.3.

Atomic Transfer places an important restriction on it’s multicast protocol’s reliability

mechanism, namely that (Dynamic) Conflict Locality be preserved at all time. The

approach we take in this chapter, of severing subscriptions upon discarding responses,

may be needlessly drastic in many cases. It might also lead to liveness problems, as

sporadic drops of a few responses could force a large number of hosts to re-subscribe

to names and, in the systems of Chapters 6 and 7, re-synchronize the affected part of

their cached state.

As a part of integrating AT with a reliable multicast protocol, we plan to investigate

the separation of cancellation responses from cancellation of subscriptions, enabling

a switch to discard responses and send a “drop response” without severing subscrip-

tions. This would preserve Dynamic Conflict Locality, but give a receiver the chance

to repair its response stream by requesting the missing responses from other nodes in

the system, as in receiver-based reliable multicast system.

One might worry that sending additional messages in response to congestion could

make the problem worse. However, as noted earlier, a drop response message can be

made smaller than the combination of dropped responses it represents. For example,

during a transient overflow at a switch, the initial drop response would contain the

exact set of names from the first response dropped. As more dropped responses accrue,

their names can be merged into existing drop responses. In the prototype scheme of

Chapter 8, this happens in the normal case anyway, as a part of maintaining responses

102

sets, so no new mechanism is required. In addition, drop responses can be coarsened

in that scheme by replacing groups of names with a prefix they share, shrinking

drop responses at the cost of overstating the name set affected. If the congestion is

transient, the drop response is eventually sent, but if the congestion is durable (due

to a link being a persistent bottleneck link, for example) the switch would eventually

purge some of the names from its own subscription and change the corresponding

drop responses into cancellation responses.

As mentioned earlier, our model assumes static routes, with no route changes during

execution. This assumption must be changed for practical implementation. One way

a route change can occur is when a switch decides to attach to a different parent

switch in the multicast tree. This corresponds to the entries for a set of names N

in a dynamic nHops field changing from one channel to another. A straightforward

way to do this would be for the switch to unsubscribe from one channel and then,

upon receiving its cancellation response (and forwarding it on, possibly as a drop

response), subscribe to the new channel. Clearly this preserves Conflict Locality, but

at a cost to downstream receivers. A less disruptive way would be for the switch

to first subscribe to the new channel and only unsubscribe from the old one upon

receiving the first duplicate message from the new one12, allowing a seamless route

change while preserving Conflict Locality. So while Conflict Locality restricts how

route changes may occur, the restrictions do not appear too onerous.

The last major assumption we make with respect to multicast is that subscriptions

can be made on a very fine-grained level, namely on a name-by-name basis. This

makes our models simple, but may present implementation challenges. On the other

hand, if direct name-based forwarding remains infeasible or inferior to address-based

forwarding, it is relatively simple to separate name resolution from forwarding; a

requester can pre-determine the network address(es) of the server(s)13 for a set of

names and then join the multicast tree(s) rooted at the address(es).

Handling multicast subscription issues for fine-grained names may be a thornier issue.

Although modern routers are equipped with considerable memory, keeping track of

potentially billions of subscriptions is a challenge. Any solution will likely make use

12These issues have been investigated in the context of mobile networking [150]
13Or the network address of the gateway to the host’s data center.

103

of names that are at least partly hierarchically structured, such as is the case with

IP addresses and the prototype naming scheme of Chapter 8. For example, a data

name n could be structured as a pair (auth, id), where auth is the cryptographic

digest [151] of the public key [152] claiming authority over n [153]. The id part

would be a variable-length bit string with a hierarchical structure, that is: the longer

the prefix shared by two names in the auth “name space”, the shorter the expected

network distance between their hosts. Subscription processing could take advantage

of this structure, by recording subscriptions to prefixes instead of individual names

as much as possible. The auth part of n coupled with some prefix of id would suffice

to map n to its current host. Core switches might maintain relatively coarse-grained

subscriptions while switches closer to senders and receivers would retain more fine-

grained subscriptions, limiting the flow of superfluous messages onto network edge

links.

In sunmmary, several obstacles to efficient realization of name-based forwarding re-

main. Indeed the multicast subscription problem might limit initial deployment of

Atomic Networks to data centers, where name spaces and (virtual) network topologies

can be carefully controlled. On the other hand, if visions of global, virtual Metanet-

works [154, 118] come to fruition, operators of large-scale distributed applications

might configure relatively stable dedicated multicasting trees for their applications,

making some of these problems more manageable.

104

Chapter 6

Dynamic Atomic Cache and State

Transfer

This chapter augments the Atomic Cache system of Chapter 4 to work with dynamic

subscriptions, based on the dynamic atomic network described in Chapter 5. In the

simplified, static system of Chapter 4, application caches initially contain server start

states. They stay synchronized by applying each subsequent server response to their

cached states. But for a dynamic application to subscribe to a server at a later point

in an execution, it must either obtain the complete sequence of server responses up

to that point or else obtain a current copy of the server’s state.

Server state is partitioned using names, as defined in Chapter 5, permitting caching

and transfer of subsets of a server’s state. This Chapter presents a straightforward

cache synchronization protocol where state is transferred directly from servers to

applications. Chapter 7 refines the algorithm to allow applications to synchronize

their caches using other application caches. That protocol is designed to ensure

liveness despite high response generation rates.

6.1 States, Names, Values, Updates and Conflicts

We refine the definition of STATESb, the state space of server b ∈ DATAS that is

completely abstract in Chapter 4. Let STATESb now be some set of finite, partial

functions from names of b to VALUES, so each state s ∈ STATESb is a function

yielding the value of each name in that state, if defined.

105

We introduce operators for updating the values of names in states. Let UPDATES

be the set of state updates, each element of which is a finite partial function mapping

NAMES to VALUES ∪ {⊥}, where ⊥ 6∈ VALUES. For any u ∈ UPDATES. let

names(u) denote the (finite) domain of u. We will sometimes interpret u as a set of

elements (n 7→ v), each mapping a name n to some v ∈ VALUES ∪ {⊥}.

An update is used to transform one state of a server b ∈ DATAS into another. We

define the function override operator ⊕ : STATESb × UPDATES → STATESb, for

any s ∈ STATESb, u ∈ UPDATES, n ∈ NAMESb, as follows:

• If u(n) is undefined then (s⊕ u)(n) = s(n), or is undefined if s(n) is undefined.

• If u(n) = ⊥ then (s⊕ u)(n) is undefined.

• If u(n) = v for some v ∈ VALUES, then (s⊕ u)(n) = v.

Clearly, for all s1, s2 ∈ STATESb, there exists an update u ∈ UPDATES such that

s1 ⊕ u = s2.

We define the projection operator | : UPDATES × NAMES → UPDATES, as the

operator that for any update u and name set N yields the maximal subset of u which

updates only names in N , that is: { (n 7→ v) ∈ u | n ∈ N }.

We refine the definition of depends and effects functions for requests and responses,

in a way that matches the definition of the conflicts-inv conflict function of Chapter

4. We restate the definition here below.

conflicts-inv = { (q ∈ Q, r ∈ R) | ∃s ∈ STATESb :

executeb(s, q) 6⊆ executeb(TRANSb(s, r), q) }, where b = destination(q).

We define depends(q) as the set of names whose change of value may expand the set

of possible responses to q. Intuitively, it has names whose value changes could lead

to a new response not expected by a requester given the responder’s cached state.

Formally:

Definition 6.1 depends(q) = { n ∈ NAMESb | ∃ s ∈ STATESb,

v ∈ VALUES ∪ {⊥} : executeb(s, q) 6⊆ executeb(s⊕ {(n 7→ v)}, q) }
106

If executeb is deterministic then the predicate simplifies to: executeb(s, q) 6= exe-

cuteb(s⊕ {(n 7→ v)}, q).

We define effects(r) as the subset of names of server b = sender(r) that may change

as a result of r being applied. Formally:

Definition 6.2 effects(r) = { n ∈ NAMESb | ∃ s ∈ STATESb: s(n) 6= TRANSb(s, r)(n) }.

Recall assumption 5.1 of Chapter 5, that conflicting requests and responses have a

name in common, for the safety of dynamic subscriptions. Our definitions lead to

this assumption being satisfied, as shown in the following Lemma:

Lemma 6.1 (Names and Conflicts): For any q ∈ Q, r ∈ R :

conflicts-ing(q, r) ⇒ effects(r) ∩ depends(q) 6= ∅.

Proof: Let b = destination(q). If (q, r) ∈ conflicts-ing then there exists a state

s ∈ STATESb such that executeb(s, q) 6⊆ executeb(TRANSb(s, r), q). Let N denote

the set { n ∈ NAMESb | s(n) 6= s′(n) } where s′ = TRANSb(s,r), that is: the set of

names whose values differ in s and s′. By the definitions of response effect sets, N ⊆
effects(r). Since depends(q) contains by definition all names whose value change may

expand the set of possible responses, there is some n ∈ N such that n ∈ depends(q),

so n ∈ (effects(r) ∩ depends(q)) and effects(r) ∩ depends(q) 6= ∅ 2

6.2 Responses and partial states

Recall from Chapter 4 that responses are not direct carriers of new data for caches.

Rather, they carry back the result of a request’s execution, whose effect the applica-

tion recreates on its cached version of the state using the TRANSb function. TRANSb

can range from a simple write mapping that assigns constant values to names to a

complex, state-dependent computation that transforms the state in arbitrary ways.

The fact that dynamic cache application hosts may cache only a subset of a server’s

state creates a complication for this scheme. Clearly, a proper subset s′ of a state s ∈
STATESb is not the same as s, and may even be a non-member of STATESb.

107

Whether this matters ultimately depends on TRANSb. A simple value overwrite

function, for example, behaves the same way regardless of its input state. But in

general, a response in the dynamic cache system effectively has a dependency set: the

set of names whose values determine the response’s effect. We could easily define a

dependency set for each response r ∈ R along the lines of:

depends(r) = { n ∈ NAMESb | ∃ s ∈ STATESb, v ∈ VALUES ∪ {⊥} :

TRANSb(s, r) 6= TRANSb(s⊕ {(n 7→ v)}, r) }

However, the design and structure of responses and their dependency sets requires

careful consideration, since an application must be subscribed to and have an up-to-

date copy of a response’s dependency set to be able to apply it. This could lead to

problems, if applications were repeatedly forced to re-synchronize their caches after

receiving a response they were unable to apply. This difficulty can be somewhat

mitigated if responses have an internal structure such that subsets of a response can

be individually applied. In fact, this section will take that approach to its limit and

require that each response is separable, meaning that it can be applied individually

to each name in its effect set. This ensures that a response can always be correctly

applied to any subset of a state’s names. While a simplification and a restriction, this

allows us to focus on the caching and state transfer protocol without worrying about

response semantics. Formally:

Definition 6.3 A response r is separable if for all s ∈ STATES, r ∈ R where b

= sender(r) and state sb ∈ STATESb and s | N = sb | N : TRANSb(sb, r) | N =

TRANSb(s, r) | N , for any N ⊆ NAMESb.

This assumption does limit the expressiveness of responses and TRANSb functions

and we plan to better investigate these issues in the future, as discussed in Section

6.9.1.

6.3 Names and Caches

Once an application a has subscribed to a set of names Na via subscription requests

and responses as described in Chapter 5, it initiates state transfer(s) from the server

108

host(s) of Na. The server(s) send back the data that a needs to synchronize its cache

with their state, that is: set as the value cached for each name n ∈ Na the current

value of n on host(n). Once an application has synchronized its cache, it keeps it in

synch by applying responses to it, as before.

Here we use the term synchronized loosely, as servers generally execute requests and

send responses concurrently with state transfers. An application host must carefully

combine state transfer messages and any concurrent response messages it receives to

obtain a correct, up-to-date state. Indeed, a state transfer from a server b to an ap-

plication host a may never “complete”, in the sense of reaching a state where a.stateb

= b.state, particularly if b is generating responses rapidly. Still, host a must somehow

know when it becomes “synchronized enough” with b to safely issue requests. This is

the task of a cache synchronization protocol, to get an application host synchronized

with a name set so that it can safely issue requests depending on the names.

Recall the definition of value read requests and response messages, from Chapter 5.

We let each value message vr ∈VR correspond to an update update(vr) ∈ UPDATES,

and let V R(u) denote the unique value message vr such that update(vr) = u. Each

read request vq ∈ V Q is associated with a set of names names(vr) ⊆ NAMES, and we

let V Q(N) denote the unique read request vq such that names(vq) = N. For notational

clarity, if a value message vr is used in a context where an update is required, as for

example in the expression s ⊕ vr, then vr is taken to mean update(vr). Similarly, if

a read request vq is used in a name set context then vq is taken to mean names(vq).

For an application a to obtain the latest values for some set of names Na ⊆ NAMESb

from a server b, it must receive a set Va ⊆ V R of value messages from b that together

provide values for each name in Na. Application a can request the names explicitly

using a value request message, but we leave open the possibility for b to proactively

generate value messages. For example, it could multicast them periodically, for par-

allel synchronization of multiple application caches.

Host a can receive and apply the messages of Va in any order. Furthermore, we

will show that our state transfer protocol never delivers stale value messages, so as

soon as a has received values for each name in some set N ⊆ NAMES that a is

subscribed to, a has a consistent view of N and can issue any request q such that

depends(q) ⊆ N , even if it has yet to receive other names from Na. We note that

109

some concurrency control schemes only guarantee that transactions which commit see

a consistent state. Guaranteeing that all transactions see consistent state, as in our

model, allows software developers to assume that state invariants hold, rather than

having to check them explicitly.

6.4 Direct Cache Synchronization

The cache synchronization protocol in this chapter is relatively simple, transferring

state directly from the server where it is hosted. Just after an application host a has

completed subscribing to a name set N , each name of N is marked in its cache as

being unsynched. Upon receiving a value message vr, a applies the message’s update

to its cache and marks names(vr) as being synched. Requests depending on names(vr)

may be safely issued at that point. An optimized protocol could combine subscription

requests and value requests in the same message, to establish subscriptions and initiate

state transfer within the same network round-trip. The message could “detach” at

the first switch that is subscribed to the names, such that only the value request is

forwarded onwards. We leave out this optimization, for simplicity.

The protocol requires that response messages and value messages are delivered in the

order sent, which holds in our model since all responses in R are delivered in the

order sent, if at all. We make the simplifying assumption that switches forward a

value message to all subscribers of a name in the message, irrespective of whether

that subscriber is currently in the process of synchronizing with the name or not. A

refinement of the protocol could restrict the flow of value messages to those parts of

the network where they are currently needed. Alternatively, value messages could be

unicast to their receivers. We do not explore these options here.

Also note that we do not consider liveness for state transfers in the general case,

that is: ensuring that applications eventually succeed in synchronizing their caches

despite dropped requests and responses. While these are important issues in prac-

tice, the approaches to solving them are well understood, such as re-transmission of

messages after a time-out, e.g. At any rate, strong liveness guarantees require strong

assumptions about the failures that may occur and their detection [155, 156].

110

6.5 DynamicAppHosti and DynamicServerHosti

We define I/O Automata for dynamic application hosts and dynamic data server

hosts below. We then show that composing these with dynamic atomic switches and

channels results in a system where invalid requests are never executed, similar to

Theorem 4.1 for the Atomic Cache (CS) system.

DynamicAppHost uses the single field cache to store its cached state, instead of a

separate stateb field per server as in SimpleAppHost. We define the global set of

states STATES as the set of all finite, partial functions from the global name domain

NAMES to value domain VALUES. We define the projection operator | : STATES ×
NAMES → STATES, as the operator that for any global state s ∈ STATES and name

set N ⊆ NAMES yields the restriction of the state to the names, that is: {(n 7→ v)

∈ s | n ∈ N}.

We emphasize again that while STATES can represent any valid state of any server,

not every state in STATES corresponds to a valid state for every server. The projec-

tion sab = a.cache | NAMESb of the cached state at an application a to the names

of a server b is generally not an actual state of b: only the subset of sab corresponding

to the synched names of a is guaranteed to be equal to the same subset in a (recent)

state of b, as we will show. But by the definition of depends, this suffices to correctly

execute any request whose dependency set is synched, since other names do not affect

the request’s execution. Furthermore, if a has an up-to-date version of some subset

N of the effects(r) name set of a response r from b, response separability ensures that

the effects of r on names N in the cache of a will be the same as the effect of r on

names N in b.state in the state where b created r.

DynamicAppHosta

A refinement of SimpleAppHosta that dynamically adds or drops names from its

subscription set during execution.

111

We overload operator ⊕ to STATES × STATESb → STATES, to yield for any global

state s and server state sb the state s updated with sb, that is: (s⊕ sb)(n) = sb(n) if

n ∈ NAMESb or s(n) otherwise.

State:

cache: the application’s cached state, an element of STATES, initially the empty map.

outQueue: queue of outbound messages, initially empty.

inNames: A total function NAMES → SUBSTATUS storing the name statuses that

a caches for i.outNames, where i is the home switch of a.

Initially unsub for all n ∈ NAMES.

synched: the subset of names of inSub (see below) that is synched at a, initially ∅.

Derived State:

inSub / inPend = { n ∈ NAMES | inNames(n) = sub / inNames(n) = pend }.

Input actions:

receive(r ∈ R \ SR \ V R)c,a

Effect:

cache′ = cache ⊕ TRANSb(cache, r), where b = sender(r)

outQueue′ = outQueue · ack(r)

receive(vr ∈ V R)c,a

Effect:

cache′ = cache ⊕ (vr | (synched ′ \ synched))

synched ′ = synched ∪ (names(vr) ∩ inSub)

receive(sr ∈ SR)c,a

Effect:

outQueue′ = outQueue · ack(sr)

∀ n ∈ NAMES: inNames′(n) =

inNames(n), if n 6∈ names(sr),

112

sub, if n ∈ sub(sr),

pend, if n ∈ pend(sr),

unsub, if n ∈ unsub(sr).

synched ′ = synched \ unsub(sr)

Internal actions:

createRequest(q ∈ Q)a

Precondition:

∃ r ∈ R : (cache | NAMESb, q, r) ∈ executeb,

where b = destination(q) and depends(q) ⊆ synched

Effect:

outQueue′ = outQueue · q

subscribe(N ⊆ NAMES)a

Precondition:

N ∩ (inSub ∪ inPend) = ∅
Effect:

outQueue′ = outQueue · SQ(N, ∅)

unsubscribe(N ⊆ NAMES)a

Precondition:

N ⊆ (inSub ∪ inPend)

Effect:

outQueue′ = outQueue · SQ(∅, N)

Output actions:

send(m ∈ M)c,a

Precondition:

head(outQueue) = m

Effect:

outQueue′ = tail(outQueue)

113

The receive(r ∈ R \ SR \ V R)c,a action receives a request response and updates the

cached values of names affected by the response, using the appropriate server’s state

transition function. It also enqueues back an ACK for the response. The action is

essentially the same as in SimpleAppHost. Note that we could technically add the

names updated to synched here, but that is incompatible with the scalable refinement

developed in Chapter 7. Also note that for simplicity we model the cache as storing

synched as well as old, unsynched values. An implementation, however, might or

might not store old unsynched values, depending on whether it has uses for them or

not.

The receive(vr ∈ V R)c,a action processes a value message by applying its update to

the cache. It also notes that the message’s names are now synched. More specifically,

it notes exactly those names it is subscribed to, to preserve the synched ⊆ sub invari-

ant. The fact that the action ignores any non-subscribed names in value messages

is important for correctness. Note that the action only updates the values of names

that were not synched before.

The receive(sr ∈ SR)c,a action receives a notification of changes to the application’s

subscription, either due to an earlier subscription request it sent itself or due to

subscription changes initiated in the network. Note that the action adds and/or

removes names from inSub in this action, not the subscribe/unsubscribe actions. The

action enqueues back and ACK for the message. It also removes any unsubscribed

names from synched, to maintain the synched ⊆ inSub invariant.

The createRequest(q ∈ Q)c,a action is very similar to the synonymous action in Sim-

pleAppHost, non-deterministically issuing a new request. The crucial difference is the

additional precondition that a request only be issued if its dependency set is synched.

The subscribe(N ⊆ NAMES)a action non-deterministically decides to subscribe to

some set of names, issuing a subscription request to the home switch. As mentioned

here above, no names are added to inSub by this action.

Similarly, the unsubscribe(N ⊆ NAMES)a action non-deterministically decides to

unsubscribe to some set of names, issuing a subscription cancellation request to the

home switch. It does not remove the names from its subscription set immediately, as

the subscription request may yet dropped due to a conflicting subscription response.

114

This is consistent with treating inNames as an application-cached version of the home

switch’s outNames set and simplifies reasoning about Conflict Locality.

The send(m ∈ M)c,a action moves a pending message to the outbound channel.

DynamicDataServerHostb

A refinement of SimpleServerHost that sends value messages, proactively or in re-

sponse to value read requests.

We define the operator ∆ : STATES × NAMES → UPDATES, to yield for any

global state s and name set N the update u such that for any global state t: (t⊕u) | N
= s | N . The operator can also be characterized as follows:

s ∆ N = { (n 7→ v) ∈ s | n ∈ N } ∪ { (n 7→ ⊥) | n ∈ N \ names(s) }.

Additional State:

pending: a subset of NAMESb containing names whose values have been requested

but not yet served, initially ∅.

Additional Input actions:

receive(vq ∈ V Q)c,b

Effect:

pending ′ = pending ∪ names(vq)

Additional Internal actions:

value(N ⊆ NAMESb)b

Precondition:

N ⊆ pending and N 6= ∅
Effect:

outQueue ′ = outQueue · V R(b.state ∆ N)

115

pending ′ = pending \ N

broadcast(N ⊆ NAMESb)b

Effect:

pending ′ = pending ∪ N

The receive(sq ∈ SQ)c,b action notes that a set of names has been requested, in its

pending set. There is no need to conflict-check the request, since depends(vq) = ∅,
by definition of value requests.

The value(N ⊆ NAMESb)b action non-deterministically decides to send a value

message for some requested subset of its names. It removes that set of names from

the pending set.

The broadcast(N ⊆ NAMESb)b non-deterministically adds names to the set of names

pending for a value message. This actions models the fact that a server is free to send

value messages without a value read request prompting it to do so.

6.6 Properties and Proofs

Let DCS be the I/O Automaton composed of an DynamicSwitchi automaton for each

switch si ∈ NODES, a DynamicAppHosta automaton for each application host a ∈
APPS, a DynamicDataServerHostb automaton for each data server host b ∈ DATAS

and a Channelc automaton for each channel c = (i, j) ∈ CHANNELS.

The event ordering relation <E and causes relation →E for an execution or execution

trace E are the same as before, with the addition to →E of each send(vr ∈ V R)c,i

event caused by a receive(vr ∈ V R)d,i event, where c and d are channels incident to

a switch i ∈ SWITCHES .

We begin with a simple invariant regarding the local state of DynamicAppHosta.

116

Lemma 6.2 (Synchronized Implies Subscribed): In any state of DynamicAppHosta

: a.synched ⊆ a.inSub.

Proof: Both fields are empty in the start state. Inspecting the actions of DynamicAppHosta,

we readily see that all changes to a.synched and a.inSub preserve the invariant 2

It is easily shown that Lemma 5.3 of Chapter 5 holds even if node i is in APPS instead

of SWITCHES, since the only role i plays in the proofs of these Lemmas is to enqueue

an acknowledgement for a received subscription response, and DynamicAppHost ac-

knowledges a subscription the exact same way. Hence, we can use the Lemma when

proving the following Lemma, which effectively shows Name Conflict Locality for an

application and its home switch.

Lemma 6.3 (Application Name Conflict Locality): For each state t of each X ∈
execs(DCS) and host a ∈ APPS : n ∈ a.inSub ⇒ subscribeda(n, t).

Proof: Fix anyX ∈ execs(DCS) and a ∈ HOSTS communicating via channel c = (a,

i) with its home switch i ∈ SWITCHES . We proceed by induction on the prefixes of

X. As our base case, the invariant trivially holds in the start state of X since a.inSub

is empty. We claim that each action e extending a prefix X ′ into another prefix X ′′

of X preserves the invariant, because:

1. If e = receive(sr ∈ SR)c,a then e removes names unsub(sr) from a.inSub, pre-

serving the invariant, but it may also add a set N = sub(sr) to a.inSub. But

by Lemma 5.3, subscribeda(n, t) holds for each n ∈ N after e, preserving the

invariant.

2. If e = receive(sq ∈ SQ)c,i then e may add names from sub(sq) to j.outSubc,

preserving the invariant, but may also remove names N = unsub(sq) from

j.outSubc. But then e also adds a cancellation response cr with unsub(cr) = N

to j.responsesc, so the invariant is preserved.

3. If e = purge(N ⊆ NAMES)c,i then e may remove a set of names M = N ∩
nHopi(c) from i.outSubc. But then e also adds cancellation response SR(∅, M)

to i.responsesc and subscribeda(n, t) holds, preserving the invariant.

117

4. There are no other events in DynamicAppHosta or DynamicSwitchi that affect

a.inSub or i.outSubc, respectively.

Since all possible extensions of X′ preserve the invariant it holds in X, completing

the induction 2

We prove lemmas regarding the order in which response and value messages from a

data server b are delivered to a host a, somewhat corresponding to Lemmas 4.1, 4.2

and 4.3 in Chapter 4. Unlike the static CS system, an application a in DCS may

receive only a subset of the update messages sent by a server b, due to dynamically

varying subscriptions and non-deterministic purging of subscriptions and dropping of

update messages by dynamic switches. Furthermore, dynamic switches may insert

any number of cancellation responses into the sequence of responses from b before it

reaches a.

We observe, though, that DynamicSwitch never changes the order of any responses

(including value messages and subscription responses) in any of its outQueues. We

show that if a switch i does receive a pair of responses sent by some other switch j,

then i forwards them in the same order as j.

Lemma 6.4 (Dynamic switch response order): For each E ∈ traces(DCS), any pair

i, j ∈ SWITCHES (including i = j) and any pair of responses m1, m2 ∈ R forwarded

along path F = i, s2, s3, ..., j: receive(m1)j,c <E receive(m2)j,c ∧ receive(m1)j,c →E

send(m1)i,d ∧ receive(m2)j,c →E send(m2)i,d ⇒E send(m1)i,d <E send(m2)i,d, with c

and d some channels incident to j and i, respectively.

Proof: Let m1,m2 ∈ R be a pair of responses received on a switch j in that order,

where their reception causes their sending on a switch i.

We proceed by induction on path F. For the base case of a single switch j = i, let d be

the channel on which j enqueues the messages. Since receive(m1)j,c <E receive(m2)j,c,

m1 is ahead of m2 in j.outQueued immediately after event receive(m2)j,c. Inspecting

the actions of DynamicSwitchj, we see that none of them can move m2 in front of

m1 on j.outQueued; they only append and / or remove messages from j.outQueued.

118

Since send(m ∈M)i,d sends and removes only messages from the head of j.outQueued,

send(m1)j,d <E send(m2)j,d.

For the inductive step let F ′ =sk, sk+1, ..., j be the sequence containing the last k +1

switches of F , where k is less than the length of F. By our inductive hypothesis,

send(m1)k+1,d <E send(m2)k+1,d, with d some channel incident to sk+1. By channel

FIFO, receive(m1)k,c <E receive(m2)k,c. Repeating the argument of the base case for

sk, we get send(m1)k,d′ <E send(m2)k,d′ , with d′ = (k−1, k), completing the induction

2

The responses received by applications in DCS do not have the simple correspondence

with the responses sent by servers as they do in Chapter 4. Still, we show that during

the interval where an application has a name n in its synched set, the sequence of

values it caches for n is an interval of the sequence of values assigned to n at host(n).

We refine our definitions of response event and message sequences to talk about the

subsequences pertaining to particular names as follows:

Definition 6.4 For any execution or trace E, i ∈ NODES and N ⊆ NAMES let

respSndSeqi(E,N) (respRcvSeqi(E, N)) denote the maximal subsequence of trace(E)

or E, respectively, consisting of send(r ∈ R\SR\V R)c,i (receive(r ∈ R\SR\V R)c,i)

events such that N ∩ names(r) 6= ∅, where c denotes some channel in CHANNELSi,

possibly different in different events.

Let snd-seq-riN(E) = messagesOf(respSndSeqi(E,N)), the sequence of response mes-

sages sent from node i that contain a name in N . Let rcv-seq-riN(E) =

messagesOf(respRcvSeqi(E,N)), the sequence of response messages received at i that

contain a name in N . For any name n ∈ NAMES we take snd-seq-rin(E) (rcv-seq-

rin(E)) to denote snd-seq-ri{n}(E) (rcv-seq-ri{n}(E)).

We also introduce some notation to help us talk about the execution interval during

which a node is subscribed to a name, and the corresponding interval during which

another node is transmitting responses containing that name.

Definition 6.5 For any state t of any X ∈ execs(DCS), any node j ∈ NODES and

any name n ∈ NAMES with nHopj(n) = some channel d, let sub-interval(j,n,t) be

119

undefined if ¬subscribedj,d(n, t), or else let it be the longest interval of X beginning

immediately after the latest event er = receive(sr ∈ SR)d,j event before t in X such

that n ∈ sub(sr) and for every state t′ ∈ sub-interval(j,n,t) : subscribedj,d(n, t′). We

call such an interval a subscription interval of j for n.

For any node i ∈ (fpjb ∪ {b}) where b = host(n), let pub-interval(i,j,n,t) be the

longest interval of X that begins immediately after an event es = send(sr)c,i such

that es causes the event er = receive(sr ∈ SR)d,j defining a subscription interval sub-

interval(j,n,t) and for each state s′ ∈ pub-interval(i,j,n,t) : n ∈ i.outSubc ∨ i = b,

where channel c is incident to i. We call such an interval a publishing interval of i

for n.

Figure 6.1 gives an example of a subscription interval and a corresponding publishing

interval. We observe that if a sub-interval(j,n,t) is defined then there exist for each

switch i ∈ fpjb exactly one corresponding pub-interval(i,j,n,t). By Lemma 3.2 chan-

nels do not spontaneously create new messages, so the event er = receive(sr) must be

caused by a particular chain of send(sr) events. We present a simple lemma saying

that subscription intervals exist for every name in a node’s inSub set.

Lemma 6.5 (inSub and subscription intervals) For any state t of any X ∈ execs(DCS),

any node j ∈ NODES and any name n ∈ j.inSubd for a channel d incident to j (or

j.inSub, if j ∈ HOSTS) in state t : sub-interval(j,n,t) exists.

