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ABSTRACT OF THE DISSERTATION 

Increasing pH in cancer: enabling a new therapeutic paradigm using novel carbonate 

nanoparticles  

by 

Avik Som 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2018 

Professor Samuel Achilefu, Chair 

Enormous progress has been made to treat cancer, and yet the mortality rate of cancer remains 

unacceptably high. High clinical resistance to molecularly targeted therapeutics has pushed interest again 

towards inhibiting universal biochemical hallmarks of cancer. Recent evidence suggests that malignant 

tumors acidify the local extracellular environment to activate proteases for degrading the tumor matrix, 

which facilitates metastasis, and explains why more aggressive tumors are more acidic. Current therapies 

have only focused on using the low pH for enhancing drug release in tumors, thereby still relying on the 

traditional paradigm of intracellular inhibition of pathways, a method that continues to have mixed 

results.   

In this dissertation we explore the development of a novel platform that can be made to monitor 

and modify the critical tumor extracellular environment. The platform enables a shift in the paradigm of 

current cancer therapy from a predominantly intracellular approach to an extracellular synergistic method 

of targeting cancer. In the process, we demonstrate the synthesis of a novel type of CaCO3 nanoparticle, 

its stabilization, the increase of pH in vivo, a mathematical justification and simulation, and the 

subsequent inhibition of tumor growth and metastasis. By neutralizing the tumor extracellular 

microenvironment, the platform aims to prevent tumor progression and metastasis as well as minimize the 



 x 

traditional intracellular based pathways of resistance. Because of the broad universal aspect of low 

extracellular pH in cancer, particularly in the more malignant tumors, we expect this platform will also 

have wide applicability, with particular potency on the most aggressive of cancers.  
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Chapter 1: Introduction  
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1.1. Cancer Therapy 

In spite of the declaration of “War on Cancer” 40 years ago, cancer remains a major public health 

concern worldwide, causing nearly 1 in 4 deaths in the US alone. 1,2 In 2013, 580,535 cancer deaths 

are expected in the US. 1 These statistics point to the enormous challenges in winning the “War on 

Cancer” and indicate the need to rethink treatment paradigms that will improve treatment 

outcomes. 

1.1.1 Molecularly targeted chemotherapeutics:  

Cancer is now accepted as a disease caused by genomic instability and epigenetic factors. 3,4 This 

understanding has ushered in a new set of drugs that target specific molecular pathways used by 

cancer cells to proliferate and elude the host defense system. Through genomic, proteomic, and 

metabolomics analyses, several highly successful molecularly targeted therapeutics have been 

developed such as Dasatinib, which targets tyrosine kinases in chronic myeloid leukemia, and 

Temsirolimus, which targets the mammalian target of rapamycin (mTOR) found in solid tumors 

such as renal cell carcinoma.5,6 However, in spite of embodying the paradigm of most current 

therapeutic research, targeted therapeutics are rarely used for curative intent. Indeed, most targeted 

therapeutics require a specific subset of clinical patients to demonstrate efficacy.7 Given an 

average development cost of about 1.8 billion dollars per drug, this inefficiency has clinicians 

turning towards alternatives, such as screening old drugs for off-label use. 8 In addition, due to the 

redundancy of intracellular pathways, cells are able to mutate around the targeted pathway, 

developing resistance. Examples include Imatinib (Anti-BCR-ABL) and anti-Her-2 therapies, 

whose mechanisms of resistance are now active fields of study. 9,10 Given the difficulties we face 

with molecularly targeted chemotherapeutics, these findings support the need to re-explore the 

hallmarks of cancer as a universal target for cancer therapy.  
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1.1.2 Hallmarks of cancer  

Cancer is the disease of unrestrained growth and metastasis by cells within the body generally 

induced by a sequence of genetic mutations that can be clonal (from a single cell origin) or 

varied. 11 Cancers can effect patients at any point in the life of a human, with increasing 

propensity with age.11  Although each cancer is relatively unique, with specifics based on its 

mutation history, much of the resulting phenotype can be said to be common in various tumors 

but different from the surrounding normal tissue.11 This is of strict importance because cancer, 

unlike many prokaryotic or fungal infectious diseases, also shares a significant component of its 

antigens with the host. This makes creating both novel compounds and treatments difficult for a 

curative approach without also eliminating the host patients.  

