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We present a new tool for automatically generating prototypes of communication protocols on a wide
variety of platforms. Our goal is to reduce design time, enhance portability, and accommodate
optimizations automatically. Users of the tool are required to provide an abstract implementation of the
protocol in C++ without worrying about the underlying operating system specific system calls. Instead,
the user employs high-level interface functions provided by the tool to interact with the underlying
operating system. Users also need not worry about complex packet formats that involve fields of various
bit and byte lengths. Instead, they use simple C/C++ struct declarations to describe the packets and
provide mapping rules in the form of Extended Regular Expressions to the tool. The tool uses these rules
to convert between the network format and the user defined format. Experience with TFTP and SMTP
prototypes indicate that the performance achieved is almost comparable to that of the standard BSD
implementations; at the same time the code size requirements of the abstract implementation is roughly
3 times less than the BSD implementation.
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Abstract

We present a new tool for automatically generating prototypes of communication protocols
on a wide variety of platforms. Qur goal is to reduce design time, enhance portability, and
accommodate optimizations automatically. Users of the tool are required to provide an abstract
implementation of the protocol in C++ without worrying about the underlying operating system
specific system calls. Instead, the user employs high-level interface functions provided by the
tool to interact with the underlying operating system. Users also need not worry about complex
packet formats that involve fields of various bit and byte lengths. Instead, they use simple
C/C++ struct declarations to describe the packets and provide mapping rules in the form of
Eztended Regular Ezxpressions to the tool. The tool uses these rules to convert between the
network format and the user defined format. Experience with TFTP and SMTP prototypes
indicate that the performance achieved is almost comparable to that of the standard BSD
implementations; at the same time the code size requirements of the abstract implementation
is roughly 3 times less than the BSD implementation.

Keywords: Communication Protocols, Prototyping, Tools, Compiler Technology.

1 Introduction and Motivation

Networks and applications are getting more diverse to span a wide range of technologies, platforms
and user needs. The problem of designing network software, already a difficult task, is exacerbated
by the increasing diversity. For example, there are several standards for high speed Data Links!
and most router vendors support at least six routing protocols. 2 At the same time network
software continues to be hard to implement and maintain. Dealing with asynchronous events,
obscure race conditions, and poor support for distributed debugging make even user-level protocol
implementations hard to develop.

On the other hand, the field of compiler design has matured to the point that a wide-range
of code generation techniques exist to generate optimized machine code from programs specified
in higher level languages. In fact, code produced by compilers is often better than or competitive

*contact author
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with hand-crafted code. For example, code on RISC machines requires careful attention to inter-
related, low-level details (such as register allocation and filling delay slots) that are best left to the
compiler. The success of RISC machines is largely due to the availability of good compilers that
free the programmer from the details of the machine architecture. Thus it is natural to ask: can
compilation techniques be applied to networking software?

Performance is also critical for crucial parts of the code (e.g., transport protocols like TCP).
However, the amount of performance critical code is typically quite small. On the other hand,
the amount of management code for most protocol suites is several times larger than the code
that actually implements the protocol. Similarly, there will probably be many more application
protocols emerging that take advantage of the networking infrastructure. For many such protocols
ease of implementation and maintenance can be traded off against some small loss of performance
due to the use of compiler tools. For those protocols for which performance is crucial, however, we
note that automatic optimization techniques can be incorporated into network compiler tools.

Our long-term solution to the problem of designing network software consists of two main
parts: a tool for rapid prototyping of networking software that compiles high level implementations
of protocols to a variety of different “back ends”: this is our proposed solution to the problem
of heterogeneity, and is described in the paper. The second part is a systematic development of
automatic optimization techniques for network protocols: this is our proposed solution to the need
for high performance. We leave this for future work, though we describe a few ideas in Section 4.

1.1 OQOur Tool

Our tool can be used for rapid prototyping and easy maintenance of communication protocols. We
assume that the protocol specification is complete and available to the tool user. The tool user then
writes an abstract implementation (that we call the Protocol Essence) without regard to the specific
platform the implementation will run on. The abstract implementation is written in a “friendlier”
(as detailed below) environment than the target platform, which allows the implementor to write
a smaller amount of code in (hopefully) shorter time.

Note that our approach is entirely different from approaches that attempt to compile an
implementation directly from a protocol specification. A fully abstract protocol specification
specifies what a protocol should do and not how the protocol satisfies its specification. While
this approach is an area of active research, we do not know of any successful application to real
protocols. Instead, our abstract implementation or protocol essence actually describes how the
protocol implementor satisfies the specification, except that target-specific details are abstracted
away.

Note that due to the difficulty of providing truly abstract protocol specifications, the docu-
mentation for most real protocols (e.g., TCP, OSI TP-4) provide a considerable part of what we
would call an abstract implementation. Some documentation (e.g., the 802.1 bridge specification,
OSI TP-4) even provides what is essentially an abstract implementation in pseudo-code or C! Thus
there is considerable motivation for a tool that can leverage off the existing documentation to
directly provide a real implementation.

The salient features of our tool can be summarized as follows:

e Only the abstract implementation of the protocol needs to be provided:

An abstract implementation of a protocol may be a faithful or an approximate implementation
of the protocol specification. It need not worry about any specific operating system features
or errors resulting from failed system calls. Instead, it uses high-level functions provided



by the tool to interface with the underlying operating system. Recall that we call such an
abstract implementation the Protocol Essence.

e Protocol essence can be authored without undue attention paid to:

Wire data formats: user code primarily references simplified packet formats (C/C++ struc-
tures); our tool automatically integrates the separately specified wire formats.

OS demultiplexing: (e.g., Poll or Select) is added automatically.

User interface code: we employ a YACC-based interface generator to automatically gen-
erate user interface code based from the (YACC) specification provided by the user.

