Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-95-27

1995-01-01

Time Variability While Training a Parallel Neural Net Network

Tina L. Seawell and Barry L. Kalman

The algorithmic analysis, data collection, and statistical analysis required to isolate the cause of
time variability observed while an Elman style recurrent neural network is trained in parallel on a
twenty processor SPARCcenter 2000 is described in detail. Correlations of system metrics
indicate the operating system scheduler or an interaction of kernel processes is the most
probable explanation for the variability.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Seawell, Tina L. and Kalman, Barry L., "Time Variability While Training a Parallel Neural Net Network"
Report Number: WUCS-95-27 (1995). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/385

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/385?utm_source=openscholarship.wustl.edu%2Fcse_research%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Time Variability While Training a Parallel Neural Net
Network

Tina L Seawell and Barry L. Kalman

WUCS-95-27

August 1995

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

Time Variability While Training a
Parallel Neural Net Network

Tina I. Seawell and Barry L. Kalman

Abstract
The algorithmic analysis, data collection, and statistical analysis required to isolate the
cause of time variability observed while an Elman style recurrent neural network is trained in
parzallel on a twenty processor SPARCcenter 2000 is described in detail. Corretations of sys-
tem metrics indicate the operating system scheduler or an interaction of kernel processes is the

most probable explanation for the variability.

Introduction

Neural networks are a promising approach to nonlinear problems. One of the major draw-
backs to practical neural networks is the time required to train the network. Parallelization of
neural network training algorithms can decrease training time from months to weeks. Isolation of
algorithm and system problems becomes more difficult when parallelism is used. Determining
the source of a problem often becomes an exercise in statistical analysis.

A serial neural network training system, Trainrec, was developed by Barry Kalman and Stan
Kwasny {[KK93]. The training system combines an Elman simple recurrent network [EL88]

architecture, with a self-scaling error function to minimize the error, and the conjugate gradient

method with linesearch to minimize the error. Elman’s simple recurrent network adds a set of
feedback units (pseudo input units) to a feedforward neural network (see Figure 1). This allows
the neural network to have a memory of previous states. The training is epoch based, thus node
weights are not changed after each pattern is input, but after an entire set of patterns has been
input to the network. After a set of patterns is propagated forward, the error derivative or
linesearch direction is calculated and changes to the node weights are propagated backward.

Figure 1: Elman Simple Recurrent Neural Network

outpuT (O O --- O)

FEEDBACK

A parallel implementation of Trainrec, ParalTrainrec, was developed by Pete McCann and
Barry Kalman [MK94]. Original time experiments of the parallel algorithm did not exhibit time
variability. After training for approximately six months without difficulties a problem of signifi-
cantly larger size was attempted and the time required to execute a derivative epoch began to vary
greatly. A derivative epoch requires error derivatives to be computed for all hidden and output

units of the network. The time required to complete about eighty percent of the derivative epochs

varied by less than one second. For the remaining derivative epochs, the time varied from two to
as much as thirty times the normal completion time.

ParalTrainrec was designed to run on a Sun SPARCcenter 2000 multiprocessor, running the
Solaris2.4 operating system. The SPARCcenter 2000 is a shared-memory machine with a pair of
packet-switched XDBuses providing approximately 500 MB/sec of aggregate bandwidth. Our
SPARCcenter 2000 multiprocessor has 640 MB of main memory and twenty 40 MHz Super-

SPARC processors each with 36 KB of internal cache and 1 MB of external cache,

Parallelizati
ParalTrainrec uses coarse grained parallelism and is designed to train a neural net on
sequences of patterns [MK94]. The patterns used for testing the time variability of ParalTrainrec
are from Sejnowski and Rosenberg’s NETtalk experiment [SR87]. Sequences are divided as
evenly as possible among the available threads. A copy of the neural network is created for each
thread (this includes copying both the weights and the configuration of the neural network).
When ParalTrainrec is invoked the user specifies the number of derivative processors and
the number of linesearch processors that will be used. The number of linesearch processors must
be less than or equal to the number of derivative processors. Two semaphores, sema-one and
sema-two, are initialized for each thread that is to be created. Both semaphores are set to zero and
are only used to synchronize threads within ParalTrainrec (they do not effect other processes that
may be running). A thread is created for each derivative processor requested and is bound to a

lightweight process. A lightweight process is an execution resource or kernel thread, for more

information see the Sun0S35.2 Guide to Multi-Thread Programming.