Proof: Inspecting DynamicSwitch and DynamicAppHost we see that n is only added

to j.inSub(d) by an event er = receive(sr ∈ SR)d,j action with n ∈ sub(sr), so er is

an event before t that defines an interval sub-interval(j,n,t) 2

The next Lemma says that once a node (application host or switch) receives the

subscription confirmation message for a name, the sequence of responses it receives for

that name is a prefix of the sequence of responses sent by each node on the forwarding

path to the server hosting that name, for as long as the receiving node stays subscribed

to the name. It corresponds to Lemma 4.3 but only applies to a particular name and

only during its subscription intervals. Figure 6.1 gives an illustration of the main

entities involved in the Lemma. It shows abcd as an example of the rcv-seq-rjn(Ij)

120

for a subscription interval Ij, which is a prefix of snd-seq-rin(Ii) = abcdefg... of the

corresponding publication interval Ii at i. The dashed arrows shows an example of

where intervals Ij and Ii might end, due to a cancellation response sent by i.

v
cd (w-1,w)

j iw

rcv-seq-rjn(Ij) =

abcd
snd-seq-rn(Ii) =

abcdefg…

ej = receive(sr)d,j

sr
ei = send(sr)c,i

subscribed(j,d)(n, t)

X

j

i

rk

Ij

Ii

(w,w+1)

Figure 6.1: The publish/subscribe Intervals of Lemma 6.6

Lemma 6.6 (Dynamic message order): For any X ∈ execs(DCS), j ∈ NODES, b

∈ DATAS and n ∈ NAMESb with nHopj(n) = some channel d, let Ij be any sub-

interval(j,n,t) for some state t ∈ X starting with an event ej = receive(sr ∈ SR)d,j

and let Ii be any corresponding pub-interval(i,j,n,t) for some i ∈ (fpjb ∪ {b}). Then

rcv-seq-rjn(Ij) ¹ snd-seq-rin(Ii).

Proof: If rcv-seq-rjn(Ij) is empty then the theorem holds vacuously. Otherwise, by

Lemma 6.4 and channel FIFO, every pair of messages from sndSeqc,i(X,i,R) that is

received by j is received in the order sent by i. Hence, rcv-seq-rjn(X) is a subsequence

of snd-seq-rin(X). Since Ii starts with the ei = send(sr)c,i event that causes the ej =

receive(sr ∈ SR)d,j event marking the beginning of Ij, and since by Lemma 6.4 and

channel FIFO all messages in R sent by i are received by j in the order sent, we have

that rcv-seq-rjn(Ij) is a subsequence of snd-seq-rin(Ii). To show that rcv-seq-rjn(Ij)

¹ snd-seq-rin(Ii) holds, it suffices to show that all the messages of snd-seq-rin(Ii) are

received, and none are dropped.

121

Assume for contradiction that the k-th response rk of snd-seq-rin(Ii) is dropped.

Hence, the k-th response in rcv-seq-rjn(Ij) is not the k-th response from snd-seq-rin(Ii)

but rather the h-th response rh from snd-seq-rin(Ii), for some h > k. We show that

in this case, j receives a cancellation response containing n during Ij, contradicting

the fact that subscribed(j,d)(n, t) holds in each state t of Ij.

There are only two ways that rk can fail to be forwarded to j: if rk is received at a

switch where the channel leading to j is not subscribed to rk or if rk is purged at some

switch. Let s1, s2, ..., sm be the switches comprising the forwarding path fpji from

j to i, so s1 = sj and sm = si. We observe that the since sr was received at j, the

switches of fpji must all be subscribed to n at some point in Ii, that is: for 1 ≤ l ≤
m, n ∈ sl.outSub(l−1,l) immediately after each receive(sr)(l,l+1),l that causes the ej =

receive(sr)d,j event marking the beginning of Ij, since n ∈ names(sr). Furthermore,

since by Lemma 6.4, receive(sr)(l,l+1),l <X receive(r)(l,l+1),l for any r ∈ rcv-seq-rjn(Ij)

and 1 ≤ l ≤ m, rk is not dropped due to arriving at a switch before the subscription

for n is established at that switch; it must be because the subscription to n was

established and then removed again before rk was received. Finally, we observe that

at any switch l on the path that receives rk in Ii, receive(rk)d,j <X receive(rh)d,j, by

Lemma 6.4. Let us consider first the case when rk fails to be forwarded and then the

case when rk is purged.

1. In the first case, let sv be the switch on fpij such that v.outSub(v,v−1) ∩ names(rk)

= ∅ at event evr = receive(rk)(v+1,v),v, because n is removed from the subscription

of one or more switches on fpji before evr. Let sw be the first switch on fpji

to remove n from w.outSub(w−1,w) after its receive(sr)(w,w+1),w event, so w ≤
v. The event ewcr removing n is one of receive(sr ∈ CR)(w,w+1),w with n ∈
unsub(sr), purge(N ⊆ NAMES)(w−1,w),w with n ∈ N or receive(sq ∈ SQ)g,w

with n ∈ unsub(sq). In each case, ewcr enqueues a cancellation response cr ∈
SR on outQueue(w−1,w), where n ∈ names(cr). Since receive(rk)(v−1,v),v <E

receive(rh)(v−1,v),v and since w ≤ v and ewcr <X evr, by Lemma 6.4, receive(cr)d,j

<E receive(rh)d,j.

2. In the latter case, rk is dropped by an event ev = purge(N ⊆ NAMES)(v−1,v),v

event at some switch v on fpji. If n 6∈ v.outNamesv−1,v at ev then n is removed

by some earlier event at v or some other switch w < v (since ev is the first and

122

only event that drops rk). By the argument for the first case, the earliest event

ewcr dropping n from an outSub field on fpji enqueues a cancellation response

cr ∈ SR where n ∈ names(cr), and since w ≤ v and ewcr <X ev, by Lemma 6.4,

receive(cr)d,j <E receive(rh)d,j. On the other hand, if n ∈ v.outSub(v−1,v) at ev

then ep enqueues a cancellation response message cr ∈ SR on outQueue(v−1,v),

where n ∈ names(cr). Since ev drops a contiguous sequence of responses from

the tail of v.outQueue(v−1,v) which does not include rh, rh is received and added

to s.outQueue(v−1,v) after ev. Hence, cr is ahead of rh on s.outQueue(v−1,v) so

once again by Lemma 6.4, receive(cr)d,j <E receive(rh)d,j.

Our assumption that rk is dropped implies that a receives cr ahead of rh. This means

that both receive events occur in interval Ij. But then j removes n from j.inSubd (or

j.inSub, if j ∈ HOSTS) in Ij and we have ¬subscribed(j,i)(n, t) in the state t following

receive(cr)j,d, which contradicts the fact that for every state t ∈ Ij : subscribed(j,d)(n,

t). Hence, response rk cannot have been dropped and rcv-seq-rjn(Ij) ¹ snd-seq-rin(Ii)

2

In static system CS there is a direct correspondence between server states and the

sequence of responses received by a subscribing application. In the dynamic system,

the correspondence is more complex because applications subscribe to a subset of a

server’s responses and their subsets may vary during executions. This added com-

plexity is reflected in our proofs. As a preliminary, we extend lemma 6.6 to talk about

the correspondence between the states of a server and the sequence of responses re-

ceived by an application following a subscription confirmation message. We begin by

defining the response sequence of a server with respect to a particular name.

Definition 6.6 For any execution or trace E and n ∈ NAMES, let resp-seq-rn(E)

denote the maximal subsequence of resp-seq-rb(E) such that for each response r in the

sequence: names(r) ∩ N 6= ∅, where b = host(n).

Lemma 6.7 (dynamic state change and response order): For any X ∈ execs(DCS),

a ∈ APPS, b ∈ DATAS and n ∈ NAMESb, let Ia be any sub-interval(a,n,t) for some

state t ∈ X and let Ib be the corresponding pub-interval(a, b, n, t). Then rcv-seq-

ran(Ia) ¹ resp-seq-rn(Ib).

123

Proof: For each response r ∈ resp-seq-rb(Ib), in order from first to last, b sets its

b.state field to b.state′ = TRANSb(b.state, r) while simultaneously enqueueing r on

b.outQueue. Since names(r) by definition contains every name whose value may be

different in states b.state and b.state′, if b.state(n) 6= b.state′(n) then n ∈ names(r). By

the FIFO property of b.outQueue and the definition of snd-seq-rbn(Ib), snd-seq-rbn(Ib)

¹ resp-seq-rn(Ib). By Lemma 6.6, rcv-seq-ran(Ia) ¹ snd-seq-rbn(Ib), so rcv-seq-ran(Ia)

¹ snd-seq-rbn(Ib) ¹ resp-seq-rn(Ib) 2

We can now show that the sequence of values assigned to the names in a cache mirrors

the sequence of values assigned to the names on the original server. We show that

the projection of a cache on its synched names equals the same projection on a recent

or current state of the server.

Lemma 6.8 (dynamic cache synchronization): For any state ta of any X ∈ execs(DCS),

a ∈ APPS, b ∈ DATAS, let synchedb = a.synched ∩ NAMESb in ta and let tb be the

state in X immediately after the eb event enqueueing the latest response from b that

has been received by a. Then a.cache | synchedb in state ta = b.state | synchedb in

state tb.

Proof: We proceed by induction on the prefixes of X. As our base case, the invariant

trivially holds in the start state of X since a.synched is initially empty. We claim that

each action e extending a prefix X ′ into another prefix of X preserves the invariant.

As a preliminary, since a.synched ⊆ a.inSub then by Lemma 6.5 there exists for the

final state ta of X ′ and each n ∈ a.synched at ta a suffix Ian = sub-interval(a,n,ta) of

X ′ where for each such Ian, by Lemma 6.7, rcv-seq-ran(Ian) ¹ resp-seq-rn(Ibn), where

Ibn = pub-interval(a, b, n, ta). In other words, a is receiving every response affecting

any name in a.synched, in the order of the corresponding state changes.

Let eb be the event that enqueues the latest response message sent from b that has

been received by a at ta. By the inductive assumption, in the final state ta of X ′, sab

= a.cache | synchedb equals sb = b.state | synchedb in the state tb after eb.

1. If e = receive(sr ∈ SR)d,a then e may remove set N = unsub(sr) from a.synched,

which preserves the invariant.

124

2. If e = receive(vr ∈ V R)d,a then e may add a set N = (a.synched′ \ a.synched)

∩ a.inSub of names to a.synched. Let ev be the value(N ⊆ NAMESb)b event

of DynamicDataServerHostb that enqueues vr. Since a.synched′ = (a.synched

∪ N) ⊆ a.inSub, a receives all responses r such that names(r) ∩ a.synched′

6= ∅, and by Lemma 6.4, it receives them in the order sent by b. Therefore, b

cannot have sent a response r′ affecting N between eb and ev. Since ev does not

modify b.state, b.state | synchedb at ev = sb. Since e updates set N of names

in a.cache with values from vr, we have that s′ab = a.cache | a.synched′ in the

state t′a following e equals sb in the state t′b following ev. Since eb is still the

event enqueueing the latest response message from b that has been received by

a in t′a and sb = s′ab, the invariant holds after e.

3. If e = receive(r ∈ R\SR\V R)d,a then e updates a.cache with TRANSb(a.cache,

r). If names(r) ∩ synchedb = ∅ then e has no effect on a.cache | synchedb.

Otherwise, let e′b be the receive(q ∈ Q)c,b event of DynamicDataServerHostb that

enqueues r. By our preliminary reasoning here above, a receives the response for

each state change affecting names in synchedb in the order of the state changes.

Therefore, e′b is the first event following eb that modifies b.state | synchedb and

b.state | synchedb at e′b= sb. By our inductive assumption, sab = sb. Since

response r is separable, TRANSb(sb,r) | synchedb = TRANSb(sab, r) | synchedb

= s′b | synchedb, that is: both e′b = receive(q ∈ Q)c,b and e = receive(r ∈
R \ SR \ V R)c,a compute the same values for the names in synchedb. Since e′b
sets b.state to s′b and e overrides a.cache | synchedb with s′b | synchedb, we have

that a.cache | synchedb in the state t′a following e = b.state | synchedb in the

state t′b following e′b. Since e′b is the event enqueuing the latest response message

from b that has been received by a in t′a, the invariant holds after e.

4. No other events affect the invariant 2

Before we can prove the main Theorem, we must show the following:

Lemma 6.9 DynamicAppHosti preserves ACK Well-Formedness.

Proof: Immediate, since the only action in DynamicAppHosti that enqueues ack(r)

is receive(r)c,i2

125

Lemma 6.10 DynamicDataServerHosti preserves Responder Well-Formedness.

Proof: Since DynamicDataServerHosti is identical to SimpleDataServerHosti except

for the additional value(U ⊆ NAMES)b action, the proof of Lemma 4.4 from Chapter

4 applies 2

We can now show that if a dynamic server executes a request q then the response is

among those possible given the dynamic application’s cached state at the time the

application issued q. Our proof is quite similar to the one in Chapter 4 for Theorem

4.1, showing that if this were not the case, then the intervening creation of a response

that altered the state of the server would have caused a response that conflicts with

q, and q would have been dropped.

Theorem 6.1 Dynamic Cache Operation Atomicity: For any execution X ∈ execs(DCS),

application a ∈ HOSTS, server b ∈ DATAS and channels d and c incident to a and

b, respectively: send(q ∈ Q)d,a →X send(rq ∈ R)c,b ⇒ rq ∈ executeb(sa, q), where sa

= a.cache | depends(q) at the createRequest event eq that enqueues q.

Proof: Assume for contradiction that there exists some execution X ∈ execs(DCS)

and server b ∈ DATAS where send(q)d,a →X send(rq ∈ R)c,b but rq 6∈ executeb(sa, q).

By inspecting the createRequest action, we see that depends(q) ⊆ a.synched at eq,

so by Lemma 6.8, b.state | depends(q) = sa at some earlier point in X, before the

receive(q)c,b event that executes q. Therefore, there must be an event er at b preceding

receive(q)c,b that assigns to b.state a value sb such that rq 6∈ executeb(sb, q). If we let r

be the response enqueued by er, then conflicts-inv(q, r), by the definition of conflicts-

inv. Since a.cache | depends(q) = sa at the createRequest(q)a event issuing request

q, we have createRequest(q)a <X receive(r)d,a and therefore by FIFO send(q)d,a <X

send(ack(r))d,a. This gives us er <X receive(q)c,b ∧ send(q)d,a <X send(ack(r))d,a.

Since by Lemma 6.9 a is ACK Well-Formed and by Lemma 6.10 b is Responder Well-

Formed, then by Theorem 5.2 we have send(q)d,a 6→X send(rq)c,b, a contradiction

2

126

6.7 Liveness

We show that DynamicAppHosta preserves Dynamic Subscription Well-Formedness,

as in definition 5.6. Hence, liveness theorem 5.3 applies to DynamicAppHosta.

Lemma 6.11 (DynamicAppHost Preserves Well-Formedness): In any X ∈ execs(DCS),

DynamicAppHosta preserves Dynamic Subscription Well-Formedness for a.

Proof: Fix any event e = receive(q ∈ Q)c,i in any X ∈ execs(DAS), where i is the

home switch of a and c = (a, i). We must show that subscribeda(n, t) holds for each

n ∈ depends(q) in the state t preceding e. Inspecting DynamicAppHosta, we see that

e is caused by an earlier event send(q ∈ Q)c,a, in turn due to an earlier event e′ =

createRequest(q ∈ Q)a that enqueues q. The precondition of createRequest requires

that depends(q) ⊆ synched, so by Lemma 6.2, depends(q) ⊆ inSub in the state t′ at

e′. By Lemma 6.3, therefore, subscribeda(n, t′) holds for each n ∈ depends(q), that

is: n ∈ i.outSubc or ∃ cr ∈ i.responsesc ∩ SR : n ∈ names(cr).

1. In the case where n ∈ i.outSubc in t′, if also n ∈ i.outSubc in t then sub-

scribedc(n, t) holds. On the other hand, if n 6∈ i.outSubc in t then name n is

removed from i.outSubc by some intervening event en, where e′ <X en <X e.

Event en must be one of receive(sr ∈ SR)d,i with n ∈ unsub(cr) and d ∈
CHANNELSi, purge(N ⊆ NAMES)c,i with n ∈ N or receive(sq ∈ SQ)c,i with

n ∈ unsub(sq). In each case, en adds a cancellation response crn to i.outSubc,

where n ∈ effects(crn). By FIFO, the earliest receive(ack(crn))c,i event occurs

after e, so crn ∈ i.outSubc at e and subscribedc(n, t) holds.

2. In the case where ∃ cr ∈ i.responsesc ∩ CR : n ∈ names(cr) at t′, then a has

not yet received and ACKed cr at e′, since that would imply n 6∈ a.inSub at

e′. Since an ACK for cr is sent after e′ by FIFO the earliest receive(ack(cr))c,i

event occurs after e, so cr ∈ i.outSubc at e and subscribedc(n, t) holds 2

127

6.8 Optimizations

Since applications can receive their value messages in an arbitrary order, it is pos-

sible for a and/or b to prioritize the order of value messages, as to minimize the

synchronization delay of the most important requests or to refresh the values that

are most highly visible to end-users first, for example. Application a could hint at

the desired order when it requests the values and/or the server could use application-

specific knowledge to govern the order in which is sends values. This is orthogonal

to the state transfer protocol, though, and we do not explore the issue further here.

We note that these kinds of optimization also work with the scalable cache protocol

presented in Chapter 7.

Another orthogonal optimization would be to enable host a to receive values for only

those names in some set Na ⊆ NAMES whose values may have changed since a last

subscribed to Na. In other words, the host could receive a (non-conflict checked) delta

update that transforms its cache from that old state t′ to some more recent state t.

The host would then receive normal value update messages to complete the move

from t to the current state. To sketch an example, server b could periodically tag

its current state as a checkpoint state and simultaneously send a checkpoint marker

message to its subscribers, who would tag their current cached states with the marker.

Upon later re-subscribing, an application could send its latest marker with its value

request, and receive delta and value messages only for state that has changed since

the marker was created. The main requirement for any such algorithm is that it

satisfy the consistency guarantees of Lemma 6.8.

6.9 Discussion and Related Work

This section discuss issues related to the abstraction level of responses as well as

related work in optimistic concurrency control.

128

6.9.1 Responses and Abstraction Levels

As discussed in section 6.2, we make the simplifying assumption that each response

r ∈ R is separable, so it can be individually applied to each name in its effects

set. Many operations that are useful for increasing concurrency, such as incre-

ment/decrement operations, are not affected by this restriction. However, it rules

out responses that depend on one name to compute the effects on another name,

such as assigning to one name the average of the values of a set of names. More gen-

erally it rules out some high-level course-granularity responses, such as executing the

action associated with a certain menu item on a user interface, since it may depend

on the values of arbitrarily many names.

The attraction of supporting such responses is that they permit low-bandwidth caching

of application state during periods of low contention. During the time a user is ex-

clusively editing a particular part of a CAD model or text document, for example, it

suffices to send high-level operation request such as “combine the currently selected

objects into one” or “cut the currently selected paragraph”. Rather than create a

response containing a large set of fine-grained operations on a large set of names, the

server could send back a response that is very similar to the request, i.e. “combine

set N of objects” or “cut paragraph X”.

The problem with high-level responses, as mentioned before, is that subscribers cannot

apply them unless they are synched with all the names they depend on. Furthermore,

large-granularity operations imply large-granularity conflicts, at worst requiring total

ordering of all operations in a system.

One approach we would like to investigate in the future is to structure a response

as a tree, corresponding to its refinement from a top-level response into the sub-

responses generated at successively lower levels of abstraction. For example, a “move

text” operation might refine to a pair of “delete text” and “insert text” operations

and ultimately to “rewrite the following disk blocks”. This concept aligns nicely with

nested [62] or multi-level transactions [157], where transactions are modeled as trees of

nested sub-transactions. It would provide flexibility in trading bandwidth and server

processor cycles off with subscription set sizes and conflict granularities. Some appli-

cation would maintain a coarse-granularity subscription to a relatively large subset

129

of data but receive only a low-bandwidth stream of high-level responses (the roots of

response trees, for example). Other applications would maintain more specific, finer-

granularity subscriptions to parts of that same data but receive higher-bandwidth

streams of the lower levels of response trees, for example the leaves consisting of only

separable responses. As an example of the two extremes, an end-user application

might be cached at the end-user access device and replicated in whole by sending

as requests and receiving as responses the low-bandwidth stream of high-level mouse

and keyboard gestures input to it. On the opposite end of the spectrum, the device

could receive high-bandwidth bitmap images of the application’s user interface.

6.9.2 Caching and Optimistic Concurrency Control

Our AT-based Cache Consistency algorithm (AT-Cache, for short) is a form of Op-

timistic Concurrency Control [15], since application hosts first execute transactions

in a local data space and then attempt to validate the execution at the server. Pes-

simistic methods such as locking [1], by contrast, detect conflicts between transactions

as they execute and block (delay) later transactions until earlier transactions have

completed. A key difference between these methods is that locking limits host uti-

lization by blocking transactions while optimism limits it by wasting resources on

transactions that are later aborted and restarted.

The usual performance metric for transactional information system is sustained through-

put of transactions per second. Transaction response time is often a concern as well.

Generalized comparison of concurrency control methods is difficult, as their perfor-

mance depends substantially on multiple factors [158, 159], including:

1. The level of concurrency / multiprogramming.

2. The level of data contention, defined as the ratio of transactions that conflict

or the number of conflicting accesses to any particular datum.

3. The amount of computing and I/O (e.g. disk) resources consumed by transac-

tions and degree of resource contention.

4. The ratio between read-only and read/write transactions and operations.

130

5. Network bandwidth and latency.

6. Transaction access patterns and cache hit rates .

In centralized settings, simulations and analysis suggest that optimism outperforms

locking in environments that are not significantly resource-constrained and where data

contention is moderate to low [158, 160]. When conflicts are rare, optimism needs to

restart few transactions. When resources are plentiful, the multiprogramming level

can be kept higher than with blocking, even as restarted transactions waste resources.

However, the same studies indicate locking performs better with hight contention in

centralized settings. While OCC has been a research topic for more than 25 years,

it has seen limited use in commercial database systems, which use locking almost

exclusively.

However, optimism may be particularly well suited to client/server transactional cache

systems [16]. Interest in such systems has coincided with the ascendancy of powerful

workstations and commodity PCs over minicomputer and mainframes, and the subse-

quent proliferation of data centers, comprising tens or hundreds of thousands of hosts.

An important reasons why client caching suits optimism is that aborted transactions

affect a server much less than in the centralized case, where a server must maintain

undo logs and actively roll back the changes of aborted transactions. In the case of

client caching, an aborted transaction will only have changed the client’s cached data

and the client handles the undoing of those changes.

6.9.3 Adaptive Optimistic Concurrency Control (AOCC)

The most relevant work to AT-Cache are the OCC algorithms developed for the

Thor distributed object database system [67, 14]. The initial algorithm was shown to

outperform the best lock-based method for the same environment, Adaptive Callback

Locking (ACBL) [161], with low to moderate contention. A later refinement, Adaptive

Optimistic Concurrency Control (AOCC) [162], outperforms ACBL for most work-

loads. Another OCC algorithm designed for a similar client-caching environment also

outperforms locking under a variety of workloads [134].

131

AOCC keeps track of recently committed transactions and validates incoming trans-

actions against them. This is much faster than validating transactions directly against

the data they depend on (or data versions numbers) since that might entail fetching

the data from disk14. Simplifying a bit, for each data object x, an AOCC server

tracks all clients that cache a copy of it. When x is modified, the server adds x to

the invalid set for each client that caches x. As a part of validating a transaction

tc from a client c, AOCC checks that no object read by tc is in the invalid set of c.

When transactions commit, AOCC sends invalidation messages to clients to notify

them about updates to objects. It removes objects from invalid sets upon receiving

invalidation acknowledgements from clients.

AT-Cache, by comparison, offloads the responsibility for validating requests to the

network, by asking switches to conflict-check responses. In effect, rather than having

the server remember invalid sets for each application host on an end-to-end basis, the

network paths remember the sets as they forward them to their receivers, and take

care of processing acknowledgements on a hop-by-hop basis.

Let n be the number of requestes/clients actively using a data server. The main

differences between AOCC an AT-Cache can be quantified as follows:

1. An AOCC server must maintain n invalid-sets, one per client. An AT-Cache

server does not maintain invalid-sets, or rather: maintains exactly one, for its

home server. Furthermore, an AOCC server must retain invalid-set information

until it receives an end-to-end ACK from the corresponding client, while an

AT-server only retains it until it gets a next-hop ACK from its home switch.

2. An AOCC server must send on the order of n invalidation messages for each

request it executes15 and process on the order of n ACKs sent back by clients.

An AT-Cache server sends a single response message that is multicast to all

subscribers.

3. An AOCC server must maintain “subscription” information for n clients, to

track which objects each client is caching. It must also process O(n) subscrip-

tion changes, as clients add and remove objects from their cache. In Atomic

14This was a major cause for poor performance in some earlier OCC-based systems, as validation
was serialized under a global lock.

15The precise number depends on the number of clients subscribing to modified objects.

132

Networks, by contrast, subscription processing can be distributed throughout

the network.

4. An AOCC server must send O(n) data object messages, as clients fetch objects

into their cache. By comparison, Chapter 7 of this dissertation shows how

Atomic Transfer can be used to distributed such reads across multiple caching

hosts, limiting the load on the original server.

5. An AOCC server must receive and process all conflicting requests sent to it, and

send a conflict notification message for each one. An AT-Cache server receives

only a fraction of the conflicting requests sent to it (see Section 3.7.1) and does

not need to send any conflict notifications.

This leads us to believe that AT-Cache scales better than AOCC and could outper-

form AOCC, especially during periods of heavy data contention. Some of the good

properties of AT-Cache stem from the use of multicast, more than Atomic Transfer

per se. Indeed, the scalability of AOCC might be improved by multicasting invalida-

tion and conflict notifcation messages, instead of sending them individually. Still, an

AOCC server would need to receive and process individual ACKs.

AT-Cache should preserve throughput during periods of high contention better than

AOCC. Let n be defined as before. Let mx be the average number of requests sent

to a server per second during some period of time that are successfully executed. Let

mc be the average number of requests sent to the server per second during that same

period that have a conflict and cannot be executed. The AOCC server must receive

and process mx + mc messages during that period and send O(n ·mx) invalidations

and mc conflict notifications. By comparison, the AT-Cache server receives on the

order of mx messages, since only a fraction of the mc conflicting requests are received

(see Section 3.7.1), and sends O(mx) responses. If message processing (receiving,

detecting concurrency conflicts, sending and possibly and authenticating, decrypting

and encrypting) comprises a significant part of a server’s effort, then the utilization

of an AOCC server may be limited to mx/(mx + mc), the fraction of requests that

are non-conflicting. By comparison, an AT-Cache server should be able to maintain

nearly full utilization, regardless of contention levels.

133

Chapter 7

Scalable Cache Synchronization

The subscription protocol of Chapter 5 is scalable, since additional switches allow

a system to handle a greater number of application hosts. On the other hand, the

cache synchronization protocol of Chapter 6 does not scale, since the server of a

name n must handle the value read requests of all applications synchronizing with

n. To alleviate this bottleneck, this Chapter develops an algorithm that enables

applications to synchronize their caches using the caches of other application hosts.

This allows growth in synchronization traffic to be met with additional host resources.

The caching is transparent to applications, including applications serving as caches to

other applications; they do not distinguish between value messages from application

caches and original servers, in general. Caches and cache hierarchies use conflict

detection on switches to synchronize state transfers and concurrent response messages,

preserving atomicity.

7.1 Cacher Hosts and Cacher-Aware Switches

The protocol works roughly as follows. An application c subscribing to some set Nc

of names on a server b may offer its services as a cacher host (cacher) for Nc. Host

c notifies the switches on the forwarding path from itself to b about its intention to

serve as a cacher, by sending protocol messages or piggybacking data on subscription

requests, for example (we leave that detail unspecified in our model). A cacher-aware

switch i notes for each channel d ∈ CHANNELS i the cacher subset of its subscription

on d, that is: the subset of names forwarded on d for which one more hosts have

declared themselves as cachers.

134

As illustrated in Figure 7.1, whenever switch i receives a read request vq for a set

of names that falls in the cacher subset of some channel d ∈ CHANNELSi, it may

choose to divert the request away from its destination server and onto d. The request

is converted into a diverted value request dvq, tagged as being diverted by i so that

other switches continue the diversion, forwarding it (non-deterministically) until it

arrives at some cacher host. The cacher host responds by sending back one or more

diverted value message(s) dvr to satisfy the read request. The cacher host tags its

diverted value messages with index i and switches forward them towards the home

server(s) of the names they contain, instead of towards subscribers like normal value

messages16. When switch i receives a value message with diversion tag i on it, it

removes the tag and forwards the value message towards subscribers as a normal

value message vr, same as if vr had just arrived from the original server.

bia

c

vq

dvq

dvr

vr

Cacher

Application Server

Figure 7.1: Diversion of value read request to a Cacher Host

The protocol outlined can both serve to increase the number of applications that

can be handled by a particular data server and/or to directly reduce application

synchronization delay, as applications can (transparently) peruse multiple caches in

parallel. We note that an application host can serve as a cacher alongside its primary

duties as an application host, improving system utilization.

16That is to say: they forward them like requests.

135

7.2 Protocol Race Condition and Solution

The protocol sketched in the prior Section has a race condition, which occurs when the

server b = host(n) of a name n sends a response r updating n at the same time some

cacher c ∈ APPS is sending a value message vr containing an older value for n. While

c is by definition subscribed to n and will eventually receive response r, r may reach

the diverting switch si connecting b and c before vr does. Response r hence overtakes

vr at si, and a subscribing application a that is in the process of synchronizing with

n will receive r ahead of vr. Since n will not yet be be synchronized at a when it

receives r, a will ignore r and miss its effects, but install the stale value from vr as

the current cached value of n.

We prevent this race condition using Atomic Transfer, by defining a diverted value

message as conflicting with any response whose effect overlaps the message’s name

set. Dropping conflicting diverted value messages would ensure that any value mes-

sage reaching an application would be guaranteed to be fresh and up to date, since it

encountered no conflicting response along the way. However, this straightforward ap-

proach could lead to livelock, with caches repeatedly sending out new value messages

that conflict with the latest responses affecting some frequently updated name(s) and

are consequently dropped.

Instead of dropping a conflicting value message, therefore, we make the switch detect-

ing the conflict freshen the diverted message, by appending the conflicting response

to a list of responses contained in the value message. An application host a receiving

a value message vr applies the response list of vr immediately after applying vr′s up-

date (but atomically with the application of vr), resulting in correct synchronization

of the names.

As it happens, switches do not actually need to add conflicting responses to a value

message’s list. We observe that an application a only sends a value request for names

it is subscribed to, so a will generally have received the responses on the list already.

In our approach we let a buffer all responses affecting a name n from the time it sends

a value request for n until the time it has synchronized n. Then it suffices to include

in value messages a list of the identifiers of any conflicting responses, which a uses to

look up the corresponding responses in its own stored sequence of recently received

136

responses. These identifiers could be implemented as message sequence numbers or,

alternatively, as digests of the corresponding responses. In either case, the identifiers

would be smaller than the response messages themselves, preserving bandwidth.

