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We are all in the gutter, 
but some of us are looking at the stars. 

–– Oscar Wilde 
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Chapter 1: Introduction 
 

Background

Bioelectricity is the electrical field or current produced by living cells, tissues, or 

organisms. Examples of bioelectricity include the cell membrane potential and the 

electric currents that flow in nerves and muscles. 

The cell membrane potential is the voltage difference across the cell membrane – 

conventionally, a positive membrane potential denotes a higher voltage inside the 

membrane than on the outside. The membrane potential is generated due to uneven net 

charges between the inside and outside solutions. Since the membrane separates the 

inside solution from the outside, the compositions of the inside and outside solutions are 

usually different. For example, in mammalian neurons, [K+] inside the membrane is 140 

mM, but it is 5 mM outside the membrane [1]. Because K+ is usually permeable for cell 

membranes, K+ tends to flow along the concentration gradient from the inside to the 

outside solution. As a result, the flow of K+ makes the outside solution more positively 

charged than the inside solution so that a voltage gradient is generated across the cell 

membrane. This voltage gradient tends to drive K+ inward, which quickly balances the 
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outward K+ flow so that an electrochemical equilibrium is established. The voltage 

gradient at the electrochemical equilibrium is called the equilibrium potential of K+ ion, 

which is calculated using the Nernst equation i

o

X
X X

X
Fz

RTE
][
][ln�

, where EX is the 

equilibrium potential for ion X, R is the gas constant, T is the absolute temperature, zX is 

the valence of ion X, and F is the Faraday constant. Based on the Nernst equation, any 

ions other than K+ may also contribute to the voltage gradient across the membrane if the 

inside and outside concentrations are different (Table 1) and the membrane is permeable 

to those ions. The combined effect of all permeable ions, i.e. the summed contribution of 

each ion weighed by its membrane permeability, is the actual voltage difference across 

the membrane and thereby termed as the membrane potential. When the cell is at rest, the 

membrane potential of a typical mammalian cell is about -70 mV. 

Table 1. Intracellular and extracellular concentrations of permeable ions in mammalian 

neurons[1]. 

Ion Concentration (mM) Equilibrium 

potential (mV) Intracellular Extracellular 

K+ 140 5 - 102 

Na+ 5 – 15 145 56 

Cl- 4 – 30 110 -76 

Ca2+ 0.0001 1 – 2 125 
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The concentration gradient across the membrane is created and maintained by membrane 

proteins called active transporters or pumps. For example, the Na+ pump, which is one of 

the most important active transporters, hydrolyzes ATP and transports Na+ to the 

extracellular side and K+ to the intracellular side against their concentration gradients. 

Other transporters also produce and maintain concentration gradients for all other 

physiologically important ions, such as Cl-, Ca2+, and H+. Additionally, other membrane 

proteins, such as exchangers and co-transporters, also play important roles in maintaining 

the ionic concentration gradients. 

The permeability of the cell membrane for different ions is governed by membrane 

proteins called ion channels. Each ion channel forms a pore across the membrane. In 

most cases, each ion channel selectively permits only one ion species to flow through the 

pore. Thus, ion channels are generally categorized by the permeable ion species. For 

example, there are K+ channels, Na+ channels, Cl- channels, and so on. Most ion channels 

change their conformation in response to external stimuli. The most important 

conformational change is gating, i.e. the opening and closing of the gate, which controls 

the accessibility of the conducting pore. Ions are permitted to flow through the pore when 

the gate is at the open state, but not at the closed state. Therefore, in addition to 

conductance, gating also determines the permeability of ion channels. 

Gating of most ion channels is regulated by a variety of external stimuli, including the 

membrane potential, extracellular chemical signals such as neurotransmitters, 
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intracellular signals such as second messengers, temperature, and mechanical stimuli. 

Among these external stimuli, the membrane potential affects the gating of the largest 

population of ion channels; these channels are hence called voltage-gated ion channels. 

Since gating itself changes the permeability and thereby the membrane potential, these 

channels provide a feedback mechanism for the membrane potential to change 

continuously [2]. Furthermore, because the local membrane potential has its influence on 

the adjacent ion channels and thereby changes the potential of the adjacent cell 

membrane, the change in the local membrane potential can propagate along the cell 

membrane. 

One important form of the propagated change in membrane potential is the action 

potential. Action potentials conduct electrical signals along cell membranes so that 

information is conveyed from one place to another. Two types of ion channels play major 

roles in action potentials: Na+ channels and K+ channels[1]. Under certain stimuli, the 

membrane potential increases (depolarization), leading to the rapid opening of voltage-

gated Na+ channels. Since the extracellular concentration of Na+ is higher than 

intracellular, Na+ ions flux from the extracellular side to the intracellular side upon 

channel opening, which raises the membrane potential even more positively and 

stimulates more Na+ channel openings. However, after the rapid increase of the 

membrane potential, Na+ channels spontaneously close, which is called inactivation, and 

cease conducting Na+ ions. Meanwhile, the opening of K+ channels is slowly prompted 

by depolarization and K+ ions start fluxing from the intracellular side to the extracellular 
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side since intracellular K+ concentration is higher. The flux of K+ ions brings down the 

membrane potential to end the action potential. Action potentials are able to propagate 

along the cell membrane because depolarization on the local cell membrane exerts 

influence on the nearby cell membrane and increases the nearby membrane potential to 

open Na+ channels there. 

K+ Channels: Structure and Activation 

K+ channels are one of the key players in action potentials, and they play important roles 

in many other functions, including setting the resting membrane potential in neurons, 

regulating the action potential duration in cardiac muscle, and regulating the secretion of 

hormones [3]. K+ channels are the most distributed ion channels among all the ion 

channels and are found in almost all cell types. The 71 cloned mammalian K+ channels in 

different families are shown in Figure 1.1. 
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Figure 1.1. Dendrogram of the 71 cloned mammalian K+ channels. TM represents 

transmembrane segment and P represents pore domain. BK channels are one of 

the branches labeled as Slo1. Figure adapted from:  

http://www.ipmc.cnrs.fr/~duprat/ipmc/nomenclature.htm.  

Despite the diversity of K+ channels, their sequences share a highly conserved segment 

called the K+ channel signature sequence [4], which makes K+ channels easy to identify. 

The K+ signature sequence forms the selectivity filter, a structure that permits K+ ions to 

flow across the membrane but not Na+ ions. The selectivity filter, together with the 

conducting pore, is formed by four usually identical subunits that surround the filter and 

the pore with four-fold symmetry [5, 6]. As shown in the KcsA K+ channel structure 
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(Figure 1.2), the conducting pore is formed by two �-helices from each subunit: the one 

lining the pore is the inner helix and the other is the outer helix [5]. 

 

Figure 1.2. Crystallographic structure of the KcsA channel. The tetramer structure 

is viewed from top (left) or side (right). Subunits are distinguished from each other 

by different colors. Figures adapted from ref. [5]. 

The intracellular part of the inner helix is widely accepted as the gate, whose 

conformational change opens or closes the pore, thereby controlling the accessibility of 

the pore [7]. As suggested by the crystal structures of the KcsA and MthK channels 

(Figure 1.3), the gate is closed when the four inner helices are straight and form a bundle 

with a narrow gap on the intracellular side, and it is open when the inner helices are bent 

at a point and spread open [8]. The process of gate opening is called activation and the 

closing process is called deactivation. Sometimes, part of channel structure may block the 

ionic flow even though the gate is at its open state. This process is known as inactivation. 
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Figure 1.3. Closed and open conformations of the gate. Side view of the 

three subunits of the closed gate in KcsA (left) and the open gate in MthK 

(right) channels. The selectivity filter and the bending points are colored. 

Figure adapted from ref. [8]. 

The diversity of different K+ channels mainly arises from the various stimuli by which 

the gate of K+ channel is prompted to open. Some K+ channels are voltage gated (Kv 

channels in Figure 1.1), meaning that the gate opening is regulated by the movement of a 

charged voltage-sensing module – the voltage sensor [9, 10]. The voltage sensors usually 

consist of four transmembrane segments (called S1-S4) with the forth one (S4) containing 

positively charged residues at every third position on the amino acid sequence [11-16]. In 

the crystal structure of voltage-gated Kv1.2 channel, the voltage sensors are located on 

the periphery of the channel, surrounding the central conducting pore (Figure 1.4) [17]. It 

is known that upon changes in membrane potential, the voltage sensor moves along the 

electric field [9-11]. In some channels, the movement of the voltage sensor may open the 

gate through direct interactions between the S4-S5 linker and the cytoplasmic side of the 
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gate-forming inner helix so that the voltage sensor movement and the gate opening are 

tightly coupled [18]. But the coupling mechanisms may vary channel by channel. 

 

Figure 1.4. Top view of the 

crystallographic structure of the 

Kv1.2 channel. The four subunits 

are distinguished from each other 

by different colors. The position of 

each transmembrane segment is 

indicated. Figure adapted from ref. 

[17]. 

Some K+ channels are ligand gated, which means that the gate opening is regulated by the 

binding of ligand molecules, including ions [19], small organic molecules, and sometimes 

other proteins [20]. Ligand-gated K+ channels usually have cytosolic or extracellular 

domains as the binding structure. As an example of ligand-gated K+ channels, the MthK 

channel (Figure 1.5) is gated by intracellular Ca2+ ions [21]. Ca2+ binds between the RCK 

domains (regulatory domains of K+ conductance) in the cytosolic structure. The cytosolic 

structure is formed by eight identical RCK domains and is in an octameric ring-like shape 

(called the gating ring) [21]. Ca2+ binding at the interfaces of RCK domains causes the 

RCK domains to alter their relative position, which enlarges the diameter of the gating 

ring and pulls the gate to open through the peptide linkers between the gate and the gating 

ring [21]. The RCK domain is suggested as the ligand sensing module in many other 

ligand-gated K+ channels [21-26]. A noteworthy implication is that the Ca2+ binding sites 
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in the MthK channel are distal away from the gate; the Ca2+ binding energy is transported 

to the gate through the conformational change of RCK domains, which enlarges the 

gating ring and thereafter exerts a pulling force to the peptide linkers between the S6 

activation gate and the RCK domain (Figure 1.5). 

 

Figure 1.5. Proposed Ca2+-dependent activation of the MthK channel. a. Side view of 

the crystallographic structure of the open channel. The pore- gate domain (top half) is 

connected with the cytosolic domain (bottom half) by peptide linkers (dashed lines). 

The cytosolic domain is formed by eight identical RCK domains. Yellow spheres 

denote bound Ca2+ ions. b. Hypothetical structure of the closed channel. Figures 

adapted from ref. [21]. 

BK Channels 

BK channels are voltage- and Ca2+-gated K+ channels with extraordinarily large single-

channel conductance (~ 100 – 300 pS); thereby they are also known as Big K+ (or MaxiK) 
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channels [19, 27, 28]. BK channels are expressed in a wide range of cell types, including 

skeletal [29-31] and smooth muscles [32-39], inner hair cells of cochlea [40-44], 

chromaffin cells [45-49], and neurons [50-54]. BK channels function as negative 

feedback regulators for neuronal signals in many physiological activities, including 

modulating endocrine secretion [43, 55-59] and neurotransmitter release [60-62], 

controlling the interspike interval and spike frequency adaptation [51, 52, 55, 63-66], 

tuning hair cell firing frequencies in the auditory system [41, 42, 67-72], and so on. 

Consistently, malfunction of BK channels leads to different diseases, including epilepsy 

[73, 74], hypertension [75-82], asthma [83], and motor impairment [84]. 

Each BK channel is formed by four identical � subunits [85, 86], which is encoded by the 

slo1 gene [14-16]. Similarly to most K+ channels, the four � subunits form a symmetrical 

tetramer surrounding the conducting pore [85, 86]. Based on electrophysiology and 

immunocytochemistry studies, each � subunit is composed of a transmembrane domain 

which contains seven transmembrane segments (S0-S6) and a large cytosolic domain 

(Figure 1.6) [87, 88]. There are three major structural domains in BK channels: the 

voltage-sensing domain (VSD) including S1-S4, the pore-gate domain (PGD) including 

S5-S6, and the cytosolic domain which senses various intracellular signaling ligands. 
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Figure 1.6. Structure scheme of the � subunit of BK channels. The transmembrane 

domain contains seven transmembrane segments (S0-S6), among which S1-S4 

form the voltage-sensing domain (VSD) and S5-S6 form the pore-gate domain 

(PGD). The large cytosolic domain contains two RCK domains (regulators of K+ 

conductance). Domain boundaries and the Ca2+ bowl are indicated. Each BK 

channel is formed by four identical subunits. Figure adapted from ref. [89]. 

Physiological functions 

The BK channel is ubiquitously expressed in the body and plays important roles in many 

physiological functions. The BK channel is unique among K+ channels because of its 

extraordinarily large conductance to K+ ions (>200 pS in 100 mM symmetrical K+). 

Therefore, the BK channel is particularly effective in conducting K+ current and 

regulating membrane potential.  
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The BK channel is unique among K+ channels also because it can be activated by 

multiple physiological stimuli, including membrane voltage and intracellular Ca2+. As a 

result, the BK channel can integrate these two different signals, which makes it an 

important regulator of intracellular Ca2+, a critical second messenger for a variety of cell 

activities. For example, the integration of membrane voltage and intracellular Ca2+ by the 

BK channel is critical in smooth muscle cells [90]. In arterial smooth muscle, membrane 

depolarization triggers opening of the L-type Ca2+ channel, which leads to Ca2+ influx 

into the cell. This Ca2+ influx results in sarcoplasmic reticulum Ca2+ release and thereby 

increases global cytoplasmic Ca2+ level, which promotes muscle cell contraction. At this 

moment, the BK channel is activated by both elevated Ca2+ level and membrane voltage, 

which leads to outward K+ flux and lowers membrane voltage. As a result, the Ca2+ 

channel closes and Ca2+ level drops, leading to cell relaxation [91, 92]. Loss of function 

of BK channel in smooth muscle cells results in impaired relaxation in smooth muscle 

cells, leading to increased constriction in cerebral arteries [75] and tibial arteries [93].  

The BK channel can play important roles in varied tissues because its function is tuned to 

serve different purposes. The major tuning sources include alternative splicing, 

phosphorylation, and association with modulatory proteins. 

Alternative splicing is a process by which the exons of the same pre-mRNA are 

reconnected in multiple ways during RNA splicing, resulting in different mRNAs which 

may be translated into different protein isoforms. The BK channel gene (mslo1) can be 
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translated into different variants due to extensive alternative splicing, tuning the function 

of the channel [94-98]. For example, the STREX (stress axis-regulated exon) variant is 

formed by including an exon that encodes a 59-amino-acid addition in the cytosolic 

domain of the channel. The STREX variant is more active than the variant lacking the 

exon (the ZERO variant). The inclusion of the STREX exon during translation is 

stimulated by exposing adrenal chromaffin cells to androgens or myometrial cells to 

progesterone or estrogen receptor antagonists [99, 100]. On the other hand, the exclusion 

of the STREX exon is induced by exposing adrenal chromaffin cells to glucocorticoids 

[99]. 

Phosphorylation is the addition of a phosphate group to a protein. Due to its dense 

negative charge, the phosphate group may trigger dramatic conformational changes and 

alter protein functions. Phosphorylation is catalyzed by an enzyme group named protein 

kinases. The BK channel is known to be a phosphorylation target for multiple protein 

kinases [101, 102]. Phosphorylation by protein kinase A (PKA) inhibits the STREX 

variant of the BK channel but stimulates the ZERO variant [103]. Protein kinase G (PKG) 

activates the BK channel through the nitric oxide/cyclic guanosine monophosphate 

(cGMP) pathway [104-106]. However, the effect of protein kinase C (PKC) on the BK 

channel is unclear. It shows both stimulatory and inhibitory effects on the channel in 

different cell types [107-113].  
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Moreover, association with auxiliary �-subunits tunes the function of the BK channel. 

There are four �-subunits (�1- �4), each of which is expressed in specific cell types. 

These four �-subunits have distinctive effects on the function of the BK channel [114]. 

Table 1 summarizes the tissue specificity, effects on BK channel, and physiological 

functions of the four �-subunits. Nevertheless, the four �-subunits share structural 

homology. They are comprised of two transmembrane segments with intracellular N and 

C-termini and a long extracellular loop. 

Table 1. �–subunit waveforms and characteristics. Table adapted from ref. [114]. 

Besides the �-subunits, leucine-rich repeat (LRR)-containing protein 26 (LRRC26) is 

recently found to associate with the BK channel in LNCaP prostate cancer cells [115]. 