Error Handling: system calls provided by the underlying operating system may fail and
return obscure error codes. In the current form, the tool’s library provides a mechanism
by which failures of these kind are detected and the session is terminated. In future, we
would like to look at efficient exception handling mechanisms.

e We can target a surprising range of environments, including a simulator, and application-level
network interfaces.

1.2 Organization of Typical Networking Code

Network software is generally developed in languages like C. These languages provide type casts,
pointer arithmetic, macro definitions, global variable declarations, etc., which allow for high effi-
ciency. Network software written in C invariably exploits these features to the maximum extent
possible.

In addition to the prolific use of these language features, the software also blends the protocol
specific code, the error handling code and the underlying operating system dependent code. This
tight coupling makes it extremely difficult to comprehend, debug and maintain network software.
Figure 1 depicts a typical view of such a network protocol software. The dark rectangles denote
protocol-specific code, the lightly shaded ones denote error handling code and the blank rectangles
denote operating system dependent code that may deal with interrupt processing, buffer manipu-
lation, input-output, scheduling, etc.

On the other hand, separating the protocol essence, the error handling code and the operating
system code has several advantages:

e It improves the comprehensibility of the code.
¢ Debugging efforts expended during the implementation phase can be significantly reduced.
e It is possible to observe and test the protocol in isolation. This could be used in the process

of protocol conformance testing and further refinement of the protocol specification.

1.3 Use of the tool by Protocol Designers

The primary set of users we target for the tool are protocol implementors. However, the rapid
prototyping and simulation aspects of our tool can also be used by protocol designers developing a
new protocol. Figure 2 depicts how such a tool can be put to use by a protocol designer.

e The protocol designer can choose to refine the original protocol specification incrementally.
The protocol implementor uses the protocol specification to write the protocol essence, which
in turn can be provided as input to the tool. The tool can generate a simulation which can

3
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Figure 1. Typical Protocol Implementation

help the protocol designer observe the behavior of the protocol without any interference from
the operating system. These results may be used to further refine the specification.

e Once the protocol design is stable and is tested for conformance, a prototype could be rapidly
produced and effects of external events on the protocol could be observed.

e In the event that some changes need to be made to the original protocol design, the only
overhead incurred is to transform the modified protocol specification into a protocol essence.
The tool can rapidly produce the simulation and the prototype saving considerable effort that
would have otherwise been spent in hand-crafting a simulation and a prototype implementa-

tion.

We note again that due to the difficulty of writing truly abstract specification, many protocol
designers essentially provide an abstract implementation of their protocol. Thus the step of
converting the specification to the protocol essence is often easier than one might think.

1.4 Complex Message Formats

In addition to the protocol’s intricate event handling mechanism, complicated message formats make
the task even more difficult and susceptible to errors. These message (packet) formats may consist
of a large number of bit or byte fields of varying length. Software implementations that directly
make use of such physical formats for setting and retrieving values of various fields invariably lack
portability. What makes things particularly complicated is the problem of byte and word ordering
within packet fields.

Some machines are big endian machines (that number their bytes such that byte 0 is the high-
order byte); other machines are little endian that number their bytes the other way. Finally,
protocols mandate the byte and bit order of fields as they must appear on the wire. As a result,
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Figure 2. Use of Tool by Protocol Designers

most implementors have to manually do a considerable amount of byte and word swapping®. This
is time consuming, makes portability difficult, and is also error-prone. From our experience, a
number of implementation bugs are caused by confusion about endianness.

Owing to these factors, it is important to find new ways for implementors to manipulate packet
fields. Our approach is to allow the implementor to view the packet formats at a logical level. At this
level the fields are declared using simple structure types provided by the implementation language.
This allows the implementation to be portable and also improves readability and maintainability of
the code. Tools serving as back-end compilers can be built to convert between the actual physical
format and the logical view of the packet formats.

Related Work

A number of tools for protocol prototyping or simulation appear in the literature.

We first distinguish our approach (compiling abstract implementations) from what we call the
virtual machine approach. The virtual machine approach, as exemplified by the x-Kernel [4], raises
the level of abstraction of network-level programming without taking advantage of compile-time
analysis. This is done by providing a suite of useful library functions for many common protocol
tasks. Our approach is more general because it allows compile-time analysis based on a complete
scan of the program text. We note also that environments such as the x-Kernel can serve as targets
of our work.

Another example of the virtual machine approach is the ACE-ASX [12, 11, 10] framework, which
provides an environment for constructing application-level protocols. It provides many features to
incorporate operating system synchronization features into the protocol implementation separately.
The ACE-ASX framework provides for encapsulating operating system interprocess communication

3sometimes, as in UNIX, this is done using library calls but the protocol implementor has to pepper his code with
such calls; in our approach the code that specifies the byte conversion is segregated to one area.



mechanisms within object oriented wrappers. These wrappers provide a generic interface to the
underlying operating system. 4

Another approach is to build tools that compile protocol specifications into implementations.
An example is the PET-DINGO tool suite [14, 13] that build prototype implementations of protocols
from specifications provided in the Formal Description Technique - Estelle. Our approach differs
from the Pet-Dingo approach in that our tool produces prototypes from abstract implementations
as opposed to specifications. Also our abstract implementations are authored in C++4-. From our
experience, most implementors are more comfortable in C/C++ than in Estelle.

Some work related to encoding packet formats is also reported in the literature. The External
Data representation (XDR) standard [6] is used for the description and encoding of data and is
used in the RPC protocol. The Universal Stub Generator (USC) [8] describes a stub compiler
that generates stubs to perform many data conversion operations. However, they do not provide a

complete tool that meets all our goals.

One aspect of our tool that is extremely useful is the ability to also build simulations from the
abstract implementation. While prototypes can also be used to simulate a protocol, a single process
simulation of a N-party protocol with debugger support, is a far more convenient and repeatable
way to observe protocol dynamics. The user has to provide the abstract implementation and the
network topology, and the tool outputs a discrete event simulation of the protocol on the given
topology. The literature on network protocol simulation is too prolific to report here. For example,
the Nest [2] tool provides a tool for simulating distributed systems. However, most simulators that
we know of are not capable of producing prototypes.