These unique hallmarks among cancers include: increased and limitless mitosis from self 

sufficiency of growth signals, insensitivity to inhibitory signals, evasion of apoptosis, immune 

evasion, tissue invasion, and metastasis, hypoxia, extracellular acidity, deregulated cellular 

energetics and increased angiogenesis.11,12 Further, the tumor microenvironment, including 

cancer associated fibroblasts, pericytes, cytokines, and extracellular matrix, play an important 

role in cancer progression, metastasis and growth. 13 Metabolic hallmarks, such as the 

deregulation of glycolysis, have resulted in a unique acidic extracellular environment that is both 

important for tumor prognosis and for differentiating from other tissues.14 The tumor 

inflammatory milieu creates a mutagenic environment, and can often induce the existing 

surroundings to become pro-tumor contributing to immune evasion.15 Each of these unique 

hallmarks, because of their commonality, has been targeted by nanomaterial based techniques for 

both imaging and therapy.  
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1.1.3 Targeting the hallmarks of cancer for generalized chemotherapy:  

Malignant tumors rely on several fundamental pathophysiological processes for survival. 

Targeting these processes is the favored clinical approach because the agents can be widely used 

to treat diverse cancer types. Thus, most clinical progress involves therapeutics targeted against 

DNA replication, microtubules, and glycolysis. However, each of these methods has typically 

severe side-effects. Anti-mitotic agents, for example, have deleterious effects on any rapidly 

dividing normal cells, with life threatening implications from bone marrow loss that can lead to 

immunodeficiency and life threatening infection.16 With only a few exceptions, these 

chemotherapies are rarely curative and alternative compensatory metabolic pathways often lead to 

drug resistance. For example, glycolysis inhibitors are not effective because this conserved 

metabolic process is replaced by glutamine consumption from muscles, often leading to 

cachexia.17,18  

1.2 Extracellular acidic environment is a physiologic hallmark and 

therapy target of cancer  

In the face of these challenges, tumor extracellular acidity has been revisited as a potential target. 

Models on tumor extracellular pH (pHe) demonstrate a significant relationship between tumor 

invasiveness and the increased production of acid in most tumors. 19,20 To maintain normal 

intracellular pH (pHi) and to promote growth by degradation of the extracellular matrix, tumor 

cells actively transport the excess protons generated during enhanced glycolysis, the Warburg 

effect, to the extratumoral environment. 21 This leads to a sustained acidic tumor environment, 

with an average extracellular pH of 6.8, as opposed to the buffered and highly regulated interstitial 

pH of about 7.4 in the vicinity of healthy tissue.22 Tumor cells actively use this 4 fold increase in 
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hydrogen ion concentration to degrade the tumor matrix and thus sustain its growth. 20,21 This is 

possibly due to an increase in matrix metalloproteinase activity at lower pHs. This realization, that 

low pHe is an indispensable condition for tumor metastasis and malignancy, has increased interest 

in its potential as a therapeutic target.23,24 

1.2.1 Recent work on pH sensitive chemotherapeutics:  

The acidic environment of cancer is a unique condition that can be targeted to treat diverse tumor 

types. Groups have tried changing the low pH environment of tumors by either inhibiting carbonic 

anhydrases or directly neutralizing the tumor acid environment via systemic administration of oral 

sodium bicarbonate. 23,24 Both of these models have shown efficacy in in vivo animal models.24 

However, carbonic anhydrases are important in normal cell physiology and given the vast class of 

carbonic anhydrases available to tumors in their genetic material, whether the inhibitors can 

overcome the system’s redundancy, such as that seen in anti-glycolytic drugs, remains unknown. 

