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ABSTRACT

Statistical Aggregation: Theory and Applications

by

Xi, Ruibin

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, August, 2009.

Professor Nan Lin, Chairperson

Due to their size and complexity, massive data sets bring many computational

challenges for statistical analysis, such as overcoming the memory limitation and

improving computational efficiency of traditional statistical methods. In the disserta-

tion, I propose the statistical aggregation strategy to conquer such challenges posed

by massive data sets. Statistical aggregation partitions the entire data set into smaller

subsets, compresses each subset into certain low-dimensional summary statistics and

aggregates the summary statistics to approximate the desired computation based on

the entire data. Results from statistical aggregation are required to be asymptotically

equivalent.

Statistical aggregation processes the entire data set part by part, and hence over-

comes memory limitation. Moreover, statistical aggregation can also improve the

computational efficiency of statistical algorithms with computational complexity at
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the order of O(Nm) (m > 1) or even higher, where N is the size of the data. Sta-

tistical aggregation is particularly useful for online analytical processing (OLAP) in

data cubes and stream data, where fast response to queries is the top priority. The

“partition-compression-aggregation” strategy in statistical aggregation actually has

been considered previously for OLAP computing in data cubes. But existing re-

search in this area tends to overlook the statistical property of the analysis and aims

to obtain identical results from aggregation, which has limited the application of this

strategy to very simple analyses. Statistical aggregation instead can support OLAP

in more sophisticated statistical analyses.

In this dissertation, I apply statistical aggregation to two large families of statis-

tical methods, estimating equation (EE) estimation and U-statistics, develop proper

compression-aggregation schemes and show that the statistical aggregation tremen-

dously reduces their computational burden while maintaining their efficiency. I fur-

ther apply statistical aggregation to U-statistic based estimating equations and pro-

pose new estimating equations that need much less computational time but give

asymptotically equivalent estimators.
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1. Introduction

Nowadays, many statistical analyses need be performed on massive data sets, such as

Internet traffic data, business transaction records and satellite feeds. These data sets

can be too large to fit in a computer’s internal memory and bring a series of special

computational challenges. Even when the massive data sets can fit in a computer’s

memory, oftentimes, the analysis may not be finished within an acceptable amount

of time when fast analysis is desired.

For a massive static data set that does not evolve over time, e.g. transaction

history of a company, a simple solution is to obtain a reduced data set by sub-sampling

the massive data set, which makes the relevant statistical computation tractable [1].

However, this method could be “sub-optimal” due to the sub-sampling variability.

For time-evolving data, sub-sampling methods are usually not applicable, as only the

most recent raw data are stored in the memory, and therefore it’s very expensive or

impossible to sub-sample from the historical raw data. Furthermore, applications in

massive data sets often need on-line analytical processing (OLAP) computing and

fast response to queries is the top priority for any OLAP tool. The response time

should be in the order of seconds, minutes at most, even if complex statistical analyses

are involved. Queries are usually interested in different parts of the massive data set.

Sub-sampling for each query is then computationally inefficient and cannot support
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fast OLAP computing. In this thesis, I propose the statistical aggregation strategy

to conquer the difficulties posed by massive data sets.

Next, I will briefly review the stream data [2, 3] and data cubes [4, 5, 6]. Analyses

in both environments require to perform the same analyses for different subsets while

the raw data often can not be saved permanently. This makes statistical aggregation

particularly useful.

1.1 Stream Data

Stream data are data records coming rapidly along time. Examples include phone

records in large call centers, web search activities, and network traffic. Formally,

stream data are a sequence of data items z1, · · · , zt, · · · , zN such that the items are

read once in increasing order of the indices t [3]. These data sets increase explosively

over time and are typically stored in secondary storage devices, making access, partic-

ularly random access, very expensive. Meanwhile, analysis needs to be repeated from

time to time when more data are available. This demands algorithms that process

the raw data only once and then compress them into low-dimensional statistics based

on which the desired analysis can be performed exactly or approximately. Some re-

cent research on stream data include clustering [7, 8] and classification [9]. Statistical

aggregation provides a general solution to fast statistical analysis for stream data.

2



1.2 Data Cubes

Data cube is a popular OLAP tool in data warehousing. It models the massive

data set as a multidimensional hyper-rectangle. Dimensional attributes in data cubes

are the perspectives or entities with respect to which an organization wants to keep

records. Usually each dimension attribute has multiple levels of abstraction formed by

conceptual hierarchies. For example, country, state, city, and street are four levels of

abstraction in a dimension for location. Attributes other than dimensional attributes

in data cubes are measure attributes. A cell is a tuple in a multi-dimensional data

cube space that each dimensional attribute and measure attribute take specific value.

Given two distinct cells c1 and c2, c1 is an ancestor of c2, or c2 a descendant of c1 if

on every dimensional attribute, either c1 and c2 share the same value, or c1’s value is

a generalized value of c2’s in the dimension’s concept hierarchy. A cell c is called a

base cell if it does not have any descendant. A cell c is an aggregated cell if it is an

ancestor of some base cells.

Example 1: Suppose a chain supermarket records its sales with respect to lo-

cation, time and product. We then can use a data cube with three dimensional

attributes location, time and product and one measure attribute sale to model this

data warehouse. Figure 1.1 (a) shows a part of this data cube, where c1 is the cell

with (location, time, product) being (MO, 2009, P3). Figure 1.1 (b) shows some de-

scendant cells of c1, where location takes value among cities in Missouri, time among

3
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Figure 1.1. The data cube in Example 1. (a) c1 is the cell with
location = MO, Time = 2009 and Product = P3. (b) Descendant cells
of c1, where c2 is the descendant cell of c1 with location = St. Louis,
time = Apr. 2009 and product = B2

months in 2009 and product as one of two brands of product P3. In particular, c2 is

a descendant cell of c1. ¥

Computer scientists noticed that some simple summary statistics like sum, count,

average can be first computed for the base cells of the data cube, and then these

simple summary statistics for higher-level cells can be obtained by aggregating the

compressed summary statistics in base cells without accessing the raw data. Thus,

we can pre-compress all base cells into these summary statistics in one scan. Then,

to answer a query about a specific cell c, we only need aggregate the compressed

summary statistics of base cells inside the cell c together. Therefore, data cubes can

support fast OLAP computing of these simple summary statistics by avoiding access-

ing raw data. Recently, some researchers developed compression-aggregation schemes

for more advanced statistical analysis including parametric models such as linear re-
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gression [10, 11], general multiple linear regression [12, 13] and predictive filters [12],

as well as nonparametric statistical models such as näive Bayesian classifiers [14] and

linear discriminant analysis [15]. Statistical aggregation introduced here provides a

general solution to fast OLAP computation of more advanced statistical analyses.

1.3 Statistical Aggregation

Current data cube techniques usually view statistical analysis purely as an al-

gorithm and pays little attention to its statistical properties. Statistical aggregation

instead utilizes the statistical properties of statistical analyses and is a general strat-

egy for statistical analyses on massive data sets. The basic idea of the statistical

aggregation is as follows. The entire data set is first partitioned into K subsets, often

determined by dimensional attributes in a data cube context, and the data in each

subset are compressed to some summary statistics. At last, the summary statistics

are aggregated to approximate the statistics of interest without accessing the raw

data. Unlike in current data cube techniques, the resulted statistics given by the

statistical aggregation are only required to be asymptotically equivalent to but not

exactly equal to the statistics of interest. With this looser but statistically satisfac-

tory requirement, statistical aggregation can support more sophisticated statistical

analyses.

The statistical aggregation also serves as a general strategy for statistical analy-

sis on massive data set. By partitioning the entire data set into small subsets and

compressing each piece into some summary statistics, the statistical aggregation con-

5



quers the memory and storage problems raised by massive data sets. The statistical

aggregation can be readily applied to support OLAP computing in data cubes. The

base cells only need store the summary statistics from the statistical aggregation

and we can approximate the statistics of interest for other cells by aggregating the

corresponding base cells.

Another application of statistical aggregation is to expediate the computation of

statistical analyses whose computational complexity is high. For example, the com-

putational burden of a degree m U-statistic [16] is O(Nm), where N is the size of the

entire data set. In Chapter 3, I apply the statistical aggregation to U-statistics and

propose the aggregated U-statistics (AU-statistics). The AU-statistics is asymptoti-

cally equivalent to the U-statistic but its computational burden is just O(N (m+1)/2)

if we partition the entire data data into K = O(
√

N) pieces.

When applying the statistical aggregation to the specific statistical analysis, one

has to find appropriate summary statistics and the corresponding aggregation algo-

rithm. The dimension of summary statistics should be low and independent of the

size of the data set and the aggregation algorithm should be simple and easy com-

putationally. The summary statistics used in statistical aggregation is closed related

to sufficient statistics [17]. In fact, if the parameter estimation of the Gaussian dis-

tribution is under consideration, one can develop a compression-aggregation scheme

using sufficient statistics as summary statistics of each subset. However, it is gener-

ally very difficult or impossible to find low-dimensional sufficient statistics since many

statistical analyses are semi-parametric or even non-parametric. Thus, we generally

6



have to resort to the asymptotic properties of the estimator under consideration and

develop its compression-aggregation scheme. In this dissertation, I apply the statisti-

cal aggregation strategy to two large families of estimators, estimating equation (EE)

estimators and U-statistics. The compression-aggregation schemes for EE estimators

and U-statistics are developed based on Taylor’s expansion of the estimating equation

and asymptotic normality of U-statistics, respectively.

The dissertation is organized as following. In Chapter 2, I apply the statistical

aggregation strategy to EE estimators. I show in theory that the proposed aggregated

EE (AEE) estimator is asymptotically equivalent to the EE estimator if K goes to

infinity not too fast. Simulation studies validate the theory and show that the AEE

estimator is computationally very efficient. I also apply the AEE estimator to the

data cube context and show its remarkable performance in saving computational

time. In Chapter 3, I apply the statistical aggregation strategy to U-statistics and

show in theory that the AU-statistic is asymptotically equivalent to U-statistic and

its computational complexity is much lower than that of U-statistic. In Chapter 4, I

use the technique developed in Chapter 3 to functional regression models (FRM) [18]

and propose a new estimating equation for the FRMs. The estimator from the new

estimating equation is asymptotically equivalent to the original estimator presented

in [18], but computationally more efficient. I then conclude my thesis and discuss

other possible applications of this strategy and future researches in the last chapter.