1.5 Organization

This paper discusses the design considerations and protocol prototyping experiences with such a
tool. Simplified versions of the TFTP protocol [15] and SMTP protocol [9] have been chosen as
examples for this paper. The rest of the paper is organized as follows.

Section 2 describes the system overview and design methodology. In Section 3, our experiences
implementing the TFTP and SMTP protocol have been reported. Section 4 discusses advantages
and disadvantages of using such a tool and also discusses future development on this tool.

2 System Overview and Methodology

We now present an overview of the system and describe the design methodology used in building
the tool. We begin by providing an overview of the system. Then we describe the methodology
used in designing the various components. Finally we mention the libraries developed and their
usage and the current status of the system.

Figure 3 shows various components of the system. The system consists of:

An input block: comprising the protocol essence in C++, the configuration information
and an optional set of Lex-Yacc rules for generating the user interface.

The tool: The tool reads the configuratior information along with the Lex-Yacc rules and
generates a header file, a C++ code that defines various methods to send and receive
the packets of the protocol that is prototyped and interface related code.

*In fact, our tool uses the ACE-ASX framework as a platform to prototype application-level protocols. The library
accompanying the tool provides various classes that inherit from the classes defined in the ACE-ASX framework.
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Figure 3. Components of the System

The libraries: that define various base classes along with their methods. The tool-generated
header file defines a protocol class that inherits from one of the classes available in the
libraries.

A C-++ compiler: that is essential to compile and link all the tool-generated code with
the protocol essence and the libraries and to produce a simulation or a prototype of the
protocol.

2.1 Design Choices

Our philosophy is to simplify protocol implementation as much as possible. This is reflected in
many of our design decisions made during the development of the tool. These include:

1. Language for specification and implementation:

We have chosen C4++ as the language in which a protocol implementor will provide the
protocol essence. C++ was chosen for a number of reasons:
o The libraries we define inherit functionality from the classes defined in the ACE-
ASX framework. ACE-ASX is developed in C++ and hence C++ was the language
choice we made.
e Object-oriented languages such as C++ offer type secure class interfaces.
e A number of sophisticated class libraries built in C++ are available in the public
domain. We use the LEDA [7] class library that provides a number of data structures
and efficient algorithms in our tool implementation.

7



e Sophisticated debugging tools such as dbz or gdb are readily available for C/C++
and hence the debugging task is simpler.

2. Logical versus Wire view of packet formats:

The packets that are transmitted over the network often have extremely complex encoding.
We do not require the implementor to provide code that references these complex packet
formats. Instead, the implementor chooses some logical view of the packet and provides
mapping rules which the tool uses to convert between the logical and the wire format of the

packet.

3. Using available tools for interface code generation:

It was observed that in many application level protocols, too much of the client software deals
with user interface and command line processing. Instead of hand-crafting code that does the
command line processing, we have made a choice of using Lez and Yeacc utilities to generate
code for the interface.

2.2 Components of the System

In this section, we describe the various components of the system.

2.2,1 The Input Block

The input block comprises two mandatory and one optional component. The mandatory compo-
nents include:

1. The protocol configuration information
2. The protocol essence

The optional component comprises the Lex-Yacc rules used for generating the interface related
code.

1. Configuration Information

The configuration information provides information to the tool that is required to generate
code on a desired platform. The configuration file consists of:

(a) Protocol Information
The keyword configure is used to inform the tool regarding protocol configuration specific
information. This includes:
e name: to indicate the name of the protocol. The name will be used by the tool as
a prefix in all generated file names.
e platform: to indicate the target environment, so that the tool can generate code
that uses relevant libraries.
e channel: to indicate the type of underlying message deliver service to be used by
the protocol.
Values for channel type can be formed by combining various pre-defined constants to
obtain:

o Connection-oriented, reliable service



e Connectionless, unreliable service

(b) Constants and Enum declarations
This section of the configuration file defines various C+4 style constants and enumerated
values that are used by the protocol essence.

(c) Logical packet format declarations
This section defines the logical view of the various packet formats defined by the protocol.
The user uses standard C/C++ struct declarations to define the logical packet formats.
An example of the TFTP RRQ packet format is shown below:

struct RRQPacket{
OPCODE  opcode;
string filename;
string mode;

};

(d) Wire packet format declarations and Mapping rules
The section defining the mapping rules between the logical and the wire formats is intro-
duced using the keyword MAP. The mapping rules implicitly define the wire formats for
the various packet formats defined by the protocol. We use extended regular expressions
to define the wire packet formats. In the TFTP example, the wire format and mapping
rules for the RRQ packet are defined as shown below:

MAP {
RRQPacket {
opcode : byte™2;
filename: [~\0]#*\0;
mode : [~\0]=*\oO;
i
};

(e) Protocol Class Declaration

The user declares a C++ class for the protocol and declares the state variables as private
variables of the class. The various protocol functions defined in the protocol essence are
declared as public class methods of this protocol class. For the TFTP example, an
excerpt of the class declaration is shown below:

class tftpclient{
bool traceflag;
/* others */
public:
int SendWRQ():
/* others */

};

Appendix A provides excerpts of the configuration file for the TFTP client.

2. Protocol Essence

8



The protocol implementor supplies the protocol essence in C++ which defines protocol
functions that are declared in the configuration file. An excerpt from the TFTP client
protocol essence is shown below. The code illustrates the simplicity with which the client
makes a RRQ request to the server. References to a packet’s contents are specified logically,
without mention of the positionally sensitive wire format. For example, while opcode occupies
two bytes in the wire format, the logical view of an opcode is simply an int in C/C++4. The
details of an opcode’s physical representation are maintained by the input and output routines,
automatically generated from the wire and logical format specifications.

