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a large number of participants do not scale well because of implosion. Implosion control can be
performed by the sender, the receivers, or via a hierarchy. Sender-controlled implosion is appropriate
when: (a) receiver anonymity and privacy is required, (b) receivers cannot buffer and retransmit data, and
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Abstract:

High-bandwidth multimedia applications pose new challenges to error control. These include
the support of error control for Continuous Media (CM) streams and the scalable support of error
control in multipoint applications where the number of participants is large. Current error control
mechanisms provide no support for the above applications. In this report we present new error
control mechanisms that provide the required support.

Continuous media applications have strict timing requirements which greatly affect recovery.
To support continuous media applications we have designed and implemented a point-to-point
error control mechanism which features the following: (1) selective repeat retransmission, (2)
conditional retransmission, (3) playout buffering to increase the time available for recovery, (4)
gap-based rather than timer-based loss detection to reduce loss detection latency, and (5) data
integrity information delivery to the application. We present our design, implementation and eval-
uation plans.

Multipoint applications with a large number of participants do not scale well because of
implosion. Implosion control can be performed by the sender, the receivers, or via a hierarchy.
Sender-controlled implosion is appropriate when: (a) receiver anonymity and privacy is required,
(b) receivers cannot buffer and retransmit data, and (c) in one-to-many connections on connec-
tion-oriented networks where receivers are isolated from each other. In hierarchical implosion
control, the receivers are structured as a virtual tree with the sender at the root. The scope of
receiver messages is restricted between children and their parents. We have designed and are
investigating new sender-controlled and hierarchical implosion control mechanisms. We present
our designs and our plans to investigate the effectiveness and associated trade-offs of the mecha-
nisms by using implementation and simulation in our ATM testbed.

1. INTRODUCTION

Emerging high-speed networks like ATM have stirred excitement with their potential to support multi-
media, continuous media (CM) and multipoint applications. Example applications include conferencing,
collaborative work, video-on-demand, information browsing, multimedia magazines, voting systems, etc.
In addition to high bandwidth, future networks will provide both Quality of Service (QoS) guarantees to
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support CM applications and efficient multicast to support multipoint applications. However, before these
new network services can be successfully realized, changes are required in the protocol layers [17], the
network interface (3, 20, 21, 25, 35, 44] and the operating system [27, 31].

In this work, we focus on error control. Specifically, we examine how error control must evolve to sup-
port (a) point-to-point CM applications and (b) multipoint applications with a large number of participants.
Existing error control mechanisms are unsuitable for these applications because they fail to meet two
important requirements: bounded latency, required by CM applications and efficient scaling, required by
multipoint applications.

Error control as implemented in existing transport protocols (e.g., TCP [39]) offers 100% reliability at
the expense of latency. In CM applications the limited lifetime of the data makes this trade-off inappropri-
ate. CM applications require error control mechanisms that will not violate the application’s latency
requirements. For this reason error control for CM applications (especially retransmission-based error con-
trol) has created some controversy: some researchers question the success of error control due to the lim-
ited time available for recovery, and even its necessity, due to the periodic nature of CM applications.
However, we argue that retransmission-based error control can be adapted and successfully applied to CM
applications with minimal cost and will also help reduce the bandwidth allocation required to maintain
acceptable loss characteristics in VBR applications with high peak-to-average ratio (e.g. compressed
video).

In multipoint error control, as the number of participants becomes very large, a new problem emerges,
namely implosion. Implosion occurs when a large number of endpoints in a multipoint connection send
messages simultaneously. For example several receivers may generate acknowledgments at the same time,
or when a loss occurs several receivers may send retransmission requests. The impact of implosion
depends on the underlying communication: in bidirectional one-to-many communication only the sender
experiences implosion, whereas in many-to-many communication, all participants are affected. Implosion
is detrimental to communication efficiency because of the large increase in message processing and
latency, the loss of messages from buffer overflow and waste of network bandwidth. Therefore, in order to
support a large number of receivers, multipoint error control must be augmented with implosion control.

In this report we investigate solutions to the above problems. Our goal is to provide insights into the
issues and trade-offs as they arise in future high-speed networks with an emphasis on producing practical
and efficient solutions. The contributions of this work are:

* the design and implementation of a simple, inexpensive and efficient retransmission-based error
control mechanism for CM applications and the demonstration of its effectiveness

* the design, analysis and implementation of scalable multipoint error control mechanisms, aug-
mented by a set of implosion control mechanisms that take into account the nature of the underly-
ing network (connectionless or connection-oriented), the type of communication (one-to-many or
many-to-many) and the desired performance/complexity trade-off

This report is organized as follows: Section 2 presents the perspective of our work and describes how
the work fits in the design of future error control mechanisms. Section 3 presents our error control mecha-
nism for CM applications and our ongoing evaluation. Section 4 describes the problem of implosion as it
arises in error recovery and Section 5 divides implosion solutions into three approaches, namely sender-
controlled, receiver controlled and hierarchical implosion control. Sections 6 and 8, present sender-con-
trolled and hierarchical implosion control solutions respectively, and our evaluation plans. Section 7 pre-
sents a recently proposed receiver-controlled implosion solution. Finally, Section 9 concludes this report.
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2. PERSPECTIVE

Multipoint muitimedia applications not only have a large and diverse set of distinct requirements, but
within each requirement the range of support can vary enormously. The table in Figure 1 presents some of

Application Reguirement 1 Options I
connection configuration one-to-one [ one-to-many many-to-many
connection size small (2 - {0)..... medium (10 - 100)...... large (100 or more)
quality of service none | loss | delay | jitter media synchronization
error control | none application-specified  100%
T _ _i_lilow._cor.lt.l = none variable/policy-based | fully vafiﬁl}li’;_
latency 100 pSec.......... 33 mSec........ 200mSec......... 18ec........

Figure 1: Multipoint multimedia application requirements

these requirements. Each row in the table lists a distinct requirement of multipoint-multimedia applications
and each column lists the range of support for the corresponding requirement. The shaded entries highlight
the requirements of the current generation of applications. Note the large increase in both the number of
requirements and the range of support for each requirement. Some requirements have a small range: the
connection configuration for example, can be one of three types: point-to-point, one-to-many, or many-to-
many; respective application examples are file transfer, data distribution and collaborative work. Other
requirements, however, have a support range that can vary by several orders of magnitude: for example,
the number of endpoints a multipoint connection can range from two to possibly thousands (for entertain-
ment audio and video), spanning three orders of magnitude; latency requirements can vary from microsec-
onds (RPC, PVM [43]) to milliseconds (interactive audio and video, interactive applications), or seconds
(file transfer), spanning almost six orders of magnitude.

Creating a communication protocol that can support the complete range of even one such requirement
is in itself a challenging task. However, multimedia applications need the simultaneous support of several
such requirements. For example, interactive applications require latency guarantees and efficient support
for multiple endpoints; PVM applications require latency guarantees, multipoint support, flow and error
control; browsing applications require latency guarantees, flow control, but perhaps less than 100% error
control. Some applications may even switch requirements during the lifetime of a connection: for example,
when in a multimedia database search the user stops browsing and begins reliable retrieval. Supporting
multiple requirements is not easy: in many cases these requirements may call for contradictory solutions:
for example, to provide multipoint support a protocol may reduce per-endpoint state. However, if error and
flow control are also required, the state must be increased to store sequence numbers, buffers, retransmis-
sion bitmaps, etc.

We believe that it is very difficult to design a single communication protocol to support all the above
requirements efficiently. In this report we focus on the error control requirement and explore problems and
solutions for error control when combined with other requirements, namely connection configuration, con-
nection size and application latency.
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3. RETRANSMISSION-BASED ERROR CONTROL FOR CONTINUOUS MEDIA
APPLICATIONS!

In this section we present the motivation and design of a retransmission-based error control mecha-
nism for CM applications. First we argue that retransmission-based error control is less costly than other
methods of error control and can be adapted for a wide range of continuous media applications. Then, we
present the key components of our mechanism, followed by a discussion about its complexity and trade-
offs. Finally, we present our ongoing evaluation of the mechanism on our ATM testbed. We conclude this
section with the related work.