7
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2. Aggregation of Estimating Equation Estimations

Many parametric and semi-parametric statistical estimation techniques can be uni-

fied into the estimating equation framework, such as the OLS estimator, the quasi-

likelihood estimator (QLE) [19] and robust M-estimators [20, 21, 22]. In this chapter,

I will apply the statistical aggregation strategy to estimating equation (EE) estima-

tions in massive data sets. I first partition the massive data sets into many subsets

and then compress the raw data into the EE estimates and the first-order derivative

of the estimating equation before discarding the raw data. The saved statistics allow

to reconstruct an approximation to the original estimating equation in each subset,

and hence an approximation to the equation for the entire data set after aggregating

over all subsets. I will show that, when the number of subsets is bounded or goes

to infinity not too fast, the solution to the approximated estimating equation, called

the aggregated EE (AEE) estimator, is consistent and asymptotically equivalent to

the original EE estimator under some mild regularity conditions. I will also show

in theory and in simulation studies that the AEE estimator provides more accurate

estimates than estimates from a subsample of the entire data set, which is commonly

used for static massive data sets. The AEE estimator is not only an accurate ap-

proximation to the EE estimator, but also computationally more efficient shown by

simulation studies.

9



2.1 Aggregation for Linear Regression

In this section, I review the regression cube technique [12] to illustrate the idea of

aggregation for linear regression analysis.

Suppose that we have N independent observations (y1,x1), · · · , (yN ,xN), where yi

is a scalar response, xi is a p×1 covariate vector, i = 1, . . . , N . Let y = (y1, . . . , yN)T

and X = (x1, . . . ,xN)T . A linear regression model assumes that E(y) = Xβ. Suppose

that XTX is invertible, the OLS estimator of β is β̂N = (XTX)−1XTy. Suppose that

the entire data set is partitioned into K subsets with yk and Xk being the values of

the response and covariates, and β̂k = (XT
k Xk)

−1XT
k yk is the OLS estimate in the kth

subset, k = 1, . . . , K. Then, we have y = (yT
1 , . . . ,yT

K)T and X = (XT
1 , . . . ,XT

K)T .

Since XTX =
∑K

k=1 XT
k Xk and XTy =

∑K
k=1 XT

k yk, the regression cube technique

sees that

β̂N = (XTX)−1XTy =

(
K∑

k=1

XT
k Xk

)−1 K∑

k=1

XT
k Xkβ̂k, (2.1)

which suggests that we can compute the OLS estimate for the entire data set with-

out accessing the raw data after saving (XT
k Xk, β̂k) for each subset. The size of

(XT
k Xk, β̂k) is p2 + p, so we only need to save Kp(p + 1) numbers, which achieves

very efficient compression since both K and p are far less than N in practice. The

success of this technique largely depends on the linearity of the estimating equation in

parameter β and the estimating equation of the entire data set is a simple summation

of the equations in all subsets. That is, XT (y −Xβ) =
∑K

k=1 XT
k (yk −Xkβ) = 0.

10



2.2 The AEE Estimator

In this section, I consider, more generally, estimating equation estimation in mas-

sive data sets and propose our AEE estimator to provide computationally tractable

estimation by approximation and aggregation.

Given independent observations {zi, i = 1, · · · , N}, suppose that there exists

β0 ∈ Rp such that
∑N

i=1 E[ψ(zi, β0)] = 0 for some score function ψ. The score

function is a vector function of the same dimension p as the parameter β0 in gen-

eral. The EE estimator β̂N of β0 is defined as the solution to the estimating equation

∑N
i=1 ψ(zi, β) = 0. In regression analyses, we have zi = (yi,x

T
i ) with response variable

y and predictor x and the score function is usually given as ψ(z, β) = φ(y − xT β)x

for some function φ. When φ is the identify function, it gives the OLS estimator and

the estimating equation is linear in β. However, the score function ψ is more often

nonlinear, and this nonlinearity imposes difficulty to find low-dimensional summary

statistics based on which the EE estimate for the entire data set can be obtained

by aggregation as in (2.1). Therefore, I instead aim at finding an estimator that ac-

curately approximates the EE estimator, and can still be computed by aggregation.

Our basic idea is to approximate the nonlinear estimating equation by its first-order

approximation, whose linearity then allows us to find representations similar to (2.1)

and hence the proper low-dimensional summary statistics.

Again, consider partitioning the entire data set into K subsets. To simplify our

notation, I assume that all subsets are of equal size n. This condition is not necessary

11



for the theory, though. Denote the observations in the kth subset by zk1, · · · , zkn.

The EE estimate β̂nk based on observations in the kth subset is then the solution to

the following estimating equation,

Mk(β) =
n∑

i=1

ψ(zki, β) = 0. (2.2)

Let

Ak = −
n∑

i=1

∂ψ(zki, β̂nk)

∂β
. (2.3)

Since Mk(β̂nk) = 0, we have Mk(β) = Ak(β − β̂nk) + R2 = Fk(β) + R2 from

the Taylor expansion of Mk(β) at β̂nk, where R2 is the residual term in the Taylor

expansion. The AEE estimator β̂NK is then the solution to F(β) =
∑K

k=1 Fk(β) = 0,

which leads to

β̃NK =

(
K∑

k=1

Ak

)−1 K∑

k=1

Akβ̂nk. (2.4)

This representation suggests the following algorithm to compute the AEE estimator.

1. Partition. Partition the entire data set into K subsets with each containable

in the computer’s memory.

2. Compression. For the kth subset, save (β̂nk,Ak) and discard the raw data.

Repeat for k = 1, · · · , K.

3. Aggregation. Calculate the AEE estimator β̃NK using (2.4).

12



This implementation processes the data part by part and requires to store only

K(p2 + p) numbers after compressing the data, and therefore overcomes the com-

puter’s memory constraint.

2.3 Asymptotic Properties

In this section, I give the strong consistency of the AEE estimator and its asymp-

totic equivalence to the original EE estimator, which supports that the AEE estimator

serves as a valid replacement of the original EE estimator. All proofs will be given in

Chapter 2 Section 2.7

Let the score function be ψ(zi, β) = (ψ1(zi, β), · · · , ψp(zi, β))T . I first specify

some technical conditions.

(C1) The score function ψ is measurable for any fixed β and is twice continuously

differentiable with respect to β.

(C2) The matrix −∂ψ(zi,β)
∂β

is semi-positive definite (s.p.d.), and −∑n
i=1

∂ψ(zi,β)
∂β

is

positive definite (p.d.) in a neighborhood of β0 when n is large enough.

(C3) The EE estimator β̂n is strongly consistent, i.e. β̂n → β0 almost surely (a.s.)

as n →∞.

(C4) There exists two p.d. matrices, Λ1 and Λ2 such that Λ1 ≤ n−1Ak ≤ Λ2 for all

k = 1, · · · , K, i.e. for any v ∈ Rp, vTΛ1v ≤ n−1vTAkv ≤ vTΛ2v, where Ak is

given in (2.3).

13



(C5) In a neighborhood of β0, the norm of the second-order derivatives
∂2ψj(zi,β)

∂β2 is

bounded uniformly, i.e.
∥∥∥∂2ψj(zi,β)

∂β2

∥∥∥ ≤ C2 for all i, j, where C2 is a constant.

(C6) There exits a real number α ∈ (1/4, 1/2) such that for any η > 0, the EE

estimator β̂n satisfies P (nα‖β̂n − β0‖ > η) ≤ Cηn
2α−1, where Cη > 0 is a

constant only depending on η.

Condition (C2) makes the AEE estimator β̃NK well-defined. Condition (C3) is

necessary for the strong consistency of the AEE estimator and is satisfied by almost

all EE estimators in practice. Conditions (C4) and (C5) are required to prove the

strong consistency of the AEE estimator, and are often true when each subset contains

enough observations. Condition (C6) guarantees the consistency of the AEE estimator

and the asymptotic equivalence of the AEE and EE estimators when the partition

number K also goes to infinity as the number of observation goes to infinity. In Section

2.5, I will show that Condition (C6) is satisfied for the quasi-likelihood estimators

considered in [23] under some regularity conditions.

Theorem 1 Let k0 = argmax1≤k≤K{‖β̂nk − β0‖}. Under Conditions (C1)-(C3),

if the partition number K is bounded, we have ‖β̃NK − β0‖ ≤ K‖β̂nk0
− β0‖. If

Condition (C4) is also true, we have ‖β̃NK −β0‖ ≤ C‖β̂nk0
−β0‖ for some constant

C independent of n and K. Furthermore, if Condition (C5) is satisfied, we have

‖β̃NK − β̂N‖ ≤ C1

(
‖β̂nk0

− β0‖2 + ‖β̂N − β0‖2
)

for some constant C1 independent

of n and K.

14



Theorem 1 shows that if the partition number K is bounded, then the AEE

estimator is also strongly consistent. Usually, we have ‖β̂N − β0‖ = o(‖β̂nk0
− β0‖).

Therefore, the last part of Theorem 1 implies that ‖β̃NK − β̂0‖ ≤ 2C‖β̂nk0
−β0‖2 +

‖β̂N − β0‖.

Theorem 2 Let β̂N be the EE estimator based on the entire data set. Then under

Conditions (C1) - (C2), (C4)-(C6), if the partition number K satisfies K = O(nγ)

for some 0 < γ < min{1− 2α, 4α− 1}, we have P (
√

N‖β̃NK − β̂N‖ > δ) = o(1) for

any δ > 0.

Theorem 2 says that if the EE estimator β̂N is a consistent estimator and the partition

number K goes to infinity slowly, then the AEE estimator β̃NK is also a consistent

estimator. In general, one can easily use Theorem 2 to show the asymptotic normality

of the AEE estimator if the EE estimator is asymptotically normally distributed, and

further to prove the asymptotic equivalence of the two estimators. An application to

QLE is given in the next section.

2.4 The Aggregated QLE

In this section, I demonstrate the applicability of the AEE technique to quasi-

likelihood estimation and call the resulted estimator the aggregated quasi-likelihood

estimator (AQLE). I consider a simplified version of QLE discussed in [23]. Suppose

that we have N independent observations (yi,xi), i = 1, · · · , N , where y is a scalar

response and x is a p-dimensional vector of explanatory variables. Let µ be a contin-
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uously differentiable function such that µ̇(t) = dµ/dt > 0 for all t. Suppose that we

have

E(yi) = µ(βT
0 xi) i = 1, · · · , N. (2.5)

for some β0 ∈ Rp. Then the QLE of β0, β̂N , is the solution to the estimating equation

Q(β) =
N∑

i=1

[yi − µ(βTxi)]xi = 0, (2.6)

Let εi = yi−µ(βT
0 xi) and σ2

i = Var(yi). The following theorem shows that Condition

(C6) is satisfied for the QLE under some regularity conditions.