// Send a RRQ request
int tftpclient :: SendRRQ()

{
INET_Addr peerAddr;

got_peer_addr(peerAddr);
expBlock = 1;

/* £ill the RRQ packet */
rrqPacket->opcode = RRQ;
rrgPacket->filename = remfname;
rrqPacket->mode = transfermode;

/* Send the packet to the peer address */
SendPDU(rrqPacket, peerAddr);

// set the timer

ev->event = DATATIMER;
StartTimer{ev, RetransmitTimerVal);
return 0;

Appendix B provides excerpts of the protocol essence for the TFTP client.

The tool requires the protocol essence to define the following routines:

(a) handle packet type routine
For every packet type supported by the protocol, a corresponding handle routine must
be provided, e.g. handle.RRQ_Packet for the logical declaration struct RRQ_Packet.

(b) handle_timeout
The handle_timeout routine is invoked by the timer-related routines defined in the library
whenever a preset timer expires.

(c) Protocol specific routines
This includes any method in the class declaration other than the handle routines.

3. Lex-Yace rules

This is the optional component of the input block. It comprises Lex and Yacc rules to generate
code for various interface related parts of the protocol.

10



2.2.2 Tool
The tool is made up of two parts:

1. Parser

The parser component parses the configuration file and passes information to the code
generator.

2. Code Generator

The code generator is responsible for generating the header and C++ definition files according
to the information provided in the configuration file. The code generator is also responsible
for generating the interface related code.

2.2.3 Generated Code

The tool generates a header file that copies the protocol class declaration from the configuration
file. The class from which it inherits depends on the channel type specified in the configuration file.
The C++ definition file that is generated, defines additional methods of the protocol class that
are not defined in the protocol essence. These methods provide an interface with the underlying
operating system. The methods defined in the generated code are:

1. handle_input method

The handle_input is a general purpose protocol method that is invoked by the Reactor
mechanism provided by the ACE-ASX framework on receipt of a packet over the network.
The sole purpose of this method is to decipher the type of packet received and invoke the
appropriate user provided handle method for the packet type.

2. SendPDU method
These methods are provided for each packet format that the protocol supports. The SendPDU
methods build a wire packet from the logical packet by invoking the appropriate BuildPDU
method and then invoke the appropriate operating system call for transmitting the wire
packet.

3. BuildPDU and ExtractPDU methods
These methods respectively build a wire packet from a logical packet and a logical packet
from a wire packet using the mapping rules.

Appendix C provides excerpts from the generated code.

2.2.4 Support Libraries

The library support provided for building simulations and prototypes defines various C++ base
classes from which the protocol class publicly inherits. In the current version, the library defines

two base classes:

1. TransportDGRAMNode: that provides connectionless datagram message delivery service
to the application-level protocol.

2. TransportSTREAMNode: that provides connection-oriented, reliable message delivery
service to the application-level protocol.

11



The above-mentioned classes have been developed for the ACE-ASX framework on the SunO54.1.3
and Sun085.4 platforms and the simulation platform. Each class provides the following methods:

1. send: To send a packet to the remote peer entity.
recv: To receive a packet from the remote peer entity.

OpenChannel: To open a communication channel between the communicating entities.

2.
3.
4. CloseChannel: To close the already opened channel.
5.

InitServer: This is a special method provided only for the server application. This method
can provide a concurrent or an iterative server depending upon the arguments passed.

In addition, the library also provides a set of methods to set and cancel specific timers. The
necessary operating system synchronization mechanisms like poll or select are built into these timer
routines.

2.3 Current Status
The currently supported set of platforms include:

¢ Discrete Event Simulator: Currently, the libraries provide support for a simulator that
is able to execute the protocol essence and depict its behavior. The simulator just helps to
observe the protocol behavior independent of operating system interferences.

e Application-level Network Interfaces: These include:

1. using ACE-ASX framework on SUNOS 4.1.3
2. using ACE-ASX framework on SunOS 5.4

2.4 Implementation Details

We have developed all the libraries using C++. The ACE-ASX software has been used extensively.
Currently we are able to generate prototypes using the ACE-ASX framework on SunOS4.1.3 and
Sun0S5.4 platforms as well as a simulator. The libraries used for the ACE platform make use of a
number of classes supplied by the ACE library. The classes defined in our library inherit from the
ACE classes. The simulator library also provides with the same interface as the libraries developed
for the other platforms. The parser component of the tool has been developed using Lex and Yacc
utilities.

3 Experience

This section describes our experience prototyping the TFTP and the SMTP protocol. For the
TFTP protocol, a comparative analysis in terms of code size and efficiency is reported for our
generated implementation of the TFTP client and the BSD client. We implemented both client
and server. We report results for our generated implementation of the client. For the SMTP
protocol, we provide results for the code size of the user interface and compare it with the code
size of the BSD implementation.

We first present a comparison between the BSD and our implementation of the TFTP client
entity in terms of code size required for some of the important tasks of the client module.

12



Description of part of code

Approx. Lines of Code

BSD client

Our client

command line processing 70 30
get/put command handling 80 30
setting a RRQ/WRQ packet 20 13

protocol essence 1193 344
Total 1363 417

We now present a comparison between the BSD and our implementation of the SMTP protocol
in terms of code size required for some of the command processing tasks. For the BSD implemen-
tation’s code size, we provide approximate values for the lines of code since we had to extract the
SMTP code from the code for sendmail.

Description of part of code

Approx. Lines of Code

BSD smtp Our smtp
Command interpreter 30 1 call to library routine
Decoding the received command 20 Free. Our mapping

rules generate the code for us.

