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ABSTRACT OF DISSERTATION 

Targeting the dimerization of ErbB receptor tyrosine kinases 

by 

Robert Yunchuan Yang 

Doctor of Philosophy in Biology and Biomedical Sciences  

(Computational Biology) 

Washington University in St. Louis, 2009 

Professor Garland R. Marshall, Advisor 

 The epidermal growth factor receptor (EGFR) is a membrane receptor tyrosine 

kinase whose over-activation has been implicated to cause many human cancers. Novel 

strategies to inhibit the activation of EGF receptors other than the conventional antibody-

based and tyrosine kinase inhibitors are virtually non-existent but could provide benefits 

both in the laboratory and clinical settings. In an effort to expand the current approaches, 

this thesis focused on targeting the homodimerization of the EGF receptors themselves 

and the heterodimerization of EGF receptors with the related ErbB2 receptor. Three sub-

projects were completed in the process. The first project explored the feasibility of 

inhibiting the EGF receptor by targeting receptor dimerization with small molecules. Two 

lead compounds were initially predicted by virtual screening the NCI compound library, 

and were biochemically characterized. The benefit gained from the application of virtual 

screening in this project initiated another project to enhance the accessibility of virtual 

screening within the non-computational community. The OpenScreening project utilizes 

distributed computing resources and provides open-access screening server at: 

http://omg.phy.umassd.edu/xvhts. A final project identified the structural mechanism that 
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may explain the observed preference of EGFR-ErbB2 heterodimerization over EGFR 

homodimerization. Key residues were computationally predicted and biochemically 

tested to reveal critical dimerization interface.  



 iv 

Acknowledgement  

I would like to thank funding supports from Division of Biology and Biomedical 

Sciences, Department of Biochemistry and Molecular Biophysics, Siteman Cancer 

Biology Pathway, NIH grant awarded to my PI Garland R. Marshall, and PhRMA 

Foundation. 

 



 v 

Personal Dedications 

I would like to open the Thank You’s by thanking Garland for his guidance, patience, and 

most importantly, for granting and supporting me with complete research freedom.  

I would also like to thank Linda for providing me with hands-on guidance in designing 

and carrying out experiments. To both Garland and Linda, it was truly a perfect 

combination of mentoring styles that made my Ph.D. training environment a successful 

and unique experience. 

I would like to thank my colleagues J.W. Feng, Christy Taylor and Dan Kuster for great 

discussions and help in computational work, Jennifer Obermann for experimental 

procedures, and Charles Parnot for an unique “entirely over the internet” collaboration in 

the OpenScreening Project. I would also like to extend my thank-you’s to the rest of the 

Marshall lab (Gregory Nikiforovich, Chris Ho, Sage Arbor, Jon Vabeno, Abby Fisher, 

Yaniv Barda, Xiaoming Zhang, Masayuki Hata) and the rest of the Pike lab (Yu Li, 

Sangeeta Adak). 

I would like to thank my thesis committee, Professors Nathan Baker, Tom Ellenberger, 

Garland Marshall, Linda Pike (chair), Jay Ponder, and Dave Sept for great discussions 

and advices. 

Finally, I will close out by thanking Katy, my colleague, collaborator, and wife for the 

wonderful Ph.D. chapter and many many more exciting chapters ahead of us. 

 

Robert Y.C. Yang 

Washington University in St. Louis School of Medicine 

May 2009 



 vi 

Table of Contents 
 

 
Abstract of Dissertation.................................................................................................... ii 
Acknowledgement ............................................................................................................ iv 
Personal Dedications......................................................................................................... v 
Table of Contents ............................................................................................................. vi 
List of Tables .................................................................................................................. viii 
List of Figures................................................................................................................... ix 
List of Abbreviations ....................................................................................................... xi 
Chapter 1. Introduction to the ErbB Receptors ................................................................. 1 

Overview......................................................................................................................... 1 
History............................................................................................................................. 2 
Structure, Function and Mechanism ............................................................................... 4 
Receptor Homo- and Hetero-dimerization...................................................................... 9 
Role in Cancer and Current Therapy ............................................................................ 10 

Chapter 2. Targeting EGFR Dimerization with Small-Molecule Inhibitors ................... 14 
Abstract ......................................................................................................................... 14 
Introduction................................................................................................................... 14 
Results........................................................................................................................... 15 

Virtual High-throughput ....................................................................................... 15 
Inhibition of EGFR Activation as the Primary Screen ......................................... 17 
Inhibition Specificity ............................................................................................ 18 
Inhibition of Dimerization .................................................................................... 19 
Lead Compounds Do Not Interfere with EGF Binding ........................................ 22 
Growth Inhibition of HeLa Cells by NSC56452 .................................................. 23 

Discussion ..................................................................................................................... 24 
Materials and Methods.................................................................................................. 26 
Acknowledgements....................................................................................................... 29 

Chapter 3. The OpenScreening Project ........................................................................... 30 
Abstract ......................................................................................................................... 30 
Introduction................................................................................................................... 30 
Results........................................................................................................................... 32 

Overall Workflow ................................................................................................. 32 
Project Submission ............................................................................................... 33 
Result Retrieval..................................................................................................... 34 
Input Preprocessing............................................................................................... 35 
Parameter Sensitivity Analysis ............................................................................. 36 
Further Testing of the Parameters in vHTS .......................................................... 44 
Usability................................................................................................................ 46 
Prototype for Xgrid-based Applications ............................................................... 46 

Discussion ..................................................................................................................... 47 
Acknowledgements....................................................................................................... 50 
Appendix....................................................................................................................... 51 

Chapter 4. Computational Modeling and Experimental Testing of the ErbB2-EGFR 
Heterodimer Interface ..................................................................................... 54 



 vii 

Abstract ......................................................................................................................... 54 
Introduction................................................................................................................... 54 
Results........................................................................................................................... 56 

Model Refinement ................................................................................................ 56 
Computational Mutagenesis.................................................................................. 66 
Experimental Testing of the Computational Predictions ...................................... 76 

Discussion ..................................................................................................................... 79 
Materials and Methods.................................................................................................. 83 
Acknowledgements....................................................................................................... 89 

Chapter 5. Additional Hits and Future Directions........................................................... 90 
Additional Hits from Structurally Similar Compounds ................................................ 90 
Future Directions .......................................................................................................... 91 

References ...................................................................................................................... 125 
 



 viii 

List of Tables 

Chapter 1. Introduction to the ErbB Receptors 
Table 1.1 Common Names to Describe EGFR and ErbB2 Receptors................................ 4 
Table 1.2. ErbB Receptors in Cancer................................................................................ 12 
Table 1.3. ErbB-targeted Therapeutics in Clinical Use .................................................... 13 
 
Chapter 2. Targeting EGFR Dimerization with Small-Molecule Inhibitors 
Table 2.1. Efficacy and Robustness of the vHTS Protocol............................................... 16 
 
Chapter 3. The OpenScreening Project 
Table 3.1 Parameter Sets................................................................................................... 39 
Table 3.2. Performance of Different Parameters on 69 Complexes ................................. 39 
Table 3.3. Docking Grid Definitions ................................................................................ 39 
Table 3.4. Percentage of Complexes Correctly Re-docked Using Different Parameters 

and Grid Definitions .......................................................................................... 40 
Table 3.5. Ranking Powers of Each Parameter Sets and Grid Definitions....................... 43 
Table 3.6. Benchmark of CPU and Wall-Clock Time ...................................................... 46 
Table 3.7. Troubleshooting ............................................................................................... 53 
 
Chapter 4. Computational Modeling and Experimental Testing of the ErbB2-EGFR 

Heterodimer Interface 
Table 4.1. Conformations of the Reverse-Turns at Different Interfaces .......................... 60 
Table 4.2. Description of Heterodimer Mutants ............................................................... 70 
Table 4.3. Description of Homodimer Mutants ................................................................ 71 
Table 4.4. MM/PBSA Predictions on Heterodimer Mutants............................................ 72 
Table 4.5. MM/PBSA Predictions on Homodimers ......................................................... 73 
 
Chapter 5. Additional Hits and Future Directions 
Table 5.1. Screening Results of NCI Compounds and Selected Laufer Compounds....... 94 
 



 ix 

List of Figures 
Chapter 1. Introduction to the ErbB Receptors 
Figure 1.1. Historic Timeline of the ErbB Receptors ......................................................... 3 
Figure 1.2. Schematics of EGFR Domains......................................................................... 6 
Figure 1.3. Mechanism of Extracellular-driven Dimerization............................................ 7 
Figure 1.4. Signaling Phosphotyrosines and Adaptor Proteins........................................... 8 
Figure 1.5. ErbB Receptor Overview ................................................................................. 8 
Figure 1.6. Crystal Structure of the Extracellular EGFR Homodimer ............................. 10 
 
Chapter 2. Targeting EGFR Dimerization with Small-Molecule Inhibitors 
Figure 2.1. Evaluation of the vHTS Protocol ................................................................... 16 
Figure 2.2. Inhibition of EGFR Autophosphorylation...................................................... 18 
Figure 2.3. Specificity....................................................................................................... 19 
Figure 2.4. Inhibition of EGFR Dimerization Detected by Cross-linking........................ 20 
Figure 2.5. Inhibition of EGFR Dimerization Detected by Luciferase Fragment 

Complementation............................................................................................ 22 
Figure 2.6. Effects of NSC56452 and NSC11241 on EGF binding ................................. 23 
Figure 2.7. Inhibition of HeLa Cell Growth ..................................................................... 24 
 
Chapter 3. The OpenScreening Project 
Figure 3.1. Overall Workflow of the OpenScreening Web Server................................... 33 
Figure 3.2. Submission Interface ...................................................................................... 34 
Figure 3.3. Result Retrieval Interface ............................................................................... 35 
Figure 3.4. Re-docking of 69 Complexes to Compare Sampling Accuracy Among 12 

Parameter Sets................................................................................................. 41 
Figure 3.5. Sensitivity of Parameter Set 6 to Grid Definition .......................................... 41 
Figure 3.6. Virtual Screening Using Parameter Set 6 on Testing Cases........................... 44 
Figure 3.7. Time Benchmark ............................................................................................ 46 
 
Chapter 4. Computational Modeling and Experimental Testing of the ErbB2-EGFR 

Heterodimer Interface 
Figure 4.1. RMSD of the Homo- and Hetero- dimer Simulations.................................... 57 
Figure 4.2. Preservation of Secondary Structures in MD Simulations ............................. 58 
Figure 4.3. Representative Global View of the Homo- and Hetero-dimers ..................... 58 
Figure 4.4. Representative Snapshot of Reverse-turn 2.................................................... 61 
Figure 4.5. Contact Maps from Simulations..................................................................... 63 
Figure 4.6. Solvent-accessible Surface Areas of the Arm and Armpit Regions............... 63 
Figure 4.7. Sequence Alignment of All 4 ErbB Family Members Around the Arm and 

Armpit Regions............................................................................................... 65 
Figure 4.8. Representative Snapshot of the Arm-armpit Interfaces.................................. 65 
Figure 4.9. Comparison of the Predictive Powers Between MM/PBSA and Rosetta ...... 67 
Figure 4.10. Computational Mutagenesis ......................................................................... 69 
Figure 4.11. Correlation and Convergence between MM.PBSA and Rosetta.................. 76 
Figure 4.12. Phosphorylation of Mutant ErbB2................................................................ 77 
Figure 4.13 Heterodimer Competition by Mutant ErbB2................................................. 78 
 



 x 

Chapter 5. Additional Hits and Future Directions 
Figure 5.1. Graphical Summary of the Screening Results................................................ 93 
 



 xi 

List of Abbreviations 

EGFR Epidermal Growth Factor Receptor 

vHTS Virtual High-throughput Screen 

MM/PBSA Molecular Mechanics Poisson Boltzmann Solvent Accessible method 

SASA Solvent-Accessible Surface Area 

MD Molecular Dynamics Simulation 

 



 1 

CHAPTER 1. Introduction to the ErbB Receptors  

Overview 

 The epidermal growth factor receptor, EGFR, is the founding member of the ErbB 

family of receptor tyrosine kinases that also includes ErbB2, ErbB3 and ErbB41. Among 

the members, they share high sequence similarities and adopt a similar spatial domain 

arrangement that consists of an extracellular ligand-binding region, a single 

transmembrane helix, a juxtamembrane region, a tyrosine kinase domain and a carboxyl-

terminal regulatory region6. Binding of stimulatory ligands to the extracellular domain 

induces receptor homo- and heterodimerization that leads to autophosphorylation of the 

tyrosine residues in the intracellular regulatory region. Phosphorylated tyrosine residues 

serve as docking sites for the recruitment of adaptor proteins which in turn stimulate 

downstream pathways leading to enhanced cell proliferation1, 7. Aberrant activation of the 

ErbB receptors have long been associated with a wide range of cancers and consequently 

established as validated cancer targets8, 9. Current therapeutics fall under two categories: 

extracellular-targeting monoclonal antibodies, and small-molecule tyrosine kinase 

inhibitors8. Translation from pre-clinical promises to clinical efficacies have been 

increasingly challenged by acquired resistance8, 10, 11. Ongoing studies have pinpointed 

escape routes through receptor heterodimerization leading to signal diversification and 

amplification as a main evasion mechanism11, 12. With crystal structures revealing the 

structural basis of the extracellular-mediated homodimerization mechanism, 

therapeutically targeting the interface with small molecules was one of the main goals put 

forth for this thesis. Heterodimeric crystal structures are challenging and perhaps, even 

improbable, given the heterogeneity of homo- and heterodimer populations. 
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Computational modeling of the interface, prediction of critical residues using the model 

and subsequent experimental testing of the predictions represented another main goal. 

 The rest of this chapter reviews the current state of ErbB receptors and is 

organized to reflect aspects with regards to history, biology, and therapeutic implications. 

Chapter 2 focuses on the discovery of the first class of small-molecule inhibitors of 

EGFR homodimerization. Chapter 3 reports the development of a distributed computing 

virtual screen application that initiated from the computational procedures used during 

the discovery of dimerization inhibitors. Chapter 4 summarizes EGFR-ErbB2 

heterodimer modeling and its subsequent experimental testing of critical interface 

residues predicted by the model. Chapter 5 analyzes and elaborates on the additional data 

obtained from further development of the initial lead inhibitors 

 

History 

 The growth factor research field originated here at Washington University in 1952 

when Dr. Rita Levi-Montalcini, while working with Professor Viktor Hamburger, 

discovered secreted factor in mouse tumour cells that potently promoted neurite 

outgrowth in chicken embryos13. This factor was later identified as the nerve growth 

factor (NGF) after its purification from snake venom and mouse salivary glands by Dr. 

Levi-Montalcini and Professor Stanley Cohen, a postdoc at the time in 195714, 15. 

Professor Cohen then carried on the research as faculty at Vanderbilt to understand why 

crude extracts containing NGF from the male mouse salivary gland, but not the purified 

nerve growth factor alone, induced early eyelid opening in mouse. Five years later in 

1962 (would have been tenure-review time under the current system), Professor Cohen 
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described the purification of a 53-amino acid “tooth-lid factor” capable of inducing 

“precocious eruption” of teeth and eyelids in newborn mice in 196216. Upon subsequent 

studies where he showed that this factor stimulated the growth of epidermis on eyelids17 

and the proliferation of epidermal cells18, Professor Cohen renamed this factor as the 

epidermal growth factor (EGF)17. These initial discoveries ignited a rapid growth in the 

field that led to the identification of the human homolog EGF19-21. Although widely-

accepted that EGF acted by binding to specific receptors22, 23, the actual identification of 

its specific receptor, the 170-kDa membrane protein EGF receptor (EGFR), was not until 

1978 by Graham Carpenter and Professor Cohen24. Subsequent identification of the 

mechanism by which EGFR was phosphorylated upon EGF-stimulation established 

EGFR as the first receptor tyrosine kinase (RTK)25-27. In 1985, ErbB2 became the second 

member of the ErbB family28, 29, and inadvertently popularized the name “ErbB”. A year 

later in 1986, Professor Stanley Cohen and Dr. Rita Levi-Montalcini were awarded a 

Nobel Prize to recognize their initial discovery of the growth factors NGF and EGF in 

1986. ErbB330 and ErbB431 were eventually discovered in 1989 and 1993, respectively. 

Figure 1.1 outlines a timeline of significant events in the field of ErbB receptors.  

 

 

 

Figure 1.1. Historic timeline of the ErbB receptors. Adapted from Yarden et al5. 
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 Another important and often confusing historic aspect of the ErbB field is the 

redundancies in nomenclature. Given that the complexity of jargons in a given field is 

almost always positively correlated with the length of its history, it is not surprising that 

the field of ErbB/EGF/HER/p185, owing to its impact in both pre-clinical and clinical 

settings, has accumulated redundancy in describing only four receptors. I gave up tracing 

the exact documented origin of the switch from its original intuitive “EGF” to the present 

“ErbB” family name. However, based on the fact that ErbB2 was discovered as the gene 

“v-erb-b2 erythroblastic leukemia viral oncogene homolog 2”, and that GenBank had just 

celebrated its 25th birthday in 2008, I could not help but wonder if this nomenclature 

showdown between a gene name and a protein name was an early hint of the budding 

impact of bioinformatics. As the references cited in this thesis and in literature span a 

broad disciplinary, I am including a jargon look-up table (Table 1.1) for convenience.  

Table 1.1. Common names to describe EGFR and ErbB2 receptors 
Name ID 
EGFR, ErbB1, Her1 EGFR 
ErbB2, Her2, p185neu, NGL, NEU proto-oncogene, TKR1, c-erbB-2  ErbB2 
 

Structure, function and mechanism 

Under normal physiological conditions, activation of the ErbB receptors is 

controlled by spatial and temporal stimulations with a wide range of ligands. The 

evolutionary complexity of the ErbB receptors can be visibly traced to a one-to-one 

ligand-to-receptor paradigm in nematode Caenorhabditis elegans where EGFR homolog 

LET-23 is stimulated and activated by LIN-3 during vulva development32. In fruitfly 

Drosophila melanogaster, the system has evolved into five ligands (Spitz, Gurken, 

Keren, Vein, and Argo) and one receptor (DER)33-35. Interestingly, Argo is an antagonist 
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that inhibits DER activation, a unique mechanism not found in higher organisms. In 

mammalians, the four ErbB receptors are activated by a number of growth factors. ErbB2 

currently has no known ligand but instead is thought to be the preferred heterodimer 

partner for the members6.  

Like all ErbB receptors, EGFR is a receptor tyrosine kinase that is composed of: a 

ligand-binding extracellular domain (~620 residues); a single transmembrane alpha helix 

(23 residues); a juxamembrane domain (~40 residues); an intracellular kinase domain 

(~260 residues); and, a C-terminal tail (~232 residues)5 (Figure 1.2). Binding of 

stimulating ligands induces homo- and heterodimerization through a ligand-induced 

receptor-mediated interaction of the extracellular domains36. This leads to the activation 

of tyrosine kinase domains through the formation of an asymmetric kinase-dimer37 

(Figure 1.3). Stimulated kinases phosphorylate specific tyrosine residues in the C-

terminal tail of the receptor36 (Figure 1.4). These phosphotyrosines serve as docking sites 

for SH2 and PTB domain-containing proteins that promote the activation of multiple 

downstream pathways and ultimately regulate proliferation38, differentiation39, 

apoptosis40, and angiogenesis41 (Figure 1.5).  
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Figure 1.3. Mechanism of extracellular-driven 
dimerization leading to receptor phosphorylation. Upon 
EGF binding to the extracellular domain, the receptor 
adopts an open conformation exposing the dimerization 
arm. Receptor dimerization mediated by the arm induces 
the formation of asymmetric kinase dimer and 
subsequent kinase activation. Adapted from Bublil, et 
al3.  