The systemic administration of untargeted oral sodium bicarbonate to directly neutralize the acid 

environment of tumors is not practicable in clinics because of the potentially severe consequences 

of metabolic alkalosis.25 In addition, both of these treatments modify pH only temporarily. 

1.2.2 Nanomaterials as a potential method for neutralization.  

Nanomaterials, and in particular, nanoparticles, have been able to deliver toxins locally that 

otherwise have systemic side-effects locally to a tumor site. Nanoparticles have been made to be 

pH sensitive for the delivery of other chemotherapeutics as well. However, nanomaterials have not 

yet been designed to change proton concentrations themselves in vivo. As such they may be a 

promising technology to enable the practical application of changing pH in tumors in vivo as a 

therapeutic paradigm. 
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1.3 Nanomaterials as a medically significant tool and technology 

Indeed, in the most recent years, nanomaterials in general, have been used for tackling the 

question of treating cancer. A nanomaterial is defined as a particle or structure, in its broadest 

form < 1 𝜇m, though generally produced in the range of 10 nm to 500 nm. Nanomaterials can 

come in a variety of shapes and share a series of interesting properties compared to their 

macroscopic peers, particularly as it relates to biological systems. The average cell in the body is 

10 𝜇m, and has the general capability to ingest nanoparticles < 1𝜇m in size. 26 This has resulted 

in a series of advantages for classical delivery. Nanomaterials can be made to respond directly to 

the hallmarks of cancer, such as pH. (Figure 1.1) 

 

Figure 1.1: Targeting the hallmarks of cancer  

Nanomaterials are unique in their ability to respond to particular stimuli and targets. Antibodies, 

peptides, and aptamers, can all target growth factor receptors, or markers of angiogenesis. Using 

material and unique properties of nanoparticles, nanomaterials are uniquely capable of 

responding to stimuli such as hypoxia, pH, and enzymatic activity. 
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1.3.1 Currently used nanomaterials in medicine 

Currently existing nanomaterials have had significant use in material science, paints, and other 

manufacturing processes. 27,28 In addition, nanomaterials have already been applied for medical 

applications and reached a level of commercialization, including liposomes for drug delivery, 

polymeric nanoparticles for blood brain barrier, nanoemulsions and drug solubility enhancers, 

antibiotics, sunscreen, and quantum dots for imaging, and silica particles for fluorescence. 28 

Nanomaterials as such have been primarily used in therapeutic applications, but it is clear that 

the capability of taking to a commercial medical outlet remains a possibility. Environmental and 

toxicity concerns also continue to be of interest and study. 27 While most nanomaterials have 

been used for intracellular delivery and targets, interesting and further trends then for 

nanomaterials lie in pushing into extracellular environment modulation. Nanomaterials may be a 

practical method of changing pH.  
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1.4 Advantages of nanomaterials in medicine 

1.4.1 Pharmacokinetics 

A significant advantage of nanomaterials refers to its pharmacokinetic properties, both in 

increasing the duration of effect by agents and reducing the necessary dose.  Pharmacokinetics 

relates to the distribution, spread, and time course of material remaining in the body. Single 

molecule drugs range in the size range of approximately < 1 nm, and are generally cleared by 

both glomerular filtration of the kidneys, and liver filtration and removal via bile. As a result of 

this, free drug concentrations can clear quickly, in < 24 hours. 29,30 Nanoparticles are generally 

large enough to avoid glomerular filtration, but small enough to leak out into the tumor 

microenvironment. Addition of stabilizing molecules such as polyethylene glycol or 

polysaccharides on the nanoparticle surface can dramatically improve blood circulation times 

and avoidance of the macrophages of the reticuloendothelial system.   This property in particular 

has been heavily used to enhance the half life in blood of a number of otherwise rapidly excreted 

therapeutics. Examples of this phenomenon include Doxil, the liposome formulation of 

doxorubicin. 29 In imaging applications, dendrimers nanoparticles have been used to prolong the 

clearance rate of gadolinium contrast agents. 31  In addition to contrast agents, nanoparticles can 

be functionalized with drugs and used as vehicles for delivery for diseases such as cancer32.  In 

doing so they can alter the pharmacokinetics of drug release, creating more therapeutic potential.  