The BK channel co-expressed with LRRC26 can be activated at much less membrane 

voltage (~ - 140 mV) than BK channel alone, enabling the channel to be activated under 

normal physiological conditions for non-excitable cells.  
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 Structure 

The detailed structure for the entire BK channel is not available. However, the x-ray 

structure of the cytosolic domain has been resolved in two recent papers (Figure 1.7) [89, 

116]. In both papers, the cytosolic domain forms a ring-like structure comprising eight 

RCK domains (regulators of K+ conductance) – each of the four subunits contains two 

RCK domains: the N-terminal one is called RCK1 and the C-terminal one RCK2 (Figure 

1.6). Each RCK1 domain contacts with the RCK2 domain of the same subunit through a 

“flexible interface” and contacts with the RCK2 domain of the neighboring subunit 

through an “assembly interface”. The interfaces are formed by multiple hydrophobic 

residues. It is suggested that Ca2+ binding to the cytosolic domain may induce 

conformational changes of the gating ring that lead to the opening of the gate. Moreover, 

in the structure which was crystallized in the presence of high [Ca2+], Ca2+ ion is shown 

bound to the binding site in the RCK2 domain (Figure 1.7) [89]. 
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On the other hand, as of the transmembrane domain that does not have x-ray structure, its 

similarity in amino acid sequences suggests that the structure is homologous to other K+ 

channels. First of all, most parts of the transmembrane domain, including the voltage 

sensing domain (VSD) and the pore-gate domain (PGD), are homologous to the Kv1.2 

channel [117-120]. The Kv1.2 channel is a voltage-gated K+ channel which comprises a 

Figure 1.7. Crystallographic structure of the BK channel cytosolic domain viewed down the 

fourfold symmetry axis. (left) The re-constructed cytosolic domain crystallized in the 

presence of 50 mM Ca2+, with the RCK1 domains colored in blue and RCK2 in red. Golden 

spheres indicate the Ca2+ ions bound to the Ca2+ bowl binding site. Arrows indicate the 

flexible and assembly interfaces. Figure adapted from ref. [89]. (right) The cytosolic 

domain crystallized in the absence of Ca2+, with the RCK1 domains colored in yellow and 

RCK2 in magenta. Long arrows indicate the assembly interfaces. The linker between the 

transmembrane and cytosolic domains, the starting point of RCK1, and the Ca2+ bowl in 

RCK2 are labeled for the upper left subunit. Figure adapted from ref. [116]. 
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transmembrane domain and a small cytosolic domain [17]. The transmembrane domain 

of the Kv1.2 channel has six transmembrane segments on each subunit (S1-S6). Among 

the six segments, S1-S4 form the voltage sensors which are on the periphery of the 

channel and surround the pore and gate formed by S5-S6 (Figure 1.4). Nevertheless, in 

BK channels, the additional S0 transmembrane segment, which is absent in the Kv1.2 

channel, may result in a different arrangement of the other segments. 

Secondly, the structural similarity in the transmembrane domain is also suggested by a 

BK channel structure with low resolution (17 – 20 Å) [121]. This BK channel structure is 

based on a single-particle cryo-EM study. The extracellular side of this BK structure is 

very similar to the Kv1.2 channel with only a little variation which may be attributed to 

the additional S0 segment (Figure 1.8).  

 

Figure 1.8. Comparison of the BK channel structure 

with the Kv1.2 and MthK channels. a. Side view of the 

BK channel (colored according to the z-coordinate) 

and the surrounding membrane (white mesh). The 

structure is based on single-particle cryo-EM study. b. 

Side view of the BK channel (gray mesh) docked with 

the Kv1.2 transmembrane domain and the MthK 

gating ring. The peripheral domains of the MthK 

gating ring are tilted by 36°. The colored voids indicate 

the possible positions for S0 segment (green), N-
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terminus (blue), and S0-S1 linker (red). Figures 

adapted from ref. [121]. 

Nevertheless, lack of the entire channel structure leaves the alignment between the 

transmembrane and cytosolic domains undetermined. The inter-domain alignment in BK 

channels are suggested to be different from other K+ channels in a functional study by 

Yang et al. [119] According to their study, the VSD of one BK channel subunit resides on 

top of the cytosolic domain of a neighboring subunit (Figure 1.9), which is different from 

the homology model combining the structures of Kv1.2 and MthK which suggests that 

the VSD should reside on the cytosolic domain of the same subunit [119, 122]. The 

variation may arise from possible interactions between the transmembrane and cytosolic 

domains, or from the linker structure between the pore-gate domain and the cytosolic 

domain. 

 

Figure 1.9. Top view of the BK channel homology structure combining the Kv1.2 and 

MthK structures. The Kv1.2 and MthK structures are aligned at their selectivity filters. 
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Only the transmembrane domain of Kv1.2 and the top four RCK domains of MthK 

are shown. The four subunits are distinguished from each other by different colors. 

S1-S4 segments of the transmembrane domain are indicated. Figure adapted from 

ref. [119]. 

 Activation 

The gate opening of BK channels is promoted in response to different stimuli, including 

depolarization of the membrane potential and elevation of intracellular Ca2+ or Mg2+ 

concentration [27, 28, 123, 124]. One important characteristic of the gate activation in 

BK channels is that the activation gate has a finite open probability even when the 

voltage sensors are at the resting state and the Ca2+ and Mg2+ binding sites are empty 

[125-127]. The transition of the voltage sensors from their resting state to the active state 

or the binding of Ca2+ or Mg2+ energetically favors the activation gate at the open state, 

which leads to a higher open probability. In other words, the opening of the activation 

gate is modulated, but not completely determined, by the sensors. 

Nevertheless, the molecular mechanisms of this modulation remain unclear, although the 

voltage, Ca2+, and Mg2+ sensing sites (the sensors) have been studied extensively and 

their locations and amino-acid compositions identified (see below). The sensors in BK 

channels are probably located away from the gate based on the x-ray structures of the 

cytosolic domain [89, 116] and its sequence homology to the Kv1.2 and MthK channels 
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[119]. Therefore, the key to this modulation is the allosteric coupling between the sensors 

and the gate. However, firstly, little is known about the protein structure connecting the 

sensors with the gate, i.e. the structural pathway conveying local conformational changes 

at the sensors to the gate is unclear. Furthermore, how the energy of sensor movements 

propagates to the activation gate is unknown. The studies in my thesis aim to address 

these questions.  

In the following part of the introduction, the key residues for the voltage-, Mg2+-, and 

Ca2+-dependent activations in BK channels will be presented, and their individual 

coupling mechanisms with the gate will be discussed.  

 Voltage-Dependent Activation 

BK channels are activated by membrane potential depolarization. In BK channels, the 

voltage sensor is formed by S1-S4 segments. The voltage sensor moves in response to 

voltage change and the movement of the voltage sensor is propagated to the activation 

gate during channel activation. The movement of the voltage sensor is driven by four 

charged residues: D153 and R167 in S2, D186 in S3, and R213 in S4 [117, 128]. 

Neutralizing any of these charges by mutagenesis reduces the slope of the G-V relation, 

thereby partially impairs the voltage sensitivity of the channels.  

The voltage sensor moves from a resting state to an active state in response to 

depolarizing membrane potentials. The movement of the voltage sensors generates 
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transient gating currents due to the translocation of the above four voltage-sensing 

charged residues along the electric field [128, 129]. Although the activation of the 

voltage sensor increases the open probability of the activation gate, it is not obligatory for 

gate opening, meaning that the movement of the voltage sensor and the opening of the 

activation gate are allosterically coupled [125]. This conclusion is based on two facts: 1) 

The movement of the voltage sensor, which is observed as gating currents, is almost 

completed before the start of the gate opening [125]. 2) At negative voltages (< 20 mV), 

where the voltage sensor is mostly at the resting state, the open probability of the 

channels is less voltage dependent. Moreover, at extremely negative voltages (< - 120 

mV), where the voltage sensor is completely at the resting state, the open probability 

remains more than zero [125]. These two facts prove that although the activation of 

voltage sensor and the gate opening affect each other, neither is obligatory for the other to 

occur, which satisfies the criteria as an allosteric coupling.  

Based on the fact that the transition between the closed and open states of the activation 

gate occurs despite the state of the voltage sensors, Horrigan et al. proposed the HCA 

model to illustrate this allosteric coupling [125]. In the HCA model, any number (0 – 4) 

of voltage sensors can be at the active state no matter whether the activation gate is open 

or closed, resulting in five closed states (C0 – C4) and five open states (O0 – O4) of the 

channel (Figure 1.10). The open probability is calculated as )
)1(

)1(1/(1 4

4

DJL
JPo �

�
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kT
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constant for voltage-sensor activation for each subunit, L is the intrinsic open probability 

when all voltage sensors are at the resting state, D is the allosteric factor coupling 

voltage-sensor activation to channel opening, zJ is the amount of net charge movement 

during voltage-sensor activation, zL is the amount of net charge movement during gate 

opening, e is the elementary charge, k is Boltzmann’s constant, T is absolute temperature, 

VhC is the voltage for half of the voltage sensors to be at their activation state when the 

gate is closed, and V is voltage. 

 

Figure 1.10. HCA model for the allosteric coupling in the voltage activation 

of BK channels. C0 – C4 represent closed states of the activation gate with 

different numbers (0 – 4) of voltage sensor at the active state. O0 – O4 

represent different open states. Figure adapted from ref. [122]. 

The HCA model has been shown to account for the allosteric coupling in the voltage 

activation. However, the key structures and residues that convert the voltage sensor 

movement to the gate opening, i.e. the structure basis for the allosteric coupling, is 

unclear [122]. 
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 Mg2+-Dependent Activation 

BK channels are activated by elevation of intracellular Mg2+ concentration [123, 124]. 

The Mg2+ binding site is composed of D99 and N172 from the transmembrane domain 

and E374 and E399 from the cytosolic domain (Figure 1.11) [119, 130, 131]. These four 

binding coordinates are identified based on the impact of their mutations on the Mg2+ 

activation: neutralizing any of the three negatively charged residues abolishes the Mg2+ 

activation and the Mg2+ activation is rescued by mutating N172 to negative residues. 

Besides these four Mg2+ binding coordinates, another residue, Q397, is noteworthy with 

respect to Mg2+ activation. Q397 is not part of the Mg2+ binding site, but it is located very 

close to the binding site and the charges at this residue alters Mg2+ activation through 

electrostatic interaction with the bound Mg2+ (Figure 1.11) [130, 132]. More interestingly, 

when both D99 and Q397 are mutated to cysteines, the two cysteines form a disulfide 

bond which alters the channel activation. This again proves that Q397 is located in the 

vicinity of the Mg2+ binding site [119].  
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Figure 1.11. Geometry of key residues for the Mg2+-dependent activation in BK 

channels. The side view of two subunits is shown. The Mg2+ binding site is formed by 

D99 and N172 from the transmembrane domain (yellow) and E374 and E399 from the 

cytosolic domain (green). The bound Mg2+ interacts with R213 to promote channel 

activation. Q397 is located in the vicinity of the Mg2+ binding site. 

The bound Mg2+ mediates the opening of the activation gate through its electrostatic 

repulsion with R213, the positive residue that contributes the most gating charge in the 

voltage sensor [133, 134]. Moreover, its electrostatic interaction with R213 is strongly 

state-dependent because 10 mM intracellular [Mg2+] reduces the amplitude of the off 

gating currents (IgOFF) and slows its relaxation rate, while its effect on the on gating 

currents (IgON) is much smaller [133]. Since IgON indicates the movement of the voltage 

sensor from the resting state to the active state when the channels are closed and IgOFF 

indicates the opposite movement when the channels are open, the difference in the effect 

of Mg2+ on IgON and IgOFF suggests that the interaction between the bound Mg2+ and 

R213 is much stronger when the channels are open than closed [133]. Therefore, the 
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bound Mg2+ activates the channels through its influence on the allosteric coupling 

between the voltage sensor and the activation gate by stabilizing the voltage sensor at its 

active state when the channels are open.  

In addition, when Q397 carries a positive charge by mutagenesis or chemical 

modification, it mimics the Mg2+ effect such that it interacts with R213 through 

electrostatic interaction and the interaction is much stronger when the channels are open 

than closed [133]. 

Ca2+-Dependent Activation 

Ca2+ binds to the cytosolic domain of BK channels to promote channel activation [135]. 

Each subunit contains two putative Ca2+ binding sites of high-affinity (Kd: 0.8 – 11 �M) 

[22, 131, 136-139]. One site is known as the calcium bowl which is located at the RCK2 

domain where a series of Asp residues reside (Figures 6 and 7) [137]. The other site is 

located in the RCK1 domain at D367 [131]. 

There are several residues in the calcium bowl site that are important for the Ca2+ 

activation [138]. The mutation of five sequential Asp (D897–D901) to Asn (the 5D5N 

mutation) reduces the most Ca2+ activation [137, 138]. Similarly, the site in the RCK1 

domain also has multiple, but discrete, important residues regarding Ca2+ activation. First 

of all, the mutation of two Asp residues (D362A/D367A) was found to abolish the rest of 

the Ca2+ activation after the calcium bowl is mutated by the 5D5N mutation [131]. 
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Secondly, the mutation of a Met residue (M513I) partially disrupts, though not entirely, 

the Ca2+ activation that is derived from the RCK1 domain [139]. Either of the putative 

binding sites is studied by mutating the other site, using the mutations mentioned above. 

The effects of the two binding sites are additive, meaning that the summed Ca2+ 

activation of either site when the other site is mutated approximately equals to the Ca2+ 

activation in the intact wild-type channels. Therefore, the two Ca2+ binding sites activate 

the activation gate through independent molecular mechanisms [131, 139]. However, a 

study based on single-channel recordings found that the Ca2+ binding sites on the same 

subunits cooperate positively in activating the gate [140]. But the impact of this positive 

cooperativity on macroscopic currents is unclear [122]. 

The Ca2+ activation that is derived from the RCK1 Ca2+ binding site has been suggested 

to be the target for other modulation mechanisms. For example, carbon monoxide (CO) 

and H+ may associate in the vicinity of the D367 residue, altering the Ca2+ binding at 

D367 so that the channel activation is modulated [141, 142]. Moreover, D367 is located 

only two residues in front of an Asp residue (D369), whose Gly mutation is associated 

with the human disease of coexistent generalized epilepsy and paroxysmal dyskinesia 

(GEPD) [73]. The D369G mutation enhances the Ca2+ activation of the BK channels 

probably also through its influence on the Ca2+ activation derived from the RCK1 binding 

site. 
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The Ca2+ binding activates the activation gate through a mechanism that is independent 

from the mechanisms for the voltage or Mg2+ activation. It is independent from the 

voltage activation because at extremely negative voltages, where the voltage sensor is at 

the resting state, 100 �M Ca2+ increases the open probability by more than 2000 times 

[126, 127]. Meanwhile, 100 �M Ca2+ increases the channel activation to the same extent 

despite the Mg2+ concentration [143, 144]. Therefore, neither the voltage nor Mg2+ 

activation is necessary for the Ca2+ activation. The coupling between the Ca2+ binding 

sites and the activation gate is through an independent mechanism. 

Since neither the opening of the activation gate nor the Ca2+ binding to the binding site is 

obligatory for the other to occur, the coupling between the two processes is allosteric. 

Similar to the HCA model, the MWC model is used to describe allosteric couplings but 

more specialized in ligand binding processes [145]. The central idea of the MWC model 

is that the ligand binding at one of the multiple binding sites would alter the overall 

conformation of the protein such that the binding affinity of all the binding sites is altered 

consequentially. In the case of BK channel activation, the overall conformational change 

includes the opening of the activation gate, as well as the local conformational change at 

the Ca2+ binding sites that results in higher Ca2+ binding affinity. Therefore, the binding 

site bound with Ca2+ energetically prefers the high-affinity conformation so as to induce 

the overall conformational change and favor the opening of the activation gate. 
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The structure scheme of the MWC model (Figure 1.12) is the same as the HCA model, in 

which the activation of voltage sensors is replaced by the activation of Ca2+ sites upon 

Ca2+ binding [146] [147].  

 

Figure 1.12. MWC model for the allosteric coupling in the Ca2+ activation of 

BK channels. C – CCa4 represent the closed states of the activation gate with 

different numbers (0 – 4) of Ca2+ binding sites occupied by Ca2+. O – OCa4 

represent different open states. The binding of every Ca2+ alters the balance 

between the closed and open states of the gate by the factor c = KO/KC. Figure 

adapted from ref. [126]. 

Following is the open probability versus Ca2+ concentration and membrane potential: 

4

2

2

][Ca1

][Ca1
)0(1

1

�
�
�
�

�

�

�
�
�
�

	




�

�
���

�

�

�

�

O

CkT
zeV

open

K

K
eL

P

 



31 

 

Where Popen is channel’s open probability; L(0) is the equilibrium-state ratio of closed to 

open channels ([C]/[O]) in the absence of bound Ca2+ at 0 mV; z is the number of 

equivalent charges; e, V, k, and T are the same as above in the HCA model; Kc and Ko are 

the dissociation constants of Ca2+ in the closed and open states, respectively. Note that 

this form of MWC model assumes only one Ca2+ binding site on each subunit. 

However, in the MWC model, the dependence on membrane potential is simplified in 

that all the voltage sensors are assumed to move simultaneously. A more complicated 

model may be derived as in Figure 1.13 if the movement of the voltage sensor is 

independent from other voltage sensors [127]: 

 

Figure 1.13. Allosteric coupling between the gate opening (C – O), voltage-

sensor activation (R – A), and Ca2+ binding (X – X*Ca2+). The allosteric 

factors coupling these processes are C, D, and E. Here each subunit is 

assumed to have only one Ca2+ binding site. Figure adapted from ref. [122]. 