3.1 Motivation

With the emergence of high bandwidth-delay networks, the ability of retransmission-based error con-
trol to support continuous media applications has been questioned. The criticism is twofold: (a) retransmis-
sion is claimed to be inappropriate because it requires at least one round-trip delay (RTD) for recovery, and
(b) retransmission requires CPU participation, which is claimed to be too complex for continuous media
applications. The proposed alternatives are to minimize loss with (1) peak-bandwidth allocation, (2) con-
cealment, or (3) Forward Error Correction (FEC) [5].

Transmitting variable bit-rate (VBR) traffic requiring deterministic loss and delay guarantees means
that peak-bandwidth reservation is needed for the duration of the connection. For applications with high
peak-to-average ratio, peak-bandwidth allocation is too expensive and inefficient. However, transmitting
VBR with statistical guarantees on loss and delay while reserving bandwidth close to the average will
result in a high loss rate. For example, after analyzing a compressed two-hour sci-fi action movie [29], the
average bandwidth of the resulting VBR compressed video was 5.34 Mbps and the peak bandwidth almost
3 times higher (15 Mbps). These peaks were infrequent as witnessed by the coefficient of variation (0.23)
and therefore reserving peak bandwidth for the duration of the connection is wasteful. On the other hand,
losing data in the network would lower the quality and compromise the entertainment value of the movie.
This is especially important for future HDTV.

An alternative to peak-bandwidth allocation is to reserve less than the peak bandwidth and attempt to
conceal [50] lost data by taking advantage of the inherent redundancy in CM applications. Examples of
concealment include substitution of lost data with previously received data, interpolation and approxima-
tion. Supporters of this approach claim that the network loss rates will be low and thus concealment will be
adequate. It is clear, however, that as the loss rate increases, the effectiveness of concealment decreases.
Moreover, more complex concealment methods are required as the amount of lost data increases. There-
fore lowering the error rate results in better concealment results, or allows the use of less complex conceal-
ment techniques.

There are two choices for mechanisms to recover lost data: retransmission and FEC. FEC requires less
time to recover, but requires greater bandwidth than retransmission because it always transmits redundant
information, in contrast to retransmission which retransmits only lost data. Despite the additional latency
in retransmission, we believe that with enhancements retransmission-based error control can be applied to
continuous media applications, while at the same time being significantly less costly than FECZ. We expect
that with the low loss probability in future networks, as little as a single retransmission attempt will suffice

1. This work has been presented at the 6th Maryland workshop on Very High Speed Networks, held at the
University of Maryland Baltimore County (UMBC), Oct 30-31, 1995

2. FEC is typically used in lossy satellite communication. We find it contradictory to opt for the costlier error
control mechanism, namely FEC, when the network error rate is expected to decrease by orders of magni-
tude
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in most cases.
In our research we attempt to answer the following questions:

1. Isretransmission-based error recovery possible with continuous media applications?
2. How much does recovery cost in terms of bandwidth, protocol complexity and latency?
3. Does it improve the effectiveness of concealment and by how much?

In order to answer the above questions we have designed and implemented a CM transport protocol
with retransmission-based error recovery. The protocol is being evaluated in our local ATM testbed with
various continuous media, including audio, un-compressed and MPEG-compressed video.

3.2 Making retransmission work

Retransmission requires the following actions to recover lost data: (1) loss detection (typically timer-
based) at the sender, or receiving a retransmission request from the receiver, (2) sending a retransmission
by the sender, and (3) receiving the retransmission. These actions introduce an additional round-trip delay,
which may cause continuous media to miss the presentation deadline or expire, before a retransmission is
received. In order to maximize the probability that a retransmission will arrive before data expires, the
mechanism uses the following techniques: (1) playout buffering at the receiver and the sender, (2) implicit
expiration of the sender retransmission buffer, (3) gap-based loss detection at the receiver rather than
timer-based loss detection at the sender, and (4) conditional retransmission. In addition, the mechanism
delivers data integrity information to the application to help in concealment. We describe these techniques
next.

3.2.1 Playout buffering

The time available for retransmission in CM applications may be increased, with no perceptible deteri-
oration in quality to the user by introducing limited buffering at the receiver. This is called playout buffer-
ingl and the buffering delay is called playout delay. In interactive applications the playout delay is limited
by the perceptual tolerance of the user, which is around 200 mSec [8]. Therefore, for NTSC video a play-
out delay of 100 mSec allows a playout buffer of three frames as shown in Figure 2. With playout buffer-

TRANSMITTER RECEIVER

Retransmission buffer propagation delay: tp

t (|
t+33 IIIIII\
t+ 66 ED[IIIII\
t+99 [0 30 33
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E]E]E]\ 31 0 t+tp+132
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Figure 2: Buffering frames to increase time available for retransmission
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ing, the time available for retransmission is increased by 99 mSec, which is sufficient for several
retransmission attempts in LANs and MANs where the round-trip-delay (RTD) is about 10 - 15 mSec. It
may even be sufficient for one retransmission on cross-country connections, where RTD is about 60 mSec.

1. Note that the playout buffer will also act as a jitter absorption buffer
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It is important to note, however, that the 200 mSec threshold exists in interactive applications only. In case
of distribution (e.g. video-on-demand) the playout buffering can be quite large (e.g. seconds) without any
adverse effect on the perceived video quality. It hardly matters to a viewer if the display of a movie starts a
few seconds later if a continuous, error-free playback can be guaranteed from that point on.

The size of the playout buffer is proportional to the data rate. For example, buffering 3 frames of
NTSC compressed video (5 - 10 Mbps), requires a playout buffer of 0.0625 - 0.125 Mbytes. For com-
pressed HDTV (about 20 Mbps), the size of the playout buffer for three frames is 0.25 Mbytes. These
numbers are well within the capabilities of modern workstations. It remains to be seen, however, if they are
within the capabilities of television set-top boxes. We are optimistic that this will not be a problem: some
high-end television sets already have the capability to store frames for special effects (freeze-frame, slow
motion, etc.), which indicates that such features may soon become common.

3.2.2 Implicit retransmission buffer expiration

The periodic nature of the data in CM allows the sender to estimate how long to keep data in its
retransmission buffers before discarding it. Therefore, an explicit acknowledgment from the receiver is not
required. The sender can simply maintain a retransmission buffer with the same number of slots as the
receiver’s playout buffer. Whenever new data is sent the oldest data in the retransmission buffer is dis-
carded because it has expired. Implicit data expiration allows the sender to release its retransmission buff-
ers when data expires without explicit indication from the receiver. It also helps avoid late retransmissions:
if a retransmission request is delayed and arrives after the data has been discarded, no retransmission is
sent.

3.2.3 Gap-based loss detection

Loss detection in existing protocols is typically done with time-outs, In time-out loss detection, each
packet is associated with a timer at the sender. If the timer expires before an acknowledgment is received,
the packet is retransmitted. The time-out values are typically large (several times the RTD), and therefore
time-out loss detection is not appropriate for continuous media applications. We believe that gap-based
loss detection at the receiver with an explicit retransmission request is more appropriate [30]. It is impor-
tant to note, however, that gap-based loss detection is applicable only if the underlying network preserves
packet sequence.

In gap-based loss detection, each packet contains a sequence number, as depicted in Figure 3. A gap is

Packet stream

-— [ [oa] [y 2 Lot S [0 J - — >

b

. last packet received before gap
first packet received after gap

Gap Detection!

Figure 3: Gap detection at the receiver

detected when a packet arrives with a sequence number higher than expected. Gap-based loss detection has
some important differences from time-out loss detection:
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* a gap is detected only after another packet is received, thus gap-based loss detection is more suit-
able for applications that send data frequently (e.g. CM applications)

* loss detection is much faster than timer-based loss detection, if the loss is limited to a few packets
* no per-packet timers at the sender are required

Gap-based loss detection may take longer than time-out loss detection during prolonged network loss
periods. However, it is questionable whether a retransmission request should be sent before the network
loss period is over. With gap-based loss detection, loss is detected after the reception of a packet, so there
is a good possibility that the network loss period is over (assuming no packet-discarding strategies are
employed at the network [45]).

3.2.4 Conditional retransmission

Since data in continuous media has a limited lifetime, the protocol must employ a mechanism to abort
retransmission when the time left before presentation is less than the RTD. This may happen after multiple
retransmission attempts have failed, or if the network latency has become too large. Late retransmissions
not only waste network bandwidth and CPU cycles, but contribute unnecessarily to congestion and may
delay new data. To avoid late retransmissions, the mechanism must keep an estimate of the round-trip
delay and the presentation time of the data at the receiver and must ensure that the presentation time is
always greater than the current RTD estimate before requesting a retransmission.