Parsing Address 1200 (file:parseaddr.c) 420 (lex and yacc rules)
Handling Helo command 20 10
Handling Mail command 100 (decoding, parsing) 30

Finally we present results of an experiment that compares transferring a 1.22MB file using the
BSD client and our generated implementation of the client on Sun0OS4.1.3 and Sun0S5.4 platforms.
The experiment was carried out in the following setting:

e Server on Sun0S4.1.3 platform: Under this setup, the server was compiled using GNU g++
version 2.7.0. This experiment was carried out in two parts:

1. Local client compiled using GNU g++ version 2.7.0.
2. Remote client on Sun0S4.1.3 platform compiled using GNU g++ version 2.7.0.

e Server on Sun0S5.4 platform: Under this setup, the server was compiled using Sun C++
version 3.0.1. This experiment was carried out in two parts:

1. Local client compiled using Sun C++ version 3.0.1.
2. Remote client on a Sun0S4.1.3 platform compiled using GNU g++ version 2.7.0.

The BSD tftp client implementation was slightly modified. It uses a Read-ahead/Write-behind
strategy using double buffering technique. Since our generated code does not produce code that
uses such optimizations, we had to modify the tftp client code to remove the buffering strategy and
use simple reads and writes. All programs were compiled with the compiler’s optimization option
set. For each setting, we measured the time taken for the get and put operation. All file transfers
were made using the binary mode of file transfer. Each operation was performed ten times and the
average time for the transfer was measured. All the time measurements are in seconds.

TFTP Server on Sun054.1.3 Server on SunOS 5.4

Client Remote Client | Local Client | Remote Client | Local Client

Impl get put get | put get put get | put
BSD tftp | 7.17 7.53 6.01 | 5.76 | 10.52| 9.95 |4.61| 4.50
Qur tftp | 9.02 9.33 8.151 807 | 11.97| 11.49 | 6.71 | 6.60
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From the results, we observe that our generated implementation of the client performs almost as
well as the BSD implementation; at the same time, the code size requirement for our implementation
of the client is approximately 3 times less than that required for the hand-crafted version.

We obtained a profile of the execution of the BSD client and our generated client in order
to assess the performance differences between the two. We show relevant parts of the profile
information obtained using GNU gprof.

Profile for BSD iftp

% cumulative golf self total
time 8econds seconds calls ms/call ms/call name
34.3 7.72 7.72 23938 0.32 0.32 _sendto [8]
25.7 13.49 5.77 23933 0.24 0.24 _recvifrom [9]
13.2 16.45 2.96 11957 0.25 0.25 _write [11]
13.0 19.37 2.92 47750 0.06 0.08 _setitimer [12]
5.1 20.52 1.15 11947 0.10 0.10 _read [13]

Profile for Our tftp

% cumulative self self total
time seconds seconds calls ms/call ms/call name
24.0 10.36 10.36 26280 0.39 0.39 _sendto [2]
9.5 14.45 4.08 52526 0.08 0.08 _select [7]
9.1 18.37 3.92 14351 0.27 0.27 _write [9]
8.2 21.91 3.54 26274 0.13 0.13 _recvfrom [10]
6.0 24.49 2.58 131347 0.02 0.02 _gettimeofday [13]
4.3 26.35 1.86 _char2byte__6BUFFERRci
[16]
4.3 28.20 1.85 11948 0.15 0.156 _read [17]
3.8 29.85 1.65 _byte2char__6BUFFERiRc
[18]
3.7 31.45 1.61 26262 0.06 0.06 _ExtractPDU__10DataPacketP
6BUFFER [19]

Our implementation of the client uses an additional system call select which is not used by the
BSD implementation. The select system call is used by the underlying ACE-ASX framework in its
Event handling mechanism which invokes routines such as handle_input when data is received at the
socket. Additional overhead in our client is caused by copying of data from the received packet into
the logical structure (byte2char) and copying data from logical structure into the physical packet
(char2byte). If this is a problem, we can replace the extra copy by compiling the user calls to read
and write the logical packet by macro calls that read and write the physical packet.

Our automatically generated client and server did not incorporate some of the smart strategies
used by the hand-crafted BSD implementation such as Read-Ahead/Write-Behind using double
buffering. There are two approaches to incorporating such optimizations into network software:

1. The client essence itself could be augmented to include such optimizations. This would imply
that the user has to provide additional hand-crafted code for such optimization schemes to
work.

2. The tool could be improved to automatically insert such optimizations where appropriate.
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Because our ultimate goal is a tool whose optimization rivals hand-crafted network software, we
would derive no benefit from including the above optimizations in the client protocol essence. We
plan instead to improve our tool, including even more aggressive optimizations as discussed in

Section 4.

3.1 Preliminary Results on the use of Powerful Set of Regular Expressions

In the current implementation of the tool, we do not support a wide range of regular expressions
for the mapping rules. Experience with the SMTP protocol indicated a necessity for support for
powerful regular expressions in the mapping rules.

The SMTP MAIL or RCPT command consists of a path argument which contains optional relay
host addresses and a mailbox of the destination user. A typical command may look like:

MAIL FROM:<0cs81,@c82.a8chool.edu:user@host.addr>

In the current implementation, owing to the lack of support for powerful regular expressions,
we had to declare the path as a character string in the logical definition as shown:

struct MAIL_PDU{
string code;
string path;
};

On receipt of the packet, the protocol essence is required to decode the path and separate the
various parts that make up the path. This task can be significantly reduced if we could specify the
logical structure of the packet and the mapping rule as shown:

struct PATH{
string start;
string atdomain;
string user;
string domain;
string end;

};

struct MAIL{
string code;
string ws;
string from;
PATH rpath;
string terminate;

};
MAP{
MATL{
code : "MAIL"
us : [1] l|+

from : “FROM:"
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rpath : (
start : """
atdomain :
((e[a-zA-Z]+([.] [a-zA-Z]+)*,)*Q[a-zA-Z] +([.] [a-zA-Z] +)*:)?
user : [a-zA-Z]+
domain : @[a-zA-Z]+([.][a-zA-Z]+)*
end L

Thus the generated code will handle the decoding task and relieve the user from supplying code
for this task.