Figure 1.2. Schematic arrangement of EGFR. The 
extracellular domain (ECD) has 4 subdomains, 
followed by the transmembrane domain (TM), the 
juxtamembrane domain (JM), the kinase domain, 
and the C-terminal tail (CT). Adapted from 
Jorissen et al2. 
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Figure 1.4. Signaling phosphotyrosines and the adaptor proteins. Tyrosine residues 
identified as autophosphorylation sites are colored yellow. Sites for the Src kinase are 
colored in black. Adapted from Olayioye el al4.  
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Figure 1.5. ErbB receptor overview. A) Stimulation by a wide range of ligands induces 
different combinations of dimerization. ErbB2 and ErbB3 homodimers are rarely found. ErbB2 
lacks any known ligands while ErbB3 has non-functional kinase. B) Downstream signaling 
cascade propogates signals to control protein expressions. C) Ultimate cell fate decisions. 
Adapted from Yarden, et al1. 
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Receptor homo- and heterodimerization 

ErbB receptor dimerization is a pre-requisite for receptor activation1. ErbB 

receptor dimerization is driven by interactions between the extracellular domains of the 

two partners42-45. Recent crystal structures of the EGFR extracellular domain homodimer 

show that the most extensive part of the dimer interface centers on the intermolecular 

interaction between the ß-hairpin dimerization arm (residues 242-259) of one EGF 

receptor monomer and a corresponding docking pocket (the “armpit”) on the second 

receptor monomer (Figure 1.6). Tyr-246 and Tyr-251 on the dimerization arm appear to 

be key residues involved in the stabilization of homodimers as mutation of either of these 

residues, even to a conservative Phe ablates dimer formation42, 46. These and the other 

residues located on the tip of the dimerization arm of monomer A interacts with residues 

that form the “armpit” of monomer B.  As with mutation of Tyr-246 or Tyr-251 in the 

dimerization arm, mutation of certain residues in the armpit blocks receptor activation.  

For example, the R285S/F263A EGF receptor is defective in dimerization and hence its 

kinase activity cannot be stimulated by addition of EGF45. These data underscore the 

central role played by the dimerization arm in mediating EGFR homodimerization. Given 

the high sequence conservation and structural homology of the ErbB receptors, it is likely 

that this mode of interaction is conserved within the entire family.  



 10 

 

EGFR is able to heterodimerize with other members of the ErbB family. 

Essentially all combinations of ErbB receptor heterodimers have been shown to exist47, 48 

with ErbB2 as the preferred hetero-dimerization partner in all cases48. In fact, ErbB2 is 

activated almost exclusively through heterodimerization as it has no known activating 

ligand49 and ErbB2 homodimers have not been reported except in highly-overexpressed 

states1. ErbB3 is an obligate heterodimerization partner since it has very weak, tyrosine 

kinase activity and must utilize the kinase activity of its partner to signal50. All of these 

observations lead to the recognition that central to the function of ErbB receptors is their 

ability to form dimeric complexes that amplify and diversify the signals generated  

 

Role in cancer and current therapy 

 The tight association between ErbB receptors and cancer was evident from the 

very beginning when ErbB2 was initially discovered because of its oncogenic 

potentials29, 51. It is therefore not surprising that they are among the most studied targets 

in the paradigm of molecular-targeted cancer therapies8, 52, 53. Perturbation of the EGFR 

Figure 1.6. Crystal structure of the extracellular EGFR homodimer (PDB: 1MOX). A) 
dimer in ribbon form. B) Zoomed-in at the dimerization arm-armpit interface. 
Y246/Y251 are critical residues on the arm, F263/R285 are critical residues on the 
armpit. 
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system leads to a variety of tumors in organs including breast54, lung55, ovary56, 

pancreas57 and prostate58 (Table 1.2).  

 Current EGF receptor-directed strategies include monoclonal antibodies that 

target the extracellular domain59-61, and small molecule tyrosine kinase inhibitors that 

compete with ATP at the nucleotide-binding site of the kinase domain62-64 (Table 1.3). 

These drugs are promising, but show highly variable efficacy among patients in clinical 

applications38, 65. Ongoing researches have pointed resistance as a major and an 

increasingly substantial challenge. Two most observed resistance are in the forms of 

mutations within the ATP-binding site of the kinase domain66, 67 and through homo- and 

heterodimerizations leading to signal diversification/amplification12. This is consistent 

with the reports that tumors characterized by abnormal levels of EGFR 

homodimerization68, 69 and EGFR-ErbB2 heterodimerization70 often display increased 

resistance to current treatments. In this setting, inhibitors that block signaling by multiple 

ErbB receptors would likely represent more effective chemotherapeutic agents than drugs 

specifically targeting one of the ErbB receptors. Based on the initial development of the 

heterodimer-inhibiting pertuzumab71, this strategy must have been conceived by many at 

the time when I started this thesis work— additional multi-targeting agents are now being 

reported63, 72. Nevertheless, there has not yet been any report of targeting the dimerization 

arm with small-molecules. This is likely because that although the concept is fairly 

obvious with the availability of the crystal structures, the lack of an appropriate 

dimerization assay represents a challenge compared to the already established protocols 

for antibody generation and kinase inibition. As described in the next chapter, I embarked 

on what was in hindsight a high-risk project to identify small-molecule dimerization 
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inhibitors that, with some luck, led to the identification of two lead inhibitors. 

 
Table 1.2. ErbB receptors in cancer (reviewed in 1, 73) 
Receptor Activation Cancer type Notes 
EGFR Mutation (type III) Glioma, Breast, 

Ovarian 
Deletion of part of 
the extracellular 
domain yields a 
constitutively active 
receptor 

EGFR Overexpression SCCHN, Breast, 
Ovarian, Prostate, 
Kidney, NSCLC, 
glioma 

Amplification in 
40% gliomas, 
correlates with 
reduced survival 

ErbB2 Overexpression Breast, Ovarian, 
Stomach, Bladder, 
Salivary, Lung 

Gene amplification 
in 15-30% breast 
cancers 

ErbB3 Expression Breast, Colon 
gastric, Prostate 

Co-expression of 
ErbB2 with EGFR 
or ErbB3 in breast 
cancer 

 Overexpression Oral squamous cell 
cancer 

Overexpression 
reduces survival 

ErbB4 Expression Breast, Prostate, 
Childhood medullo-
blastoma 

Co-expression with 
ErbB2 

HNSCC, head and neck squamous-cell cancer; NSCLC, non-small-cell lung cancer.
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 Table 1.3. ErbB-targeted therapeutics in clinical use (reviewed in 8, 73, 74) 
Compound Type Target Company Status and comments 
Trastuzumab 
(Herceptin) 

Humanized mAb ErbB2 Genetech/ 
Roche 

Approved for the treatment of 
ErbB2-overexpressing breast cancer 

Pertuzumab 
(Omnitarg) 

Humanized mAb ErbB2 Genetech Phase III trials to treat ovarian 
cancer, breast cancer, prostate cancer 
and NSCLC; based on its ability to 
block ErbB2 dimerization, trials are 
ongoing in cancer that express low 
ErbB2 levels 

Cetuximab 
(Erbitux) 

Chimeric mAb EGFR ImClone/ 
Merck KGaA 

Approved for the treatment of CRC; 
ongoing trials in combination with 
various drugs for treatment of 
pancreatic cancer, HNSCC and 
NSCLC 

Matuzumab 
(EMD 72000) 

Humanized mAb EGFR Merck KGaA Phase II trials for NSCLC, 
gynaecological cancer, pancreatic 
cancer and oesophageal cancer 

Panitumumab 
(Vecitibix, 
ABX-EGF) 

Fully humanized 
mAb 

EGFR Abgenix Approved for CRC, RCC and 
NSCLC 

Nimotuzumab 
(Thera CIM) 

Humanized mAb EGFR YM Approved to treat HNSCC, NPC, 
glioma; reported reduced toxicity and 
immunogenicity 

Gefitinib 
(Iressa, 
ZD1839)  

Quinazoline TKI EGFR AstraZeneca Approved for the treatment of 
NSCLC; ongoing trials in HNSCC, 
gastrointestinal cancer and breast 
cancer 

Erlotinib 
(Tarceva, 
OSI-774)  

Quinazoline TKI EGFR Genetech/ 
Roche/OSI 
Pharmaceuticals 

Approved for NSCLC; ongoing trials 
in many cancer types 

Lapatinib 
(GW2016) 

TKI EGFR/ 
ErbB2 

GlaxoSmithKline Phase III trial on breast cancer 
patients who are refractory to 
trastuzumab and chemotherapy 

AEE788 TKI EGFR/ 
ErbB2/ 
VEGFR 

Novartis Phase I trials underway—first 
multifunction EGFR/ErbB2/VEGFR 
inhibitor 

PKI166 TKI EGFR Novartis Development of PKI166 was 
interrupted due to high incidence of 
liver toxicity, 17% of patients 
showed Grade 3 elevated liver 
transaminases 

CI-1033 4-
anilinoquinazoline 
irreversible TKI 

EGFR/ 
ErbB2 

Pfizer Phase II trials underway in breast and 
NSCLC 

EKB-569 4-
Anilinoquinoline-
3-carbonitrile 
irreversible TKI 

EGFR/ 
ErbB2 

Wyeth-Ayerst Phase II trials underway in NSCLC 

EXEL 
7647/EXEL 
0999 

TKI EGFR/ 
ErbB2/ 
VEGFR 

EXELIXIS Phase I trials underway 

CRC, colorectal cancer; HNSCC, head and neck squamous-cell cancer; NPC, nasopharyngeal carcinoma; 
NSCLC, non-small-cell lung cancer; RCC, renal-cell cancer; VEGFR vascular endothelial growth factor 
receptor 
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CHAPTER 2. Targeting EGFR Dimerization with Small-Molecule Inhibitors 

Abstract 

EGFR dimerization is a prerequisite for activation, and the basis to explore the 

feasibility of inhibiting EGFR activation by blocking dimer formation with small 

molecules. Initially predicted by virtual screening, subsequent experiments showed that 

two compounds dose-dependently inhibited EGFR kinase activation. Both compounds 

were shown to block EGF-stimulated dimer formation in live cells using a real-time 

luciferase fragment complementation imaging assay. One compound was further shown 

to inhibit the growth of HeLa cells. These first-generation lead compounds represent the 

first small-molecule inhibitors of EGF receptors that are not directed against the active 

sites of the kinase  

Introduction 

We rationalized that the critical role of extracellular dimerization could be 

exploited to inhibit receptor activation, and set out to test the feasibility of targeting the 

dimerization process with small molecules. In this chapter, we report the identification of 

two small-molecule lead compounds capable of inhibiting the EGFR activation by 

blocking dimer formation. These inhibitors were initially identified by applying a 

consensus virtual high-throughput screening (vHTS) protocol to screen the National 

Cancer Institute Diversity (NCI-Diversity) library75 for compounds with binding potential 

to the same pocket that Tyr-246 and Tyr-251 recognize. Subsequent biochemical assays 

confirmed that these two compounds selectively impaired EGFR dimerization, 

representing the first members of a new class of small-molecule inhibitors of EGFR 

activation  
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Results 

The virtual high-throughput screening protocol (vHTS).  

The vHTS employed in these experiments used AutoDock 4.076, 77 to dock 

approximately 2000 compounds present in the NCI Diversity database within a 25 Å3 

docking box centered on the Tyr-246/Tyr-251 recognition pocket of the dimerization arm 

of the EGF receptor. A total of 8 scoring functions were used to independently rank all 

predicted docking poses, and the consensus of these functions were chosen as the final 

ranking.  

The enrichment of a vHTS protocol is typically measured by its ability to recover 

true positives as early as possible in a ranked compound library. Protocol evaluation thus 

depends on the availability of existing reference active compounds. Because there were 

no existing inhibitors that targeted the Tyr-246/Tyr-251 site, it was not possible to 

evaluate the enrichment power of our vHTS protocol for the EGF receptor system a 

priori. As a result, robustness, measured as the average enrichment across different 

protein targets, became a critical criterion for evaluating the performance. Our protocol 

was applied to four different protein targets: plasmepsin II (PMII), human cyclin-

dependent kinase 2 (Cdk2), estrogen receptor (ER), and yeast heat shock protein (Hsp90). 

Structurally diverse compounds (positives) bound to these protein targets were extracted 

from co-crystal structures in the Protein Data Bank, and were mixed with 1926 decoy 

compounds (negatives) to construct a testing library. The ability of the vHTS protocol to 

recover positives was evaluated using enrichment curve analysis78.  

The protocol recovered at least one true positive within the top 1% of the ranked 

library for PMII, Cdk2, and ER, and within the top 10% of the library for Hsp90 (Table 
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2.1, Figure 2.1). On average, this protocol is expected to recover at least one true ligand 

within the top 3.5%, and nearly 2/3 of all ligands within the top 15% of the representative 

libraries screened.  

Table 2.1: Efficacy and robustness of the vHTS protocol.  

Targets Coverage1%
1 Coverage15% Coverage30% Coverage50% Best 2 

Cdk2 3% 49% 67% 79% 0.05% 

PMII 60% 100% 100% 100% 0.65% 

ER 69% 81% 94% 100% 0.05% 

HSP90 0% 20% 60% 100% 13.21% 

Avg 33% 63% 80% 100% 3.5% 
1Coveragefraction = Number of known actives recovered within the given fraction of the database / 
Total number of actives present in the database x 100% 
2Best = ranking of the best predicted active / database size x 100 
 
 
 

 

 

Figure 2.1. Evaluation of the vHTS 
protocol against four testing cases shown 
in an enrichment curve analysis. In each 
case, multiple known ligands were mixed 
in with ~2000 random compounds to 
form the screening library. The black 
diagonal line represents the random 
distribution of active molecules. 
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Inhibition of EGFR activation as the primary screen.  

We applied the vHTS protocol to the EGF receptor and obtained samples of the 

80 top-ranked compounds (top 4%) along with 40 randomly chosen compounds from 

NCI for testing. Of the 80 compounds, 4 were not soluble in water or DMSO, and, 

therefore, not pursued further. The remaining 76 compounds were tested for their ability 

to inhibit EGF-stimulated receptor autophosphorylation in cells at a concentration of 100 

µM.  

Of the 76 compounds tested, 20 produced a significant (>60%) decrease in 

activation as measured by the level of phosphorylation at Tyr-1173, a major 

autophosphorylation site on EGF receptors. By contrast, none of the 40 compounds 

randomly chosen from the same library inhibited receptor phosphorylation when assayed 

under the same conditions. This highlights the enrichment and the utility of our vHTS 

protocol in the present system. 

Figure 2.2 presents the results for the characterization of what turned out to be the 

two lead inhibitors. In both cases, the inhibition was dose-dependent. NSC56452 

exhibited an IC50 value of 400 nM while NSC11241 had an IC50 of 12 µM. Despite 

having the lowest IC50 value, NSC56452 was not able to achieve full inhibition at 

saturating doses. 
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Specific inhibition of the EGF receptor activation by lead compounds.  

To assess the specificity of the 20 candidates, they were tested for their ability to 

inhibit two related receptor tyrosine kinases, the insulin receptor and the PDGF receptor. 

For the insulin receptor, insulin-stimulated tyrosine phosphorylation of IRS-1 in 

differentiated 3T3-L1 cells was assessed79. For the PDGF receptor, PDGF-stimulated 

receptor autophosphorylation in NIH3T3 cells was measured80. Neither 3T3-L1 cells nor 

NIH3T3 cells express the EGF receptor obviating potential problems associated with 

receptor crosstalk.  

Of the 20 compounds that inhibited EGF receptor autophosphorylation, 2 

inhibited insulin-stimulated IRS-1 phosphorylation and 4 others inhibited PDGF receptor 

autophosphorylation (Figure 2.3). An additional 3 compounds markedly enhanced PDGF 

receptor autophosphorylation and were not pursued further.  

Figure 2.2. Inhibition of EGF 
receptor autophosphorylation by 
NSC11241 and NSC56452. Cells 
were pre-incubated with 1% DMSO 
for the control, NSC11241 or 
NSC56452. Inhibition of EGF 
receptor autophosphorylation of the 
controls (lane 1 and 2) and 
increasing doses of a) NSC11241 
and b) NSC56452. Estimated IC50 
value quantified from blots for c) 
NSC11241 and d) NSC56452.  
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Inhibition of EGF receptor dimerization by lead compounds.  

Since the lead inhibitors were initially chosen based on their potential to interfere 

with EGF receptor dimerization, we next determined whether the remaining 11 

candidates inhibited EGF receptor autophosphorylation by directly blocking receptor 

dimerization, as measured by chemical cross-linking. Cells were preincubated with the 

inhibitors for 15 min at a final concentration of 100 µM. EGF at 25 nM was then added 

followed by 3 mM BS3, a membrane impermeable chemical cross-linker. Figure 2.4 

shows the effect of a subset of these inhibitors on the cross-linking of EGF receptor 

dimers.  

Figure 2.3. Specificity of 
inhibitors. Cells expressing either 
the insulin receptor or the PDGF 
receptor were pre-incubated with 
1% DMSO (controls) or 100 µM of 
each of the 20 lead compounds. a) 
Insulin receptor kinase activity was 
assessed by measuring the 
phosphorylation of IRS-1 in 
response to 3 nM insulin for 1 
minute. Representative data of three 
experiments. b) PDGF receptor 
kinase activity was assessed by 
measuring autophosphorylation of 
the PDGF receptor in response to 2 
nM PDGF for 3 minutes. 
Representative data based on two 
experiments. 
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The two lead compounds, NSC11241 and NSC56452, significantly reduced the 

formation of high molecular weight dimers while NSC309895 and NSC303769 

represented two examples of compounds that failed to block dimer formation. None of 

the other compounds had any effect on the cross-linking of EGF receptor dimers. 

Because the cross-linker was used at a concentration 30-fold higher than that of the 

inhibitors (3 mM vs. 100 µM), it is unlikely that the observed inhibition was due to 

quenching of the cross-linking reaction by reaction with the compounds. Consistent with 

this conclusion, increasing the concentration of cross-linker BS3 to 5 mM yielded the 

same results. It is possible, however, that false negatives could be obtained if reaction of 

the compound with cross-linker prevented that compound from binding to the EGF 

receptor. 

The two hits from the cross-linking assay, NSC11241 and NSC56452 (Figure 

2.5), were selected for further testing of the hypothesis that they inhibited dimer 

formation. A real-time live cell imaging assay based on luciferase fragment 

complementation was utilized to characterize the effect of these compounds on EGF 

receptor dimerization81. In this assay, an EGF receptor lacking the entire intracellular 

Figure 2.4. Inhibition of EGF 
receptor dimerization determined by 
chemical cross-linking assay. Cells 
were pre-incubated with 1% DMSO 
(lane 1 and 2) or 100 µM of lead 
inhibitors (lane 3-6) prior to 
stimulation with 25 nM EGF (lane 2-
6) for 5 minutes. All cells were then 
treated with 3 mM of the cross-
linking reagent BS3. NSC11241 (lane 
3) and NSC56452 (lane 5) 
significantly inhibit dimer formation. 
Lane 4 and 6 show compounds that 
did not inhibit dimer formation. 
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domain (referred to as ΔC-EGFR) was fused to either an N-terminal (NLuc) or C-

terminal (CLuc) fragment of firefly luciferase. Ligand-induced dimerization of the ΔC-

EGFR brings the luciferase fragments into close proximity resulting in enzyme 

complementation and reconstitution of luciferase activity. The rate and extent of receptor 

dimerization can, therefore, be measured by following photon flux in the presence of 

luciferin. The absence of the intracellular domain of the EGF receptor from these 

constructs ensures that compounds affecting luciferase activity without binding to the 

cytoplasmic portion of the receptor that contains the tyrosine kinase domain.  