Multiple nanoparticle formulations have been used for cancer therapy, including a paclitaxel-

loaded poly(lactic-co-glycolic) polymer nanoparticles, doxorubicin-cojugated PLGA 

nanoparticles, dendrimers with 5-Fluorouracil incorporated, lipid-based anti-neoplastic 

nanoparticles, and gene-delivering polyethylenimine nanoparticles33. Tuning size is thus very 

important for biodistribution. 
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1.4.2 Pharmacodynamics 

Another advantage is in the pharmacodynamics of nanoparticles.  In traditional 

pharmacodynamics, a free drug is an active drug, while a bound drug is inactive. A nanoparticle 

can be treated like an effective bound drug. Tuning release from the nanoparticle as a result 

becomes a potent way to increase therapeutic efficacy at local biological sites while also 

reducing off-target side-effects. This advantage of nanomaterials has driven a large degree of 

clinical efficacy by increasing the absolute amount of the underlying drug dose a person can 

tolerate, such as seen in Doxil, the liposome form of doxorubicin, or in more recent drugs such as 

in Parkinson’s. 34,35   

1.4.3 Surface area to mass ratio 

 Surface area to mass is related as a function of 1/r, where r is the radius of the material. As a 

result, nanomaterials have a significantly increased surface area to mass ratio as compared to 

their macromaterial counterpart. The interface of a particle’s surface to its environment is the 

basis on which a large number of chemical reactions can occur. Per unit mass, increasing the 

surface area to mass ratio thus greatly enhances the available reactant in the particle to the 

environment. This phenomenon has been used to create sensitive changes in the nanoparticle 

when in particular environments such as pH 36,37 , as well as potential enhance binding 

phenomenon due to multivalency from multiple surface ligands on a single particle.38  (Figure 

1.2) 
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Figure 1.2: Microscopic vs Macroscopic nanomaterials 

An important element of nanoparticles compared to its microparticle counterpart is the increased 

surface area to volume ratio. a) Representation of a microparticle of 1 𝜇m diameter b) 

Representation of the number of 100 nm diameter particles able to fit in the volume of a 1 µm 

diameter particle, which is nearly 10x more surface area.  

1.4.4 Enhanced Permeation and Retention: 

In cancer and inflammation, vessels of the body can become leaky for a variety of reasons, 

including rapid angiogenesis, as well as a way for immune cells to enter the local area.29 This has 

been proven by both casts and surface scanning images demonstrating the gaps.29 More recently, 

this permeability has been reported to not be only static, but also have a temporal dynamic 

nature, with reports of bursts of fluid from the blood into the tumor interstitial area. 39 Further, in 

cancer, in particular, the growth of cells with a lack of traditional coordination, often means the 

lack of lymphatics, the body’s natural sewage system. As a result, fluid and particles that enter 

via these leaks, tends to not be cleared as rapidly as they would be in normal tissue. 40 These 

leaks are size dependent, and have been found to hover around the nanoparticle size range (10-
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500 nm) depending on disease or cancer type. This as a result causes a selective increase in the 

concentration and aggregation of nanoparticles within the area of diseased tissue, allowing a 

natural targeting due to size. 40 In addition, because of the size, nanoparticles can have increased 

diffusion capabilities into the tissue as compared to the macromolecular constructs, with smaller 

particles going farther. The lower limit of size is limited finally by the glomerular apparatus. The 

upper limit of size is limited by this leakiness of blood vessels. (Figure 1.3) 

 

Figure 1.3 Pharmacokinetics: Evading glomerular filtration and tumor retention by 

enhanced permeation and retention (EPR) 

Nanoparticles are unique in how their size affects their in vivo performance. a) (Left) Small 

molecules (triangles) filter easily in the fenestrations seen in the glomerular renal filtration 

system, whereas larger nanoparticles can avoid this filtration and continue on to the target. b) 