When a thread begins execution, it is immediately bound to an available processor and
placed in a wait for sema-one. After the main process has posted to sema-one, threads begin an
epoch oriented forward propagation on sequences of patterns. Upon completion of the forward
propagation, threads increment sema-two and wait for the main thread to gather all error deriva-
tives, complete backpropagation on the weights, and increment sema-one. The first semaphore
controls thread execution and forward propagation, while the second semaphore controls back-

ward propagation, main process execution, and synchronization.

Data Collection

To isolate the cause of the observed fluctuations in training times, ParalTrainrec was exe-
cuted approximately 500 times. Each execution was limited to two derivative epochs and the
linesearch epochs necessary to calculate the gradient descent after each derivative epoch. All pro-
gram runs were initiated with the same initial weights and the same neural network configuration.
The configuration used was 105 input units, 42 hidden units, 27 output units, and 5 feedback
units. The input data contained 8517 patterns in 1016 sequences. For the initial weights and con-
figuration there were ten linesearch epochs for each derivative epoch. Some preliminary runs
using different numbers of processors were made to determine if the number of processors used
effected the time variability. The number of processors varied the lower bound of the time

required to process a derivative epoch. All further runs were made using 12 processors for a

derivative propagation and 4 processors for a linesearch. Of the approximately 500 executions of
ParalTrainrec, 434 were suitable for analysis.

Seven sets of tests were made. Test’s contained from 41 to 83 executions of ParalTrainrec
and varied an aspect of either the system environment or program thread control. The tests ran
with and without interference, with nice and without nice, with the threads bound and unbound,
and using a different set of processors (avoiding processor (). Two of the seven sets of executions
ran with interference. To create a known interference two copies of ParalTrainrec were executed
simultaneously, one as described above (short executions of two derivative epochs), while the
other ran continuously. This insured interference by a compute bound process using the same
processors as the test runs. No other user jobs were being processed during these tests, the only
competition was from system processes.

Data gathered included snapshots of all processes running on the Sparc 2000, the time
required for each derivative epoch and linesearch epoch, and the value of system metrics for the
duration of each execution. A snapshot of all processes running on the system was taken before
and after each execution of the program. The Unix command, ps, was used with the -el switch.
This listed all user and system processes running, their priorities, nice value, image size in main
memory, and the state of the process (running, sleeping, in the run queue, etc.). System metrics
were collected using the Unix command, timex, when invoking each execution. Timex was used
with the -s option. Seventy-six of the operating system counters assessed by the timex command
were placed into SAS data sets for statistical analysis. (SAS, Statistical Analysis System, is a sta-

tistical tool developed by SAS Institute Inc. of Cary, NC.) Statements within ParalTrainrec cap-

tured the time spent on derivative and linesearch epochs, indicating the part of the ParalTrainrec

code involved in the time variability.

Eroblem Isolation

Initial exarnination of the raw data revealed that the real time (clock time) varied in propor-
tion to the real time required to complete a derivative epoch. A linesearch ran for 7 to 10 seconds
of real time, while derivative epochs ranged from 3 minutes to 80 minutes. For complete execu-
tions (2 derivative epochs and 20 linesearch epochs) Table 1 lists the time statistics with respect to
interference. Notice that while the real and system time varied greatly the user time remained
comparatively constant. This pattern of time variability remains the same regardless of interfer-

ence. This and the large standard deviation of the system time was the first indication that the

variability might be the result of system processes.

Table 1: Time variability with and without interference

Variable Minimum Maximum Mean STD

331 runs of ParalTrainrec without interference

real time 639 5419 1741 1144

user time 5866 7623 6185 330

system time 6 19408 1985 3876
103 runs of ParalTrainrec with interference

real time 1380 5919 2968 1197

user time 5974 8204 6800 546

system time 20 14670 4249 3945

time is in seconds

Seventy-six system metrics were extracted from the data collection files using LISP and
inserted into SAS data sets as variables. Simple statistics (mean, range, STD, skewness, and kur-
tosis) were calculated for each of these variables. Some variables such as the size available for
kernel memory allocation were the same for all executions and were eliminated. Percentages that
could be calculated from other variables were removed from the data set. Other metrics showed
no activity and these were also eliminated. From the results, fourteen variables were selected for

further analysis. Table 2 lists the fourteen variables, their range, mean, and standard deviation.