As expected, EGF stimulated a rapid increase in light production in DMSO-

treated control cells consistent with ligand-induced dimer formation. Cetuximab, an 

FDA-approved antibody-based drug that binds to the extracellular domain of the EGF 

receptor59, 82, dramatically decreased EGF-induced luciferase activity, serving as a 

positive control for inhibition of dimer formation. At a concentration of 25 µM, 

NSC11241 and NSC56452 each induced a significant decrease in luciferase 

complementation compared to controls (Figure 2.5).  
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To exclude the possibility that the compounds simply inhibited complementation 

of the luciferase fragments themselves, they were tested in a similar luciferase fragment 

system83 where complementation was induced by the addition of rapamycin to cells 

expressing FRB-NLuc and its binding partner CLuc-FKBP. Neither compound induced a 

decrease in luciferase complementation at the tested dose (25 µM) in this control system. 

This indicates that the observed decrease in complementation in our EGF receptor 

complementation assay was not due to any direct effect on the NLuc and CLuc fragments 

themselves  

NSC56452 and NSC11241 do not inhibit by interfering with the binding of EGF 

ligands.  

It was still possible that NSC56452 or NSC11241 might inhibit EGF receptor 

activation by interfering with the binding of EGF to the extracellular domain of the 

Figure 2.5. Inhibition of EGF receptor dimerization assayed by luciferase fragment 
complementation.  Cells stably expressing ΔC-EGFR-NLuc and ΔC-EGFR-CLuc 
were pre-treated with DMSO, the indicated concentrations of compounds or 1 µg/ml 
Cetuximab for 20 min in the presence of 0.6 mg/ml D-luciferin prior to the addition of 
3 nM EGF.  Data represent the change in photon flux between quadruplicates of EGF-
treated and untreated control cells. a), NSC11241;  b), NSC56452, 
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receptor. To address this possibility, the effect of these compounds on the binding of 125I-

EGF to EGF receptor-expressing CHO cells was measured. NSC56452 had little effect 

on EGF binding suggesting that its effect on phosphorylation and dimerization was not 

due to blocking the binding of EGF to its receptor (Figure 2.6). NSC11241 had a modest 

effect on EGF binding, but the magnitude (~30%) was much smaller than the ~90% 

inhibition of receptor autophosphorylation. Thus, an effect on EGF binding is unlikely to 

be the predominant mechanism through which NSC11241 exerts its inhibitory effect on 

EGF receptor phosphorylation, and certainly not an explanation of NSC56452 inhibition.  

 

Growth inhibition of HeLa cells by NSC56452.  

To assess the effect of the lead compounds on cancer-cell growth, NSC56452 was 

tested for its ability to inhibit the proliferation of HeLa cells that express endogenous 

EGF receptors. NSC11241 was not tested here as its color interfered with the MTS cell-

proliferation assay due to overlap in absorption spectra. For comparison, cells were also 

treated with erlotinib, an EGF receptor kinase inhibitor. By itself, NSC56452 induced 

significant inhibition of cell growth at 50 µM, but had little to no effect at a lower dose 

12.5 µM. Remarkably, the growth inhibition at 12.5 µM NSC56452 was much enhanced 

Figure 2.6. Effects of NSC56452 
and NSC11241 on 125I-EGF binding 
and EGF receptor 
autophosphorylation. 125I-EGF 
binding and EGF receptor 
autophosphorylation were assessed 
as described in Materials and 
Methods. NSC56452 was tested at 
100 µM while NSC11241 was used 
at 25 µM due to its limited 
solubility at 4o C, the temperature at 
which the binding assay was 
performed. 
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in combination with a sub-effective dose of erlotinib (Figure 2.7). This apparent 

synergistic observation was consistent with the hypothesis that NSC56452 inhibited EGF 

receptor activity through a mechanism different from classical kinase inhibitors.  

 

Discussion 

Systematic screening of compound libraries remains the main strategy to discover 

novel inhibitors, but lack of appropriate high-throughput bioassays often renders the 

approach not feasible in practice. In this work, we were able to bypass this challenge by 

utilizing virtual high-throughput screening in combination with low-throughput 

biochemical assays to identify lead compounds capable of inhibiting the dimerization and 

activation of EGF receptor in intact cells. 

In identifying these inhibitors, we adopted a structure-based approach and took 

advantage of the recent structural and mutational data that highlight the critical role of the 

“dimerization arm” in mediating EGF receptor dimerization42, 44-46, 84. Mutations to Tyr-

246/Tyr-251 on the arm42, 46 are sufficient to abolish dimerization, suggesting a stringent 

structural requirement for these residues to interact with a pair of adjacent hydrophobic 

pockets on the other monomer in a precise orientation. We hypothesized that this 

Figure 2.7. Inhibition of HeLa cell 
growth. Cells were grown in the 
absence or presence of erlotinib, 
NSC56452, or a combination of the 
two inhibitors at the indicated doses. 
Cell growth was measured by the 
cellTiter 96 Aqueous One Solution 
Cell Proliferation Assay after 48 hr 
incubation with the inhibitors. All 
experiments were performed in 
triplicates. All cultures contained 1% 
DMSO. 
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sensitivity to minor perturbations could be exploited to discover compounds capable of 

interfering with EGF receptor dimerization. 

By testing only 4% of the NCI-diversity library, NSC11241 and NSC56452 were 

identified as compounds that selectively inhibited EGF-stimulated tyrosine kinase 

activity while having no effect against the related PDGF and insulin receptor tyrosine 

kinases.  Several lines of evidence suggest that NSC11241 and NSC56452 work by 

inhibiting EGF receptor dimerization. In chemical cross-linking assays, both compounds 

significantly reduced the formation of EGF-induced high molecular weight oligomers. 

This dimer-inhibition mechanism was further confirmed by the luciferase fragment 

complementation assay81 where modulation of receptor dimerization by the lead 

compounds was quantitatively monitored in real time and in live cells. Interestingly, 

AG1478, an EGF receptor kinase inhibitor, has been shown to increase dimer-formation 

as measured by both assays81, 85. This difference further supports the conclusion that our 

inhibitors inhibit by a mechanism that is distinct from that used by tyrosine kinase 

inhibitors. Consistent with this mechanistic difference, NSC56452 and another EGF 

receptor-specific tyrosine kinase inhibitor, erlotinib, exhibited synergy with respect to 

their ability to inhibit cancer cell growth. In the recent release of the NCI Cancer 

Screening Data against 60 cancer cell lines (http://dtp.nci.nih.gov/compare-web-

public_compare/login.do, accessed April, 2009), NSC56452 was reported to inhibit the 

growth of 3 cancer cell lines with statistically significant GI50, TGI, and LC50 values: 

SK-MEL-586 and UO-3187 cells both overexpress EGF receptors while COLO205 cells 

overexpress ErbB288, a related ErbB family of receptors. The apparent correlation 
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between sensitivity to NSC56452 and a common molecular target among the cell lines is 

consistent with our hypothesized mechanism of action. 

This class of dimerization inhibitors provides a new set of chemical tools for 

modulating the activation of the EGF receptor in laboratory settings. For example, one 

can utilize these compounds to modulate the activation of mutant receptors resistant to 

kinase inhibitors, or to gain insights into the formation of EGF receptor dimers and high-

order oligomers. In addition to having utility as chemical research tools, these two lead 

compounds serve as possible leads for further development as anticancer agents to 

complement existing therapeutics.  

Materials and Methods 

Virtual Screening. Autodock 4.076, 77 was used to screen the NCI-diversity database 

(1990 compounds). The database was initially downloaded from the Autodock website 

and processed by in-house scripts to fix incorrectly formatted structures, and to exclude 

structures that contained metals: iron, zinc, mercury and copper (final size = 1926 

compounds). A docking box of dimension 25 Å3 was centered at the Tyr-246/Tyr-Y251 

recognition site on monomer A of the extracellular dimer crystal structure (PDB: 

1MOX). The Larmackian genetic algorithm with Solis and Wets local search was used to 

generate 100 docking poses per compound. All poses were subsequently scored using: 

HP, HM, HS (implemented in X-score 1.2.189), D-score, PMF, G-score, Chem-score 

(implemented in Sybyl 7.3 CSCORE module), and Dfire90. A consensus score for each 

pose was calculated by summing the rankings given by each of the 8 scoring functions. 

Three compounds that ranked high using the consensus scores were excluded because 
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they displayed high rankings against other protein targets suggesting limited specificity 

for the dimerization site.  

EGF receptor autophosphorylation. CHO cells stably expressing wild type EGF 

receptor were grown to 80% confluency in 35 mm plates in Hams’ F-12 containing 10% 

FBS, penicillin/streptomycin, and 100 µg/ml hygromycin. Prior to use, the cells were 

incubated for 3 hours in F-12 medium containing 0.1% FBS. For the experiments, 

cultures were incubated with the test compounds at a final concentration of 100 µM in 

1% DMSO for 30 min at 25˚ C in F-12 containing 1 mg/ml bovine serum albumin and 

25mM Hepes, pH 7.2. Control cultures were incubated for the same length of time with 

1% DMSO. EGF (Biomedical Technologies, Inc) was then added at a final concentration 

of 3 nM and the cultures incubated at 25˚ C for an additional 1 min. Subsequently, the 

monolayers were washed twice with ice-cold phosphate-buffered saline and scraped into 

RIPA buffer (10 mM Tris, pH 7.2, 150 mM NaCl, 0.1% sodium dodecyl sulfate, 1% 

Triton X-100, 17 mM deoxycholate, and 2.7 mM EDTA) containing 1 mM sodium 

orthovanadate, 20 mM p-nitrophenylphosphate, and protease inhibitors. Equal amounts of 

protein (BCA assay, Pierce) were separated by electrophoresis on a 9% SDS 

polyacrylamide gel, and transferred to PVDF or nitrocellulose (Millipore). Western 

blotting was performed using anti-pY1173 (Cell Signaling), or anti-EGF receptor 

antibodies (Cell Signaling and Santa Cruz). Time-course and dose-response experiments 

were done using the same procedure except that the dose or preincubation time with 

inhibitors was varied. A similar protocol was used for assessing insulin-stimulated 

phosphorylation of IRS-1 or PDGF-stimulated receptor autophosphorylation except that 

differentiated 3T3-L1 cells or NIH3T3 cells were used, respectively. In all cases, 
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phosphorylation was quantified using ImageJ and normalized to that observed in control 

samples. 

Chemical cross-linking of the EGF receptor. CHO cells stably expressing EGF receptor 

were preincubated with the test compounds for 15 min at a final concentration of 100 

µM. EGF (25 nM) was then added for 3 min followed by the addition of BS3 (Pierce) at a 

final concentration of 3 mM for 30 min. The reaction mixture was buffered at pH 8. The 

cross-linking reactions were quenched by the addition of glycine to a final concentration 

of 1 M (pH 7.5). Cells were lysed as above, and equal amounts of protein were loaded 

onto a 4%-7.5% gradient SDS-polyacrylamide gel. After electrophoresis and transfer to 

PVDF, EGF receptor dimerization was measured by Western blotting using anti-EGF 

receptor antibodies.  

Luciferase fragment complementation imaging. CHO-K1 Tet-On cells stably expressing 

ΔC-EGFR-NLuc and ΔC-EGFR-CLuc81 were plated 48 hrs prior to imaging in DMEM 

containing 1 µg/ml doxycycline. On the day of imaging, cells were serum-starved for 4 

hrs followed by treatment with vehicle, the indicated concentration of each compound, or 

1 µg/ml cetuximab for 20 min in the presence of 0.6 mg/ml D-luciferin. 3 nM EGF was 

then added and the photon flux immediately measured using an IVIS imaging system. 

Data represent the change in photon flux between EGF-treated cells and control cells. For 

the control experiments using the FRB-NLuc and CLuc-FKBP system83, 91, CHO-K1 Tet-

On cells were plated 48 hrs prior to use and transiently transfected with the cDNA 

encoding FRB-NLuc and CLuc-FKBP 24 later. On the day of assay, cells were pre-

treated with vehicle or 80 nM rapamycin for 4 hrs. Media was removed and replaced with 

DMEM lacking phenol red containing 0.6 mg/ml D-luciferin and DMSO, 25 µM 
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compound NSC11241, or 25 µM compound NSC56452.  Photon flux was measured as 

above. 

125-I-EGF binding. 125I-EGF binding was carried out by incubating the cells with 50 pM 

125I-EGF for 24 hr at 4o C, following a previously described protocol92. 

Cell Growth Assay. HeLa cells were grown in Dulbecco’s Modified Eagles’ Medium 

with 10% FBS. Cells were plated in triplicate in 96-well plates at 5000 cells per well and 

allowed to grow for 24 hours before the addition of DMSO (control), erlotinib (Genetech) 

or NSC56452. All cultures contained 1% DMSO in the final media. Cells were then 

incubated for 48 hours. The cell growth rate was then measured using the cellTiter 96 

Aqueous One Solution Cell Proliferation Assay kit according to the manufacturer’s 

instructions (Promega). Readings were taken at 490 nm after 1 hour incubation with the 

MTS and PMS solution. 
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CHAPTER 3. The OpenScreening Project: An Open-Access Virtual Screening Web 

Server Powered by Distributed Computing Resources and the Xgrid 

Technology 

 
Abstract 

 Virtual screening of compound libraries against therapeutic protein targets 

represents an integral technique in early-stage pharmaceutical drug-discovery. It remains 

under-utilized within the academic community due to barriers of insufficient technical 

expertise and computing resources. We aim to address this need by making the technique 

easily accessible to a broader audience especially those without computational 

backgrounds. Towards this goal, we implemented the OpenScreening Project, an open-

access virtual screening web server powered by a grid-computing infrastructure that 

integrates an open-source grid manager (GridStuffer) with Xgrid-technology (Apple Inc). 

OpenScreening is currently powered by the world’s largest Xgrid cluster of volunteer 

CPUs and represents the first open-access virtual screening web application. Functional 

since September of 2008, over 80 projects have been completed using CPUs from close 

to 500 client machines. OpenScreening can be freely accessed at 

http://openmacgrid.org/xvHTS.  

Introduction 

Rapid progression in proteomics93-95 has been and will continue to supply a 

wealth of novel therapeutic targets for drug discovery. Because the process of translating 

target identification into drug discovery still rests in the hands of pharmaceutical 

companies, many academic findings of novel targets, particularly those involving rare 

diseases, suffer a time-delay in making therapeutic impact. One reason for the apparent 
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bottleneck is that large-scale high-throughput screening (HTS) of existing compound 

libraries remains the main strategy for identifying lead compounds in the current drug 

discovery paradigm96-98. However, given the typical 1 out of 100,000 hit rate from 

random screening98, and the pre-requisite investment in developing target-specific high-

throughput assays, wide application of industry-comparable HTS at the academic level 

remains impractical to most.  

Towards alleviating the dependency on HTS, virtual high-throughput screening 

(vHTS) has emerged as an integral component in drug discovery for prioritizing 

compounds99, 100. The application of vHTS can enrich the hit rate by several orders of 

magnitude101 and, therefore, offers an attractive alternative when high-throughput assays 

or screening facilities are inaccessible102-104.  

A pre-requisite requirement for running vHTS is its intrinsic demand of 

computing resources, a “bottleneck” that explains why, despite its popularity in industry, 

the technique remains under-utilized within the non-computational academic community. 

One emerging solution for accumulating computing power is through distributed 

computing resources105-107, and its utility has been demonstrated by the remarkable 

successes of several recent vHTS applications. These applications were tailored for high-

profile projects but were not designed to support community-wide access—utilization of 

these computing resources is restricted. To address the “bottleneck” by providing 

unrestricted distributed computing resources in vHTS applications, we have developed 

OpenScreening, an open-access vHTS web server that operates on idle CPUs harvested 

from the community. The aims of the project were to (1) provide a validated user-friendly 

vHTS tool that lowers the barrier to entry, and (2) present a proof-of-concept computing 
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grid prototype easily transferable for embarrassingly parallel applications. 

OpenScreening can be freely accessed at http://openmacgrid.org/xvHTS  

Results 

Overall workflow. The grid infrastructure is constructed to connect remote client 

machines (volunteers) over internet to a central Mac OSX server. Server-client 

communications are established by the Xgrid hardware (Apple Inc) while the trafficking 

of the communication is maintained by an open-source software, GridStufferr 

(http://cmgm.stanford.edu/~cparnot/xgrid-stanford/html/goodies/GridStuffer-info.html). 

Upon submission of a new screening project via the web interface, input files are pre-

processed to ensure format consistency and placed in queue for execution on the grid. 

OpenScreening currently operates on the OpenMacGrid 

(www.macresearch.org/openmacgrid), the world’s largest Xgrid cluster. During 

execution of a screening project, gstuffer dispatches onto available (idle) client machines 

a set of concurrent Autodock 4.076, 77 computations each corresponding to the docking of 

a compound in the library to the target protein. The process of submission, data retrieval, 

and re-submission is iterated until the entire library has been screened. Upon completion, 

the compound ranking and the predicted 3D docked conformations are returned as output 

(Figure 3.1).   
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Project submission. In the simplest case, a 4-letter PDB code is sufficient for submitting 

a new project. In many cases, however, additional insights about specific binding sites of 

the target protein are often available for guiding efficient site-directed virtual screening. 

To accommodate this, the submission interface incorporates an embedded Jmol108 applet 

to support interactive visualization of the protein and docking pocket definition (Figure 

3.2). Screening of the NCI-diversity (size 1,990) and Maybridge-diversity (size 14,400) 

compound libraries are currently supported, though uploading of customized databases is 

possible upon request. OpenScreening currently uses Autodock 4.0 as the backend 

docking software, which has been shown to be effective in many cases107, 109, 110. The 

choice of run-time parameters is instrumental to success, thus represents a major source 

of uncertainty among novice users. To facilitate in this aspect, we have empirically 

derived a set of parameters that displayed a good balance between enrichment power and 

speed (see below). These parameters are designated as the default parameters for 

OpenScreening. Users are provided with the option of screening with these default 

parameters or customized screening parameters. Each project is assigned a password at 

submission, which is required for subsequent project cancellation and/or data retrieval.  

Figure 3.1: Overall workflow of 
the OpenScreening web server. 
Inputs and outputs of the 
screening projects are submitted 
and retrieved via the web 
interface, respectively. Pre-
processing, post-processing, and 
analysis are performed by the 
server scripts. Parallel docking 
runs are executed on the OMG 
grid. Grid trafficking and control 
are handled by GridStuffer. 
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Result retrieval. Internally, each project is split into dockings of individual compounds 

to the target protein, which will be independently executed on client machines. These 

processes can only be executed under the Xgrid partition pre-designated by Macintosh 

under the lowest privilege to ensure absolute integrity of the client machines. Upon 

completion, only the result files are transferred back to the server while input and 

intermediate files are properly deleted from the client machines. To the end-users, the 

rankings of the top 100 compounds and the visualization of their best-predicted 

conformation are presented on the result page (Figure 3.3). The complete results, which 

include the rankings of all compounds and the complete sets of docked conformation in 

multi-mol2 format, can be downloaded on the same page for further analysis offline. 

Figure 3.2: Submission 
interface. 3 easy steps to 
submit a screening project: 1) 
visualization and specification 
of the docking region of the 
protein target; 2) compound 
library selection, currently 
support the NCI-diversity and 
Maybridge HitFinder libraries. 
Screening custom libraries 
available upon request; 3) 
customization of docking 
parameters for advanced users 
(default parameters are 
strongly recommended for 
most users). 
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Input preprocessing. Input structure files submitted to the central server through the 

web interface are first validated to ensure security integrity and format compatibility. 