32 

 

In the studies on the molecular mechanisms of the allosteric coupling between Ca2+ 

binding and gate opening, progress has been made in identifying important structural 

components regarding the Ca2+ activation. Firstly, a peptide linker of 16 amino acids 

connects the S6 transmembrane segment (S6 functions as the activation gate in many K+ 

channels) with the cytosolic domain. Altering the length of the linker by inserting or 

deleting a different number of amino acids not only changes the open probability of the 

activation gate in the absence of Ca2+, but also changes the Ca2+ activation [148]. A 

longer linker decreases the open probability and reduces the Ca2+ activation, while a 

shorter linker increases the open probability and enhances the Ca2+ activation. This result 

is consistent with the hypothesis that the cytosolic domain pulls the S6 segment via the 

linker to promote gate activation, same as in the Ca2+-activated MthK channel [21]. 

Secondly, chimera studies suggest that the N-terminal part of the RCK1 domain (the AC 

region) is responsible for the Drosophila BK channels (dSlo1) to have higher Ca2+ 

activation than the mouse BK channels (mSlo1) [149]. The molecular dynamics 

simulation based on the MthK AC region structure indicates that the AC region of the 

dSlo1 channel is more tightly packed and less flexible than that of the mSlo1 channel, 

which suggests that the dynamics of the AC region may play an important role in the 

allosteric coupling of Ca2+ activation. Moreover, the AC region is found to be close to the 

transmembrane domain, even making physical contact at multiple locations [119, 133]; 

thereby, the AC region may directly interact with the activation gate to realize the 

allosteric coupling for Ca2+ activation. 
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Additionally, the chimera studies on the � subunits suggest that both the linker and the 

AC region are critical for �2 to enhance the Ca2+ activation [150]. 

The next two chapters of this dissertation both focus on the molecular mechanism of the 

allosteric coupling for Ca2+ activation. In the first chapter, the pathway for the RCK1 

Ca2+ binding site is dissected and the importance of its dynamics for Ca2+ activation is 

proven. In the second chapter, the inter-domain alignment between the transmembrane 

and cytosolic domains is proven to be important for many channel properties, including 

Ca2+ activation. 
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Chapter 2: Coupling Mechanism of the 
AC Region 
 

In the following paper which is published in Neuron, we identified the AC region as the 

coupling structure for the RCK1 Ca2+ binding site. We further discovered that the 

dynamics of the AC region regulates the coupling efficiency. 
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Summary

Ca2+-activated BK channels modulate neuronal activities including spike frequency 

adaptation and synaptic transmission. Previous studies found that Ca2+ binding sites 

and the activation gate are spatially separated in the channel protein, but the 

mechanism by which Ca2+ binding opens the gate over this distance remains 

unknown. By studying an Asp to Gly mutation (D434G) associated with human 

syndrome of generalized epilepsy and paroxysmal dyskinesia (GEPD), we show that 

a cytosolic motif immediately following the activation gate S6 helix, known as the 

AC region, mediates the allosteric coupling between Ca2+ binding and channel 

opening.  The GEPD mutation inside the AC region increases BK channel activity 

by enhancing this allosteric coupling. We found that Ca2+ sensitivity is enhanced by 

increases in solution viscosity that reduce protein dynamics.  The GEPD mutation 

alters such a response, suggesting that a less flexible AC region may be more 

effective in coupling Ca2+ binding to channel opening. 

Highlights

1) The two Ca2+-activation pathways in BK channels are dissected. 

2) The AC region is identified as a structural component of one of the pathways. 

3) Protein dynamics plays an important role in the AC region pathway. 

4) The disease-associated mutation alters channel dynamics to enhance Ca2+ sensing. 
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Introduction

Ion channels are proteins that conduct ions across cell membranes. Channel proteins 

regulate membrane excitation and ionic homeostasis in response to cellular signals, and 

mutations of ion channels often induce serious, sometimes life-threatening diseases[1]. 

Structural studies in recent years have greatly advanced our understanding of the basic 

working modules of ion channels including the activation gate [2] and sensors to various 

stimuli such as voltage [3, 4] and chemical ligands [5-8]. However, the structural basis 

for the energetic coupling between sensors and the activation gate still remains elusive. 

Considering the fact that many disease-causing mutations are outside of the gate and 

sensors, it is particularly important to understand the molecular mechanism of the 

energetic coupling, i.e. the structural components of the allosteric activation pathways, 

and how they are modified by channel mutations. Activated by both membrane 

depolarization and increases in intracellular Ca2+ concentration ([Ca2+]i), large-

conductance, voltage and calcium-activated K+ (BK) channels become one of the best 

systems to address this question [9]. Recently, we characterized a mutation D434G in 

human BK channels (hSlo1, GenBank accession number, GI: 26638649) which was 

identified from patients with nervous disorders of coexistent generalized epilepsy and 

paroxysmal dyskinesia [10]. This epilepsy/dyskinesia mutation (hD434G) significantly 

increases Ca2+ sensitivity of BK channels under physiological conditions. More 

interestingly, the hD434G mutation resides in a cytosolic motif which is important for the 

allosteric coupling between Ca2+ binding and channel activation [7, 11] , but outside of 
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the putative Ca2+ binding sites (Figure 2.1A), implying its role in the allosteric Ca2+-

dependent activation. Thus, this mutation provides us a unique opportunity to uncover the 

structural basis and dynamic nature of the coupling between Ca2+ binding and BK 

channel opening. 
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Figure 2.1. The epilepsy/dyskinesia mutation mD369G enhances Ca2+ sensitivity of 

mSlo1 BK channel activation. (A) The Slo1 polypeptide. The membrane-spanning domain 

contains helices S0-S6 and pore loop (P), of which S1-S4 form the voltage sensor domain 

(VSD) and S5-S6 form the pore/gate domain (PGD). The cytoplasmic domain contains 

two putative Ca2+ binding sites: the D367 site (Site I) and the Ca2+ bowl (Site II). mD369G 

is located in the AC region, close to the D367 Ca2+ binding site. (B) Macroscopic current 

traces from inside-out patches expressing WT and mD369G channels. Currents were 

elicited in 1.8 μM [Ca2+]i by voltages as indicated. The voltages before and after the 

pulses were -50 mV. (C and D) G-V curves for WT and mD369G channels in [Ca2+]i from 

nominal 0 (~0.5 nM) to 111.5 μM.  Solid lines are fits with the MWC model (see Methods). 

(E) V1/2 of G-V curves versus [Ca2+]i for WT and mD369G channels. (F) Parameters of 

MWC model fits for WT and mD369G channels (value ± standard deviation). 

 

BK channels are composed of four identical alpha subunits encoded by the Slo1 gene [12, 

13]. Each Slo1 subunit contains a membrane-spanning domain, which includes the 

voltage sensor and the ionic pore with the activation gate, and a large cytoplasmic C-

terminal domain where two putative Ca2+ binding sites, D367 and the Ca2+ bowl, have 

been identified [14, 15] (Figure 2.1A). In addition, the channel contains a third site that 

binds both Ca2+ and Mg2+ at high (mM) concentrations [15-17], which is not shown in 

Figure 2.1A because under the experimental conditions used in this paper this site will 

not be occupied. The atomic structure of the BK channel has not been solved. However, 

the X-ray crystallographic structure of KV1.2 channel [18] has been used as a model for 

the membrane-spanning domain of BK channels, while the RCK (regulator of K+ 
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conductance) domains of the MthK channel [7] are suggested as a model for the 

cytoplasmic domain [9]. A recent three-dimensional structure of BK channels from 

electron cryomicroscopy is consistent with these homology models [19]. Structural and 

functional studies suggested that Ca2+ binding activates the channel through an allosteric 

mechanism [20]. At the molecular level, the allosteric mechanism is suggested to be 

similar as that for the MthK channel such that Ca2+ binding first alters the conformation 

of the cytosolic domain, which then opens the activation gate by pulling the S6 

transmembrane segment [7, 21]. To date, no structural component in the cytosolic 

domain that changes conformation during Ca2+ dependent activation has been identified 

in BK channels, and the nature of such conformational changes is not known. The 

hD434G mutation in BK channels causes an increase in the activity of BK channels at the 

same membrane potentials and [Ca2+]i’s as compared to the wild type (WT) hSlo1 

channels. This change may be the basis for the association of the mutation with the 

neurological disorders [10, 22]. To investigate how this mutation uniquely enhances 

channel function, we studied the hD434G-equivalent D369G in mouse Slo1 (mSlo1) BK 

channels (Figure 2.1). These studies identified the N-terminus of the RCK1 domain 

containing 76 amino acids, a region including the secondary structures �A-C [7] and 

thus named the AC region, as part of a structural basis connecting Ca2+ binding to 

channel opening. The results suggested a conformational and dynamical change of the 

AC region during BK channel activation that is altered by the mD369G mutation. These 

results also provide a novel allosteric mechanism for how ligand binding opens activation 

gates in ion channels. 



58 

 

Results

mD369G enhances Ca2+ dependent activity 

Experiments were carried out on mSlo1 rather than hSlo1. The mSlo1 channel is 

homologous to hSlo1; aside from the different lengths at the N- and C- termini, 99% 

amino acids are identical between the two channels [10, 23]. The D369G mSlo1 channels 

exhibit the same phenotype as D434G hSlo1 such that at the same voltage and 

physiological [Ca2+]i the mutant channels activated more than the WT channels (Figure 

2.1B). We studied the mSlo1 channels over a more complete range of [Ca2+]i’s from 

nominal 0 (~0.5 nM) to the near saturating 111.5 μM, and the results revealed that the 

mutation enhances Ca2+ sensitivity of channel activation (Figures 1C-F). The increase of 

[Ca2+]i shifted the voltage range of the conductance-voltage (G-V) relations of the mutant 

channels to more negative voltages as compared to those of the WT channels (Figures 1C 

and 1D). The G-V relation of BK channel activation can be approximated by fitting the 

data to the Boltzmann function with two independent parameters: V1/2 (voltage at half-

maximum conductance) and z (proportional to the steepness of the curve). A plot of V1/2 

vs. [Ca2+]i clearly shows that Ca2+ binding shifts the G-V relation to more negative 

voltage ranges, and that the shifts for the mD369G mutant channels are larger than that 

for the WT channels (Figure 2.1E). To further quantitatively estimate the change of Ca2+ 

sensitivity caused by the mutation, we fit the G-V relations of both mutant and WT 

channels at various [Ca2+]i to the MWC model of BK channel activation [20, 24] (Figures 
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1C and D) and list the parameters (Figure 2.1F), where Ko and Kc are dissociation 

constants for Ca2+ binding at the open and closed conformations, respectively. The 

mD369G mutation decreased both Ko and Kc, consistent with an enhancement of Ca2+ 

sensitivity. Such a change in Ca2+ sensitivity would increase open probability of the 

channel by 1.4 - 5 times during a neuronal action potential with an estimated amplitude of 

~30 mV and local [Ca2+]i between 2-10 μM (Figures 1C and 1D). Previous studies 

suggested that the increased BK channel activity may be prominent at the peak of 

neuronal action potentials, where [Ca2+]i increases due to Ca2+ influx via voltage 

dependent Ca2+ channels, to reduce the duration and increase the frequency of action 

potentials and result in seizures [22]. 

The shift of G-V relations in response to changes in [Ca2]i is an effective measurement of 

Ca2+ sensitivity of BK channels [25], which has been the primary method for 

investigating the gating mechanism of BK channels including the identification of Ca2+ 

binding sites [15, 26]. However, since BK channels are activated by both voltage and 

Ca2+ [9], this method does not directly reveal the mechanistic properties of Ca2+ 

dependent activation. To eliminate the influence of voltage dependent activation, we 

further examined Ca2+ sensitivities of the WT and D367G mSlo1 using limiting slope 

measurements at extremely negative voltages where BK channels open spontaneously 

and independently of voltage sensor movements [27]. A patch containing hundreds of BK 

channels is held at negative voltages, where the open probability of the channels is so 

small that only rare openings of single channels are observed (Figure 2.2A). The open 
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probability of the channels increases in the presence of Ca2+, resulting in marked increase 

of single channel openings. Figure 2.2 shows that mutation mD369G enhances Ca2+ 

sensitivity of the channel. At -140 mV, the number of single channel opening events of 

both WT and mD369G increases with increasing [Ca2]i, but more prominently for 

mD369G (Figure 2.2A). The Po-V relations at various [Ca2]i become flat at negative 

voltages (Figure 2.2B and C), indicating that channel opening at these voltages no longer 

depends on voltage sensor movements. The Ca2+ dependences of Po at -140 mV for WT 

and mD369G channels (Figure 2.2D) clearly show that mutation mD369G enhances Ca2+ 

sensitivity. The fit of the data by the Hill equation (solid lines) results in a microscopic 

dissociation contant of 15 and 8 μM and a Hill coefficient of 2.8 and 3.5 for WT and 

mD369G, respectively. The larger Hill coefficient for mD369G indicates a higher 

cooperativity among Ca2+ binding sites in the mD369G channels, thus mutation mD369G 

enhances the allosteric coupling among Ca2+ binding sites, possibly via an enhanced 

allosteric coupling between Ca2+ binding sites and the activation gate.   
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Figure 2.2. mD369G enhances Ca2+ sensitivity as shown by limiting slope measurement. 

(A) Current traces at -140 mV under different [Ca2+]i for WT and mD369G. The patch for 
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WT has ~ 730 channels, and the one for mD369G has ~ 550 channels. [Ca2+]i is labelled 

next to the corresponding traces.(B and C) Po-V relations for WT (B) and mD369G (C) 

under different [Ca2+]i. The symbols for each [Ca2+]i are identical to Figure 2.1C and D. 

Solid lines are fittings to the HCA model.(D) Po at -140 mV under different [Ca2+]i for WT 

and mD369G. Solid lines are fittings to the Hill equation: )])/[(1/(1 2 n
Ao CaKP ��� . 

The microscopic dissociation constant KA = 15 and 8 μM and the Hill coefficient n = 2.8 

and 3.5 for WT and mD369G, respectively. 

 

mD369G alters the D367 activation pathway 

How does the mD369G mutation perturb the molecular mechanism of Ca2+ dependent 

activation to result in a gain-of-function? Previous studies showed that the mutation of 

each of the two putative Ca2+ binding sites, D367A and 5D5N (five consecutive Asp 

residues at 897-901 mutated to Asn), eliminates part of Ca2+ dependent activation and the 

sum of the effects is close to the total high-affinity Ca2+ sensitivity of the channel. These 

results suggest that the channel is activated by two separate Ca2+ dependent pathways 

involving either D367 or the Ca2+ bowl, with only a weak cooperativity between the two 

pathways [15, 28, 29] (Figure 2.3A). Therefore, to answer the above question, we first 

investigated whether the mD369G mutation affects each of the activation pathways, and 

then addressed how a particular pathway is affected. We found that eliminating the 

function of one pathway by D367A also abolishes the difference in Ca2+-induced G-V 

shift between the mD369G mutant and the WT channels, since V1/2 changes with [Ca2+]i 

nearly in parallel for the two channels (Figures 3B and 3C). This result indicates that the 
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mD369G mutation no longer enhances Ca2+ sensitivity when the pathway associated with 

D367 is disabled. On the contrary, when the function of the Ca2+ bowl pathway is 

eliminated by the 5D5N mutation, the mD369G mutation continues to enhance Ca2+ 

sensitivity in a similar way as in the WT channel (Figures 3D and 3E). Taken together, 

these results suggest that the epilepsy/dyskinesia mutation specifically affects the Ca2+ 

dependent activation pathway associated with D367. 
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Figure 2.3. mD369G mutation specifically affects the D367-associated Ca2+ activation 

pathway. (A) Diagram illustrating the relationship between Ca2+ binding sites and the gate. 

Ca2+ binding to the two sites, which are located distant from the activation gate, activates 

the channel through independent pathways with little cooperativity. mD369G is located 

close to the D367 site. (B and D) G-V curves for D367A and D367A/D369G mutants (B), 

and for 5D5N and 5D5N/D369G mutants (D) with 0 and 32.3 μM [Ca2+]i. Solid lines are fits 

with the Boltzmann function. (C and E) V1/2 versus [Ca2+]i for D367A and D367A/D369G 

mutants (C), and for 5D5N and 5D5N/D369G mutants (E). The curves for D367A and 

D367A/D369G are shifted vertically to align at 0 [Ca2+]i in the inset of (C). (F) V1/2 versus 

[Ca2+]i for WT and D369A, E, G, N, P, and W mutants. Note that the data in this panel 

were obtained in a different batch of experiments with a different set of Ca2+ solutions, 

hence the final Ca2+ concentrations are slightly different from those in other figures. 

 

Then, what are the targets in the D367-specific pathway that are subject to modification 

by mD369G to result in an increase in Ca2+ sensitivity? Based on the structural model of 

the RCK1 domain [7], D367 appears to be located some distance from the activation gate. 