In the current experimental version, we have hand-crafted code that would otherwise be gener-
ated by the tool, that does the decoding based on the powerful regular expressions. In this regard
we have used the GNU regez library to handle the regular expressions and match the appropriate
strings in the incoming packet.

4 Conclusions and Future Work

In this paper we have demonstrated the usefulness of a tool that can read simple C/C++ language
implementations of protocols and generate code for a simulator and a prototype on a wide variety
of platforms without any modifications to the input. We have also demonstrated the effectiveness
of the user viewing a packet format at a logical level and the tool converting it into the appropriate
wire format. The libraries provided by the tool eliminate any need for the protocol essence to
worry about lower-level operating system details, especially detection of various external events
and synchronization issues. The essence is only required to provide code to handle such events
once they have been detected. Finally, the Lex and Yacc based rules simplify the user-interface
code generation significantly.

While our techniques could be applied to other platforms such as OS kernels and hardware,
we have concentrated on application protocols. We have also concentrated on protocols for which
rapid prototyping and ease of maintenance are more important than fine-tuning of performance.
We believe this is a good choice because there are a large number of application protocols that are
and will be deployed, and for many of them (e.g., management protocols) functionality is more more
important than performance. We note that our tool does provide reasonably good performance;
however, fine-tuned performance will require automatic optimization techniques that will be part
of the second stage of this project.

Our current research plans call for improving the basic tool along the following lines:

o Add more target platforms: In the short term, we want to add support for TLI (transport
layer interface) on the Solaris platform, and improve our simulator platform. In the long term,
we want to consider a kernel environment and possibly stand-alone hardware platforms.

e Increase flexibility of tool: There are a number of aspects of our tool that we can
generalize. These become more apparent as we implement more examples. For instance,
we want to allow a powerful set of regular expressions® to be specified in the mapping rules.
We also want to provide support for little endian machines.

5We are already working on a scheme that makes use of the GNU regez library.
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¢ Adding Fault-tolerance Automatically: Whenever a protocol attempts to use operating
system resources such as buffers or sockets, the protocol must deal with the case that the
resource is unavailable; the implementor must write what we call plaiform-specific fault-
tolerance code. Can this code be generated automatically? In simple cases, where the protocol
is implemented by a process that exits, this is very easy. More sophisticated schemes that
involve retrying and automatically keeping track of used resources (in order to free them) are
also possible.

The second stage of our project, in which we automatically add optimizations, has not begun
in earnest. We have the following research ideas and plans:

e Make basic tool operations more efficient. For instance, we plan to remove the extra copy
caused by logical to physical conversions by replacing user calls to the logical packet with
Macros that reference the physical packet. We also plan to inline, as far as possible, the
methods defined by the various classes in the libraries.

e Automate existing paradigms (e.g., header prediction, caching, using hints) that have been
hand-crafted into existing protocol implementations. In particular, we have a strategy for
automating header prediction, in which tests for the expected case are optimized.

o Automatically customize common protocol functions like lookups to the reference patterns of
particular environments [5).

e Extend existing work in compiler optimizations [3, 1] applied to network protocol implemen-
tations.

e Apply existing techniques from the work on optimizing compilers to unify various ad hoc
techniques.

Qur vision is that the writing of network software should become an engineering discipline, one
that can be easily taught to and mastered by undergraduates. Before the advent of compilers and
other software tools, even ordinary programming was the domain of a few abstruse wizards. We
hope that approaches similar to our tool may pave the way for similar transformation in the area
of network programming.

References

[1] M. Abbott and L. Peterson. Increasing Network Throughput by Integrating Protocol Layers. ACM
Transactions on Networking, 1(5), October 1993.

[2] D. Bacon, A. Dupuy, J. Schwartz, and Y. Yemini. Nest: A Network Simulation and Prototyping Tool.
In Proceedings of the Winter 1988 Useniz Conference, Dallas, 1988. USENIX.

[3] D. D. Clark and D. L. Tennenhouse. Architectural Considerations for a New Generation of Protocols. In
SIGCOMM Symposium on Commaunications Architectures and Protocols, Philadelphia, Pennsylvania,
Septermnber 1990, ACM.

[4] N. C. Hutchinson and L. Peterson. The x-Kernel: An Architecture for Implementing Network Protocols.
IEEE Transactions on Software Engineering, 17(1), January 1991.

[5] Raj Jain. Packet Trains: Measurements and a New Model for Computer Traffic. IEEE Journal on
Selected Areas in Communications, 4(6):1162-1167, May 1986.

17



[6] SUN Microsystems. XDR: External Data Representation Standard. Technical Report RFC 1014, Sun
Microsystems, Inc, June 1987.

[7] Stefan Naher, Kurt Mehlhorn, and Christian Uhrig. The LEDA User Manual Version R3.2, July 1995.

[8] Sean O’Malley, Todd Proebsting, and Allen Brady Montz. USC: A Universal Stub Generator. In
SIGCOMM 94, London, UK, August 1994, SIGS.

[9] J. Postel. SIMPLE MAIL TRANSFER PROTQCOL. Technical Report RFC 821, Information Sciences
Institute, August 1982.

[10] Douglas C. Schmidt. IPC_SAP: An Object-Oriented Interface to Interprocess Communication Services.
C++ Report, November/December 1992.

[11] Douglas C. Schmidt. The ADAPTIVE Commaunication Environment: Object-Oriented Network
Programming Components for Developing Client/Server Applications. In Proceedings of the 11** Annual
Sun Users Group Conference, San Jose, CA, December 1993. SUG.

[12] Douglas C. Schmidt. ASX: an Object-Oriented Framework for Developing Distributed Applications.
In Proceedings of the 6** USENIX C++ Technical Conference, Cambridge, Massachusetts, April 1994.
USENIX.