They are used to generate a set of protein descriptions in Autogrid maps, the required 

format that feeds into subsequent docking procedures. In theory, docking maps of the 

target protein only need to be generated once on the server, transferred to and shared 

among all client machines during client-side execution. However in practice, it is more 

efficient to recalculate these maps on-the-fly on client machines rather than through 

transmission to alleviate the burdens on internet bandwidth. For example, screening 

against a target box of 25x25x25(Å3) with grid spacing of 0.2 Å requires 150 megabytes 

of map files (the map for each atom type is typically 12 megabytes), or 50 megabytes in 

the zipped format. Repeated transmission of 50 Mb data for every docking process is not 

practical due to the accumulated amount of input/output communication involving the 

central server— minimizing server-client transmission is critical for grid stability and 

growth. We also adhere to the policy of strict cleanup on the client machines and choose 

not to store these map files remotely. In our implementation, maps are generated once on 

the server at the pre-processing stage (before putting in the queue), and are repeatedly 

generated on the clients for every docking calculation during execution.  The purpose of 

Figure 3.3: Result retrieval 
interface. The ranking and the 
corresponding docking pose of 
the compounds are presented in 
tabular and graphical forms. 
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the one-time server-side map generation, besides testing for correct format, provides a 

benchmark time that will be used to gauge the relative speed of the individual client 

machines. During a client-side docking calculation, the first step is to generate the maps. 

The server-side benchmark time is passed along to the clients— machines requiring 5 

times longer than the “benchmark” in constructing maps are deemed inefficient and will 

not proceed to execute the much more computationally intensive docking calculations. 

The decision to not utilize slow machines on the grid currently is based on the 

observation that they typically are the last to finish and end up significantly delaying the 

completion of the entire project. Our decisions to not exclude slow machines on the grid 

in the first place hinges on the understanding that they are useful for less intensive 

tasks—for example some machines are not “slow” at calculating tasks that do not require 

high cache memory. We also reasoned that dynamically testing the speed on-the-fly, 

rather than keeping a local record about the client machines, is advantageous because the 

former better accommodates grid flexibility and does not prematurely excludes clients 

that underwent upgrades.  

Parameter sensitivity analysis. A sensitivity analysis was carried out to evaluate and 

determine the performance of a range of Autodock parameters based on accuracy and 

time performance. The PDBbind “core set”111, 112 consisting of 69 non-redundant high-

resolution protein-ligand complexes was used for re-docking-- each ligand was extracted 

from the original complex, their torsion angles randomly scrambled, and re-docked back 

to its binding protein using different docking parameter combinations (Table 3.1). The 

docking boxes were centered at the ligand in the crystal structures, and several box 

dimensions were examined in the analysis. The accuracy was defined by 1) sampling: the 
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resemblance between the re-docked poses and the original crystal poses as measured by 

the root-mean-square distance (RMSD), and 2) scoring: the relative ranking of these 

“correct” ligand poses among all generated poses. The RMSD of 2.0 Angstrom113 is 

typically the accepted threshold for defining a successful recovery by the docking 

protocol though RMSD values in the range of 2.5Å-3.0Å114, 115 have also been commonly 

used. For completeness, RMSD thresholds of 1.0, 1.5, 2.0, 2.5, and 3.0 Å were included 

when determining the success rates of recovering the crystal poses over 69 complexes 

(Figure 3.4, Table 3.2).  

 Given the number of parameters (6), systematic scanning of each parameter was 

impractical—for example, scanning with an interval of just 3 values per parameter would 

have yielded 36 x 69 > 50,000 docking computations over 69 complexes. As an 

alternative, we chose to test a set of parameter combinations that we have had success 

with in the past against various targets. For comparison, the default values given by the 

AutoDockTools116 were also included as a reference (denoted as Set 1). With the 

exception of Set 1, the differences in sampling accuracy across parameter sets were subtle 

under stringent requirement of RMSD 1.0 and 1.5Å (< 10%, Figure 3.4). These results 

not only outline the boundary of parameter-dependent improvement in sampling, but also 

reiterate the difficulty in docking—it is hard to recover the exact crystal poses. Thus, for 

the remaining of our analysis, we focused on the performance using thresholds in the 

range of RMSD 2.0-3.0 Å. Under these less stringent but widely-used threshold values, 

the best parameter combination (Set 10) achieved a sampling success rate of close to 80% 

using RMSD 3.0 Å, and around 60% using RMSD 2.0 Å. However, Set 10 required an 

average of 21500 seconds (~6 h) per complex (docking 1 ligand to 1 target), an execution 
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time that we considered to be too long and non-ideal for virtual screening using 

distributed computing resources—the requirement that a remote client machine needs to 

stay idle for 6 hours will drastically decrease the amount of useable nodes on the grid. In 

contrast, Set 6 required an average of 1 hour while still displaying good success rates 

using thresholds of 2.0-3.0 Å. In addition, Set 2, 3, and 7 also showed good balances 

between time and performance attractive for virtual screening applications. These 

parameter sets were further analyzed subsequently. All detailed results are summarized in 

Figure 3.4 and Table 3.2.  

 In these initial tests, we kept the dimensions of the docking boxes constant (25 x 

25 x 25 Å3, 126 grid points in all 3 dimension with grid spacing of 0.2 Å). We next 

evaluated the sensitivity of these parameters to the box dimensions and grid spacing 

(Figure 3.5, Table 3.3, Table 3.4). It was not surprising that all parameter sets were 

sensitive to the overall box dimensions since smaller docking boxes translated into 

improved sampling by eliminating search spaces while larger docking boxes had the 

opposite effects. The apparent insensitivity to the grid spacing (Grid 1 vs. Grid 3 Figure 

3.5) was unexpected since smaller grid spacing was expected to provide a higher 

resolution representation of the protein target and hence better sampling performance. 

However, considering that Autodock uses the united-atom representation for the protein 

targets76, we reasoned that the difference of 0.1 Å in resolution is not enough to have 

significant impacts in sampling.  
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Table 3.1. Parameter Sets. 
Set # pop_size num_evals elitism_rate mutation_rate crossover_rate run 

1* 150 2.5 x 105 0.01 0.02 0.8 10 
2 100 2.5 x 105 0.05 0.02 0.8 50 
3 100 2.5 x 105 0.05 0.02 0.8 100 
4 100 5.0 x 105 0.05 0.02 0.8 50 
5 100 1.0 x 106 0.05 0.02 0.8 50 
6 100 5.0 x 105 0.05 0.02 0.8 100 
7 100 1 x 106 0.05 0.02 0.8 100 
8 100 1 x 106 0.05 0.02 0.1 100 
9 100 5 x 106 0.05 0.02 0.8 30 
10 100 5 x 106 0.01 0.02 0.8 100 
11 100 5 x 106 0.05 0.02 0.8 100 
12 30 5 x 106 0.01 0.02 0.8 100 

* AutoDockTools default 
 
Table 3.2. Performance of using different parameter sets on 69 protein-ligand complexes. 
Set # Avg. Time 

(Seconds) 
RMSD  
< 1.0Å 

RMSD 
< 1.5Å 

RMSD 
< 2.0Å 

RMSD 
< 2.5Å 

RMSD 
< 3.0Å 

1 120.4 27.5 30.4 37.7 52.2 55.1 
2 537.8 26.1 44.9 55.1 65.2 69.6 
3 1109.0 31.9 43.5 58.0 62.3 72.5 
4 1118.1 26.1 37.7 52.2 62.3 65.2 
5 2122.8 26.1 40.6 52.2 60.9 65.2 
6 2170.7 30.4 40.6 59.4 68.1 71.0 
7 4558.6 31.9 43.5 55.1 63.8 72.5 
8 4560.2 31.9 44.9 55.1 63.8 68.1 
9 6426.8 26.1 36.2 49.3 58.0 60.9 
10 21505.8 30.4 43.5 60.9 68.1 75.4 
11 21957.5 30.4 43.5 60.9 66.7 72.5 
12 23254.8 27.5 42.0 58.0 66.7 68.1 
 
Table 3.3. Grid Definitions. 
Grid Definition # Grid Spacing (Å) Grid Points Box Dimensions (Å3) 
1 0.2 126 x 126 x 126 25 x 25 x 25 
2 0.3 126 x 126 x 126 37.5 x 37.5 x 37.5 
3 0.3 84 x 84 x 84 24.9 x 24.9 x 24.9 
4 0.3 66 x 66 x 66 19.5 x 19.5 x 19.5 
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Table 3.4. Percentage of complexes correctly re-docked using several parameter sets 
under different grid definitions. 

Parameter Set Grid 1 Grid 2 Grid 3 Grid4 
RMSD < 1.0 Å 

2 26.1 20.3 31.9 29.0 
3 31.9 24.6 30.4 34.8 
6 30.4 29.0 31.9 33.3 
7 31.9 26.1 33.3 31.9 

RMSD < 1.5 Å 
2 44.9 31.9 36.2 42.0 
3 43.5 33.3 42.0 49.3 
6 40.6 34.8 44.9 46.4 
7 43.5 40.6 42.0 43.5 

RMSD < 2.0 Å 
2 55.1 43.5 50.7 60.9 
3 58.0 43.5 59.4 60.9 
6 59.4 46.4 59.5 69.6 
7 55.1 50.7 53.6 59.4 

RMSD < 2.5 Å 
2 65.2 50.7 59.4 71.0 
3 62.3 55.1 66.7 73.9 
6 68.1 58.0 66.7 75.4 
7 63.8 56.5 63.8 68.1 

RMSD < 3.0 Å 
2 69.6 53.6 62.3 79.7 
3 72.5 62.3 72.5 79.7 
6 71.0 60.9 75.4 79.7 
7 72.5 66.7 69.6 76.8 
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Figure 3.4. Re-docking of 69 protein-ligand 
complexes to compare sampling accuracy among 12 
parameter sets. Sampling accuracy was defined by 
using a range of RMSD values (1.0-3.0 Å) between 
the docked ligand poses and the crystal poses. The 
percentage of complexes with docked poses within 
the RMSD thresholds of crystal poses are plotted 
against the average execution time for the docking 
process. Set 6 displayed a good balance between 
accuracy and execution time. 

Figure 3.5. Sensitivity of Parameter Set 6 to grid 
definition. Grid definitions specify the grid spacing 
and the dimensions of the docking box (see table 3.3). 
For each definition, the percentage of 69 complexes 
with at least 1 docking pose within the specified 
RMSD values of crystal structures are shown in the 
bar graph. 
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 The next level of analysis was focused on the sensitivity to the scoring aspects of 

Autodock— how well the “correct” docking poses rank relative to the decoy 

counterparts. All parameter combinations showed good and comparable discriminatory 

power to favorably rank the “correct” docking poses. On average, these “correct” docking 

poses were ranked within the top 5-10% of all generated poses on average over 69 

complexes (Table 3.5). Given that all but 1 parameters (the “number-of-energy-

evaluations” parameter) under consideration deal with the stochastic sampling process 

(genetic algorithm), these results suggest that the “number-of-energy-evaluations” 

parameter, despite having little sensitivity in improving scoring, still can impact the 

docking outcome because of the coupling of sampling and scoring in the genetic 

algorithm. 
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Table 3.5. Ranking powers of each parameter sets under different grid definitions. 
 Average Ranking of the Best-Ranked Correct Docking Pose  

Calculated as: (best ranking/number of generated docking poses) x 100% 
Param Set < 1.0 Å* < 1.5 Å < 2.0 Å < 2.5 Å < 3.0 Å 

Grid 1 
1 8.0 8.0 8.0 11.2 12.6 
2 6.6 8.0 8.1 11.3 12.7 
3 6.3 10.3 9.8 9.5 12.5 
4 4.5 6.4 9.0 10.9 11.9 
5 4.6 7.1 8.0 9.7 11.1 
6 7.2 7.7 7.9 9.1 9.0 
7 8.9 9.3 9.8 11.5 13.4 
8 6.6 9.8 8.4 10.4 11.3 
9 7.0 7.6 8.4 11.4 11.3 
10 7.2 8.8 11.1 12.4 16.3 
11 7.5 10.4 10.7 11.1 14.2 
12 5.1 8.6 8.3 10.8 10.1 

Grid 2 
2 2.3 4.3 5.3 5.1 5.1 
3 2.1 4.4 4.4 6.9 7.9 
6 33 4.1 3.9 5.2 6.1 
7 4.7 6.8 7.5 7.4 12.5 

Grid 3 
2 6.9 7.0 8.9 10.2 12.1 
3 6.9 7.4 9.1 9.2 12.7 
6 5.6 5.2 6.3 9.1 9.2 
7 5.6 7.4 8.8 9.8 11 

Grid 4 
2 5.6 6.1 9.0 11.7 15.3 
3 6.4 8.9 9.1 11.5 13.4 
6 7.8 9.9 12.7 14.1 13.7 
7 6.9 6.7 8.9 10.6 13.3 

* Correct poses are defined by RMSD values between the docked poses and the crystal 
pose; a range of RMSD thresholds are examined here. 
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Further testing of the parameters in the context of vHTS. To evaluate these 

parameters in a vHTS context, we performed cross-docking experiments using the 

OpenScreening webserver. A synthetic compound library of 2000 compounds that 

included known actives was screened against 4 protein targets similar to the protocol 

described in Chapter 2. The 4 protein targets were plasmepsin II (PMII), cyclin 

dependent kinase 2 (CDK2), estrogen receptor (ER), heat-shock protein 90 (HSP90). 

Each protein target had a rich collection of protein-ligand co-crystal complexes in the 

PDB. These ligands were mixed with 1926 NCI-diversity compounds to form the 

synthetic compound library. The PDB accession codes used for cross-docking of known 

ligands to the four protein targets were: plasmepsin II (PMII), 1LEE, 1LF2, 1LF3, 1M43, 

1ME6, 1W6H, 1W6I, 1XE5, 2BJU, 2IGX; cyclin dependent kinase 2 (CDK2), 1AQ1, 

1CKP, 1DI8, 1DM2, 1E1V, 1E1X, 1E9H, 1FVT, 1G5S, 1GIH, 1GZ8, 1H00, 1H01, 

1H07, 1H08, 1H0V, 1H0W, 1H1P, 1H1Q, 1H1R, 1H1S, 1JSV, 1JVP, 1KE5, 1KE6, 

1KE7, 1KE8, 1KE9, 1OGU, 1OI9, 1OIQ, 1OIR, 1OIT, 1OIU, 1OIY, 1P2A, 1P5E, 1PF8, 

1PKD, 1PXI, 1PXK, 1PXL, 1PXM, 1PXN, 1PXO, 1PXP, 1PYE, 1R78, 1URW, 1V1K, 

Figure 3.6. Virtual screening of a 
synthetic compound library (~2000 
molecules) against 4 protein targets. 
Parameters were taken from 
parameter Set 6. The area-under-
curve (AUC) measures the 
enrichment power in each case. 
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1VYW, 1VYZ, 1W0X, 1WCC, 1Y8Y, 1Y91, 2A4L, 2B52, 2B53, 2B54, 2B55, 2BPM, 

2BTR, 2BTS, 2C68, 2C6K, 2C6L, 2C6M, 2CLX, 2FVD, 2UZB, 2UZD, 2UZL; estrogen 

receptor (ER), 1A52, 1ERR, 1L2I, 1SJ0, 1UOM, 1X7E, 1X7R, 1XP1, 1XP6, 1XP9, 

1XPC, 1XQC, 1YIM, 1YIN, 1ZKY, 2AYR, 2B1V, 2FAI, 3ERD, 3ERT; heat-shock 

protein 90 (HSP90), 1A4H, 1BGQ, 1BRE, 1YC1, 1YC3, 1YC4, 1ZW9, 2BRC, 2CGF. 

The protein structures with the highest resolution structures in each case were: 1LEE 

(HSP90), 2B54 (CDK2), 1XPC (ER), and 2BRC (HSP90). All bound small molecules 

were manually separated from the complex and prepared using OpenBabel v2.0.2117. 

 Using the respective highest resolution protein structures, we virtual screened this 

testing library against all 4 targets with parameter Set 6. The efficiency to rank active 

compounds higher than the decoy compounds (referred to as the enrichment power) was 

evaluated by measuring the fraction of active compounds that are present within the top 

fraction of the entire ranked library. The corresponding enrichment curve (Figure 3.6) 

plotted the progression of enrichment over a continuous fraction range and was quantified 

by calculating the area-under-curve (AUC). As shown in Figure 3.6, these parameters 

displayed a significant trend for favorably ranking the active compounds in all 4 cases—

at least one active compound was identified within the top 1-5% of the library. In the best 

case (ER), half of the actives were recovered within the top 10% of the entire library.  

 The speed of OpenScreening was assessed by running the same virtual screening 

experiment against the ER target using a local cluster of 50 nodes. OpenScreening 

exhibited an overall 10-fold increase in the number of compounds screened at its peak 

(Fig. 3.7, Table 3.6). Screening ~2000 compounds was completed in less than 24 hours, 

whereas the same processes took nearly 5 days on the local cluster. 
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Table 3.6. Bench mark of CPU and wall-clock time. 
Screening Targeta Total CPU 

hours 
Total Docking 
Runsb 

Average CPU hours per 
Docking Run 

Total Wall-clock 
hours 

CDK2 1278.3 2607 0.49 19.1 
ER 1350.5 2573 0.52 22.8 
PMII 1442.5 2508 0.58 21.7 
HSP90 1479.8 2504 0.59 22.9 
ER_local cluster 985.2 2415 0.41 116.3 
a CDK2, cyclin-dependent kinase 2; ER, estrogen receptor; PMII, plasmepsin II; HSP90, 
heat shock protein 90; ER_local cluster, the same screening project against the estrogen 
receptor performed on a local computer cluster (the average number of running nodes 
during the execution was 25). 
b Total docking runs included resubmissions. 

Usability. Over 80 projects spanning several research groups, most having no 

computational backgrounds, have been performed by OpenScreening since being 

functional in September of 2008. On average, screening of the NCI-diversity library takes 

overnight, and screening of the Maybridge library takes 5 days. We have been rigorously 

testing the stability of OpenScreening in anticipation of a rapid increase in user base upon 

publication. 

Prototype for Xgrid-based applications. VHTS, like all “embarrassingly parallel” 

applications, has a repetitive nature that demands robust traffic-coordination algorithms 

that exceed the capability of the primitive Xgrid scheduling system alone. In addition, 

Figure 3.7: Wall-clock time 
performance of OpenScreening 
comparing to that of a local 
computer cluster (50 nodes). 
The OpenScreening protocol 
consistently displays 10-fold 
increase in wall-clock time over 
the local cluster at its peak. The 
plateau reflects the bottleneck 
effects of slow client machines 
on the grid. 
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intrinsic dependence on remote client-side executions renders these grid applications 

susceptible to high-error rate that often requires extensive human interventions118. In our 

design, three independent layers of controls by Xgrid, GridStuffer, and the vHTS wrapper 

script were implemented to address these challenges. Through the Xgrid server-client 

socket, GridStuffer transfers the Autodock executable, the protein and compound 

structure files, along with the wrapper script to the Xgrid-designated partition on the 

client machines. Upon completion, only the result files are transferred back to the server 

while the rest of the files are properly deleted. The decision to decouple these layers 

allowed us to independently address, at different abstraction levels, problems that are 

inherent to distributed computing and specific to vHTS. Xgrid handles errors associated 

with server-client transmission and notifies GridStuffer of the communication status of 

individual clients. Based on these client statuses, GridStuffer schedules submission, 

result- retrieval, and resubmission of failed tasks which are flagged by the return value of 

the vHTS wrapper scripts. Given that Xgrid and GridStuffer were both designed to be 

application-agnostic, this protocol can be readily adapted for other embarrassingly 

parallel applications by changing at the application-specific wrapper script level.  