Thus the D367-specific activation pathway may involve a large structure that includes 

many residues (Figure 2.3A). Since mutation mD369G is located close to D367, it is 

possible that the mutation may alter local interactions of the D369 side chain with the 

putative Ca2+ binding site to enhance Ca2+ sensitivity [30]. On the other hand, it is also 

possible that mD369G may alter the conformation of the activation pathway and 

allosterically enhance Ca2+ sensitivity (Figure 2.2D). To distinguish between these two 

possibilities, we mutated D369 to conservative (D369E) and neutral (D369A, N, W, and 
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P) amino acids with various side chain sizes and examined the effects of these mutations 

on Ca2+ sensitivity. Among all these mutations, only mD369G increased Ca2+ sensitivity, 

with V1/2 of the G-V relations shifted to more negative voltage ranges (Figure 2.3F).  The 

effects of other mutations were not as pronounced and varied at different [Ca2+]i’s, 

increasing channel activation at some concentrations, but decreasing activation at other 

concentrations. These results suggest that the side chain of D369 is not part of the Ca2+ 

binding site (also see [15, 16]), and it may not contribute to Ca2+ sensitivity by the short 

range electrostatic or van der Waals interactions with the putative Ca2+ binding site. 

Rather, the specific effect of mD369G in increasing Ca2+ sensitivity may derive from the 

ability of glycine to adopt a wide range of main-chain dihedral angles and make protein 

structure flexible at its site, which may alter the conformational changes of the D367-

specific pathway during channel gating.  Consistent with this suggestion, the G-V relation 

of the mD369G mutant channels shifted a small but significant amount to more negative 

voltages (�V1/2 = 8.8 ± 3.8 mV (mean of difference ± standard error of difference, n = 6 

for WT and 20 for mD369G), p = 0.029 in unpaired Student’s t-test) at 0 [Ca2+]i (Figure 

2.1E), indicating that mD369G can alter channel function by a change in the structure 

that links to the activation gate, instead of by merely changing Ca2+ binding. Furthermore, 

although mD369G no longer enhances Ca2+ sensitivity of the channel with the D367A 

mutation, it alters channel activation independently of [Ca2+]i, shifting the G-V relation at 

all [Ca2+]i’s (Figures 3B and 3C). It is possible that D367A eliminated Ca2+ binding to the 

putative site but did not destroy the rest of the activation pathway down-stream from Ca2+ 
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binding, which was subsequently altered by mD369G mutation to affect channel 

activation.  

To examine if the flexibility of the channel protein matters to gating and if mD369G 

alters the flexibility of the channel protein, we studied the WT and mutant channels in 

intracellular solutions with increased viscosity. The dynamics of a protein in solution are 

intimately coupled to the dynamics of the solvent; the fluctuation amplitudes and 

relaxation rates, i.e. flexibility, of proteins can be reduced by increases in solution 

viscosity [31-33]. Previous studies showed that the increases in solution viscosity may 

affect the moving parts of voltage dependent Na+ channels during gating to reduce 

activation rates [34, 35]. In our experiments, increasing the viscosity of intracellular 

solution by addition of sucrose (measured viscosity = 0.906 � 0.003 mPa•s and 23.1 � 0.1 

mPa•s, mean � s.e.m., n = 12 at 0 and 2 M sucrose, respectively) slows down the time 

course of activation and deactivation (Figures 4A and 4B) and enhances Ca2+ dependent 

activation (Figures 4C and 4D) of both the WT and mD369G channels. In 200 μM [Ca2+]i, 

the reduction of the deactivation rate is smaller as compared to the enhancement of 

activation rate (Figure 2.4B), and since BK channel activation can be approximated by a 

two-state voltage dependent activation mechanism in saturating  [Ca2+]i’s [25], the 

changes in time courses of the current are consistent with the changes in G-V relations. 

Adding 9 M glycerol in the intracellular solution (measured viscosity = 20.2 � 0.1 mPa•s, 

mean � s.e.m., n = 12), which resulted in a similar increase of viscosity as 2 M sucrose, 

also caused similar changes in BK channel activation (Figures 4E and 4F). On the other 
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hand, addition of 2 M urea to intracellular solution, which alters viscosity little (measured 

viscosity = 0.906 � 0.003 mPa•s and 0.987 � 0.005 mPa•s, mean � s.e.m., n = 12 at 0 and 

2 M urea, respectively), had no effect on channel activation (Figures 4E and 4F), 

excluding the possibility that the changes in BK channel activation with sucrose were due 

to changes in osmolarity or other unknown effects associated with high concentrations of 

solutes. These results suggest that gating of BK channels is affected by the flexibility of 

the channel protein.  
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Figure 2.4. mD369G mutation alters response of BK channels to solution viscosity. (A) 

Macroscopic current traces recorded in the absence (thinner traces) or presence (thicker 

traces) of 2M sucrose. Currents were elicited in saturating 200 μM [Ca2+]i by 70 mV. 

Holding and repolarizing voltages were -80 and -120 mV, respectively. Current traces with 

sucrose were re-scaled to have the same peak amplitude as without sucrose. (B) 

Activation (> 0 mV) and deactivation (< 0 mV) time constant in the absence (hollow 

symbols) or presence (solid symbols) of 2 M sucrose. [Ca2+]i = 200 μM. Channels were 

activated by 70 mV then deactivated by various voltages to obtain deactivation time 

constant. (C) G-V curves for WT and mD369G in the absence (hollow symbols) or 

presence (solid symbols) of 2 M sucrose. [Ca2+]i = 0 (circles) or 200 μM (squares). Solid 

lines are fits with the Boltzmann function. (D) �V1/2 versus viscosity. �V1/2  = V1/2 at 0 

[Ca2+]i - V1/2 at 200 μM [Ca2+]i. The solutions contained 0, 1 and 2 M sucrose, respectively. 

Solid lines are fits with equation �V1/2  = ln(�/�0)�, where �0 is the viscosity of zero 

�V1/2  and � is the slope in the semi-log plot; � = 13.7 ± 0.9 and 6.2 ± 0.5 (value ± 

standard deviation) for WT and mD369G, respectively. (E) �V1/2 in the absence (hollow 

bars) or presence (solid bars) of 2 M sucrose. Hatched bar indicates �V1/2 in the presence 

of 2 M urea or 9 M glycerol. Asterisks indicate a significant difference (p < 0.05 in 

student’s t test) of �V1/2 resulted from 2 M sucrose or 9 M glycerol. (F) ��V1/2 caused by 

sucrose. ��V1/2 = �V1/2
2 M sucrose - �V1/2

0 sucrose. Hatched bar indicates ��V1/2 caused by 2 M 

urea or 9 M glycerol. The dashed lines give the 99% confidence interval for ��V1/2 of WT. 

 

The results show that mutation mD369G alters the responses of activation and 

deactivation kinetics to the increased viscosity (Figure 2.4B) and causes a reduced shift 

of the G-V relation as compared to that in WT when the [Ca2+]i is increased from 0 to the 
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saturating 200 μM (Figures 4C and 4D). Thus, the enhancement of Ca2+ sensitivity due to 

an increase of viscosity for mD369G channels is less than that for WT. Unlike mD369G, 

mutation D369A, which does not alter Ca2+ sensitivity (Figure 2.3F), has no effect on the 

response of BK channels to sucrose (Figure 2.4D). These results support that mD369G 

alters the flexibility of the BK channel protein to potentiate Ca2+ sensitivity. 

Results in Figure 2.3 have shown that mD369G specifically alters the Ca2+ dependent 

activation pathway associated with D367 (Figure 2.3C), but not the pathway associated 

with the Ca2+ bowl (Figure 2.3E). Our unpublished results also indicate that mD369G 

does not affect Mg2+ dependent activation [36]. To examine if a change of solution 

viscosity affects any specific metal dependent activation pathways, we measured channel 

activation with each of the mutations E374A, D367A and 5D5N, which abolished metal 

binding to the Mg2+ binding site [16], the Ca2+ binding site at D367 [15, 16] and the Ca2+ 

binding site at the Ca2+ bowl [14], respectively. D367A, but not E374A or 5D5N, 

abolished the response of BK channels to sucrose (Figures 4E and 4F), suggesting that 

only the Ca2+ dependent activation pathway associated with D367 specifically depends 

on the dynamics of the channel protein for the coupling between Ca2+ binding and 

channel opening, which is consistent with the result that mD369G specifically affects the 

same activation pathway (Figure 2.3).  

It is important to note that both the increase of viscosity, which reduces the overall 

protein dynamics, and the mD369G mutation, which enhances the local peptide 
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flexibility, potentiates Ca2+ sensing. This result suggests that the local peptide flexibility 

enhanced by mD369G may reduce the dynamics in other parts of the protein 

allosterically, consistent with the results in Figures 1E and 3C. Taken together, these 

results suggest that mD369G alters the flexibility and conformation of the channel protein 

to potentiate the allosteric coupling between Ca2+ binding at the D367 site and channel 

opening. 

Allosteric interactions in the D367 pathway 

To demonstrate more directly that mD369G affects the allosteric coupling between Ca2+ 

binding and channel opening, we find structural perturbations that affected the coupling 

in the D367-specific activation pathway and then test if such perturbations also alter the 

effect of mD369G. In search of such perturbations, we performed a mutation-scan in the 

AC region, which is a crucial gateway for the allosteric coupling between Ca2+ binding 

and channel opening because it physically connects the activation gate to the rest of the 

cytosolic domain (Figure 2.1A), and is important in determining Ca2+ sensitivity [11]. 

Furthermore, both the putative Ca2+ binding site D367 and the mutation mD369G are 

situated within the AC region so that the mutation may alter its structure to affect Ca2+ 

sensitivity. In this experiment, most residues were mutated individually to Ala and some 

to other amino acids (Figure 2.5A). The loss of Ca2+ sensitivity of the channel due to each 

mutation is quantified by the change in the G-V shift (�V1/2) when [Ca2+]i changes from 

nominal 0 to the near saturating 99.3 - 111.5 μM (i.e. ��V1/2(�Ca
2+

) = �V1/2
WT - 
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�V1/2
Mutant).  We classify a ��V1/2(�Ca

2+
) of more than ± 20 mV as significant since the G-

V relation of BK channels often exhibits variations within a voltage range of � 20 mV.  

Ten mutations are found to reduce Ca2+ sensitivity significantly (indicated by asterisks in 

Figure 2.5A and Supplemental Figure S1), including D362A and D367A that have been 

previously reported [15, 16].  These mutations are located in different secondary 

structures within the AC region, including A, B, �C, and the inter loop between A 

and �B that contains Asp-Arg-Asp-Asp at positions 367-370 and is called the DRDD 

loop (Figure 2.5A). Consistent with D367 being part of a Ca2+ binding site, mutations in 

the DRDD loop resulted in large reductions in Ca2+ sensitivity; and D367A reduced the 

G-V shift by 105 ± 4 mV (mean of difference ± standard error of difference, n = 6 for  

WT and 5 for D367A) as compared to the 182 ± 3 mV (n = 6) total shift in WT mSlo1 in 

response to an increase of [Ca2+]i from 0 to 111.5 μM, equivalent to a ~60% reduction of 

Ca2+ sensitivity. The functionally important mutations in other secondary structures are 

separated by large distances from the DRDD loop in the structural model of the RCK1 

domain (see Figures 7 and 8). These residues are important in the D367-specific pathway 

(see below), but cannot be part of the Ca2+ binding site because of their long distances 

from D367 and because they are mostly hydrophobic (Figure 2.5). The long distances 

from D367 also suggest that it is unlikely for all these residues to make direct interactions 

with the putative Ca2+ binding site. Therefore, at least some of these mutations reduced 

Ca2+ sensitivity by perturbing the allosteric coupling between Ca2+ binding and channel 

opening. 
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Figure 2.5. Mutations in the AC region perturb the D367-associated Ca2+ activation 
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pathway. (A) Effect of the AC region mutations on Ca2+ activation. The mutation scan 

includes H344 – A419 of mSlo1 (GenBank accession number, GI: 347143). The 

residues were individually mutated to Ala except that A389, A412 and A419 were 

mutated to Gly, Q397 to Cys, and E399 to Asn. V1/2( Ca
2+

) = V1/2
WT - V1/2

Mutant, 

where V1/2  = V1/2 at 99.3 to 111.5 μM [Ca2+]i - V1/2 at 0 [Ca2+]i. Mutations with 

V1/2( Ca
2+

) falling beyond the � 20 mV (dashed lines) interval significantly affect 

Ca2+ activation, which are (denoted by asterisks) F359A, D362A, L364A, H365A, 

D367A, R368A, L387A, F391A, T396A, and F400A. Open circles depict z values. The 

dotted line indicates the z value of WT. Structural motifs are indicated by horizontal 

thick lines. Arrows indicate mutations from which we were unable to obtain data 

because either the G-V curves at 0 [Ca2+]i shifted to extremely positive potentials 

beyond the range of measurement (S355A and K392A) or the mutant failed to express 

macroscopic currents (V398A). (B) V1/2 versus [Ca2+]i for the combined mutation in �A 

and �B on the background of Ca2+ bowl mutation 5D5N. (C) V1/2 versus [Ca2+]i for the 

combined mutation in �A, �B, and �C on the background of D367A mutation. The G-V 

curve at 0 [Ca2+]i for the combined mutation shifted to extremely positive potentials 

and hence the V1/2 is unavailable. The two curves are shifted vertically to align at 1.0 

�M [Ca2+]i in the inset. (D) Effect of individual and combined mutations on Ca2+ 

activation (filled bars). Open bars depict the summed effects of individual mutations 

except for those under F359A/D362A/L387A/F391A and L387A/F391A/T396A/F400A, 

which show the summed effects of F359A, D362A, and L387A/F391A, and of 

L387A/F391A and T396A/F400A, respectively. Thick lines indicate the structural 

motifs where the mutations are located. 
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Since mD369G may enhance Ca2+ sensitivity by potentiating the allosteric coupling 

between Ca2+ binding and channel opening, do these perturbations also alter the effect of 

mD369G? Before answering this question, we examined if these mutations, like mD369G, 

are able to affect the activation pathway associated with D367 specifically. Figure 2.5B 

shows that the combined mutations in A and B with 5D5N 

(F359A/L387A/F391A/5D5N) reduced Ca2+ sensitivity more than 5D5N alone. Since 

5D5N completely abolishes the Ca2+ sensitivity derived from the Ca2+ bowl [14, 15], the 

additional reduction in Ca2+ sensitivity suggests that the mutations in A and B may 

perturb the activation pathway associated with D367. Consistent with these results, the 

combined mutations in A, B, and �C with D367A 

(F359A/D362A/H365A/L387A/F391A/T396A/F400A/D367A) did not reduce Ca2+ 

sensitivity more than D367A alone (Figure 2.5C), indicating that these mutations all 

specifically affect the activation pathway associated with D367; once the upstream 

pathway is disabled by mutation D367A, additional mutations perturbing the coupling 

between Ca2+ binding and channel opening were no longer able to affect Ca2+ sensitivity. 

With more combinations of mutations, we further studied how these mutations in each 

individual secondary structure perturb Ca2+ dependent activation (Figure 2.5D and 

Supplemental Figure S2). The Ca2+ sensitivity is measured as the total G-V shift induced 

by a change in [Ca2+]i from 0 to saturation (Figure 2.5A), which represents the free 

energy change during Ca2+ dependent channel opening (�GCa
2+ = �zeV1/2) [37], where e 

is the elementary charge and z is similar at various [Ca2+]i (Figures 1C and 1D) and 

largely unchanged by mutations (Figure 2.5A). Therefore, we assumed that for any 
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combination of mutations, if the mutations do not affect the same molecular process, the 

sum of the effects on Ca2+ sensitivity by the individual mutations should be the same as 

that of the combined mutations [38]. Mutations in the DRDD loop 

(H365A/D367A/R368A) reduced Ca2+ sensitivity that is indistinguishable from that of 

the single mutations D367A, indicating that these mutations all affect the same molecular 

process. Contrarily, the reduction in Ca2+ sensitivity was nearly additive by mutations in 

B or �C (L387A/F391A or T396A/F400A) (Figure 2.5D), suggesting that in B or �C, 

each mutated amino acid may independently contribute to local interactions that are 

important for channel gating. However, the combined mutations in B and �C 

(L387A/F391A/T396A/F400A) reduced no more or even less Ca2+ sensitivity than the 

mutations in B alone (L387A/F391A), indicating that B and �C also cooperate as part 

of a common molecular process in Ca2+ dependent activation. When the mutations in A 

and B were combined (F359A/D362A/L387A/F391A) they had a larger effect than 

mutations in individual secondary structures (F359A, D362A, or L387A/F391A); 

nonetheless, the effect was less than the summed effects of all individual mutations. 