[13] R. Sijelmassi and B. Strausser. The Distributed Implementation Generator: an overview and user guide.
NCSL/SNA Technical Report 91-3, National Institute of Standards and Technology, January 1991.

[14) R. Sijelmassiand B. Strausser. The Portable Estelle Translator: an overview and user guide. NCSL/SNA
Technical Report 91-2, National Institute of Standards and Technology, January 1991.

[15] K. Sollins. The TFTP Protocol (Revision 2). Technical Report RFC 1350, Massachusetts Institute of
Technology, July 1992.

18



A TFTP Client Configuration File

configure {

name = tftp;

suffix = client;

mtu = MAXPPUSIZE;

platforms= ACE;

channel = UNRELIABLE | CONEECTIONLESS;
}
I define all sorts of constants */
const  int MAXPDUSIZE = 516;
const int MAXDATASIZIE = 512;
const int SERVERPORT = 3000;

/* define the values for opcedes */
typadef enum {

RRQ = 1,

WRQ = 2,

DATA = 3,

ACK = 4,

ERROR = &
} OPCODE;

/* dofine timer types »/

typodef enum {
DATATINMER,
ACKTIMER

} TIMER;

/* define logical packet views of various packet types of TFTP s/
struct RRQPacket{

OPCODE opcode;

atring filename;

string mode;

h

struct WRQPacket{
CPCODE opcode;
string filename;
string mode;

};

struct DataPacket{
OPCODE opcode;
int block;
int len;
char data[MAXDATASIZE];

I H

struct AckPacket{
OPCODE opcode;
int block;

};

struct ErrorPacket{
OPCODE opcode;
int block;
string errMsg;

¥
/* define the mapping rules between LOGICAL <==> WIRE +/
map {
RRQPacket{
opcode : byte~2 { IFF(opcode == RRQ) }
filename : [*\0]#\0;
mode 3 [~\0]*\0;
¥;
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WEQPacket{

opcode byte~2 { IFF(opcode == WRG) }
filename : [*\0]#\0;
mode : [“\01*\0;

}s

DataPacket{
opcode : byte~2 { IFF(opcode == DATA) }
block byte~2;
len g byte~0 { lem = PDU_LEN() - FIELDLEN(opcode) -

FIELDLEN(block); }

data H (byte~1)"len;

¥

AckPacket{
opcode : byte~2 { IFF(opcode == ACK) }
block : byte"2;

};

ErrorPacket{
opcede  : byte~2 { IFF(opcode == ERROR) }
block H byte~2;
errisg [~\0)+\0;

I H

;

/* define the TFTP protocel class */
class tftpclient {

public:

};

int
short
string
short
string
string
int
int
short
bool
bool
short

void
void
void
void
void
void
int
int
int
int
int
int
int
int
int

sockfd;

peerport;

peerhost;

£d; // local file dasc
remfname; // remote filename

transfermode = "netascii";
RetransmitTimerVal = 5;
NaxTimeoutVal = 25;
expBlock;

traceflag = false;
varboseflag = false;
connected = 0;

command (int) ;

init();

put{char *, char *, char *};

get{char », char *, char *};

connect(char *, char *);

quit();

handle_user_input(void *);

handle_timeout(const Time_Value &tv, const void =)};
handle_DataPacket(DataPacket *, const INET_Addr &);
handle_AckPacket (AckPacket *, const INET_Addr &);
handle_ErrorPacket (ErrorPacket *, const INET_Addr %);
handle_DATA_timeocut();

handle_ACK_timaout();

S8endRRQ() ;

SendWRQ();
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B TFTP Client Protocol Essence

// Command handling routine invoked by interface related code
int tftpclient :: handle_user_input {void *param)

{
CHMD_PARAMS #cp = {CHD_PARAMS *)param;
switch (cp->type){
case GET: get(cp->s1, cp->s2, cp->s3);
break;
cage PUT: put(cp->s8l, cp->82, cp->83);
break;
case CONNECT: connect(cp->el, cp-»82);
break;
case QUIT: quit{);
break;
default:
break;
}
}

// Send a RRQ request
int tftpclient :: SendRRQ()

{
INET_Addr peeriddr;

get_peer_addr{peeriddr);

expBlock = 1;

rrqPacket~>opcode = RRQ;
rrqPacket->filename = roemfname;
rrgPacket->mode = tranafermode;
StartClock(); // for statistice
SondPDU{rrqPacket, peerAddr);
ev->event = DATATINER;
StartTimer{ev, RetransmitTimervVal);
return Q;

}

// Send a WR{ request
int tftpclient :: SendWRQ()

{
IBET_Addr peerAddr;

get_peer_addr{peeriddr);

expBlock = 0;

wrqPacket->apcode = WRQ;
wrqPacket->filename = remfname;
wrqPacket->mode = transfermode;
StartClock(); // for statistics
SendPDU(wrqPacket, peeriddr);
ev=>event ®= ACKTIMER;
StartTimer(ev, RetransmitTimerVal);
return 0;