Discussions  

 The capacity of OpenScreening already exceeds the computing resources of many 

private corporate counterparts119, 120, demonstrating the advantage of being supported by 

the community. However, it clearly cannot compare to the well-established grid-based 

projects such as FightAIDS@Home107 (~450,000 nodes) or the Screensaver Project106 

(~3.5 million), nor was it ever our intent. Our goal is to provide a broad research 
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audience with a tool that addresses the need of unrestricted accessibility to vHTS and 

encourages the integration of computational tools in the non-computing community.  

The integration of Xgrid and GridStuffer presents an affordable and easy-to-

implement utility to build grids among research labs, departments, institutions, and units 

of essentially any size. Because Xgrid is an inherent feature of the OS X platform, grid 

expansion does not require explicit software installations on each machine. Volunteers 

can join the OpenScreening grid by simply entering the address of the OpenMacGrid grid 

server (step-by-step instructions on the website). However, this also restricts the client 

machines to be only Mac machines running OS10.4 or later. The development of 

middleware to include PC machines is anticipated to further expand the grid size, though 

efficient recruitment of PC machines would most likely come in the form of pre-existing 

clusters rather than individual volunteers. The requirement to explicitly install client-side 

communication portal compatible with the PC middleware demands a level of 

complication that is better suited for experienced system administrators. Some of the 

viable open-source middleware frameworks include ACE and TAO from the Center of 

Distributed Object Computing (http://www.cs.wustl.edu/~schmidt/doc-center.html), and 

Opal from National Biomedical Computation Resources 

(http://www.cs.wustl.edu/~schmidt/doc-center.html). Alternatively, collaborations with 

the drugdiscovery@home project (http://drugdiscoveryathome.com/) that uses the 

Berkely Open Infrastructure for Networked Computing (BOINC) may be possible if the 

concept of unrestricted open-access can be preserved. 

Parameter Set 6 was set as the default parameters for the OpenScreening 

webserver for its robust sampling and ranking powers as well as its fast execution time. 
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Most of the other parameters tested in this chapter also did not result in significant 

deviations in performance. In particular, Set 2 and Set 3 displayed ¼ and ½ average 

execution time comparing to that of Set 6, respectively. These parameters therefore are 

expected as good candidates for screening larger libraries without significantly 

compensating for accuracy.  

Shortcomings in the current implementation will be improved in future updates. 

One example is the rate-limiting effect of slow client machines on the overall 

performance. Stagnant performance towards the end stage of a screen project (Figure 3.7, 

number of docked compounds plateaus towards the end) can dramatically prolong the 

overall wall-clock time. Despite a 10-fold increase at its peak over the local cluster 

(Figure 3.7), the increase in the overall wall-clock time to complete a screening project 

was only 5-fold (Table 3.6, ER vs ER_local). One way to address this issue is to increase 

the map generation “benchmark time” thresholds from its current 5x to 10x in order to 

eliminate the use of slow machines. A more elegant solution under testing, however, is to 

trigger redundant scheduling of multiple docking instances of the same ligand onto 

several client machines concurrently towards the end of a screening project—the first 

successful results from these duplications will abort the other instances, thus completing 

the project.  

In addition to using Autodock, we are also exploring the possibility of including 

additional docking softwares and scoring functions to the OpenScreening webserver. 

Docking softwares using systematic search algorithm and/or incorporating receptor 

flexibility may improve the current sampling efficiencies of 60-80%. The benefit of using 

multiple scoring functions is apparent by comparing the enrichment power of using the 
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Autodock scoring function alone (Figure 3.6) and that of using the consensus scoring 

scheme described in Chapter 2 (Figure 2.1). We expect that by providing the options of a 

wide range of docking and scoring softwares, OpenScreening will improve its accuracy 

as well as extend its utility to a larger user-base. As we aim to implement additional 

components and functions onto OpenScreening, our long-term goal is to stimulate the 

integration of computational tools in generating reasonable hypothesis to help with 

designing and performing subsequent experiments. 

Acknowledgements. The OpenScreening project would not have been possible without 

help from Dr. Charles Parnot and the OpenMacGrid community. Charles is the inventor 

of the GridStuffer software 
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Appendix 3.1: Instructions to set up Xgrid and GridStuffer. 
Equipment. 

• Mac OS X Server 10.4 or later. 

• GridStuffer freely available for download at 

http://cmgm.stanford.edu/~cparnot/xgrid-stanford/html/goodies/GridStuffer-

info.html. 

Equipment setup. 

• Configure server according to manual. 

• Install GridStuffer and set it to run as a launchd application: 

• > launchctl load /Library/LaunchDaemons/org.openmacgrid.xgridstatus.plist 

• > launchctl load /Library/LaunchDaemons/org.openmacgrid.gstuffer.plist 
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Applendix 3.2: User manual of the OpenScreening webserver. 

Submission to OpenScreening (Figure 3.2) 

1 From the OpenScreening homepage, navigate to the “submit task” tab or go directly to 

the website (http://omg.phy.umassd.edu/xvHTS/submit/). Accept the applet certificate for 

Jmol when prompted, this allows the visualization using the Jmol applet. 

2 Specify an email address for notification of the job status. 

3 Supply a valid target structure in PDB format either by specifying its PDB code or 

uploading a file. Structure must be displayed to continue.  

CRITICAL STEP Validate the format of the file before submitting. It is highly advised 

that the file only contains coordinates for common amino acids. Ions and other molecules 

should be deleted from the file. Sometimes water molecules can cause problems as well. 

Only PDB format is supported at this time. 

4 Specify docking site by changing the location and size of the docking box. Small 

molecules will only be docked onto areas enclosed by the docking box. 

5 Select small molecule libraries to screen. Press Shift while clicking to select multiple 

libraries (depending on individual keyboard setup). 

6 Customize screening parameters only if you are an advanced user. Default parameters 

are highly recommended. 

7 Submit and wait for a confirmation number. Successful submissions will be assigned a 

confirmation number and displayed in the queue.  

Cancellation of a project in the queue. 

8 From the OpenScreening homepage, navigate to the “queue” tab or go directly to the 

link (http://omg.phy.umassd.edu/cgi-bin/queue.cgi). Locate the project to be cancelled in 
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the queue list. Click on the “cancel” link and input the assigned confirmation number 

when prompted. 

Retrieval of screening results (Figure 3.3). 

9 From the OpenScreening homepage, navigate to the “queue” tab or go directly to the 

link (http://omg.phy.umassd.edu/cgi-bin/queue.cgi). Locate the project that has been 

completed in the queue list. Click on the “view job” link and input the assigned 

confirmation number when prompted.  

TROUBLESHOOTING 

Join the grid (voluntary). 

10 Follow the link http://www.macresearch.org/contribute_to_openmacgrid for a step-by-

step instruction. 

Troubleshooting 

Table 3.7. Troubleshooting table. 

Step Problem Solution 
3 Structure is not 

displayed 
Make sure it has a valid PDB format. Try another browser with 
javascript enabled. 

7 Submission 
failed 

Delete from the structure file: non-standard amino acids, all 
HETATM records, ANSIOU records and all alternative 
coordinates if they exist. 

8 Cannot locate 
the cancel link 
 
Do not know 
confirmation 
number  

Contact us: http://omg.phy.umassd.edu/xvHTS/contact/ 
 
 
Contact us: http://omg.phy.umassd.edu/xvHTS/contact/ 
 

9 Cannot locate 
the results 
 
Do not know 
confirmation 
number 

Contact us: http://omg.phy.umassd.edu/xvHTS/contact/ 
 
 
Contact us: http://omg.phy.umassd.edu/xvHTS/contact/ 
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CHAPTER 4. Computational Modeling and Experimental Testing of the ErbB2-

EGFR Heterodimer Interface 

Abstract 

 Like EGFR homodimers, the formation of ErbB2-EGFR heterodimers is thought 

to be mediated by inter-molecular interactions between the extracellular domains. Given 

that the ErbB2-EGFR heterodimers have been associated with elevated transforming 

potentials, this protein-protein interaction serves as an attractive target to extend the 

development of dimer inhibitors. However, the molecular interface is unknown in the 

absence of crystal structures. By using crystal structures of the EGFR homodimer and the 

ErbB2 monomer as templates, a model of the EGFR-ErbB2 extracellular heterodimer 

constructed by homology modeling and further refined using molecular dynamics 

simulation. Comparison between the ErbB2-EGFR heterodimer model and EGFR 

homodimer revealed subtle difference at the respective dimer interfaces. Based on the 

heterodimer model, two negatively-charged residues, both unique to ErbB2, were 

computationally predicted and experimentally confirmed to be critical for the stability of 

the ErbB2-EGFR interface. The identification of these critical residues and the 

heterodimer interface model serve as potential target sites for the development of 

heterodimer inhibitors. 

Introduction 

 ErbB2, a close homolog of the EGFR (64% sequence similarity)2 in the ErbB 

receptor family, is the preferred heterodimerization partner of all other ErbB family 

members48, 121, but rarely homodimerizes among themselves122-124. Like EGFR, ErbB2 

has a structural domain arrangement that consists of an extracellular domain, a 
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transmembrane helix, and an intracellular catalytic kinase domain122. In contrast to EGFR 

and the rest of the ErbB family members, ErbB2 has no known ligand and constitutively 

adopts the open conformation where the homologous extracellular subdomain II, termed 

as the “dimerization arm” in EGFR, is readily exposed for interaction with a partner ErbB 

receptor123, 124. As described in Chapter 2, inter-receptor interactions mediated by the 

dimerization arm drives the formation of EGFR homodimer44, 45. Mutations to critical 

residues on the arm result in complete disruption of homodimers thus underlining the 

necessity of preserving this interface42, 46. This dimer interface centered on the 

dimerization arm and its respective docking pocket is thought to be universal for the 

EGFR-ErbB2 heterodimer and among all other ErbB dimers.  

 Given that EGFR-ErbB2 heterodimers exhibit enhanced signaling and are often 

associated with aggressive tumors68, 125, understanding the molecular details of the 

heterodimer interface carries important implications for developing cancer therapeutics. 

Crystal structure of the extracellular EGFR-ErbB2 heterodimer has not been solved most 

likely due to the presence of heterogeneous populations of homo- and hetero-dimers. 

Crystal structures of the extracellular EGFR in the homodimeric form and ErbB2 as 

monomers have been solved recently – the monomeric state of these ErbB2 structures 

reflects the weak propensity of ErbB2 to homodimerize. In an attempt to probe the 

EGFR-ErbB2 interface, a heterodimer model was built by homology modeling using the 

crystal structures of the extracellular EGFR homodimer and ErbB2 monomer as 

templates. The homology model was subsequently refined by an all-atom molecular 

dynamics (MD) simulation. Computational mutagenesis based on the refined model 

coupled with experimental site-directed mutagenesis led to the identification of two “hot-
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spot” residues located on the ErbB2 dimerization arm that are essential for 

heterodimerization. The heterodimer model along with the knowledge of the hot-spot 

residues not only offer structural interpretations of different combinations of dimers, but 

also serve as roadmaps for the development of heterodimer-disrupting peptidomimetics. 

Results 

Model refinement 

 The EGFR-ErbB2 heterodimer homology model was subjected to full-atom 

molecular dynamic (MD) simulations in explicit water for the purpose of further relieving 

unfavorable interactions. For reference, the EGFR homodimer crystal structure (PDB 

1IVO) was also relaxed using the same MD setup in parallel. In both cases, simulations 

of these large systems in the short time-frames generated only conformations in the 

vicinity of a low-energy structure— experimental crystal structure for homodimer, and an 

energetically stable heterodimer homology model.  

Stability and similarity of the global dimer conformations during simulations 

 Molecular dynamic simulations often require time to relieve unfavorable 

interactions and equilibrate the starting structures into energetically stable ensembles. 

Root-mean-square-distance (RMSD) with respect to simulation time is a standard method 

for separating the initial relaxation phase (rapid increase) from a low-energy local 

minimum production stage (plateau). Based on the RMSD profiles in Figure 4.1, we 

chose the production run to start at time 3500 ps for the heterodimer simulation, and 2000 

ps for the homodimer simulation.  
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 The high degree to which secondary structures were preserved from the starting 

structures during refinement (Figure 4.2) suggested the presence of a low-energy local 

minimum configuration similar to the starting structures. The number of residues found 

in well-defined secondary structures was comparable in both homo- and hetero- dimer 

simulations highlighting an overall similarity in global domain arrangement. These 

results are consistent with the basis for homology-modeling— the justification to use 

ErbB2 and EGFR as homology templates because they shared similar global spatial fold. 

MD simulations, interpreted as relaxations rather than dynamics given the scope of 

sampling, did not cause significant alterations to the overall global structure during 

refinement of the starting heterodimer model into a more energetically favorable 

configuration. Preservation of this global structural similarity between homo- and hetero- 

dimers can be visualized by a representative snapshot (Figure 4.3). 

Figure 4.1. Root-mean-square-
deviation of homo- and hetero- 
dimer MD simulations. 
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Figure 4.2. Number of 
residues observed in each 
secondary structure as a 
function of time. Values were 
extracted every 50 
picoseconds for clarity. 

Figure 4.3. Global view of the heterodimer 
(A) and homodimer (B) extracted from a 
representative snapshot from MD. The box 
region indicates the arm interface. The 
snapshots represent the frames with the 
lowest energy calculated by the MM/PBSA 
method. T1 and T2 denote to the location of 
reverse-Turn 1 and Turn 2. 
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Differences at the “arm-armpit” interface 

 The tip of the arm of both ErbB2 and EGFR consisted of five consecutive 

residues that formed two overlapping reverse-turns at the dimer interface (Figure 4.3). 

Reverse-turns are among the best-characterized structures for their importance and 

therapeutic potential as recognition motifs in protein-protein interactions126. The 

molecular conformations of these two reverse-turns, denoted as Turn 1 and Turn 2, were 

classified and compared at different interfaces: 1) EGFR-arm/ErbB2-armpit, 2) ErbB2-

arm/EGFR-armpit, and 3) EGFR-arm/EGFR-armpit. Analyses were carried out using the 

ensemble of snapshots in the production stage of the simulations, as well as using the 

static crystal structures (Table 4.1). Both the canonical127 and Tran128 reverse-turn 

definitions were used for classification— the canonical classification is based on 

backbone dihedral angles while the Tran classification measures the relative side-chain 

orientations by calculating the Cα-Cβ vectors.  
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Table 4.1 Conformation summary of the reverse-turns at different interfaces 
 EGFR dimer crystal 

(PDB: 1IVO) 
ErbB2 monomer crystal 

(PDB: 2A91) 
Homodimer simulation Heterodimer 

simulation 

Canonical Definition 
Turn1 

EGFR arm 
IV n/a IV(93%), I(7%) IV(66%), I(34%) 

Turn1 
ErbB2 arm 

n/a IV n/a IV(99%), I(1%) 

Tran Definition 
Turn1 

EGFR arm 
3 n/a 3(81%), 5(10%), 1(9%) 3(79%), 1(10%), 

5(11%) 

Turn1 
ErbB2 arm 

n/a 3 n/a 3(98%), 6(2%) 

Canonical Definition 
Turn2 

EGFR arm 
I n/a IV(100%) I(93%), IV(7%) 

Turn2 
ErbB2 arm 

n/a IV n/a IV(97%), VIII(3%) 

Tran Definition 

Turn2 
EGFR arm 

8 n/a 8(66%), 6(16%), 2(10%), 
5(7%), 7(1%) 

8(81%), 2(9%), 
5(7%), 6(3%) 

Turn2 
ErbB2 arm 

n/a 2 n/a 6(45%), 8(43%), 
2(1%), 7(1%) 

Turn1 of EGFR arm defined as: 247N 248P 249T 250T 
Turn2 of EGFR arm defined as: 248P 249T 250T 251Y 
Turn1 of ErbB2 arm defined as: 254N 255T 256D 257T 
Turn2 of ErbB2 arm defined as: 255T 256D 257T 258F 
Numbers in brackets denote to the percentage of ensembles adopting the corresponding classifications 

 Because of limited sampling, we restricted our interpretations at the qualitative 

level. In the crystal structures, Turn 1 of EGFR and ErbB2 both adopted the poorly-

defined Type IV backbone conformation by canonical definition—Type IV is defined as 

“all conformations that do not fit the other Types”. The Type IV configuration of Turn 1 

was predominantly preserved during homo- and hetero- dimer simulations, although a 

higher fraction of heterodimer snapshots exhibited variations in adopting dihedral angles 

characteristic of the well-defined Type I configuration. This observed shift towards 

ordered backbone configurations may be a product of a less favorable initial heterodimer 

model and a reflection of the adjustment at this arm-armpit interface. In contrast to the 
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predominantly “unclassifiable” backbone configurations, the side-chain orientation of 

Turn 1 could be precisely characterized as Tran Cluster 3 in all cases. This suggested that 

surface interactions, in both intra- and inter- molecular forms, were well organized and 

maintained. 

 Turn 2 of EGFR adopted the Type I configuration in the homodimer crystal 

structure, but shifted entirely to Type IV during the homodimer simulation. On the other 

hand, Type I was the predominant configuration for EGFR Turn 2 in the heterodimer 

simulation, highlighting the difference likely induced by the differences at homo- and 

hetero- dimer interfaces. Turn 2 of ErbB2 adopted the “unclassifiable” Type IV backbone 

conformation in crystal structure and stayed “unclassifiable” during heterodimer 

relaxation. The side-chain orientation 

of EGFR Turn 2 was preserved as 

predominantly Tran Cluster 8 in all 

but one case. The side-chains of 

ErbB2 Turn 2 had two even Tran 

clusters during the course of 

heterodimer simulations suggesting 

the possibility of relaxed degrees of 

freedom at the ErbB2-arm/EGFR-

armpit interface.  

 To summarize, the reverse-turns of the EGFR and ErbB2 arms adopted different 

structural configurations at different interfaces. Figure 4.4 shows an example snapshot to 

compare Turn 2 of ErbB2 with that of EGFR in the heterodimer simulation. Despite 

Figure 4.4. Reverse-turn 2 at the tip of the arm 
extracted from the representative snapshot of 
the heterodimer simulation. Structures ErbB2 
(red) and EGFR (green) were superimposed to 
outline the difference in both the backbones and 
side-chains. 
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global structural similarity, the reverse-turns at the tip of the dimerization arm exhibited 

subtle configuration differences. We rationalized that these differences in arm 

configuration were likely dictated by the nature of the interaction environment provided 

by the armpit counterparts.  

 To test this rationalization, inter-receptor contact maps centered on the EGFR and 

ErbB2 arms were examined in homo- and hetero-dimer simulations (Figure 4.5). In the 

heterodimer complex, the EGFR arm was shown to contact a larger set of ErbB2 armpit 

residues than the ErbB2-arm/EGFR-armpit counterparts (Figure 4.5A). This is an 

indication that despite global symmetry (Figure 4.3), the dimer interface is asymmetric in 

nature where the EGFR arm extends into a tighter pocket that result in an increased level 

of heterodimer receptor contacts. This is in contrast with the relatively symmetric 

interface observed in the homodimer complex (Figure 4.5B). Among the four examined 

cases, the ErbB2 arm showed the fewest number of contacts with its partner. 
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 Buried solvent-accessible surface area (SASA) was calculated at the interface to 

further characterize the nature of these inter-receptor contacts (Figure 4.6). Consistent 

with the contact maps, the EGFR-arm/ErbB2-armpit interface qualitatively had more 

buried SASA than that of the ErbB2-arm/EGFR-armpit interface. Most of the interactions 

were hydrophobic in nature. Likewise, the homodimer interface was also dominated by 

hydrophobic interactions, but had much less buried SASA (Figure 4.6B).  

 

Figure 4.6. Solvent-accessible 
surface areas of the arm and 
armpit regions from A) 
heterodimer simulation and B) 
homodimer simulation. EGFR_A 
and EGFR_B denotes to chain A 
and B in the homodimer. 