Therefore, while A, B and �C may be involved in localized interactions, they also 

cooperate as part of a common molecular process contributing to Ca2+ dependent 

activation. Taken together, these results suggest that all perturbations in the AC region 

that reduce Ca2+ sensitivity (Figure 2.5A) affect the activation pathway associated with 

D367, and they all are allosterically connected such that one perturbation can affect the 

outcome of other perturbations. 
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mD369G alters allosteric interactions

We then examined how the above mutations alter the effect of mD369G by combining 

mD369G with mutations in A (F359A), B (L387A/F391A) or �C (T396A/F400A) that 

are likely to be located long distances away from D369 (Figure 2.6). Interestingly, while 

the mutations in A, B or �C reduce total Ca2+ sensitivity, they either enhanced or did 

not significantly alter the effect of mD369G (Figures 6A-D). Compared to the WT mSlo1, 

the mD369G mutation shifted the G-V relation maximally around 1.8 μM [Ca2+]i; 

however, the mutation in A altered the profile of mD369G effects and increased G-V 

shift, with the largest shift at 111.5 μM [Ca2+]i (Figures 6A and 6D). The mutations in B 

or �C did not alter the profile of mD369G effects, nor the maximal G-V shifts (Figures 

6B-D). Thus, the effect of mD369G is determined by the mutations in A, B and �C 

within the AC region. Since these mutations are all allosterically connected in perturbing 

the D367-specific Ca2+ dependent activation pathway (Figure 2.5), any of these mutations 

would alter most allosteric interactions within the AC region to provide a unique network 

of allosteric connections that determines the effects of mD369G on Ca2+ sensitivity. 

Reciprocally, mD369G also affects most allosteric interactions in the AC region to 

enhance Ca2+ sensitivity. Figure 2.6E shows that in the presence of F359A, mD369G 

reduced the response of channel activation to the increase of viscosity, suggesting that 

F359A does not alter the mechanism for the function of mD369G such that mD369G may 

still reduce the flexibility of the AC region even though the allosteric pathway is altered 

by F359A. Based on all the results presented in this paper, we conclude that mD369G 
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alters the conformation and dynamics of the channel protein allosterically to potentiate 

Ca2+ sensing via the pathway associated with D367, and the AC region is an important 

structural component of this pathway.  

 

Figure 2.6. Mutations in the AC region allosterically alter the effect of mD369G 

mutation. (A-C) V1/2 versus [Ca2+]i for the background mutations in �A (A), �B (B), and 

�C (C) with (red circles) and without (black circles) mD369G, and on the background 

of WT with (red dashed line) and without (black dashed line) mD369G. (D) The 

maximum mD369G-induced increase in Ca2+ dependent activation on the background 

of WT and mutations. �V1/2(+Ca2+) is the maximum V1/2 shift caused by mD369G, and 
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measured by the length of the blue lines in (A-C) on respective backgrounds. Note 

that �V1/2(+Ca2+) was measured at 1.8 μM [Ca2+]i on all backgrounds except for on the 

background of mutation in �A, where �V1/2(+Ca2+) was measured at 111.5 μM [Ca2+]i. 

�V1/2(0Ca2+) is the V1/2 shift caused by mD369G at 0 [Ca2+]i, measured by the length of 

the cyan lines in (A-C). The asterisk indicates that the data is significantly different 

from that on the WT background (p < 0.0005 in unpaired Student’s t-test). (E) �V1/2 in 

the absence (hollow bars) or presence (solid bars) of 2 M sucrose. �V1/2  = V1/2 at 0 

[Ca2+]i - V1/2 at 200 μM [Ca2+]i. The asterisk indicates that �V1/2 in the presence of 

sucrose is significantly differently from that in the absence of sucrose (p < 0.05 in 

student’s t test). 

 

Discussion

This study demonstrates that mD369G enhances BK channel activity by altering the 

allosteric coupling between Ca2+ binding and gate opening. The experimental results that 

lead to this conclusion have also brought insights into the mechanism of such a coupling. 

Previous studies suggested that Ca2+ binds to two putative sites, the D367 site [15] and 

the Ca2+ bowl [14], in BK channels to activate the channel through two separate intra-

molecular pathways, i.e., two separate subsets of conformational changes are responsible 

for coupling the activation gate to the two Ca2+ binding sites. However, aside from the 

putative Ca2+ binding sites, the structural basis of the two activation pathways was not 

clear. In this study, we show that the mD369G mutation and the mutations in the AC 

region primarily alter the Ca2+ dependence derived from the D367 associated activation 
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pathway (Figures 3, 4, 6). These results further demonstrate that Ca2+ activates the 

channel through separate intra-molecular pathways, and the allosteric interactions within 

the AC region are part of the D367 specific pathway.  

Our results suggest that the AC region is an important structural component in coupling 

Ca2+ binding to channel opening. Consistent with this role, homology modeling of the 

AC region in BK channels and its superimposition on the full gating ring of the MthK 

channel reveal that the Ca2+ sensitive mutations are distributed in a distinctive fashion 

from the periphery of the cytosolic domain to the center of the channel (Figures 7A and 

7B). The DRDD loop, where the putative Ca2+ binding site and the mD369G mutation are 

located, is positioned at the outer edge of the channel molecule, and A, B and �C lie 

just beneath the central pore, making it possible for the allosteric connection within the 

AC region to couple Ca2+ binding to the activation gate. Sequence alignments show that 

the residues important for Ca2+ sensitivity in the AC region are conserved among Slo1 

channels from fruit fly to human (Figure 2.7C), suggesting that all BK channels may 

share the same Ca2+ activation mechanism. Interestingly, while the DRDD loop is highly 

conserved among the Ca2+ activated Slo1 channels, other Slo families that are activated 

by intracellular H+ [39], Na+ [40] and/or Cl- [41] ions show variations in this region 

(Figure 2.7C). In addition, this loop is not present in the prokaryotic MthK or the E. coli 

K+ channels [7, 42]. Therefore, the residues in the Slo1 DRDD loop appear to be 

specifically important for Ca2+ sensing. In contrast, the sequences of A, B and �C are 

highly conserved among all Slo families. The residues corresponding to F359, L387, 
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F391, T396 and F400 in mSlo1 are hydrophobic in these channels, and the residues 

corresponding to D362 are either negatively charged or polar. These comparisons suggest 

a common role for A, B and �C in the gating mechanism of eukaryotic channels that 

are sensitive to intracellular ions. It is possible that in all these channels A, B and �C 

modulate gate opening, but the modulation is allosterically controlled by various 

intracellular ions that specifically bind to their respective binding sites. A change in this 

allosteric mechanism such as the hD434G mutation can alter the function of these 

channels and result in human diseases. 
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Figure 2.7. Spatial distribution and conservation of the residues important for Ca2+ 

dependent activation. (A and B) The structure of the MthK gating ring (grey) 

superimposed with the homology model of the BK channel AC region (orange) either 

without (A, top view) or with (B, side view) the pore domain of the BK channel (olive). The 

pore domain of the BK channel is modelled by using Kv1.2 crystal structure as the 

template. The residues identified in Figure 2.5A as being important for Ca2+ dependent 

activation are marked with blue, red, green and cyan colors in the structure. (C) Sequence 

alignment for the structural motifs in the AC region of Slo and MthK channels. The 

residues identical to those identified in Figure 2.5A as being important for Ca2+ dependent 

activation are in red, and the conserved residues are in purple. The structural motifs are 

indicated by horizontal lines. BK channels from different species are shown: hSlo1, human 

(GenBank accession number, GI: 26638649); mSlo1, mouse (347143); bSlo1, bovine 

(46396286); dSlo1, Drosophila (7301192). Also shown are mSlo3, the pH sensitive mouse 

Slo3 channel (6680542); cSlo2, the Cl- sensitive C. elegans Slo2 channel (5764632); 

rSlack, the Na+ sensitive rat Slack channel (3978471); and MthK (2622639). 

 

An increase of viscosity in intracellular solutions enhances Ca2+ sensitivity of BK 

channels, suggesting that the dynamics of the channel protein is important in the 

allosteric pathway associated with D367. Two lines of evidence indicate that mD369G 

alters the dynamics of the channel protein to potentiate Ca2+ sensing, namely mD369G, 

but not other mutations of D369, enhances Ca2+ sensitivity (Figure 2.3F) and alters the 

responses of the channel to changes in solution viscosity (Figure 2.4D). To explore the 

possible mechanisms of how mD369G changes channel function, we performed 

molecular dynamics (MD) simulations for the AC region. Previous studies have 
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suggested that the AC region may form an independent structural and functional unit in 

BK channels.  First, it was demonstrated that a cleavage at 12 amino acids after the AC 

region does not prevent the resulting two divided peptides from forming functional 

channels, suggesting that the cytosolic domain in the N-terminal part of the divided Slo1 

may be able to fold independently [43]. Therefore, as the core of this cytosolic domain, 

the AC region may be treated as a structural unit in MD simulations. Second, we 

previously found that the entire AC region, but not any part of it, was responsible for the 

Ca2+ sensitivity difference between two Slo1 homologs, suggesting that the AC region 

also acted as a functional unit to modulate Ca2+ sensitivity [11]. This idea is also 

supported by the results that mutations within the AC region are allosterically connected 

in perturbing Ca2+ sensitivity (Figure 2.5).  

 

Figure 2.8. mD369G mutation reduces the flexibility of the AC region in molecular 

dynamics simulations. (A) RMS fluctuation of C’s in the AC region obtained from 

molecular dynamics simulations of WT and D369A, E, G, N, P and W. Color shades 
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indicate the structural motifs in the AC region, the dynamics of which are significantly 

affected by mD369G. (B) Motion of the WT (top) and mD369G (bottom) AC regions 

along the principal eigenvector from minima to maxima. Color codes are the same as in 

(A). 

 

Figure 2.8A plots root mean square fluctuation (RMSF) of the main chain C’s for the 

AC regions of the WT and mD369G mSlo1, as well as the AC regions of mutations 

D369E, A, N, W, and P that have little effect on Ca2+ sensitivity (Figure 2.3F). RMSF is 

the standard deviation of the movement of a residue around its mean position, i.e. 

residues with a higher RMSF are in a more flexible region of the protein. Consistent with 

the experimental data (Figures 1E, 3C, 3F, 4 and 6A-D), mutation mD369G not only 

alters the local flexibility but also changes the overall dynamics of the AC region. The 

changes are most prominent in three areas of the AC region; the peak RMSF shifts in the 

DRDD loop and the maximum differences occur in the �A-A linker and B-�C (red, 

blue, and green shades, Figure 2.8A), corresponding to the same areas where the 

mutations reduce Ca2+ sensitivity with allosteric connections (Figure 2.5). Also 

correlating with the experimental results of channel activation (Figures 3F, 4E and 4F), 

the dynamics of the D369E, A, N, W, and P mutant AC regions do not show similar 

changes as that of mD369G. For a better visualization, the changes in dynamics caused 

by mD369G are also illustrated by decomposing the complex motion into simpler 

periodic orthogonal modes using principal component analysis and plotting the 

movements of the most significant mode (Figure 2.8B). The overall effect of mD369G is 
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to reduce the flexibility in the �A-A linker and B-�C, causing the entire AC region to 

move as a more rigid entity that simply follows the motion of the DRDD loop (Figure 

2.8B and Supplemental Movie S1), consistent with the result that both mD369G and an 

increase of solution viscosity enhances Ca2+ sensing (Figures 1 and 4). It is remarkable 

that the results of MD simulation and experiments correlate well in almost every aspect 

although the structure of the AC region is based on a homology model derived from the 

structure of MthK. This result is consistent with a number of previous studies that 

demonstrated the structural homology between the RCK1 domain in BK channels and the 

RCK domain of MthK [9, 19]. Thus, the MD simulation shows a plausible mechanism 

for mD369G to change the dynamics of the channel protein, which affects the allosteric 

coupling in the D367 activation pathway by altering the traverse of a dynamic substates 

ensemble or entropy in the free energy of channel gating [44, 45]. 

This dynamic based allosteric mechanism can be an important target for BK channel 

modulation. For instance, reported values of intracellular viscosity range from 1 mPa•s 

(the viscosity of pure water) to above a hundred mPa•s [46, 47]. Such a variation may be 

due to different samples and techniques of measurements as well as physiological states 

of the cell [47]. Within this range of viscosity, Ca2+ sensitivity of WT BK channels 

increases with viscosity and can be equivalent or even larger than that of mD369G 

channels (Figure 2.4D). These results reveal a possibility that at certain physiological 

state, a high intracellular viscosity could be associated with epilepsy by altering the 

protein dynamics and potentiating Ca2+ sensitivity of BK channels. On the other hand, a 
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reduction of intracellular viscosity reduces Ca2+ sensitivity of the mD369G mutant 

channels (Figure 2.4D), which may prevent the role of this mutation in epilepsy. These 

possibilities need to be explored by future investigations.  

Experimental Procedures 

Mutagenesis and expression. The mutations were made using overlap-extension PCR 

(polymerase chain reaction) from the mbr5 splice variant of mSlo1(GenBank accession 

number, GI: 347143) [23]. The PCR-amplified regions of all the mutations were verified 

by sequencing. RNA was transcribed in vitro with T3 polymerase (Ambion, Austin, TX) 

and injected into Xenopus laevis oocytes (stage IV-V) with an amount of 0.05–50 ng each, 

followed by 2-5 days of incubation at 18 ºC. 

Electrophysiology. Inside-out patches were formed from oocyte membrane by 

borosilicate pipettes of 0.8–1.5 M� resistance. Macroscopic currents were recorded with 

an Axopatch 200-B patch clamp amplifier (Axon Instruments, Foster City, CA) and 

PULSE acquisition software (HEKA Electronik, Lambrecht, Germany). The current 

signals were low-pass-filtered at 10 kHz with the amplifier’s four-pole Bessel filter and 

digitized at 20-�s intervals. The pipette solution contains (in mM): 140 potassium 

methanesulphonic acid, 20 HEPES, 2 KCl, 2 MgCl2, pH 7.2. The nominal 0 μM [Ca2+]i 

solution contains (in mM): 140 potassium methanesulphonic acid, 20 HEPES, 2 KCl, 5 

EGTA, 22 mg/L (+)-18-crown-6-tetracarboxylic acid (18C6TA), pH 7.2. The free [Ca2+] 
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in the nominal 0 [Ca2+]i solution is about 0.5 nM. CaCl2 was added to a solution 

containing (in mM): 140 potassium methanesulphonic acid, 20 HEPES, 2 KCl, 1 EGTA, 

22 mg/L 18C6TA, pH 7.2 to obtain the desired free [Ca2+], which was measured by a 

Ca2+ sensitive electrode (Thermo Electron, Beverly, MA). In experiments that changed 

viscosity, sucrose, glycerol, or urea was added to either the nominal 0 μM [Ca2+]i solution 

or the solution containing 200 μM free [Ca2+] (in mM): 140 potassium methanesulphonic 

acid, 20 HEPES, 2 KCl, 0.2 CaCl2, pH 7.2. 200 μM free [Ca2+] was used to ensure a 

saturating binding of Ca2+ to the channels. Viscosity was measured using a Brookfield 

DV-III ULTRA Programmable Rheometer (Brookfield Engineering Laboratories, 

Middleboro, MA) with a model 40 spindle. Viscosity was measured under two spindle 

rotation rates, 30 and 60 RPM, except for solutions with 2 M sucrose or 9 M glycerol, of 

which the viscosity was measured under 6 and 12 RPM. All the solutions are Newtonian 

fluids so that the viscosity does not change with spindle rotation rate. All the experiments 

were performed at room temperature (22–24 ºC). 

Analysis. The tail current amplitudes at -50 mV were measured to determine the relative 

conductance. The conductance–voltage (G–V) curves were fitted with the Boltzmann 

function: 
)

)(
exp(1

1
2/1max

kT
VVzeG

G
�

��
� , where G/Gmax is the ratio of conductance to 

maximal conductance, z is the number of equivalent charges, e is the elementary charge, 

V is membrane potential, V1/2 is the voltage where G/Gmax reaches 0.5, k is Boltzmann’s 
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constant, and T is absolute temperature. Error bars in this paper represent standard error 

of means (S.E.M.). 

Monod-Wyman-Changeux (MWC) model. MWC model fits use the following 

equation: 
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Where Popen is channel’s open probability; L(0) is the equilibrium-state ratio of closed to 

open channels ([C]/[O]) in the absence of bound Ca2+ at 0 mV; z, e, V, k, and T are the 

same as above in Boltzmann function; Kc and Ko are the dissociation constants of Ca2+ in 

the closed and open states, respectively. 

Ca2+ sensitivity by limiting slope measurement. The limiting slope measurement is 

applied to determine the open probability at extremely negative voltages [27]. The open 

probability determined by limiting slope measurement is combined with the 

corresponding G-V relation to construct a Po-V curve, which is fitted to the following 

HCA model [27]: 
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Where zL is the charge associated with gate opening when all the voltage sensors are at 

their resting state. zJ is the charge associated with voltage sensor movements. L0 is the 

intrinsic open probability at V = 0 while all the voltage sensors are at their resting state. 

Vhc and Vho are the voltages for half of the voltage sensors to be at their activation state at 

the closed and the open conformations, respectively. All the fittings have fixed zL = 0.1, 

zJ = 0.57, and Vhc = 172 mV; L0 and Vho are optimized for the best fitting to reflect the 

Ca2+ dependence [48]. 

In Figure 2.2B and C the Po at -140 mV is obtained from the HCA model fittings, which  

is more accurate than that from direct measurements because the model fittings take into 

account all the Po-V data at a certain [Ca2+]i to eliminate experimental variations. 