3.2.5 Data integrity information delivery

The conditional, selective retransmission mechanism does not guarantee that data delivered to the
application will be error-free. The mechanism, however, maintains explicit information about the integrity
of the received data, which is delivered to the application. This information includes an indication to the
application that data is incomplete and the location of the missing portions. We believe that such informa-
tion is valuable to the application in deciding how to handle incomplete data, e.g. in applying concealment.

3.3 Complexity

The error control mechanism is a variation of selective repeat and therefore its complexity similar to
the complexity of other selective repeat mechanisms [14, 16, 36]. The appropriateness of this type of error
control for high-speed networks has been already demonstrated. Our mechanism includes some additional
complexity, which we discuss next:

3.3.1 Retransmission decision:

The information required for the retransmission decision at the receiver are estimates of the RTD of
the connection and the period of the continuous media. The RTD can be estimated by periodically bounc-
ing a timestamped packet between the receiver and the sender. The new RTD estimate is derived after
applying a smoothing function, e.g. RTD = (a * RTD,,,,) + (I - a) * RTD ,;;. We expect that this simple
smoothing function will suffice in connection-oriented ATM networks, where the RTD variance is
expected to be low. The period of the CM stream will be one of the parameters passed to the transport pro-
tocol by the application during connection setup, in order to determine the size of the playout buffer.

3.3.2 Retransmission and playout buffer allocation and management:

The size of the retransmission and playout buffers depends on the RTD and the period of the continu-
ous medium. The size, however, is expected to be small (see “Playout buffering” on page 5). The buffer
management operations are the same as those used in other selective repeat protocols. The only difference
is the increased number of buffer slots, which are managed as a FIFO queue. The state and the number of
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operations required to maintain a FIFO queue are small: the state consists of a head and tail pointer, and the
each operation takes around 10 instructions,

3.3.3 Playout buffer status update and delivery to application

The playout buffer status consists of a bitmap indicating the presence or absence of packets. The bit-
map is similar to the bitmap used in other selective repeat protocols, except that here we require one bit-
map per buffer slot. In contrast to other protocols, the bitmap is made available to the application. This
requires some protocol processing to prepare the frame status, which is a data structure containing a flag
indicating loss/no loss, the loss bitmap and the packet size (assuming a constant packet size). In case where
the error control mechanism is implemented in the kernel, the application interface may have to be modi-
fied to support status delivery. Ideally, the application interface must support data and status delivery in a
single system call. However, this is not always possible, e.g. in the BSD socket interface.

3.4 Status and evaluation plan

We have completed the design of a CM transport protocol with the above error control mechanism and
have implemented the protocol in the SunOS 4.1.3 and NetBSD 1.1 kernels, on top of IP and ATM. The
protocol attempts one retransmission, which we expect to suffice in most cases. However, we plan to
enhance the protocol to attempt multiple retransmissions. The user selectable parameters include the size
of the retransmission and playout buffers, the packet size and the period of the continuous media stream.
We are evaluating the protocol as follows:

1. We are instrumenting the protocol to measure packets lost, packets recovered and record the end-to-
end latency.

2. We have implemented a tool to emulate network delay and loss. The tool consists of a machine with
a kernel modified to receive, delay and/or drop and forward packets. The tool is used as shown in
Figure 4 to emulate different network delays and loss models. Using this tool we are conducting

computer | computer 2
o computer 3 Recet
ender eceiver
Delay ® ® Loss
Protocol Protocol Protocol

[ 1]

Figure 4: Protocol evaluation environment

experiments with different network delays and loss probabilities and investigating trade-offs
between the playout buffer size, RTD, loss and latency.

3. With the help of researchers at NEC in Princeton, NJ, we are assessing the effectiveness of the proto-
col in improving concealment with the following experiment: transmit an MPEG stream; for each
received frame record the number and location of lost and recovered packets; perform off-line con-

cealment! of the original MPEG stream to produce two versions, one excluding and another includ-
ing data recovered by the protocol; display the two streams for subjective evaluation.

1. concealment is currently done in software and is therefore too expensive to do in real-time
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3.5 Related work

In most current CM applications (especially video), no error recovery is performed [11, 12, 42). To
control losses, 2 mechanism is usually employed for the sender to collect feedback from receivers and
adjust the transmission rate to minimize congestion and loss [7]. Other researchers propose the creation
and concurrent transmission of multiple streams with different rate/quality characteristics, where receivers
select and join a stream depending on the level of congestion they experience [2]. Yet other researchers
propose the use of hierarchically encoded streams, where receivers receive a subset of the encoded layers
[10, 41]. All the above approaches deal with flow/congestion control and are therefore orthogonal to our
work. Our mechanism is an error control mechanism where we attempt to recover lost data rather than
make adjustments to the data flow to avoid future congestion and loss. Therefore, we expect that our mech-
anism will perhaps be used in conjunction with one of the previous flow control mechanisms.

A retransmission-based error control mechanism for CM audio applications was proposed in [24). In
this work the authors have developed an end-to-end model for packet voice transmission and created a
simulation to test their model. In the voice model the control time (playout buffering) between talkspurts is
artificially extended when there is loss, to allow additional time for retransmission. The net effect to the
audio stream is that the silence periods between talkspurts is elongated when loss occurs. Apparently, this
causes no adverse audible effects for small control times. The simulation showed that retransmission-based
error control is indeed feasible and the authors have shown trade-offs between loss, RTD and control time.
The same model, however, may not be applicable to video because in video once playback begins the
frames must be displayed at a fixed rate. Adopting a variable control-time scheme would lead to variable
frame-rate video. However, we do not yet know how the end users would react to such a video stream.

The work closest to ours is Partially Reliable Streams [23]. PRS use playout buffering and conditional
retransmission, but do not deliver data integrity information to the application. An implementation of PRS
reportedly exists, but we unable to obtain details and evaluation studies.

In [40], the authors have developed an analytic model to study the effect of retransmission-based
recovery in conjunction with concealment on ATM based networks. They show that retransmission with a
3-frame playout delay and concealment work well together even over transcontinental delays. As we men-
tioned earlier, we are planning to collaborate with the authors to perform experiments with MPEG data.

Other researchers have relied on FEC based error contro! for audio [6, 33] and video [48]. We believe
that FEC may be feasible in low bandwidth streams like audio, but not for video, because of the bandwidth
overhead. In addition, FEC works best if lost packets are dispersed randomly rather than being lost consec-
utively. However, there seems to be some controversy as to whether this is true of the Internet and the
MBone: the authors in [6] find that losses appear to be random, but the authors in [47] have found losses to
be correlated.

4. IMPLOSION IN MULTICAST ERROR CONTROL!

In this section we first describe implosion and how it occurs in multicast error control. Then, using a
simple analytic model we derive an estimate of the cost of implosion and argue that it is very high.

4.1 Motivation

Multicast networks can achieve optimal delivery of messages from a source to multiple destinations by
delaying the replication of a message until it has to traverse separate paths. This results in only one mes-

1. This work was presented at the Tenth Annual Workshop on Computer Communications, held at Rosario
Resort, Eastsound WA, Sept. 17-20 1995
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sage traversing any particular link in the network. The same is not true, however, for messages returned
from the destinations back to the source. Ideally, such messages should be merged at the branching points
as they traverse the multicast tree in the reverse direction, so that a single composite message is finally
delivered to the sender. However, due to different propagation and processing delays at the receivers, it is
hard to synchronize messages at the branching points. In addition, merging several messages into one is a
complex operation and typically requires software processing, in contrast to replicating a single message
which can be easily done in hardware. For these and other reasons (e.g. security), messages sent by the
receivers are usually delivered separately to the sender.

As the number of receivers increases, so too does the number of messages returned to the sender. If the
number of messages exceeds some threshold, two things may happen: (1) the sender may be swamped
with messages and communication will be severely impaired or even halted, or (2) the message bandwidth
at some link may exceed the available network bandwidth. This problem is called message implosion. An
example of message implosion is depicted on the left side of Figure 5, in the context of error control. The
figure shows the multicast tree for an one-to-many connection at an instant after a packet was lost on the
left branch of the tree. The loss triggers retransmission requests from all receivers in the left subtree, caus-
ing implosion at the sender.