We can in fact reduce the size of the response identifier list in messages to unity, by

noting that an application a receives its responses in the same order as they would

appear on a identifier list. It therefore suffices to include the identifier of the first

conflicting response rf in the list, when the list is non-empty. Application a can then

infer the rest of the list by storing and checking each response in the sequence of

responses received after rf but before vr for conflicts with vr. This means additional

work for a but simpler processing in the network, since only a fixed-size message field

needs to be updated.

This does require that responses be unique, so that a particular response is sent

at most once in any execution. Otherwise the first conflicting response might not

unambiguously correspond to a list of conflicting responses. This assumption is likely

to hold in practice, as implementations of transactional systems usually include a

sequence number with requests to ensure exactly-once execution semantics and to

match responses to requests in the presence of failures and partitions17.

Since subscriptions may be added and removed at any time, a must take care that

it always infers a complete list of responses for a value message, with no responses

missing. For example, if a’s subscription to a set of names C is canceled after a

requests a set of names N ⊇ C (due to a purge on some switch, for example) but a

re-establishes the subscription in time to receive the value message(s) for C, then a

may have missed one or more responses affecting C during the subscription outage

and could infer an erroneous response list from value messages updating names in

C. To prevent this, subscription response are included in stored response message

sequences, enabling applications to detect any invalid lists.

17Systems where this assumption does not hold can use the version of the protocol based on lists
of message identifiers instead.

137

7.3 CacherAppHosta and CacherAwareSwitchi

We refine the dynamic application and switch I/O Automata of Chapter 6 to become

the CacherAppHost and CacheAwareSwitch I/O Automata, respectively.

To model the freshening of value messages, let set V R now comprise, for any update

u ∈ UPDATES and any rf ∈ R a unique element vr = V R(u, rf) of V R, such that

function update: V R → UPDATES maps vr to u and function first-resp: V R →
(R ∪ {⊥}) maps vr to rf . We let V R(u) now denote V R(u, ⊥), the value message

for u with an empty response list, so first-resp yields ⊥ for the message. An imple-

mentation would include a response identifier or digest in value messages instead of

actual response messages, but that detail is unimportant for our models.

We define the sets DVQ, DV R ⊆ Q of diverted value read request messages and

diverted value messages, respectively, disjoint with other message subtypes of Q. Note

that the latter really are defined as requests, not responses, since they are conflict-

checked against responses much like requests. Requests in DV Q do not conflict with

any response; in fact they travel in the same direction as responses. Diverted value

messages, however, conflict with all responses that they have a name in common with,

including subscription responses. Formally:

Definition 7.1 For all dvr ∈ DV R, r ∈ R: names(dvr) ∩ names(r) 6= ∅ ⇒ conflicts-

inv(dvr, r) .

Function diverted(v, j) maps any pair of a read request or value message v and switch

j ∈ SWITCHES to the message dv in DV R or DV Q, respectively, such that functions

message: DV R → V R and message: DV Q → V Q map dv to d and functions divert-

switch: DV R → SWITCHES and divert-switch: DV Q → SWITCHES, respectively,

map dv to j. Also, for any dv ∈ DV R ∪ DV Q let names(dv) = names(message(dv)).

CacherAppHosta

A refinement of DynamicAppHost that serves value messages from its cache on behalf

of the servers (or lower-level cacher hosts) hosting the corresponding state. Infers the

138

list of responses that overtake a value message at a diverting switch from a stored

sequence of responses in the synchResp field. It stores responses that conflict with

names for which the application awaits value messages, which is sufficient. The list

is inferred by computing the subsequence of stored responses that affects the value

message’s name set, starting at the first-conflicting response from the value message,

if present in the response sequence. We capture this logic in the resp-list function as

follows:

Definition 7.2 Let R∗ denote the set of sequences over R. For any ρ ∈ R∗ and any

rf ∈ (R ∪ {⊥}), let resp-list(ρ, rf) denote:

• λ if rf = ⊥, or else:

• ⊥ if rf 6∈ ρ, or else:

• the suffix of ρ that begins with rf .

CacherAppHosta also adds any subscription response messages received to its response

sequence. A value message vr with a first-conflicting response rf can only be used if

a is storing rf and has been continuously subscribed to each name in names(vr) since

receiving rf , so there are no subscription response messages following rf in synchResp

that affect a name in vr. Formally:

Definition 7.3 For any ρ ∈ R∗, N ⊆ NAMES and rf ∈ R ∪ {⊥}, let predicate

usable-list(ρ, N, rf) be satisfied exactly if rf = ⊥ or else if rf ∈ ρ ∧ 6 ∃sr ∈ resp-

list(ρ, rf) : (sr ∈ SR ∧ sub(sr) ∩ N 6= ∅).

Additional State:

requesteds: set of names being requested after a diversion by switch s, initially ∅.
awaiting: set of names awaiting a value response message, initially ∅.
synchResp: sequence of responses overlapping with awaiting, initially λ.

Modified Input actions:

139

receive(q ∈ Q \ SQ \ V Q \DV Q \DV R)c,a

replaces receive(q ∈ Q \ SQ \ V Q)c,a, but behaves identically to it.

receive(r ∈ R \ SR \ V R)c,a

Effect:

cache′ = cache ⊕ TRANSb (cache, r), where b = sender(r)

outQueue′ = outQueue · ack(r)

// if this response affects a name we’re waiting for

if names(r) ∩ awaiting 6= ∅
// add to synch response sequence

synchResp′ = synchResp · r

receive(vr ∈ V R)c,a

Effect:

// set Nvr contains the names now becoming synched

let N = names(vr), Nvr = (N ∩ awaiting) \ synched, rf = first-resp(vr) in

// if we can safely infer the responses list

if usable-list(synchResp, Nvr, rf) then

// these are synched now

synched′ = synched ∪ Nvr

// no longer awaiting these

awaiting′ =awaiting \ N

let svr = TRANSb(cache ⊕ vr, resp-list(synchResp | Nvr, rf)) in

// apply changes to Nvr only

cache′ = cache ⊕ (svr | Nvr)

// remove is the set of responses not containing any names that we’re waiting for

let remove = { r ∈ synchResp \ SR : names(r) ∩ awaiting′ = ∅ } in

let removed-resp = synchResp \ remove in

synchResp′ = longest suffix of removed-resp beginning with a response r /∈ SR

receive(sr ∈ SR)c,a

Effect:

outQueue′ = outQueue · ack(sr)

140

∀n ∈ NAMES: inNames′(n) =

inNames(n), if n 6∈ names(sr),

sub, if n ∈ sub(sr),

pend, if n ∈ pend(sr),

unsub, if n ∈ unsub(sr).

synched′ = synched \ unsub(sr)

//awaiting ⊆ inSub

awaiting′ = awaiting \ unsub(sr)

//requesteds ⊆ synched

for each s ∈ SWITCHES

requested′s = requesteds \ unsub(sr)

// remember names we’re becoming subscribed to, for usable-list testing

if sub(sr) 6= ∅
synchResp′ = synchResp · sr

Additional Input actions:

receive(dvq ∈ DV Q)c,a

Effect:

// note that we should send value messages for the names

let s = divert-switch(dvq) in

requested ′s = requesteds ∪ (names(dvq) ∩ synched)

Additional Internal actions:

request(U ⊆ NAMES)a

Precondition:

// request subscribed names we′re not already requesting

U ⊆ inSub \ synched \ awaiting

Effect:

// send a value request message

outQueue′ = outQueue · V Q(U)

// note that we’re waiting for value messages

141

awaiting ′ = awaiting ∪ U

resend(vq ∈ V Q)a

Precondition:

names(vq) ⊆ awaiting

Effect:

// retransmit a value request

outQueue′ = outQueue · vq

value(U ⊆ NAMES)a

Precondition:

U ⊆ requesteds, for some s ∈ SWITCHES, and U 6= ∅
Effect:

// send a diverted value message, using values from our cache

outQueue′ = outQueue · diverted(V R(a.cache ∆ U), s)

// this set of names is done

requesteds
′ = requesteds \ U

The receive(r ∈ R\SR\V R\DV R)c,a action is identical to the one in DynamicAppHosta,

except that if the response affects a name that the application is requesting, the re-

sponse is appended to the synchResp sequence.

The receive(vr ∈ V R)c,a action applies a value message to the application’s cache, the

same as in DynamicAppHosta, except it now applies the (possibly empty) sequence

of responses listed in a value message after applying the value message’s update. If

the response list cannot be used, the value message is ignored. This can happen, for

example, if the application is receiving a value message it did not request or if it has

recently lost and re-established a subscription to some of the message’s names. In any

case, the action removes the message names from the awaiting set. It also garbage

collects from synchResp responses that do not affect any names the application is

waiting for. It removes subscription responses only if no request response precedes

them, that is: it removes the prefix of the sequence that consists only of subscription

responses. They can be garbage collected because they will never be needed for a

usable-list test.

142

The receive(sr ∈ SR)c,a action is the same as in DynamicAppHost except it also

removes unsubscribed names from all requesteds sets, to maintain the invariant that

requesteds ⊆ synched, which ensure that the application never transmits stale value

messages. It also removes unsubscribed names from awaiting to maintain the awaiting

⊆ inSub invariant.

The receive(dvq ∈ DV Q)c,a action receives a diverted read request. It simply notes

the set of names requested, that is: the subset of the requested names it has synched.

The value action will gradually send out value messages for that set until each name

has been handled by a value message. Atomically enqueuing the response(s) here is

impractical for requests for large name sets, and is not needed for correctness.

The request(U ⊆ NAMES)a action non-deterministically sends a value request mes-

sage for some non-synched subset of its subscription, to get these names synched.

It adds the set of names requested to the awaiting set. The presence of a name in

awaiting results in each response or cancellation response affecting that name being

added to the synchResp response sequence.

The resend(vq ∈ V Q)a action non-deterministically sends a value request message for

some set of names for which the switch is waiting to receive value messages. This

action captures the time-out and retransmission mechanism an application implemen-

tation would use to overcome loss of value request messages.

The value(vr ∈ V R)a action non-deterministically chooses some subset of the names

that have been requested by diverted read requests. It sends back a diverted value

message for the subset, while removing it from the set of pending requested names.

CacheAwareSwitchi

A refinement of DynamicSwitch that can divert read requests off the path to their

server(s) and onto the path towards a cacher host or hosts. Since we leave out the

details of how cachers are added or removed from consideration, there are no actions

that modify cachersc fields. We simply assume that the fields correctly identify names

cached by cacher hosts, throughout any execution.

143

When forwarding a diverted value message, CacheAwareSwitch sets the first-resp of

the message to the first conflicting response buffered on the switch or else leaves it

unchanged, if the message already has a first-resp or if the switch is not buffering a

conflicting response. We capture this formally as follows, recalling that R∗ denotes

the set of all sequences over R:

Definition 7.4 Let first-resp-for be the function: V R×R∗ → (R ∪ {⊥}) such that:

• first-resp-for(vr, ρ) = first-resp(vr) if first-resp(vr) 6= ⊥ ∨ ρ = λ, or else:

• first-resp-for(vr, r · ρ) = r

Additional State:

for each c ∈ CHANNELSi:

cachersc: the subset of outNamesc that one or more cachers serve

Modified Input Actions:

receive(q ∈ Q \ SQ \ V Q \DV Q \DV R)c,i

replaces receive(q ∈ Q \ SQ \ V Q)c,i, but behaves identically to it.

receive(vq ∈ V Q)c,i

Effect:

// may divert some names of vq but forwards others normally

let d1, d2, ..., dn represent some ordering of CHANNELSi in

let { N0, Nd1 , ...,Ndn} represent a partitioning of names(vq)

such that for each di ∈ [1, n] : Ndi
⊆ cachersdi

∩ outSubdi
, in

for each dk ∈ {d1, d2, ..., dn } where Ndk
6= ∅

// forward as diverted by i

outQueue ′dk
= outQueuedk

· diverted(V Q(Ndk
),i)

for each d ∈ CHANNELS i such that N0 ∩ nHopi(d) 6= ∅
// forward rest normally, non-diverted

outQueue ′d = outQueued · V Q(N0) ∩ nHopi(d)

144

Additional Input Actions:

receive(dvq ∈ DV Q)c,i

Effect:

// forward the names of dvq to arbitrary caches for the names

let d1, d2, ..., dn represent some ordering of CHANNELSi in

let { N0, Nd1 , ...,Ndn} represent a partitioning of names(dvq)

such that for each di ∈ [1, n] : Ndi
⊆ cachesdi

∩ outSubdi
, in

for each dk ∈ {d1, d2, ..., dn } where Ndk
6= ∅

// forward with original switch tag

outQueue ′dk
= outQueuedk

· diverted(V Q(Ndk
), divert-switch(dvq))

receive(dvr ∈ DV R)c,i

Effect:

// forward diverted value messages back towards diverting switch

let vr = message(dvr) in

// if the value messages doesn’t conflict with a cancellation response

if 6 ∃sr ∈ responsesc ∩ SR where conflicts-inv(q, sr)

// ρc has all conflicting responses, in received order

let ρc be the sequence of elements of { r ∈ responsesc | conflicts(vr, r) }
in the order they were added to outQueuec in

// vrρ is new value message with first-resp updated

let vrρ = V R(update(vr), first-resp-for(vr, ρc)) in

// if this switch diverted the request

if divert-switch(dvr) = i

// forward it as a normal value message

for each d such that names(vrρ) ∩ outSubd 6= ∅
outQueue′d = outQueued · vrρ

else

// forward as still diverted

let d be the channel such that names(vrρ) ⊆ nHopi(d) in

outQueue′d = outQueued · diverted(vrρ, divert-switch(vrρ))

145

The receive(vq ∈ V Q)c,i receives a read request message and forwards different

parts of it to the appropriate server(s) and / or cacher host(s). The action’s non-

determinism stems from the way the action partitions the names of the request, with

the only constraint that the set of names diverted onto a channel must be a non-empty

subset of the cacher-subset of that channel’s subscription. Note that a request’s name

is only diverted to a cacher for that name if the corresponding channel is subscribed

to the name, otherwise the name is not synched at any cacher reachable through

that channel. Partition N0 represents the part of the request that is not diverted.

As a practical matter, given a choice of cachers, an implementation might perform

static or dynamic load balancing to efficiently distributed the effort of serving read

requests. Also, an implementation might forward messages unchanged to all relevant

destinations, rather than incur the processing cost of splitting up messages. Our

model shows the name sets that must be forwarded at a minimum.

The receive(dvq ∈ DV Q)c,i action receives a diverted read request, that is: a request

already diverted by another switch. It forwards it the same way as receive(vq ∈ V Q)c,i

does when diverting original read requests.

The receive(dvr ∈ DV R)c,i action receives a diverted value message. If the message

is in response to a request diverted by this switch, then the action converts it to an

ordinary value message and forwards it as if it had been received directly from the

original server. If not, the message is still traveling back towards its diverting switch

so it is forwarded essentially as if it were a request. Note that the switch never has

to split the message in the latter case, since all its names are bound for the same

diverting switch.

The key to the correctness of the scalable caching scheme is that the action also

conflict-checks the value messages against the responses buffered in responsesc. Rather

than dropping a conflicting value message, it tags the message with the first (earliest)

conflicting response, if it doesn’t have such a tag already. The receive(vr ∈ V R)c,i

action in CacherAppHost uses this information to infer the list of all responses that

the value message encountered on its way to its diverting switch, which as our proofs

146

will show, is the same as the list of responses that overtook the value message at the

diverting switch.

The action drops the diverted value message if it conflicts with a subscription re-

sponse. Since the subscription to a name in dvr has been changed (the name has

been canceled, most likely) dvr may miss a conflict with a response and the responses

list inferred for it by its receiver may no longer correspond to the responses overtaking

it at the diverting switch.

7.4 Properties and Proofs

Let SDCS be the I/O automaton composed of a CacheAwareSwitchi automaton for

each switch si ∈ NODES, a CacherAppHosta automaton for each application host a ∈
APPS, a DynamicDataServerHostb automaton for each data server host b ∈ DATAS

and a Channelc automaton for each channel c = (i, j) ∈ CHANNELS.

We show that execution correctness Theorem 6.1 for Dynamic Atomic Cache Systems

still holds in SDCS even though applications may synchronize their caches using other

caches. Lemmas 6.1 through 6.7 and lemmas 6.9 and 6.10 of Chapter 6 are easily

shown to still hold in SDCS. Lemma 6.8 applies in SDCS only to value messages

sent directly by original servers. We will show that it also holds for messages sent by

cachers, and thus that Theorem 6.1 still holds.

Lemmas 6.2 and 6.3 hold in SDCS because CacherAwareSwitchi and CacherAppHosta

handle subscriptions, synchronization and request/response processing exactly the

same as DynamicSwitchi and DynamicAppHosta, respectively. CacherAppHost has

slightly different receive(vr ∈ V R)c,i and receive(sr ∈ SR)c,i actions, but their behav-

ior with respect to inSub and synched sets is the same. Lemma 6.4 concerns response

order along a particular path between two switches and still holds, since the be-

havior of CacherAwareSwitchi for responses is the same as that of DynamicSwitchi.

Lemma 6.5 concerns subscription and publishing intervals and holds for the same

147

reason. Similarly, Lemmas 6.6 and 6.7 concern response messages and still hold for

CacherAwareSwitchi.

Lemma 6.8 holds if all value messages received are sent by original servers and

have not been diverted. CacherAwareSwitchi behaves the same as DynamicSwitchi

for those read requests it doesn’t divert and CacherAppHosta behaves the same

as DynamicAppHosta for non-diverted value response messages, since they have an

empty responses list. However, Lemma 6.8 does not hold for value messages sent by

cacher hosts, as message diversion can disrupt the consistent total order that exists

between value messages and responses sent from the same original server. What we

show is that when a value message vr from a cacher is received at a host, prepending

vr’s list of conflicting responses to the sequence of responses received after vr yields

a consistent state. Lemma 7.2 shows that Lemma 6.9 holds for CacherAppHosts, and

we observe that Lemma 6.10 still holds as it only concerns DynamicDataServerHost.

We extend the →E causes relation, with each send(dvr′ ∈ DV R)d,j event caused by

a receive(dvr ∈ DV R)c,j event, where d and c are channels incident to a switch j ∈
SWITCHES. Also, add to →E each send(vr ∈ V R)d,j event caused by a receive(dvr ∈
DV R)c,j event, i.e. when a switch j receives back a diverted value message sent in

response to a value request that j diverted or forwarded onto channel c.

As mentioned before, we do not model how cachers add themselves to the cachersc

fields of switches, but we will assume that a cacher’s value request is never diverted

back to the cacher. This should be straightforward to ensure in practice, for example

if a cacher never register itself as a cacher for a name until after it is synched with

that name. But we begin with two quick lemmas.

Lemma 7.1 (Requested implies Synched): In any state of CacherAppHosta : a.requesteds

⊆ a.synched, for each s ∈ SWITCHES.

Proof: Both fields are empty in the start state. Inspecting the actions of CacherAppHosta,

we readily see that all changes to a.requested fields and a.synched preserve the invari-

ant 2

Lemma 7.2 (CacherAppHosti preserves ACK Well-Formedness).

148

Proof: Immediate, since the only action in CacherAppHosti that enqueues ack(r) is

receive(r)c,i 2

We now show a key lemma, saying that at the point when a diverted value message

dvr is received at its diverting switch i, the application of dvr and its response list

produces the state for names(dvr) that existed on the original server b immediately

after b enqueued the latest response affecting names(dvr) that has been received at

i. Hence, dvr can be safely “inserted” into the sequence of messages bound for a

subscriber a, since the state it produces will match up seamlessly with any later

responses from b.

This Lemma holds only if the cacher host generating dvr receives its value messages

directly from original server hosts. We later extend our results to multi-level caches,

so a cacher host can receive value messages from another cacher, as well as from

original servers.

We make the assumption that a cacher has exactly one network path connecting it

to any particular switch diverting value read requests to it. This assumption can be

relaxed, since (value) responses may be forwarded on multiple paths while preserving

Conflict Locality, but the assumption simplifies our proofs. However, the proofs are

somewhat complicated by the fact that a host may cache state from multiple servers,

and the name sets of value requests and responses may span multiple server

Figure 7.2 illustrates the main entities of Lemma 7.3, and shows an example of the

correspondence between response prefixes at servers. Server b has sent out a sequence

of response messages ending with abcdef (so each letter is one response). Diverting

switch i and cacher c have received prefixes of that response sequence, i.e. ending

with abcd and ab, respectively.

We introduce a new operator for sequences of responses, that filters out those re-

sponses that do not affect a particular name set.

Definition 7.5 For any sequence of responses ρ ∈ R∗ and N ⊆ NAMES, let ρ / N

denote the maximal subsequence of ρ such that for every r ∈ ρ / N : names(r)∩N 6= ∅.

We break out a part of the lemma’s premise into a separate predicate.

149

bia

c

y

x

wz

vq

dvq

dvr

vr

fpci

rcv-seq-rin = …abcd

rcv-seq-rcn = …ab

snd-seq-rbn = ...abcdef

sc sb

a b c d e f g

... ...

rf = c

d

to other servers cached by c

u

Figure 7.2: Value message diversion, and naming for Lemma 7.3

Definition 7.6 For any execution X ∈ execs(SDCS), cacher host c ∈ APPS and

server b ∈ DATAS, let cache-cond(c,b,X) be true exactly if cacher c only receives

value messages from V R containing a name from NAMESb directly from b in X.

Lemma 7.3 (Freshness of diverted value messages base case): Let X be any execu-

tion fragment of SDCS with final event eidv = receive(dvr ∈ DV R)y,i at a switch i

= divert-switch(dvr) caused by a send(dvr)x,c event at a cacher host c ∈ APPS, with

y ∈ CHANNELSi and x incident to c. Let vr = message(dvr). Let N = names(vr)

and let Nb = N ∩ NAMESb, for a server b ∈ DATAS where Nb 6= ∅. Let responsesdvr

= resp-list(rcv-seq-riNb
(X), first-resp(vr)). Let sb be the value of b.state immediately

after the er event enqueuing the response r leading to the send(r)w,b event causing

the latest event eir = receive(r ∈ R)z,i in X, for channels w incident to b and

z ∈ CHANNELSi, or let sb = startb if X has no such event. Then for any s ∈
STATES and d ∈ CHANNELSi, eidv →E send(vr ∈ V R)d,i ∧ cache-cond(c, b, X)

⇒ TRANSb(s ⊕ vr, responsesdvr) | Nb = sb | Nb.

Proof: Let eidv be an event fulfilling the lemma’s premise where eidv →E send(vr ∈
V R)d,i. Let ec be the value(N ⊆ NAMES)c event at cacher host c that enqueues the

150

dvr message leading to the send(dvr)x,c event causing eidv. From the precondition

of the value(N ⊆ NAMES)c action we see that Nb ⊆ N ⊆ c.synched at ec, since

c.requestedi ⊆ c.synched by Lemma 7.1. Let sc be the value of c.cache at ec, so (s ⊕
vr) | Nb = sc | Nb for any s ∈ STATES.

Since cache-cond(c,b,X), we have by Lemma 6.8 of Chapter 6 that sc | Nb = b.state

| Nb in the earlier state tb of X immediately after the eb event enqueuing the latest

response from b that has been received by c.

Let fpci be the prefix s1, s2, ..., sn of the forwarding path from c to b, up to and

including switch si, so si = sn. By our assumption, each response forwarded from

i to c is forwarded via fpci, as well as each diverted value message sent from c to i.

Since N ⊆ c.synched at ec and dvr is not dropped due to a conflict with a cancellation

response, no response conflicting with dvr is purged on the relevant part of path fpci

(ahead of dvr on fpci) during the interval when dvr travels along fpci to i. Inspecting

the case in receive(dvr ∈ DV R)c,j action at each j ∈ fpci, where dvr is not dropped,

we see that j detects each conflict between dvr and a response in responsesc exactly

like the receive(q ∈ Q\SQ\V Q\DV Q\DV R)c,j action does for requests (recall that

DV R ⊆ Q). The crucial difference is that while j may alter dvr due to a conflict, dvr

is not dropped. By the reasoning in Theorems 5.1 and 5.2, each response r received

at i in X that conflicts with q for which c has yet to send an ACK is detected as a

conflict with dvr. In particular, the first response rf detected as conflicting with dvr,

if there is such a rf , is the first response updating any n ∈ N that is received after

ec at c, since c applies every prior response r to c.cache while enqueueing an ACK,

placing the ack(r) ahead of dvr in c.outQueue.

In the example of Figure 7.2, rf = c and c has received responses ...ab while i has

received responses ...abcd. Hence, cached state sc is the same as b.state immediately

after server b enqueues response b.

If there is a first-conflicting response rf , it is received at switch i before it is received

at c. Let Xrf
denote the suffix of X beginning with the receive(rf)i,z event at i and

let rcv-seq-fpic denote rcv-seq-riNb
(Xrf

), that is: each response affecting Nb that has

been received at i in X but has not been received by c at ec. If there is no such rf ,

then c has received every response in rcv-seq-riN(X) at ec and we define rcv-seq-fpic

to be the empty sequence λ. Observe that immediately after eidv, dvr has conflicted

151

with every response in rcv-seq-fpic. Furthermore, since dvr is not dropped, there are

no cancellation responses in rcv-seq-fpic affecting N . Hence, Nb ⊆ N ⊆ i.inSubz at

eidv and for each n ∈ Nb, sub-interval(i, n, tX) = Iin exists by Lemma 6.5 and contains

Xrf
, where tX is the final state of X. Therefore, by Lemma 6.6 rcv-seq-rin(Iin) ¹ snd-

seq-rbn(Ibn), where Ibn = pub-interval(b, i, n, tX). This establishes that i has received

a continuous sequence of responses from b, that is: rcv-seq-fpic ¹ snd-seq-rbNb
(INb

),

where INb
is any suffix of X that includes Ibn for each n ∈ Nb.

We claim that rcv-seq-fpci = responsesdvr, that is: the response list computed for dvr

at edvi is precisely the sequence of conflicting responses that have been received at i

immediately after eidv but have not been received by c at ec, as c enqueues dvr. In the

case where dvr does not have any conflicts, by definition rcv-seq-fpci = λ. Then, since

dvr never conflicts, first-resp(vr) = ⊥, so resp-list(ρ, first-resp(vr)) = responsesdvr =

λ, for any response sequence ρ. On the other hand, if dvr does have conflicts then

the first one is detected in an event ej = receive(dvr ∈ DV R)(j−1,j),j on some switch

sj ∈ fpci, where 1 ≤ j ≤ n. Since first-resp(vr) = ⊥ at ej, event ej (via first-resp-for)

assigns response rf as the first-resp of the modified diverted value message forwarded,

where rf is the earliest received response among those in j.responses(j−1,j) that conflict

with dvr. If dvr (or more precisely: a message caused by dvr) is detected as a conflict

at a switch sk where j < k ≤ n, the corresponding receive(dvr ∈ DV R)c,k event

does not change first-resp(vr), by the definition of first-resp-for. At eidv, therefore,

first-resp(vr) is the first response from rcv-seq-riN(X) that has not been received

by c at ec, which is rf . Hence responsesdvr and rcv-seq-fpic are both the maximal

subsequences of the suffix of rcv-seq-riN(X) starting with rf consisting of responses

that affect names in Nb, and it follows that rcv-seq-fpic = responsesdvr.

We’ve established that responsesdvr = rcv-seq-fpci ¹ snd-seq-rbNb
(INb

). In the example

of Figure 7.2, responsesdvr is the sequence cd of responses enqueued by i but not yet

received at c, and sb is the state immediately after response d was enqueued, since

that’s the latest response r of b received at i. If responsesdvr = λ (so there is no

first-conflicting response rf) then sb | Nb = c.cache| Nb = sc | Nb, and for any s ∈
STATES, TRANSb(s ⊕ vr, λ) | Nb = sb | Nb and the theorem holds. If responsesdvr

is not empty, observe that receive event eir = receive(r)z,i is the event providing the

last message r of responsesdvr. Also, the first message rf of responsesdvr is the first

response affecting a name in Nb after ec, when c enqueues dvr. Since we’ve shown

152

hat responsesdvr is a (contiguous) prefix of snd-seq-rbNb
(INb

), responsesdvr is precisely

the sequence rf , r2, r3,..., r of responses that transforms sc | Nb = c.cache | Nb at ec

to sb | Nb, the value of b.state | Nb immediately after r was enqueued. In conclusion,

in the case where responsesdvr 6= λ, TRANSb(s ⊕ vr, responsesdvr) | Nb = sb | Nb, for

any s ∈ STATES 2

We now show that if the a.synchResp sequence of CacherAppHosta is usable with re-

spect to a name set Nb and a first-conflict response rf , then it contains a (contiguous)

sequence containing each response from b that affect Nb, at least from rf on. The

Lemma is generalized to talk about the responses sent by any node on the forwarding

path to b. The key idea is to show that in these circumstances, a has been subscribed

to each name in N at least since receiving rf .

Lemma 7.4 (completeness of responses sequences) For any state of any X ∈ execs(SDCS),

a ∈ APPS, b ∈ DATAS, name set Nb ⊆ a.awaiting ∩ NAMESb, rf ∈ (R ∪ {⊥}) and

node o ∈ fpab · b : usable-list(a.synchResp,Nb, rf) ⇒ there exist a suffix IoNb
of X

such that resp-list(a.synchResp / Nb, rf) = rcv-seq-raNb
(IaNb

) ¹ snd-seq-roNb
(IoNb

),

where IaNb
is the suffix of X beginning immediately before event receive(rf)c,a in X.

Proof: As a preliminary, we claim that in every state of X, a.awaiting ⊆ a.inSub.

This trivially holds in the initial state where a.awaiting = a.inSub = ∅, and it is

easily verified by inspecting the actions of CacherAppHosta that modify a.awaiting

or a.inSub that this invariant is preserved.

Let Nb ⊆ a.awaiting ∩ NAMESb and rf ∈ R be respectively a name set and response

fulfilling the lemma’s premise, so usable-list(a.synchResp, Nb, rf) holds. If rf = ⊥
then resp-list(a.synchResp, rf) = λ and the lemma trivially holds. Otherwise, rf ∈
a.synchResp and there must be an event erf

= receive(rf)c,a in X, where c is the

channel incident to a, since that’s the only event that can add rf to a.synchResp.

Since Nb ⊆ a.awaiting ⊆ a.inSub, by Lemma 6.6 of Chapter 6 we have for each

n ∈ Nb that rcv-seq-ran(Ian) ¹ snd-seq-rbn(Ion), with Ian and Ion the corresponding

subscription and publishing intervals of n. We claim that a has been contiguously

subscribed to each name of Nb since before receiving rf . More precisely, we claim that

suffix IaNb is contained in Ian, for each n ∈ Nb. Assume, for contradiction, that IaNb

is not contained by Ian, for some n ∈ Nb. Then the last receive(sr ∈ SR)c,a event in

153

X with n ∈ sub(sr) occurs after erf
, and sr follows rf in a.synchResp (and therefore

cannot have been garbage collected in X). But then ¬usable-list(a.synchResp, Nb,

rf), which is a contradiction.