(Right) Representation of the EPR effect, where, due to their size, nanoparticles selectively 

penetrate into the tumor region but not into normal tissue. In addition, the lack of lymphatics in 

the tumor prevents clearance causing increased size-induced retention. 
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1.5. Capabilities of Nanoparticles 

1.5.1 Targeted delivery of compounds 

Targeting of nanoparticles can be done both passively, relying on the size effect induced EPR 

effect, as well as by adding targeting groups, whether antibodies, peptides, or aptamers targeting 

specific aspects such as angiogenesis, hypoxia, or protein upregulation like folate or EGF. 41-43   

These targeting groups can enhance the percentage of nanoparticles in an area, and are valuable 

directors in inducing cellular uptake and directing cellular delivery. 38,44  

1.5.2 Sensing the environment- nano tuning delivery 

 A consequence of the increased surface area to mass ratio is an increased ability to sense 

environments. This allows an increased reaction rate at the surface for a variety of chemical 

reactions including protonation, hydration, protease degradation, or a change in charge of the 

particle. This change effectively signals a difference externally whether for the delivery of a 

drug, or for imaging purposes. 45-48   Examples include pH sensitivity by nanoparticles to the 

acidity in the tumor microenvironment, (approximately a pH of 6.5) for therapy. 37,49-52 

Nanoparticles have not yet been used to modify this environment. 

1.5.3 Entering and modifying the intracellular compartment 

The intracellular compartment is composed of both the cytosol and a variety of organelles. By 

and large, nanoparticles enter the cell via a lysosomal pathway, with a variety of specific 

endocytosis mechanisms. The lysosome itself has a low pH (about 5), as compared to a cytosolic 

pH have 7.2. Multiple nanoparticles have thus been developed to escape the lysosome, using the 

proton sponge effect, an effect of using poly-amines and bases to break the barrier by osmotic 
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lysis.  53-57 Other groups have used methods such as viruses to deliver cargo to the cytosol, 

external stimuli to break the lysosomal membrane for delivery, and even others rely on passive 

diffusion across membranes post release in the extracellular environments, such as hydrophobic 

chemotherapies or proton channels that already exist. 58-60 All of these methods deliver 

components that end up changing the intracellular compartment in either composition, or more 

commonly delivering to change gene products (miRNA or siRNA) themselves. 53,61,62 

1.5.4 Quenching and Imaging 

Nanoparticles, for imaging, can also serve as a quenching sink, a consequence of being able to 

deliver and generate an easy area for binding. This phenomenon has been heavily used for gold 

in particular, as well as other nanoparticle bases.63-68 In addition, nanoparticles are capable of 

triggered release and as a result do well as a prodrugs and activatable imaging agents. 36,37,69-71 

1.5.5 Modifying the extracellular compartment 

The extracellular environment has become of increasing interest because of its importance in 

tumor growth and metastasis. Trying to target and change this area howevser has only recently 

become of recent interest. The question remains whether the advantages held by nanoparticles 

can be used to enable a new therapeutic paradigm involving increasing the local pH of tumors in 

vivo. 
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1.6 Aims of the dissertation.  

Given this context, the goal of this dissertation was to explore the effects of pH on tumor growth 

through the development of a novel pH neutralizing nanoparticle. Accordingly, we investigated the 

following hypotheses.  

Chapter 2: The acidic extracellular pH of tumors has a downstream effect on surrounding stromal 

fibroblasts.  

Chapter 3: The mathematical simulation of CaCO3 in vivo will predict the ability to change pH 

selectively in vivo 

Chapter 4: CaCO3 can be synthesized as a nanoparticle 

Chapter 5: CaCO3 nanoparticles have minimal toxicity and have a systemic biodistribution that reaches 

the tumor 

Chapter 6: Systemic administration of CaCO3 nanoparticles can increase pH in vivo and inhibit tumor 

growth and metastasis. 
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Chapter 2: Effect of pH on the extracellular 

environment and surrounding stromal cells 
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Chapter Summary 

 