Figure 4.5. Contact maps of A) heterodimer and B) homodimer 
simulations. In each panel, the X-axis shows residue numbers from 
the corresponding arm region. The Y-axis shows residue numbers 
from the respective dimer partner. 



 64 

 Based on the reduction in buried hydrophobic SASA at the ErbB2-arm/EGFR-

armpit interface, we visualized a few snapshots at this interface and noted the presence of 

two negatively-charged residues, D256/E259, located at the tip of the ErbB2 dimerization 

arm. Sequence alignment of the dimerization arm region among all ErbB family members 

showed that both D256/E259 residues are unique only to ErbB2 (Figure 4.7). We 

therefore wondered if the two charged residues on the ErbB2 arm may compensate the 

reduction in intermolecular contacts by participating in favorable salt-bridge and 

hydrogen-bonding networks.  

 The presence of hydrogen-bonding network around the ErbB2 arm (residue 252-

262) was analyzed. A positively charged residue, R285 in the EGFR armpit was 

identified as a hydrogen-bond partner with both D256 and E259 in majority of the 

snapshots. This suggested that these interactions are favorable within the scope of our 

sampling and consistent with the logic that these interactions can compensate for the loss 

in hydrophobic interactions. As shown visually in Figure 4.8, the side-chain carboxyl of 

D256 on the ErbB2 arm forms a salt-bridge interaction with the side-chain guanidino 

group of R285 in the EGFR armpit, while the side-chain carboxyl of E259 interacts with 

the backbone amide of R285 (Figure 4.8A). By comparison, the EGFR arm extends 

deeper into the ErbB2 armpit, thus creating additional surface contacts that, without 

charged residues, are largely hydrophobic interactions (Figure 4.8B). In the homodimer 

complex, the presence of R285, but not the corresponding D256 and E259, restricts the 

size of hydrophobic contact surface and weaker hydrogen bonds are formed to replace the 

salt-bridge (Figure 4.8C). Interestingly, R285 is present in all ErbB receptors except for 

ErbB2 where it is substituted with a leucine, a hydrophobic residue (Figure 4.7). It is 
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possible that this may contribute to explain why ErbB2 receptors do not homodimerize. 

 

Figure 4.7. Sequence alignment of all 4 ErbB 
family members around the arm and armpit 
regions. Arrows indicate substitutions unique to 
ErbB2. Using ErbB2 residue numbers, they are 
D256/E259 and L292. 

Figure 4.8. Representative 
snapshot of the arm-armpit 
interface between A) ErbB2 
arm-EGFR armpit, B) 
EGFR-arm/ErbB2-armpit; 
and C) EGFR arm- EGFR 
armpit. A and B are from 
the heterodimer simulation 
while C comes from the 
homodimer simulation. 
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Computational mutagenesis 

 To further elucidate the molecular basis of preference for formation of the ErbB2-

EGFR heterodimer, we extended the analysis of the dimer models by introducing 

mutational perturbations to map out residue contributions critical for dimer stability. This 

analysis is based on the concept that protein interfaces are often dominated by the 

energetic contributions from only a handful of “hot-spot” residues129, 130— as already 

seen in the mutation studies of Tyr-246/Tyr-251 in the context of EGFR homodimer. 

Two computational methods, independent in theory and different in computational costs, 

were utilized to calculate a consensus prediction of mutational effects. The MM/PBSA131 

method calculates the relative binding free energy by decomposing the overall free 

energy into individual components; in contrast, the Rosetta132 protocol predicts the 

relative stability of the dimer complex using fast empirical scoring functions. In both 

cases, the results were averaged over an ensemble of snapshots extracted randomly from 

each simulation. It is important to emphasize that these calculations were based on 

limited sampling with the intention of assessing the stability rather than dynamics of the 

complexes. As explained below in the control assessments, the interpretations will be 

strictly at the qualitative level. 

Computational mutagenesis by MM/PBSA 

The predictability of the protocol was evaluated by conducting calculations on a 

set of experimentally characterized mutants of the EGFR homodimer42, 46: Q194A had 

little effect on dimer formation; D279A/H280A significantly but not completely 

disrupted dimer formation; the Y251 and Y246 mutants completely abolished dimer 

formation. Qualitatively, MM/PBSA predicted the rank order of the mutants in excellent 
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agreement with the experimental ranking (R2=0.94) (Figure 4.9A). Although MM/PBSA 

has been previously reported to quantitatively reproduce experimental binding energy, we 

did not expect the same accuracy due to limited sampling and, therefore, restrict all of our 

subsequent interpretation at the qualitative level. 

 

  Based on the contact map and hydrogen-bonding analysis, 20 mutants (Table 4.2 

and 4.3) around the arm-armpit interface were computationally constructed and 

calculated to compare with the wildtype homo- and hetero- dimers. All heterodimer 

mutants were predicted to have detrimental effect on dimerization (Table 4.4, Figure 

4.10) consistent with the initial design rationale that weakening the electrostatic 

interactions at the ErbB2-arm/EGFR-armpit interface and the hydrophobic interactions at 

the EGFR-arm/ErbB2-armpit interface would disrupt dimer formation. Qualitatively, the 

D256R/E259K mutation on the ErbB2 arm (mut4) and the T249D/Q252E mutation on 

the EGFR arm (mut7) were predicted to have the largest detrimental effects. This 

supports the rationale that the former shifts a previously favorable electrostatic 

Figure 4.9. Comparison of the 
predictive powers between A) 
MM/PBSA and B) Rosetta 
protocols using mutants with 
known experimental values. 
Experimental values were obtained 
from literatures described in text. 
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interaction with residue R285 of the EGFR armpit to an unfavorable repulsive 

interaction, while the latter introduces hydrophilic residues into an environment 

dominated by hydrophobic interactions. Likewise, unfavorable mutations at the 

corresponding armpit regions (mut10: R285L in EGFR and L292R in ErbB2) were 

predicted to significantly weaken dimerization.  

 In contrast, the equivalent electrostatic or hydrophobic interactions are absent at 

the EGFR homodimer interface (Figure 4.8C). Several putative enhancing mutants aimed 

at restoring electrostatic or hydrophobic interactions were included to investigate the 

possibility of interface optimization (Table 4.3). Despite our design, all mutants were 

predicted to be detrimental in nature by MM/PBSA (Table 4.5 and Figure 4.10A). 

Qualitatively, mutants 2 and 4 were predicted to have lesser detrimental effect consistent 

with the initial design purpose to retain hydrophilic-hydrophobic balance. Mutant 6 and 8 

were designed to be enhancing by mimicking the ErbB2 armpit, but were instead 

predicted to have a small detrimental effects. The other putative enhancing mutants, 3 

and 7, designed to mimic the charged ErbB2, were predicted unfavorable by MM/PBSA. 

A detailed look at the energy contributions showed that it was actually the weakening of 

the electrostatic interactions that contributed the most to the unfavorable binding energy 

in both cases (Table 4.4).   

 One possible explanation for the inconsistency between MM/PBSA predictions 

and our hypothesis could be due to insufficient minimization of the local environment 

during mutant calculations. As hinted by our earlier analysis on reverse-turns, dynamics 

of these interface residues likely involved a combination of backbone and side-chain 

flexibilities. Since our MM/PBSA protocols kept the backbones constant, substitution of 
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a neutral, small wildtype residue with a long, charged residue (T246D) was unlikely to 

have enough space to relieve steric clashes and establish hydrogen-bonding networks as 

hypothesized. Towards testing this theory and improving accuracy, we repeated the same 

sets of mutant calculations using the BACKRUB module132 of Rosetta, which 

implemented the backrub motion133 to account for side-chain-mediated backbone 

flexibility. 

Figure 4.10. Computational 
mutagenesis using homo- and 
heterodimer simulations. A) 
MM/PBSA predictions and B) 
Rosetta predictions. 
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Table 4.2. Description of heterodimer mutants 
Mutation 
ID 

Mutation details Region Rationale Hypothesis 

mut1 B2:D256A/E259A  ErbB2 arm Alanine-scan Weaker ErbB2 arm 
–EGFR armpit 
interface 

mut2 B2:D256N/E259Q ErbB2 arm Mutate to non-
charged 
equivalence  

Weaker ErbB2 arm 
–EGFR armpit 
interface 

mut3 B2:D256T/E259Q ErbB2 arm Mutate to EGFR 
equivalence 

Weaker ErbB2 arm 
–EGFR armpit 
interface 

mut4 B2:D256R/E259K ErbB2 arm Charge reversal Much Weaker 
ErbB2 arm –EGFR 
armpit interface 

mut5 B2:L292R ErbB2 
armpit 

Mutate to EGFR 
equivalence 

Weaker EGFR arm 
–ErbB2 armpit 
interface 

mut6 B2:T291V/L292R/V293A ErbB2 
armpit 

Mutate to EGFR 
equivalence 

Weaker EGFR arm 
–ErbB2 armpit 
interface 

mut7 B1:T249D/Q252E EGFR arm Mutate to ErbB2 
equivalence 

Much weaker 
EGFR arm –ErbB2 
armpit interface 

mut8 B1:R285L EGFR 
armpit 

Mutate to ErbB2 
equivalence 

Weaker ErbB2 arm 
–EGFR armpit 
interface 

mut9 B1:V284T/R285L/A286V EGFR 
armpit 

Mutate to ErbB2 
equivalence 

Much weaker 
ErbB2 arm –EGFR 
armpit interface 

mut10 B2:L292R, B1:R285L EGFR and 
ErbB2 
armpit 

Mut5 + Mut8 Weaker at both 
interfaces 

mut11 B2:D256T/E259Q, 
B1:T249D/Q252E 

EGFR and 
ErbB2 arm 

Mut3 + Mut7 Weaker at both 
interfaces 
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Table 4.3. Description of homodimer mutants 
Mutation 
ID 

Mutation details Region Rationale Hypothesis 

mut1  T249A/Q252A EGFR arm (1 
monomer) 

Alanine-scan Weaker interface 

mut2 T249N EGFR arm (1 
monomer) 

Non-charged 
mutation 

Weaker or little 
effect on interface 

mut3 T249D/Q252E EGFR arm (1 
monomer) 

Mutate to ErbB2 
equivalence 

Stronger interface 

mut4 R285L EGFR armpit 
(1 monomer) 

Mutate to ErbB2 
equivalence 

Weaker or little 
effect on interface 

mut5 T249D/Q252E/R285L EGFR arm and 
armpit 

Mut3 + Mut4 Weaker interface 

mut6 V284T/R285L/A286V EGFR armpit 
(1 monomer) 

Mutate to ErbB2 
equivalence 

Stronger interface 

mut7 Double T249D/Q252E EGFR arm 
(both) 

Mut3 on both 
monomers 

Stronger interface 

mut8 Double 
V284T/R285L/A286V 

EGFR armpit 
(both) 

Mut6 on both 
monomers 

Stronger interface 

mut9 Double 
T249D/Q252E/R285L 

EGFR arm and 
armpit 

Mut5 on both 
monomers 

Weaker interface 
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Table 4.4. MM/PBSA predictions on heterodimer mutants 

 coul Vdw Polar Apolar coul+pol vdw+apol coul+vdw pol+apol Total Delta 

wt -184.0 
(7.3) 

-84.8 
(1.1) 

247.9 
(7.7) 

-20.1 
(0.2) 

64.4 
(2.1) 

-104.9 
(1.3) 

-265.9 
(7.3) 

227.4 
(7.7) 

-39.7 
(1.9) 

0 

mut1 -64.6 
(6.4) 

-86.3 
(1.2) 

146.3 
(6.5) 

-19.5 
(0.2) 

82.8 
(3.0) 

-105.7 
(1.4) 

-151.0 
(6.2) 

126.5 
(6.4) 

-22.9 
(2.3) 

16.8 
(1.9) 

mut2 -70.2 
(8.4) 

-89.8 
(1.1) 

155.4 
(7.9) 

-20.1 
(0.2) 

85.8 
(2.8) 

-109.7 
(1.2) 

-160.7 
(7.8) 

135.0 
(7.8) 

-23.0 
(2.6) 

16.7 
(2.1) 

mut3 -70.0 
(7.5) 

-89.0 
(1.3) 

155.0 
(8.2) 

-20.0 
(0.3) 

84.0 
(3.4) 

-109.2 
(1.4) 

-159.0 
(7.0) 

134.6 
(8.1) 

-24.2 
(2.4) 

15.6 
(1.7) 

mut4 -60.5 
(7.3) 

-91.1 
(1.3) 

158.9 
(7.6) 

-21.0 
(0.2) 

98.4 
(3.3) 

-111.9 
(1.6) 

-151.7 
(7.1) 

137.9 
(7.5) 

-14.1 
(2.5) 

25.6 
(4.8) 

mut5 
 

-170.7 
(7.5) 

-88.9 
(1.3) 

257.8 
(7.9) 

-20.1 
(0.2) 

83.4 
(3.1) 

-109.2 
(1.5) 

-258.7 
(8.5) 

237.6 
(7.7) 

-24.5 
(2.3) 

15.2 
(1.6) 

mut6 -142.9 
(7.4) 

-88.1 
(1.2) 

229.7 
(8.8) 

-20.0 
(0.3) 

85.1 
(3.9) 

-108.2 
(1.5) 

-232.1 
(7.4) 

208.7 
(8.7) 

-22.5 
(2.7) 

17.2 
(2.3) 

mut7 -80.1 
(7.1) 

-88.1 
(1.3) 

170.2 
(8.9) 

-20.1 
(0.2) 

90.5 
(3.2) 

-108.1 
(1.4) 

-167.7 
(7.1) 

150.5 
(9.0) 

-17.5 
(2.2) 

22.2 
(3.0) 

mut8 -51.0 
(7.8) 

-88.4 
(1.2) 

129.6 
(8.0) 

-19.8 
(0.2) 

77.7 
(2.3) 

-108.2 
(1.3) 

-139.4 
(8.3) 

109.6 
(7.9) 

-30.2 
(2.0) 

9.5  
(0.8) 

mut9 -21.1 
(8.1) 

-90.0 
(1.3) 

110.9 
(8.1) 

-19.7 
(0.3) 

88.8 
(3.6) 

-109.9 
(1.5) 

-110.1 
(8.4) 

92.9 
(8.0) 

-20.9 
(2.5) 

18.9 
(2.4) 

mut10 -71.1 
(7.0) 

-89.2 
(1.6) 

160.3 
(7.2) 

-19.8 
(0.3) 

86.6 
(3.1) 

-108.8 
(1.8) 

-160.8 
(7.4) 

140.5 
(6.9) 

-23.8 
(2.9) 

15.9 
(2.1) 

mut11 -3.8 
(7.3) 

-89.3 
(1.5) 

99.4 
(7.7) 

-19.9 
(0.3) 

95.1 
(3.4) 

-108.6 
(1.7) 

-92.6 
(8.2) 

78.9 
(7.4) 

-13.9 
(2.3) 

25.8 
(4.4) 
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Table 4.5. MM/PBSA predictions on homodimers 
 coul Vdw Polar Apolar coul+pol vdw+apol coul+vdw pol+apol Total Delta 

Wt -119.0 
(14.1) 

-83.2 
(1.6) 

180.8 
(13.3) 

-18.5 
(0.8) 

59.8 
(3.0) 

-102.0 
(2.4) 

-202.0 
(15.7) 

160.9 
(13.8) 

-41.3 
(3.3) 

0 

mut1 -73.6 
(5.4) 

-84.0 
(1.7) 

143.5 
(7.4) 

-17.9 
(1.0) 

68.2 
(4.3) 

-102.4 
(2.7) 

-158.8 
(6.4) 

125.2 
(9.7) 

-34.0 
(3.7) 

7.3 
(1.0) 

mut2 -120.8 
(9.9) 

-85.2 
(2.3) 

183.9 
(13.1) 

-18.5 
(0.5) 

65.93 
(3.0) 

-104.2 
(2.5) 

-203.6 
(13.3) 

165.8 
(12.8) 

-37.9 
(2.9) 

3.5 
(0.4) 

mut3 -104.8 
(6.8) 

-86.6 
(2.6) 

183.0 
(8.7) 

-18.4 
(0.5) 

74.2 
(3.8) 

-105.0 
(3.2) 

-191.9 
(8.5) 

164.9 
(8.0) 

-30.4 
(3.7) 

10.9 
(1.6) 

mut4 -85.0 
(7.3) 

-83.0 
(1.5) 

147.9 
(8.7) 

-18.2 
(0.4) 

63.8 
(3.0) 

-101.0 
(1.6) 

-169.0 
(8.6) 

131.1 
(7.6) 

-36.9 
(2.5) 

4.4 
(0.5) 

mut5 -91.5 
(6.0) 

-87.3 
(2.6) 

169.8 
(6.7) 

-18.1 
(0.4) 

77.1 
(2.7) 

-105.6 
(3.2) 

-178.5 
(7.3) 

151.0 
(7.0) 

-27.8 
(3.9) 

13.5 
(2.2) 

mut6 -76.7 
(7.5) 

-84.5 
(1.4) 

144.5 
(10.8) 

-18.1 
(0.8) 

65.3 
(4.1) 

-102.8 
(2.6) 

-163.8 
(8.7) 

124.6 
(12.0) 

-36.1 
(3.3) 

5.3 
(0.6) 

mut7 -120.2 
(7.5) 

-88.3 
(2.7) 

200.1 
(9.3) 

-18.3 
(0.5) 

85.4 
(4.2) 

-107.0 
(3.1) 

-205.6 
(9.4) 

183.9 
(8.1) 

-20.8 
(3.9) 

20.5 
(4.2) 

mut8 -39.9 
(5.5) 

-85.9 
(1.7) 

112.6 
(7.3) 

-18.1 
(0.5) 

71.3 
(3.0) 

-103.8 
(2.1) 

-126.6 
(6.6) 

95.2 
(7.0) 

-32.2 
(2.2) 

9.2 
(1.0) 

mut9 3.0 
(8.0) 

-87.5 
(2.3) 

83.7 
(8.6) 

-18.0 
(0.5) 

90.1 
(3.8) 

-105.5 
(2.7) 

-83.1 
(9.0) 

65.8 
(8.4) 

-14.7 
(3.6) 

26.6 
(7.0) 
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Computational mutagenesis by Rosetta 

 The same set of control mutants was utilized to implement, optimize, and evaluate 

the Rosetta protocol. Comparable to the MM/PBSA protocol, excellent agreement with 

qualitative experimental rankings were observed by the Rosetta protocol (R2=0.88) 

(Figure 4.10B).  

 In contrast to the MM/PBSA predictions, Rosetta predicted, among the 

homodimer mutants, that the T246D/Q252E mutant (mut3) to be an equal, or slightly 

more favorable mutant than the wildtype (Figure 4.10B, right). The other mutants 

hypothesized to be either neutral (mut2, 4) or enhancing (mut6, 7) were all predicted to 

be closer to wildtype than the corresponding MM/PBSA predictions. Mutant 8 was 

designed to have enhancing mutations on both arms (mutant 6 has the same enhancing 

mutations on only 1 arm), but was predicted to be unfavorable contrary to our 

expectations. 

 In the heterodimer mutants (Figure 4.10B, left), predictions on almost all mutants 

followed a similar trend as the MM/PBSA predictions, which we interpret as 

convergence of the two protocols. The glaring exceptions were the armpit mutants L292R 

of ErbB2 (mut5) and R285L of EGFR (mut8) which Rosetta assessed at a much reduced 

penalty compared to MM/PBSA. This was likely an example of over-compensating 

unfavorable interactions by over-estimating flexibility. 