Hence, suffix IaNb must be contained by each of the Ian intervals, and since for each

of them we have rcv-seq-ran(Ian) ¹ snd-seq-ron(Ion) it follows that there exists a suffix

IoNb
of X (contained by each Ion) such that rcv-seq-raNb

(IaNb
) ¹ snd-seq-roNb

(IoNb
).

Note that IoNb
begins with the send(rf)o,d event causing erf

, where d is some chan-

nel incident to o. Since a appends every response r affecting a name in a.awaiting

⊇ Nb to a.synchResp, and since resp-list(a.synchResp / Nb, rf) contains every re-

sponse in a.synchResp after and including rf that affects Nb, it follows that resp-

list(a.synchResp / Nb, rf) = rcv-seq-raB(IaNb
) ¹ snd-seq-ron(IoNb

) 2

We can now show that Lemma 6.8 of Chapter 6 still holds in the scalable system,

that is: the synched part of an application cache contains a consistent projections of

an earlier (or current) server state. The key is to show that the list of responses an

application infers from a value message is the same as the sequence of responses the

corresponding diverted value message conflicted with, which are exactly the responses

that the application missed as they overtook the value message at the diverting switch.

Applying the response list therefore recreates the effect of these omitted responses

and brings the value message’s names to the state that existed on the original server

just after it sent the last omitted response. We limit ourself, for the time being, to

the case where each cacher receives its value messages directly from servers, and not

from other caches.

We break out a part of the lemma’s premise into a separate predicate.

Definition 7.7 For any execution X ∈ execs(SDCS), application host a ∈ APPS

and server b ∈ DATAS, let app-cond(a,b,X) be true exactly if a only receives value

messages for names in NAMESb directly from b or from a cacher host c only if c

receives its value messages for names in NAMESb directly from b in X., that is: if

cache-cond(c, b, X) holds.

Lemma 7.5 (Scalable dynamic cache synchronization base case): For any state ta

of any X ∈ execs(SDCS), a ∈ APPS and b ∈ DATAS, let synchedb = a.synched ∩
154

NAMESb in ta and let tb be the state after the eb event enqueueing the latest response

from b that has been received by a. Then app-cond(a, b, X) ⇒ a.cache | synchedb in

state ta = b.state | synchedb in state tb.

Proof: We proceed by induction on the prefixes of X. As argued in the proof of Lemma

6.8, since a.synched ⊆ a.inSub then by Lemma 6.5 each state of X is contained in a

subscription interval Ian for each n ∈ a.synched and by Lemma 6.7 rcv-seq-ran(Ian)

¹ resp-seq-rn(Ibn), for the corresponding publishing interval Ibn. In other words,

a is receiving every response affecting any name in a.synched, in the order of the

corresponding state changes.

As our base case, the invariant trivially holds in the start state of X since a.synched

is initially empty. We claim that each action e extending a prefix X ′ into another

prefix X ′′ of X preserves the invariant. Let eb be the event that enqueues the latest

response message sent from b that has been received by a at ta, the final state of

X ′. By the inductive assumption, sab = a.cache | synchedb at ta equals sb = b.state |
synchedb in the state tb immediately after eb.

1. If e = receive(sr ∈ SR)d,a or e = receive(r ∈ R \SR \V R)d,a then the invariant

holds after e, by the same exact argument as in Lemma 6.8.

2. If e = receive(vr ∈ V R)d,a and e is caused by a send(vr)b,d event in data server

b ∈ DATAS then the invariant holds after e, by the same exact argument as in

Lemma 6.8.

3. If e = receive(vr ∈ V R)d,a and e is caused by a send(vr)i,d event at a switch i

caused in turn by an event eidv = receive(dvr ∈ DV R)y,i event, where d, y ∈
CHANNELSi, let N = names(vr), rf = first-resp(vr), Nvr = (N ∩ a.awaiting) \
a.synched (the names becoming synched) and Nb = Nvr ∩ NAMESb. If ¬usable-

list(a.synchResp, Nvr, rf), then e modifies neither a.cache nor a.synched and

the invariant holds with the same state sb as before. Otherwise, let responsesdvr

= resp-list(rcv-seq-riNb
(Xidv), rf), where Xidv is the prefix of X ending with the

eidv event that enqueues vr on i.outQueued, towards a.

Since app-cond(a,b,X), the cacher c sending dvr gets its value messages for

Nb directly from b so by Lemma 7.3, for any s ∈ STATES , TRANSb(s ⊕ vr,

155

responsesdvr) | Nb = sbi | Nb, where sbi is the value of b.state at the event eri

when b enqueues the latest response r that has been received by i at eidv. Note

that r is the last response of rcv-seq-riNb
(Xidv).

Let rlist-a = resp-list(a.synchResp / Nb, rf). We claim that responsesdvr = rlist-

a. We observe that since Nb ⊆ Nvr, usable-list(a.synchResp, Nvr, rf) implies

usable-list(a.synchResp, Nb, rf), by the definition of usable-list. Since further-

more Nb ⊆ a.awaiting ∩ NAMESb, by Lemma 7.4 there exist suffixes IaNb
and

IiNb
of X such that rlist-a = rcv-seq-raNb

(IaNb
) ¹ snd-seq-riNb

(IiNb
) where IaNb

begins with receive(rf)u,a, so by Lemma 6.6 we have rcv-seq-raNb
(IaNb

) ¹ snd-

seq-riNb
(IiNb

) ¹ rcv-seq-riNb
(IiNb

). Since event e receives the vr that is enqueued

by eidv at the end of Xidv, by Lemma 6.6 each response of rcv-seq-riNb
(Xidv) has

been received at a in X, up to and including response r. Hence, rlist-a = rcv-seq-

raNb
(IaNb

) = resp-list(< rf , r2, . . . , r >, rf) = resp-list(rcv-seq-riNb
(Xidv),rf) =

responsesdvr, so the claim holds.

Event e applies vr and rlist-a = responsesdvr to each name of Nvr (including

Nb) in a.cache, so we get a.cache′ | Nb = sbi | Nb. Since we’ve shown that the

latest response from b received at a is r (enqueued by ebi) we have ebi = eb, so

sbi = sb and a.cache′ | Nb = sb | Nb. Since e does not modify any names in M

= (NAMESb \ B) ∩ synchedb and since by the inductive assumption cache.a |
M = sb | M , we have that a.cache′ | M = sb | M . Therefore, a.cache′ | synchedb

equals sb = b.state | synchedb and the invariant holds after e.

4. No other events affect the invariant 2

Lemma 7.5 shows that an application’s execution atomicity is ensured although some

of the application’s value messages come from one or more cacher hosts, if they in

turn receive their value messages directly from the corresponding servers. We now

show that the Lemma holds even if the cachers receive value messages from other

cachers. We use structural induction on the length of chains of cachers to show that

if Lemmas 7.3 and 7.5 hold for cacher chains of length n, they also hold for cacher

chains of length n + 1. Formally:

Definition 7.8 The cacher chain length chain-lenb(a) of an application (cacher) host

a ∈ APPS with respect to a server b ∈ DATAS is:

156

• 0 if a only receives value messages for names in NAMESb directly from server

b, or more precisely: no cacher host connected to a switch on fpab sends diverted

value responses for names in NAMESb to a.

• 1 + max{chain-len(c) : c ∈ C}, where C is the set containing b and a non-

empty set of cacher hosts from which a can receive value messages for names in

NAMESb.

In other words, chain-lenb(a) is the maximum distance of a from b in the directed

acyclic graph connecting b to application hosts (including cachers) subscribing to

names in NAMESb and application hosts to other application hosts (including cachers)

that cache names from NAMESb. This network is a DAG because cachers for NAMESb

only communicate via switches on the forwarding path to b. Note that Lemma 6.8

of Chapter 6 corresponds to the base case with a chain length of 0 and Lemma 7.5

corresponds to applications with cacher chain length of at most 1.

by

bz
a2

bx

c2

a1

a3

c3

c’

Figure 7.3: Cacher Chain Lengths Illustrated

Figure 7.3 shows an example of a small atomic network, where each host subscribes

only to hosts at or below its own level in the hierarchy of switches rooted at switch

α. We have chain-lenbx(a1) = 0, since there are no cachers to which to divert value

requests from a1 to bx. We also have chain-lenbz(c2) = 0, since value requests from

c2 to bx are never diverted back to c2. Note that if there were another cacher host

157

c′ attached to the switch and the set of names served by c2 and c′ overlapped, then

their chain-lengths would be 1, as each could serve read requests from the other. We

have chain-lenbz(a2) = 1, since the value requests of a2 may get diverted to cacher

c2, whose chain length is 0. We have chain-lenbz(c3)= chain-lenbz(c2) + 1 = 1, since

c3 may use lower-level cacher c2 (by contrast, chain-lenbx(c3) = chain-lenby(c3) = 0)

Finally, we have chain-lenbz(a3)= chain-lenbz(c3) + 1 = 2, and we have chain-lenbx(a3)

= chain-lenby(a3) = 1.

Lemma 7.6 (Scalable dynamic cache synchronization): For any state ta of any X ∈
execs(SDCS), a ∈ APPS and b ∈ DATAS, let synchedb = a.synched ∩ NAMESb in

ta and let tb be the state after the eb event enqueueing the latest response from b that

has been received by a. Then a.cache | synchedb in state ta = b.state | synchedb in

state tb.

Proof: Let C ⊆ HOSTS be the set containing server b and the set of applications

(including cachers) that receive (diverted) value messages for names in NAMESb. We

proceed by induction on the maximum length of cacher chains of hosts in C to show

that the invariant holds for each host in C, including a. As our base cases, Lemma 7.5

and Lemma 7.3 show that the theorem holds for each cacher c ∈ C where chain-lenb(c)

= 0 and chain-lenb(c) = 1, respectively. As our inductive assumption, the invariant

holds for each cacher c′ such that chain-lenb(c
′) ≤ n, for some n ≥ 1. Let c be any

application host such that chain-lenb(c) = n + 1. We observe that since chain-lenb(c)

= n + 1, it follows by the definition of c and chain-lenb that any host c′ from which c

receives value messages has chain-lenb(c
′) ≤ n. We make two claims.

1. Consider Lemma 7.3, with the new definition that cache-cond(c, b, X) is true

exactly if cacher c only receives value messages for names in NAMESb from a

host c′ if chain-lenb(c
′) ≤ n. Call this modified lemma Lemma 7.3n. We claim

that this Lemma 7.3n holds for each diverted value message sent by c. The

proof is the same as for Lemma 7.3, except instead of invoking Lemma 6.8 we

invoke the inductive assumption, that is: we change the wording in the proof

to “Since cache-cond(c, b,X), we have by the inductive assumption that ... ”.

Hence, Lemma 7.3n holds.

158

2. Consider Lemma 7.5, with the new definition that app-cond(a, b,X) is true

exactly if a only receives value messages for names in NAMESb from a host c′ if

chain-lenb(c
′) ≤ n. Call this modified lemma Lemma 7.5n. We claim that this

modified lemma holds in each state of X, with a = c. The proof is the same as

for Lemma 7.5, except instead of invoking Lemma 7.3 we invoke the inductive

assumption and Lemma 7.3n, that is: we change the wording in the proof to

“Since by the inductive assumption app-cond(c′, b,X) holds for the cacher c′

sending dvr, by Lemma 7.3n, TRANSb(s⊕ vr, responses)dvr | Nb = . . .”.

Lemma 7.5n shows that the invariant holds for c, and hence any c with chain-lenb(c)

≤ n + 1, completing the induction 2

We can finally prove (for the last time!) a theorem corresponding to Theorem 4.1 of

Chapter 4, saying that if a server in a scalable dynamic system executes a request

q then the response is among those possible given the dynamic application’s cached

state at the time the application issued q. Our proof is essentially the same as the

one for Theorem 6.1 (and Theorem 4.1), showing that if this were not the case, then

the intervening execution of some request that altered the state of the server would

have caused a response that conflicted with q, and q would have been dropped.

Theorem 7.1 (Scalable Dynamic Cache Operation Atomicity): For any execution

X ∈ execs(SDCS), application a ∈ HOSTS, server b ∈ DATAS and channels d and

c incident to a and b, respectively: send(q ∈ Q)d,a → send(rq ∈ R)c,b ⇒ rq ∈
executeb(sa, q), where sa = a.cache | depends(q) at the createRequest event eq that

enqueues q.

Proof: Assume for contradiction that there exists some execution X ∈ execs(SDCS)

and server b ∈ DATAS where send(q)d,a → send(rq ∈ R)c,b but rq 6∈ executeb(sa, q).

By inspecting the createRequest action, we see that depends(q) ⊆ a.synched at eq,

so by Lemma 7.6, b.state | depends(q) = sa at some earlier point in X, before the

receive(q)c,b event that executes q. Therefore, there must be an event er at b preceding

receive(q)c,b that assigns to b.state a value sb such that rq 6∈ executeb(sb, q). If we let r

be the response enqueued by er, then conflicts-inv(q, r), by the definition of conflicts-

inv. Since a.cache | depends(q) = sa at the createRequest(q)a event issuing request

159

q, we have createRequest(q)a <X receive(r)d,a and therefore by FIFO send(q)d,a <X

send(ack(r))d,a. This gives us er <X receive(q)c,b ∧ send(q)d,a <X send(ack(r))d,a.

Since by Lemma 7.2 a is ACK Well-Formed and by Lemma 6.10 b is Responder Well-

Formed, then by Theorem 5.2 we have send(q)d,a 6→X send(rq)c,b, a contradiction

2

7.5 Discussion and Related Work

This section discuss the performance of our caching protocol and related work, as well

as suggesting some further uses for cacher hosts, including supporting the reliable

multicast needed for our model to apply in the first place.

7.5.1 Caching and Performance

The main purpose of cachers is to alleviate servers from handling value read requests,

conserving their processing and storage bandwidth for execution of requests and per-

sisting of their effects. Database transactions typically read between five and ten

values for every value they write [6]. Moreover, the relative benefit increases as data

contention rises, since many applications will be subscribing to and synchronizing

with the same names, raising cache hit-ratios.

Cacher hosts make limited demands on servers. Except for their initial value requests

to synchronize the names in their caches, they can provide service indefinitely without

any involvement from the server, by applying responses to their cached state. Servers

do not need to keep track of cachers nor send additional messages for their benefit.

Similarly, clients do not need to keep track of cachers and are essentially unaware of

caching.

Hierarchical caches are scalable, since growing demand for value messages and syn-

chronization can be met with additional cacher resources. A system based on our

model should be able to support large numbers of application hosts maintaining a

consistent view of a set of names. The underlying multicast provides efficient up-

date dissemination, while cacher hosts take care of bringing newly added applications

160

up to date with the latest state. This could be a good fit for applications such as

large-scale trading and auctions, where many applications observe state and then oc-

casionally issue bid requests. It might also be a good fit with massively multi-user

online role-playing games (MMORPGs), where each player is subscribed to an area

of interest surrounding the player’s current location in the game but must frequently

(un)subscribe to parts of the world at the area’s edge, as the player moves across the

world.

While outside our scope, coordination of cache contents [74] could be used to increase

cache-hit rates and dynamically adjust caching strategies. For example, as a server

nears full utilization, it could send out a “cry for help,” calling for cachers to cache

certain name ranges. A cache nearing saturation could similarly cry to cachers at

the next chain-length level above, and so forth. The intent is that names should

get cached / replicated to a degree commensurate with the number of applications

synchronizing with them.

Our design is unique, as far as we know, in providing scalable, consistent caching

irrespective of data update rates while not adding latency. Since switches know

from their subscriptions which cachers are currently available for a given name, they

divert requests only to cachers that can service the value request for that name, with

high probability. Requests do not bounce between hierarchy levels, which would add

latency [163]. If cachers can be placed close to clients, the round-trip time to a cacher

can be made shorter than the round-trip-time to the original server. For example,

a cache placed near a site’s gateway to the Internet could significantly lower access

delays for data commonly used by applications in that site.

In chapter 6 we compared our caching algorithm to AOCC [162], an efficient conflict-

based concurrency control algorithm bearing many similarities to ours but operating

exclusively end-to-end. We do not see a straightforward way to extend AOCC to sup-

port cacher hosts, since an AOCC server is solely responsible for detecting all conflicts

and must be explicitly aware of all subscriptions of all applications, so that it can

maintain and propagate invalid sets. In our caching scheme, by comparison, servers

are oblivious to clients and cachers, but the switches along a diverting path ensure

that stale value messages are freshened through conflict-detection with concurrent

response messages.

161

We observe that the distance of a cache’s diverting switch from a server has no effect on

the expected lengths of value message response list, which depends only on the length

of the path from the diverting switch to the cacher. We also observe that the response

time for value read request is essentially independent18 from a server’s data update

rate. Higher rates only increases response list lengths and create additional work

for application hosts. Assuming applications have enough bandwidth and resources

to process the response stream in the first place, this additional burden should be

negligible.

The price for this performance, though, is the assumption of efficient yet fine-grained

name subscriptions on switches. As discussed in Section 5.10.1, we do not address

the feasibility of such subscription processing in this dissertation.

Internet caching has received considerable interest in recent years [164], including

approaches based on multicast [76]. Ours is an en-route caching [165] scheme, since

it places caches along the forwarding path towards a data source. While methods

for optimizing the placement [165] and coordination [166] of such caches are mostly

orthogonal to our algorithm, they are applicable.

7.5.2 Cachers as Service Providers

Efficient, transactionally coherent cacher hosts may have other uses besides serving

value requests. Their location to the side of the “pathway” of requests and responses

traveling back and forth to a server makes them well placed to provide services related

to that server. We sketch a few ideas here, leaving proper consideration to future work.

The common theme is to use cachers to provide certain services without encumbering

data servers, whose performance may be the bottleneck for one or more applications.

This is more attractive from a scalability standpoint than requiring each such service

to execute only on original data servers.

A cacher host c could scrub a “dirty” request q from an application a that is not fully

synchronized with the depends(q) set of q. Application a would send the values19

it has cached for the subset of depends(q) that is not synched at a and switches

18Independent insofar as the updates do not require a large share of the available bandwidth.
19Or achieve the same effect through the use of timestamps or other version information.

162

would preferentially try to divert such requests to cachers for those names. If a

cacher c receiving q found that each of these dirty values matched its own (synched)

values for the names, it would re-issue q on the behalf of a as a normal, “clean”

request. This request would get conflict checked and handled just like any other

request, and a would receive its response directly from the server. On the other

hand, if some of the dirty values did not match, c would discard q. It could also go

ahead and send value messages for the stale names, to hasten their synchronization

at a. This scheme would allow an application to issue a request without waiting

for its synchronization processing to complete. Alternatively, the application could

attempt to issue a request without synchronizing at all. This may yield an overall

gain over performing synchronization when an application issues requests infrequently

and/or the state in question changes infrequently. Note that it essentially emulates

classic optimistic concurrency control algorithms based on server-side validation of

transaction reads before commit. The difference is that it does it in a scalable manner,

as the validation effort can be distributed onto multiple cacher hosts.

Cachers could serve the role of “data warehouses,” by storing one or more snap-

shots of entire data subsets in a read-optimized format, with extensive indexing for

efficient query processing. This practice is common today, as it is very difficult to

efficiently combine long-running read transactions with short-lived update transac-

tions. A fundamental reason why is that the probability of transaction conflicts grows

quadratically with transaction sizes [12].

In general, cachers could serve as entry-point “switches” for clients of distributed

applications, providing services as well as aggregating clients for the purposes of

increasing the scalability of fine-grained multicast subscriptions. An application host

would use cachers as a bridge from a legacy network protocol into the atomic network,

translating back and forth between atomic multicast and a unicast connection to the

host, for example. The cacher would handle conflict-checking on the “last mile”

between end-host applications and an atomic multicast network, treating each host

as if connected by a separate channel. A cacher that is trusted by an organization

could perform services such as usage metering of the organization’s data, as well fine-

grained access control and encryption of response streams for individual hosts. While

commodity hosts cannot match the performance of dedicated switches, they can still

handle considerable traffic and manage numerous connections [115].

163

7.5.3 Caches, Response Synch and Reliable Multicast

The cache synchronization algorithms we have described are based on applications

receiving state updates that replace existing cached values regardless of their previous

values. An alternative would be for an applications to receive a sequence of old

responses that roll forward its cache to a current state. The obvious advantage of

the state transfer method is that it “truncates” the response history, providing an

upper bound on the message complexity of synchronizing a cache that depends on

the size of its state, not the number of responses that have affected the state in

the past. Also, response sequences require some form of versioning for states and

responses, so that the appropriate subsequence of responses can be applied to the

old version of the state. However, the response synchronization method may have a

sigificant advantage in the case where hosts lose their subscription only briefly. In

that case, transmitting the sequence of responses missed during a subscription outage

may require fewer messages than explicit state synchronization. Cachers could readily

offer this alternative type of service in addition to the state-based one we described,

since they receive all responses affecting their cached state anyway.

In fact, cachers are ideally situated to play the role of message loggers in receiver-

based methods for reliable multicast [148, 149], discussed in Section 5.10.1. We could

take an approach similar to LMS [167], for example, where Negative ACKs (NACKs)

are diverted off the path towards their destination server and towards some switch

termed the NACK’s turnaround point, which directs it towards some replier receiver

host that can supply the missing message. The replier unicasts the missing message

to the turnaround switch, which multicasts it back to the receivers. In our model,

cachers would play the role of repliers. We might even improve upon LMS by ini-

tiating repairs immediately at the (sending or receiving) switch where responses are

dropped, sending repair requests to cachers for affected names along with identifiers

for the dropped responses. Cachers would, at their discretion, retransmit the miss-

ing responses (or value messages) for the names affected, possibly after getting a

“congestion cleared” notification from the switch. This could lower repair latency

while largely eliminating the need for applications to issue repair requests. While

this approach seems promising, we have yet to develop it. Fine-grained, name-based

multicast subscriptions and forwarding present a problem for reliable multicast, but

they might be part of the solution as well.

164

Chapter 8

Prototype Implementation of

Conflict Checking

The feasibility of Atomic Transfer depends critically on how effectively requests and

responses can be conflict-checked. In particular, is is essential that conflicts on

switches can be checked at line rates, since otherwise packet queues can build up

and overflow. This chapter describes a data structure intended to address that chal-

lenge, dubbed Tree Intersection Bitmap (TIB). It is a succinctly encoded trie, based

on the Tree Bitmap [168] trie datastructure. TIBs are designed to rapidly detect

whether two sets of names overlap, where names are variable length bit strings. We

also sketch a high-level design for switches and how they could use TIBs to achieve

good conflict checking performance.

While TIBs are designed with Network Processors [169] in mind, we implement and

test them on the Intel x86 architecture, with an implementation written in the C

programming language. Our primary objective is to get a “ballpark” figure for the

performance with which conflicts can be checked, in best as well as worst-case sce-

narios.

8.1 Hierarchical Naming Scheme

Our prototype assumes a naming scheme similar to the one suggested in Section

5.10.1. More concretely, a name n ∈ NAMES is encoded as a variable-length bit

string m · n, whose first | m | bits represent the name’s authoritative owner, as

165

a 64 or 128-bit cryptographic digest of the name owner’s public key, for example.

The remaining | n | bits identify a particular name in the “name space” defined by

m. Management of that name space is the owner’s responsibility, but the means by

which owners delegate responsibility for names to the public keys of host and data

center principals [170, 171] are largely orthogonal to Atomic Transfer and will not be

considered here.

We make the important assumption that names give certain clues about their physical

whereabouts. This is not to say that a name corresponds to a particular network ad-

dress or host: rather, we assume that the longer the shared prefix of two names (the

more similar the names, as we term it), the fewer network hops generally separate

their hosts. In particular, two names of equal length that differ only in their last bit

should be highly likely to reside on the same host. The reason for this assumption

is that it dramatically facilitates name-based forwarding and conflict checking. It

enables hierarchical routing, as in the Internet Protocol, that is: switches can aggre-

gate forwarding information for a large set of similar names by associating it with

their shared prefix. Similarly, we will assume that a request usually refers to a set

of similar names, which can therefore be succinctly encoded in tries and efficiently

checked for conflicts with the names in similarly encoded responses. While our model

would work correctly with arbitrary, meaningless identifiers, performance of conflict

checking would suffer considerably.

0 1

0 10

1

1

1

0

0

0

1

1

1 00 1 11

A B C

D

Figure 8.1: Example mapping of names to nodes

Figure 8.1 shows an example of the mapping of a tiny name hierarchy to nodes

in a network. The names with prefix “0” map to server A, while prefixes “1110”

166

and “1111” map to servers B and C, respectively. Prefix “10” maps to switch D,

suggesting that switch configuration data can be presented using global names and

updated using atomic actions. As an aside, we conjecture that this could simplify

network management and promote routing flexibility [172].

We see the data names used at the Atomic Transfer protocol level as occupying a

middle ground between network addresses and human-readable and meaningful iden-

tifiers. A name by itself gives no information about its host and can be transparently

re-mapped from one host to another. However, a name’s binding to a human-readable

moniker or higher-level abstraction or semantic happens through some form of in-

direction, for example through interpretation by a program or a cryptographically

verifiable chain of logical statements [170]. Hence, a name serves a dual purpose: it

uniquely identifies a datum and also encodes its physical location relative to other

names, to some degree.

A hierarchical naming scheme does represent a trade-off, though, as naming things

hierarchically can be restrictive and changes in data access patterns usually mean that

any “clustering” of data into hierarchies must be intermittently adjusted to maintain

performance. Load re-balancing is achieved by migrating data between servers while

simultaneously updating forwarding tables, so that names still refer to the same val-

ues. Renaming data items and otherwise reconfiguring the name hierarchy requires

even more coordination. However, dynamic reconfiguration [70, 173] is greatly facil-

itated by atomic execution, since changes to application data, application software

and configuration “metadata” (such as human-readable monikers) can be performed

in atomic steps. The impact of large-scale changes can be mitigated by dividing them

into a preparation phase and a subsequent installation phase, that moves in a wave

across the system [71]. So on a balance, we feel that the benefits of hierarchical

naming outweigh its costs.

For concreteness we sketch how a few common data abstractions can be mapped

into a hierarchical names in the name/value state abstraction of the Atomic caching

systems.

• A hierarchical file system can be mapped directly by encoding the full pathname

of each file into a bit string name, terminated with a designated character that is

167

not a part of any filename. The name’s value is the file’s data. Alternatively, the

bits following the name terminator could be used as a binary-tree like subdivider

for the file’s data, allowing block level or even byte-level access to parts of the

file.

• A collection of Java-like objects in a heap can be mapped by assigning a code

to each of the object class’ fields and storing the value of each field under name

o · c, where o is a unique identifier for the object and c is a code identifying the

field. Objects created as a part of a larger object assembly or aggregation could

be given similar names, to increase the likelihood of them being co-located.

• A database relation r can be mapped by storing each row as name r · k with

value v, where k is a concatenation of the row’s primary key column and v is

the concatenation of the other colums. The absence of a row is indicated by the

absence of the name corresponding to it. Alternatively, each non-key column

could be assigned a unique code c and the value of column c stored under key

r · k · c. Note that in the latter case, the whole row can still be obtained by a

value read request for prefix r · k.

• Say a relation r′ is predominantly accessed through a join with relation r from

the prior example, that uses column c of r to look up a row of r′ by the primary

key of r′. Then we might store each row of r′ by name r · k · cr′ , where cr′ is a

code not denoting a column in r. This would increase the probability of rows

of r′ being hosted close to the rows of r through which they are accessed and

permit convenient access to a row k and its join dependencies, by subscription

to prefix r · k.

We note that these mappings would generally be transparent to end-users and pro-

grammers. A database programmer, for example, can still work in terms of tables

and queries while (re)mappings of data take place behind the scenes. The pre-joining

of rows could be designed by a clustering algorithm that infers access patterns from

execution traces.

We assume that name/value pairs are mapped onto hosts along name hierarchies,

so in general names with prefix p are assigned to the same host or next-hop switch.

Note that servers are free to choose their internal data representations, e.g. hash

168

tables or hierarchical file systems. Application hosts can independently choose the

data representations best suited to their needs. The naming scheme does not dictate

internal data formats, it merely creates common ground for effective access to data

and, as we discuss in the next section: efficient conflict checking.

8.2 Organizing Packets for Fast Conflict Detection

This section discusses our prototype design and implementation for the encoding of

request and response name sets into network packets. We focus on the encoding of

name sets and those aspects of operations that pertain to conflict relations, ignoring

how other message information is encoded. For example, in our empirical evaluation

we use simple read/write operations and encode the operation type along with the

name to which it is applied, but leave unspecified the encoding of the values read or

written. Also, we limit our discussion to messages that fit in a single packet. We

note that atomic messages can be broken into multiple packet, as we discuss in Chap-

ter 9 on future work. Furthermore, many high-performance transactional systems,

such as On-Line Transaction Processing (OLTP) applications, predominantly create

small transactions that access only a few data items each. The widely used TPC-C

transaction performance benchmark [174] in fact uses only such small transactions.

Our encoding is based on the trie [175, 176], a fundamental data structure for storing

a set of strings over a fixed alphabet. A trie for an alphabet Σ with | Σ |= b is

an ordered tree of degree b, where each child of a node corresponds to a letter of

the alphabet. The search procedure for a string s begins at the root of the tree.

For each character of s, from first to last, the search navigates to the corresponding

child until a leaf is reached or no child is present for a character. Tries and prefixes

have a direct correspondence, since all strings sharing a prefix reside in the same

subtree. The longer the prefixes shared by a set of string, the more compact their

trie representation. On the other hand, a straightforward trie implementation where

each node has an array of b child references is relatively space inefficient, especially

for larger alphabets and sparser tries. Furthermore, for a low b such as a binary b = 2,

a naive implementation is relatively slow, requiring O(n) steps to search for an n-bit

string.

169

8.2.1 Multi-bit Tries and Tree Bitmaps

What makes tries a candidate for high-speed set intersection checking is recent work

on using tries for fast IP lookup on routers [177, 178, 168], which has yielded very

efficient trie variants on which we base our approach. The first insight behind this

work is that the search needs to proceed in strides of several bits at a time, for speed.

While several multi-bit trie data structures have been proposed20, one of the simplest

yet best performing is the Tree Bitmap [168], shown in Figure 8.2. Starting at a node

in a regular trie, it is converted into Tree Bitmap form by encoding the next n levels

below the node into a single Tree Bitmap node, which we shall call a block. Since

each block corresponds to a small binary trie of height n we can succinctly encode

the set of n-bit strings (or seen in a different light, the n-bit characters) present in

a block using a bitmap of length 2n, whose k-th bit is set only if the k-th string is

present in the block, that is: the string whose path from the top node in the block

is labeled with the binary representation of k. We will refer to a string as being an

entry of a block. An entry can either represent a member of the original trie or a

prefix that extends into a child block.