Homology modelling. Sequence alignment of mSlo1 (GenBank accession number, GI: 

347143) with MthK channel (1LNQ, GI: 2622639) and Kv1.2 channel (2A79, GI: 

1235594) was performed using ClustalW [49]. The gaps in the sequence were predicted 

using the Protein Loop Optimization Algorithm (PLOP) [50]. Homology models of the 

mSlo1 AC region (Gly341-Asp420) were generated using Modeller [51]. 
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Molecular dynamics simulations. The package GROMACS [52] was used for all MD 

simulations. The simulations were performed at 300K using an NpT ensemble, OPLS/AA 

force field and explicit SPC solvent.  In all cases 2 fs time steps were used along with 

periodic boundary conditions, hydrogen bond constraints and Particle Mesh Ewald for the 

calculation of long-range electrostatics.  The protocol for the simulation involved energy 

minimization, followed by heating to 300 K at intervals of 50 K, equilibration for 40 ps, 

and finally the 80 ns production run. The coordinates were saved every 50 ps for 

subsequent analysis. The 80 ns simulation is limited by computation capacities and is 

shorter than the time scale of BK channel gating that is at ~0.1 ms. Nevertheless, motions 

of the backbone on the ps–ns timescale have been shown experimentally as an important 

carrier of allosteric energy [44, 45]. 

Root mean square fluctuations: The root mean squared fluctuation of every atom was 

found using the formula 
� �� �� 2

N
1RMSF ii xx

, where xi is the position of atom i in 

each simulation frame and ix  is the average of x over all frames.

Principal Component Analysis: The trajectory obtained from our MD simulations was 

decomposed into orthogonal modes and the motion of the protein along the first few 

modes was studied.  Cij, the correlation between the movement of an atom i and atom j 

was found for all N C� atoms of the protein to form an N*N covariance matrix. 

� � � �jjjjiiiiij xxMxxMC ��� 2/12/1

, where M is a diagonal matrix containing the masses 
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of the atoms.  The covariance matrix was diagonalized to get N eigenvectors and 

corresponding eigenvalues. The MD trajectory was projected on the eigenvector having 

the largest eigenvalue to get the principal mode that captures the largest amplitude 

motion of the protein. 
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Chapter 3: Coupling by Movements 
between Structural Domains 
 

Abstract: Crosstalk between structural domains is critical to protein functions. In ion 

channels, gating in the pore domain is regulated by voltage- and ligand-sensing domains. 

While structural studies have suggested possible conformational changes that are 

correlated with gating, the causality of conformational changes to gating needs to be 

established. Here we show that gating of the voltage- and Ca2+-activated K+ (BK) channel 

is correlated with a change in the distance between the cytosolic and membrane-spanning 

domains, and these two processes are energetically coupled. A disulfide bond, which is 

formed between the two domains, can be formed only when the channel is closed, 

suggesting a distance change between the two domains during channel gating. An 

engineered electrostatic interaction between the two domains alters this distance and 

results in changed open probability of the gate. These results suggest that voltage and 

Ca2+ binding cause a relative movement between the cytosolic and membrane-spanning 

domains to open the BK channel. 
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Introduction

Most proteins contain distinguishable structural domains. Crosstalk between domains 

integrates distinct functions and contributes to the diversity of protein activities. Ion 

channels are important proteins for many physiological activities, including neural signal 

transduction and muscle contraction [1]. Ion channels conduct ionic current across the 

cell membrane through their pore domain, which is unique for various ion channels 

because of its selectivity to ion species [1, 2]. The opening and closing (gating) of the 

pore is often regulated by attached but distinguishable domains that sense physiological 

stimuli, such as voltage [3, 4] and ligand-binding [5-10].  

Recent studies on crystallographic structures have provided important information of the 

conformational change that may regulate gating. For example, the crystallographic 

structures of the Ca2+-activated MthK channel reveal that its Ca2+-sensing domain may 

undergo large conformational changes upon Ca2+-binding [10, 11]. MthK channel senses 

Ca2+ binding on its ring-like intracellular domain, called the gating ring. The Ca2+-bound 

structure of the gating ring expands its diameter by 8 Å compared to the Ca2+-free 

structure [11]. The expanding motion of the gating ring is suggested to pull the pore to 

open, functioning as the intermediate conformational change that couples Ca2+ binding to 

gating, that occur in distinct domains [10, 11]. More interestingly, the regulative 

conformational change may include relative movement between distinct domains. For 

example, by comparing structures of Kir channels at different conduction states, Gulbis et 
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al. suggest that the cytosolic domain of the Kir channel undergoes twisting and latching 

movements accompanied with the pore switching between the conductive and 

nonconductive states [12]. 

However, although crystallographic structures may correlate conformational changes in 

ligand-sensing domains with gating, it is probably insufficient to establish causality 

relationship since the processes could be coincidently correlated and energetically 

irrelevant to each other. Therefore, functional studies are necessary to examine whether 

gating is regulated by conformational changes of regulative domains and to establish the 

causality relationship between these two processes. 

 The large conductance voltage- and Ca2+- activated K+ (BK) channel is widely expressed 

in a variety of tissues and plays important roles in physiological functions [13-17]. Each 

BK channel is composed of four identical subunits, each subunit contains one membrane-

spanning domain and one large cytosolic domain [18, 19]. The membrane-spanning 

domain includes the pore-gate domain and a voltage sensing domain (Figure 3.1a). The 

large cytosolic domain is the Ca2+-sensing domain which contains two Ca2+ binding sites 

and is linked to the inner helix of the pore [20-23]. 

Recent functional studies suggest that the regulative domains of the BK channel undergo 

conformational changes during gating. The BK channel is activated by intracellular Mg2+ 

in the millimolar range [24-26]. Mg2+ binds at the interface between the cytosolic and 

membrane-spanning domains [21, 27-30]. Bound Mg2+ activates the channel by 
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interacting with gating charge R213 in the membrane-spanning domain through 

electrostatic interaction [28, 29, 31]. The Mg2+-R213 interaction is state-dependent such 

that its strength increases when the channel is at the open state [28]. Because the Mg2+-

R213 interaction occurs between the cytosolic and membrane-spanning domains, the 

varying strength suggests that the distance between R213 and the Mg2+ binding site may 

change with gating. Additionally, Q397, a residue on the cytosolic domain, is located 

beside the Mg2+ binding site and its positively charged mutation, Q397R, mimics bound 

Mg2+ by interacting with R213 [28]. This inter-domain R213-R397 interaction is state-

dependent as the Mg2+-R213 interaction [28]. This further correlates gating with 

conformational changes of the regulative domains. However, it is unclear whether the 

inter-domain distance regulates gating in a causative fashion.  

In this work, we further established the correlation between gating and the inter-domain 

distance by demonstrating the state-dependence of the formation of a disulfide bond 

formed between the cytosolic and membrane-spanning domains. To examine if the inter-

domain distance energetically and causatively regulates gating, we manipulated the 

distance by introducing an electrostatic interaction between the cytosolic and membrane-

spanning domains. We found that altered inter-domain distance results in altered gating. 

These results established the causality relationship between gating and the 

conformational changes of the regulative domains represented by the change in the inter-

domain distance. Our experiments further show that this change in inter-domain distance 

can be transformed into an overall conformational change that involves the pore domain, 
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suggesting that changes in inter-domain distance is one component of the overall 

conformational change that couples Ca2+-sensing to gating. 

Results

State-dependent formation of an inter-domain disulfide bond 

Previous study shows that in Mg2+ activation of the BK channel, the intracellular Mg2+ 

binds at the interface between the cytosolic and membrane-spanning domains. The bound 

Mg2+ interacts with R213, a positively charged residue in the membrane-spanning 

domain, to enhance channel activation. The strength of the Mg2+-R213 interaction 

depends on gating such that it is stronger when the pore is at its conductive state. This 

suggests that the distance between the bound Mg2+ and R213 is shorter when the pore is 

conductive, and thereby correlates gating with inter-domain distance around the Mg2+ 

binding site.  

Previous study also shows that a disulfide bond can be formed between the cytosolic and 

membrane-spanning domains. D99 and Q397 are from the membrane-spanning and 

cytosolic domains, respectively. They form an inter-domain disulfide bond when both are 

mutated to Cysteine [28] (Figure 3.1a). This disulfide bond can be broken by DTT. Upon 

breaking of this disulfide bond, the cysteine at C397 is freed and can be modified by 

MTSET reagent. MTSET modification adds a positively charged group at C397 and 

introduces electrostatic interaction with R213 in the membrane-spanning domain. The 
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breaking of the disulfide bond and the addition of the MTSET group can both be detected 

with shifted conductance-voltage (G-V) relation [28].  

Figure 3.1 Inter-domain disulfide bond is re-formed at non-conductive state. a) 

Cartoon scheme showing the breaking and re-formation of the inter-domain disulfide 

bond formed between C99 and C397. The membrane-spanning domain contains 

seven transmembrane segments (S0-S6), which form the voltage sensor (S1-S4) and 

the pore domain (S5-S6). Across the interface between the membrane-spanning 

domain and the cytosolic domain (purple), C99 and C397 form disulfide bond (left 

panel), which can be broken by DTT (middle panel) and free C397 for MTSET 
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modification (right panel). MTSET modification adds to C397 a positively charged 

group, which interacts with R213 in S4 through electrostatic interaction and enhances 

channel activation. After DTT breaking the disulfide bond, H2O2 may re-form the 

disulfide bond. b) Macroscopic current traces from inside-out patches expressing 

D99C/Q397C before (left panel) and after DTT (middle panel) or H2O2 (right panel) 

treatment. Currents were elicited in nominal 0 [Ca2+]i by voltages ranging from 50 mV 

to 250 mV, with 50 mV interval. The voltage before and after the pulse were – 50 mV 

and – 80 mV, respectively. Vertical scale bar represents 5 nA for corresponding 

current traces. c) G-V relation of D99C/Q397C before and after DTT or H2O2 

treatment. [Ca2+]i is nominal 0. Solid lines are fits with the Boltzmann equation. Circled 

numbers 1-3 are used to indicate corresponding experimental conditions in e). d) G-V 

relation of D99C/Q397C after sequential DTT and H2O2 treatments (cyan circles) or 

after the third treatment with MTSET (purple circles). Each treatment took 5 min. The 

voltage and intracellular [Ca2+] is indicated. The voltage and [Ca2+] levels during the 

second step of H2O2 treatment vary so that the pore is at its non-conductive state (left 

and middle panels) or conductive state (right panel). Solid lines are fits with the 

Boltzmann equation. Circle numbers 4-6 are used to indicate corresponding 

experimental conditions in e). e) V1/2 of G-V relations under corresponding 

experimental conditions indicated by the circled numbers in c) and d). Cyan bars are 

V1/2 for G-V relations after sequential DTT and H2O2 treatments in d). Purple bars are 

V1/2 for G-V relations after the third treatment with MTSET in d). Asterisks indicate a 

significant difference between the indicated values (p < 0.05 in Student’s t test). Green 

arrow indicates that this experimental condition during H2O2 treatment holds the pore 

at its conductive state. C430A is included for D99C/E399C to eliminate nonspecific 

MTS effects. 
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It is possible that after DTT breaks the disulfide bond, the disulfide bond can be re-

formed under oxidative conditions, such as in the presence of hydrogen peroxide (H2O2). 

As a result, if the disulfide bond is re-formed, modification by MTSET would be 

prevented because C397 is protected by the disulfide bond. However, since the formation 

of disulfide bond requires proper distance between the two cysteines (the C�-C� distance 

for the two cysteines should be between 2.9 Å and 4.6 Å [32]), if the cytosolic and 

membrane-spanning domains change their distance, the disulfide bond may not be re-

formed even under oxidative conditions (Figure 3.1a). 

To test the re-formation of this disulfide bond, we obtained the G-V relation of the double 

cysteine mutation, D99C/Q397C/C430A (Figure 3.1) – C430 is mutated to Alanine in 

order to eliminate unspecific effect by MTSET modification [33]. After DTT treatment, 

the G-V relation shifts to the lower voltage range (Figure 3.1b middle, 3.1c and 3.1e), 

indicating that the disulfide bond is broken. On the other hand, although H2O2 does not 

break the disulfide bond, it shifts the G-V relation to the left, which is consistent with 

reported oxidation effect on BK channels of unidentified residues [34, 35] (Figure 3.1b 

right, 3.1c and 3.1e).  

To examine if the disulfide bond can be re-formed by H2O2, we treated the mutant 

channel with DTT, H2O2 and MTSET sequentially, each taking 5 minutes (Figure 3.1d). 

We found that when the treatment of H2O2 is at the conditions where BK channels are 

closed, the G-V relation is unchangeable by subsequent MTSET treatment (Figure 3.1d 
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left and middle, 3.1e), suggesting that C397 is protected from MTSET modification after 

the preceding DTT and H2O2 treatments. Since DTT treatment breaks the disulfide bond 

and frees C397, this indicates that H2O2 treatment can re-form the disulfide bond between 

C99 and C397.  

However, re-formation by H2O2 is conditional. As shown in Figure 3.1d, we varied 

voltage between – 50 mV and + 50 mV and [Ca2+] between 0 and 200 μM during the 

H2O2 treatment. The disulfide bond is re-formed by H2O2 as long as [Ca2+] is 0 (Figure 

3.1d left, 4  in Figure 3.1e) or  voltage is held at – 50 mV (Figure 3.1d middle, 5  in 

Figure 3.1e) because MTSET modification is prevented. On the other hand, the disulfide 

bond is not fully re-formed by H2O2 when voltage is held at + 50 mV while in the 

presence of 200 μM [Ca2+] because the following MTSET treatment alters the G-V 

relation (Figure 3.1d right and 6  in Figure 3.1e).  

Re-formation of the disulfide bond is determined by the voltage and [Ca2+] level during 

the H2O2 treatment. Both high levels of voltage and [Ca2+] are needed to prevent full re-

formation, indicating that re-formation of disulfide bond is state-dependent such that the 

bond is re-formed when the channel is at its nonconductive state and it is not fully re-

formed when at conductive state. Consistently, the re-formation is not solely determined 

by voltage or [Ca2+] alone because high level of voltage or [Ca2+] without opening the 

channel is not sufficient to disrupt the re-formation of disulfide bond (Figure 3.1d left and 

middle, 4  and 5  in Figure 3.1e). Because the formation of disulfide bond between two 
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cysteines is highly determined by their distance and orientation, its dependence on gating 

state indicates that the relative position between C99 and C397 changes with gating, 

providing another line of evidence which correlates gating with conformational changes 

of the regulative domains, in addition to the Mg2+-R213 interaction.  

The conformational change of the regulative domains in BK channel can be very 

complicated and involve multiple motion components. One motion that is known based 

on the above two lines of evidence is the change in inter-domain distance around the 

Mg2+ binding site since both the formation of the C99-C397 disulfide bond and the 

strength of the Mg2+-R213 interaction are determined by the distance between these two 

domains. To examine the causative relationship between gating and the conformational 

change of the regulative domains, we manipulated the conformational change by simply 

altering this known component: the inter-domain distance around the Mg2+ binding site.  

Inter-domain electrostatic interaction alters channel activation 

A limitation of the relative movement between the cytosolic and membrane-spanning 

domains by a disulfide bond that connects the two domains reduces channel activation 

(Figure 3.1). This result suggests that such a movement takes part of and contributes 

energetically to the gating process of the BK channel. To further examine this mechanism, 

we engineered electrostatic interactions between the two domains to alter the inter-

domain distance and to measure if channel activation is changed consequently.  
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N172 and E399 are located on the membrane-spanning and cytosolic domains, 

respectively. These two residues are part of the Mg2+ binding site [29, 30] so that they are 

located close to each other. We mutated both N172 and E399 to cysteine and applied 

MTS reagents in the intracellular solution patch clamp recordings. The charged MTS 

reagents, MTSET(+) and MTSES(-), shifted G-V relation of the channel to more positive 

voltages (Figure 3.2a). The neutral MTSACE did not affect the G-V relation, and a 

subsequent MTSET treatment failed to shift the G-V relation (Figure 3.2b), indicating 

that both C172 and C399 were covalently modified by MTSACE but the modification did 

not affect channel gating. These results suggest that charges at 172 and 399 affect 

channel activation by electrostatic interactions. Consistent with this mechanism, an 

increase of the ionic strength of the intracellular solution attenuated the effects of the 

MTS reagents (Figure 3.2c-f). Figure 3.2c and d show that the increase of ionic strength 

itself has no effect on channel activation. 
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Figure 3.2 MTS modification introduces electrostatic interaction to N172C/E399C. a) 

G-V relation of N172C/E399C is shifted to higher voltage range after treatment of 

MTSES or MTSET reagent. MTSES adds negatively charged residue to cysteines 

while MTSET adds positively charged residue. [Ca2+]i is 200 �M. Solid lines are fittings 

to the Boltzmann equation. b) G-V relations of N172C/E399C after MTSACE and/or 

MTSET modification. MTSACE adds neutral residue to cysteine. [Ca2+]i is nominal 0 (~ 

0.5 nM). Solid lines are fittings to the Boltzmann equation. c)-f) G-V relations in the 

absence (open circles) or presence (closed circles) of 1 M NaCl for control (c), 

N172C/E399C (d), and N172C/E399C after MTSES (e) or MTSET (f) modification. 

Solid lines are the fittings to the Boltzmann equation. [Ca2+]i is 200 �M. C430A is 
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included for all the above mutations to eliminate nonspecific MTS 

effects. 