We explored the effect of the acidic microenvironment on surrounding stromal cells. Octamer-

binding transcription factor 4 (OCT-4) is an important marker of cellular de-differentiation that 

can be induced by environmental stressors, such as acidity. Here we demonstrate that chronic 

acidic stress in solid tumors induced OCT-4 expression in fibroblasts and other stromal cells in 

four tumor models. The results have implications for how tumors utilize pH modulation to 

recruit associated stromal cells, induce partial reprogramming of tumor-associated stromal cells, 

and respond to therapy. It demonstrates the importance of acidity on tumor growth. 
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2.1 Introduction  

Tumor-stromal interactions play important roles in tumor growth and metastasis with 

direct impact on extracellular matrix enzymes, cytokines, matrix polymers such as collagen and 

hyaluronic acid derivatives, hypoxia, and pH. 1-5 Previous studies have shown that stromal cells, 

such as cancer-associated fibroblasts and perivascular cells, participate in tumor metastasis and 

growth. 6,7  A vexing question is how tumors recruit and alter stromal cells, including fibroblasts, 

from normal tissue during cancer growth and metastasis. 8-10 

The cancer microenvironment replicates in many ways the characteristics of normal stem 

cell environments.11-13 Several factors, such as hypoxia and the acidic environment found in the 

cancer stem cell niche, are also stressors on cell metabolism and division.11,14  Literature suggests 

that these same stressors can induce at least a partial reprogramming of fibroblast cells in vitro, 

resulting in the expression of OCT-4 in culture under conditions of metabolic stress. 15 Both in 

vivo and in vitro studies have shown that OCT-4 mediates cellular development. Given that the 

in vivo microenvironment of many solid tumors is weakly acidic (pH 6.5)16-19, we hypothesized 

that acid-mediated chronic mild stress would induce a partial reprogramming of stromal cells in 

vivo, as indicated by increased OCT-4 expression.  Our results show that in vitro replication of 

the chronic mildly acidic solid tumor environment induced OCT-4 expression in murine 

fibroblasts.  We also demonstrated that OCT-4 expression increased in fibroblasts and other 

supporting stromal cells within tumor xenografts. This expression of OCT-4 may explain some 

of the stem cell-like phenotypes of stromal cells within the tumor microenvironment. 
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2.2 Methods 

2.2.1 Statement on Ethics 

All animal experiments were conducted in accordance with the approved guidelines for the care 

and use of laboratory animals in research, and the protocol was approved by the Washington 

University Animal Welfare Committee. 

2.2.2 Immunofluorescent staining  

Cells or tissues were stained per the manufacturer’s protocol using rabbit polyclonal (ab19857, 

Abcam, Cambridge, MA; 1:200 dilution) or murine anti-OCT-4 (ab91194, Abcam, Cambridge, 

MA; 1:200 dilution), and rat anti-Vimentin (ab115189, Abcam, Cambridge, MA; 1:200 dilution).  

Secondary antibodies were Allophycocyanin anti-mouse IgG (A-865, Life Technologies, Grand 

Island, NY; 1:1000), AlexaFluor 555 anti-rabbit IgG, and anti-Rat IgG AlexaFluor 647 (Abcam, 

Cambridge, MA; 1:1000 dilution).  Cells were visualized with an Olympus FV1000 Confocal 

Microscope using 488 nm, 543 nm, or 633 nm for excitation.  Tissue was visualized with an 

Olympus BX51 upright epifluorescence microscope (Olympus America, Center Valley, PA) 

using excitation/emission filters of 480 nm / 535 nm, and 620 nm / 700 nm. 

2.2.3 Tumor model growth 

BxPC-3, MDA-MB-231, and EMT-6 cells were injected subcutaneously into the dorsal flanks of 

athymic nude mice, while 4T1luc cells were injected into Balb/c mice.  Mice were sacrificed 

when the tumors were between 0.5 and 1.5 cm in diameter. In certain cases, tumors may have 

had exposure to the near-infrared tumor imaging agent cypate prior to excision. Tumors were 

excised based on gross appearance and frozen in OCT media. The average pH in 4T1 tumor 



 29 

models was 6.8 +/- 0.1 pH units, as measured by an invasive probe (5 mm probe). The average 

pH level in EMT-6 and BxPC-3 tumors was not measured, previous studies reported acidity in 

BxPC-3 and EMT-6 tumor models and the importance of the pH for chemotherapy resistance.19    

Tissue sections were cryosectioned at 10 𝜇m thickness. Tissue was visualized with an Olympus 

BX51 upright epifluorescence microscope (Olympus America, Center Valley, PA) using 

excitation/emission filters of 480 nm / 535 nm, and 620 nm / 700 nm. 