Messages that can cause implosion can be initiated by entities residing at any communication layer
which sends messages back to the sender. However, we focus on implosion control in error control at the
transport layer. The types of messages that can cause implosion in error control include acknowledgments,
retransmission requests and redundant retransmissions. It is important to note that many of these messages
may be synchronized (e.g. acknowledgments or retransmission requests) which further exacerbates the
problem.

In multipoint connections, error control may cause not only implosion at the sender, but also redun-
dancy at the receivers. This is shown at the right side of Figure 5, where some receivers receive redundant

Redundant ] Original data Redundant

B Retransmitted data
U Retransmission request

y Original data Retransmission
[l Retransmission request Requests

Retransmissions

Figure 5: Redundancy in retransmission requests and retransmissions

retransmissions. Although both implosion at the sender and redundancy at the receivers are very important
problems, implosion is more serious because a single endpoint can find itself being bombarded by mes-
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sages from several other endpoints. Also, solving the redundancy problem requires sending retransmis-
sions over either point-to-point connections which is wasteful, or using dynamic multicast subgroups
(created to send one retransmission and then torn down) which is slow and complex.

4.2 Cost of implosion in error control

Before presenting solutions to the implosion problem, we first have to convince ourselves that the
probiem is worth solving. We use a simple analysis to estimate the cost of implosion in terms of messages.
As a disclaimer, we point out that the analysis is not meant to accurately estimate the cost of implosion, but
rather to convince us that there indeed exists a serious problem. Therefore we make assumptions that are
meant to simplify the analysis, not accurately reflect real life situations. However, we believe that the anal-
ysis is accurate enough to reveal the existence of a problem, if one exists.

In our simple model, we assume a one-to-many balanced multicast tree where the endpoints lie at the
leaves and all the intermediate nodes are switches. Switches receive a packet from the upstream link, repli-
cate it and send it to all downstream links. We assume equal loss probability at the switches, which we
define as the probability of a switch not receiving a packet. Therefore, a lost packet results in loss at all the
receivers in the sub-tree rooted at the first switch that missed the packet. Assuming the probability a switch
misses a packet is p, the height of the multicast tree (counting only the switches) is h, and each switch hav-
ing the same fan-out , then for each new packet sent the number of generated retransmission requests is:

n=kh-(1—(1—p)h)

By substituting values and plotting the results, we obtain the set of graphs in Figure 6. The graphs
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Figure 6: Retransmission requests reaching transmitter

show the number of retransmission requests received by the transmitter for every packet sent versus the
fan-out at each switch. For these graphs the loss probability is set to 10 4 The graphs show that the num-
ber of the received retransmission requests increase at an alarming rate as the height of the tree and the
connection fan-out increase. For example, in a tree with height = 4 and fan-out = 4 (which contains in 256
receivers), the transmitter receives one retransmission request for approximately every 10 data packets it
sends out. This means that in the multipoint case the sender sees an increase of 3 orders of magnitude in
the number of retransmission requests compared to the point-to-point case. Such an increase will drasti-
cally reduce performance due to increased protocol processing and OS interrupts. It is important to note
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that the situation is very similar with flow control, or with other mechanisms generating feedback. In flow
control for example, changes in the load of a link may cause all downstream receivers to send messages
back to the sender creating a situation similar to packet loss.

5. CONTROLLING IMPLOSION IN MULTICAST ERROR CONTROL

In this section we begin by defining the properties of an optimal solution to implosion control and
argue that implementing such an optimal solution is very hard. Thus we proceed to define a taxonomy of
solutions that do not meet our optimality criteria, but are easier to implement. One of these solutions comes
very close to meeting our optimality criteria.

5.1 Properties of optimal implosion control

We define an optimal solution to implosion as one that makes a multipoint connection appear to the
sender as a point-to-point connection in terms of control messages and latency, regardless of the number of
receivers. That is, the sender sends exactly the same number of messages and recovery takes at most the
same time as in a point-to-point connection. The sender is thus presented with the illusion that it communi-
cates with a single super-receiver, which aggregates the messages from all receivers. An optimal solution
must possess certain properties in terms of messages and latency, which we define next;

Messages:

1. [Isolation: recovery-related messages reach only endpoints that experienced loss and the retransmit-
ting entity

2. Redundancy: only one retransmission request is generated from each connection subtree and only
one retransmission reaches each endpoint that experienced loss

Latency:

3. Recovery in one RTD: a retransmission request is sent immediately by the receiver that first discov-
ers loss and a retransmission is sent immediately by the endpoint closest to the requesting receiver

Additional conditions:

4. Optional participation: receiver participation in recovery is optional and recovery should be com-
pletely transparent to receivers that do not participate.

5. Minimal message exchange: if messages are exchanged between receivers, the number of messages
is minimal and does not contribute to implosion

A significant amount of work has been done in optimizing the design and implementation of point-to-
point transport protocols [18, 26]. The instruction count for the per-packet processing has been reduced to
a few tens of instructions, and optimizations in memory management are resulting in only one or zero data
copies of transport protocol packets. It is important that the efficiency gained in optimizing point-to-point
protocols finds its way to multipoint protocols and the efficiency is not compromised by the implosion con-
trol mechanism. However, designing and implementing an optimal implosion solution is hard. State is dis-
tributed and receivers are unaware of the state or messages sent by other receivers. Clearly, receivers
cannot coordinate by exchanging explicit messages, but must resort to implicit mechanisms whose param-
eters are hard to estimate. For example, receivers may back-off from sending messages to detect and sup-
press duplicates. However, estimating the right back-off delay while minimizing latency is hard, especially
for receivers scattered over large geographical distances. To summarize then, the implosion problem is
challenging because it requires implicit mechanisms that can accurately predict the correct actions for each
receiver and minimize latency without relying on explicit message exchange.
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Despite its complexity, defining an optimal solution to the implosion problem is useful for evaluating
other less complex solutions. Therefore, we use the definition of the optimal solution as a metric for mea-
suring the effectiveness of other solutions.

5.2 Network participation

Before designing implosion control mechanisms, a key question has to be answered: can the designers
assume support from the network switching entities (switches, gateways, routers, etc.) for implosion con-
trol? Such support seems attractive because it allows identification and discarding of duplicates at the
switching entities. However, in order to participate in implosion control the network entities must examine
individual packets. This has several drawbacks:

1. Packet headers must be reassembled before they can be examined. This is very difficult at switches
that switch cells (ATM).

2. Additional per-connection processing and state is required at the switching entities. These new
resources must be shared and managed. In addition, the new resources will also complicate signal-
ling protocols.

3. The network entity examining the packets must interpret the headers of the protocol, meaning that
part of the protocol must reside on that particular entity. This makes software updates difficult.

4. Switches must be programmable to perform application-specified implosion control services

For the reasons listed above we believe that network participation is too complex for the current gener-
ation of switches. We therefore make the key initial assumption that switching entities do not participate in
implosion control. As protocols and networks evolve, the possibility of network participation in implosion
control must be explored. We believe that a future generation of networks will have programmable switch-
ing entities, and applications will be able to program them. For now, however, we assume that implosion
control is performed by the transport protocol.

5.3 Implosion control taxonomy

A multipoint connection has two components: (1) a primary multicast channel that the sender uses to
multicast data to the receivers, and (2) a secondary channel that receivers use to send control messages to
the sender or other receivers!. We have defined a taxonomy of implosion control mechanisms based on the
type of secondary channel used. The taxonomy divides the mechanisms in three categories. (1) Sender-
controlled implosion, (2) Receiver-controlled implosion, and (3) Hierarchical implosion control. We intro-
duce these next.

Sender-controlled implosion:

In sender-controlled implosion all implosion related decisions are taken by the sender. The secondary
channel allows requests from receivers to go back to the sender, but not necessarily to other receivers. Typ-
ically, the sender controls implosion by: (1) providing each receiver with a back-off delay, and (2) notify-
ing the receivers about which requests the sender has received, so that receivers can cancel their requests.
Sender controlled implosion is suitable in the following cases: (1) when the sender must have absolute
control of the receivers, and (2) when inter-receiver communication is not possible due to the nature of the
connection {(e.g. one-to-many connections in connection-oriented networks), or not allowed for security
reasons (e.g. in voting systems).