Table 2: System Metrics Selected for Analysis

434 runs of ParalTrainrec {(each 2 derivative epochs long)
Variable Minimum Maximum Mean STD

real time in seconds 639 5919 2032 1268
user time in seconds 5866 8204 6331 471
system time in seconds 6 19408 2522 4006
percentage idle time 20 91 63 15
system calls per second 27 3156 116 184
system reads per second 4 260 23 20
system writes per sec- 0 494 3.5 25
ond
characters transferred 1598 131318 8667 8939
by system reads per
second
characters transferred 76 73805 1000 4735
by system writes per
second
process switches per 34 25652 5030 6692
second

Table 2: System Metrics Selected for Analysis

434 runs of ParalTrainrec (each 2 derivative epochs long)

Variable Minimum Maximum Mean STD
average run queue 1 8.5 1.67 1.65
length of processes in
memory
% of process in run 0 100 21 33
queue that are runnable
page faults per second 0.22 9.5 1 1.12
{from protection
errors)
address translation 5 4944 893 1136

page faults per second
(valid page not in mem-
ory)

To determine the independent variable causing the fluctuation of the system time, Pearson
correlation coefficients were calculated for the fourteen variables listed in Table 2. When consid-
ering all 434 executions, two sets of variables had more than ninety percent correlation. The first
set was the percentage of runnable processes in the run queue and the average run queue length.,
This correlation remained high for interference, but dropped drastically for noninterference. The
maximum run queue length for non-interference was two. The second set was the system reads
per second and the number of characters transferred by system reads per second. The correlation
for this set remained high for non-interference, but dropped into the 80% range with interference.
When only interference executions were considered, there was over a 90% correlation between
address translation faults, process switches and real time. Without interference, the system time,

process switches and percentage of runnable processes in the run queue were over 90% corre-

lated.

The set of data with the most correlation were 62 executions ran with threads bound to the
processors, using processors 0 through 11, with the nice value set to 19, and without interference.
There were 41 correlations greater than 90% (forty-eight percent of the variables). The real, user,
and system time were all correlated with the system calls and system reads per second, the num-
ber of characters transferred by system reads per second, the process switches, percentage of run-
nable processes, and the address translation page faults per second. Graphing the real, user, and
system times against process switches for the seven different types of runs produced graphs with
essentially the same curves (see Figure 2). Process switching is the independent variable causing
the system time variability. The process switches are dependent upon the number of runnable

processes in the operating system run queue.

Figure 2: Real, User, and System Time against Process Switches

2 ! £ ith interf

150 140
s
113 105
u
75 "u 70 »
c r
38 as
5 I
| 3 .
010 48 85 123 160 [R~] 125 170 215 260
130 180 120
s
s s
S8 1358 %0
65 90 60 u
u
— r
a3 45 ac
r T q
a o 1]
[+] 35 70 105 140 0 40 80 120 160 0 2% 50 75 lT100
200 s 90.0 s
1850 67.5 u
100 45.0 r
so r 22.5
0.0
°3 a0 80 120 160 o 2s 50 75 100
x-axis = 100s of process switchs per second r = real time
y-axis = time in 100 seconds 8 = gystem time
u = user time

10

Source of process switches

From the graphs in Figure 2 it is obvious that the variability of the system time is related to
the process switches per second. The correlation between process switches and system time
occurs even when there is no interference from other user processes. Ron Marz of IBM [MR94)
suggested that process priority is often related to the system time. A script file was created to take
snapshots of all processes (system and user) every ninety seconds. At each snapshot, time infor-
mation of the current derivative epoch and linesearch epochs were also gathered. While the script
file collected data, ParalTrainrec ran continuously.

The amount of data to be analyzed was reduced by removing all information about pro-
cesses that were sleeping and all linesearch times. The time variability was not affected by the
script file, so all data pertaining to the script file was also removed. The remaining data showed
only ParalTrainrec, a few system processes that periodically wake up and several instances of
other user processes. During the few derivative epochs when other processes were running the
basic pattern of priority changes exhibited by ParalTrainrec was not affected. Figure 3 lists a
small portion of the process data collected. The list is typical of the repeat pattern revealed by the

process snapshot. In Figure 3, between each “Derivative Time:” listing, the same source code is

executed.