0 1

0 10

1

1

1

0

0

0

1

1

1 00 1 11

Original trie

01000101

11010000 01000011

Tree bitmap trie

Figure 8.2: Example tree bitmap encoding with stride n = 3

Figure 8.2 shows how a trie is converted into three Tree Bitmaps blocks with stride

three. The trie contains the string “101” of length 3 and six other strings each of

length 6. The top-level block has a 1 bit in positions 1, 5 and 7, since prefixes “001”

and “111” are present in the block, as well as member “101”. We describe later how

the encoding tells members from prefixes. We make the assumption that names are

20Reference [168] presents an overview.

170

prefix-free, that is: no name is the prefix of another name. When the need for prefixed

names arises, such as in the example in Section 8.1 of mapping a file system to a name

space, the standard trick of terminating names with special symbols not used as a

part of any name can be employed.

In the case of the original Tree Bitmaps, another bitmap is needed to account for the

fact that IP forwarding prefixes may have arbitrary length and that IP forwarding

databases are not necessarily prefix-free. We simplify our implementation by stipu-

lating that the length of all names be a multiple of n. In fact, we will choose n = 4

as our stride, since it yields bitmaps of reasonable size (16 bits) that are convenient

for software implementation, being a power of 2. TIBs add 16 bits of information

to round out a 32-bit block which suits architectures requiring 32-bit memory access

alignment.

Tree Bitmaps save space by storing sibling blocks contiguously in memory, so a single

pointer suffices to navigate to all the child blocks of a parent block. In Figure 8.2

the gray arrow represents the pointer from the top-level block to its first child block.

This convention makes blocks highly uniform: each block has a bitmap and a pointer

to its first child block, if any.

The Tree Bitmap encoding is very concise. Moreover, it is well suited to computing

name set intersections. When comparing the two top-level blocks of a Tree Bitmap

trie, for example, we can determine the set of 4-bit entries they have in common by

performing a bitwise AND operation on their respective bitmaps, computing the set

of up to 16 possible common entries at a stroke. This is the key to the efficiency of

the data structure we adapt from Tree Bitmaps, the Tree Intersection Bitmap.

8.3 Tree Intersection Bitmaps

Our Tree Intersection Bitmap is essentially a Tree Bitmap less the encoding of arbi-

trary length strings plus the encoding of operation information. We discuss how child

pointers are encoded at the end of this section.

171

We could easily use the k-th bit of the remaining 16 bits of a block to indicate whether

the k-th entry in the block is a member or a prefix. However, that encoding would

be fairly inefficient as most nodes below the uppermost levels of a trie are sparsely

populated. This is true for tries containing random strings [179], and we expect it to

be true for request and response name tries as well. Therefore, we store the additional

information as a list of consecutive j-bit codes in the remaining 16 bits of a block,

which we will call a block’s list.

This scheme is clearly more complex to decode than a straight bitmap. However,

the space efficiency gains are important because they reduce the number of memory

fetches a processor must make during intersection checking. The speed differential

between Dynamic RAM (DRAM) memory chips and processors has become such that

a processor can execute tens or hundreds of instructions in the time it takes to fetch

a chunk of data from DRAM, although that chunk can be relatively large (e.g. 32-64

bytes). General-purpose processors mask this latency to a large degree using several

levels of on-chip cache memories, but packet data streaming through a network device

has negligible temporal locality, limiting the effectiveness of caching. As a result, the

key to good performance is to fit as many TIB-blocks into each chunk’s worth of

memory as possible.

The choice of j depends on the number of distinct operations or operation equiva-

lence classes that must be encoded. For our empirical evaluation we assume simple

read/write operations, similar to table 4.1 of Chapter 4, and use j = 2. We will

assume all write operations read too, as “blind” writes without reads are rare in

practice. Also, our conflict relation ignores the values being read or written. The

only case that benefits from comparing the values is when a read does not conflict

because a write is writing that same value, which mainly occurs if requesters generate

unnecessary writes. Our conflict relation is shown in Table 8.1. While the rest of our

discussion is framed in terms of our chosen stride and operation encoding, we discuss

generalizations later in the chapter.

Figure 8.3 shows the format of an example block containing entries 1, 8 and 9 (cor-

responding to bitstrings “0001”, “0100” and “0101”). The block’s list contains the

respective codes for the entries, “01”, “00” and “01”. The meaning of list codes is as

follows:

172

read()/v write(v)/OK

read()/v′ true
write(v′)/OK true true

Table 8.1: Conflict relation for a simple read / write register.

1110 10 00 1

Low 16: entry bitmapHigh 16: list of two-bit codes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Figure 8.3: Tree Intersection Bitmap Block with three entries

• If the lower bit is set, the entry is a prefix and the higher bit is unused.

• If the lower bit is clear, the entry is a member, and:

– If the high bit is set (clear) the member is a write (read) operation.

In the example of Figure 8.3, members 1 and 9 are prefixes while members 8 is read

operation.

To navigate from a parent block to the block corresponding to the parent’s n-th prefix

entry, we count the number of prefix bits to the right of the nth entry in the list (Tree

Bitmaps use a similar technique). For example, the list of Figure 8.3 contains codes

for entries 1, 8 and 9, from right to left. There is one prefix code to the right of the

code of entry 9 (the code of prefix 1) so the child block corresponding to prefix 9 is

the second block from the first-child pointer, which points to the block for prefix 1.

The number of prefixes to the right of a prefix can be computed in constant time, by

masking off all even bits and bits to the left of the prefix in the list and the counting

the population of the bits remaining.

Since we only have 16 bits in which to encode up to 16 2-bit entries, a block’s bitmap

overflows if it has more than 8 entries. If any children among siblings overflow, we

capture the remainders of their lists in overflow blocks following the last sibling block

in memory. The first overflow block, if any, has a 16-bit index bitmap with bit k

173

set exactly if the k-th sibling overflows. The sequence of 16-bit overflow lists follows,

alternatively in the high and low-order halfs of the 32 bit overflow blocks. Figure

8.4 shows an example with four TIB-blocks where block 0 and block 2 overflow. The

lower half of overflow block 4 contains the index, while the upper half of overflow

block 4 and lower half of overflow block 5 contain the remainder of the lists of blocks

0 and 2, respectively.

0 1 2 3 4 5

Figure 8.4: TIB-blocks with overflowing lists and overflow blocks

Overflows should be relatively rare, occurring mainly at the top of densely populated

tries and when a collection of leave nodes with the same name lengths differ only

in their last two or three bits. But even when they occur, the overflow list can be

extracted in about 20 instructions.

Figure 8.5 shows the high-level algorithm for checking whether the TIBs rooted at

two blocks intersect, where o.list(n) denotes the n-th two-bit code from the list of

o. It first computes c, the bitwise AND of the block bitmaps. Each set bit of c

corresponds to a prefix or member that the blocks have in common. For each such

bit, the algorithm either recurses into the child blocks of the common prefixes or else

checks whether the member operations conflict. In the case of our conflict relation,

operations conflict if either is a write, so the n-th members of blocks a and b conflict

exactly if (a.list(n) OR b.list(n)) AND 2 6= 0.

We next describe the most important details and optimizations of our implementation.

We avoid recursive procedure calls by maintaining an explicit stack. Each stack entry

records information about two blocks, including how far along their respective lists

the algorithm has progressed. Avoiding explicit recursion is faster and allows our code

to be compiled for architectures lacking a hardware stack, such as IXP microengines.

[112]. We skip stack pushes and pops whenever possible, e.g. if two blocks have only

a single entry in common then we replace the top of the stack with their children

instead of pushing them. This also bounds the size of the stack to lg n, where n is

174

intersect(block a, block b)
let c = a.bitmap AND b.bitmap
for each bit n of c that is set: // for each common entry

if (a.list(n) AND b.list(n)) AND 1
// both entries are prefixes
recursively intersect() their child blocks ...

else if not (a.list(n) OR b.list(n)) AND 1
// both entries are members
if operations a.list(n) and b.list(n) conflict

note and / or handle conflict ...
else

// error, one is a member, the other a prefix!

Figure 8.5: Block intersection algorithm at a high level.

the number of block pairs compared during an intersection, since new blocks are only

pushed onto the stack when the current blocks have at least 2 prefixes in common.

We use constant-time bitwise operations to advance from one common bit of c to the

next. We use the expression (c AND −c) to isolate cr, the rightmost (least significant)

bit of c [180], so cr− 1 yields a mask for the bits to the right of cr. We use that mask

when counting21 the number of bits to the right of cr in a block’s bitmap, yielding the

index of the corresponding entry in the block’s list. Hence, the main loop proceeds

in time O(| a∩ b |), where we take a and b to denote the set of entries in blocks a and

b, respectively.

The last point is important because we expect request tries to be “skinny” at the top,

branching into “bushes” primarily near the bottom. Assuming name hierarchies are

designed to achieve high locality data accesses, most names in a request will be highly

similar and have a long shared prefix. This results in a low | a ∩ b | for upper-level

blocks and fast intersection checking for the long “stem” of request tries. Other things

being equal, longer stems increase the probability of intersection checks terminating

before reaching the “bushy” parts of tries, in the common case where tries do not

intersect.

21Many architectures have a “population count” instruction that can perform this count in a cycle
or two. Since the x86 architecture only recently gained such an instruction (with Core i7 and SSE4.2)
our tests simulate it with a slower table lookup and additions.

175

As described, TIBs do not encode long stems particularly efficiently, requiring 8n bits

to encode an n bit long prefix stem, e.g. 32 bytes for a 32-bit long stem. If “skinny”

request with long stems are indeed common, much of the first DRAM fetch would be

spent on the stem, necessitating further fetches.

In the special case, therefore, when a block has a single prefix entry and continues

to form a single stem for one or more levels, we use the block’s list to encode up to

3 · 4 = 12 bits of that stem. Following the entry’s operation code in the list we place

a 2-bit count of the number of 4-bit prefix extensions present in the list (from 0 to 3)

with 4, 8 or 12 bits of next-level prefixes in the remaining bits.

11 10 01 0

A single entry: a special case

0 1 1 0 0 1

code

Number of extensions (2)

Extension 1

Extension 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Figure 8.6: A TIB-block with two prefix extensions

Figure 8.6 shows an example, where the prefix “010110001101” is encoded with prefix

extension in a single block, instead of being encoded into three one-entry blocks

containing prefixes “0101”, “0001” and “1101”, respectively. Note that extensions

appear in reverse order on the list, with the first extension in the most significant

bits. This makes decoding a bit faster. The prefix extension optimization can encode

an n-bit stem in as little as 2n bits, allowing the 32-bit stem we used as an example

to fit in 8 bytes.

What remains to be discussed is the encoding of the pointers from a block to its first

child block. A straightforward way is to keep the pointers in a separate array, so the

first-child pointer of block n is the n-th element of the array. For example, 8-bit block

indices would work for tries of up to 256 blocks, fitting a small Ethernet Maximum

Transmission Unit packet. The space overhead for this method is a relatively modest

25%. A disadvantage of this method is that it requires two chunks of DRAM to

be fetched at each time: a chunk of TIB-blocks and the corresponding pointers.

This might be remedied by interleaving pointers with blocks, but such schemes are

complicated by variable-length sibling blocks and the internal fragmentation resulting

from the mismatch between 8-bit indices and 32-bit memory alignment requirements.

176

We do not develop such a scheme for our experiments but use an array of pointers.

However, a reasonable direction for future work is to investigate the use of the HEXA

hashing technique [181], where a prefix, from the root though to a prefix in the current

block, is hashed to yield the index of its first child block. Collisions are avoided by

including a few freely varying discriminator bits from nodes in the hash, where n

discriminator bits give a choice of 2n hashed locations for the first-child node. In

our case, unused list bits could serve as our discriminator bits. Since most blocks

will have a few unused list bits, choosing discriminators that hash to a free block

should generally not be a problem. However, we must consider the run-time costs of

constructing such tries and traversing them.

On the other hand, using explicitly encoded pointers affords us full freedom to lay

out subtries in efficient ways, for example as close as possible to the cache-oblivious

“Emde van Boas” layout [182], to minimize the number of DRAM fetches needed

during conflict checking. Achieving a combination of HEXA-style hashing and cache-

obliviousness could be an interesting problem for future work.

Spending some effort on the careful encoding of requests on the application side seems

justified, if it accelerates network and server-side processing. This effort may be less

welcome on the server side. We note that the cost of encoding packets is less of an issue

with the atomic caching systems presented earlier in this thesis, since applications

can include responses with their requests, obviating servers from encoding response

packets.

8.4 Switches and Responses Sets

TIB intersection is performed on switches, when the TIB of a request inbound on

a switch port p is compared with the set of responses that have been enqueued for

p. This set of responses corresponds directly to the responsesp set for a channel p

in our I/O Automata model of switches (see Chapter 3). While the details of an

implementation will depend on the hardware architecture of the switch for which it

is intended, we sketch a generic design for a switch that buffers packets at outbound

ports. Routers and switches typically buffer packets in DRAM memory, while queues

177

and other data structures are often kept in faster (and more expensive) Static RAM

(SRAM) memory.

High performance packet switching does not allow for much processing per-packet. A

1Gbps port, for example, sending a steady stream of 100-byte packets must forward

roughly a million packets per second to keep up with line rates, that is: a packet

every microsecond, on average. As a rule of thumb, a switch can execute around 10

instructions per byte of packet data [183]. Clearly, a switch cannot perform extensive

data structure maintenance as a part of processing a packet. Yet, it must somehow

maintain the responses set for each port.

The size of a port’s responses set depends on its response sending rate and the res-

idency times of responses on the switch, which is upper-bounded by the amount of

packet memory available. Switches are designed to minimize packet residency time,

since it corresponds directly to latency. An average delay of 100µs for our 1Gbps

port sending nothing but 100 byte responses would by Little’s Formula have around

1.000.000 responses/sec * 0.0001 sec = 100 responses in its responses set at any one

time. Clearly, checking a request against each in turn would be time consuming.

Hence, we do not store responses sets as lists but rather as a trie, so that a request

can be intersected with a single responses trie instead of many response tries.

p

DRAM packet memory

o
u

tq
u

eu
e

…

…

…

…

…
… …

SRAM data structure memory

Figure 8.7: High-level schematic of conflict-checking switch port p

178

Our basic approach to maintaining switch responses tries is to incorporate TIB-

encoded packets into them wholesale. Instead of adding request names individually

to a switch’s trie, which would be hopelessly slow, we propose to “wire” a response

packet into the switch trie directly, by adding a pointer from the appropriate block

in the switch trie to the appropriate TIB-block in the response’s TIB trie in packet

memory. Figure 8.7 shows a schematic for this design, for a port p on an atomic

switch.

White boxes represent data in SRAM while gray boxes represent data in packet

DRAM memory. The schematic shows a “blown up” view of one response packet,

containing a trie made of TIB-blocks. We assume the standard optimization of having

an initial array of trie blocks as the first level in the switch trie, indexed by the first n

bits of the stems of packet TIBs, e.g. n = 16 for an array of 64K blocks (the names in

the domain rooted at the switch are then restricted to being at least n bit long). The

top-level blocks may point to packet TIB-blocks or other switch-trie blocks, shown

in white. If we let i be the index encoded by the first n bits of a response r being

forwarded onto p, then the i-th block in the initial array would be updated to point

to the TIB-block of r that continues the trie of r past the first n bits. Upon receiving

the ACK for r, the switch removes the pointer to r before reclaiming its memory.

We note that the format of switch-blocks would be different from packet TIB-blocks.

They cannot easily use the Tree Bitmap single child-pointer optimization due to the

dynamic updates the switch trie must support. Furthermore, it might be beneficial to

use larger switch-blocks with a simpler, more direct encoding, so they can be quickly

updated. Getting many blocks in each fetch matters less with SRAM than DRAM,

since SRAM is faster and it is hard for switch to keep related trie blocks close in

memory anyway.

With n = 16, the 1Gbps port from our earlier example containing 100 responses in its

responses set on average, the probability of a response’s slot in the initial array being

occupied can be approximated as 100/216 ≈ 0.15%22, assuming uniformly random

n-bit stems in responses. This is a best-case scenario though, since accesses will be

22Since 100 << 216 we simplify by treating the additions of entries to the array as independent
events.

179

more clustered in practice, yielding higher hit ratios, e.g. 100% in the worst case

where all messages have the same n-bit prefix.

When a new incoming response finds one of its prefix slots in the initial array is

occupied, the insertion proceeds down the response’s TIB and the trie of existing

responses on the switch, until a slot is found. Packet TIBs cannot be modified,

of course, since they will eventually be transmitted to the next-hop node. Hence,

the insertion adds new blocks to the switch trie as it recurses down the TIB of r,

performing a “copy on write” instead of modifying blocks. A newly created switch-

block will point to the same child blocks in packet memory as the original old-TIB-

block. Once the branches of the old-TIB and the new-TIB diverge, the last switch-

block added or traversed is updated to point to a child (or children) of the current

new-TIB-block.

To recap, the insertion of a response into a responses set starts with a switch-block

and the top-level TIB-block from the response and then proceeds in two phases (for

each trie prefix branch): first the insertion proceeds down switch-blocks, until an

empty slot is found in a switch-block or the search “falls off” the switch trie and into

an old, existing response’s TIB trie. The search then proceeds down the old and new

TIBs, adding new switch trie blocks along the way, until the search “falls off” the

old-TIB and the current new-TIB-block is inserted as a child of the latest switch trie

block added.

When an acknowledgement is received for a response packet, a similar traversal is

needed to remove the packet’s TIBs from the switch-trie. Alternatively, the switch

could store a list of the switch-trie blocks modified by each packet, to accelerate the

packet’s removal. Once the bitset of a switch-trie block becomes empty, it can be

removed from its parent block (and so on recursively) and its memory reclaimed.

While following a long chain of switch-blocks to insert a response is expensive, it

cannot be avoided in the worst case. On the flip side, if a particular prefix is very

“hot”, with many messages containing it, the cost of building a path of switch-blocks

for it will be amortized over many responses. In fact, the search may go faster while

traversing switch-blocks, as memory chunks for new-TIB and switch-blocks can be

fetched in parallel from DRAM and SRAM. A potential problem remains that even

if the initial array keeps average response insertion times low, the variance could be

180

quite high due to those responses that lead to long trie traversals. Subsection 8.6.2

sketches a possible solution to this problem.

The performance implications of these trade-offs are best evaluated with a proto-

type software implementation and simulation, followed by experimentation on a pro-

grammable switch. We have not implemented the switch trie or the insertion pro-

cedure for responses, but we have implemented packet TIB tries and section 8.5

evaluates the performance of intersecting a packet trie with a large, static TIB trie

playing the role of the switch trie.

8.4.1 Trie and Set Asymptotics

The asymptotic behavior of trie intersection does not yield itself to easy analysis.

Trabb Pardo’s thesis [184] yields a “hopelessly inscrutable answer” for the general

case of trie intersections, to quote the author, but a probabilistic analysis yields an

average time (number of comparisons) of O(m lg(n/m)) for sets N and M of size m

and n, respectively, where m ≤ n23. This is the same as the general worst-case bound

for merging two ordered sets. However, it has been shown [185] that if ordered sets

N and M can be divided into k blocks N1, N2, . . . , Nk and M1, M2, . . . , Ml (where

k = l ± 1) such that their merged set is an alternation of these blocks, then the sets

can be me merged in time Ω(k lg((n + m)/k)). The lower the k, the “easier” the

problem of merging the sets.

In our case, if requests have high locality, accessing mostly similar names, then the

names of a new response (set M) are likely to form a single contiguous block, so k ≈ 1

for the purposes of merging the names of M into the names of the responses set (set

N) and the bound becomes Ω(lg(n + m)), or assuming n + m ≈ n, Ω(lg n). The

worst-case of k = n similarly yields Ω(n). This tells us that conflict checking is highly

sensitive to the blocking factor k, and that the effort required to check two messages

of similar size against a responses set can vary by a factor of n/ lg n depending on

how their names interleave with the set.

23In our case, m would correspond to the number of names in a message while n would be the
number of names in a responses set

181

It also tells us that it is beneficial to keep the size n of responses sets as small

as possible, to reduce variability. This is something most designs would strive for

anyway, since it corresponds to lowering packet residency times and latency. However,

this variability is fundamentally problematic in the context of switches and routers,

which are usually designed with an eye towards worst-case performance, in order to

keep traffic flowing smoothly. Bounding worst-case performance is difficult when the

amount of processing for an incoming message can vary by an order of magnitude or

two. To avoid wild performance fluctuations and mitigate the potential for denial-of-

service attacks, a switch may have to bound the amount of processing it performs for a

requests or response, dropping it if the bound is exceeded. Since dropping responses

is expensive, the switch might shirk responsibility instead, as discussed in Section

3.6.3.

The main victims of such bounding policies would be large, complex requests (and,

consequently, responses) concurrently accessing many names interleaved at a fine

granularity. While dropping such requests as contention rises might sometimes be

appropriate to protect servers from overload, it might also lead to liveness problems

when applications are unable to get complex yet non-conflicting requests through to

servers. We briefly discuss an approach for mitigating such problems in chapter 9 on

future work.

8.5 Conflict Checking Performance Evaluation

The main objective of our experiments is to get a rough estimate for how many

intersection checks a single processor core can perform per second.

8.5.1 Experimental setup

As discussed in the previous section, one of the most important factors for conflict

checking difficulty is the locality of tries, that is: whether they have highly localized

accesses to blocks of similar names or whether the accesses are diffusely spread across

dissimilar names. Figure 8.8 shows examples of tries with low, medium and high

182

localities, corresponding to a high, medium and low block factor k, as discussed in

the preceding section.

Low-locality trie Medium-locality trie High-locality trie

Figure 8.8: Three tries with different localities

We will quantify locality in terms of the distribution of branches across trie levels.

For example, the “low-locality” trie of Figure 8.8, has all but one of its branches at

the top level. The “medium” locality trie has its branches at its median level, while

the “high” locality trie branches at its lowest level only. When generating tries for our

experiments we use a parameter l ∈ [0, 1] to shape locality, as follows. We distribute

the branches a trie we generate onto its levels according to a normal distribution

centered at maxl · l, where maxl is the maximum number of levels in the trie. We

use a standard deviation of one-eighth the maximum number of levels, i.e. 2 for

maxl = 16. We normalize the area of the curve between 0 and maxl to 1 and move

some of the uppermost branches down to lower levels if needed, since the top-level can

accommodate at most 16 branches, the second level 256 branches and so on. Hence,

l = 1 gives a highly local trie with most of its branches at the bottom, while l = 0

gives a trie with most branches at the top and low locality. Our test routines can

generate tries with a given number of nodes and locality factor.

We wish to evaluate our performance for a relatively large namespace, with names

of up to 64 bits. Choosing names at random from such as large name space is futile,

as the probability of tries overlapping beyond the uppermost levels dwindles rapidly.

Instead, we define a data trie containing a set of names and then randomly draw names

from that trie to create packet tries. The data trie is defined by a recursive pseudo-

random generator function and its nodes are only instantiated on-demand as names

are drawn from the trie. The generation takes as input the minimum and maximum

183

number of bits in names as well as the average density of child nodes at different

levels in the trie. To generate a trie, a random walk is made down the branches of the

data trie, choosing names and prefixes in a way that satisfies the specified branching

distribution. Our method is carefully designed as not to introduce any bias to the

selection. We use an implementation of the Mersenne Twister [186] algorithm from

its authors to supply the pseudo-random numbers that drive our experiments.

In our experiments, the length of names in the data trie varies between 16 and 64

bits, with an average length of roughly 40 bits. The data trie is highly dense at

the top levels, relatively sparse at the middle levels (around 6-15% block occupancy)

but highly dense at the bottom levels, since that’s where most of the actual data

items would reside. For each locality factor in our experiments, we scale the data trie

densities by trial and error to achieve a median conflict ratio of 5%, that is: until

roughly 5% of packet tries have at least one member in common with the switch trie.

The expected number of names in the data trie ranges from roughly a trillion to 10

trillions, corresponding to the amount of data stored in a small data center or sizeable

cluster of servers.

When running an experiment we first generate a switch trie by generating the desired

number of (response) tries with member counts varying uniformly between 10 and

500 and then merging the tries into a single trie. For each request trie size that is

to be evaluated, we generate a few thousand (request) tries according to the method

described here above. We then conflict-check each trie against the switch trie several

thousand times, measuring the time elapsed using the highest-resolution timer offered

by the host operating system (Windows XP SP 2). We ran our experiments in

a single thread on a 3.20GHz Pentium 4 with 1GB of RAM. Note that this is a

more powerful processor than some of the network processors we’re targeting. Intel

IXP2800 Microengines, for example, are clocked at 1.4GHz and have a simple, non-

superscalar architecture. On the other hand, a single IXP2800 chip can achieve

greater throughput as it comprises 16 such engines.

In all our experiments, we measure our implementation’s conflict-checking through-

put, measured in tries conflict-checked per second.

184

8.5.2 Varying Conflict Locality

In our first set of experiments, we vary between 5 locality factors ranging from 1.0 to

0.3. For each factor, we generate a switch TIB trie as described in the prior section,

containing 100 “response” tries. We then create packet TIB tries of varying sizes,

from 5 to 250 names, and intersect with the switch trie as described in the prior

section. The switch trie contains around 25.000 names, in each experiment.

Figure 8.9 shows our main performance results, showing the number of names in tries

on the horizontal axis and the millions of conflict checks per second on the vertical

axis. For tries with relatively high locality, the performance is pretty good. At 11.03

million checks per second, each check takes about 90 nanoseconds or 290 CPU cycles

on average. With 250 names per trie, the performance is still above 2 million checks

per second, corresponding to roughly 500 nanoseconds or 1600 cycles. Beyond a

certain threshold for trie locality, however, performance tapers off very quickly.

For concreteness, we also plot the approximate conflict checking throughput required

to sustain conflict checking at rates of 1Gbps and 10Gbps, using the formula that

each packet has 40 bytes plus 5 bytes per name.

 0

 2

 4

 6

 8

 10

 12

 14

 0 25 50 75 100 125 150 175 200 225 250

T
hr

ou
gh

pu
t (

m
ill

io
n

te
st

s/
se

c)

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4
l = 0.3
l = 0.2
1Gbps

10Gbps

Figure 8.9: Performance as trie localities are varied.

We note that since our experiments repeatedly intersect the same tries, most of the

memory accesses are served from the processor’s L1 cache, so the results represent

mainly processing time, not stalls for memory fetches. We feel that leaving out the

185

effects of the memory system is more instructive in our context24. For completeness,

we did test the reverse, worst-case order of testing a different trie every time, and this

reduces performance steadily from around 55% of what is shown here down to 15%,

for the largest tries.

In other respects, our results are conservative. For example, we do not use an initial

array in our experiments. An initial array for the first 16 bits (4 levels) removes the

need for 3 block comparisons, which would mostly remove the need to look beyond

the initial array in the case of high-locality tries of up to 50-100 names. Also, a

conflict ratio of 5% is on the high side of the 1-5% range considered typical [6]. Lower

conflict rations yield faster checks, as demonstrated by Figure 8.19 on page 193. Our

experiments also correspond to the worst-case traffic consisting solely of requests and

responses. A more typical scenario would have a significant part of the traffic consist

of non-conflict checked value requests and responses.

While our performance results do not transfer directly to network processor settings,

due to divergent processor and memory subsystem architectures, they indicate that

conflict checking at high rates may be feasible, as long as tries have high locality.

Continuing with our 1Gbps port example, it needs to handle roughly a million checks

per second to keep up with line rates with small packets of 100 bytes. This seems

to be within reach for a processor core of comparable power to a Pentium 4. Note,

though, that we do not include the effort required to update response tries upon

reception of response packets, which would likely cut their conflict checking rates by

at least half.

It is not as clear that a single core could sustain 10Gbps rates using our implemen-

tation, once other overheads have been factored in. But if multiple processors and

memories can be applied to the checking in parallel, that level of performance may

be achievable. For single-name, 45 byte packets, for example, a switch would need to

sustain roughly 22 million checks / second. The initial-array optimization or TCAMs

(see Section 8.6.2) would help, but sustaining these rates likely requires multiple

processors/cores working in parallel.

24A tuned implementation on a network processor would mask memory latency to a large degree,
using simultaneous multithreading to achieve a similar throughput but with higher latency.

186

Our conflict checking cannot sustain high rates when tries have low locality, and the

analysis of Section 8.4.1 suggests that high performance in that case is fundamentally

hard to achieve. Yet, tries corresponding to localities below 0.5 seem unlikely to occur

in practical name hierarchies, or can and should be avoided in most cases. A request

with significant branching in the uppermost levels of the name hierarchy would likely

be forwarded to multiple hosts, requiring an expensive two-phase atomic commit

which is expensive compared to requests executing on a single host. Hence, name

spaces and host allocation will aim to concentrate related data on the same hosts as

much as possible, leading to high trie localities. Generally, most of a name’s prefix

will correspond to some relatively high-level collection, such as a database relation

or a set of related objects. The last, least-significant bits of the name discriminate

between individual data items in that collection. Still, our algorithm might be able

to sustain 1Gbps of purely low-locality requests.

The performance difference between the high-locality and low-locality cases is largely

explained by the number of block comparisons performed, that is: the number of times

the intersection algorithm looks at a new block from each trie. While that number

remains relatively low for high-locality tries, it grows at a significantly faster pace for

low-locality tries. We believe the main reason is that low-locality tries “saturate” their

top levels with prefixes, and must therefore initiate searches down many branches,

comparing many blocks. High-locality tries, by comparison, have a thin “stem” that

“slices” through the dense switch trie top levels, since the maximum number of bits

their top-level bitmaps can have in common with the tree switch bitmap is 1.

 0

 20

 40

 60

 80

 100

 120

 140

 0 25 50 75 100 125 150 175 200 225 250

N
um

be
r

of
 b

lo
ck

s
co

m
pa

re
d

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4
l = 0.3
l = 0.2

Figure 8.10: Number of blocks compared.

187

Some of the jitter in Figure 8.9 can be explained by variations in the conflict ratio

obtained for different trie sizes. Controlling for conflict ratio variance completely

is hard without introducing bias, and in the case of the low-locality tries it grows

significantly with trie sizes. Figure 8.11 shows the conflict ratios occurring during

the experiment. Since conflict checking performance is very sensitive to the degree

of overlap between tries, the variations in conflict ratios show through in our other

results.

 0

 5

 10

 15

 20

 25

 30

 0 25 50 75 100 125 150 175 200 225 250

T
rie

 c
on

fli
ct

 r
at

io
 (

pe
rc

en
ta

ge
)

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4
l = 0.3
l = 0.2

Figure 8.11: Ratio of tries that conflict.