2.2.4 Cell culture 

MDA-MB 231, 4T1luc, and BxPC-3 tumor cells, and 3T3-GFP fibroblasts were cultured alone 

or in co-culture in acidic (pH 6.5), slightly acidic (pH 6.8), or non-acidic (pH 7.4) media 

(DMEM + 10% FBS + 1% Pen Strep) in 8 well slides. Acidic media was created by titrating 

DMEM + 10% FBS + 1% Pen Strep media with 1 M HCl to the desired pH range. Slides were 

incubated for 7 days without any modifications in 5% CO2 at 37oC, after which they were 

stained for OCT-4. A summary of techniques can be found in Figure 2.1. 

2.2.5 Longitudinal study 

Cells were cultured as described above in normal media overnight and then switched to acidic 

conditions at day 0, 1, 3, and 5 and incubated until day 7 prior to immunostaining.  

2.2.6 3T3 Fibroblast growth in nude mice 

3T3-GFP Fibroblast cells were grown in T75 flasks under either HCl titrated, pH 6.5 conditions, 

as described above, or in pH 7.4 media for 7 days, or grown in T75 flasks under normal 

conditions overnight. Cells were trypsinized and injected in a 50% matrigel/PBS matrix.  For 

each “tumor” injection site, 1 million cells from the above three categories were used. Mouse 1 
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received the acid treated cells on its left flank and 7 day pH 7.4 treated cells in its right flank. 

Mouse 2 received the acid treated cells on its left flank and 1 day pH 7.4 treated cells in its right 

flank. Mouse 3 received 7 day control cells on its left flank and 1 day pH 7.4 treated cells in its 

right flank. GFP images were taken 2 weeks later using the ART Optix MX3 system. 

 

Figure 2.1: Methodology/Summary for OCT-4 induction in vitro. Describes the methods 

section schematically. (a)  3T3-GFP+ can be treated with pH 6.5 treated medium leading to the 

strongest OCT-4 expression, with reduced expression going towards 7.4. (b) 3T3-GFP+ can be 

co-cultured with a tumor cell line and induce the same effect with the strongest OCT-4 

expression at pH 6.5.  
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2.3 Results 

2.3.1 Exposure of cells to acidic environment induces OCT-4 expression in 

vitro  

We used four tumor cell lines for this study: (1) the human breast cancer cell line MDA-MB-231 

is OCT-4 positive and expresses the OCT-4 inducing leukemia inhibitory factor,  LiF20; (2) the 

murine mammary carcinoma EMT-6 undergoes epithelial-mesenchymal transition; (3) the 

human pancreatic adenocarcinoma BxPC-3 has not, to our knowledge, been shown to express 

OCT-4 ; and (4)  the murine breast cancer model 4T1luc is an aggressive tumor model with 

significant drug resistance.  We first determined if the tumor cells could induce OCT-4 

expression in nontumor cells under normal physiologic pH. Using BxPc-3 and MDA-MB-231 

cells, we cultured GFP transfected 3T3 fibroblast cells (non-tumor cells) in pH 7.4 media for 7 

days in the presence or absence of tumor cells. In the absence of cancer cells, OCT-4 expression 

in the 3T3 cells did not increase over time (Figure 2.2a). In contrast, co-culture of these 

fibroblasts with tumor cells at pH 7.4 resulted in increased OCT-4 expression (Figure 2.2 b, c). 