Theorem 3 Consider a generalized linear model specified by (2.5) with fixed de-

sign. Suppose that yi’s are independent and that λN is the minimum eigenvalue of

∑N
i=1 xix

T
i . If there are two positive constants C and M such that λN/N > C and

supi{‖xi‖, ‖σ2
i ‖} ≤ M , then for any η > 0 and α ∈ (0, 1/2),

P (Nα‖β̂N − β‖ > η) ≤ C1(mηη)−2N2α−1,

where C1 = pM3C−3 is a constant, and mη > 0 is a constant only depending on η.

Now suppose that the entire data set is partitioned into K subsets. Let {(yki,xki)}n
i=1

be the observations in the kth subset with n = N/K.

(B1) The link function µ is twice continuously differentiable and the derivative of the

link function is always positive, i.e. µ̇(t) > 0.
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(B2) The vectors xki are fixed and uniformly bounded, and the minimum eigenvalue

λk of
∑n

j=1 xkjx
T
kj satisfies λk/n > C > 0 for all k and n.

(B3) The variances of yki, σ2
ki, are bounded uniformly.

Condition (B1) is needed for proving Conditions (C1) and (C5). Conditions (B1)-

(B2) together guarantee Conditions (C2), (C4) and (C5). And it is easy to verify that

all the conditions assumed in Theorem 1 of [23] are satisfied under Conditions (B1)-

(B2). Hence, by Theorem 1 in [23] the QLEs β̂nk are strongly consistent. Theorem

3 implies that the QLEs β̂nk satisfy Condition (C6) under Conditions (B1)-(B3).

Therefore, Theorem 1 and Theorem 2 hold for the AQLE under Conditions (B1)-

(B3). Furthermore, the AQLE β̃NK has the following asymptotic normality.

Theorem 4 Let ΣN =
∑N

i=1 σ2
i xix

T
i . Suppose that there exist a constant c1 such

that σ2
i > c2

1 for all i and supi E(|εi|r) < ∞ for some r > 2. Then under Condi-

tions (B1)-(B3), if K = O(nγ) for some 0 < γ < min{1 − 2α, 4α − 1}, we have

Σ
−1/2
N DN(β0)(β̃NK − β0)

d−→N (0, Ip) and β̃NK is asymptotically equivalent to the

QLE β̂N , where DN(β) = −∑N
i=1 µ̇(xT

i β)xT
i xi.

2.5 Simulation Studies

In this section, I illustrate the computational advantages of the AEE estimator by

simulation studies. Consider computing the maximum likelihood estimator (MLE) of

the regression coefficients in logistic regression with five predictors x1, · · · , x5. Let yi
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be the binary response and xi = (1, xi1, · · · , xi5)
T . In a logistic regression model, we

have

Pr(yi = 1) = µ(xT
i β) =

exp(xT
i β)

1 + exp(xT
i β)

, i = 1, · · · , N.

And the MLE of the regression coefficients β is a special case of the QLE as the

solution to (2.6). Set the true regression coefficients as β = (β0, β1, · · · , β5) =

(1, 2, 3, 4, 5, 6) and the sample size as N = 500, 000. The predictor values are drawn

independently from the standard normal distribution.

Then, compute β̃NK , the AEE estimate of β, with different partition numbers for

K = 1000, 950, . . . , 100, 90, · · · , 10. In compressing the subsets, I use the Newton-

Raphson method to calculate the MLE β̂nk in every subset k, k = 1, . . . , K. For

comparison, I also compute β̂N , the MLE from the entire data set, which is equivalent

to β̃NK when K = 1. All programs are written in C and our computer has a 3.4GHz

Pentium processor and 1.00GB memory.

Figure 2.1 plots the relative bias ‖β̃NK − β0‖/‖β0‖ against the number of parti-

tions K. The linearly increasing trend can be well explained by the theory in Section

2.3 and 2.4. In Section 2.3, I argued that the magnitude of ‖β̃NK − β0‖ is close to

2C1‖β̂nk0
− β0‖2 + ‖β̂N − β0‖. From Theorem 1 in [23], we have ‖β̂nk0

− β0‖2 =

o([log n]1+δ/n). Since log n ¿ n, ‖β̃NK − β0‖ is close to o(1/n) = o(K/N), which

increases linearly with K when N is held fixed. Since N is fixed in the simulation,

‖β̂N − β0‖ is fixed and so ‖β̃NK − β0‖ will roughly increase linearly with K.
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Figure 2.2. Computation time against number of partition K
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Figure 2.2 plots the computational time against the number of partitions. It takes

290 seconds to compute the MLE (K = 1) and 128 seconds to compute the AEE

estimator when K = 10, which shows a reduction of more than 50%. As K increases,

the computational time soon stabilizes. This shows that we may choose a relatively

small K as long as the size of each subset does not exceed the storage limit or memory

constraint. On the other hand, we see that the AEE estimator provides not only an

efficient storage solution, but also a viable way to achieve more efficient computation

even when the EE estimate using all the raw data can be computed.

Next, I will show that the AEE estimator is more accurate than estimates based

on sub-sampling. In our study, we can view β̂nk from each subset as estimates based

on a sub-sample of the entire data set. Table 2.1 presents the percentages of β̂nk

with relative bias ‖β̂nk − β0‖/‖β0‖ above that of the AEE estimator for different

partition numbers. It is seen that that more than 90% of β̂nk’s have relative bias

larger than that of the β̃NK , which clearly shows that the AEE estimator is generally

more accurate than estimators based on sub-sampling.

Table 2.1
Performance of β̂nk.

K 500 100 50 10
Percentage 94% 97% 94% 90%
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2.6 Applications to Data Cubes and Data Streams

In this section, I discuss applications of the AEE estimator in two massive data

environments: data cubes and data streams. Analyses in both environments require

to perform the same analyses for different subsets while the raw data often can not be

saved permanently. Efficient compression of the raw data by the AEE method enables

remarkable computational reduction for estimating equation estimation in these two

scenarios. In both cases, the size of the compressed data is independent of and far

smaller than that of the raw data for most applications.

2.6.1 Methods

The AEE method can be applied to data cubes to support OLAP of EE estimation.

Using the AEE method, I first compress the raw data in each base cell into the EE

estimate β̂nk and Ak in (2.3). This only requires to scan the raw data once and then

we can discard the raw data. And the EE estimate in any higher level cell can be

approximated by computing the AEE estimate using the aggregation in (2.4). This

aggregation is very fast since only simple operations are needed. Consequently, fast

OLAP computation and efficient storage are both achieved when EE estimation is

needed for many different cells.

The AEE method provides a natural solution to EE estimation for stream data.

I first choose a sequence of integers {nk} such that
∑K

k=1 nk = N . Choices of {nk}

can be decided by the pyramidal time frame proposed by Aggarwal et al. [24] to
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guarantee that the EE estimates for any time interval can be approximated well. Let

m0 = 0, mk =
∑k

l=1 nl for k = 1, · · · , K. At each time point mk, I calculate and store

the EE estimate β̂nk and Ak based on data items zmk−1
, · · · , zmk

in the time interval

[mk−1,mk]. According to the property of the pyramidal time frame in [24], we can

obtain a good approximation to the EE estimate in any time interval by computing

the AEE estimator using (2.4).

2.6.2 Simulation Studies

Consider again maximum likelihood estimation in logistic regression to demon-

strate the remarkable value of the AEE method. Since after the partitioning for the

data streams is decided, each time interval can be viewed as a base cell in data cubes,

our simulation focuses on data cubes only. In this simulation, I use the same simu-

lated data as in Section 6 with two additional variables: location and time. Location

has 20 levels and time has 50 levels, so we have 1000 = 50× 20 base cells in total. In

reality, this data set can be business transaction records in 50 months for 20 cities.

Suppose that there are 500 records for each city in each month. Consider the situation

where a business analyst is interested in computing the MLE in 100 different cubes.

I simulate each of these 100 cubes by first randomly selecting D from {1, · · · , 1000}

as the number of base cells contained in a cube, and then randomly choosing D base

cells from the 1000 base cells.

Compare the computation time of the AEE estimates with that of computing the

EE estimates directly from the raw data. Table 2.2 shows that the AEE method first
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spent a moderate amount of time to compress all base cells and then finished the

aggregation for all 100 queries almost timelessly, while it took about 70 times longer

to compute the 100 EE estimates from the raw data. Obviously, we can expect even

more significant time reduction when the calculation is needed for more cubes.

Table 2.2
Comparison of computational time.

AEE estimate EE estimate
Compression 97 seconds NA
Aggregation 0.0 second 6771 seconds

2.7 Proof of Theorems

I first prove two lemmas that are needed for proofs of the theorems in this chapter.

Definition 2.7.1 Let A be a d×d positive definite matrix. The norm of A, is defined

as ‖A‖ = supv∈Rd,v 6=0
‖Av‖
‖v‖ .

Lemma 1 Suppose that A is a d × d positive definite matrix. Let λ be the smallest

eigenvalue of A, then we have vTAv ≥ λvTv = λ‖v‖2 for any vector v ∈ Rd. On

the contrary, if there exists a constant C > 0 such that vTAv ≥ C‖v‖2 for any vector

v ∈ Rd, then C ≤ λ.

Proof Since A is a positive definite matrix, there exits a d × d unitary matrix U

and a d × d diagonal matrix D such that A = UTDU and D’s diagonal elements

are the eigenvalues of A. Take any v ∈ Rd, and let u = Uv. Then vTAv =
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vTUTDUv = uTDu. Since D is diagonal and λ is the smallest element of D’s main

diagonal elements, we have uTDu ≥ λuTu. Then since U is a unitary matrix, we

have uTu = vTUTUv = vTv, and therefore, vTAv ≥ λ‖v‖2.

Now, suppose that vTAv ≥ C‖v‖2 for some C > 0. We know that there exists

an eigenvector vλ 6= 0 corresponding to the eigenvalue λ such that Avλ = λvλ, and

consequently, vλ
TAvλ ≥ λ‖vλ‖2. Then from the assumption vλ

TAvλ ≥ C‖vλ‖2, the

second part of Lemma 1 follows.

Lemma 2 Let A be a d× d positive definite matrix and λ is the smallest eigenvalue

of A. If λ ≥ c > 0 for some constant c, one has ‖A−1‖ ≤ c−1.

Proof Since A is a positive definite matrix, A−1 is also a positive definite matrix

and the reciprocals of the eigenvalues of A are the eigenvalues of A−1. Thus λ−1 must

be the largest eigenvalue of A−1. Hence, for any v ∈ Rd, we have ‖Av‖ ≤ λ−1‖v‖.

Therefore, ‖A−1‖ ≤ λ−1 ≤ c−1.

In the following, I will give the proofs for all theorems in this chapter.