1. The primary and secondary channels may sometimes be the same, as for example in many-to-many con-
nections, where the sender and receivers use a group address for data and control.
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Receiver-controlled implosion

In receiver-controlled implosion the secondary channel must allow messages sent by any receiver to
reach all other receivers so that receivers can collaborate to control implosion. Since messages reach
everyone, receivers must be very careful about when to send messages. For example, on loss each receiver
may calculate a back-off delay, listen for requests from others while the back-off timer is running and
transmit a request only if no-one else did so. The sender may or may not be involved in the process (for
example it may notify the receivers about whether it is experiencing implosion). Receiver-controlled
implosion is appropriate for broadcast channels and many-to-many communication (e.g. IP Multicast,
ATM many-to-many connections).

In both sender and receiver-controlled implosion, we assume that retransmissions are sent over the pri-
mary channel and reach all receivers even if they do not need them. Also we assume that in sender-con-
trolled implosion the number of messages must be reduced below the maximum the sender can tolerate,
whereas in receiver-controlled implosion the number of messages must be reduced below the maximum
the sender or any receiver can tolerate.

Hierarchical implosion control

In large multicast connections a natural approach is to use a hierarchical solution, For example, the
receivers can be organized into a tree hierarchy with the sender at the root. The secondary channel allows
children to send messages only to their parents. Parents either combine messages from children into a sin-
gle message and forward it up the tree (e.g. acknowledgments), or discard redundant messages {e.g.
retransmission requests). Messages converge as they propagate up the tree and the sender finally receives a
single message from each of its immediate children.

In the hierarchical approach, retransmissions can be sent by the sender to everybody over the primary
channel, or by any parent to its children. The latter avoids sending retransmissions to the whole group. Par-
ents may use the secondary channel for retransmissions if it is bidirectional, or they may insert retransmis-
sions into the primary channel.

In the following three sections we investigate solutions based on each of the above categories. In each
case we present an outline of an implosion control mechanism and point out specific trade-offs. In addi-
tion, as part of the hierarchical solution, we examine message consolidation.

6. SENDER-CONTROLLED IMPLOSION

In this section we begin by presenting a basic mechanism for sender-controlled implosion. We assume
an environment where the sender is solely responsible for controlling implosion because communication
among receivers is either not possible or not desirable. Following the description of the basic mechanism,
we discuss trade-offs and propose a set of enhancements to the basic design. Finally, we present our evalu-
ation plan.

Note that communication among receivers is not possible in one-to-many bidirectional connections in
connection-oriented networks like ATM. We expect such connections to be frequently used in multimedia
dissemination, but to the best of our knowledge, no implosion control solutions have been proposed so far
for this environment.

6.1 Basic mechanism.

The key observation in sender-controlled implosion is that a retransmission request sent by a receiver
remains invisible to the other receivers until the sender sends a retransmission. Therefore, to avoid implo-
sion, each receiver has no choice but to assume that a request was sent by another receiver and delay send-
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ing a new request until it discovers otherwise. An extreme solution would be to arrange receivers in a
linear chain, where each receiver waits for a retransmission initiated by the previous receiver. Such a linear
chain ensures that at most one request reaches the sender at the expense of introducing very high latency
(when the receiver set is large}). However, typically some redundancy can be tolerated at the sender; in
addition, not all receivers need to send requests at all times. Thus, rather than creating a linear chain,
receivers can be bundled into groups where the whole group is allowed to send requests simultaneously.
Such grouping makes the chain shorter and fatter, reducing latency at the expense of generating some
redundant requests, which are on the order of (maximum group size). For this reason it is critical that the
sender is allowed to control the size of each group to ensure that the size stays below the sender’s implo-
sion threshold.

We now present a basic mechanism based on the above observations. In this mechanism the receivers
are grouped into a chain of “buckets” depending on their RTD from the sender, as shown in Figure 7.

Bucket 0 Bucket | Bucket2 | Bucket3 , Bucket4

 lge R
Y hY
N

Dy=0 D;=RTD; D,=RTDRTD; D;=RIDg+RID; +RTD,

Figure 7: Grouping endpoints into buckets

Grouping receivers based on RTD reduces latency by preventing receivers with small RTD from waiting
for receivers with larger RTD. Each bucket is associated with a value RTDy, which is the maximum RTD of
any receiver in the bucket and a back-off time D,,. Before sending a request, receivers in bucket b wait for
a retransmission assuming that bucket b-1 has initiated a request, and send their own requests only after a
retransmission fails to arrive. Dy, calculated using the following expression:

b

D, = Y RTD,_,
kel

We sketch the operation of the mechanism below. For brevity, we have omitted details that are not
essential for understanding the operation.

Sender actions:

1. The sender maintains values for the number of buckets, the back-off timer for each bucket and a
receiver histogram according to their RTD. When a receiver joins the connection, the sender places
the receiver in the appropriate bucket based on its RTD and relays to the receiver the bucket ID, the
value of the back-off timer and the value of the maximum back-off timer of any bucket (last bucket).
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2. When the sender receives a retransmission request, it sends a retransmission immediately, recording
the retransmission count in the request (see below). The sender ignores requests for the same data
with the same or lower retransmission count for a period equal to RTD,,,,.

3. The sender keeps its retransmission buffers for an interval equal or greater than the timer value of the
last bucket plus the last bucket’s RTD. Each time a retransmission request arrives, the buffer lifetime
is increased.

Receiver actions:

1. When a receiver detects a loss, it sets its back-off timer to the supplied value and waits. If a retrans-
mission is received before the back-off timer expires, the request is cancelled.

2, If the back-off timer expires and no retransmission is received, the receiver sends a request with a
retransmission count = I and sets its back-off timer to the maximum back-off time (last bucket).

3. If a retransmission fails to arrive again, the retransmission count is incremented, another request is
sent and the timer value is doubled. This continues for V iterations, after which sender or network
failure is assumed.

Bucket splitting/joining:
The sender must control the size of each bucket to ensure that the bucket does not become too large.
The sender splits the bucket using the following procedure:

1. The sender decides on the new values of the request delay timers for the two new buckets by divid-
ing the receivers in two equal groups using the receiver histogram.

2. The sender multicasts the ID of the bucket to be split, the split threshold, the new bucket IDs and the
new back-off values.

3. Receivers belonging to the split bucket update their state and join a new bucket. Receivers in down-
stream buckets add the new bucket’s back-off delay to their back-off delay.

Similarly, the sender can collapse two buckets into one if it discovers that membership has dropped, by
multicasting a message containing the IDs of the buckets to be collapsed and the new request delay timer.
Collapsing buckets is highly desirable since it reduces latency and the buffering at the sender.

6.2 Limitations and trade-offs

The lack of receiver communication allows the mechanism to meet part of the isolation and part of the
redundancy optimality criteria (see “5.: CONTROLLING IMPLOSION IN MULTICAST ERROR CON-
TROL” on page 12). The mechanism suffers from high latency, which increases in a cumulative fashion:
the time-out of the last bucket is the sum of the time-outs of all previous buckets. Therefore, the mecha-
nism penalizes receivers with high RTD. An important consequence of latency is that the retransmission
buffers at the sender may be large. The mechanism in its present form does not scale well and the maxi-
mum number of receivers is bounded by the application latency requirements and the sender’s implosion
threshold. However, since the sender has full control of the receivers, the probability of implosion is mini-
mized. The mechanism allows the sender to optimize performance by selecting a trade-off between the
maximum bucket size and latency. In addition, the mechanism requires minimal implosion-related pro-
cessing at the receivers thus keeping receiver complexity low.

6.3 Enhancements/optimizations
The mechanism’s greatest limitation is latency, especially for receivers with high RTD. Next, we
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examine methods to reduce latency.

Latency is reduced by decreasing the total number of buckets. This can be done by increasing the size
of the buckets beyond the sender’s threshold, while ensuring that for every bucket the probability that
more receivers than the sender’s implosion threshold send requests simultaneously, is acceptably low. In
order to increase the bucket size we assume that in most cases losses in the network are localized. In other
words, given that a packet was lost in a switch, the probability that a subsequent packet will be lost at the
same switch is high. This scenario is typical during congestion, which is expected to be the main cause of
packet loss in future networks. This assumption is necessary to allow us to predict that in most cases the
same set of receivers will detect the loss of a packet. For example, repeated losses at a congested switch
trigger requests from the same set of downstream receivers. With this assumption, the sender can reduce
the probability of implosion by placing receivers that send requests simultaneously in different buckets!.