To evaluate the number of DRAM fetches that our implementation would incur,

we instrumented our implementation to note from which 32-byte section of memory

each block from the trie being checked against the switch trie was “loaded”. This

number corresponds to the number of fetches a network processor would have to

make to conflict check an incoming request or response, assuming 32-byte DRAM

bursts. Figure 8.12 shows the average number of chunks per check, leaving out the

low-locality cases to reduce clutter. We plot the number of chunk fetched per block

compared, in Figure 8.13. We are not sure why the extreme low-locality case has such

a low ratio. We suspect it is because these lowest-locality “fill in” the upper levels

underlying data trie, resulting in packet tries and the switch trie taking on the same

shape and ending up with the same arrangement of blocks into chunks.

Aside from performance, the size of the tries is of interest. We report the size of the

blocks alone, without including any overhead for child pointers. Figure 8.14 shows

the number of blocks for tries, while Figure 8.15 shows the average number of bytes

188

 0

 1

 2

 3

 4

 5

 0 25 50 75 100 125 150 175 200 225 250

N
um

be
r

of
 c

hu
nk

s
fe

tc
he

d

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4

Figure 8.12: Number of memory chunks “fetched” in tries.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 25 50 75 100 125 150 175 200 225 250

N
um

be
r

of
 c

hu
nk

s
fe

tc
he

d
pe

r
bl

oc
k

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4
l = 0.3
l = 0.2

Figure 8.13: Number of memory chunks “fetched” per block.

per name encoded in a trie. Unsurprisingly, the higher the trie locality, the more

efficient the encoding.

The results presented so far correspond to the case where a response is added to

the switch trie, since we make the intersection test find and report all intersections.

However, when conflict checking requests the search can be terminated as soon as the

first conflict is found. Figures 8.16 shows the performance in this case.

These results probably overstate the benefits for high-locality tries, as in our exper-

iments conflicting requests tend to have very many names in common when they do

189

 0

 100

 200

 300

 400

 500

 600

 700

 0 25 50 75 100 125 150 175 200 225 250

N
um

be
r

of
 b

lo
ck

s
in

 tr
ie

s

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4
l = 0.3
l = 0.2

Figure 8.14: Number of blocks in tries.

 0

 5

 10

 15

 20

 0 25 50 75 100 125 150 175 200 225 250

A
vg

 N
um

be
r

of
 B

yt
es

 p
er

 N
am

e

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4
l = 0.3
l = 0.2

Figure 8.15: Number of bytes per name encoded in tries.

conflict, as shown in figure 8.17. In a system where conflicting requests have fewer

names in common, the performance benefit would not be as significant.

8.5.3 Varying the Switch Trie Size

We ran our experiments again, this time varying the number of tries from which the

switch trie is built, from 100 to 10.000 tries. Figure 8.18 shows the performance

results with locality factor 1.0. The performance is relatively slightly affected by this

hundredfold increase in the size of the switch trie. Most intersection checks only

compare between 2 and 10 blocks near the upper levels of the trie, that are near

190

 0

 2

 4

 6

 8

 10

 12

 14

 0 25 50 75 100 125 150 175 200 225 250

T
hr

ou
gh

pu
t (

m
ill

io
n

te
st

s/
se

c)

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4
l = 0.3
l = 0.2
1Gbps

10Gbps

Figure 8.16: Performance as trie localities are varied, first-conflict only.

 0

 20

 40

 60

 80

 100

 0 25 50 75 100 125 150 175 200 225 250

A
vg

 N
um

be
r

of
 C

on
fli

ct
in

g
N

am
es

Number of names in tries

l = 1.0
l = 0.8
l = 0.6
l = 0.4
l = 0.3
l = 0.2

Figure 8.17: Average number of names in common to conflicting tries.

full density for all trie sizes (which is one of the reasons why it makes sense to use

an initial array). As soon as the “stem” of a packet trie gets beyond these dense

levels, the probability of it coinciding with switch tree stems decreases rapidly. With

reference to the analysis in Section 8.4.1, the effort clearly grows closer to lg n than

n.

8.5.4 Varying Conflict Ratios

In the final set of experiments, we vary conflict ratios, from 0 to 40%. We do it the

same way as we controlled for conflict ratios in the other experiments, by scaling the

191

 0

 2

 4

 6

 8

 10

 12

 14

 0 25 50 75 100 125 150 175 200 225 250

T
hr

ou
gh

pu
t (

m
ill

io
n

te
st

s/
se

c)

Number of names in tries

size = 100
size = 500

size = 1000
size = 10000

Figure 8.18: Performance as switch trie sizes varies.

block density factors of the data trie to increase or decrease the number of names in it,

thus increasing or decreasing the probability of conflicts. Figure 8.19 shows the results

for trie locality 1.0. The performance is quite sensitive to conflict ratios, due to the

higher number of blocks that must be compared, as Figure 8.20 shows. This poses a

problem; if routers are to help protect servers against contention overload, they must

be able to filter out conflicting requests rapidly enough. A server that is becoming

overloaded due to high conflict ratios might simply drop requests whose processing

exceeds some bound, assuming that the request probably conflicts. But again, this

graph represents the worst-case scenarios, as those requests that conflict have many

names in common and the intersection routine is set to find them all. Figure 8.21

shows the best-case scenario, where the conflict routine stops after finding the first

conflict. Real-world scenarios probably fall somewhere in between these extremes.

8.6 Possible Optimizations

This section discusses some optimizations that might enhance the performance of

conflict checking and atomic switches.

192

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 25 50 75 100 125 150 175 200 225 250

T
hr

ou
gh

pu
t (

m
ill

io
n

te
st

s/
se

c)

Number of names in tries

l = 0%
l = 3%
l = 5%

l = 10%
l = 20%
l = 40%
1Gbps

10Gbps

Figure 8.19: Performance as conflict ratios vary (all conflicts).

 0

 10

 20

 30

 40

 50

 60

 0 25 50 75 100 125 150 175 200 225 250

N
um

be
r

of
 b

lo
ck

s
co

m
pa

re
d

Number of names in tries

l = 0%
l = 3%
l = 5%

l = 10%
l = 20%
l = 40%

Figure 8.20: Number of blocks compared as conflict ratios vary.

8.6.1 Combining detection with Forwarding

It may be possible to amortize the cost of traversing the switch trie by storing forward-

ing information in it, looking up next-hop information while detecting conflicts. For

example, a tree switch-block could have associated with it the set of ports subscribing

to requests or responses, respectively, that contain a name beginning with the block’s

prefix. After all, this is essentially how Tree Bitmaps are used for high-performance

IP lookup; a block is associated with next-hop information for the prefixes termi-

nating in the block. Even if the switch’s entire multicast subscription database does

193

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 25 50 75 100 125 150 175 200 225 250

T
hr

ou
gh

pu
t (

m
ill

io
n

te
st

s/
se

c)

Number of names in tries

l = 0%
l = 3%
l = 5%

l = 10%
l = 20%
l = 40%
1Gbps

10Gbps

Figure 8.21: Performance as conflict ratios vary (first conflict only).

not fit into the switch trie, parts of it could be cached there since switch trie entries

correspond to “active” prefixes for which packets have recently been forwarded.

While this is an attractive idea, it must be judged in the context of the overall

multicast subscription management design. But within an autonomous subnetwork,

where the naming hierarchy can be made to correlate with the network topology

and forwarding tables can be kept compact, combining detection with forwarding

could provide conflict checking with minimal additional cost, at least in the case

of high-locality, non-conflicting requests. In Chapter 5 we do indeed model fine-

grained multicast subscription as a set-intersection problem, that is: the switch must

determine whether the intersection of a channel’s subscription and a packet is non-

empty. switch-blocks could possibly serve the dual purposes of storing subscription

information and determining forwarding ports as well as detecting conflicts, increasing

performance while reducing implementation complexity.

8.6.2 Hardware, TCAMs and Parallelism

The operation of comparing two TIB-blocks to find conflicts and/or the list of common

child prefixes may be amenable to hardware implementation, in an FPGA (Field

Programmable Gate Array) or ASIC, for example. A hardware implementation could

potentially perform a block comparison in a few cycles. We observe that Tree Bitmaps

have been implemented in FPGAs as well as an ASIC in a commercial router [178,

194

168], achieving excellent lookup performance bounded mainly by memory bandwidth

and latency. We anticipate that decoding the TIB-block list-structure may pose a

challenge, since it is geared towards iterative processing rather than combinational

logic.

Another way to boost conflict checking performance would be to utilize the Ternary

Content-Addressable Memories (TCAMs) available in many Network Processor archi-

tectures, such as the Intel IXP [112]. A TCAM is an associative memory supporting

constant-time lookup of the value associated with a key. The sizes of keys and values

can range from dozens to hundreds of bits and TCAM capacities can range from thou-

sands to hundreds of thousands of key/value entries. A TCAM achieves constant-time

lookup by searching its entries in parallel, using multiple comparator circuits. This

enables TCAMs to sustain tens to hundreds of millions of lookups per second. A

bitmask specifying don’t-care bits is included with each key, permitting matching on

a subset of a key’s bits. If multiple entries match a search key, the highest-priority

entry is returned. While TCAMs were designed for fast next-hop lookup of variable-

length IP address prefixes, their function is quite general and TCAMs have been used

to accelerate other types of packet classification tasks [187]. Their main drawbacks

are high cost and energy consumption, as compared to ordinary SRAMs.

An straightforward use of a TCAM would be to store an initial-array in it. One could

map each n-bit prefix present in the switch-trie to the TIB-block continuing that

prefix. While up to 2n TCAM entries might be needed in theory, only a few hundred

or thousands of entries would be needed in practice, depending on switch-trie sizes

and prefix distributions. In the best case when none of an incoming request packet’s

n-bit prefixes are present in the TCAM, the packet can be forwarded without stalling

for switch-trie memory fetches. Furthermore, conflict-free response packets can be

added to TCAM without stores to switch-trie memory.

This simple approach is effective when the n-bit prefixes of packet names are uniformly

distributed across the space of n-bit prefixes. But as data contention increases25, a

larger proportion of incoming packets will have an n-bit prefix match in the TCAM.

Also, using the TCAM as a high-speed memory does not take full advantage of its

capabilities. We now sketch a different solution that addresses the issue of biased

25Or if the name space is biased towards a relatively small set of n-bit prefixes.

195

names, using don’t-care bits for longest prefix matching. It essentially uses the TCAM

as an index into the switch-trie, enabling many conflict-checks to skip over its topmost

levels.

As an incoming response packet p is processed, a covering set of prefixes from p are

chosen for insertion into the TCAM, that is: a set of non-overlapping prefixes Kp such

that every name in p has some member of Kp as a prefix. The heuristics for choosing

the prefixes could be something as simple as adding the first few extended prefixes

encountered in p in a depth-first traversal26. The heuristics must be deterministic,

though, as the packet will be traversed again to remove it from the TCAM and

switch-trie, upon reception of its acknowledgement.

Prefixes are kept sorted by length in the TCAM from longest to shortest, so a sin-

gle TCAM lookup returns the longest matching prefix. A simple way to allow fast

insertion of prefixes in proper order is to partition the TCAM entries into “blocks”,

corresponding to different prefix lengths. Since name lengths are multiples of four,

m/4 blocks would be needed for prefixes of length up to m, e.g. 20 for prefixes of

length up to 80 bits. The TCAM is kept prefix-free like the switch-trie itself, that

is: no entry in the TCAM is the prefix of another entry in the TCAM or switch-trie.

The value stored into the TCAM for a prefix key is a trie-block, containing a member

bit-set and the addresses of child-blocks in SRAM and/or DRAM.

Let p be an incoming response packet. For each prefix k from Kp, the switch looks k

up in the TCAM. The main cases that can arise are:

1. There is no match. In this case, the switch trie has no names with k as a prefix,

and the conflict-checking of k is complete. Prefix k is added to the TCAM,

having as its value a trie-block pointing to the continuation of k in p’s DRAM

packet memory.

2. A matching prefix kT is found, where the length of kT is no greater than the

length of k. In this case, the conflict-checking of k “backs off” to kT and

26Applications could give “hints” by preferentially extension-encoding long top-level prefixes,
and/or those known to experience contention.

196

continues with the trie-block of kT . It may subsequently proceed to read switch-

trie SRAM blocks and ultimately, packet DRAM blocks. At the end, if k turns

out to be non-conflicting, it is added to TCAM, as in the first case.

3. A matching prefix kT is found, where the length of kT is greater than the length

of k. In this case, k cannot be added to the TCAM, since it is a prefix of kT .

The lookup process therefore continues separately for each prefix k · k′ of p,

where k′ is a child-prefix of k. Ultimately, these extensions of k will match an

entry of equal length or have no match, leading to case 1 or 2 here above.

Request packets are processed similarly, except they are not added to the switch-trie

and processing terminates immediately upon discovery of a conflict.

A single TCAM match can potentially skip a substantial number of trie-block compar-

isons. A 64-bit long match, for example, would skip sixteen 4-bit comparison steps,

potentially obviating the need for several SRAM and DRAM reads. The TCAM op-

timization is more robust to biased name spaces and long names than a (reasonably

sized) initial-array, as a greater number of prefix bits are be used to discriminate

between conflicts and non-conflicts.

Since only prefixes of conflict-free names are added to the TCAM, a match on a prefix

p implies that no TCAM entry for any proper prefix of p points to a switch-trie subtree

containing names with prefix p. Note however that the TCAM entry for p may be

shared by multiple response packets, whose prefixes continue in the switch-trie block

pointed to by p and ultimately separate into non-overlapping branches. A TCAM

entry is only removed once its bitmap becomes empty, meaning the entry no longer

points to any trie-blocks. Hence, “hot” prefixes present in many responses tend to

stay “cached” in TCAM, accelerating conflict-checking on these prefixes.

The TCAM optimization may be particularly effective in the case where acceleration

is most needed: for hot prefixes affected mainly by small response packets, containing

less than 10-20 names. Most of the names from such packets may be stored com-

pletely in TCAM, with long prefixes stored for the rest. Hence, many trie branches

of incoming request packets can be processed entirely through TCAM lookups, with

the rest requiring few memory fetches.

197

As a final, more general note, switches are inherently concurrent devices and conflict-

checking is an inherently parallel process. Packets bound for different ports can

obviously be conflict-checked in parallel, with multiprocessor cores assigned to sets of

ports, e.g. Multiple messages bound for the same port can also be checked in parallel,

although this requires careful coordination to ensure the conflict checking fulfills the

AtomicSwitch automaton specification. Furthermore, a particular trie can be conflict-

checked in parallel; when two blocks have multiple prefixes in common, each prefix

can be processed independently of the others. They might be processed concurrently

by different thread contexts on CPUs supporting hardware multi-threading, for ex-

ample. Hence, there is considerable scope to parallelize conflict checking to scale its

performance.

8.7 Discussion and Related Work

This section discusses related work on tries, as well as issues related to generalizing

TIBs to other operations and conflict relations.

8.7.1 Related Work on Tries

Two well-known compressed trie variants are the Patricia Trie [188] and the Ternary

Search Trie [189]. A trie can be converted into a Patricia Trie by removing each single

child from the trie and appending its character to the label on its parent edge. Hence,

edges are labeled with variable-length character strings, not characters, reducing the

number of nodes. A Ternary Search Tree (TST) combines aspects of binary search

trees with tries. A TST node’s left (right) pointer points to a sub-TST continuing

all strings that are lexicographically before (after) the node’s prefix, while its middle

pointer points to a sub-TST containing all strings that begin with the node’s prefix.

Bagwell [190] describes a data structure similar to Tree Bitmaps, dubbing it an “Array

Mapped Tree” and tracing the idea’s lineage to Bird in 1977 [191]. Guy Jacobson

[192] describes an asymptotically optimal way to encode static binary trees, using bit

sequences to encode absence and presence of child nodes. The Shape Shifting Trie

198

[193] is an elegant trie variant based on Jacobson’s encoding, where the underlying

“shape” of a block is not a fixed, full binary trie but can vary according to the shape

of the trie being encoded. This allows longer stems to be encoded within a single

block. That data structure is geared explicitly towards hardware implementation,

though, and intersections cannot be directly computed with bitwise AND unless the

shapes of the underlying blocks conform.

8.7.2 Generalizing to Arbitrary Operations

The primary objective of our experimental evaluation was to get some empirical data

about the set-intersection performance levels achievable with a Tree Bitmap-like data

structure. But to use TIBs or some other suitable data structure for conflict checking

in practice, the repertoire of operations must be expandable beyond simple reads and

writes.

This issue could be addressed on an ad-hoc basis within isolated subnetworks, or

Metanetwork [154], with application-specific packet formats installed into switches.

However, the basic function of conflict detection is remains basically the same, re-

gardless of application domain. Still generality must be weighed against performance.

Given the performance constraints27, it seems likely that switch conflict checking soft-

ware would be a fixed, compiled binary, upgraded only as a part of system evolution.

This may limit the number of available ADTs in an atomic network to a few dozen or

hundreds, at best. On the other hand, availability of a good set of basic abstractions

such as numbers, strings, lists, maps, queues, sets, objects and trees, for example,

could facilitate interoperability between atomic applications.

Our experiments needed only a single bit to store operation information: whether

the operations was a read or a read/write. For other ADTs, more operations may be

available and some conflict relations may take operation arguments or return values

into account. However, TIB-blocks can only accommodate so many bits in its list, e.g.

up to 8 bits per entry. A reasonable compromise might be to split conflict detection

into two parts: a detection based on up to 27 coarse-granularity operation conflict

classes, detecting a superset of all conflicts. A conflict detected at this coarse level

27And in some system environments: code size constraints.

199

would lead to a second stage of conflict checking, using more detailed information

about the operations in question. We note that the overflow block system can be

easily extended to allow chaining of overflow blocks, supporting variable-length data

in a relatively efficient way. Aso, a TCAM could possibly be used to quickly look up

the conflict properties of a pair of operations. But the present dissertation does not

further investigate these issue.

200

Chapter 9

Future Work

This section discusses future directions and extensions of the work presented in this

dissertation, some of which are already in progress and others that are more specu-

lative in nature. While concurrency control is one of the pillars of distributed atomic

execution, it also rests on two other foundations: persistent recoverability and atomic

commit.

Persistent recoverability refers to the fact that in an atomic execution a client should

only receive an operation’s response if the operation’s effects have been persistently

committed to the system’s state. However, the persisting of operation effects in (slow,

non-volatile) stable storage is often at odds with the desire to send back operation

responses as quickly as possible. A common practical approach is to append operation

records to a persistent log upon execution, while persisting their state effects in a

background process. When a server recovers after a crash, it reconciles its log with

its persistent state, completing the effects of committed operations while undoing

the effects of aborted ones. Nonetheless, the logging delay can significantly increase

response times in systems where persisting a log record takes a long time as compared

to executing a request.

Atomic commit refers to the fact that operations must be atomic even if they span

multiple servers. While this dissertation is intentionally restricted to systems where

each request is executed on a single server host, transactional systems must generally

be able to execute operations involving multiple hosts. An atomic commit protocol

is required to ensure that a request is either successfully committed at each host it

involves or else that it is aborted at each host. Atomic commit is an inherently expen-

sive algorithm, as it generally requires at least two message rounds as well as locking

201

of affected state while a request’s fate is being determined. This determination is usu-

ally performed by a designated host called the request’s coordinator. Unfortunately,

failure of the coordinator can lead to the request being hung indefinitely, getting

neither committed nor aborted.

This chapter sketches ideas for dealing with recoverability by using switch packet

memory as stable storage, removing logging delays. It then sketches a new atomic

commitment protocol that uses Atomic Transfer to achieve “stateless coordination”,

where switches act as coordinators for atomic commit without retaining any state for

requests. The protocol assumes and retains the property that requests are addressed

to variable names instead of servers and is furthermore transparent to requesters.

The chapter then sketches some ideas for optimizations aiming to further lower request

response-times, motivated mainly by the desire to lower the rate of concurrency-

control conflicts in cached systems such as those of Chapters 4, 6 and 7. These

optimizations exploit the guarantees of Atomic Networks for aggressive, speculative

execution that might otherwise not be practical. Finally, the chapter briefly discusses

security and replication issues, which have otherwise been left outside scope.

9.1 Resilient Transfer

As outlined in the introduction, transactional systems commonly use operation log-

ging to persist the execution of an operation before transmitting its response. If the

response were sent any earlier and the server crashed between sending the response

and persisting its effect, clients might erroneously receive the response for an oper-

ation that apparently never executed. Logging is commonly performed by forcing

a log record to disk, waiting until the record has been persistently written to the

disk’s platter surface. This can be a significant source of latency, as even the fastest

disks take several milliseconds to complete a write operation. Solid-state disks (SSDs)

promise to lower this latency to tens or hundreds of microseconds, reducing the im-

pact of logging delay. Yet, this corresponds to hundreds of thousands of processor

cycles, so the delay remains significant in many cases.

202

There have been proposals for redundantly storing data in multiple volatile memory

banks [127, 128] to create fast28 stable storage. If banks fail independently and

are backed by a battery and/or uninterruptible power supplies, the probability of all

banks simultaneously losing their contents can be made arbitrarily small. One scheme

would be for server hosts send their log records to other hosts and regard their records

as stable upon receiving f acknowledgements of receipts, where f is the number of

failed banks that should be tolerated. Still, this may result in longer delays than

SSD-based logging, as sending and receiving logging messages and ACKs can take

tens or hundreds of microseconds, besides consuming host resources.

Our observation is that the switches on a network path “naturally” create redundant

copies of requests as they store and forward them. Hence, all that is required for

switches to serve as redundant memory banks is for each switch to buffer each request

packet until it knows that the f -th next-hop switch has received it. This ensures that

a request is buffered on at least f switches at any instant in time. In the scheme

we detail in the next section, a server can execute a request and send a response

immediately without waiting for a log record to be written. Once the log record

has been written in the background, the responder acknowledges the request to the

switches, enabling them to purge their copies of it. If the responder fails before

writing the log record or sending an ACK, the switches retain their copy of the

request until they succeed in retransmitting it. Once the responder recovers, any

non-acknowledged requests are thus replayed to the responder, allowing it to rebuild

the state that existed following its last acknowledged request. Even if up to f − 1

consecutive switches on a forwarding path fail simultaneously, the non-faulty switch

preceding that segment of the path will retransmit any lost packets, ensuring eventual

delivery to the f -th switch on the path as long as the network’s topology remains

constant.

9.1.1 Resilient Transfer protocol sketch

This section sketches a protocol for fault-tolerant resilient transfer (RT) in some

detail. The protocol adds limited overhead to switches, apart from increasing the

amount of memory a switch requires to buffer packets. That amount increases roughly

28A store to DRAM can complete in tens of nanoseconds.

203

by a factor of f , where f is the maximum number of simultaneously failed switches

tolerated. Since switches are generally designed for high reliability, f = 2 or f = 3

should suffice for most applications.

The core idea is that an ACK from a next-hop switch i acknowledges not only the

reception of packets by i but also the reception of packets by switches up to f − 1

hops beyond i. Instead of sending a single sequence number a acknowledging receipt

of all packets up to and including a, switch i sends an f -tuple A = (a0, a1, . . . , af−1)

of sequence numbers where an acknowledges that all switches n hops beyond i have

received all packets up to and including an, for n ∈ [0, f − 1]. Note that an is a lower

bound, as some switches n hops removed may have received packets with sequence

numbers exceeding an.

Each packet p has encoded in it a fault tolerance fp ∈ [0, f], indicating the number

of failed switches the packet’s transmission must tolerate. Since fault-tolerance is

assigned on a packet-by-packet basis, a resilient network can carry a mixture of un-

reliable (fp = 0), reliable (fp = 1, corresponding to hop-by-hop reliable transmission)

and fault-tolerant (fp > 1) packets. Let sseq(p)d denote the send sequence number of

a packet p enqueued on channel d ∈ CHANNELSi, that is: the number of packets

enqueued ahead of p on d. A switch buffers a packet p enqueued on d until it receives

an ACK tuple A via d where afp ≥ sseq(p)d, since then it knows that the packet is

buffered on the next fp switches on every path that p is forwarded along.

Let rseq(p) denote the reception sequence number of a packet p received on some

channel c ∈ CHANNELSi, that is: the number of packets received ahead of p on

c. In a typical hop-by-hop reliable scheme, a switch would periodically send the

latest rseq back on c in an ACK, to acknowledge the reception of packets. In the

RT protocol, i must also infer and send back the corresponding rseqs of the f − 1

next-hop switches to which packets from c have been forwarded. To do this, i must

“translate” incoming ACK rseqs from those channels to outgoing ACK rseqs for c.

Switch i can do this by tracking for each packet p enqueued onto a channel d the

channel c = rcvChan(p) on which p was received, as well as rseq(p) and sseq(p)d.

It maintains for each pair of channels c, d ∈ CHANNELSi and fault-tolerance level

k ∈ [1, f] the latest (greatest) rseq number of a packet received on c and forwarded on

d that has been acknowledged by all switches k hops removed from d, which we denote

204

by #ackedc,d,k. This information is updated as new acknowledgements are received.

For example, if an acknowledgement arriving from a channel d allows a packet p with

pf = 2 to be purged, then #ackedc,d,2 is increased to rseq(p), where c = rcvChan(p).

When switch i sends an ACK A = (a0, . . . , af−1) on c, it uses as the value for ak the

lowest acknowledged sequence number among the channels forwarding to c, that is:

ak = min({#ackedc,d,k | d ∈ CHANNELSi}).

A problem can occurs, if packets temporarily cease to flow from some channel d′

to c, halting the flow of ACKs for packets enqueued on d′. Then the ACKs sent

on c will be stuck at the rseq of d′, while #ackedc,d,k grows for d 6= d′, leading to

unbounded buffering. To remedy this, switch i maintains a counter #rsMaxc,d,k,

containing the rseq of the latest packet from c with fault-tolerance k enqueued on d.

Hence, #rsMaxc,d,k - #ackedc,d,k is the number of packets with redundancy degree

k forwarded from c to d that have yet to be acknowledged back via d. When that

number is zero, no packet from c with redundancy degree k needs to be retained for

d, so we omit #ackedc,d,k from the computation of ak. In the case where it is zero

for all channels, we define ak as #rseqc, the highest reception sequence number of

any packet received on c29. Formally, we define the ACK A that should be sent on

channel c as:

Definition 9.1 For any c ∈ CHANNELS i on a switch i, the current ACK for c is

the tuple A = (a0, a1, . . . , af−1) where for each k ∈ [0, f−1] : ak = min({#ackedc,d,k |
d ∈ CHANNELS i ∧#ackedc,d,k < #rsMaxc,d,k} ∪ {#rseqc}).

We must account for the fact that switches sometimes send their own packets, without

any corresponding packet having been received, for example their own ACKs. Any

such packet p is enqueued as having no associated channel and no rseq. It may have

an arbitrary fault-tolerance and can be reliably transferred like other packets, but is

ignored for the purposes of updating #ackedc,d,k fields.

Clearly, A is an underestimation of the number of packets buffered on neighboring

switches, so switches generally buffer packets slightly longer than they have to. The

overshoot increases linearly with the fault-tolerance level f , and the worst case occurs

29Here we mean the highest sequence number of a packet received in-order and without sequence
number gaps.

205

when one of the paths to which a channel’s packet are forwarded has a significantly

slower transmission rate than the other paths. However, such rate differences would

lead to overflow in any reliable transmission scheme, so RT does not introduce a new

problem in that regard.

A host a ∈ HOSTS also maintains send and receive counters, but sends ACKs of

the special form (#rseq,∞, ...,∞), that is: a acts as if each received packet had

been acknowledged by all “switches” on the non-existent path extending beyond a.

This ensures that switches can purge packets that a has acknowledged, regardless of

the packet redundancy degree or network path lengths. Hosts retransmit and purge

outbound packets in a similar manner as switches do.

9.1.2 Recoverability through Resilient Transfer

RT is not intended as a general alternative to end-to-end reliable transfer, but rather

as a mechanism for end-host recoverability without logging delays. The basic idea is

that hosts store their send and receive packet counters, and use them to recover after

failures and ensure exactly-once semantics for request execution. Switches maintain

send and receive sequence counters persistently “forever”, obtaining them back from

neighboring switches upon recovering from failures. Hence, these sequences can be

used as a part of end-host recovery.

A server host b executes requests and sends responses immediately, without waiting

for a log record to be persisted. Host b persists log-records in the background, includ-

ing with each record the rseq sequence number(s) of the request packet(s) causing

the response. Crucially, b only acknowledges a request after b has persisted the cor-

responding log-record. Since request response-times are now independent of logging

delay, b can persist groups of log records together, amortizing the write operation’s

latency over many records 30. Upon recovering from a failure, the home switch i of

b retransmits a superset of the requests that b had yet to persist at the time of fail-

ure. Host b recovers by replaying its log to obtain the state following the last request

packet p present in the log, updating its rseq to n = rseq(p) in the process. It then

30As log records are relatively small in general while the bandwidth of block-oriented storage
devices is usually maximized for large, sequential writes, logging should be able to keep up with
server throughput increases.

206

(re)executes received requests with receive-sequence numbers exceeding n. Switch i

detects and drops any duplicate responses (those with sequence numbers less than i’s

rseq for the channel connecting i to b) so the first response forwarded onto the network

represents the “continuation” of b’s execution beyond the point where it failed. We

note that b may alternatively skip logging completely, proceeding to directly update

its persistent state, as long as it can accurately track the progress of these updates

[125]. In any case, average response times can be reduced by a factor of up to φ,

where φ is the fraction of request response times due to waiting for persisting of log

record.

Our scheme, like any recovery scheme, is complicated by non-determinism in request

executions, caused by concurrency and scheduling decisions, for example. The se-

quence of requests executed by a recovering server, in particular, must contain those

already sent as a prefix. Non-determinism can be handled by allowing servers to in-

clude a determinant [194] in a response message r, that is: information that suffices

for the server to reconstruct any non-deterministic choices it made as it originally

executed q, the corresponding request. The determinant for q is carried with r up

to f hops into the network31. When retransmitting requests, a switch includes any

determinants received with responses to those requests. Upon recovery, a server

therefore receives its determinants back with any retransmitted requests, allowing it

to re-create their execution exactly. Determinants are garbage-collected on switches

as the corresponding request packets are purged.

As an aside, a requester requiring exactly-once semantics for its requests (such as

a work-flow processor atomically dequeuing and executing tasks from a task queue)

could perform server-like recovery by including itself as a responder for its exactly-

once requests, turning them into multi-server request32 (see Section 9.2 here below),

although we do not develop this idea further here.

A failed switch recovers by receiving re-transmitted packets from its neighbors, includ-

ing sequence numbers. Neighboring switches detect and drop any duplicate packets

forwarded by the recovering switch during this period. Hence, it is possible to avoid

31The determinant could also include undo information, to support undo/redo recovery [125]
32We prefer the term multi-server transaction instead of “distributed transaction”, as single-server

transactions are distributed despite being handled by a single server.