Proof [Proof of Theorem 1] From Conditions (C2) and (C5), we know that matrix

Ak is positive definite for each k = 1, · · · , K when n is sufficiently large. Hence,

∑K
k=1 Ak is a positive definite matrix. In particular,

(∑K
k=1 Ak

)−1

exists and Equa-

tion (2.4) is valid. Subtracting β0 from both sides of (2.4), we get

β̃NK − β0 =

(
K∑

k=1

Ak

)−1 [
K∑

k=1

Ak(β̂nk − β0)

]
.
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Thus,

‖β̃NK − β0‖ ≤
K∑

k=1

∥∥∥∥
( K∑

k=1

Ak

)−1

Ak(β̂nk − β0)

∥∥∥∥ ≤
K∑

k=1

‖β̂nk − β0‖. (2.7)

The second inequality comes from the fact ‖(∑K
k=1 Ak)

−1Ak‖ ≤ 1. Hence the first

part of Theorem 1 follows.

Now suppose that Condition (C3) is also true. Let λ1 > 0 be the smallest eigen-

value of the matrix Λ1 and λ2 be the largest eigenvalue of the matrix Λ2. Then for

any vector v ∈ Rp, we have vT 1
n
Akv ≥ vTΛ1v ≥ λ1‖v‖2. Hence, vT 1

nK

∑K
k=1 Akv ≥

λ1‖v‖2. Then from Lemmas 1 and 2, we have
∥∥∥( 1

nK

∑K
i=1 Ak)

−1
∥∥∥ ≤ λ1

−1. Then since

‖n−1Ak‖ ≤ ‖Λ2‖ ≤ λ2, it follows that

∥∥∥∥∥∥

(
K∑

k=1

Ak

)−1

Ak

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

(
1

nK

K∑

k=1

Ak

)−1
∥∥∥∥∥∥
·
∥∥∥∥

1

nK
Ak

∥∥∥∥ ≤
λ2

Kλ1

.

For C = λ2/λ1, we get

‖β̃NK − β0‖ ≤
K∑

k=1

∥∥∥∥∥
( K∑

k=1

Ak

)−1

Ak(β̂nk − β0)

∥∥∥∥∥ ≤ C‖β̂nk0
− β0‖.

Now suppose Condition (C5) is also satisfied.Let β̂N be the EE estimate based

on the entire data set. Then we have M(β̂N) =
∑K

k=1 Mk(β̂N) = 0. By the Taylor

expansion, we have

Mk(β̂N) = Mk(β̂nk) + Ak(β̂N − β̂nk) + Rnk, (2.8)
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where the jth element of Rnk is

(β̂N − β̂nk)
T

n∑
i=1

∂2ψj(zki, β
∗
k)

∂β∂βT
(β̂N − β̂nk)

for some β∗k between β̂N and β̂nk. Therefore, we actually have ‖Rnk‖ ≤ Cn‖β̂N −

β̂nk‖2 ≤ 2Cn(‖β̂nk − β0‖2 + ‖β̂N − β0‖2) for some constant C. Since Mk(β̂nk) = 0

and M(β̂N) = 0, if we take summation over k on both side of Equation (2.8), we get

∑K
k=1 Ak(β̂N − β̂nk) +

∑K
k=1 Rnk =

∑K
k=1 Ak(β̂N − β̃NK) +

∑K
k=1 Rnk = 0, where

the first equation comes from the definition of β̃NK . Hence, we have β̂N − β̃NK =

(∑K
k=1 Ak

)−1 ∑K
k=1 Rnk. Then similar to the first part of the proof, we get ‖β̃NK −

β̂N‖ ≤ C1(‖βnk0
− β0‖2 + ‖β̂N − β0‖2) for some constant C1.

Proof [Proof of Theorem 2] Suppose that all the random variables are defined on a

probability space (Ω,F , P ). Let Ωn,k,η = {ω ∈ Ω : nα‖β̂nk − β0‖ ≤ η}, ΩN,η = {ω ∈

Ω : Nα‖β̂N − β0‖ ≤ η} and ΓN,K,η = ∩K
k=1Ωn,k,η ∩ ΩN,η. From Condition (C7), for

any η > 0, we have

P (Γc
N,K,η) ≤ P (Ωc

N,η) +
K∑

k=1

P (Ωc
n,k,η) ≤ Cη(N

2α−1 + Kn2α−1).

Since K = O(nγ) and γ < 1− 2α, we have P (Γc
N,K,η) → 0 as n →∞.

Let Rnk be as in the proof of Theorem 1. For all ω ∈ ΓN,K,η, we have β∗k ∈

Bη(β0) = {β ∈ Rp : ‖β − β0‖ ≤ η} since Bη(β0) is a convex set and β̂N , β̂nk ∈

Bη(β0). When η is small enough, the neighborhood in the Condition (C5) contains
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Bη(β0). Hence, we have ‖Rnk‖ ≤ C2pn‖β̂N − β̂nk‖2 for all ω ∈ ΓN,K,η when η is

small enough. Therefore, for all ω ∈ ΓN,K,η, we have the following inequalities,

‖β̂N − β̃NK‖ ≤
∥∥∥∥∥∥

(
1

nK

K∑

k=1

Ak

)−1
∥∥∥∥∥∥

∥∥∥∥∥
1

nK

K∑

k=1

Rnk

∥∥∥∥∥

≤ λ−1
1 C2p

K

K∑

k=1

‖β̂N − β̂nk‖2

≤ Cn−2αη2,

where C = 4λ−1
1 C2p and λ1 is the minimum eigenvalue of the matrix Λ1 as in the

proof of Theorem 1. For any δ > 0, take ηδ > 0 such that Cη2
η < δ. Then for any

ω ∈ ΓN,K,ηδ
and K = O(nγ) for γ < min{1− 2α, 4α− 1}, we have

√
N‖β̃NK − β̂N‖ ≤

√
Nn−2αδ = O(n(1+γ−4α)/2)δ.

Therefore, when n is large enough, we have ΓN,K,ηδ
⊂ {ω ∈ Ω :

√
N‖β̃NK−β̂N‖ ≤ δ}

and hence, P (
√

N‖β̃NK − β̂N‖ > δ) ≤ P (Γc
N,K,ηδ

) → 0 as n →∞.

To prove Theorem 3, we need the following two lemmas. The proof of Lemma 3

can be found in [25] and the proof of Lemma 4 is in [23].

Lemma 3 Suppose that A, B are two p× p positive definite matrices. Then

(1) A ≥ B if and only if A−1 ≤ B−1

(2) If we have AB = BA, then A ≥ B implies A2 ≥ B2.
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Lemma 4 Let H be a smooth injection from Rp to Rp with H(x0) = y0. Define

Bδ(x0) = {x ∈ Rp, ‖x− x0‖ ≤ r} and Sδ(x0) = ∂Bδ(x0) = {x ∈ Rp, ‖x− x0‖ = δ}.

Then infx∈Sδ(x0) ‖H(x0) − y0‖ ≥ r implies (1) Br(y0) = {y ∈ Rp, ‖y − y0‖ = δ} ⊆

H(Bδ(x0)); (2) H−1(Br(y0)) ⊆ Bδ(x0).

Proof [Proof of Theorem 3] Suppose that all the random variables are defined on

a probability space (Ω,F , P ). Let aN = (
∑N

i=1 xix
T
i )−1

∑N
i=1 xiεi and GN(β) =

(
∑N

i=1 xix
T
i )−1

∑N
i=1[µ(βTxi)− µ(βT

0 xi)]xi, where εi = yi− µ(βT
0 xi). Then, the QLE

β̂N is the solution of the equation GN(β̂N) = aN .

Take any η > 0, and let mη = inf{µ̇(βTx) : ‖x‖ ≤ M and ‖β − β0‖ ≤ η}.

Obviously, mη > 0 only depends on η for the given M . Take any β ∈ Rp with

‖β − β0‖ ≤ η, we have by the mean-value theorem,

GN(β) = (
N∑

i=1

xix
T
i )−1

N∑
i=1

[µ(βTxi)− µ(βT
0 xi)]xi

= (
N∑

i=1

xix
T
i )−1

N∑
i=1

µ̇(βT
i xi)xix

T
i (β − β0),

where βi ∈ Rp lies on the line segment between β and β0.

Since ‖xi‖ ≤ M , we have
∑N

i=1 xix
T
i ≤ MNIp, where Ip is the p × p identity

matrix, and hence by Lemma 3, (
∑N

i=1 xix
T
i )−2 ≥ M−2N−2Ip. On the other hand,

since λN/N > C and ‖βi − β0‖ ≤ η, we have

N∑
i=1

µ̇(βT
i xi)xix

T
i ≥

N∑
i=1

mηxix
T
i ≥ mηCNIp.
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Therefore, the following inequality holds

‖GN(β)‖2 = (β − β0)
T

( N∑
i=1

µ̇(βT
i xi)xix

T
i

)( N∑
i=1

xix
T
i

)−2( N∑
i=1

µ̇(βT
i xi)xix

T
i

)
(β − β0)

≥ (MN)−2(β − β0)
T

( N∑
i=1

µ̇(βT
i xi)xix

T
i

)2

(β − β0)

≥ (MN)−2(mηCN)2‖β − β0‖2 =

(
mηC

M

)2

‖β − β0‖2,

i.e. ‖GN(β)‖ ≥ mηC‖β − β0‖/M for ‖β − β0‖ ≤ η. In particular, ‖GN(β)‖ ≥

mηCη/M for all β ∈ Sη(β0) = {β ∈ Rp : ‖β−β0‖ = η}. Therefore, by Lemma 4, if

‖aN‖ ≤ mηCη/M , there exists an β̂N ∈ Rp, ‖β̂N−β0‖ ≤ η, such that GN(β̂N) = aN .

Let α ∈ (0, 1/2), define WN,η = {ω ∈ Ω : Nα‖aN‖ ≤ mηCη/M}. Then by

Chebyshev’s inequality, we have

P (W c
N,η) = P (Nα‖aN‖ > mηCη/M) ≤ M2N2αE[‖aN‖2]/(mηCη)2.

Furthermore,

E[‖aN‖2] = tr[E(aNaT
N)] = tr[(

N∑
i=1

xix
T
i )−1(

N∑
i=1

xix
T
i σ2

i )(
N∑

i=1

xix
T
i )−1].

From σ2
i ≤ M , we have

∑N
i=1 xix

T
i σ2

i ≤ M
∑N

i=1 xix
T
i . Therefore,

tr[(
N∑

i=1

xix
T
i )−1(

N∑
i=1

xix
T
i σ2

i )(
N∑

i=1

xix
T
i )−1] ≤ tr[M(

N∑
i=1

xix
T
i )−1] ≤ pM(CN)−1.