11

Figure 3: Priority Fluctuations of ParalTrainrec

F s UID

80 800
80 800
8 0 BOO
Derivative
80 800

80 800

80 800

Derivative
80O

800

800

800

800

0
800
800
800
800
B0OQ
800
800
800
BOO
BOO
800
800
800
0
800

80
-]
890
80
80
90
o]
o}
Q
R
]
o]
o
[+
]
o]
o]
0
Q
o
Q
R 800
Q
R
[+
0
0
Q
0
0
0
0
[+
[+
0
o]
o]
0
e
©
0
[s
(s,

1
8
8
8
8
B
8
8
8
B
8
8
8
8
9

1

800
800
800
800
800
800
800
800
800
800
800
800
0
B0OO
800
800
800
800
800
eoo
800

1

8
8
8
8
B
]
8
8
8
B
9
8

8
]
8
berivative

o BOO
Q
0
i
0 800
0
o
1

80O
800

800
800
Derivative
80 800
1% o 0
B C 800
80 8OO
Darivative
0o BOO
o 800
©
o

8
8
8
8
8
8
8
8.
8
]
B8
e

800
800
Derivative

PID PPID C PRI NI

4408
4408
4408
Time:
4408
4408
4408
Time:
4408
4408
4408
4408
4408
3
4408
4408
4408
4408
4408
4408
4408
4408
4408
4408
4408
4408
4408
3
4408
4408
4408
4408
41408
4408
4408
4408
4408
4408
4408
4408
4408
4408
3
4408
4408
4408
4408
4408
4408
4408
4408
4408
4408
4408
Time:
4408
4408
4408
Time:
4408
3
4408
4408
Time;
4408
4408
4408
4408
Time:

4404 80 69 20
4404 80 595 20
4404 80 99 20
206.848147 sec
4404 80 99 20
4404 80 9% 20
4404 80 99 20
206,847586 sec
4404 80 9% 20
4404 80 45 20
4404 80 39 20
4404 80 39 20
4404 80 39 20

fla2acel
£7aZacel
f7alacel

fra2ace0
fra2ace0
fTa2acel

f7a2acel
f7a2acel
f7a2acel
f7a2ace0
fla2acel

0 80 0 sY £f739n998

4404 80 39 20
4404 80 39 20
4404 80 39 20
4404 80 39 20
4404 80 39 20
4404 B0 65 20
4404 80 66 20
4404 80 39 20
4404 B0 67 20
4404 80 39 20
4404 B0 39 20
4404 80 39 20
4404 80 46 20

f7a2aced
fla2acel
f7aZacel
f7aZace0
f7a2acel
f7a2acel
fla2acel
flal2ace0
fla2acel
f7aZacel
flaZacel
flazacel
f7a2acel

0 80 0 sY £739b998

4404 80 68 20
4404 80 39 20
4404 BO 39 20
4404 80 39 20
4404 80 39 20
4404 80 39 20
4404 80 39 20
4404 BO 56 20
4404 B0 39 20
4404 80 39 20
4404 80 46 20
4404 80 39 20
4404 80 39 20
4404 B0 39 20

£7a2ace0
fla2acel
f7aZacal
f7a2acel
f7a2acel
fTa2acel
fla2acel
f7a2acel
f7a2ace0
fla2acel
f7a2acel
fra2acel
f7a2aced
f£7a2acel

0 80 0 sY £739b998

4404 80 239 20
4404 80 68 20
4404 80 39 20
4404 B0 39 20
4404 80 39 20
4404 80 39 20
4404 80 39 20
4404 80 39 20
4404 80 39 20
44049 B0 78 20
4404 80 59 20

f7a2aced
£ra2acel
£7a2acel
flaZacel
f7a2acel
f7azace0
f7a2acel
flaZ2acel
f7a2acel
f7aZacel
f7a2acel

3912.954029 sec

4404 80 89 20
4404 80 99 20
4404 80 99 20
206,845107 sec
4404 80 79 20

f7a2acel
f7a2acel
f£7a2acel

fla2aceld

0 80 0 SY £739b398

4404 80 99 20
4404 8¢ 99 20
206,845004 sec
4404 80 99 20
4404 80 99 20
4404 80 99 20
4404 80 99 20
206,861655 sec

f7a2acel
fla2aced

f7a2ace0
f7a2acel
f7a2acel
f7a2acel

12

ADDR

82 WCHAN TTY
6957 pte/0
6957 pta/0
6357 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/o
6957 pts/fo
6957 pts/fo
€957 pts/o

1] H
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
€957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0

0 ?
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
€957 pts/0
€957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0

0 ?
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 pts/0
6957 @09230a0 pts/0
6957 pts/s0
6957 pts/¢
6957 pts/0
€957 pts/0
6957 pts/o
6957 pts/0