The preceding idea can be generalized by allowing all receivers to be distributed in arbitrary buckets to
achieve more flexibility. To achieve arbitrary distribution each receiver is assigned RTD equal to RTD, ..
This is necessary to allow any receiver to be placed into any bucket. The bucket back-off values become
multiples of RTD,,,,, for example for RTD,,,, = 5 mSec, the bucket values are 0, 5, 10, 15, etc. With arbi-
trary receiver distribution latency is reduced by allowing larger bucket sizes, thus reducing the number of
buckets. We are examining strategies for receiver placement as part of our research.

With arbitrary receiver distribution, the average latency for recovery can be made uniform for all
receivers by allowing the sender to rotate the buckets periodically. For example after a bucket rotation,
bucket 0 may become bucket /, bucket / may become bucket 2, and bucket » may become bucket 0. This
can be accomplished by the sender periodically multicasting a bucket rotation message. Bucket rotation,
however, does not reduce the maximum latency for recovery.

If receivers are distributed over large geographic distances, it may be more efficient to permanently
assign receivers to buckets based on RTD. To avoid penalizing receivers with high RTD, the sender may
supply a probability p to select receivers, which allows them to send requests immediately rather than wait
for their back-off timer to expire. The sender may give higher probabilities to receivers that experience loss
frequently, or may distribute the probabilities to receivers at strategic locations.

To allow receivers that experience repeated loss to send requests immediately, the sender may include
the ID of the receiver to whose request is responding, with the retransmitted data. Receivers who see their
IDs in the retransmitted data begin to send requests immediately and receivers who do not see their IDs
follow the original back-off cycle. The process can be made adaptive, meaning that once a receiver stops
seeing its ID, it slowly reverts back to the back-off mechanism.

6.4 Evaluation plan

Presently, wide-area ATM networks with the capacity for large scale connections are not available,
which prevents us from evaluating the implosion control mechanisms in a real experimental environment.
However, we believe we can still gain insight into the trade-offs by designing, implementing and simulat-
ing the mechanisms. Specifically, we are implementing the sender and receiver mechanisms in a transport
protocol to model their behavior and use the model to simulate implosion control in a large scale connec-
tion as described next:

1. If losses in the network are random, this method may not work because there exists a probability that the
number of receivers in a bucket that fire simultaneously may exceed the sender’s threshold.
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1. We are creating a complete specification and implementation of a protocol incorporating sender-con-
trolled implosion on our local ATM network. The implementation will be tested using one sender
and as many receivers as possible in our local environment (we expect to use between 10 and 20
receivers).

2. Instrument the implementation to measure the latency added by the implosion control mechanisms at
the sender and the receivers. The most important measurements are: (a) the latency to send a retrans-
mission after receiving a request, (b) the number of redundant requests and the associated processing
overhead (to find the sender’s implosion threshold) and (c) the processing overhead of the implosion
mechanisms at the sender and receivers.

3. Create a simulation of a wide-area network using generally accepted values for bandwidth, latency
and error rate, and simulate connections with a large number of receivers and various topologies
(ILANs, MANs, WANs). Use the measurements obtained from instrumentation to simulate the
sender and the receivers.

4. Using the simulation, experiment with the various implosion control mechanisms, different network
loss characteristics, and receiver topology. Obtain results for average and maximum latency, error
and implosion control effectiveness, buffer requirements, and processing overhead.

5. Fine-tune and optimize the implementation based on knowledge gained from the simulation.

At the end of our evaluation we expect to be able characterize the trade-offs of the proposed implosion
control mechanisms, and based on our findings, we will fine-tune the implementation of the protocol. The
protocol will be documented and distributed to interested parties for experimentation.

7. RECEIVER-CONTROLLED IMPLOSION

In contrast to sender-controlled implosion, receiver-controlled implosion has drawn some attention in
the last few years. One of the most significant efforts is the receiver-controlled implosion mechanisms
introduced in the eXpress Transfer Protocol (XTP) in the form of damping and slotting heuristics [46].
Recently, in Scalable Reliable Multicast (SRM) [28] enhancements to the original XTP mechanisms were
presented, targeted again to the Internet environment. SRM is currently gaining rapid acceptance within
the IP community. We present a brief description of SRM in this section and we are planning to carry out
our own evaluation of SRM in the context of ATM because in connection-oriented environments the issues
and cost factors are different enough to warrant a separate evaluation. For example, the cost of setting up
and maintaining many-to-many connections is drastically different in the two environments: many-to-
many connections are readily supported on the Internet with IP Multicast [22], but are currently very
expensive in ATM requiring the creation of several one-to-many connections (one for each endpoint).

In this section we begin by describing the operation of SRM, followed by its performance characteris-
tics and trade-offs. We conclude with our evaluation plan.

7.1 Basic ideas

SRM assumes that receivers are capable of sending retransmission requests and retransmitting lost
packets. The mechanism requires that endpoints (senders and receivers) are able to communicate via a
many-to-many association, where everyone receives all requests and retransmissions. Endpoints maintain
RTD estimates between themselves and every other endpoint in the association. The mechanism attempts
to minimize latency and the number of messages by using two timers at each endpoint: a timer for sending
requests and a timer for sending retransmissions. The sequence of events depicted in Figure 8 and can be
intuitively described as follows: on loss, each receiver sets its request timer to a value proportional to the
RTD between itself and the original sender. This causes receivers closer to the sender to send requests
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Figure 8: SRM Receiver-controlled implosion phases

faster than other receivers. If these requests are received by other receivers before their timer expires, they
cancel similar pending requests. All endpoints that can retransmit the requested data start a retransmission
timer with a value proportional to the RTD between them and the requesting receiver. This causes the
retransmission to be sent by the endpoint closest to the requesting receiver. The retransmissions also cancel
similar retransmissions pending at other endpoints. The mechanism’s actions are outlined next:

Receiver actions:

1. Start with i = 0. If a loss is detected at receiver R, set T to a value from the uniform random interval
2'[Cydgp, (Cy + Cy) dga], where dgy is the propagation time from the sender § to A and C;, C; are
constants

2. If a retransmission for the missing packet is received during this interval, cancel the request

3. If someone else’s retransmission request is received during this interval, increment i and pick a new
delay interval

4. If T expires, multicast the request, double { and wait for retransmission

Sender actions:

1. Upon reception of a retransmission request, delay random time between [D;dsp, (D; + D3) dypl,
where dy g is the propagation delay between requesting receiver and sender and D, D, are constants

2. If a retransmission is received which was sent by someone else, cancel the repair
3. If the timer expires, multicast the retransmission

The mechanism differs from XTP in the selection of the request and retransmission back-off intervals:
XTP chooses random values, while in this mechanism the intervals depend on the propagation delay of
each receiver from the sender.

7.2 Performance and trade-offs

The use of a many-to-many connection as the secondary channel violates the isolation and the redun-
dancy optimality criteria (see “5.1: Properties of optimal implosion control” on page 12). The “recovery in
one RTD” criterion is also violated, because the mechanism introduces latency in the form of back-off
delays in both sending requests and retransmissions. The extra latency can be estimated by observing that
on average the first retransmission reaches the closest receiver at time 4 * p,,.. | after the request is sent; if
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retransmission requests are dispatched immediately the latency is 2%p ;.. This, however, is a very good
result compared to sender-controlled implosion where latency is in the order of the number of buckets.

The performance of the mechanism is closely dependent on the receiver topology and the location
where a packet was lost. In the best case, a single receiver close to the sender detects loss first and sends a
request which arrives in time to cancel requests from all other receivers. Thus the mechanism works best if
receiver RTDs are dissimilar. In the worst case, however, when receiver RTDs are similar, the mechanism
relies on widening the random interval from where the back-off timer values are selected to prevent implo-
sion, which increases recovery latency.

The mechanism offers the following trade-offs:

* the mechanism reduces implosion by trading latency: the wider the time-out distribution the lower
the chance of implosion.

* the mechanism trades absolute sender control (and therefore the guarantee that implosion will not
occur) for distributed implosion processing, which offers better load balancing and scalability than
sender-controlled implosion. In its present incarnation, the mechanism offers no means to the
sender to request tighter implosion control,

* the mechanism trades complexity for faster recovery. Data is recovered from the closest endpoint
at the expense of requiring endpoints to buffer data for retransmission, keep RTD estimates and
execute implosion-related steps.