 

Since both the negatively and positively charged MTS reagents alter the G-V relation 

similarly (Figure 3.2a), the effect on G-V relation is likely due to the electrostatic 

interactions between the two charges at 172 and 399 such that the same charges repulse 

each other. To further examine this mechanism, we altered charges at 172 and 399, 

respectively, either by MTS modification of a cysteine residue or by mutations to charged 

or neutral amino acid residues and measured the effects of these residues on channel 

activation (Figure 3.3a, b). As of the charge type at individual residues, the charge at 172, 

but not the one at 399, may affect channel activation. As shown in the left panel of Figure 

3.3a, when we neutralize the charge at 399 by mutation E399C, the G-V relation is 

shifted to lower voltage range by a positive charge at 172 (E399C/N172R) and to higher 

voltage range by a negative charge at 172 (E399C/N172D). However, as shown in the 

right panel, if the residue at 172 is neutral, the G-V relation is not shifted by altering the 

charge type at 399. By correlating the V1/2 value with the charge types at 172 and 399 for 

28 mutations and/or modifications, analysis of variance (ANOVA) also shows that 

channel activation is correlated with the charge type at 172 (p = 0.020) but not with the 

charge type at 399 (p = 0.22) (Figure 3.3b). Plot of V1/2 also shows dependence on charge 

type for residue 172 but not for residue 399 (Figure 3.3c). Moreover, ANOVA further 

shows that the interaction between 172 and 399 affects channel activation with even 
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greater effectiveness because the p value is 0.0005 (Figure 3.3b). Based on both the 

charge types at 172 and 399, the interaction between 172 and 399 can be repulsion, 

attraction, or 0. The correlation explicitly suggests that repulsion shifts the G-V relation 

to a higher voltage range and attraction shifts it to a lower voltage range (Figure 3.3b, c). 

Therefore, channel activation is regulated by the electrostatic interaction between 172-

399. Different types of interaction can be introduced in order to cause different effect on 

channel activation. To avoid the complication of the charge type at 172, we changed the 

interaction type by changing the charge type at 399 while keeping the residue at 172 for 

the following each set of experiment.  

 

 



111 

 



112 

 

Figure 3.3 MTS modification introduces electrostatic interaction between residues 

172 and 399. a) G-V relation is shifted by charge at 172, but not charge at 399. [Ca2+]i 

is nominal 0 (~ 0.5 nM). Solid lines are fittings to the Boltzmann equation. b) Table 

summarizing V1/2 of G-V relation for a variety of mutations at residues 172 and 399. 

MTS modification is employed to add charged groups to cysteines for some of the 

mutations. The charge type and corresponding residue at 172 and 399 is listed for 

each mutation using symbols + (positive), - (negative), and 0 (neutral). The charge 

type may be altered by MTSET or ES modification to the cysteine at 172 and/or 399 

(indicated using “/ET” or “/ES”). As a result, the electrostatic interaction between 172 

and 399 can be Repulsion (between like charges), Attraction (between opposite 

charges), or 0 (if not both are charged). p values are calculated using ANOVA test. p 

value less than 0.05 indicates significance. C430A is included for mutations No. 1-19. 

c) V1/2 vs. charge type at 172 (top) or 399 (middle), or the interaction between residues 

172 and 399 (bottom). Solid lines are fittings to linear regression. The slope of linear 

regression is -16.1 ± 7.5 for the charge type at 172 and -2.6 ± 7.4 for the charge type 

at 399. It is 33.3 ± 6.8 for the interaction type. 

 

The electrostatic interaction between 172-399 alters inter-

domain distance 

Since residues 172 and 399 are located in the membrane-spanning and cytosolic domains, 

respectively, the electrostatic interactions between the two residues may alter the relative 

movements and the distance between the two domains to affect channel activation. To 
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further examine this mechanism, we employed two methods to detect changes in the 

inter-domain distance as a result of the 172-399 electrostatic interactions. 

Disulfide bond formation 

First, we examined if the 172-399 electrostatic interactions disrupt the disulfide bond 

between C99 and C397. This disulfide bond connects the membrane-spanning and 

cytosolic domains (Figure 3.1) and can form only when C99 and C397 are located within 

a certain distance (2.9 - 4.6 Å [32]). Therefore, the disruption of this disulfide bond can 

indicate a change in the distance between the two domains. The C99-C397 disulfide bond 

forms spontaneously in the absence of electrostatic interactions between 172 and 399 [29] 

(Figure 3.1). It can be detected by measuring changes in the G-V relation in response to 

DTT and MTS treatments as shown in above (Figure 3.1). If the disulfide bond is not 

formed, MTSET or MTSES can modify C397 and the charge added to C397 causes a 

shift of G-V. Consistently, DTT treatment has no effect. On the other hand, the C99-

C397 disulfide bond protects C397 from MTS modification. Therefore, MTSET or 

MTSES treatment would not alter channel activation. Consistently, because DTT breaks 

disulfide bond, DTT treatment would alter channel activation.  

To manipulate the 172-399 interaction, negative E399 is mutated to neutral N or positive 

R on the background of N172R/C430A. Thus the 172-399 interaction changes from 

attraction to none or repulsion (Figure 3.4). Meanwhile, both D99 and Q397 are mutated 

to Cysteine so that they can form a disulfide bond if the distance is appropriate. All three 
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mutations were treated with ES, ET, or DTT (Figure 3.4). As shown in Figure 3.4a-b 

(left), ET, but not ES or DTT, changes the G-V relation of D99C/Q397C/N172R/C430A, 

which has attractive 172-399 interaction. DTT has no effect because the C99-C397 

disulfide bond is not formed. Therefore, C397 is subject to MTSET modification because 

it is not protected by the disulfide bond. Similarly, the disulfide bond is also not formed 

in D99C/Q397C/N172R/E399R/C430A, which has repulsive 172-399 interaction (Figure 

3.4a-b (right)). For this mutation, ES, but not DTT, changes the G-V relation. Therefore, 

both attractive and repulsive 172-399 interactions disrupt the spontaneous formation of 

the inter-domain disulfide bond, suggesting that the distance between the two Cysteines 

is determined by the inter-domain interaction.  
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Figure 3.4 The 172-399 interaction regulates the formation of inter-domain disulfide 

bond. a) G-V relations before (open circles) and after (closed symbols) treatment of 

MTSES, MTSET or DTT when E399 is mutated to Asn (middle panel) or Arg (right 

panel) on the background of D99C/Q397C/N172R (left panel). “DTT, ES” in the middle 

panel represents the treatment of DTT followed by MTSES. [Ca2+]i is nominal 0. Solid 

lines are fits with the Boltzmann equation. b) Top panels are cartoon schemes of the 

disulfide bond formation and its dependence on the 172-399 interaction for the 

corresponding mutations in a). The C99-C397 disulfide bond is formed when there is 

no 172-399 interaction (middle). This disulfide bond is not formed when there is 

attractive (left) or repulsive (right) 172-399 interaction. Bottom panels are V1/2 of the 

G-V relations in a). Stars indicate the corresponding treatment significantly changes 

V1/2 (p < 0.005). Pound indicates that V1/2 after the treatment of MTSES following 

DTT is significantly different from the V1/2 after the treatment of DTT alone (p < 

0.005). C430A is included for all the above mutations to eliminate 

nonspecific MTS effects. 

 

On the other hand, for D99C/Q397C/N172R/E399N/C430A, which has no 172-399 

interaction, DTT treatment changes channel activation, indicating that the 99-397 

disulfide bond is spontaneously formed (Figure 3.4a-b (middle)). Consistently, the 

MTSES treatment changes channel activation only after DTT treatment breaking the 

disulfide bond, suggesting that C99 and C397 are freed by DTT treatment. 
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Therefore, the three mutations tested in Figure 3.4 indicate that the formation of disulfide 

bond is determined by the inter-domain 172-399 interaction, suggesting that the 172-399 

interaction determines the distance between C99 and C397. Moreover, the inter-domain 

disulfide bond is spontaneously formed in both D99C/Q397C/N172R/E399N/C430A 

(Figure 3.4a-b (middle)) and D99C/Q397C/C430A (Figure 3.1), indicating that the 

charge type at residue 172 or 399 does not affect its formation. Therefore, its formation is 

only disrupted due to the 172-399 interaction. 

Gating charge movement 

To further investigate if the 172-399 interaction alters the inter-domain distance, we 

examined its influence on gating charge movement. The movement of gating charge, 

particularly R213, generates transient current, called the gating current [28]. The 

amplitude of gating current is determined by the speed of R213 movement, which can be 

affected by its electrostatic interaction with the positively charged residue at 397 [28]. 

More specifically, the positively charged residue at 397 (introduced by mutation Q397R) 

repels R213 so as to slow its return from active state to resting state, resulting in smaller 

gating current. If the distance between R213 and R397 is shortened by the 172-399 

interaction, then the repulsion would be stronger so as to further slow down R213 from 

returning to its resting state and decrease gating current more. Moreover, the R213-R397 

repulsion occurs mainly when the channel is at its conductive state; at its nonconductive 

state, the returning of R213 is not slowed by R397. Therefore, by comparing the gating 
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currents at the channel’s conductive state and nonconductive state, we may quantitate the 

strength of the R213-R397 interaction from the reduction of gating current. 

In Figure 3.5a, the gating charge of two mutant channels is activated from – 80 mV to 

300 mV for varying time duration then deactivated to – 80 mV. The movement of gating 

charge between its active and resting states generates spike-like transient gating current. 

The upward spike, Ion, is generated by the outward movement of the gating charge, from 

its resting state to active state; the downward spike, Ioff, is generated by the opposite 

inward movement of the gating charge, from its active state to resting state. Because of 

the repulsive interaction between the gating charge, R213, and R397, Ioff decreases with 

prolonged activation duration but reaches plateau at 5 ms activation duration (Figure 

3.5a). The reduction of Ioff (�Ioff) is determined by the strength of the R213-R397 

interaction. As shown in Figure 3.5a, �Ioff for N172D/Q397R is smaller than 

N172D/E399R/Q397R, indicating that the R213-R397 interaction is weaker in 

N172D/Q397R. This suggests that distance between R213 and R397 is increased by the 

repulsive 172-399 interaction in N172D/Q397R, but is shortened by the attractive 172-

399 interaction in N172D/E399R/Q397R. Therefore, the distance between R213 and 

R397 is dependent on the inter-domain 172-399 interaction. 

A detailed study on the strength of the R213-R397 interaction using five mutations shows 

that Ioff reduction (�Ioff/Ioff) is determined by the 172-399 interaction (Figure 3.5b). All 

these five mutations include Q397R so that the R213-R397 interaction persists. N172D 
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exists in three mutations while E399 is mutated to N or R in order to change the 172-399 

interaction from repulsion (N172D/Q397R) to none (N172D/E399N/Q397R) or attraction 

(N172D/E399R/Q397R). As shown in Figure 3.5b, for these three mutations, with high 

activation voltage (e.g. 250 mV or 300 mV), �Ioff/Ioff increases when the 172-399 

interaction changes from repulsion to none and attraction, indicating that the 172-399 

interaction determines the strength of the repulsion between R213 and R397, probably by 

altering the distance between them. Since these two residues are located on the 

membrane-spanning and cytosolic domains, respectively, this also suggests that the inter-

domain distance is determined by the 172-399 interaction.  
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Figure 3.5 The 172-399 interaction regulates the strength of inter-domain 

electrostatic interaction. a) Gating current traces activated for varying duration for 

N172D/Q397R and N172D/E399R/Q397R. Ioff is the peak off-gating current. �Ioff is 

defined as the difference between Ioff at 0.3 ms and 10 ms, which is used to measure 

the strength of the R397-R213 interaction. Right panels are cartoon schemes of the 
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R397-R213 interaction and its dependence on the 172-399 interaction for the 

corresponding mutations. b) �Ioff/Ioff (0.3 ms) for five mutations. The gating currents 

were elicited by voltages ranging from 150 mV to 300 mV, or from 200 mV to 325 mV. 

Arrows indicate the repulsive or attractive type of the 172-399 interaction. Asterisks 

indicate a significant difference. 

 

In the other two mutations in Figure 3.5b, N172 is intact while E399 is mutated to R 

(Q397R and E399R/Q397R). Therefore, charge type at residue 399 is altered while no 

172-399 interaction is introduced. �Ioff/Ioff for these two mutations are on the same level, 

indicating that charge type at residue 399 does not cause varying R213-R397 interaction. 

Moreover, �Ioff/Ioff of these two mutations are on the same level as the forth mutation, 

N172D/E399N/Q397R, which has charged residue at residue 172 but no charge at residue 

399 and thereby has no 172-399 interaction. Therefore, all these three mutations (Q397R, 

E399R/Q397R and N172D/E399N/Q397R) have the same level of �Ioff/Ioff, no matter 

that they have  different charge types at residues 172 and 399, further indicating that the 

R213-R397 interaction is determined by the inter-domain 172-399 interaction, but not the 

charge types at the individual residues. 

Additionally, only �Ioff/Ioff at high voltage (250 mV and 300 mV) is taken into account 

because only high voltage fully activates the voltage sensor by 0.3 ms [36]. At low 

voltage (< 250 mV), full activation of voltage sensor takes longer time, resulting in 

voltage dependence of �Ioff/Ioff at low voltage, as shown in Figure 3.5b. As long as 
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voltage is high enough to fully activate the voltage sensor by 0.3 ms, �Ioff/Ioff loses its 

voltage dependence. 

The above two measurements show that the distance between the membrane-spanning 

and cytosolic domains is regulated by the 172-399 interaction because the interaction 

determines both the formation of C99-C397 disulfide bond and the strength of the 

repulsive R213-R397 interaction. Therefore, by using the 172-399 interaction, we 

successfully manipulated the inter-domain distance around the Mg2+ binding site. As we 

discussed above, this local inter-domain distance may represent one motion of the overall 

conformational change of the regulative domains. By manipulating this distance, we 

interfered the conformational change which has been suggested to be correlated with 

gating. As a result, gating is altered, which is indicated by G-V shift caused by the 172-

399 interaction (Figure 3.2 and 3.3). Therefore, we provided functional evidence showing 

that gating is actually regulated by conformational change of the regulative domains and 

these two processes are not merely coincidently correlated, and thereby established the 

causality relationship. 

To examine whether the 172-399 interaction alters the overall conformation beyond this 

local inter-domain distance, we measured the pore property because according to the 

structures of the cytosolic domain of BK channels, the pore is presumably located distally 

away from the Mg2+ site [22, 23] so that changes in pore property would indicate an 

overall conformational change. 
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The 172-399 interaction alters intrinsic gating. 

Previous studies have shown that the pore of BK channel conducts K+ current with small 

but finite open probability even when all the activation sensors are at their resting states 

[37]. Pore opening without activation of the sensors is determined by the intrinsic 

property of the pore and thereby can be used to detect changes to the pore domain. The 

open probability measured under extreme negative voltages (< - 80 mV) in the absence of 

Ca2+ reflects the intrinsic pore property in BK channels [37]. 

 

Figure 3.6 The 172-399 interaction alters the intrinsic gate opening of BK channel. 

a)-b) PO-V relation for WT and E399R (a) and N172D, N172D/E399N and 

N172D/E399R (b). [Ca2+]i = 0 �M. Solid lines are fittings to the HCA model. Dashed 

line in b) is the HCA fitting for WT. c) Enlargement of the negative voltage range for b). 

All the fittings to the HCA model have fixed zL = 0.1 and zJ = 0.57. L0, Vhc, and Vho are 

optimized for the best fitting. L0 = 2.2×10-7 for WT, E399R and N172D/E399N, 0.9×10-7 

for N172D/E399R, and 0.8×10-7 for N172D, respectively. 
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We measured the open probability for five channels. The open probability at lower 

voltages obtained using limiting slope measurement is combined with the G-V relation at 

high voltages to generate the complete curve of open probability (Po) vs. voltage. In the 

five channels, N172 of the first two channels is intact while E399 is mutated to R (WT 

and E399R) in order to test the effect of charge type at 399 without introducing the 172-

399 interaction. Figure 3.6a shows that Po of E399R is the same as WT, indicating that 

the intrinsic pore property is independent on the charge type at 399. However, in the 

other three mutations, E399 is mutated to N and R on the background of N172D so that 

the 172-399 interaction changes from repulsion (N172D) to none (N172D/E399N) and 

attraction (N172D/E399R). As shown in Figure 3.6b, Po is altered by the 172-399 

interaction. Figure 3.6c further shows that at extreme negative voltages ( < - 80 mV) 

where Po is determined by the intrinsic pore property, both repulsive and attractive 172-

399 interactions lower Po. However, Po is similar to WT when the 172-399 interaction is 

zero (N172D/E399N), indicating that the intrinsic pore property is determined by the 

172-399 interaction, but not the charge type of residue 172.  