}

// Handle a DATA Packet
int tftpclient :: handle_DATA{(DataPacket spacket, INET_Addr &tempAddr)
{
CancelTimer(av) ;
// if it is a first packet, set the address of the peer as the newly
// raceived address.
if (firstPacket) {
firstPacket = false;
SetPeerEntry(tempiddr);
} else {
if (!MatchWithPeer(tempAddr)){
// send error message to Wrong peer
perror("Entries don'’t match");
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return -1;
H
}
if (lastPacket){ // We have racaived the last packet again. So we
// Dally and send the same ACK again
if (verboseflag)
cout << “CLIENT: sending dally ack #" << ackPacket->block << endl;
SendPDU(ackPacket, templdddr);
cout << “client:SUCCESS\n";
return 0;
} else if {packet->block == expBlock){
timeout = 0;
iiwrite(fd, packet->data, packet=->len);
totalData += packet->len;
// Build an ACK packet
ackPacket->opcode = ACK;
ackPacket->block = expBlock;
it (verboseflag)
cout << "CLIENT: sending ack #" << ackPacket->block << endl;
SendPDUCackPacket, tempAddr);
oxpBlock++;
if (packet->len < MAXDATASIZE){
lastPacket = true;
return 0;
}
ev->event = DATATIMER;
StartTimer(ev, RetransmitTimervVal);
Teturn 0;
¥
// invalid packet block
cout << "Client :Invalid Block # " << packet->block << " Expected "
<< expBlock << endl;
//8ynchroniza both sides
int packetsFlushed = SynchNet(MAXPDUSIZE);

if (verboseflag)
cout << "Total packets flushed : " << packetsFlushed << endl;

it {packet->block »= expBlock-1) // other side is one behind ne
return handle_DATA_timeout();
return 0;

}

// Handle timeout for DATA Packet
int tftpclient :: handle_DATA_timeout()
{
IEET_Addrx peeriddr;
get_peex_addr(peeriddr);
if (firstPacket){ // no response for our RRQ packet
perror("handle DATA_timeout: No response from peer®”);
return -1;
} else {
// send Same ACK again
if (verboseflag)
cout << "Client:sending Ack# * << ackPacket->block << * again\n";
SendPDU(ackPacket, peeriAddr);
ev->event = DATATIMER;
StartTimer(ev, RetransmitTimerVal);
return O;
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C Excerpts of the Generated C++ code for sending/receiving

#include "tftpserver.h"

RRQPacket *__RRQPacket = new RRQPacket:
WRQPacket *__WRQPacket = new WRQPacket;
ErrorPacket *__ErrorPacket = new ErrorPacket;
DataPacket »__DataPacket = naw DataPacket;
AckPacket #__AckPacket = new AckPacket;

BUFFER *sendBuffer = new BUFFER(MAXPDUSIZE);
BUFFER *recvBuffer = new BUFFER;
unsigned char #netBuff = new unsigned char [MAXPDUSIZE];

void RRQPacket :: BuildPDU(BUFFER #buffer)

{
int i,j;
-pduLen = buffer->ByteLength();
-s8ize_opcode = buffer->enum2byte{{unsigned short )opcode,2);
-8ize_filename = buffer->string2bytestream(filename);
-8ize_mode = buffer->string2bytestream(mode);
-pdulLen = buffer->ByteLength{) - _pduLen;

bool RRQPacket :: ExtractPDU(BUFFER sbuffer)

int i,3;

unsigned short __us = 0;

.8ize_opcode = buffer->byte2enum(2, __us);

opcode = (OPCODE)__us;

IFF(opcode == RRQ)

_size_filename = buffer->bytestream2string(filename);
_size_mode = buffer->bytestream2string(modae);

return true; // SUCCESSful extraction

}

int tftpserver :: SendPDU(RRQPacket* packet, const INET_Addr &addr)
{

packet->BuildPDU(sendBuffer) ;
#ifdef DEBUG

sendBuffer->DumpBuffer();

#endif
int status = TransportDURAMHode: :send(sendBuffer->GetBuf(), packet->_pdulen, addr);
sendBuffer->ClearBuf();
return status;

}

int tftpserver :: SendPDU(RRQPacket* packet)

{

packet->BuildPDU(sendBuffer);
#ifdef DEBUG
sendBuffer->DumpBuffer();

#endif
int status = TransportDGRAMNode::send(sendBuffer->GetBuf(), packet->_pduLen);
sendBuffer->ClearBuf();
return status;

}

int tftpserver :: handle_input{int _fd)

{

int _len;

INET_Addr addr;

bool __first_time = true;
int stat;

BUFFER »buffer;

do{//A do loop is used because we know for sure that
// a call to handle_input means something has arrived
: :memsat (netBuff ,0 ,MAXPDUSIZE) ;
-len = TransportDGRAMNode: :recv((void #*)netBurff, MAXPDUSIZE, addr);
if (_len <= 0) break;
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}
int
{

rocvBuffer->SotBuff(_lon, netBuff);
stat = decipherPDU(recvBuffer, addr);
if (stat == -1){

return -1;

}
}while(this->NoreInput(.fd));

return 1;

tftpserver :: decipherPDU(BUFFER sbuffer, INET_Addr &addr)

#ifdef DEBUG

#ondif

#aendif

buffer->DumpBuffer();
buffer->ResetBuf();

// now go thru all packet types and find which one this is
{
if (__RRQPacket->ExtractPDU{buffer)){
--BRQPacket->_pduLen = buffer->GetPDULength();
return handle_RR(QPacket(__RRQPacket, addr);
}
// Wot matched
buffer->ResetBuf();

}
{
if (__VWRQPacket->ExtractPDU{buffar)){
--WRQPacket->_pduLen = buffer->GetPDULangth();
return handle_WRQPacket(__WRQPacket, addr);
}
// Wot matched
buffer->ResetBuf();
}
{
if (__ErrorPacket->ExtractPDU{buffer)){
~-ErrorPacket->_pduLen = buffer->GetPDULength();
return handle_ErrorPacket{__ErrorPacket, addr);
)}
// Hot matched
buffer->RaesetBuf();
}
{
it (__DataPacket->ExtractPDU(buffer)){
~-DataPacket->_pdulLen = buffer->GetPDULength{);
return handle_DataPacket(__DataPacket, addr);
}
// Tot matched
buffer->ResetBuf();
}
{
if (__AckPacket=>ExtractPDU(buffer)){
--AckPacket->_pduLen = buffar->GetPDULength();
return handle_AckPacket(__AckPacket, addr);
}
// Wot matched
buffer->ResetBuf();
}

// not matched with any packet
cerr << "handle_input unable to match with any packet\n";
return -1;
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