Comparison between MM/PBSA and Rosetta 

 Both MM/PBSA and Rosetta were adequate at predicting loss-of-function 

mutations (Figure 4.10). The two protocols displayed a high correlation in predicting 

mutants carrying two or less substitutions (Figure 4.11A). However, it is likely that 
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because of the differences in flexibility-sampling algorithms, the correlation decreased as 

the number of simultaneous substitutions increased (Figure 4.11B). Furthermore, 

backbone movement intrinsic to the BACKRUB module of Rosetta may have been more 

forgiving at predicting potentially enhancing mutations, but possible overestimation of 

flexibility also may reduce its discriminatory power rendering the protocol potentially 

susceptible to false positives.  

 The magnitudes of the free energy differences by MM/PBSA protocol are in 

general too high to be interpreted as realistic quantitative predictions (> 10 kcal). This is 

likely due to its inherent incorporation of several independent softwares at the 

implementation level. For example, the spatial positions of the mutant residues were 

sampled and minimized using PLOP forcefield, whereas the corresponding MM energies 

were calculated using OPLSAA as implemented in Gromacs—the same protein structure 

will likely yield to different energy magnitude dependent on the forcefield parameters. So 

while these structures can be considered as locally “favorable” in both forcefields, the 

degree may be different which translates. For future improvement, we speculate that 

minimizing the PLOP-generated mutant structures in OPLSAA forcefield before 

calculating the MM energies should lower the absolutely magnitude of energy difference.    
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Experimental examination of mutant predictions 

 Four ErbB2 arm mutants (mut1-4, respectively: D256A/E259A, D256N/E259Q, 

D256T/E259Q, D256R/E259K), predicted to have varying degrees of detrimental effect 

on heterodimer formation, were experimentally tested for their effect on heterodimer 

activation and dimerization efficiency in cells. Based on the correlation analysis of the 

MM/PBSA and Rosetta protocol, we restricted the choice of mutant to two substitutions 

and chose to focus on the D256/E259 mutants that were unanimously predicted to disrupt 

dimer formation by both protocols.  

Reduced activation of ErbB2 mutant-EGFR heterodimers by Western Blot 

 To determine the effect of mutation of the ErbB2 arm on activation of the ErbB2-

EGFR heterodimer, each ErbB2 mutant was transiently transfected into CHO cells stably 

expressing the kinase-dead K721A-EGFR134. This choice of EGFR mutant ensures that 

the kinase-dead EGFR can only be activated through heterodimer formation. Activation 

of the K721A-EGFR in the heterodimer was measured in each of the mutants and was 

Figure 4.11. Correlation and 
convergence pattern between the 
MM/PBSA and Rosetta protocols. 
A) Correlation graphs of mutants 
with 2 or less substitutions and all 
mutations. B) Summary of all 
mutations categorized by 
substitution numbers. 
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compared with wild-type ErbB2 by Western blotting for phosphorylation of the K721A-

EGFR (Figure 4.12). We confirmed that phosphorylation could not be detected by 

homodimerization of ErbB2 or kinase-dead EGFR alone (Figure 4.12A, last two lanes). 

Any detectable EGF-stimulated phosphorylation must therefore be due to the formation 

of K721A-EGFR/ErbB2 heterodimers. Compared to cells expressing wildtype ErbB2 

receptors, phosphorylation was hindered in all 4 mutants as predicted (Figure 4.12B). 

Among the mutants, D256R/E259K almost completely abolished phosphorylation, 

supporting both the prediction and hypothesis that electrostatic interactions between the 

wildtype ErbB2 arm and the EGFR armpit at this interface was critical for heterodimer 

formation.  

 

Reduced dimerization of the EGFR by luciferase fragment complementation imaging 

upon expression of ErbB2 

 To directly monitor the mutant effect on heterodimer levels, a luciferase fragment 

complementation imaging assay81 was utilized to measure the degree at which the 

Figure 4.12. Phosphorylation of heterodimers 
formed by wildtype and mutant ErbB2 
receptors. A) Phosphorylation, EGFR 
expression, and ErbB2 expression in the 
presence and absence of EGF stimulations. B) 
Quantification of phosphorylation per receptor 
level. 
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mutants can compete for wildtype EGFR in live cells. The extracellular domain of the 

EGFR that lacks the entire intracellular domain was fused just beyond the transmembrane 

domain to an N-terminal luciferase fragment (ΔC-EGFR-NLuc) and the complementing 

C-terminal luciferase fragment (ΔC-EGFR-CLuc). The ΔC-EGFR-NLuc and ΔC-EGFR-

CLuc constructs were stably co-expressed in CHO-K1 Tet-On cells. On the day of 

imaging, cells were pre-treated with the firefly luciferase substrate, D-Luciferin for 20 

min to allow equilibration of the intracellular and extracellular pools of the substrate. A 

baseline photon flux was then measured, followed by addition of ligand and measurement 

of photon flux every 30 sec for 30 min.  

  

Figure 4.13. Heterodimer competition measured by real-time quantification of 
EGFR homodimer level in the presence of wildtype and mutant ErbB2 
receptors using split-luciferase complementation imaging assay. A) Photon 
emitted by the complementation of NLuc-EGFR and CLuc-EGFR upon 
transfection of wildtype and mutant ErbB2 under non-stimulating (top) and 
stimulating (bottom) conditions. B) Summary of A. C) Quantification of the Y-
max from the stimulating conditions. D) ErbB2 receptor level of the transfected 
cells immediately after imaging. 
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 Upon transient transfection of wildtype or mutant ErbB2 receptors into these 

cells, formation of either ΔC-EGFR-NLuc/ErbB2 or ΔC-EGFR-CLuc/ErbB2 

heterodimers is expected to decrease the population of the signal-emitting ΔC-EGFR-

NLuc/ΔC-EGFR-CLuc homodimers. The competing power of the wildtype and mutant 

ErbB2 receptors were assessed by monitoring their ability to “quench” the photon flux 

from formation of the ΔC-EGFR-NLuc/ΔC-EGFR-CLuc homodimers. As a reference, 

the competing power of wildtype EGFR without the luciferase fragment was also 

assessed. As expected, wildtype ErbB2 was able to quench the photon flux better than the 

wildtype EGFR, (Figure 4.13) since heterodimer formation is favored over homodimer 

formation. All ErbB2 mutants, except for one, displayed weaker photon flux quenching 

than wildtype ErbB2. Consistent with the phosphorylation data, the D256R/E259K 

mutant had the weakest competing power among all ErbB2 receptors. The expression 

levels of the wildtype and mutant ErbB2 receptors were measured immediately after 

imaging using Western blot analysis with an ErbB2 antibody to ensure signal differences 

were not due to an unequal number of receptors in each case. In the absence of EGF, the 

basal photon flux was reduced in all cases compared to cells transiently transfected with 

empty vector. This data is consistent with the notion of pre-formed dimers135-138 and that 

these pre-formed dimers are disrupted in a similar competing fashion upon transient 

transfection with the wildtype or mutant ErbB2 receptors. Interestingly, the magnitude of 

the decrease in the basal photon flux appears to be identical in all cases, suggesting that 

the preformed dimers utilize an interface independent of the ErbB2 arm.  

Discussion 

 The series of systematic analysis of the computationally refined EGFR-ErbB2 
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heterodimer model progressively led to a set of experimentally testable hypothesis 

centered on the dimerization arm interface. The initial focus on the two ErbB2 charged 

residues D256 and E259 originated from analyzing the nature of molecular contacts at 

different dimer interfaces. The contrast at the dimer interfaces led to subsequent sequence 

alignment where it was observed that D256/E259 residues are unique to ErbB2. Upon 

mapping these residues onto the tip of the arm, the backbones and side-chains of two 

overlapping reverse-turns were classified to reveal that Turn 1 of EGFR and ErbB2 

adopted similar configurations independent of surrounding residues. By contrast, Turn 2 

displayed different range of backbone and side-chain conformations which highlighted a 

preference of environment-specific flexibility and orientations. This was explained by the 

contact map analysis (Figure 4.5) where Turn 2 residues were associated with a higher 

number of inter-receptor contacts, thus requiring specific spatial adjustment to 

complement corresponding armpit configurations. For example, the ErbB2-arm/EGFR-

armpit interface had reduced number of inter-receptor contacts but appeared to be 

energetically favorable due to the presence of a salt-bridge hydrogen-bond network 

between D256/E259 of ErbB2 and R285 of EGFR. This observation led us to examine 

the sequence alignment of the R285 region and subsequently identified the unique 

substitution of a leucine residue in place of the arginine in ErbB2.  

 The EGFR-ErbB2 heterodimer model presented here provides, among many 

biological interests, a structural basis to explain the absence of an ErbB2 homodimer. 

Using the EGFR homodimer interface as a reference (Figure 4.8C), the EGFR-ErbB2 

heterodimer has two energetically more favorable interfaces—electrostatic interactions 

between D256/E259/R285 at the ErbB2 arm-EGFR armpit interface (Figure 4.8A), and 
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extensive inter-receptor hydrophobic contacts at the EGFR armpit-ErbB2 arm interface 

(Figure 4.8B). The hypothetical ErbB2 homodimer on the other hand, is likely to pay a 

hefty energetic penalty for extending the D256/E259-containing arm of one monomer 

into the highly hydrophobic armpit of the other monomer where the complementary 

charged arginine is replaced by leucine. This conclusion that homodimerization of the 

ErbB2 extracellular domains is energetically unfavorable is in agreement with previous 

reports that the rare occurrences of full-length ErbB2 homodimers requires additional 

interactions between the transmembrane139 and intracellular37, 140, 141 domains. Although 

Garret and colleagues had arrived at the same conclusion based on the ErbB2 monomer 

structure124, they speculated based on crude estimation of surface electrostatic potential 

that electrostatic repulsion between ErbB2 arm and armpit was the reason for unfavorable 

ErbB2 homodimerization. Our current work supports part of this notion but further 

extends the analysis to pinpoint the unfavorable interactions at the residue level using a 

relaxed all-atom model.  

 Among the tested mutants, D256R/E259K displayed the biggest detrimental effect 

at disrupting heterodimer. This observation is consistent with the analysis that the ErbB2-

arm/EGFR-armpit interface is normally stabilized by the presence of strong electrostatic 

interactions involving residues D256/E259 and the R286 residues. However, replacing 

the electrostatic attractions with the unforgiving repulsion consequently elevates the 

energetic barriers of heterodimer formation. D256A/E259A and D256N/E259Q displayed 

smaller effects in the luciferase competition assay (figure 4.13) most likely because these 

neutral substitutions did not introduce enough energy penalties to significantly disrupt the 

interface. Because the substitutions were of smaller (D256A/E259A) or comparable 
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(D256N/D259Q) size with the wildtype counterparts, they likely did not introduce 

additional steric penalties in the predominantly hydrophobic EGFR armpit so that the loss 

of electrostatic interactions alone in these cases was not enough to raise the energetic 

barrier to the same degree as introducing repulsion penalties. Similar logics should be 

applicable to the D256T/E259Q mutants. However, in stark contrast to D256A/E259A 

and D256N/E259Q, we actually observed an apparent lower level of heterodimer 

“quenching” comparable to that of the D256R/E259K mutant (Figure 4.13). We 

rationalized that this may be a result of the ability to homodimerize among the 

D256T/E259Q mutant ErbB2s since this pair of substitutions mimics the EGFR 

dimerization arm (Figure 4.7) — this is equivalent to the EGFR-arm/ErbB2-armpit 

interface. Indeed, in the phosphorylation assay we observed an elevated ligand-

independent basal phosphorylation for the D256T/E259Q mutants (Figure 4.12) 

consistent with the concept of spontaneous ErbB2 mutant dimerization.  

 The experimental confirmation of D256/E259 as “hot-spot” residues serves as 

good support for the heterodimer model. An immediate application of this work is to 

design homo- or heterodimer specific therapeutics. Virtually all existing small-molecule 

inhibitors of ErbB receptors arose from the current paradigm of targeting the kinase 

catalytic site of individual ErbB receptors142. Recent awareness and understanding of the 

heterodimer-mediated drug-resistance12, 143-145 has accelerated the development of the 

dual kinase inhibitor lapatinib63 and has warranted efforts towards multi-targeting146. 

Understanding the structural differences at the homo- and heterodimer interfaces provides 

new target sites and roadmaps for designing small-molecule inhibitors to target ErbB 

family dimers of all combinations. For example, reverse-turn 2 at the tip of the arm can 
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serve as promising structural templates for designing reverse-turn peptidomimetics 

directed at the homo- and/or heterodimer interface. Another utility based on these data 

would be to engineer dimer-enhancing mutants, for example, EGFR mutants with the 

equivalent ErbB2 D256/E259 substitutions. However, in addition to the fact that none of 

the hypothesized enhancing mutants were predicted to behave, it is even more 

challenging to achieve in practice since optimizing an interface by a two-amino acid 

substitution is fundamentally much less likely to be detectable (even if theoretically 

correct) than disrupting an interface. While favorable arm-armpit interaction is necessary, 

there are additional contributions from other domains of the receptor that together, drive 

the dimerization of full-length ErbB receptors in living cells. We, therefore, limited the 

utility of this work within the scope of disrupting the interface for therapeutic 

implications.  

Methods 

Computational Procedures 

Homology modeling 

 Before homology modeling, flag tag residues DYKDDDDK at the end of the 

ErbB2 structure (PDB 2A91, 2.5Å) was deleted because they were not part of the native 

ErbB2 sequence. The resulting PDB file contained residues 1-509. Missing residues 103-

106 and all other missing atoms were initially filled in using PLOP v7.7147 and 

subsequently minimized using Macromodel v9.1 with the rest of the atoms frozen. 

Sequence alignment of the residues in 1IVO and 2A91 were constructed using the 

ClustalW2 webserver148. Based on the sequence alignment, ErbB2 was homology 

modeled onto the EGFR homodimer template (PDB 1IVO) using Modeller v9.5149 with 
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loop refinement on the EGFR and ErBb2 arm regions. 10 models were generated and the 

model with the best DOPE score was selected as the starting structure for MD.  

Molecular dynamic simulation 

 MD simulations were performed using Gromacs v3.3.3150 using OPLS2001 

forcefield151. The EGFR-ErbB2 model was solvated in a dodecahedron periodic box of 

pre-equilibrated TIP5P water molecules152. Ions were added to neutralize the system. The 

protein complex is 14 Å away from the edge of the box in all directions. Following 

minimization, the system was gradually heated up starting from 50K at intervals of 50K 

for 30 ps each to reach the final temperature of 300K under NPT (Berendsen temperature 

coupling every 0.1 ps and Parrinello-Rahman pressure coupling at 1 atm every 1 ps). The 

initial velocity was randomly assigned from the Maxwell distribution at 50K. All stages 

of the simulations were performed with the following setup: 2 fs time step; LINCS bond 

length constraints; PME electrostatic treatment with grid spacing of 0.12; PME order of 6 

and damping starting at 9 Å; van der Waal treatment was truncated at 9 Å. The 

heterodimer simulation was for 9.9 ns and the homodimer simulation was for 15 ns. All 

simulations were performed on the NSF Teragrid153 spanning several months.    

MM/PBSA  

 Theory. The Molecular Mechanics/Poisson Boltzmann Solvent Accessible 

(MM/PBSA) protocol131, 154, shown to be fast and effective120, 155-157 in many cases, 

calculates the relative binding free energies between biomolecular complexes by 

decomposing it into the sum of solvation and gas-phase terms (AB denotes to complex, A 

and B denotes to sub-components of the complex): 

ΔbindG = ΔgasG + (ΔsolvationGAB – ΔsolvationGA– ΔsolvationGB) (equation 1) 
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Solvation energy is further decomposed into polar and apolar components: 

ΔsolvationG = ΔPBG + γΔSASAA (equation 2) 

Polar or electrostatic contribution is calculated by the Poisson-Boltzmann method (PB) 

using a continuum implicit-solvent model. The apolar component is estimated by 

weighting the change in solvent-accessible surface area (SASA) by a heuristic surface 

tension term, A. 

The gas-phase term is calculated as: 

ΔgasG = ΔgasU + TΔS (equation 3) 

The gas-phase potential energy (U) is calculated based on semi-empirical force field 

energy. Treatment of entropy is assumed to be relatively equivalent across mutants and 

global structural is preserved. 

The final binding energy is the average of the ensemble, and the relative binding 

energy is the difference between the wildtype ensemble and the mutant ensemble. The 

relative binding energy is used to predict the relative stability of the mutant complex with 

respect to the wildtype complex. 

 Implementations. Representative snapshots of the MD trajectory were extracted 

every 50 ps starting from 3500 ps for a total of 130 frames for heterodimer simulation, 

and every 100 ps starting from 2000 ps for a total of 129 frames for homodimer 

simulation. PDB files were converted to PQR files by PDB2PQR158  v1.3.0 using 

OPLS2001 charge and PARSE radii159. Mutations were done by using PLOP147 v15.19 

with intra-protein dielectric constant of 2 and solvent dielectric constant of 80. In all 

cases, side chains within 15 Å of the mutated residue were repacked and minimized. 

Solvent-accessible surface area was calculated by using the acc module of APBS160 
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v1.1.0. Molecular mechanic energy components were calculated using Gromacs v3.3.3. 

Because the size of the dimer system, regular PB calculation using APBS required 

impractical amount of memory and CPU time using the desired grid spacing. Instead, 

calculations were performed using the asynchronous mode of APBS by dividing the 

system that resulted in 64 calculations per snapshot, 8320 calculations per mutant, and 

~100,000 calculations in total. Each column listed in the tables was calculated as the 

average of all values calculated from each frame with outliers removed.  

 The experimental binding energies for the control mutants were calculated based 

on the KD
42 and the monomer:dimer ratio46 using equations: ΔG=-RTln(KD) and ΔG=-

RTln([monomer]2/[dimer]). Normalization with respect to the control case in each 

experiment was performed to compare the two experiments on the same scale. 

Calculation using the backrub module of Rosetta 

 The same set of snapshots extracted from the MD trajectories were first relaxed 

by Rosetta132, 161 v3.0 scoring functions with the backbone atoms fixed. Mutations were 

constructed and optimized using the BACKRUB module. For each mutation, at least 3 

residues were selected for backrub motions and only those residues were subjected for 

backbone and side-chain repacking. All optimizations were performed on the complex 

only; monomers were extracted from the optimized complex and not subjected to 

optimization as this yielded the best results in our experience and as previously 

suggested162. The final stability score of the complex was calculated by subtracting the 

scores of the monomers from the complex  

Experimental Procedures 

Reagents 
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Murine EGF was purchased from Biomedical Technologies, Inc. and was 

dissolved in sterile water. Doxycycline was purchased from Clontech and was dissolved 

in sterile water. D-Luciferin (Biosynth) was dissolved in PBS and coelenterazine (Sigma) 

was dissolved in ethanol. The phosphotyrosine antibody (PY20) was from BD 

Biosciences. The EGF receptor and ErbB2 antibodies were from Upstate.  

DNA Constructs 

The D256A/E259A, D256N/E259Q, D256R/E256K, D256T/E259Q-ErbB2 

constructs were made using QuikChange site-directed mutagenesis (Stratagene) in the 

ErbB2 pcDNA3.1(+) construct (kind gift from Dr. Graham Carpenter, Vanderbilt 

University). The ErbB2 mutants were ligated into pcDNA5.FRT (Invitrogen) using the 

NheI and XhoI sites. All mutantions were verified by sequencing. 

Cell Lines 

CHO-K1 Tet-On cells (Clontech) were stably transfected with pTK-Hyg 

(Clontech) and K721A-EGFR (pBI-Tet MCSI) using Lipofectamine 2000 (Invitrogen) as 

previously described92. CHO-K1 Tet-On cells were cotransfected with pTK-Hyg and ΔC-

EGFR-NLuc (pBI-Tet MCSI) using Lipofectamine 2000 as previously described81. A 

double-stable cell line was established by transfecting ΔC-EGFR-CLuc (pcDNA4/myc-

HisB, Invitrogen) into ΔC-EGFR-NLuc cells using Lipofectamine 2000 and selecting in 

400 µg/ml zeocin (Invitrogen). Double-stable lines were maintained in DMEM 

containing 10% FetalPlex, 1000 µg/ml penicillin/streptomycin, 100 µg/ml G418, 50 

µg/ml hygromycin, and 100 µg/ml Zeocin. 