7.3 Evaluation plan

Our evaluation plan is similar to sender-controlled implosion: we plan to use a combination of imple-
mentation in ATM and simulation (see the previous section for details) to evaluate the mechanism’s trade-
offs identified above. Since many-to-many connections are more expensive in ATM than in the Internet,
our investigation will also focus on characterizing the overall cost of the mechanism in terms of connection
setup and maintenance.

8. HIERARCHICAL IMPLOSION CONTROL

In this section we describe a hierarchical implosion control mechanism based on structures we call
Multicast Recovery Trees (MRTs). MRTs constitute the secondary channel (see ““5.3: Implosion control
taxonomy” on page 13) in multicast connections. For better contrast, in this section we will refer to the pri-
mary channel as the Multicast Data Tree (MDT). MRTs are created by the receivers and are composed of
interconnected nodes, each containing a group of receivers. The MRT node interconnection and communi-
cation are managed by a set of MRT components and implosion is controlled by a distributed mechanism.
Both the MRT node management and the implosion mechanism are discussed later. MRTs are highly scal-
able, offer low latency in recovery and can be used on any type of network {connection-oriented or connec-
tionless) to provide near-optimal implosion control.

We begin by describing how receivers are structured to form MRTs. Then we describe the components
required to manage MRTs, followed by a description of the implosion control mechanism running on top
of MRTs. Finally we discuss the importance of consolidation and how it can be directly supported on
MRTs!. We conclude by discussing the performance and trade-offs of MRTs followed by our evaluation

1.{1.5 + 0.5 + 2}*p,,;.. where p,,;, is the propagation delay between the receiver whose request is received

first, and the sender
1. Note that sender or receiver-controlled implosion mechanisms cannot directly support consclidation.
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plan.

8.1 MRT structure

MRTs are constructed by the receivers by forming a tree hierarchy with the sender at the root. Each
node of the tree is formed by a group of receivers. Each group selects a designated receiver, called a Relay
Node (RN). A RN is connected to all receivers in the group via a bidirectional one-to-many connection,
and with the node’s parent and children (if any), via point-to-point bidirectional connections. Receiver par-
ticipation is optional and therefore the MRT topology may be different than the MDT topology. The sender
may or may not be aware of the existence of MRTs. An example of a MDT and a corresponding MRT is
shown in Figure 9. It is important to note that the receivers in a particular MDT are free to create more than
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* Figure 9: Multicast and recovery trees

one MRT if they need to, with different loss guarantees. For example, some receivers may be connected to
a reliable MRT, while others to a best-effort MRT.

8.2 MRT components
MRTs are composed of four components. These are:

1. MRT management component: this component deals with the interconnection and membership oper-
ations of RNs to form the MRT. It supplies each RN with information about its parent and children.
It is also responsible for reforming the MRT in case of failure.

2. MRT communication component: this component is responsible for communication between RNs.
Typically, this is a point-to-point connection.

3. MRT group management component: this component deals with the formation, membership and
maintenance of groups. It is responsible for notifying new receivers of the RN identity and if
required, reforming the group after a failure.

4. MRT inter-group communication component: this component is responsible for communication
between RN and its group. Typically this component is a reliable or unreliable one-to-many connec-
tion. The component is also responsible for detecting RN failure, if required.

8.3 Implosion control actions

The implosion control actions are described next. We present actions for two cases: (1) when loss
occurs outside a group, and (2) when loss occurs within a group. For brevity, we omit details like how to
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detect endpoint failure.

Loss outside a group

1. On detecting a loss, all members in a node except RN, start a back-off timer with value greater than
the largest propagation delay between any receiver in the group and RN.

2. On detecting a loss, the RN immediately sends a retransmission request to its parent RN and also
multicasts the request to everyone in its group.

3. If receivers in a group receive a retransmission request from RN before their back-off timers expire,
the receivers cancel their requests.

4. If the parent RN has the requested data, it relays the data to the requesting RN over the point-to-point
connection. If the parent RN does not have the data, it has already sent a request to its parent. The
parent RN marks that requesting child as “expecting” data.

5. When a retransmission is received from the parent, the RN relays it to the node members and to all
“expecting” children.

Loss inside a group

1. If only some receivers but not RN have experienced loss, their back-off timer described earlier in
step 1 will expire and one or more requests will be sent to RN. RN must have the missing data (since
it did not execute step 2) and retransmits the missing data to the receivers.

2. If some receivers including RN have experienced loss, there are two options: the RN sends a request
as before, which results in a transmission from receivers that have the data to the RN, or receivers
stay quiet and data is recovered from the parent RN as before. In both cases the RN relays the data to
the receivers, some of which will receive redundant data.

8.4 Consolidation

The actions described so far are effective in reducing redundant messages. Some types of messages,
however, are not redundant and thus cannot be discarded. These messages are even more likely to cause
implosion than redundant messages. Examples of messages that cannot be discarded are positive acknowl-
edgments in a reliable protocol. An efficient method to avoid implosion from these messages is consolida-
tion. In consolidation messages from multiple receivers are combined into a single message at intermediate
nodes in the multicast tree, and the resulting message is forwarded up the tree where consolidation takes
place again, until a single message is delivered to the sender. The structure of MRTs makes them highly
suitable for consolidation by using the RNs as consolidating nodes. Several issues arise in message consol-
idation, including the following:

Selection of a message collection method:
1. Periodic: the consolidating node sets a period to wait for messages. At the end of that period, the
consolidating node combines all the messages it has received and forwards the consolidated message
up the tree

2. Collecting a message from each receiver: the consolidating node waits for a message from every
receiver before constructing the consolidated message

3. Sender initiated: The sender initiates message collection explicitly, specifying the method of mes-
sage collection the consolidating nodes should use



Page 23

Consolidation operations:

A set of operations need to be defined in order to specify how a node will perform message consolida-
tion. Some example operations are the following:

1. MIN (xj, x3,...x,): may be used to consolidate fields indicating the highest packet sequence received
by all receivers

2. MAX (x;, x3,...x,). may be used to indicate the maximum window size advertized by any receiver

3. OR (b}, by,...b, ). may be used to combine error bitmaps from all receivers to determine which pack-
ets have not been received by any receiver

4. AND (b}, by,...b,): may be used to combine error bitmaps to determine which packets have been
received by all receivers

8.5 Performance and trade-offs

The hierarchical solution to implosion adopted by MRTs is the natural solution for connections with a
large number of receivers. The hierarchy allows MRTs to offer near-optimal implosion control perfor-
mance, low latency and excellent scalability. The difficulty in implementing the hierarchical solution lies
in carefully specifying, implementing and integrating with the network the four components identified ear-
lier.

We characterize the performance of MRTs as near-optimal because performance comes very close to
the optimal solution we defined earlier (see “5.1: Properties of optimal implosion control” on page 12).
MRTs totally eliminate implosion for losses outside the groups. MRTs deviate from the optimal solution in
the following cases: (1) a retransmission originating near the root may need to traverse several hops to
reach all the groups!, (2) if loss occurs outside a group, a message from RN to the group is required to
notify members that recovery is in progress, and (3) if loss occurs within the group, some receivers will
receive duplicate retransmissions. Implosion may become a problem only for losses inside a group, but
only if the group size is large. Typically we expect that large groups will be divided into smaller groups
before implosion becomes a problem. However, if this is not feasible, large groups can control internal
implosion by using one of the sender or receiver-controlled implosion mechanisms described earlier.

An important feature of MRTS is the separation of data recovery from data dissemination, The separa-
tion allows optional receiver participation in error recovery, optimized MRT topology and the decoupling
of dissemination and recovery protocols. MRTs trade complexity for performance. The complexity of
MRTs is higher than either sender or receiver-controlled implosion because they require additional connec-
tions and group management protocols. However, MRTs do not interfere with data transfer: for example,
operations like receiver additions and deletions are mostly contained within the nodes. The RN tree is
expected to be slow changing, e.g. it changes only when a new group is added or deleted, and even then,
only the parent node is affected.

8.6 Evaluation plan

While the performance of MRTs appears very promising, their success depends on keeping their com-
plexity and overhead low. Qur evaluation is therefore focusing on characterizing the complexity of MRTs,
by designing and implementing on our local ATM testbed the four MRT components described earlier. In
designing the MRT and group management components we are examining algorithms from distributed
systems. We are also investigating options and trade-offs on how RNs locate an appropriate parent and

1. This can be avoided if RNs can inject retransmissions in the MDT
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how receivers aggregate to form groups. Following the design, we are examining possible locations of
these components in the protocol stack. Some options are, integrating the components with the transport
protocol, the ATM signalling protocol, or implementing them as network daemons.