That is, P (W c
N,η) ≤ pM3C−3(mηη)−2N2α−1.
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For ω ∈ WN,η, ‖aN‖ ≤ mηCη/M . By Lemma 4, there exists an β̂N ∈ Rp,

‖β̂N − β‖ ≤ η, such that GN(β̂N) = aN . Furthermore, for ω ∈ WN,η we have

Nα‖β̂N − β0‖ ≤ Nα
(

mηC

M

)−1

‖aN‖ ≤ η. Hence, WN,η ⊆ ΩN,η = {ω ∈ Ω : Nα‖β̂N −

β0‖ ≤ η}. At last we get

P (Nα‖β̂N − β0‖ > η) = P (Ωc
N,η) ≤ P (W c

N,η) ≤ pM3C−3(mηη)−2N2α−1.

Proof [Proof of Theorem 4] We first prove

Σ
−1/2
N M(β0) = Σ

−1/2
N

N∑
i=1

xi[yi − µ(xT
i β0)]

d−→N (0, Ip). (2.9)

Let λ be any given unit p-dimensional vector. Put ξNi = λTΣ
−1/2
N xiεi and ξN =

λTΣ
−1/2
N M(β0). Hence we have E(ξni) = 0, i = 1, · · · , N , and Var(ξN) = 1. From

the Cramér-Wold theorem and the Linderberg central limit theorem, to prove (2.9),

we only need to prove that, for any ε > 0, gN(ε) :=
∑N

i=1 E(|ξNi|2I(|ξNi| > ε)) −→ 0

as N −→∞. Let aNi = λTΣ
−1/2
N xi. Then we have

|ξNi|2 = ε2
i λ

TΣ
−1/2
N xix

T
i Σ

−1/2
N λ = ε2

i a
2
Ni
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. By the assumption σ2
i > c2

1, we have ΣN > c2
1

∑N
i=1 xix

T
i , i.e. ΣN − c2

1

∑N
i=1 xix

T
i is

a positive definite matrix, and hence,

N∑
i=1

a2
Ni = λTΣ

−1/2
N

(
N∑

i=1

xix
T
i

)
Σ
−1/2
N λ ≤ c−2

1 .

Then by the assumption supi E(|εi|r) < ∞ for some r > 2, we have

gN(ε) =
N∑

i=1

|aNi|2E
[|εi|2I(|εNi| > ε/|aNi|)

] ≤
N∑

i=1

|aNi|2|aNi|r−2εr−2E(|εi|r)

≤ c−2
1 εr−2 sup

i
E(|εi|r) max

1≤i≤N
(|aNi|r−2) → 0 as n →∞.

Therefore, we have proved (2.9). It is easy to check that all the conditions in Corollary

2.2 in [26] are satisfied here, the QLE β̂N has the following Badahur representation

β̂N − β0 = −D−1
N (β0)

N∑
i=1

xi[yi − µ(xT
i β0)] + O(N−3/4(log N)3) a.s.,

where DN(β) = −∑N
i=1 µ̇(xT

i β)xT
i xi. Then since Σ

−1/2
N = O(N−1/2) and DN(β0) =

O(N), we get

−Σ
−1/2
N DN(β0)(β̂N − β0)

= Σ
−1/2
N

N∑
i=1

xi[yi − µ(xT
i β0)] + Σ

−1/2
N DN(β0)O(N−3/4(log N)3)

= Σ
−1/2
N

N∑
i=1

xi[yi − µ(xT
i β0)] + O(N−1/4(log N)3)

d−→N (0, Ip).
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For the AQLE, we have −Σ
−1/2
N DN(β0)(β̃NK − β0) = −Σ

−1/2
N DN(β0)(β̂N − β0 +

β̃NK−β̂N). Since ‖−Σ
−1/2
N DN(β0)‖ = O(N−1/2), Theorem 2 and Theorem 3 together

implies that ‖Σ−1/2
N DN(β̃NK − β̂N)‖ = op(1) and hence

−Σ
−1/2
N DN(β0)(β̃NK − β0)

d−→N (0, Ip)

for K = O(nγ) with γ < min{1− 2α, 4α− 1}.
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3. Aggregation of U-statistics

Many commonly used statistics, especially, in many rank-based nonparametric pro-

cedure, can be put as U-statistics, such as the sample mean, the sample variance,

the Mann-Whitney-Wilcoxon test statistic [27, 28], and Kendall’s τ rank correlation

[29]. U-statistics have long been known as a class of nonparametric estimators with

good theoretical properties such as unbiasedness and asymptotic normality. However,

in general, the time complexity of computing the U-statistic of degree m is O(Nm),

which is computationally costly for massive data sets when m ≥ 2. For example, for

a data set of 10, 000 observations, it takes about 4 hours to calculate the symmetry

test statistic [30], a U-statistic of degree 3, using codes written in C on a computer

with a 1.6 GHz Pentium processor and a 512 MB memory.

In this chapter, I will discuss how to apply statistical aggregation to U-statistics to

reduce the computational complexity. I propose two unbiased nonparametric statis-

tics, the aggregated U-statistic (AU-statistic) and the average aggregated U-statistic

(AAU-statistic). The AU-statistic is obtained by first partitioning the entire data set

into smaller subsets and then aggregating U-statistics from each subset by taking a

weighted average. And the AAU-statistic is the average of AU-statistics computed

from different random partitioning. Both statistics are shown to be asymptotically

equivalent to the U-statistics under proper partitioning, while the AAU-statistic of-
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fers a smaller finite sample variance than the AU-statistics at a price of some extra

computational time. For a data set of size N , if we take the number of partitioning as

K = o(N), the computational complexity of both statistics is O(K(N/K)m), which

means that they can be computed much faster when m ≥ 2 as each subset is of a

much smaller size.

3.1 Review of U-statistics

Let X1, · · · , XN be a random sample from an unknown distribution P in a non-

parametric family P . Suppose that h(x1, · · · , xm) is a measurable function defined

on Rm that is symmetric in its arguments and satisfies ϑ = E[h(X1, · · · , Xm)] < ∞.

Then an unbiased estimator of ϑ is given by

UN =

(
N

m

)−1 ∑
1≤i1<···<im≤N

h(Xi1 , · · · , Xim), (3.1)

where the summation is over the set of all
(

N
m

)
combinations of m integers, i1 < i2 <

. . . < im chosen from {1, 2, . . . , N}. Here, UN is called a U-statistic with kernel h and

degree m.

The fundamental theory of U-statistics was first developed by [16], in which the

asymptotic properties of U-statistics were derived using the projection method. Con-

sider a U-statistic with kernel h and of degree m as in (3.1). For k = 1, · · · ,m,
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define hk(x1, . . . , xk) = E[h(x1, . . . , xk, Xk+1, . . . , Xm)]. Then the projection of UN

on (X1, . . . , XN) is defined as

ŬN = E(UN) +
N∑

i=1

[E(UN |Xi)− E(UN)] = ϑ +
m

N

N∑
i=1

h̃1(Xi), (3.2)

where h̃1(x) = h1(x) − E[h(X1, . . . , Xm)]. Based on the expansion in (3.2), one can

obtain the following lemma [31, 32].

Lemma 5 Let ζk = var(hk(X1, · · · , Xk)). Assuming that E[h(X1, · · · , Xm)]2 < ∞,

we have

(i) if ζj = 0 for j < k and ζk > 0 for some k = 1, · · · ,m, then

var(UN) =
k!

Nk

(m

k

)2

ζk + O

(
1

Nk+1

)
;

(ii) E(UN) = E(ŬN) and E(UN − ŬN)2 = var(UN)− var(ŬN).

Then, one can obtain the following asymptotic normality of U-statistics.

Theorem 5 Assuming E[h(X1, · · · , Xm)]2 < ∞, if ζ1 > 0, we have

√
N [UN − ϑ]

d−→N (0,m2ζ1) as N →∞.

For more detailed expositions of the general topic, see [31], [33] and [34].
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3.2 The AU-statistics and the AAU-statistics

In this section, I propose the AU-statistic and the AAU-statistic and derive their

asymptotic properties.

3.2.1 The AU-statistic and its Asymptotic Property

Let {X1, · · · , XN} be a random sample from an unknown distribution P . The

AU-statistic is define as follows. First, partition the random sample into K subsets

with observations in the kth subset denoted by {Xk1, · · · , Xknk
} and the U-statistic

based on them as Uknk
. It is obvious that

∑K
k=1 nk = N . Then, the AU-statistic is

given by the following weighted average,

ŨN =
1

N

K∑

k=1

nkUknk
. (3.3)

We have the following asymptotic result about the AU-statistic.

Theorem 6 Let ŨN be given by (3.3) with E[h(X1, · · · , Xm)]2 < ∞. Then if ζ1 > 0

and K = o(N), one has

√
N [ŨN − ϑ]

d−→N (0,m2ζ1) as N →∞.
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Proof Let Ŭknk
be the projection of the U-statistic Uknk

on Xk1, · · · , Xknk
. It then

follows from Lemma 5 that E[(Uknk
− Ŭknk

)2] = O(n−2
k ). Therefore, we have

ŨN =
1

N

K∑

k=1

nkŬknk
+

1

N

K∑

k=1

nk(Uknk
− Ŭknk

)

=
1

N

K∑

k=1

nk

[
ϑ +

m

nk

nk∑
i=1

h̃1(Xki)

]
+

1

N

K∑

k=1

nk(Uknk
− Ŭknk

)

= ϑ +
m

N

N∑
i=1

h̃1(Xi) + RN , (3.4)

where RN = N−1
∑K

k=1 nk(Uknk
− Ŭknk

). Let ∆k = Uknk
− Ŭknk

. Then, since ∆k’s

are independent of each other, we have E(R2
N) = N−2

∑K
k=1 n2

kE[(Uknk
− Ŭknk

)2] =

O(KN−2) and hence E(NR2
N) = O(K/N) → 0 as N →∞. By Chebyshev’s inequal-

ity,
√

NRN = op(1). Finally, by the central limit theorem, we get

√
N [ŨN − ϑ]

d−→N (0,m2ζ1) as N →∞.

Theorem 6 shows that, if the number of partitions is properly chosen, i.e., K =

o(N), the AU-statistics are asymptotically equivalent to the U-statistics. Meanwhile,

the time complexity of the AU-statistics is much less than that of the U-statistics

as it does not calculate the “pairs” across different subsets. For example, if we take

K =
√

N and let each partition have the same number of observations, then the time

complexity of the AU-statistics would be K ·O((N/K)m) = O(N (m+1)/2) which is far

less than O(Nm) when m ≥ 2 for moderately large N .
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3.2.2 The AAU-statistic and its Asymptotic Property

While the AU-statistic is shown to be asymptotically equivalent to the U-statistic,

however, it generally tends to have larger variance than the corresponding U-statistics

in the finite sample case since AU-statistics use less “pairs” of observations. Notice

that, unlike the U-statistics, the AU-statistics are not symmetric statistics and dif-

ferent partitions of the data set will result in different estimates of the parameter ϑ.