207

packet loss despite the simultaneous failure of up to f consecutive switches on a net-

work path. Observe, though, that switches are inherently non-deterministic due to

their scheduling of multiple packet flows onto an outbound channel. The order of

packets sent can be re-created with the help of determinants. We leave these details

to future work.

Our scheme is related to work on replay recovery for systems comprised of distributed

processes sending and receiving messages [194, 195, 196]. However, these schemes are

very general, dealing with arbitrary networks of stateful nodes performing arbitrary

computations. They are therefore more complex and more expensive in terms of

bandwidth and processing than our network and persistent-state-centric scheme. For

example, processes must sometimes send auxiliary messages for recovery purposes,

since redundancy is only achieved when multiple process nodes buffer messages. By

contrast, our scheme relies on the “natural” redundancy occurring as switches for-

ward packets, and assumes the specifics of store-and-forward processing, resulting in

lower overhead on switches and hosts. The actual overhead is best evaluated using a

prototype implementation, but this awaits future work.

As a final note, our scheme has some security implications. For example, a crashed

server relies on switches to hold on to its non-persisted requests until the server

recovers. This may be acceptable in practice, as the server chiefly depends on the

last f switches on its inbound path(s) to store the requests, and one or more of these

switches are likely a part of the server’s trust domain. Also, all f switches would have

to renege on their duty to store the request for it to be lost. We don’t claim tolerance

to Byzantine, arbitrary failures, but these issues would have to be considered in a

robust implementation.

9.2 Multi-server Requests

As mentioned in the chapter’s introduction, this dissertation limits its scope to single-

server transactions, for simplicity and to keep separate the issues related to atomic

commit. However, scalable systems need to able to execute atomic transactions across

multiple hosts. While data name spaces can and should be designed to minimize the

need for such transactions, they often cannot be avoided altogether.

208

This section sketches a novel approach for using atomic switches to accelerate the

commit of multi-server transactions, showing that Atomic Transfer combines with

atomic commit. In our approach, switches function as commit coordinators but in

a stateless manner, exploiting name-based packet forwarding and atomic transfer to

distribute most of the coordinating duties among network switches and server end-

hosts. But first we must consider the issue of multi-packet requests and responses,

which arises in practice even with single-server transactions.

9.2.1 Multi-packet Messages

The models of the preceding chapters assume that requests and response messages are

forwarded as atomic units, effectively corresponding to network packets. In practice,

some requests and responses may be too large to fit in a single packet of maximum

size, and must therefore be broken up into multiple packets. A simple way to process

such a packetized message m would be for each switch to buffer the packets of m

and re-assemble m in memory before processing it. However, this could significantly

increase latency, implementation complexity and the amount of packet buffer space

needed on switches, in addition to placing a de facto limit on the maximum size of

messages.

It is more attractive to retain packet-by-packet processing on switches. This is pos-

sible, by placing the following restriction on the way requests and responses are

split into packets: if a request q ∈ Q and response r ∈ R where conflicts(q, r) are

split into respective sets of packets PQ and PR, then there exists a pair of packets

pq ∈ PQ, pr ∈ RQ such that conflicts(pq, pr), where the domain of conflicts has been

extended to packets. This ensures that if messages q and r cross in the network,

packets pq and qr will cross too and be detected as a conflict. The naming scheme

of Chapter 5 can easily be seen to have this property, if each name/operation pair of

each packetized request or response can be decoded from a distinct packet.

Message name tries could be broken up into packets by introducing a new type of

entry list code “11” in the TIB format of Chapter 8, denoting a prefix that continues

in another packet. This encoding also enables a host to know when it has received its

209

part of a request or response: when all such continuation prefixes have been “filled

in” by sub-tries from other packets.

While packetization preserves the correctness of Atomic Transfer, it reduces the effec-

tiveness of switches in shielding end-hosts from receiving conflicting request packets,

as it cannot be known that two messages conflict until their first pair of conflicting

packets is detected. In the worst case, where conflicting messages always have a single

pair of conflicting packets, roughly half of the packets of a conflicting request q can

be expected to be forwarded through the switch that detects the conflict. The rest

of the packets of q, however, can be dropped by having the switch send a request

cancelation packet cq towards the sender of q, defined to conflict with all packets of q.

As a compensating factor, multi-request packets will generally be large and therefore

relatively cheap to receive and conflict-check on a per-byte basis, as indicated by the

experiments of Chapter 8. Also, Section 9.3.1 discusses how conflict detection can be

shifted from hosts to switches completely.

If the conflicting packet of q is not the first packet of q then a copy of it might

be forwarded on to the responder, to notify about the dropping of q and prompt it

to purge the packets of q it has already received. This is only be an optimization,

though, as responders would time out incomplete requests to handle failed requesters,

anyway.

We leave to future work the extension of the results of Section 3.7.1 to packetized

messages, to evaluate the percentage of conflicting packets from packetized messages

that can be expected to be detected on end-hosts as a function of contention. As a

practical heuristic, though, we note that if requesters know which names are most

likely to be contended, they can encode their operations for those names in the first

packet(s) of any request involving the names.

9.2.2 Handling Multi-server Requests

The processing of multi-server requests must preserve two properties that trivially

hold for serializable executions of single-server requests in our model:

210

1. Global consistency, meaning that a request is either committed at each of its

cohort servers where it executes or committed at none of them. It cannot be

committed at one cohort and aborted at another, for example.

2. Global serializability, meaning that there must exist a global serialization order

for all committed transactions in a system of hosts, that is compatible with the

local serialization order at each host.

As is well known, local serializability at each host does not imply global serializability

across hosts, as two transactions may be ordered differently on different hosts. Con-

sider, for example, mutually conflicting read/write requests q1: “a = 1, b := 2” and

q2: “b = 1, a := 2”. The first request assumes that a has value 1 and assigns value

2 to b, while the latter assumes b equals 1 and assigns 2 to a. If host(a) 6= host(b)

then host(a) might receive and execute sub-requests “a = 1” of q1 and “a := 2” of q2

in that order, while host(b) might receive and execute sub-request “b = 1” of q2 and

“b := 2” of q1 in that order. Although the requests conflict globally and no global

serialization order can include both requests, the servers cannot observe the conflict

based on their local information.

The following two sections sketch approaches to ensuring global consistency and serial-

izability for multi-server requests. These approaches preserve the naming abstraction

of our models, and a request is issued the same way regardless of whether it will be

served by one or multiple servers. A requester plays no role in the atomic commit pro-

tocol and remains oblivious to the mapping of names to hosts, promoting flexibility

in the allocation of data to servers and load-balancing, etc.

9.2.3 Global Consistency with Atomic Transfer

Atomic commit of a multi-server request q generally requires a two-phase commit

(2PC) [2, 6], which works roughly as follows. In the prepare phase, each cohort of

q receives and executes its sub-request of q and sends back a prepare message for q

to every other cohort, signalling its readiness to commit q. Upon learning that all

the other cohorts of q have prepared q, a prepared cohort enters its commit phase,

irrevocably committing the effects of its sub-request of q and sending a response. On

211

the other hand, if some cohort sends an abort message in lieu of a prepare to indicate

that it cannot process its part of q, then all cohorts abort q, ensuring that q has no

effect on the state of any cohort.

Ensuring consistency is a challenge with failure-prone servers and communication

channels, as the cohorts must agree whether to commit or abort the request even as

some of them are crashed or partitioned. The standard solution is to let a central co-

ordinator host oversee the 2PC processing and make the final abort/commit decision.

The cohorts send their prepare or abort messages to the coordinator, which decides

the request’s fate and communicates its decision back to the cohorts in a commit or

abort message. Since the central coordinator has full autonomy in making its deci-

sion (while the cohorts have none after sending their prepares) it can handle crashed

cohorts and failed communication links by deciding to abort, after a time-out, for

example.

Two-phase commit requires two rounds of messages between the coordinator and

the cohorts, increasing request response time. Furthermore, after a cohort sends

its prepare message for a request, the request is in-doubt at the cohort and any

conflicting request must be delayed or dropped, pending the final commit or abort of

the in-doubt request. Worse, if the coordinator crashes the cohorts remain blocked

until the coordinator recovers and resumes processing. While there are non-blocking

alternatives to 2PC [197], they add another round of messages, significantly increasing

response times in the normal case.

Our proposed protocol does not fundamentally deviate from traditional 2PC, requir-

ing two message rounds and blocking on coordinator failure. However, we attempt to

minimize message latency and the probability of coordinator failure by deputizing the

switch iq that first splits a request q as the coordinator for q. Switch iq stamps q with

its identity, alerting subsequent switches that they are not the top-level coordinator

for q. However, switch iq retains no state for q and performs almost no special pro-

cessing for multi-server requests beyond forwarding messages and performing Atomic

Transfer, limiting additional switch complexity. Instead, the tracking of the progress

of q is handled entirely by the cohorts. If a cohort suspects that progress has ceased

due to another cohort failing, it challenges the request by sending a special packet

to the coordinator switch. As described later, the switch resolves race conditions

212

between a challenge and a final, missing prepare message using Atomic Transfer. Our

protocol is interesting in that the cohorts communicate only in terms of names; they

track neither the number nor identities of other cohorts.

We extend our model so that qHop is no longer a function, but rather a relation that

forwards a request packet on each channel leading to a host of a name encoded in

the packet. This somewhat complicates the definitions of conflict locality without

fundamentally altering them. A server host b knows that the request q to which a

packet p belongs is a multi-server request if at least one name or prefix in p (including

continuation prefixes) is not mapped to b. In that case, b executes its part qb of q

only tentatively, but sends a prepare packet that contains prefixes that cover each

name of qb, indicating that the operations on those names are prepared. The prepare

packet is sent back to coordinating switch iq, which forwards it to the other cohorts.

Once b has received a set of prepare packets covering the whole of names(q), it knows

that all other cohorts have prepared q and so commits qb, sending out the response

packet(s) for qb.

Prepare packets could be routed back to coordinator switch iq by addressing them to

iq directly (iq having stamped its network identifier on the packet before forwarding it)

or by sending packets “upwards” in hierarchical networks, e.g. The thornier question

is how iq can know where to forward prepare packets for q, and how a cohort b knows

when all the names of q have been covered by a prepare, given that iq maintains

no state for q and that b only receives those packets of q that are relevant to b. A

straightforward solution is for the issuer of a multi-packet request to always send a

survey packet as the first packet of any request, containing continuation prefixes that

cover q as far down q’s name trie as there is space in a single packet. When host b

is prepared, it converts the survey packet into a prepare packet by marking its own

branch(es) of the packet’s trie as prepared and sending it to iq, which forwards /

multicasts the packet normally to the other cohorts, as per the packet’s prefixes. We

note that the concise encoding of Chapter 8 can encode hundreds of prefixes in a

single 1500-byte packet, but our method could be extended to allow multiple survey

packets if needed.

A problem can occur if the survey is not “detailed” enough, so a switch would have

to forward the survey packet based on a continuation prefix. The switch can preserve

213

correctness in this case by aborting the request (see below), prompting the requester

to retry with a more detailed survey. Alternatively, if the survey is being forwarded

to a relatively small sub-network, the switch may simply flood the packet onto the

subnetwork, which guarantees that all cohort hosts will receive it.

In the failure-free case, cohort b sends a prepare packet for its part of request q and

adds prefixes from incoming prepare packets to the set of prefixes it knows to be

prepared. Once all names of q are prepared, b commits qb and sends response rb,

its part of the response r to q. On the other hand, if b decides to abort q instead

of preparing it, it converts the survey packet into an abort packet and forwards to

the other cohorts, via iq. If b receives such an abort packet it aborts qb immediately.

Note that Atomic Transfer works the same as before, i.e. requests conflicting with

rb are dropped. If the conflicting request q′ is a multi-server request detected below

its coordinating switch iq′ , then q′ might be forwarded on as an abort request, to

expedite the aborting of q′.

The problem of crashed and partitioned cohorts is handled as follows. If a cohort b is

dissatisfied with the progress of q, because b has not received any prepare messages for

some duration of time, for example, it challenges q by converting the survey packet

into a challenge packet pc and sending to iq. Note that it is not safe for b to send

an abort packet, since b has already sent its prepare packet and some cohorts may

already have committed q, so sending an abort could lead to violation of atomicity.

Rather, pc is converted into an abort packet pa at iq, but only if it is safe to do so.

This requires handling the possible race condition between pc and a remaining prepare

packet pp that may already be in transit. Our solution is to define challenge packets

and prepare packets as being in conflict, so that prepare packets dominate challenge

packets and cause them to be dropped. Hence, if a prepare packet pp is received at

iq before pc, then pc is dropped and does not become an abort packet. On the other

hand, if pc is received before pp, then pc becomes an abort packet pa that is forwarded

to all cohorts. By defining aborts as conflicting with and dominating prepares, no

cohort will receive pp and safety is ensured. Note that this solution requires that a

cohort b not commit a request before receiving its own prepare packet. Our scheme

ensures that a request can be aborted and unblocked as long as a single cohort is alive

and connected to the coordinating switch.

214

In traditional 2PC, failed and partitioned cohorts query the coordinator about the

fate of a pending request q, upon recovering. This is not possible in our scheme,

as the coordinating switch iq does not maintain any state for q. Instead, a recover-

ing cohort b sends a recovery packet to the other cohorts, which simply respond by

retransmitting prepare or abort packets, as appropriate. Theoretically, this entails

cohorts remembering the fate of each multi-server requests they execute “forever”,

since a recovering host may query about it at some arbitrary later time. In practice,

this state (a bit per request) can be discarded using some garbage collection protocol

or simply timed out, assuming an upper bound on the delay from when a server fails

until it is brought back online or permanently removed.

It may appear that our protocol suffers from O(n2) message complexity, as each cohort

sends it prepare to every other cohort. This compares unfavorably with the O(n)

complexity of sending n prepares to a stateful coordinator that sends n “commit” or

“abort” messages back. However, since coordinating switch iq multicasts messages,

only a single prepare is received and sent over each network link in the forwarding tree

of q (including the links incident to iq) for each cohort, so from that perspective the

complexity of our protocol is also O(n), albeit with a higher constant. The number

of round-trip message hops until a host can commit a request is also the same in

both cases, but our protocol may yield an improvement in practice as switches can

generally forward messages more rapidly than end-hosts. Furthermore, our protocol

chooses coordinators efficiently, i.e. as close to the cohorts in the network as possible,

localizing 2PC communication and reducing latency.

As stated before, this scheme blocks upon coordinator failure. However, relatively

fixed-function switches can be engineered to achieve far higher availability than gen-

eral application end-hosts, making coordinator blocking a commensurately rarer event.

Furthermore, since the coordinator switch is stateless, it may be possible to devise

a scheme whereupon a redundant backup switch takes over coordination duties for a

failed switch, although we leave consideration of this to future work.

215

9.2.4 Global Serializability with Atomic Transfer

Atomic Transfer can be used to ensure local serializability of execution at a single

responder host. However, as illustrated in by the example of Section 9.2.2, local seri-

alizability at each individual does not imply global serializability across all hosts, i.e.

that there exists a sequential execution corresponding to the execution of all com-

mitted requests on all server hosts, including requests that span hosts. We propose

two possible solutions for achieving global serialization for multi-server transactions:

bloated requests and gateway ordering. The first is generally applicable, while the lat-

ter is more efficient but only applicable to certain network topologies, albeit common

ones.

Global serialization violations stem from the fact that cohort servers of a request q

have only a partial view of q; a cohort b only detects conflicts on variables that are

hosted on b. A simple “brute-force” solution, therefore, is to ensure that each cohort

receives entire requests, including the parts involving names not hosted on the cohort.

This bloating of requests, as we term it, enables each cohort to detect all conflicts,

the same as if requests were being sent to a single server. In the example of Section

9.2.2, if host a were to receive q1: “a = 1, b := 2” first and q2: “b = 1, a := 2”

second, then a could detect the conflict on variable b even though b is not hosted

on a, by performing conflict-checking processing on the whole of q1 and q2, including

the sending of a response for a name not hosted on a! We note that such “bloated

responses” do not have to be forwarded beyond the node splitting the corresponding

request.

Bloating does lead to a higher cost in bandwidth and conflict-checking, as requests

are sent in whole instead of getting split into sub-requests per cohort. However,

bandwidth is an increasingly abundant resource [183], and the added conflict-checking

burden is somewhat mitigated by the effectiveness of our conflict-checking methods

and the network’s participation in conflict detection. Less brute-force methods, such

as having servers exchange explicit transaction dependency information, incur the

more serious cost of additional message rounds

We face the problem of how to enable switches to forward all packets of a multi-

server requests to each cohort, instead of forwarding to each cohort only the packets

216

relevant to it, as dictated by the forwarding relations. One solution would be to use

survey packets, as in Section 9.2.3, containing a high-level overview of the names of

the packets yet to come. Upon receiving the survey, a switch i would remember a

mapping q → Cq from (the identity of) q to the set Cq ⊂ CHANNELSi onto which

prefixes from the survey packet of q may be forwarded, and forward any subsequent

packets of q on the channels of Cq
33. Switch i can discard the map entry for q after

forwarding the final packet of q, or after a time-out, to handle failed requesters.

A cohort b receiving a bloated request q2 conflict checks it with any other bloated

request it has prepared. Upon detecting a conflict with another bloated request q1, it

could abort q2 right away. However, this might lead to both requests getting aborted,

if some other cohort receives q2 first and aborts q1. In the worst case, livelock may

ensue, with the respective requesters repeatedly resubmitting the requests only to

have them be aborted.

We resolve the issue as follows. Let b be a server receiving a pair of mutually conflict-

ing bloated requests q1 and q2, say in that order. Rather than immediately aborting

q2, b computes the relative order of q1 and q2 according to some total order <Q on re-

quests. An implementation could use the integer value of the (cryptographic) digests

of the first packet of the two requests, for example. If q1 <Q q2 then b immediately

aborts q2. On the other hand, if q2 <Q q1 then b waits, delaying q2 from getting

committed. If q1 is received before q2 on all servers that receive both requests, then

b will receive the prepares required to commit q1, leading it to abort q2. Otherwise,

q2 is received before q1 on at least one server, which will immediately send an abort

packet for q1 since q2 <Q q1. Upon receiving that abort, b aborts q1 while sending its

prepare for q2, in effect resuming the 2PC processing of q2. This algorithm ensures

progress, since at least one out of a pair of conflicting requests will get committed.

We propose a similar algorithm in [71], but leave a formal correctness proof to future

work.

We observe though, that global serialization violations occur only if cohort servers

receive their sub-requests for two conflicting requests in the opposite order. If they

always receive their sub-requests in the same order then they simply conflict-check

the response from earlier requests with those of latter requests as usual, which ensures

33The mapping could be stored in the switch’s TCAM, in a high-performance implementation.

217

consistent conflict-checking across servers without the need for request bloating. In

the example of section 9.2.2, if both servers process q1 and q2 in that order, then the

server hosting b detects the conflicting operations on b and aborts q2.

If all requests to a set of server hosts traverse a common gateway switch ig, and two

multi-server requests qa and qb are split at or below ig, then any pair of these servers

receives each pair of packets from qa and qb in the same order, when they do receive

both packets. In the common hierarchical (star) network topology, for example, all

packets to nodes below a switch in the hierarchy traverse that switch.

We can exploit this to derive a common agreed order for multi-server requests across

servers in that subhierarchy, for example by defining the order of requests as the order

in which their last packet is received. This works if requesters repeat a request’s survey

in the last packet of a request, ensuring this trailer packet is received at all cohorts. If

a gateway switch is the coordinator for a request, it marks the survey packet as being

gateway-ordered and does not bloat the request, forwarding its remaining packets

normally. Hence, servers can process and conflict check a mix of gateway ordered and

bloated requests. Gateway switches could also help to create an “official” total order

on responses from their sub-hierarchies, by stamping response trailer packets with

sequence numbers. Such orders can be used as the basis for delta-update processing,

as sketched in Section 6.8.

As a parting thought, algorithms for concurrency control are subtle, and many erro-

neous ones have been published. We leave the modeling and correctness proving of

these sketches to future work.

9.3 Optimizations for Cached Systems

While Atomic Transfer is a relatively general concept, its main application may lie

in the construction of efficient atomic caching systems, such as those modeled in

preceding chapters. The hallmark of such systems is that requesters can usually

“predict” the response that results from a request and its effect on the state, since

they cache the input and output data of each request they issue. In many cases,

the only cause for mispredictions will be concurrent requests from other hosts. Also,

218

for operations such as simple writes, the response to and effect of a request is always

known. In such circumstances, the decision to commit a request and send its response

can be decoupled in time and space from the act of updating persistent server state

with its effect. This section outlines ideas for optimizations applicable to caching

systems. Their common goal is to reduce the delay from when a request is issued

until requesters are aware of its response, enhancing performance and reducing the

scope for concurrency conflicts.

The optimizations depend on requesters embedding the expected reply to each request

in the request itself. This could be achieved, for example, by encoding request packets

in such a way that they can be easily converted into response packets by changing

a packet type designation field. Note that embedding of responses is only possible if

the request’s execution is deterministic, or can be made deterministic by having the

requester make and encode any non-deterministic choices along with the request.

9.3.1 Request Short-Circuiting

The main idea for reducing the response time for a request q bound for a server host b

is to short-circuit q by multicasting its (expected) response rq before q reaches b. As

long as q has no conflicts, rq would have been generated and sent by b later, anyway.

Short-circuiting reduces the response-time for requests as well as obviating servers

from encoding and sending response packets. More importantly, when combined with

resilient transfer (Section 9.1) and gateway ordering (Section 9.2.4) it can be used

to remove the need for two-phase commit (2PC) of multi-server requests, allowing

the performance of multi-server requests 34 to approach that of single-server requests

[198]. This might justify the considerable additional switch complexity introduced by

short-circuiting.

A switch i can short-circuit a request bound for a set of servers B ⊆ DATAS if it is

a gateway switch for each server in B, that is: if all requests for servers in B pass

through i. Note that in our model, the home-switch of a server b is always a gateway

for b. More generally, switches in networks with a hierarchical (star) topology are

gateways for the servers in their subnetwork. The core idea of short-circuiting is for

34Including requests redundantly sent to the replicas of a replicated logical host.

219

switch i to decide the total order of requests executed by the servers of B and send

back their responses without waiting for the servers of B to persist their effects. In

addition to forwarding a conflict-free request q towards it responders, i converts it

into a response rq and enqueues for subscribed channels, the same as if rq had been

received from the responder(s) of q. To the outside world, switch i is essentially

indistinguishable from a single, high-performing server host.

While this is an attractive idea, there are several obstacles to its realization. First of

all, short-circuiting more or less requires resilient transfer (Section 9.1), as switch i has

effectively promised that request q will be executed and that it will generate response

rq. If one or more of the responders were to fail before completing q, the system

would become inconsistent. Furthermore, short-circuting implies that requesters are

trusted to issue only valid request with correctly predicted embedded responses35.

This together with the implied hierarchical structure of the network means short-

circuiting may be most applicable within the lower abstraction levels of a system,

e.g. at the level of reads and writes. Still, that may also be the level where short-

circuiting may be most helpful, as it is the level where many conflicts are detected

and where requests and responses are comprised of a relatively large number of simple

operations.

Multi-packet requests present another obstacle. First, the relative order of two multi-

packet requests flowing concurrently through a switch is not entirely well-defined.

We suggest using the reception of the final packet of a request as defining its order

relative to other requests. Hence, once the final packet of a request is received and

determined to be conflict-free, the request is added to the total order of requests and

the corresponding response enqueued for transmission. While this is clearly biased

against large requests, placing q into the order any sooner than this might lead to all

other requests being delayed until the packets of q have been received and conflict-

checked. Using the final packet also prevents “hung” partial requests from failed

requesters from blocking progress of other requests. In the general case of a conflict

being detected on two non-final packets from two concurrent requests q1 and q2, it is

not clear which one should be dropped. While a switch could decide to arbitrarily

35Speculative Byzantine fault-tolerance protocols such as Zyzzyva [199] may point the way towards
dealing with malicious requesters.

220

drop one of them, a more advanced implementation could note the conflict and let

the request whose final packet is received first “win”, dropping the other request.

This highlights a second problem, which is that switch i cannot determine whether

request q is conflict-free before it has received all its packets. Furthermore, it must

buffer the packets up to that point, or else a conflict with one of the packets al-

ready purged from the buffer might go undetected. While this obviously increases

the amount of buffer space required on switches, it might not increase it noticeably

beyond what is needed for resilient transfer anyway, at least for requests of less than

a few dozen packets. As mentioned in Section 9.2.1, the re-assembly of request mes-

sages in switch memory places an upper limit on request and response sizes. This

might be circumvented by allowing switches to “shirk” responsibility for such requests

and forward them tagged as “un-ordered”, signaling that they have not been short-

circuited and may conflict with future requests. Lower-level switches or responders

would re-assemble such requests and conflict-check and delay them until all responses

concurrent with the shirked request are complete. These ideas await future develop-

ment.

As a final remark, we note that many of the same problems and solutions for concur-

rency control and short-circuiting of (multi-packet) requests apply on responder hosts

as well as switches. Some of the solutions might apply to multiprocessor (multi-core)

CPUs, for example by using one core as an I/O processing “switch” that forwards

request fragments to other cores for processing and handles conflict checking and

coordination for the “sub-network” comprised of subordinate cores, e.g. But proper

analysis of these issues awaits future work.

9.3.2 Request Pipelining

As we noted in Section 3.7.1, the round-trip-time between requesters and responders

upper-bounds throughput in our model, as an operation on a name n cannot be

successfully requested before the response to the prior conflicting operation on n

has been received. This is unfortunate, especially in the case where a single requester

issues requests to a set of names with complete absence of contention. As an example,

the requester could be an interactive end-user application editing a document.

221

This restriction can be relatively easily lifted by defining a response r to be non-

conflicting with a request q from the same requester, that is: if sender(r) = sender(q).

This allows a requester to pipeline a sequence of requests into the network without

waiting for the responses to its earlier requests, issuing each new request based on

the predicted state effects of the ones preceding it. This requires that requests from

the same requester not be re-ordered in the network or alternatively that responders

can re-establish the correct order.

The requester’s speculation can fail if it issues a request q′ assuming the effects of an

earlier request q that is dropped, due to a concurrency conflict, for example. Hence,

a speculative request q must have a premise field identifying the latest prior request

whose effects were assumed as q was issued, using a sequence number, for example.

Request q is then defined to conflict with the cancelation packet (see Section 9.2.1)

for any request from the same requester with a lower or equal sequence number. The

development and modeling of this scheme awaits future work.

9.3.3 Request Queueing for Liveness

While Atomic Transfer ensures execution correctness despite concurrency interfer-

ence, it does not ensure liveness for requesters whose requests are dropped due to

concurrency conflicts. In fact, as mentioned in Section 3.7.1, the network topology

can induce perpetual unfairness for requesters many network hops away from a server.

One way this might be addressed is by letting the network help requesters coordinate

access to contended data, by letting them “queue up” for access to the data after a

conflict, rather than blindly re-issuing requests. When a request q is dropped due to

a conflict with a response r, the cancelation notification would include the identity of

r. Upon receiving the cancelation notification, the responder (or the switch currently

buffering q, if short-circuiting is employed) would send the survey packet of q as a

queue packet qq, including the identity of r. Packet qq would be forwarded normally to

the subscribers of the relevant state, keeping them informed about conflicts affecting

the state.

222

The requester host a of q knows that q has been dropped upon receiving r. However,

instead of immediately re-issuing q, a would wait until receiving the queue packet

qq for q. Moreover, a would keep track of all other queue packets received between

r and qq that are tagged with r, indicating requests received ahead of q that were

also dropped by r. It would delay the re-issuing of q until receiving the response

corresponding to the last queue packet before qq. In other words, a waits until the

earlier conflicting requests have been re-issued and completed, before issuing its own.

This way, contending requesters queue up for resubmission of their requests, giving

each a fair chance to complete its request. Practically speaking, time-outs would be

used to prevent unbounded waiting for failed requesters or dropped queue packets,

etc.

The downside of this approach is that it places the burden of sending queue packets

for dropped requests on responders, reducing the shielding from contention provided

by the network. The requirement for responder involvement makes the approach

less attractive. Gateway switches can shoulder that burden, when short-circuiting is

employed. But even then, the forwarding of survey packets based on their prefixes

may be problematic, as the set of overlapping subscribing hosts may be quite large,

leading to excessive distribution of queue packets. On the flip side, the orderly queuing

reduces the number of conflicting requests issued, lowering the load on switches and

hosts alike. Proper analysis of these trade-offs awaits future work.

9.4 Security and Replication

This dissertation leaves security outside its scope. To be effective, though, security

measures must be an integral part of a system’s design. While proper consideration

of security awaits future work, we briefly discuss the main security implications of

systems based on Atomic Transfer.

The main observation is that Atomic Transfer needs atomic switches to see the names

of requests and responses in cleartext, to be able to check them for conflicts. Fur-

thermore, switches need to see the names to be able to forward packets to their

223

destinations. By contrast, end-to-end concurrency control works with end-to-end en-

cryption, allowing the data contents of a communication session to be completely

hidden from eavesdroppers.

The parts of atomic packets not containing names may be encrypted end-to-end, e.g.

the parts containing values. Also, the channels between switches may be encrypted,

including software-defined channels such as TCP/IP connections and Virtual Private

Networks (VPNs). We also note that Atomic Transfer does not adversely affect

authentication, as atomic packets can include digital signatures [152, 200] and message

authentication codes [201] the same as normal packets. The fact remains that trusting

each switch along a network path results in lower security than trusting only the end-

point hosts, as is the case with end-to-end encryption. Still, many distributed systems

today run over VPNs overlaid on the Internet, sometimes placing significant trust in

the gateway nodes and switches defining the VPNs. These security issue and trade-

offs must be analyzed as a part of any thorough feasibility study of Atomic Transfer.

This dissertation also leaves replication outside its scope. However, some form of

replication is necessary to achieve fault-tolerance in computing systems. We observe

that application data caches come very close to being replicas of their data, the main

difference being that caches are not required to persist their data and may unilaterally

discard it at will. It would be interesting to extend our models to support flexible and

dynamic replication, building on the cache synchronization protocols of Chapters 6

and 7 as well as Resilient Transfer and multi-server requests, as sketched in Sections

9.1 and 9.2 of this chapter. The main challenges, as in many replication schemes, are

to detect replica host failures and/or atomically add and remove replicas from replica

groups. We believe that network switches could help with these tasks, as they are

in the unique situation of being able to divert network traffic from one destination

to another. Furthermore, switches usually have more accurate information about the

state of channels than do end-hosts. But such investigations await future work.

Adding complexity to the network is contentious [133], but we believe that switches

are uniquely positioned to accelerate concurrency control, recoverability and atomic

commit, in ways not open to end hosts. In summary, we believe that programmable

switches can play an important role in the design of scalable infrastructures for effi-

cient and flexible atomic applications.

224

References

[1] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consis-
tency and predicate locks in a database system. Commun. ACM, 19(11):624–
633, 1976.