Therefore, the 172-399 interaction alters the pore, which is located in the pore domain 

and away from residues 172 and 399. This indicates that the 172-399 interaction induces 

conformational changes spreading beyond the local region and reaching structures as far 

as the pore. The propagation of conformational change over distance suggests that neither 

the cytosolic nor the membrane-spanning domain is flexible enough to absorb the local 

change induced by the 172-399 interaction. The rigidity of both domains may transform 
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the change in local inter-domain distance into a global change in the relative position of 

the two domains which consequentially affects the pore, a structure that is connected with 

both domains. Furthermore, because the change in inter-domain distance induced by the 

172-399 interaction is one component of the conformational change that regulates gating 

and change in this component causes overall conformational change, it suggests that the 

conformational change that regulates gating may involve overall conformational changes 

to the entire molecule. 

The 172-399 interaction alters both voltage and Ca2+

activation.

By manipulating the 172-399 interaction, we further found that this inter-domain 

interaction regulates not only gating, but also other important functions, such as both the 

voltage- and Ca2+-dependent activation. We examined the voltage- and Ca2+-dependent 

activation for a number of mutations and found that both show strong correlation with the 

172-399 interaction. In one group of the mutations, E399 is mutated to C and R on the 

background of N172R/C430A, whose 172-399 interaction thereby changes from 

attraction to repulsion (Figure 3.7a-c). We found that the G-V relation in the absence of 

Ca2+ ([Ca2+] = 0.0005 μM) changes its position between the three mutations; V1/2 value of 

the G-V relation changes from 139 ± 1 mV in N172R/C430A to 172 ± 4 mV in 

N172R/E399R/C430A, indicating that repulsive 172-399 interaction requires higher 

voltage for the channel to activate. V1/2 in the absence of Ca2+ for more mutations is 



125 

 

shown in Figure 3.7d by groups; in each group, mutation at 172 remains as a background 

mutation while E399 is mutated to neutral (C or N) or positive (R) residue. Therefore, 

depending on the charge type at 172, the 172-399 interaction changes differently with the 

residue at 399. In Figure 3.7d, the first group of three mutations are those in Figure 3.7a-c, 

which shows that V1/2 shifts to higher voltage range when the 172-399 interaction 

changes from attraction to repulsion. The second group of mutations, which have N172D 

as background mutation, show that V1/2 shifts oppositely to lower voltage range when the 

172-399 interaction changes in the opposite direction, from repulsion to attraction. On the 

other hand, the third and forth groups, which both have neutral residue at 172 and thereby 

have no 172-399 interaction, show no change in V1/2. Therefore, V1/2 in the absence of 

Ca2+ is strongly correlated with the 172-399 interaction in that repulsion shifts V1/2 to 

higher voltage range and attraction shifts it to the opposite. This indicates that the 

voltage-dependent activation of BK channel is regulated by the inter-domain distance. 
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Figure 3.7 The 172-399 interaction regulates both voltage- and Ca2+-activation. a)-c) 

G-V relation for N172R (a), N172R/E399C (b), and N172R/E399R (c) under varying 

[Ca2+]i. Solid lines are fittings to the Boltzmann equation. C430A is included for these 

mutations to eliminate nonspecific MTS effects. d) V1/2 at nominal 0 [Ca2+]i. V1/2 is the 

voltage value where the G-V relation equals 0.5, which indicates the position of the G-

V relation. The mutations are grouped so that the negative residue E399 (hollow bars) 

is mutated to neutral (gray bars) or positive (black bars) residues on different mutation 

backgrounds. e) �V1/2 = V1/2 at 0 [Ca2+]i – V1/2 at 111.5 �M [Ca2+]i, which indicates the 

total sensitivity to saturating [Ca2+]i. Mutations are the same as in d). Stars indicate 

significant difference from the hollow bar of the same group. C430A is included for the 

group of N172R mutations in d) and e) to eliminate nonspecific MTS effects. 
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We also examined the Ca2+-dependent activation and found that it is regulated by the 

172-399 interaction in two ways. First of all is the sensitive [Ca2+] range. In Figure 3.7a-c, 

we obtained the G-V relation under varying [Ca2+] ranging from nominal 0 (0.0005 μM) 

to near saturating (111.5 μM) for these three mutations, in which E399 is mutated to C or 

R on the background of N172R, causing the 172-399 interaction to change from 

attraction to none or repulsion. Figure 3.7a shows that the G-V relations of 

N172R/C430A are approximately equidistant from each other, while in Figure 3.7c, the 

G-V relations of N172R/E399R/C430A are concentrated between those under high [Ca2+], 

indicating that N172R/E399R/C430A  is more sensitive to low [Ca2+] than 

N172R/C430A. N172R/E399C/C430A in Figure 3.7b shows intermediate Ca2+ sensitivity. 

Therefore, BK channel becomes more sensitive to Ca2+ when the 172-399 interaction 

changes from attraction to repulsion. 

Second, the total shift of G-V relation caused by saturating [Ca2+] is regulated by the 172-

399 interaction. Figure 3.7e shows the total shift of G-V relation (�V1/2 = V1/2(0Ca) – 

V1/2(111.5Ca)) for a number of mutations. The mutations are grouped in the same way as 

in Figure 3.7d such that in each group, E399 is mutated to neutral (C or N) or positive (R) 

residue while the N172 mutation remains on the background. In the first group, E399 is 

mutated to C or R on the background of N172R/C430A, causing the 172-399 interaction 

to change from attraction to repulsion. As a result, �V1/2 increases, indicating that the 

total shift of G-V relation is regulated by the 172-399 interaction. In the second group, 

when E399 is mutated to N or R on the background of N172D, causing the 172-399 
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interaction to change in the opposite direction, from repulsion to attraction, �V1/2 also 

changes in the opposite direction. In the third and forth groups, which have neutral 

residue at 172 and thereby have no 172-399 interaction, �V1/2 no longer depends on the 

charge type at 399.  

Therefore, the inter-domain 172-399 interaction regulates important channel functions, 

including the voltage- and Ca2+-dependent activation. It regulates the voltage activation 

by affecting the activation voltage range; it regulates the Ca2+ activation by affecting both 

the sensitive [Ca2+] range and the total [Ca2+] sensitivity. The profound importance of the 

inter-domain distance may be the result of its influence on the pore domain. Since both 

voltage and Ca2+ activation converge at the pore domain, changes to the pore domain 

may affect both through allosteric mechanisms. 

Discussions

By introducing the 172-399 interaction between the membrane-spanning and cytosolic 

domains, we manipulated the inter-domain distance around the Mg2+ binding site. As 

shown by the state-dependent re-formation of the C99-C397 disulfide bond and the 

studies on the Mg2+-dependent activation of the BK channel, change in this local inter-

domain distance is one motion component involved in the conformational change that is 

accompanied with gating. The 172-399 interaction alters this local inter-domain distance, 

and thereby alters the conformational change. As a result, we observed that gating is 
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altered, providing functional evidence showing that gating is energetically regulated by 

the conformational change.  

However, although evidence indicates that this conformational change is beyond the local 

inter-domain distance and involves overall changes of the entire molecule (Figure 3.6), 

the current experiments are unable to discover more of its details. Nevertheless, the 

current crystal structures of the cytosolic domain may suggest that this conformational 

change can be very different from other channels. As shown in Figure 3.8, the AC region 

of the Ca2+-bound crystal structure is compared with that of the Ca2+-free crystal structure. 

We aligned these two structures by minimizing the discrepancy between the two 

structures in the AC region. Figure 3.8 shows that the two structures are different at the 

AC region, but the difference is small. This small difference may account for the 

conformational change that regulates gating. However, because both structures are 

missing the membrane-spanning domain, the relative movement of the cytosolic domain 

against the membrane-spanning domain cannot be detected. For example, the cytosolic 

domain may undergo large rotational movement, which cannot be seen by merely 

examining the cytosolic domain itself. It is also possible that without the membrane-

spanning domain, the Ca2+-bound and Ca2+-free structures do not reflect actual changes in 

the cytosolic domain during gating. 
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Figure 3.8 Comparison of the AC region (residues 343 to 420) between the Ca2+-

bound crystal structure (PDB ID code: 3MT5, green) and the Ca2+-free crystal structure 

(PDB ID code: 3NAF, purple). a) Top view of the entire cytosolic domain with the 

structure after the AC region of the Ca2+-free crystal structure in surface 

representation. Residues 397 and 399 are shown for the Ca2+-bound structure (blue) 

or Ca2+-free structure (red). b) Top view (top) or side view (bottom) of one AC region 

with residues 397 and 399 indicated.  

 

Additionally, previous studies have found that the function of BK channel can be 

modulated by auxiliary �-subunits [38-40]. �-subunits modulate many important 

properties, including kinetics, voltage- and Ca2+-dependent activation. Zhang et al. 
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discovered that the inactivation peptide of the �2-subunit reside in the central 

antechamber between the membrane-spanning and cytosolic domains [41]. This suggests 

that �-subunits may change the inter-domain distance so that they can modulate many 

properties of BK channel.  

Methods 

Mutagenesis and expression. The mutations were made from the mbr5 splice variant of 

mSlo1(GenBank accession number, GI: 347143) using overlap-extension PCR 

(polymerase chain reaction) [19]. The PCR-amplified regions were verified for all the 

mutations by sequencing. RNA was transcribed in vitro with T3 polymerase (Ambion, 

Austin, TX) and injected into Xenopus laevis oocytes (stage IV-V) with an amount of 

0.05–50 ng each, followed by 2-5 days of incubation at 18 ºC. 

Electrophysiology. Inside-out patches were formed from oocyte membrane by 

borosilicate pipettes of 0.8–1.5 M� resistance. Macroscopic currents were recorded using 

an Axopatch 200-B patch clamp amplifier (Axon Instruments, Foster City, CA) and 

PULSE acquisition software (HEKA Electronik, Lambrecht, Germany). The current 

signals were low-pass-filtered at 10 kHz by the amplifier’s four-pole Bessel filter and 

digitized with 20-�s intervals. The pipette solution comprises (in mM): 140 potassium 

methanesulphonic acid, 20 HEPES, 2 KCl, 2 MgCl2, pH 7.2. The nominal 0 μM [Ca2+]i 

solution comprises (in mM): 140 potassium methanesulphonic acid, 20 HEPES, 2 KCl, 5 
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EGTA, 22 mg/L (+)-18-crown-6-tetracarboxylic acid (18C6TA), pH 7.2. The free [Ca2+] 

in the nominal 0 [Ca2+]i solution is about 0.5 nM. CaCl2 standard solution was added to a 

solution containing (in mM): 140 potassium methanesulphonic acid, 20 HEPES, 2 KCl, 1 

EGTA, 22 mg/L 18C6TA, pH 7.2 to obtain the desired free [Ca2+] ranging from 1.0 μM 

to 111.5 μM, which was verified by a Ca2+ sensitive electrode (Thermo Electron, Beverly, 

MA). The 200 μM [Ca2+] solution is composed of (in mM) 140 potassium 

methanesulphonic acid, 20 HEPES, 2 KCl, 0.2 CaCl2, pH 7.2. The treatment of DTT, 

H2O2, or MTS reagents was performed by perfusing the intracellular side of the excised 

patch for 5 min with the corresponding solution. Before each experiment, the nominal 0 

μM [Ca2+]i solution is used to dilute the stock DTT or MTS reagents to the final 

concentration of 10 mM (DTT), 1 mM (MTSES), 0.2 mM (MTSET), or 1 mM 

(MTSACE). The MTSET solution is freshly prepared before each perfusion since its 

lifetime is less than 10 min. 0.1% (w/v) H2O2 in nominal 0 or 200 μM [Ca2+]i solution is 

used for H2O2 treatment, which is equivalent to 30 mM H2O2. All the experiments were 

performed at room temperature (22–24 ºC). 

Analysis. The tail current amplitudes at – 80 mV were measured to determine the relative 

conductance. The conductance–voltage (G–V) relations were fitted with the Boltzmann 

equation: 
)

)(
exp(1

1
2/1max

kT
VVzeG

G
�

��
� , where G/Gmax is the ratio of conductance to 

maximal conductance, z is the number of equivalent charges, e is the elementary charge, 

V is membrane potential, V1/2 is the voltage where G/Gmax reaches 0.5, k is Boltzmann’s 
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constant, and T is absolute temperature. Error bars in this paper represent standard error 

of means (S.E.M.). Unpaired Student’s t-test and analysis of variance (ANOVA) were 

performed and a p-value lower than 5% is considered significant. 

Gating current measurement. Gating currents were recorded using inside-out patches 

[36]. The pipette solution comprises (in mM): 127 tetraethylammonium hydroxide, 125 

methanesulphonic acid, 20 HEPES, 2 MgCl2, and 2 HCl, pH 7.1. The intracellular 

solution comprises (in mM): 141 N-methyl-D-glucamine, 135 methanesulphonic acid, 20 

HEPES, 6 HCl, and 5 EGTA, pH 7.1. To prevent the saturation of fast capacitive 

transients, voltage commands were filtered at 20 kHz using an eight-pole Bessel filter 

(Frequency Devices, Haverhill, MA) [36]. Current signals were collected at 100 kHz with 

an 18-bit A/D converter (ITC-18; Instrutech, Mineola, NY) and filtered at 10 kHz with 

the internal filter of Axopatch. Capacitive transients and leak currents were subtracted 

using a P/5 protocol with holding potential of – 120 mV. 

Limiting slope measurement. The open probability at negative voltages was measured 

by single-channel recordings using patches containing hundreds of channels [37, 42]. The 

open probability measured at negative voltages is combined with the corresponding G-V 

relation to construct a Po-V relation, which is fitted to the following HCA model [37]: 
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Where zL is the charge associated with gate opening when all the voltage sensors are at 

their resting state. zJ is the charge associated with voltage sensor movements. L0 is the 

intrinsic open probability at V = 0 while all the voltage sensors are at their resting state. 

Vhc and Vho are the voltages for half of the voltage sensors to be at their activation state at 

the closed and the open conformations of the gate, respectively. All the fittings have fixed 

zL = 0.1 and zJ = 0.57; L0, Vhc and Vho are optimized for the best fitting[43]. 
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Chapter 4: Conclusions 

The large conductance voltage- and Ca2+-activated K+ (BK) channel is important for 

many physiological functions, such as controlling muscle contraction, mediating neuronal 

spike frequency adaptation, and regulating neurotransmitter release. The BK channel is 

activated by both membrane depolarization and intracellular ligands, including Ca2+ and 

Mg2+ ions. The BK channel is unique among K+ channels because its function integrates 

two important cellular signals: voltage and Ca2+.

Ca2+ sensing of the BK channel involves the large cytosolic domain. Functional studies 

have found two Ca2+ binding sites. One is in the RCK1 sub-domain and comprises D367 

and E535 as the binding coordinates; the other is in the RCK2 sub-domain, comprising a 

series of negatively charged Asp residues (D897-D901). With the discovery of the 

structure of the cytosolic domain, it is evident that a mechanism coupling Ca2+ binding 

sites to the gate is required for Ca2+-dependent activation because both Ca2+ binding sites 

are located away from the pore-gate domain. By such a coupling mechanism, the energy 

of Ca2+ binding travels first within the cytosolic domain and then across the interface 

between the cytosolic and membrane-spanning domains to reach the pore-gate domain, 

eventually activating the gate. Nevertheless, little is known about the coupling 

mechanism of the Ca2+-dependent activation.
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In this dissertation, I focus on the molecular mechanism of the allosteric coupling for 

Ca2+-dependent activation of the BK channel. I first studied the coupling mechanism 

within the cytosolic domain and then the coupling across the interface between the 

cytosolic and membrane-spanning domains. As of the coupling mechanism within the 

cytosolic domain, we found that the AC region, which is on top of the cytosolic domain 

and adjacent to the membrane, is the coupling structure for the Ca2+-dependent activation 

derived from the RCK1 binding site. By using a point mutation D369G, which is 

associated with coexistent epilepsy and dyskinesia in human, we discovered that the 

dynamics of the AC region mediates Ca2+-dependent activation. Mutation D369G 

increases the rigidity of the AC region to enhance Ca2+-dependent activation. Our 

discovery of this novel property of the AC region suggests that the BK channel can be the 

target protein for treating epilepsy and dyskinesia and that manipulating protein dynamics 

may represent a possible therapeutic strategy.

As of the coupling mechanism across the interface between the cytosolic and membrane-

spanning domains, we found that it is in the form of relative movements between the two 

domains. We first discovered that gating process of the pore-gate domain is correlated 

with a relative movement between the two domains. We further established the causality 

relationship between these two processes by showing that gating can be changed if a 

relative movement is introduced by an electrostatic interaction between the two domains. 

The relative movement is found to regulate both the voltage- and Ca2+-dependent
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activation in BK channels, suggesting that the relative movement between the two 

domains can be the coupling mechanism for both activation pathways. 

However, it is unclear what form of relative movement is responsible for the coupling. 

By comparing two structures of the cytosolic domain which are formed in the presence 

and absence of Ca2+, respectively, we found that the two structures differ from each other. 

Since these two structures may represent the open and closed structures, respectively, the 

discrepancy between them may indicate the relative movement on the side of the 

cytosolic domain. Nevertheless, rotational movement can also happen for the cytosolic 

domain. 

In conclusion, we have revealed novel properties of the coupling mechanism for Ca2+-

dependent activation in BK channels. Our findings are particularly important for 

understanding the structure-function relationship of the BK channel. Moreover, these 

findings have provided more approaches to studying coupling mechanisms of other 

proteins.
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