Therefore, the average of the AU-statistics given by different partitions should be a

more accurate estimator of the parameter ϑ than a single AU-statistic.

Let B be a fixed positive integer. For each b = 1, · · · , B, we randomly partition

the data set {X1, · · · , XN} into K subsets. Let Ũ b
N be the AU-statistic for the bth

partition. Then, I define the AAU-statistic as

ÛN =
1

B

B∑

b=1

Ũ b
N . (3.5)

Note that Ũ b
N , b = 1, · · · , B, have the same asymptotic distribution but are not

independent random variables. Hence, var(Ũ b
N) = var(ŨN) is a constant over b =

1, · · · , B. We have var(ÛN) ≤ var(ŨN), since cov(X,Y ) ≤ var(X)1/2var(Y )1/2 for any

two random variables X, Y with finite second order moments. Therefore, the AAU-

statistics have no larger variances than the AU-statistics. Using the representation

of the AU-statistics in (3.4), it is straightforward to show the following asymptotic

normality of the AAU-statistic.
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Theorem 7 For a given positive integer B, under the assumptions of Theorem 6, we

have

√
N [ÛN − ϑ]

d−→N (0,m2ζ1) as N →∞.

Therefore, the AAU-statistic is also asymptotically equivalent to the U-statistic. In

the finite sample case, the AAU-statistic, being the average of the AU-statistics, is

expected to have a smaller variance than an AU-statistic, which is also verified by

simulation studies in Section 3.3. Even though a larger B seems to provide a statistic

with a smaller variance, I do not recommend to use a large B, because it will make

the AAU-statistic lose its computational advantage over the U-statistic. Furthermore,

simulation studies in Section 3.3 show that small values of B (B = 5 or 10) already

provide very good estimates, and a larger choice of B is unnecessary.

3.3 Simulation Studies

In this section, the two aggregation methods are applied to computing two U-

statistics, symmetry test statistics [30] and Kendall’s τ [29], and use simulations to

show that the AU-statistics and the AAU-statistics are computationally much more

efficient than the U-statistics and meanwhile well approximate it. To expediate the

computation of U-statistics, all the programs are written in C. And the simulations

were done on a computer with a 1.6 GHz Pentium processor and 512 MB memory.
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3.3.1 Symmetry Test Statistics

Randles et al. [30] proposed a nonparametric method to test the symmetry of

a data distribution. The test statistics is a U-statistic of order m = 3 with kernel

function

h(x, y, z) =
1

3
[sign(x + y − 2z) + sign(x + z − 2y) + sign(y + z − 2x)],

where sign(u) = −1, 0, or 1 as u <, =, or > 0. In the simulation, 200 data sets

are generated from the standard normal distribution, each of which is of size 2,000.

Since the standard normal distribution is symmetric about 0, the symmetry test

statistic is expected to be a good estimate of ϑ = 0. For each simulated data set, the

symmetry test statistic is computed in four different ways: U-statistics as in (3.1),

AU-statistics as in (3.3) and the AAU-statistics as in (3.5) with B = 5 and B = 10,

respectively. When computing AU-statistics and AAU-statistics, I also try different

partition number K = 20, 60, and 100 to assess its impact, and all K subsets are kept

of equal size.

Figure 3.1 shows box plots of the biases of the symmetry test statistics computed

using different methods for K = 20, 60 and 100. It shows that the AU-statistics

spread a little bit wider than the AAU-statistics and the U-statistics, especially for

larger K’s. But overall, both the AU-statistics and the AAU-statistics perform very

well for all K = 20, 60, 100. Table 3.1 provides a numerical comparison of different

methods on their biases, variances and average computational time. We also see
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Figure 3.1. Boxplots of the biases of the symmetry test statistics.
1: U-statistics; 2: AU-statistics; 3: AAU-statistics (B = 5) and 4:
AAU-statistics (B = 10).

that the variances of the AU-statistics are slightly larger than that of the U-statistics

and the AAU-statistics especially when K is larger, whereas the latter two have

similar variances. It is also shown that the AU-statistics and the AAU-statistics are

computationally much more efficient than the U-statistics. The AU-statistics and

AAU-statistics only take less than 1% of the computational time of the U-statistics
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in most cases. With a larger K, the AU-statistics tend to have larger variances, but

this is no longer seen for the AAU-statistics even with B = 5. A larger K also reduces

the computational time dramatically for both AU-statistics and AAU-statistics. So,

in general, I recommend to use the AAU-statistics with a relatively large K and a

small B.

Table 3.1
Comparison of U-statistics, AU-statistics and AAU-statistics on com-
puting the symmetry test statistic.

K Bias(×10−4) Variance(×10−5) Time (seconds)

U 1 −3.3 1.31 148

20 −3.2 1.39 0.38
AU 60 −1.7 1.66 0.04

100 −1.6 1.91 0.01

20 −3.8 1.32 1.82
AAU (B = 5) 60 −3.9 1.31 0.20

100 −4.1 1.34 0.07

20 −3.7 1.31 3.96
AAU (B = 10) 60 −3.9 1.28 0.41

100 −4.1 1.30 0.14

3.3.2 Kendall’s τ

Now, I consider computing Kendall’s τ , which is popularly used for quantifying

the association of two random variables nonparametrically. Let Z1 = (X1, Y1)
T ,

. . ., ZN = (XN , YN)T be a series of independently and identically distributed (i.i.d.)
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random vectors in R2. Kendall’s τ is then τN = 1−2UN with UN being a U-statistic of

order 2 with the kernel function h(z1, z2) = I(x1 < x2, y1 > y2) + I(x1 > x2, y1 < y2)

for z1 = (x1, y1) ∈ R2 and z2 = (x2, y2) ∈ R2, where I is the indicator function. When

two variables are independent, we have E(τN) = 0.
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Figure 3.2. Boxplots of the biases of Kendall’s τ . 1: U-statistics;
2: AU-statistics; 3: AAU-statistics (B = 5) and 4: AAU-statistics
(B = 10).
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Table 3.2
Comparison of U-statistics, AU-statistics and AAU-statistics on com-
puting Kendall’s τ .

K Mean(×10−4) Variance(×10−5) Time (seconds)

U 1 −3.0 4.27 9.14

20 −3.4 4.36 0.46
AU 60 −3.9 4.51 0.15

100 −4.8 4.60 0.09

20 −3.1 4.28 2.42
AAU (B = 5) 60 −3.2 4.30 0.82

100 −3.3 4.31 0.50

20 −3.1 4.27 4.85
AAU (B = 10) 60 −3.1 4.31 1.65

100 −2.8 4.29 1.00

In the simulation, I generate 200 data sets with 10,000 observations each from the

bivariate standard normal distribution. Due to the independence between the two

variables, we should expect Kendall’s τ to be a good estimate of 0. Again, I compute

Kendall’s τ in four different ways for each simulated data set: U-statistics as in (3.1),

AU-statistics as in (3.3) and the AAU-statistics as in (3.5) with B = 5 and B = 10,

respectively. Comparison of the four methods is given in Figure 3.2 and Table 3.2.

Similar results are seen as in simulation studies for computing the symmetry test

statistic in Section 3.3.1. All methods perform well with little bias and the resulted

estimators have similar distributions. Again, we see that the AAU-statistic with a

relatively large K and a small B (K = 100, B = 5) seems to be the best choice when

balancing the performance between the variance and the computational time.
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3.4 An Application to Testing Serial Dependence

Ferguson et al. [35] proposed to use Kendall’s τ to test against serial dependence

in a univariate time series context. Here, I consider to apply the AU-statistics and

AAU-statistics to compute Kendall’s τ and test the serial independence against the

nonzero first order correlation on both simulated data and real stock data. Results

show that tests based on AU-statistics and AAU-statistics perform equally well as

the original test in [35].

Suppose that we have a univariate time series X1,· · · ,XN+1. Let τN be Kendall’s

τ based on bivariate random vectors (X1, X2)
T ,. . .,(XN , XN+1)

T . Then, 3
√

NτN/2 is

asymptotically standard normal when assuming zero first order autocorrelation [35].

Therefore, one can test against the nonzero first order autocorrelation for the time

series by rejecting the independence null hypothesis if |τN | > 2zα/2/3
√

N at signif-

icance level α > 0, where zα/2 is the (1 − α/2)th quantile of the standard normal

distribution. Denote by τ̃N and τ̂N Kendall’s τ given by the AU-statistic and the

AAU-statistic, respectively. As they have the same asymptotic distribution as τN , we

can establish tests based on them using the same rejection rule.

I first use simulated data to compare the three tests based on τN , τ̃N and τ̂N ,

respectively. I generate 200 data sets of size 10,000 from an AR(1) model with

autocorrelation ρ = 0, 0.02 and 0.05 respectively. Table 3.3 shows the computational

time and Type I error rates (level) or powers for the three tests with α = 0.05. We
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Table 3.3
Testing serial dependence: simulated data.

ρ = 0 ρ = 0.02 ρ = 0.05

Statistics K Time (Sec) Level Time (Sec) Power Time (Sec) Power

τN 1 9.23 0.055 9.16 0.485 9.24 1.0

20 0.46 0.055 0.47 0.485 0.46 1.0
τ̃N 60 0.16 0.055 0.16 0.485 0.15 1.0

100 0.10 0.055 0.093 0.485 0.090 1.0

20 2.30 0.055 2.35 0.485 2.32 1.0
τ̂N (B = 5) 60 0.78 0.055 0.79 0.485 0.80 1.0

100 0.47 0.055 0.48 0.485 0.48 1.0

20 4.64 0.055 4.63 0.485 4.62 1.0
τ̂N (B = 10) 60 1.55 0.055 1.56 0.485 1.56 1.0

100 0.96 0.055 0.95 0.485 0.99 1.0

see that all tests have the same Type I error rates or powers, while tests based on the

AU-statistics and AAU-statistics require far less computational time.

Second, I apply the three tests to historical stock prices (close price) of Ford Motor

Co. and General Electric (GE) Co. downloaded from finance.yahoo.com. The data

contain 7,883 observations for the Ford stock and 11,639 observations for the GE

stock, respectively. Table 3.4 gives Kendall’s τ from four different methods and the

corresponding computational time. All methods give the same Kendall’s τ , but it

takes remarkably less time to calculate τ̃N and τ̂N . In this case, the critical values at

level α = 0.01 for N = 7, 883 and 11, 639 are 0.019 and 0.016, respectively. Therefore,
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Table 3.4
Testing serial dependence: stock data.