We are characterizing the complexity of MRTs in terms of the required connections, state, buffering
and message exchange between the RNs and the receivers in a group, and the RNs with other RNs., Qur
evaluation is utilizing a combination of implementation and simulation similar to the one described earlier
in sender-controlied implosion. At the end of our evaluation we will systematically document the trade-
offs of MRTs and have efficient implementations of their components.

8.7 Related work

One of the pioneering works on reliable multicast is [13], where a centralized, reliable, totally ordered
multicast protocol is described. The Reliable Muiticast Protocol (RMP) [51] is an enhanced version of the
protocol in [13]. Other reliable multicast protocols include [1, 9, 19, 34]. However, implosion control is
not addressed in the above protocols because the number of participants is assumed to be small. Moreover,
these protocols are concerned with providing 100% reliability and therefore provide no latency guarantees,
making them inappropriate for many multimedia applications.

In [7] the authors describe a feedback control mechanism for variable bit rate video over the MBone.
The mechanism avoids implosion by allowing the receivers to send with a period T and with some proba-
bility p a message back to the source containing QoS measure with the average packet loss they observed
in that interval. However, this is a slow-reacting mechanism which aims at providing the source with some
idea of the congestion experienced by the multicast group in order to adjust the output of the video coder.
The mechanism is not suitable for recovery of lost data.

In [38], after studying sender initiated and receiver initiated error recovery, the authors concluded that
in multicast communication the burden of error detection and retransmission request should be moved to
the receivers. Three generic protocols were studied for multicast error recovery when the number of
receivers is large, and it was shown that the performance of receiver initiated error control (similar to our
NACK-based scheme) is substantially higher than sender-initiated error control (ACK-based) in terms of
host processing requirements. However, as we have argued earlier, the problem of NACK implosion still
has to be solved.

The first protocol where implosion was addressed is the eXpress Transfer Protocol (XTP) [46] with
mechanisms known as the bucket algorithm, damping and slotting, SRM, which was described earlier in
detail, has built upon the XTP damping and slotting mechanisms. A problem with SRM and other Internet
protocols employing implosion control (e.g. TMTP, described below), is that since they require many-to-
many communication, requests and retransmissions may propagate to the whole group. In an attempt to
limit the scope of these messages SRM proposes and TMTP adopts the use of the TTL field. However, as
we describe below, the success of this approach is highly dependent on network and connection topology.

All of the existing work has focused on receiver-controlled implosion. We are not yet aware of any
published work on sender-controlled implosion.

In [4], the authors proposed a block-based acknowledgment protocol to provide reliable communica-
tion and control implosion. In this protocol, the sender knows all the receivers. The sender sends a block of
packets and waits for acknowledgments from all receivers. By examining acknowledgments, the sender
identifies and retransmits lost packets. The sender maintains a window of blocks and the window is
advanced only when a complete block is acknowledged. Implosion, according to the authors, is reduced
becanse receivers have to acknowledge blocks rather than individual packets. The authors have concluded
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that although block-based acknowledgments will reduce the ACK traffic, it will not reduce implosion with-
out a significant increase in the interval to collect ACKs from all the receivers. In their concluding remarks
the authors suggest exploring a hierarchical approach. The authors also note that the dependence of opti-
mal transfer time on topology is very complex and present two examples to demonstrate the complexity.
They do not, however, propose any solutions to reduce the complexity.

Other proposed solutions are based on a hierarchical approach similar to our hierarchical solution.
There are some important differences with our work, especially in the way the hierarchy is created and the
steps taken to control implosion. We elaborate on these differences next.

In [37] a Reliable Multicast Transport Protocol (RMTP) is presented. RMTP controls implosion by
dividing receivers in a static hierarchy. The source multicasts data to all receivers, but only a few desig-
nated receivers (DRs) return acknowledgments. Receivers are divided into local regions with one DR per
region. Receivers periodically send their state to DRs, and DRs periodically send their state to the source.
The data transmission is also periodic, and is divided into transmit time-outs. During a transmit time-out
the source transmits the full current window, then stops transmission to process acks for a specified inter-
val, then retransmits any lost data for another specified interval and finally stops again to process more
ACKs. There are two main differences with our work. The first is the formation of the hierarchy: RMTP
adopts a static hierarchy, whereas we propose a highly dynamic and adaptive hierarchy. Static hierarchies,
however, are harder to scale and are not well-suited for applications with highly dynamic membership.
RMTP has not yet proposed nor explored the issues involved with a dynamic hierarchy. As we have dis-
cussed earlier, we believe that the challenges in hierarchical solutions lie in devising dynamic, adaptive,
efficient and robust methods for creating, maintaining and manipulating the hierarchical structure. The sec-
ond difference of RMTP and our work is the error recovery: RMTP uses periodic state exchange to notify
the sender of lost data, whereas we rely on explicit requests from the receivers.

In [32] Log-Based Receiver-reliable Multicast (LBRM) for distributed interactive simulation is pre-
sented. The protocol uses a primary logging server and a static hierarchy of secondary logging servers to
provide reliability. Data is multicast from the source to all logging servers and receivers, but only the pri-
mary logging server sends acknowledgments. The receivers request lost data from their corresponding sec-
ondary logging server, and in turn the secondary logging servers request lost data from the primary logging
server. In addition, in order to handle cases where data was lost in a significant number of receivers/log-
ging servers, LBRM employs statistical acknowledgments and group size estimation to select between a
single multicast retransmission or multiple unicast retransmissions. With statistical acknowledgments, the
source selects a small random (and changing) set of secondary logging servers that are instructed to
acknowledge each transmitted packet. Based on the number of acknowledgments received, the source
chooses multicast or unicast retransmission. The main differences of LBRM and our work is that LBRM
(similar to RMTP) employs a static hierarchy instead of a dynamic hierarchy and LBRM uses a distributed
set of logging servers to provide reliability, which we believe to be too expensive for the majority of appli-
cations. In addition, the hierarchical structure in LBRM is such that LBRM has to select between unicast
and multicast-to-all retransmissions. This creates either duplication (in case of unicast) or redundancy (in
case of multicast) in most cases. In our mechanism there is no duplication and significantly less redun-
dancy, which is limited only to the local groups, never to the whole multicast group.

In the Tree-based Multicast Transport Protocol (TMTP) [49] a dynamic hierarchical control tree is cre-
ated via an expanding ring search. During the search, new domain managers (similar in functionality to our
RNs) join the tree by repeatedly broadcasting a SEARCH_FOR_PARENT request by increasing the time-
to-live (TTL) value. When one or more domain managers respond, the new domain manager selects the
closest domain manager as its parent. The scope of the multicast transmissions for each domain manager is
limited to within the radius of the farthest child. Similarly, the scope of NACKSs from receivers is limited to
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the distance of its parent. Receivers multicast the limited scope NACKSs after waiting for some random
interval, in order to suppress duplicate NACKs. Using the TTL field to limit scope, however, faces the fol-
lowing problems: first, limiting multicast based on the TTL radius does not discriminate between upstream
and downstream receivers and therefore, packets will travel both upstream and downstream. This causes
retransmissions to be sent to both upstream and downstream receivers, even though only the downstream
receivers require them, as shown in Figure 10. The second problem with the use of TTL radius lies with
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Figure 10: Problems with using TTL to limit message scope

TMTP’ s method of locating an appropriate parent: during the SEARCH_FOR_PARENT phase, if the clos-
est domain manager willing to be a parent is located downstream the multicast tree, the expanding ring
search will select it as a parent. This is obviously undesirable, because parents should be always upstream:
a downstream parent domain manager will miss the same packets as a child domain manager.

9. CONCLUSIONS

In this report we have presented experimental solutions for error control for multipoint and CM appli-
cations, The solutions are, a low-cost retransmission-based error recovery method for CM applications and
a set of scalable error recovery methods for multicast applications that incorporate implosion control. We
have discussed in detail the mechanisms and trade-offs of these solutions and presented evaluation plans
for each solution.

The contributions of this research are twofold: first, we will investigate the problems, options and the
proposed solutions in detail and produce systematic evaluations of their trade-offs and performance; sec-
ond, we will produce practical implementations of the chosen solutions on our ATM testbed.
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