[2] J. Gray. Notes on Data Base Operating Systems. In Operating Systems, An
Advanced Course, pages 393–481, London, UK, 1978. Springer-Verlag.

[3] Barbara Liskov, Miguel Castro, Liuba Shrira, and Atul Adya. Providing per-
sistent objects in distributed systems. In ECOOP ’99: Proceedings of the 13th
European Conference on Object-Oriented Programming, pages 230–257, Lon-
don, UK, 1999. Springer-Verlag.

[4] W3C. SOAP Version Messaging Framework, 1.2 edition, June 2003.

[5] Object Management Group. The Common Object Request Broker: Architecture
and Specification, 2.5 edition, September 2001.

[6] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[7] C. T. Davies. Data processing spheres of control. IBM Systems Journal,
17(2):179–198, 1978.

[8] C. H. Papadimitriou. The serializability of concurrent database updates. J.
ACM, 26(4):631–653, 1979.

[9] G. Vossen G. Weikum. Transactional Information Systems: Theory, Algo-
rithms, and the Practice of Concurrency Control. Morgan Kaufmann, 2001.

[10] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[11] L. Lamport. How to Make a Correct Multiprocess Program Execute Correctly
on a Multiprocessor. IEEE Trans. Comput., 46(7):779–782, 1997.

[12] A. Thomasian. Concurrency control: methods, performance, and analysis. ACM
Comput. Surv., 30(1):70–119, 1998.

225

[13] P. A. Bernstein and N. Goodman. Timestamp-based algorithms for concurrency
control in distributed database systems. In VLDB ’1980: Proceedings of the
sixth international conference on Very Large Data Bases, pages 285–300. VLDB
Endowment, 1980.

[14] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient optimistic con-
currency control using loosely synchronized clocks. SIGMOD Rec., 24(2):23–34,
1995.

[15] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226, 1981.

[16] M. J. Franklin, M. J. Carey, and M. Livny. Transactional client-server cache con-
sistency: alternatives and performance. ACM Trans. Database Syst., 22(3):315–
363, 1997.

[17] B. Liskov and S. Zilles. Programming with abstract data types. SIGPLAN
Not., 9(4):50–59, 1974.

[18] W. E. Weihl. Local atomicity properties: modular concurrency control for
abstract data types. ACM Trans. Program. Lang. Syst., 11(2):249–282, 1989.

[19] M. P. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data
types. In PODS ’88: Proceedings of the seventh ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 201–210, New
York, NY, USA, 1988. ACM.

[20] International Business Machines Corporation. Information Managament Sys-
tem Virtual Storage (IMS/VS), General Information Manual, GH20-1260, 1991.

[21] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.
Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl,
G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. System R: relational
approach to database management. ACM Trans. Database Syst., 1(2):97–137,
1976.

[22] Robert D. Sloan. A practical implementation of the data base machine - Tera-
data DBC/1012, 1992.

[23] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez. Prototyping Bubba, A Highly Paral-
lel Database System. IEEE Trans. on Knowl. and Data Eng., 2(1):4–24, 1990.

[24] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and
M. Muralikrishna. GAMMA - A High Performance Dataflow Database Machine.
In VLDB ’86: Proceedings of the 12th International Conference on Very Large

226

Data Bases, pages 228–237, San Francisco, CA, USA, 1986. Morgan Kaufmann
Publishers Inc.

[25] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 26(1):64–69, 1983.

[26] W. Kim. Object-oriented databases: definition and research directions. Knowl-
edge and Data Engineering, IEEE Transactions on, 2(3):327–341, Sep 1990.

[27] M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon, K. Dittrich, and S. Zdonik.
The object-oriented database system manifesto. pages 1–20, 1992.

[28] M. P. Atkinson and O. P. Buneman. Types and persistence in database pro-
gramming languages. ACM Comput. Surv., 19(2):105–170, 1987.

[29] M. Atkinson and R. Morrison. Orthogonally persistent object systems. The
VLDB Journal, 4(3):319–402, 1995.

[30] M. J. Carey, D. J. DeWitt, D. Frank, M. Muralikrishna, G. Graefe, J. E.
Richardson, and E. J. Shekita. The architecture of the EXODUS extensible
DBMS. In OODS ’86: Proceedings on the 1986 international workshop on
Object-oriented database systems, pages 52–65, Los Alamitos, CA, USA, 1986.
IEEE Computer Society Press.

[31] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In ATEC ’99: Proceedings
of the annual conference on USENIX Annual Technical Conference, pages 43–
43, Berkeley, CA, USA, 1999. USENIX Association.

[32] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: a column-oriented DBMS. In VLDB ’05: Proceedings
of the 31st international conference on Very large data bases, pages 553–564.
VLDB Endowment, 2005.

[33] R. Sears and E. Brewer. Stasis: flexible transactional storage. In OSDI ’06:
Proceedings of the 7th symposium on Operating systems design and implemen-
tation, pages 29–44, Berkeley, CA, USA, 2006. USENIX Association.

[34] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the sprite network
file system. ACM Trans. Comput. Syst., 6(1):134–154, 1988.

[35] F. Schmuck and J. Wylie. Experience with transactions in QuickSilver. In
SOSP ’91: Proceedings of the thirteenth ACM symposium on Operating systems
principles, pages 239–253, New York, NY, USA, 1991. ACM.

227

[36] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J. Kistler.
Lightweight recoverable virtual memory. ACM Trans. Comput. Syst., 12(1):33–
57, 1994.

[37] S. Chaudhuri and G. Weikum. Rethinking Database System Architecture: To-
wards a Self-Tuning RISC-Style Database System. In VLDB ’00: Proceedings
of the 26th International Conference on Very Large Data Bases, pages 1–10,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[38] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland. The end of an architectural era: (it’s time for a complete rewrite).
In VLDB ’07: Proceedings of the 33rd international conference on Very large
data bases, pages 1150–1160. VLDB Endowment, 2007.

[39] N. W. Paton and O. Diaz. Active database systems. ACM Comput. Surv.,
31(1):63–103, 1999.

[40] J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Ad-
vanced Database Processing. Morgan Kaufmann, 1995.

[41] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975.

[42] M. Herlihy, J. Eliot, and B. Moss. Transactional Memory: Architectural Sup-
port For Lock-free Data Structures. Computer Architecture, 1993., Proceedings
of the 20th Annual International Symposium on, pages 289–300, May 1993.

[43] N. Shavit and D. Touitou. Software transactional memory. In PODC ’95: Pro-
ceedings of the fourteenth annual ACM symposium on Principles of distributed
computing, pages 204–213, New York, NY, USA, 1995. ACM.

[44] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,
M. K. P., H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional Memory
Coherence and Consistency. SIGARCH Comput. Archit. News, 32(2):102, 2004.

[45] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory
transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, pages 48–60, New
York, NY, USA, 2005. ACM.

[46] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis,
and K. Olukotun. The Atomos transactional programming language. In PLDI
’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 1–13, New York, NY, USA, 2006. ACM.

228

[47] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and
S. Chatterjee. Software transactional memory: why is it only a research toy?
Commun. ACM, 51(11):40–46, 2008.

[48] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD ’87: Proceedings of the
1987 ACM SIGMOD international conference on Management of data, pages
249–259, New York, NY, USA, 1987. ACM.

[49] P. K. Chrysanthis and K. Ramamritham. ACTA: a framework for specifying and
reasoning about transaction structure and behavior. SIGMOD Rec., 19(2):194–
203, 1990.

[50] S. G. Jajodia and L. Kerschberg, editors. Advanced Transaction Models and
Architectures. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[51] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[52] M. Satyanarayanan. The evolution of Coda. ACM Trans. Comput. Syst.,
20(2):85–124, 2002.

[53] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in Bayou, a weakly connected
replicated storage system. In SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, pages 172–182, New York, NY,
USA, 1995. ACM.

[54] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur,
J. Howell, J. R. Lorch, M. Theimer, and R P. Wattenhofer. Farsite: Federated,
Available, and Reliable Storage for an Incompletely Trusted Environment. ACM
Operating Systems Review, 36(SI):1–14, 2002.

[55] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao. OceanStore: an ar-
chitecture for global-scale persistent storage. In ASPLOS-IX: Proceedings of
the ninth international conference on Architectural support for programming
languages and operating systems, pages 190–201, New York, NY, USA, 2000.
ACM.

[56] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv.,
37(1):42–81, 2005.

[57] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. ACM Trans. Comput. Syst., 26(2):1–26, 2008.

229

[58] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Ama-
zon’s highly available key-value store. In SOSP ’07: Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, pages 205–220, New
York, NY, USA, 2007. ACM.

[59] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow., 1(2):1277–1288, 2008.

[60] D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. SIGPLAN Not., 12(3):128–137, 1977.

[61] B. Randell. System structure for software fault tolerance. In Proceedings of the
international conference on Reliable software, pages 437–449, New York, NY,
USA, 1975. ACM.

[62] E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Com-
puting. Technical report, Cambridge, MA, USA, 1981.

[63] N. A. Lynch, M. Merrit, W. E. Weihl, and A. Fekete. Atomic Transactions.
Morgan Kaufmann, 1993.

[64] B. Liskov and R. Scheifler. Guardians and actions: linguistic support for robust,
distributed programs. In POPL ’82: Proceedings of the 9th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 7–19, New
York, NY, 1982.

[65] B. Liskov, D. Curtis, P. Johnson, and R. Scheifer. Implementation of Argus. In
SOSP ’87: Proceedings of the eleventh ACM Symposium on Operating systems
principles, pages 111–122, 1987.

[66] J. L. Eppinger, L. B. Mummert, and A. Z. Spector, editors. Camelot and
Avalon: a distributed transaction facility. Morgan Kaufmann, 1991.

[67] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Maheshwari, A. C.
Myers, M. Day, and L. Shrira. Safe and efficient sharing of persistent objects in
Thor. In SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, pages 318–329, 1996.

[68] E. A. Lee. The Problem With Threads. IEEE Computer Magazine, 39(5):33–42,
May 2006.

[69] Fred B. Schneider. The State Machine Approach: A Tutorial. Technical report,
Ithaca, NY, USA, 1986.

230

[70] J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Trans. Softw. Eng., 16(11):1293–1306, 1990.

[71] H. Thorvaldsson and K. J. Goldman. Dynamic Evolution in a Survivable Ap-
plication Infrastructure. In IASTED Parallel and Distributed Computing and
Systems (PDCS), 2006.

[72] Akamai Technoogies. http://www.akamai.com.

[73] R. H. Thomas. A majority consensus approach to concurrency control for mul-
tiple copy databases. ACM Trans. Database Syst., 4(2):180–209, 1979.

[74] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative
caching: using remote client memory to improve file system performance. In
OSDI ’94: Proceedings of the 1st USENIX conference on Operating Systems
Design and Implementation, page 19, Berkeley, CA, USA, 1994. USENIX As-
sociation.

[75] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J.
Worrell. A hierarchical internet object cache. In ATEC ’96: Proceedings of
the 1996 annual conference on USENIX Annual Technical Conference, pages
13–13, Berkeley, CA, USA, 1996. USENIX Association.

[76] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V. Jacobson.
Adaptive web caching: towards a new global caching architecture. Comput.
Netw. ISDN Syst., 30(22-23):2169–2177, 1998.

[77] K. Li and P. Hudak. Memory coherence in shared virtual memory systems.
ACM Trans. Comput. Syst., 7(4):321–359, 1989.

[78] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: distributed shared
memory based on type-specific memory coherence. In PPOPP ’90: Proceedings
of the second ACM SIGPLAN symposium on Principles & practice of parallel
programming, pages 168–176, New York, NY, USA, 1990.

[79] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The midway distributed
shared memory system. Technical report, Pittsburgh, PA, USA, 1993.

[80] A.L. Cox, S. Dwarkadas, and P. Keleher. TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Systems. In Winter 94
USENIX Conference, pages 115–131, Berkeley, CA, 1994.

[81] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A Language for Paral-
lel Programming of Distributed Systems. IEEE Trans. Softw. Eng., 18(3):190–
205, 1992.

231

[82] D. J. Scales and M. S. Lam. The design and evaluation of a shared object
system for distributed memory machines. In In First Symposium on Operating
Systems Design and Implementation, pages 101–114, 1994.

[83] L. Aguilar. Datagram routing for internet multicasting. In SIGCOMM ’84: Pro-
ceedings of the ACM SIGCOMM symposium on Communications architectures
and protocols, pages 58–63, New York, NY, USA, 1984. ACM.

[84] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky.
Bimodal multicast. ACM Trans. Comput. Syst., 17(2):41–88, 1999.

[85] P. Th. Eugster and R. Guerraoui. Probabilistic multicast. In DSN ’02: Proceed-
ings of the 2002 International Conference on Dependable Systems and Networks,
pages 313–324, 2002.

[86] D. Kostić, A. C. Snoeren, A. Vahdat, R. Braud, C. Killian, James W. An-
derson, J. Albrecht, A. Rodriguez, and E. Vandekieft. High-bandwidth data
dissemination for large-scale distributed systems. ACM Trans. Comput. Syst.,
26(1):1–61, 2008.

[87] D. Gelernter. Generative communication in linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, 1985.

[88] N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458,
1989.

[89] P. Mockapetris and K. J. Dunlap. Development of the domain name system.
SIGCOMM Comput. Commun. Rev., 18(4):123–133, 1988.

[90] M. Gritter and D. R. Cheriton. An architecture for content routing support
in the internet. In USITS’01: Proceedings of the 3rd conference on USENIX
Symposium on Internet Technologies and Systems, pages 4–4, Berkeley, CA,
USA, 2001. USENIX Association.

[91] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and
implementation of an intentional naming system. In SOSP ’99: Proceedings of
the seventeenth ACM symposium on Operating systems principles, pages 186–
201, New York, NY, USA, 1999. ACM.

[92] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet Indirection
Infrastructure. IEEE/ACM Trans. Netw., 12(2):205–218, 2004.

[93] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica. ROFL:
routing on flat labels. In SIGCOMM ’06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for computer communi-
cations, pages 363–374, New York, NY, USA, 2006. ACM.

232

[94] X. Yang, D. Clark, and A. W. Berger. NIRA: a new inter-domain routing
architecture. IEEE/ACM Trans. Netw., 15(4):775–788, 2007.

[95] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin.
Consistent hashing and random trees: distributed caching protocols for relieving
hot spots on the world wide web. In STOC ’97: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 654–663, New York,
NY, USA, 1997. ACM.

[96] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In ACM SIGCOMM, pages 161–172, 2001.

[97] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for inter-
net applications. IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[98] A. Rowstron P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. 2001.

[99] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz.
Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal
on Selected Areas in Communications, 22(1):41–53, 2004.

[100] Van Jocobson’s Google Talk.
http://video.google.com/videoplay?docid=-6972678839686672840.

[101] P. Th. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many faces
of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[102] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus: an ar-
chitecture for extensible distributed systems. In SOSP ’93: Proceedings of the
fourteenth ACM symposium on Operating systems principles, pages 58–68, 1993.

[103] TIBCO. TIB/Rendezvous, whitepaper, 1999.

[104] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.
Sturman. An efficient multicast protocol for content-based publish-subscribe
systems. In ICDCS ’99: Proceedings of the 19th IEEE International Conference
on Distributed Computing Systems, page 262, 1999.

[105] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and ex-
pressiveness in an internet-scale event notification service. In PODC ’00: Pro-
ceedings of the nineteenth annual ACM symposium on Principles of distributed
computing, pages 219–227, 2000.

233

[106] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEE Trans. Softw.
Eng., 27(9):827–850, 2001.

[107] K. P. Birman. ISIS: A System for Fault-Tolerant Distributed Computing. Tech-
nical report, Ithaca, NY, USA, 1986.

[108] K. P. Birman. The process group approach to reliable distributed computing.
Commun. ACM, 36(12):37–53, 1993.

[109] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, 2004.

[110] D. R. Cheriton and D. Skeen. Understanding the limitations of causally and
totally ordered communication. SIGOPS Oper. Syst. Rev., 27(5):44–57, 1993.

[111] K. Birman. A response to Cheriton and Skeen’s criticism of causal and totally
ordered communication. SIGOPS Oper. Syst. Rev., 28(1):11–21, 1994.

[112] Intel Corporation. The Next Generation of Intel IXP Network Processors. Intel
Technology Journal, 6(3), 2002.

[113] Cisco Systems, Inc. http://www.cisco.com.

[114] J. S. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller, F. Kuhns, S. Ku-
mar, J. Lockwood, J. Lu, M. Wilson, C. Wiseman, and D. Zar. Supercharging
PlanetLab: a high performance, multi-application, overlay network platform.
SIGCOMM Comput. Commun. Rev., 37(4):85–96, 2007.

[115] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router. ACM Trans. Comput. Syst., 18(3):263–297, 2000.

[116] Mark Handley, Orion Hodson, and Eddie Kohler. XORP: an open platform for
network research. SIGCOMM Comput. Commun. Rev., 33(1):53–57, 2003.

[117] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Experiences build-
ing PlanetLab. In OSDI ’06: Proceedings of the 7th symposium on Operating
systems design and implementation, pages 351–366, Berkeley, CA, USA, 2006.
USENIX Association.

[118] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet
Impasse through Virtualization. Computer, 38(4):34–41, 2005.

[119] D. L. Tennenhouse and D. J. Wetherall. Towards an active network architecture.
volume 26, pages 5–17, New York, NY, USA, 1996. ACM.

[120] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. CWI
Quarterly, 2(3):219–246, 1989.

234

[121] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[122] H. D. Thorvaldsson and K. Goldman. Architecture and Execution Model for a
Survivable Work Flow Architecture Infrastructure. Technical Report WUCSE-
2005-61, Washington University, 2005.

[123] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[124] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In 19th ACM
SOSP, pages 164–177, 2003.

[125] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES:
a transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans. Database Syst., 17(1):94–162,
1992.

[126] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An
Overview. volume 4, pages 509–516, Piscataway, NJ, USA, 1992. IEEE Ed-
ucational Activities Department.

[127] D. E. Lowell and P. M. Chen. Free transactions with Rio Vista. In SOSP ’97:
Proceedings of the sixteenth ACM symposium on Operating systems principles,
pages 92–101, New York, NY, USA, 1997. ACM.

[128] D. Pnevmatikatos, E. P. Markatos, G. Magklis, and S. Ioannidis. On using
network RAM as a non-volatile buffer. Cluster Computing, 2(4):295–303, 1999.

[129] L. Kleinrock. The latency/bandwidth tradeoff in gigabit networks. Communi-
cations Magazine, IEEE, 30(4):36–40, Apr 1992.

[130] D. A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–75, 2004.

[131] P. F. Reynolds, C. Williams, and R. R. Wagner. Isotach Networks. IEEE
Transactions on Parallel and Distributed Systems, 8:337–348, 1997.

[132] R. G. Bartholet. A Performance Study of Isotach Version 1.0. Technical report,
Charlottesville, VA, USA, 1999.

[133] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2(4):277–288, 1984.

[134] A. Thomasian. Distributed Optimistic Concurrency Control Methods for High-
Performance Transaction Processing. IEEE Trans. on Knowl. and Data Eng.,
10(1):173–189, 1998.

235

[135] W. Forrest, J. M. Kaplan, and N. Kindler. Data centers: How to cut carbon
emissions and costs. The McKinsey Quarterly, November 2008.

[136] M. Herlihy. Apologizing versus asking permission: optimistic concurrency con-
trol for abstract data types. ACM Trans. Database Syst., 15(1):96–124, 1990.

[137] P. E. O’Neil. The Escrow transactional method. ACM Trans. Database Syst.,
11(4):405–430, 1986.

[138] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT). SIGCOMM
Comput. Commun. Rev., 23(4):85–95, 1993.

[139] H. W. Holbrook and D. R. Cheriton. IP multicast channels: EXPRESS support
for large-scale single-source applications. SIGCOMM Comput. Commun. Rev.,
29(4):65–78, 1999.

[140] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Ja-
cobson, C. Liu, P. Sharma, and L. Wei. Protocol independent multicast-sparse
mode (pim-sm): Protocol specification, 1998.

[141] H. T. Kung, T. Blackwell, and A.n Chapman. Credit-based flow control for
atm networks: credit update protocol, adaptive credit allocation and statistical
multiplexing. In SIGCOMM ’94: Proceedings of the conference on Communica-
tions architectures, protocols and applications, pages 101–114, New York, NY,
USA, 1994. ACM.

[142] B. Cain H. Holbrook. RFC 4607: Source-Specific Multicast for IP, 2006.

[143] S. E. Deering and D. R. Cheriton. Multicast routing in datagram internetworks
and extended LANs. ACM Trans. Comput. Syst., 8(2):85–110, 1990.

[144] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM
Trans. Netw., 5(6):784–803, 1997.

[145] W. Timothy Strayer, Bert J. Dempsey, and Alfred C. Weaver. XTP: the Xpress
Transfer Protocol. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 1992.

[146] S. Paul, K. K. Sabnani, J. C. Lin, and S. Bhattacharyya. Rmtp: A reliable
multicast transport protocol. In IEEE Journal on Selected Areas in Communi-
cations, pages 1414–1424, 1996.

[147] R. Yavatkar, J. Griffoen, and M. Sudan. A reliable dissemination protocol for
interactive collaborative applications. In MULTIMEDIA ’95: Proceedings of
the third ACM international conference on Multimedia, pages 333–344, New
York, NY, USA, 1995. ACM.

236

[148] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton. Log-based receiver-reliable
multicast for distributed interactive simulation. SIGCOMM Comput. Commun.
Rev., 25(4):328–341, 1995.

[149] C. Papadopoulos, G. Parulkar, and G. Varghese. An error control scheme for
large-scale multicast applications. In PODC ’98: Proceedings of the seventeenth
annual ACM symposium on Principles of distributed computing, page 310, New
York, NY, USA, 1998. ACM.

[150] J. Jing, A. Sumi Helal, and A. Elmagarmid. Client-server computing in mobile
environments. ACM Comput. Surv., 31(2):117–157, 1999.

[151] P. Jones D. Eastlake. RFC 3174: US Secure Hash Algorithm 1 (SHA-1), 2001.

[152] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[153] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key
management from file system security. SIGOPS Oper. Syst. Rev., 34(2):19–20,
2000.

[154] J. S. Turner. A proposed architecture for the GENI backbone platform. In
ANCS ’06: Proceedings of the 2006 ACM/IEEE symposium on Architecture
for networking and communications systems, pages 1–10, New York, NY, USA,
2006. ACM.

[155] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[156] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996.

[157] C. Beeri, P. A. Bernstein, and N. Goodman. A model for concurrency in nested
transactions systems. J. ACM, 36(2):230–269, 1989.

[158] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control performance mod-
eling: alternatives and implications. ACM Trans. Database Syst., 12(4):609–
654, 1987.

[159] P. A. Franaszek, J. T. Robinson, and A. Thomasian. Concurrency control
for high contention environments. ACM Trans. Database Syst., 17(2):304–345,
1992.

[160] P. Franaszek and J. T. Robinson. Limitations of concurrency in transaction
processing. ACM Trans. Database Syst., 10(1):1–28, 1985.

237

[161] M. J. Carey, M. J. Franklin, and M. Zaharioudakis. Fine-grained sharing in a
page server OODBMS. In SIGMOD ’94: Proceedings of the 1994 ACM SIG-
MOD international conference on Management of data, pages 359–370, New
York, NY, USA, 1994. ACM.

[162] R. E. Gruber. Optimism vs. Locking: A Study of Concurrency Control for
Client-Server Object-Oriented Databases. Technical report, Cambridge, MA,
USA, 1997.

[163] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design Considerations for
Distributed Caching on the Internet. In ICDCS ’99: Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, page 273,
Washington, DC, USA, 1999. IEEE Computer Society.

[164] G. Barish and K. Obraczka. World Wide Web caching: Trends and techniques.
IEEE Communications Magazine, 38:178–184, 2000.

[165] P. Krishnan, D. Raz, and Y. Shavitt. The cache location problem. IEEE/ACM
Trans. Netw., 8(5):568–582, 2000.

[166] X. Tang and S. T. Chanson. Coordinated En-Route Web Caching. IEEE Trans.
Comput., 51(6):595–607, 2002.

[167] C. Papadopoulos, G. Parulkar, and G. Varghese. Light-weight multicast services
(lms): a router-assisted scheme for reliable multicast. IEEE/ACM Trans. Netw.,
12(3):456–468, 2004.

[168] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap: hardware/software
IP lookups with incremental updates. SIGCOMM Comput. Commun. Rev.,
34(2):97–122, 2004.

[169] Patrick Crowley. Network Processor Design: Issues and Practices. Academic
Press, Inc., Orlando, FL, USA, 2002.

[170] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a Role-Based Trust
Management Framework. In IEEE Symposium on Security and Privacy, 2002.

[171] Trevor Jim. SD3: A Trust Management System with Certified Evaluation. In
2001 IEEE Symposium on Security and Privacy, page 106, 2001.

[172] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der Merwe.
The case for separating routing from routers. In FDNA ’04: Proceedings of the
ACM SIGCOMM workshop on Future directions in network architecture, pages
5–12, New York, NY, USA, 2004. ACM.

238

[173] S. Ajmani, B. Liskov, and L. Shrira. Scheduling and Simulation: How to Up-
grade Distributed Systems. In Ninth Workshop on Hot Topic in Operating
Systems (HotOS-IX), May 2003.

[174] W. Kohler, A. Shah, and A. Raab. Overview of TPC Benchmark C: The
Order-Entry Benchmark. Technical report, Transaction Processing Performance
Council, December 1991.

[175] R. la Briandais. File searching using variable length keys. In Western Joint
Computer Conferences, volume 15, pages 295–298, San Fransisco, CA, USA,
May 1959.

[176] E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.

[177] V. Srinivasan and G. Varghese. Faster IP lookups using controlled prefix ex-
pansion. SIGMETRICS Perform. Eval. Rev., 26(1):1–10, 1998.

[178] D.E. Taylor, J.W. Lockwood, T.S. Sproull, J.S. Turner, and D.B. Parlour. Scal-
able IP lookup for programmable routers. INFOCOM 2002. Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, 2:562–571 vol.2, 2002.

[179] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Search-
ing, 2nd Ed. Addison-Wesley., Boston, MA, USA, 1998.

[180] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[181] S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher. HEXA: Compact Data
Structures for Faster Packet Processing. Network Protocols, 2007. ICNP 2007.
IEEE International Conference on, pages 246–255, Oct. 2007.

[182] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees.
In FOCS ’00: Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, page 399, Washington, DC, USA, 2000. IEEE Computer
Society.

[183] J. S. Turner. Jonathan S. Turner, personal communication.

[184] L. I. Trabb Pardo. Set representation and set intersection. PhD thesis, Stanford,
CA, USA, 1978.

[185] S. Carlsson, C. Levcopoulos, and O. Petersson. Sublinear Merging and Natural
Merge Sort. In SIGAL ’90: Proceedings of the International Symposium on
Algorithms, pages 251–260, London, UK, 1990. Springer-Verlag.

239

[186] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model.
Comput. Simul., 8(1):3–30, 1998.

[187] D. E. Taylor. Survey and taxonomy of packet classification techniques. ACM
Comput. Surv., 37(3):238–275, 2005.

[188] D. R. Morrison. PATRICIA—Practical Algorithm To Retrieve Information
Coded in Alphanumeric. J. ACM, 15(4):514–534, 1968.

[189] R. Sedgewick. Algorithms in C++. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

[190] P. Bagwell. Fast And Space Efficient Trie Searches. Technical report, 2000.

[191] R. S. Bird. Two dimensional pattern matching. Info. Process. Lett., 6(5):168–
170, 1977.

[192] G. Jacobson. Space-efficient static trees and graphs. Symposium on Foundations
of Computer Science, 0:549–554, 1989.

[193] H. Song, J. Turner, and J. Lockwood. Shape Shifting Tries for Faster IP Route
Lookup. In ICNP ’05: Proceedings of the 13TH IEEE International Confer-
ence on Network Protocols, pages 358–367, Washington, DC, USA, 2005. IEEE
Computer Society.

[194] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–
408, 2002.

[195] L. Alvisi. Understanding the message logging paradigm for masking process
crashes. PhD thesis, Ithaca, NY, USA, 1996.

[196] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent Rollback-Recovery
with Low Overhead, Limited Rollback and Fast Output Commit. IEEE Trans-
actions on Computers, 41:526–531, 1992.

[197] C. Dwork and D. Skeen. The inherent cost of nonblocking commitment. In
PODC ’83: Proceedings of the second annual ACM symposium on Principles of
distributed computing, pages 1–11, New York, NY, USA, 1983. ACM.

[198] M. Abdallah, R. Guerraoui, and P. Pucheral. Dictatorial Transaction Process-
ing: Atomic Commitment Without Veto Right. Distrib. Parallel Databases,
11(3):239–268, 2002.

[199] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative
byzantine fault tolerance. SIGOPS Oper. Syst. Rev., 41(6):45–58, 2007.

240

[200] R. L. Rivest, A. Shamir, and L. M. Adelman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Technical Report MIT/LCS/TM-
82, 1977.

[201] B. Prenel and P. van Oorschot. MDx-MAC and Building Fast MACs from Hash
Functions. In Proc. 15th Conf. on Advances in Cryptology, pages 1–14, 1995.

241

Vita

Haraldur Darri Thorvaldsson

Date of Birth October 27, 1973

Place of Birth Reykjav́ık, Iceland

Degrees B.S. computer Science, June 1998

Ph.D. Computer Science, May 2009

Professional

Societies

Association for Computing Machines

IEEE Computer Society

Publications Pallemulle, Sajeeva L., Thorvaldsson, Haraldur D., Goldman,

Kenneth J., Byzantine Fault-Tolerant Web Services for n-

Tier and Service Oriented Architectures, In proceedings of the

28th IEEE International Conference on Distributed Comput-

ing Systems, pages 260–268, June 2008.

Pallemulle, Sajeeva L., Wehrman, Ian, Thorvaldsson, Haral-

dur D., Goldman, Kenneth J., Perpetual: Byzantine Fault

Tolerance for Federated Distributed Applications, Washington

University, Department of Computer Science and Engineer-

ing, Technical Report WUCSE-2007-50, December 2007

Thorvaldsson, Haraldur D., Goldman, Kenneth J., Dynamic

Evolution in a Survivable Application Infrastructure, In pro-

ceedings of the 18th International Conference on Parallel and

Distributed Computing and Systems, November 2006.

Thorvaldsson, Haraldur D., Goldman, Kenneth J., Architec-

ture and Execution Model for a Survivable Workflow Trans-

action Infrastructure, Washington University, Department of

Computer Science and Engineering, Technical Report WUCSE-

2005-61, December 2005

242

May 2009

243

Atomic Transfer, Thorvaldsson, Ph.D. 2009

	Atomic Transfer for Distributed Systems
	Recommended Citation

	tmp.1530883949.pdf.MN3Mb