Ford GE

Statistics K Time Estimate Time Estimate

τN 1 5.69 0.988 12.42 0.995

20 0.28 0.988 0.62 0.995
τ̃N 60 0.10 0.988 0.21 0.995

100 0.06 0.988 0.13 0.995

20 1.42 0.988 3.19 0.995
τ̂N (B = 5) 60 0.48 0.988 1.05 0.995

100 0.38 0.988 0.68 0.995

20 2.87 0.988 6.28 0.995
τ̂N (B = 10) 60 0.98 0.988 2.10 0.995

100 0.67 0.988 1.29 0.995

the tests are highly significant and we reject the null hypothesist that the observations

in the data sets are independent.

In conclusion, tests based on τN , τ̃N and τ̂N perform identically in their Type

I error rate and power. But tests based on AU-statistics and AAU-statistics are

computationally much more efficient than the one based on U-statistics.
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4. An Application to Functional Regression Models

In this chapter, I will apply the aggregation method developed in Chapter 3 to ex-

pediate the computation of the functional regression models (FRM) [18]. FRM not

only widens the class of existing regression models to accommodate new challenges in

modelling real data, but also provides a general framework for unifying and general-

izing popular non-parametric approaches for continuous as well as discrete data. The

generalization occurs by replacing the single subject-based response yi with a function

f(yi1 , · · · , yik) of several response yi1 , · · · , yik from multiple subjects i1, · · · , ik. Then,

a U-statistic based generalized estimating equation (UGEE) is constructed to esti-

mate the parameters in the model. The details of the FRM will be given in Section

4.1.

However, the computational complexity of solving the estimating equation for the

FRM is very high in general since the estimating equation is U-statistics based. In

fact, the computation burden of the FRMs is even heavier than that of U-statistics,

since numerical methods of solving equations involve many iterations and each iter-

ation involves calculating a U-statistic. In this chapter, I will apply the aggregation

scheme developed in Chapter 3 and propose an alternative AU-statistic based gener-

alized estimating equation (AUGEE) which is computationally much more efficient

than the original estimating equation. I will show that the estimator from the AUGEE
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is asymptotically equivalent to the estimator to UGEE. Simulation studies also show

that the estimator obtained from the AUGEE is nearly as efficient as the estimator

obtained from the UGEE but computationally more efficient.

4.1 Functional Regression Models

The classic mean-based distribution-free generalized linear model (GLM) [36]

only models the conditional mean of the response given the independent variables.

Any inference about the variance is based on the model of the mean in the classic

distribution-free GLM. When the model of the mean is not correctly specified, all

the inference would be invalid or even misleading even if the model for the variance

is correct. This limitation is exacerbated if our interest lies in modelling second and

higher order moments. FRM provides a general framework for directly modelling

of the second and higher order moments and it also unifies and generalizes existing

nonparametric and semi-parametric models.

Suppose that Z1 = (Y1, X1), · · · , ZN = (YN , XN) are independent observations.

Let f and g be two known measurable q-dimensional vector-valued functions, which

satisfies the following equation,

E[f(Yi1 , · · · , Yim)|Xi1 , · · · , Xim ] = g(Xi1 , · · · , Xim ; θ0), (4.1)

where θ0 is a p-dimensional unknown parameter. Model (4.1) is called the functional

regression model (FRM). Without loss of generality, we may assume the functions f
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and g are symmetric about their arguments. Otherwise, we can easily symmetrize

them.

Suppose that H(x1, · · · , xm) is a measurable p × q dimensional matrix-valued

function and is symmetric about its arguments and

h(z1, · · · , zm; θ) = H(x1, · · · , xm)[f(y1, · · · , ym)− g(x1, · · · , xm; θ)], (4.2)

where zi = (yi, xi). The following UGEE is used to estimate θ0 in the FRM,

UN(θ) =

(
N

m

)−1 ∑
1≤i1<···<im≤N

h(Zi1 , · · · , Zim ; θ) = 0. (4.3)

However, solving equation (4.3) is computationally expensive for m ≥ 2 and relatively

large N . In the next section, I will use the aggregation technique developed in Chapter

3 to reduce the computational complexity for solving (4.3).

4.2 AU-statistic Based Estimating Equations

In this section, I propose an alternative AUGEE for the FRM and show that the

estimator obtained from the AUGEE is asymptotically equivalent to the estimator

from the UGEE.
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As before, we first partition the data set {Z1, · · · , ZN} into K subsets {Zk1, · · · , Zknk
}.

Let Uk(θ) be the U-statistic based function in (4.3) based on the kth subset. Then,

we can solve the following alternative AUGEE to get an estimate of θ0,

ŨN(θ) =
1

N

K∑

k=1

nkUknk
(θ) = 0. (4.4)

Let θ̃K,N be the solution to the estimating equation (4.4). Note that θ̃1,N is just

the solution to the UGEE (4.3). Because the estimating equation (4.4) uses less m-

tuples than the estimating equation (4.3), the computational complexity of solving

(4.4) would be much lower. If we use the Newton-Raphson algorithm and choose nk

to be the same, the computational complexity of solving the AUGEE (4.4) would be

at the order of O(Nm/Km−1) in each iteration, but the computational complexity of

solving the UGEE (4.3) is at the order of O(Nm) in each iteration. Therefore, the

aggregation method tremendously reduces the computational burden of estimating

FRMs when m ≥ 2.

Let ϑ = E[h(X1, · · · , Xm)], hk = E[h(x1, . . . , xk, Xk+1, . . . , Xm)] and ζk(h) =

Var(hk(X1, · · · , Xk)). Before presenting the asymptotic property of the estimator

θ̃K,N , I give the following conditions.

(C1) E[h(Z1, · · · , Zm; θ0)
Th(Z1, · · · , Zm; θ0)] < ∞ and ζ1(hθ0) is positive definite,

where hθ0(z1, · · · , zm) = h(z1, · · · , zm; θ0).
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(C2) h(z1, · · · , zm; θ) is twice differentiable in a neighborhood of θ0 and

B = E
[∂h

∂θ
(Z1, · · · , Zm; θ0)

]

is an invertible matrix.

(C3) Suppose that hs(z1, · · · , zm; θ) (s = 1, · · · , p) is the sth entry of the vector

function h(z1, · · · , zm; θ) and b(z1, · · · , zm) is a measurable function which is

symmetric about its argument and E
[
b(Z1, · · · , Zm)

]2
< ∞. We have for all

s, i, j = 1, · · · , p

E[
∂hs

∂θj

(Z1, · · · , Zm; θ0)]
2 < ∞

and

∣∣ ∂2hs

∂θi∂θj

(z1, · · · , zm, θ)
∣∣ ≤ b(z1, · · · , zm) in a neighborhood of θ0.

Theorem 8 Let θ̃K,N be the solution to the AUGEE (4.4). If Conditions (C1), (C2)

and (C3) are satisfied and K = o(N), the estimator θ̃K,N is a consistent estimator of

θ0 and

√
N(θ̃K,N − θ0)

d−→N (0,m2Gζ1(hθ0)G
T ), (4.5)

where G = B−1.

Note that Theorem 8 applies to the case of K = 1. A quick corollary of Theorem

8 is that the estimators θ̃K,N and θ̃1,N are asymptotically equivalent when K =
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o(N). Therefore, the aggregation method reduces the computational complexity while

maintains the asymptotic efficiency of the estimator θ̃1,N . The proof of Theorem 8 is

given in Section 4.4.

4.3 Simulation Studies

In this section, I will show by simulation that the estimator obtained from the

AUGEE is statistically equivalent to the estimator obtained from the UGEE, while

the former is computationally more efficient.

Suppose that y1it, y2it are two measurement on subject i at time t (i = 1, · · · , n t =

1, · · · , T ). Assume that subjects are independent. Let σ2
kt be the variance of ykit

(k = 1, 2) and ρt be the correlation between the two measurements y1it and y2it at

time t. By the independence assumption, it follows that

E[(y1it − y1jt)
2/2] = σ2

1t

E[(y2it − y2jt)
2/2] = σ2

2t

E[(y1it − y1jt)(y2it − y2jt)/2] = ρt

√
σ2

1t

√
σ2

2t

Let yit = (y1it, y2it) and yi = (yi1, · · · ,yiT ). Denote fkt(yi,yj) = (ykit − ykjt)
2/2,

hkt = σ2
kt (k = 1, 2), f3t(yi,yj) = (y1it − y1jt)(y2it − y2jt)/2 and h3t = ρt

√
σ2

1t

√
σ2

2t.

Then the FRM model is

E[fkt(yi,yj)] = hkt k = 1, 2, 3 t = 1, · · · , T.
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Let ft = (f1t, f2t, f3t), ht = (h1t, h2t, h3t), f = (f1, · · · , fT ) and h = (h1, · · · ,hT ). Then

the FRM becomes E[f(yi,yj)] = h. Given observations y1, · · · ,yN , the following

UGEE is used to estimate the parameters ρt, σ2
1t and σ2

2t,

UN(θ) =

(
N

2

)−1 ∑
1≤i<j≤N

(
f(yi,yj)− h

)
.

The FRM under consideration is based on a posttraumatic stress disorder (PTSD)

study with a total of 95 women victims of sexual and non-sexual assault at the Uni-

versity of Pennsylvania Medical Center. The two measurements are PTSD Symptom

Scale and Beck Depression Inventory at 5 time points. The goal is to longitudinally

examine the correlations between the two measurements.

In the simulation, the number of time points is set as 3, i.e. T = 3. I generate

100 data sets and each data set has 100 observations. In every data set, I gener-

ate (y1it, y2it) are from a mean 0 bivariate normal distribution. The parameters are

set as σ2
1t = σ2

2t = 1 and ρt = 0.2 for all t = 1, 2, 3. I compare the estimates from

the UGEE and from the AUGEE with partition number K = 5, 10 and 20 using a

program written in R. Figure 4.1 shows the box plots the 100 estimates of the corre-

lation ρt from the UGEE and three AUGEEs and box plots from different estimating

equations are similar. Table 4.1 compares the sample means and sample variances of

the 100 estimates and average computation times using the four different estimating

equations. All sample means are close for a given t. The variance increases as K in-

creases, but the change is small. However, the AUGEE saves a considerable amount

55



of computation time compared with the UGEE. In all, the simulation clearly shows

that AUGEEs provide estimators nearly as good as estimators obtained from UGEEs,

while the computational burden of solving AUGEEs is much lower.
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Figure 4.1. Box plots of correlation estimates from different types of
estimating equations. 1: UGEE; 2: AUGEE (K = 5); 3: AUGEE
(K = 10) and 4: AUGEE (K = 20).
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Table 4.1
Comparison of estimates from different estimating equations

K Mean Variance(×10−3) Time (seconds)

1 0.181 9.21 467.3
ρ1 (t = 1) 5 0.181 9.48 90.7

10 0.182 10.2 44.5
20 0.181 11.5 20.3

1 0.154 11.0 467.3
ρ2 (t = 2) 5 0.155 10.7 90.7

10 0.152 10.7 44.5
20 0.159 12.0 20.3

1 0.191 9.35 467.3
ρ3 (t = 3) 5 0.187 9.74 90.7

10 0.183 10.6 44.5
20 0.178 10.7 20.3

4.4 Proof of the Consistency and the Asymptotic Normality

In this section, I give the proof of Theorem 8. I first give a theorem about

the asymptotic normality for the vector-valued AU-statistics, which itself is also of

interest.