Wild-type ErbB2 (pcDNA3.1+), the ErbB2 mutants (pcDNA5.FRT), wild-type 

EGFR (pcDNA5.FRT), or the empty pcDNA5.FRT vector were transiently transfected 
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into the K721A-EGFR or the ΔC-EGFR-NLuc/CLuc cell line 24 hr prior to assay using 

Lipofectamine 2000. For the transfection into the ΔC-EGFR-NLuc/CLuc cell line, cells 

were co-transfected with renilla luciferase (pRLuc-N1, Packard Bioscience) to assess the 

transfection efficiency using bioluminescence imaging.  

Kinase activation and Western Blotting 

K721A-EGFR cells were grown to confluence in 35 mm dishes. Cells were 

serum-starved in DMEM containing 1 mg/ml BSA for 2 hr. Culture medium was 

removed and cells were washed twice in ice-cold PBS and then scraped into RIPA buffer 

(150 mM NaCl, 10 mM Tris pH 7.2, 0.1% sodium dodecysulfate, 1% Triton X-100, 17 

mM deoxycholate, and 2.7 mM EDTA) containing 20 mM p-nitrophenyl phosphate, 1 

mM sodium orthovanadate, and protease inhibitors. Equal amounts of protein (BCA 

assay, Pierce) were loaded onto a 9% SDS-polyacrylamide gel and then transferred to 

PVDF (Millipore). Western blots were blocked for 1 hour in TBST/10% nonfat milk. The 

blots were incubated in primary antibody for 1 hr, washed in TBST/0.1% BSA, incubated 

in secondary antibody for 45 min and washed three times in TBST/0.1% BSA. Western 

blots were detected using the ECL reagent from GE Healthcare.  

Luciferase complementation imaging 

Luciferase fragment complementation imaging was done as previously 

described81. Briefly, cells were plated 48 hr prior to use at 5 x 103 cells per well in 

DMEM containing 1 µg/ml doxycycline in a black-walled 96-well plate. On the day of 

the assay, cells were serum-starved for 2 hr and then incubated for 20 min in 175 µl 

DMEM without phenol red, containing 1 mg/ml BSA, 25 mM Hepes, and 0.6 mg/ml D-

luciferin at 37ºC. To establish a baseline, cell radiance (photons/second/cm2/sr) was 
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measured using a cooled CCD camera and imaging system at 37ºC (IVIS 50; Caliper) (30 

sec exposure; binning, 8; no filter; f-stop, 1; field of view 12 cm). EGF was added in a 

volume of 25 µl in the same media (DMEM, 1 mg/ml BSA, 25 mM Hepes, 0.6 mg/ml D-

Luciferin). Radiance was measured sequentially as described above. To assess the 

transient transfection efficiency, renilla luciferase expression was monitored. Media was 

replaced on cells with DMEM (no phenol red) containing 1 mg/ml BSA, 25 mM Hepes, 

and 400 nM coelenterazine. Radiance was immediately measured as described above 

except the filter was set to <510.  

Data Analysis 

Data was collected in quadruplicate for each condition. A flat-field correction was 

done to correct for differences in the baseline photon flux. Light production expressed as 

photon flux (photons/sec) was determined from regions-of-interest defined over wells 

using LIVINGIMAGE (Xenogen) and IGOR (Wavemetrics) software. Changes in photon 

flux were calculated by subtracting values from untreated cells from those of EGF-treated 

cells. Standard errors were determined using the formula for the calculation of the 

unpooled standard error  

Acknowledgement. The luciferase imaging assay was performed by Katy Yang. 
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CHAPTER 5. Additional Hits and Discussions 

Additional hits from structurally similar compounds 

 As discussed in Chapter 2, one of the advantages of screening the NCI-diversity 

database was due to its large collection of structurally similar compounds corresponding 

to each representative compound in the diversity set. We have followed up on one 

identified lead compound, NSC56452, by searching the original NCI database for 

additional compounds that share at least 90% Tanimoto similarity163 in structure and 

composition. Because the luciferase fragment complementation assay was the faster and 

superior screening method comparing to Western blotting for activation, our strategy was 

to screen directly for dimerization inhibitors in the first pass at a single dose, followed by 

dose-response characterization of subsequent candidates, and finally candidates could be 

tested by Western blot to confirm inhibitory effect on receptor activation.  

 In addition to testing the NCI compounds, we also tested a compound set 

originally synthesized as generic kinase inhibitors by Professor Stefan Laufer164, 165. The 

motivation and the ensuing exciting direction originated from a structural search of our 

lead compounds in the literature that lead to Professor Laufer’s publications. In these 

articles, they described the synthesis and thorough characterization of the inhibition effect 

of a set of compounds tested against a wide spectrum of kinases. This was particularly 

interesting to us because while we are confident that NSC56452 blocks dimer formation 

(as seen in kinase-deleted luciferase experiment, chapter 2), it would be intriguing to see 

whether it has or may be modified to have additional activity against the kinase domain 

of EGFR. Based on the structural resemblance between NSC56452 and the kinase 

inhibitors synthesized by Laufer et al, the direction was then to explore the potentials of 
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developing multi-targeting agents to increase potency. Given that substantial testing 

against a wide range of kinase has already been done, the concept of multi-targeting 

could be extended from targeting multiple domains of EGFR to include targeting multiple 

kinase targets towards the development of “dirty drugs”166, 167.  

 Figure 5.1, Table 5.1 and Table 5.2 summarizes the data obtained so far from 

testing these compounds. The original intent was to derive a pharmacophore model that 

can discriminate against structurally close inactive compounds. Pharmacophore models 

can then be utilized to provide a fast ligand-based filtering layer in our top-down 

screening approach:  

ligand-based virtual screening using pharmacophore models  receptor-based virtual 

screening by the OpenScreening Project  testing of top candidates by the luciferase 

fragment complementation imaging assay  biochemical characterization to assess 

inhibitory activities.  

 However, preliminary development of these pharmacophore models has so far 

yielded sub-optimal predicative power largely due to the potentially narrow range in IC50 

values among compounds. The definition of “actives” and “inactives” in constructing 

ligand-based models often requires the difference in potency to be of several orders of 

magnitudes. Testing at a wider dose range is therefore warranted in order to derive more 

sensitive models 

Future direction 

 The lead inhibitors of EGFR homodimer serve as a proof-of-concept for targeting 

the dimerization interface with small-molecule inhibitors. I envision two immediate 

directions to build on this thesis: 1) continuous optimization of the lead compounds with 
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the help of descriptive pharmacophore model, and 2) peptidomimetic design based on the 

dimerization arm difference to target homo- and heterodimer interface. The benefit of 

having the luciferase complementation assay readily available should provide a great 

platform for immediate testing of potential candidates. The next milestone should be the 

characterization of the compounds (ideally, second-generation compounds more potent 

than the initial lead compounds) against purified extracellular domain of EGFR to test the 

so-far-consistent hypothesis that they target the dimerization arm interface. Crystal 

complex would be ideal, however, potentially difficult considering the balance between 

the concentration of extracellular domain needed to form crystals and the concentration 

of inhibitors necessary to prevent dimer formation  
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Figure 5.1. Graphical summary of the screening results. Compound 47 is the control 
with DMSO; compound 53 (*) is the tyrosine kinase inhibitor erlotinib. Compounds 
showing effect below 25% was denoted as (+++) in Table 5.1, 50% denoted as (++), 
75% denoted as (+). Experiment was done in triplicate of 3 wells at concentration of 
25 µM compound. 
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Table 5.1. Screening results of NCI compounds and selected Laufer compounds 

Compound ID Graph No. Structure -/+ or IC50 

34489 2 

 

+++ 

DH193 3 

 

5 μM 

49818 4 

 

+++ 
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Compound ID Graph No. Structure -/+ or IC50 

47777 5 

 

++ 

48720 6 

 

++ 

43414 7 

 

++ 



 96 

Compound ID Graph No. Structure -/+ or IC50 

49817 8 

 

++ 

44580 9 

 

++ 

44582 10 

 

++ 
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Compound ID Graph No. Structure -/+ or IC50 

56453 11 

 

++ 

42381 12 

 

++ 

42379 13 

 

++ 
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Compound ID Graph No. Structure -/+ or IC50 

59485 14 

 

144 nM 

44583 15 

 

++ 

49819 16 

 

++ 

48724 17 

 

++ 
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Compound ID Graph No. Structure -/+ or IC50 

DH29 18 

 

++ 

58908 19 

 

++ 

45156 20 

 

++ 
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Compound ID Graph No. Structure -/+ or IC50 

36828 21 

 

++ 

43415 22 

 

++ 

48715 23 

 

++ 
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Compound ID Graph No. Structure -/+ or IC50 

56452 24 

 

0.6 μM 

47779 25 

 

++ 

45155 26 

 

+ 

11421 27  

 

+ 
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Compound ID Graph No. Structure -/+ or IC50 

DH14 28 

 

3 μM 

48718 29 

 

+ 

49820 30 

 

+ 
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Compound ID Graph No. Structure -/+ or IC50 

48722 31 

 

+ 

DH199 32 

 

4 μM 

42380 33 

 

76 μM 

47782 34 

 

+ 
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Compound ID Graph No. Structure -/+ or IC50 

DH202 35 

 

+ 

DH250 36 

 

+ 

48714 37 

 

+ 

DH262 38 

 

+/- 
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Compound ID Graph No. Structure -/+ or IC50 

47786 39 

 

+/- 

DH73B 40 

 

+/- 

DH172 41 
 

+/- 

AG1478 42 

 

+/- 
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Compound ID Graph No. Structure -/+ or IC50 

38303 43 

 

+/- 

DH156 44 

 

+/- 

DH36 45 

 

- 

42382 46 

 

- 
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Compound ID Graph No. Structure -/+ or IC50 

DH50 48 

 

- 

42384 49 

 

- 

43412 50 

 

- 

DH251 51 

 

- 
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Compound ID Graph No. Structure -/+ or IC50 

42383 52 

 

- 

Tarceva 53 

 

- 

43411 54 

 

- 

DH2 55 

 

- 
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Compound ID Graph No. Structure -/+ or IC50 

DH12 56 

 

- 

49821 57 

 

- 

29421 58 

 

18 mM 

47783 59 

 

- 
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Compound ID Graph No. Structure -/+ or IC50 

46383 60 

 

- 

DH42 61 

 

- 

46384 62 

 

- 



 111 

Compound ID Graph No. Structure -/+ or IC50 

15747 63 

 

- 

DH168 64 

 

- 

DH144 65 

 

- 

DH58A 66 

 

- 
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Compound ID Graph No. Structure -/+ or IC50 

48713 67 

 

- 

Compound 1 is positive control, Cetuximab; Compound 47 is control with DMSO; 

Compound 53 is negative control, Tarceva. 
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Table 5.2. Screening results of all Laufer compounds at dose of 20 µM. 

IUPAC  Publication ID Internal 
ID  Structures Activity 

Phenyl-(9H-purin-
6-yl)-amin  2 (1)  DH 1  

  

- 

(4-Fluor-phenyl)-
(9H-purin-6-yl)-
amin  

3 (2)  DH 2  

  

- 

(9-Methyl-9H-
purin-6-yl)-phenyl-
amin  

4 (5) DH 14  

  

++ 

(4-Fluor-phenyl)-
(9-methyl-9H-
purin-6-yl)-amin  

5 (6) DH 29  

  

++ 

6-Phenoxy-9H-
purin  9 (3) DH 3  

  

- 

6-(4-Fluor-
phenoxy)-9H-purin  10 (4) DH 4  

  

- 
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6-Phenylsulfanyl-
9H-purin  11 (7) DH 33  

  

- 

6-(4-Fluor-
phenylsulfanyl)-
9H-purin  

12 (8) DH 34  

  

- 

9-Methyl-6-
phenylsulfanyl-9H-
purin  

13 (11) DH 36  

  

+/- 

6-(4-Fluor-
phenylsulfanyl)-9-
methyl-9H-purin  

14 (12) DH 35  

  

- 

4-Phenylsulfanyl-
7H-pyrrolo[2,3-
d]pyrimidin  

20 (9) DH 143  

  

- 

4-(4-Fluor-
phenylsulfanyl)-
7H-pyrrolo[2,3-
d]pyrimidin  

21 (10) DH 144  

  

- 
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6-Benzyl-9H-purin  25 (29)  DH 181  

  

- 

6-(4-Fluor-benzyl)-
9H-purin  26 (30) DH 196  

  

- 

6-Styryl-9H-purin  27 (31) DH 193  

  

++ 

6-[2-(4-Fluor-
phenyl)-vinyl]-9H-
purin  

28 DH 240  

  

- 

9-Methyl-6-styryl-
9H-purin  29 (32) DH 128  

  

- 

6-Benzylsulfanyl-
9H-purin  

31 (13) 
nsc29421 DH 17  

  

- 
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6-(4-Fluor-
benzylsulfanyl)-
9H-purin  

32 (14) DH 18  

  

- 

6-Benzylsulfanyl-
9-methyl-9H-purin  

33 (15) 
nsc38303 DH 42  

  

- 

6-(4-Fluor-
benzylsulfanyl)-9-
methyl-9H-purin  

34 (16) DH 41  

  

- 

9-Methyl-6-phenyl-
9H-purin  41 (39) DH 70  

  

- 

6-(4-Fluor-phenyl)-
9-methyl-9H-purin  42 (40) DH 69  

  

- 

7-Phenyl-7H-purin  45 (19) DH 12  

  

- 
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7-(4-Fluor-phenyl)-
7H-purin  46 (20) DH 11  

  

- 

7-Benzyl-7H-purin  49 (17) DH 53  

  

- 

7-(4-Fluor-benzyl)-
7H-purin  

 

(18) 
DH 55  

  

- 

7 Benzyl 6 chlor 
7H purin  51 (22) DH 58B  

  

- 

6 Chlor (4 fluor 
benzyl) 7H purin  52 (24) DH 59B  

  

- 

7-(4-Fluor-benzyl)-
7H-purin-6-ylamin  53 (27) DH 73A  

  

- 
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7 (4 Fluor benzyl) 
6 methoxy 
7H purin  

54 (28) DH 73B  

  

+/- 

9-Benzyl-6-chlor-
9H-purinund  55 (21) DH 58A  

  

- 

6-Chlor-9-(4-fluor-
benzyl)-9H-purin  56 (23) DH 59A  

  

- 

9-Benzyl-9H-
purin-6-ylamin  57 (25) DH 74  

  

- 

9-(4-Fluor-benzyl)-
9H-purin-6-ylamin  58 (26) DH 72  

  

- 

6-(4-Fluor-phenyl)-
9-methyl-8-phenyl-
9H-purin  

59 (41) DH 71  

  

- 
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9-Methyl-8-phenyl-
6-phenylsulfanyl-
9H-purin  

66 (44) DH 50  

  

- 

6-(4-Fluor-
phenylsulfanyl)-9-
methyl-8-phenyl-
9H-purin  

67 (45) DH 57  

  

- 

9-Methyl-8-(4-
methylsulfanyl-
phenyl)-6-
phenylsulfanyl-9H-
purin  

68 (49) DH 154  

  

- 

6-(4-Fluor-
phenylsulfanyl)-9-
methyl-8-(4-
methylsulfanyl-
phenyl)-9H-purin  

69 (50) DH 156  

  

- 

8-(4-
Methansulfinyl-
phenyl)-9-methyl-
6-phenylsulfanyl-
9H-purin  

70 (51) DH 167  

  

- 

6-(4-Fluor-
phenylsulfanyl)-8-
(4-methan-sulfinyl-
phenyl)-9-methyl-
9H-purin  

71 (52) DH 168  

  

- 
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8-(4-
Methansulfonyl-
phenyl)-9-methyl-
6-phenylsulfanyl-
9H-purin  

72 (53) DH 171  

  

- 

6-(4-Fluor-
phenylsulfanyl)-8-
(4-methansulfonyl-
phenyl)-9-methyl-
9H-purin  

73 (54) DH 172  

  

- 

8-(4-
Methylsulfanyl-
phenyl)-6-
phenylsulfanyl-9H-
purin  

76  DH 180  

  

- 

8-Brom-9-methyl-
6-phenylsulfanyl-
9H-purin  

78 (55) DH 216  

  

- 

4-(9-Methyl-6-
phenylsulfanyl-9H-
purin-8-yl)-but-3-
yn-1-ol  

79 (56) DH 217  

  

- 

9-Benzyl-6-
phenylsulfanyl-9H-
purin  

80 (57) DH 199  

  

++ 
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9-Benzyl-6-(4-
fluor-
phenylsulfanyl)-
9H-purin  

81 (58) DH 202  

  

++ 

9-(4-Fluor-benzyl)-
6-phenylsulfanyl-
9H-purin  

82 (59) DH 203  

  

+/- 

9-(4-Fluor-benzyl)-
6-(4-fluor-
phenylsulfanyl)-
9H-purin  

83 (60) DH 204  

  

- 

6-(2-Chlor-
phenyl)-9-(2,6-
difluor-phenyl)-
7,9-dihydro-purin-
8-on  

104 (21, ref2) DH 227  

  

- 

6-(2-Chlor-
phenyl)-9-(2,6-
dimethyl-phenyl)-
7,9-dihydro-purin-
8-on  

105 (22, ref2) DH 262  

  

+/- 
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6-(2-Chlor-
phenyl)-9-(2,4-
difluor-phenyl)-
7,9-dihydro-purin-
8-on  

106 (23, ref2) DH 238  

  

- 

9-(2,6-Difluor-
phenyl)-6-phenyl-
7,9-dihydro-purin-
8-on  

107 (24, ref2) DH 233  

  

- 

9-(2,6-Dimethyl-
phenyl)-6-o-tolyl-
7,9-dihydro-purin-
8-on  

108 (25, ref2) DH 250  

  

- 

9-(2,6-Dimethyl-
phenyl)-6-o-tolyl-
7,9-dihydro-purin-
8-thion  

109  DH 251  

  

- 

9-(2,6-Difluor-
phenyl)-6-o-tolyl-
7,9-dihydro-purin-
8-on  

110 (26, ref2) DH 237  

  

- 
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9-(2,6-Difluoro-
phenyl)-6-o-tolyl-
7,9-dihydro-purin-
8-on  

111 (27, ref2) DH 244  

  

- 

9-(2,4-Dimethoxy-
phenyl)-6-o-tolyl-
7,9-dihydro-purin-
8-on  

112 (28, ref2) DH 249  

  

- 

9-(2,6-Difluor-
phenyl)-6-(2-fluor-
phenyl)-7,9-
dihydro-purin-8-on  

113 (29, ref2) DH 275  

  

- 

1-(2,6-Difluor-
phenyl)-5-o-tolyl-
3,4-dihydro-1H-
pyrimido[4,5 
d]pyrimidin-2-on  

121  DH 321  

  

- 

5-(2-Chlor-
phenyl)-1-(2,6-
difluor-phenyl)-
3,4-dihydro-1H 
pyrimido[4,5 
d]pyrimidin-2-on  

122  DH 332  

  

- 
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Publication ID numbers are given by Professor Laufer, ID in brackets are the actual IDs 

assigned in the final print of their publication164. Some compounds were published in a 

separate publication165, denoted as ref2 in the table. Compounds were initially tested as a 

pair, and pairs that tested positive were then subjected for individual testing. 
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