0 ?
6957 pts/0
€957 pts/0
6957 pts/0
6957 pts/0
6957 pks/0
6957 pts/o

TIME COMD

83042:17
B2062:53
83089:57

83104352
83125:26
83152:31

83167325
83180:30
83198:29
83216:22
B3234:24
860:00
B3252:19
83270:12
83288:08
83306:07
83324310
83342:09
83360:08
83378:09
83396:06
B3414:06
83431:57
83449:57
B3467:55
861:38
83485356
83503359
83521:58
83539:47
83557:40
83575:38
83593:33
83611:37
83629:1¢6
83646:01
83662:00
83677:56
B3693:43
B3708:31
863:15
83722330
83736314
83748:28
B3759:55
B3770:37
83780:52
83791:01
83801:12
B3811;27
83829:35
83836:33

B3842:31
83857:34
83884:39

83905:05

B64:22
83918:23
83945:27

83967:37
83977:09
84004:13
84030:13

YPARALTR
YPARALTR
YPARALTR

yPARALTR
yPARALTR
yPARALTR

YPARALTR
yPARALTR
YPARALTR
YPARALTR
YPARALTR
faflush

YPARALTR
YPARALTR
yPARALTR
yPARALTR
yPARALTR
YPARALTR
YPARALTR
YPARALTR
yPARALTR
yPARALTR
¥PARALTR
yPARALTR
yPARALTR
faflush

yPARALTR
yPARALTR
YPARALTR
¥PARALTR
yPARALTR
YPARALTR
YPARALTR
YPARALTR
YPARALTR
yPARALTR
YPARALTR
yPARALTR
¥PARALTR
yPARALTR
fsflush

yPARALTR
YPARALTR
yYPARALTR
yPARALTR
yPARALTR
yPARALTR
yPARALTR
yPARALTR
YPARALTR
YPARALTR
YPARALTR

YPARALTR
yPARALTR
YPARALTR

¥PARALTR
faflush

yPARALTR
YPARALTR

yPARALTR
¥PARALTR
YPARALTR
yPARALTR

During the majority of derivative epochs, which took about 3.5 minutes, ParalTrainrec had a
priority value of 99, the lowest priority. Infrequently this value would briefly drop, increasing the
priority, without affecting the time required to complete a derivative epoch. In approximately
one-fifth of the derivative epochs, the priority value would continue decreasing, giving Paral-
Trainrec a higher and higher priority. In most of these cases the priority bounces around, several
times reaching a high priority of 39. This high priority is often maintained for 4 to 10 minutes.
When the priority becomes low enough, the derivative completes. In these epochs, ParalTrainrec
is put to sleep and eventually placed in the run queve. The process in the run queue that is causing

the process switches is ParalTrainrec itself.

Conclusion

The number of patterns processed (the amount of input data) and the priorities given to
ParalTrainrec by the system scheduler affect the time required to execute a derivative epoch. The
time variability did not occur in the initial time trials of the parallel algorithm. Only after increas-
ing the number of patterns processed was a noticeable increase in the real time of a derivative
epoch observed. The data collected from numerous executions of ParalTrainrec show that the
increase in real time is directly related to an increase in system time and the increase in system
time is correlated to the number of process switches. The process switches result from the num-
ber of runnable processes waiting in the run queue. Snapshots show that the priority of Paral-

Trainrec changes dramatically during the longest execution times and that the only process in the

13

run queue during those episodes is the Paral Trainrec algorithm, This indicates that the scheduler

or interaction of the scheduler and other kernel processes is the most likely source of the observed

time variability.

Acknowledgments
Thanks to Dr. Ken Wong for his suggestions and guidance. Also, thanks to the Washington

University Computer and Communications Research Center for uninterrupted use of the SPARC-

center 2000 multiprocessor.

References

(EL88] J.L.Elmann, Finding Structure in Time, CRL Technical Report 8801, Center for
Research in Language, University of California, San Diego, 1988.

[KK93] Barry L. Kalman and Stan C. Kwasny, TRAINREC: A System for Training Feedfor-
ward & Simple Recurrent Networks Efficiently and Correctly, Technical Report
WUCS-93-26, Washington University, May 1993

[MK94] Peter J. McCann and Barry L. Kalman, Strategies for the Parallel Training of Simple
Recurrent Neural Networks, Technical Report WUCS-94-15, Washington University,
June 1994,

[MR94] Ronald Mraz, Reducing the Variance of Point-to-Point Transfers for Parallel Real-
Time Programs, IEEE Parallel & Distributed Technology, 1063-6552/94, 20-31, 1994,

[SR87] T.J. Sejnowski and C.R. Rosenberg, Parallel Networks that Learn to Pronounce

English Text. Complex Systems 1, 145-168, 1987.

14

	Time Variability While Training a Parallel Neural Net Network
	Recommended Citation

	tmp.1439928365.pdf.0Ik97