Theorem 9 Suppose that h = (h1, · · · , hp)T is a p-dimensional vector-valued mea-

surable functions which is symmetric about its arguments. Let ŨN be the vector-valued

AU-statistic with kernel h. Suppose E[hi(X1, · · · , Xm)]2 < ∞ for all i = 1, · · · , p and

ζ1(h) is positive definite. Then, if K = o(N), one has

√
N [ŨN − ϑ]

d−→N (0,m2ζ1(h)) as N →∞,
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where ϑ = E[h(X1, · · · , Xm)].

Proof It is sufficient to prove that for any nonzero vector c = (c1, · · · , cp)
T ∈ Rp,

we have

√
N [cT ŨN − cT ϑ]

d−→N (0,m2cT ζ1(h)c) as N →∞. (4.6)

It is easy to see that cT ŨN is an AU-statistic with kernel g = cTh and E[g(X1, · · · , Xn)] =

cT ϑ. Since E[hi(X1, · · · , Xm)]2 < ∞ for all i = 1, · · · , p, we have

E[g(X1, · · · , Xm)]2 =

p∑
i,j=1

E[cicjh
i(X1, · · · , Xm)hj(X1, · · · , Xm)] < ∞.

At last, since ζ1(g) = cT ζ1(h)c > 0 and K = o(N), we get the asymptotic normality

(4.6) from Theorem 6 in Chapter 3.

Kantorovitch’s theorem, whose proof can be found in [37], is needed in proving the

consistency and asymptotic normality of the estimator θ̃K,N . For ease of reference, I

list Kantorovitch’s theorem as the following lemma.

Lemma 6 (Kantorovitch’s theorem) Let a0 be a point in Rp, U an open neigh-

borhood of a0 and f : U 7→ Rp a differential mapping, with its derivative Df(a0)

invertible. Define

r0 = −Df(a0)
−1f(a0), a1 = a0 + r0, U0 = {x| ‖x− a1‖ ≤ ‖r0‖}
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If the derivative Df(a0) satisfies the Lipschitz condition

‖Df(x1)−Df(x2)‖ ≤ M‖x1 − x2‖ for all points x1,x2 ∈ U0,

and if the inequality

‖f(a0)‖ · ‖Df(a0)
−1‖2M ≤ 1

2

is satisfied, the equation f(x) = 0 has a unique solution in U0.

Proof [Proof of Theorem 8]

A. Consistency. Since hθ0 satisfies Condition (C1), by Theorem 9 we have ŨN(θ0) =

op(1). From Condition (C3), we get

∂ŨN

∂θ
(θ0) = E

[∂h

∂θ
(Z1, · · · , Zm; θ0)

]
+ op(1).

Then, ∂ŨN

∂θ
(θ0) is invertible in probability and rN = −(∂ŨN

∂θ
(θ0))

−1ŨN(θ0) tends to

zero in probability. By Condition (C3), it is straightforward to show that there exists

a neighborhood U of θ0 and a constant M such that in probability

∥∥∥∥
∂ŨN

∂θ
(θ1)− ∂ŨN

∂θ
(θ2)

∥∥∥∥ ≤ M‖θ1 − θ2‖

for all θ1, θ2 ∈ U . Again, since ŨN(θ0) = op(1) and (∂ŨN

∂θ
(θ0))

−1 is bounded in

probability, we have ‖ŨN(θ0)‖‖(∂ŨN

∂θ
(θ0))

−1‖2M ≤ 1/2 in probability. Then, by

Kantorovitch’s theorem, there exists a unique solution θ̃N in the neighborhood UN =
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{θ| ‖θ−θN‖ ≤ rN} in probability, where θN = θ0 + rN . Then, we have ‖θ̃N −θ0‖ ≤

2‖rN‖ = op(1) and the estimator θ̃K,N is a consistent estimator.

B. Normality. Since θ̃N is the solution to Equation (4.4), we have ŨN(θ̃N) = 0.

Expand the vector-valued function ŨN(θ) at θ0 using Taylor’s Theorem, we have

0 = ŨN(θ̃N) = ŨN(θ0) +
∂ŨN

∂θ
(θ0)(θ̃N − θ0) + R2,

where R2 is the second order residual in the Taylor’s expansion. Therefore, we have

the following representation

√
N(θ̃N − θ0) = −

(
∂ŨN

∂θ
(θ0)

)−1√
NŨN(θ0)−

(
∂ŨN

∂θ
(θ0)

)−1√
NR2.

By Conditions (C2) and (C3), we have ∂ŨN

∂θ
(θ0) → B in probability. Let Vk be

the U-statistic with kernel b(·) based on the observations {Zk1, · · · , Zknk
} and ṼN =

∑K
k=1 nkVk/N be the corresponding AU-statistic. Since θ̃N is a consistent estimator

of θ0, we have ‖R2‖ ≤ CṼN‖θ̃N −θ0‖2 in probability for some constant C. From the

proof of Part A, we know that
√

N‖θ̃N − θ0‖2 ≤ √
N‖rN‖2 = op(1). Furthermore,

ṼN goes to E[b(Z1, · · · , Zm)] in probability. Hence, ‖√NR2‖ = op(1) and Theorem 8

is proved using the delta method.
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5. Conclusion and Discussion

In this thesis, I introduced a general strategy, statistical aggregation, for performing

statistical analysis on massive data sets. Statistical aggregation partitions the entire

data set into small pieces and performs statistical analysis on each piece to obtain

certain summary statistics. Then, it aggregates the resulted summary statistics to-

gether into the statistics of interest. Statistical aggregation provides a general scheme

for OLAP of advanced statistical analyses in data cubes. Statistical aggregation dis-

tinguishes itself from previous technologies in data cubes by a looser but statistically

satisfactory requirement, i.e. the resulted statistics from statistical aggregation should

be asymptotically equivalent to the statistics of interest.

I applied the statistical aggregation strategy to two large families of statistics, EE

estimators and U-statistics. The summary statistics for EE estimators are just the

EE estimate plus an auxiliary matrix. The summary statistics for U-statistics are

just U-statistics and sample sizes of subsets. The aggregation algorithms are simple

weighted average for both EE estimators and U-statistics. I showed that the aggre-

gated statistics are asymptotically equivalent to the original statistics. Simulation

studies and real data examples also show the aggregation methods perform equally

well and are computationally much faster. In the thesis, I also applied the aggrega-

tion method developed for U-statistics to FRMs. I proposed an alternative AUGEE
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for the FRM and showed that the resulted estimator is asymptotically equivalent to

the estimator obtained from the UGEE. Simulation studies validated this result and

further revealed that a considerable amount of computation time could be saved by

using the AUGEE.

The choice of summary statistics is not unique in general. For example, we can

approximate the estimating equation based on the kth subsets by the second order

Taylor series and define another set of summary statistics for the EE estimator. The

aggregated estimating equation becomes a quadratic equation and the aggregation

algorithm is to solve this quadratic equation. Preliminary simulation studies show

that this version of aggregated EE estimators have smaller bias than the AEE esti-

mators in Chapter 2 and hence enable us to partition the entire data set into more

pieces. However, the asymptotic theory is much harder to develop.

There are potentially many more applications of the statistical aggregation strat-

egy. For instance, we can apply the statistical aggregation to Bayes estimators such as

posterior means. It is well-known that the posterior mean θ̂n asymptotically follows

the normal distribution N(0, I−1
θ0

) under certain regularity conditions [17, 38], where

Iθ0 is the Fisher information matrix. Suppose that the entire data set is partitioned

into K subsets, each of which has nk observations. Let θ̂k,nk
be the posterior mean

and N =
∑K

k=1 nk. Define the aggregated Bayes estimate θ̃K,N as the weighted av-

erage of the posterior means θ̂k,nk
, θ̃K,N =

∑K
k=1 nkθ̂k,nk

/N. One can prove that the

aggregated Bayes estimate θ̃K,N also asymptotically follows N(0, I−1
θ0

) based on Levy’s

continuity theorem (see [39] and [40] among many others). Simulation studies show
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that the aggregated Bayes estimator performs equally well as the Bayes estimator.

Though this compression and aggregation scheme cannot save computation time of

the posterior mean in general, it is very useful for the OLAP of Bayesian estimation

in data cubes.

Another possible application of the statistical aggregation is to the problems of

ranking and ordering instances. In the ranking problem, one has to compare two or

more different observations and provide a rank to each observation. For example, web

search engines compare and sort hundreds of web pages by degree of relevance for a

particular request, rather than simply classifying them as relevant or not. Recently,

Clémençon et al. [41] proposed to learn the ranking rule by minimizing a ranking

risk of the form of a U-statistic. Hence, the statistical aggregation method could be

applied to reduce the computational costs of the minimization procedure.

One closely related work to this thesis is the binning technique [42, 43], which

partitions the sample space into many bins, compresses the data into the averages of

the bins and uses the compressed data to perform any statistical analysis. However,

when the sample space is multidimensional, the bins can be defined in many different

ways and it is not clear how to choose the best among them. The number of bins

increases exponentially as the dimension of space increases and there will be a huge

number of bins when the dimension of sample space is relatively large. Furthermore,

the existing asymptotic results are mostly for the one-dimensional case, which makes

the application of binning technique to multidimensional studies lack of theoretical

foundation.
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Another closely related work to statistical aggregation is the data squashing (DS)

[44] technique. DS is a model-free data compression technique which could be useful

when different users prefer different models for the same massive data set. The

recipe of DS is to compress the raw data into pseudo-samples attached with certain

weights. These weights are determined by matching the lower order moments. After

DS, statistical analyses maybe performed only based on the pseudo-sample and their

weights. However, the asymptotic behavior of the DS is largely unclear. Hence, the

quality of the statistical analysis based on the squashed data is difficult to evaluate

when some specific model is used. Likelihood-based DS (LDS) [45] is an extension

of the DS and it compresses the raw data into pseudo-samples by approximating the

likelihood of the raw data. Similar to the DS, the asymptotic theory of the LDS is

also unclear and the quality of LDS is largely unguaranteed.
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