The enhanced nuclear localization of OCT-4 indicates that tumor cells can facilitate OCT-4 

expression in surrounding healthy tissue under normal physiological pH.   
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Figure 2.2: Simulation of tumor-associated pH environment in vitro. Confocal imaging of rabbit 

polyclonal anti-OCT4 (red) staining and anti-vimentin (green) in 3T3 cells under various conditions. 

Fibroblasts (a) incubated in pH 7.4 media, (b) co-cultured with MDA-MB-231 cells in pH 7.4 media, (c) co-

cultured with BXPC-3 in pH 7.4 media,  (d) incubated in pH 6.5 media, (e)  co-cultured with MDA-MB-231 

cells in pH 6.5 media, (f) co-cultured with BXPC-3 breast cancer cells in pH 6.5 media. All the cells were 

incubated for 7 days with no changes in media. Magnification is 20x. Scale bar is 100 𝜇m. 
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A previous study showed that cells cultured in a  highly acidic environment (pH 5) showed 

increased OCT-4 expression.15 Because the extracellular pH of solid tumors rarely falls below 

pH 6, we investigated whether OCT-4 expression could be induced in cells cultured in a more 

physiologically relevant,  mildly acidic medium (pH 6.5),  similar to the extracellular pH of solid 

tumors. GFP transfected 3T3 fibroblast cells were cultured in acidic (pH 6.5) media for 7 days in 

the presence or absence of tumor cells.  A high level and intense nuclear localization of OCT-4 

expression was observed in both the presence and absence of tumor cells (Figure 2.2 d-f), 

suggesting the possibility of cell reprogramming under these conditions. Co-staining with 

vimentin shows strong cytoplasmic vimentin positivity confirming the fibroblast origin of the 

cells (Figure 2.2). The percentage of OCT-4 positive cells sequentially increased over time 

(Figure 2.3), indicating that chronic exposure of these cells to acidic environments such as those 

found in some solid tumors, provides a potential pathway to induce cellular stress to surrounding 

healthy cells. In addition, there is an inverse correlation of OCT-4 expression with acidity, OCT-

4 intensity increasing as pH decreases from 7.4 to 6.5 (Figure 2.4). Very few BxPC-3 and MDA-

MB-231 (GFP-negative) cells were observed because these cells do not remain adherent during 

staining. Similar results were obtained when cells were stained using a second OCT-4 antibody 

(Figure 2.5). Incubation with non-tumor cell lines, such as primary mammary epithelial cells 

(PMEC), under acidic conditions showed OCT-4 expression in both cell lines, while no OCT-4 

expression was seen under non-acidic conditions. (Figure 2.6)  
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Figure 2.3: Time course of OCT-4 expression. (a) OCT-4 expression of GFP+ fibroblasts cultured 

for 7 days in normal pH 7.4 media. (b) OCT-4 expression MDA-MB-231 cells, positive control. (c) 

OCT-4 expression of GFP+ fibroblasts cultured for 6 days in normal pH 7.4 media and 1 day in pH 

6.5 media. (d) OCT-4 expression of GFP+ fibroblasts cultured for 4 days in normal pH 7.4 media and 

3 day in pH 6.5 media. (e) OCT-4 expression of GFP+ fibroblasts cultured for 2 days in normal pH 

7.4 media and 5 day in pH 6.5 media. (f) OCT-4 expression of GFP+ fibroblasts cultured for 7 days in 

pH 6.5 media. Red represents OCT-4+ cells, and green represents GFP+ fibroblasts. Scale bar 

represents 100 𝜇m. 
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Figure 2.4: Effect of pH gradient on OCT-4 expression in 3T3 fibroblast cells. (a) 

Fibroblasts incubated in  media (pH 7.4) for 7 days with no changes in media (b) Fibroblasts 

incubated in acidified media (pH 6.8) for 7 days with no changes in media, (c) Fibroblasts 

incubated in acidified media (pH 6.5) for 7 days with no changes in media, (d) Fibroblasts 

cocultured with MDA-MB-231 breast cancer cells incubated in acidified media (pH 7.4)  

incubated for 7 days,  (e) Fibroblasts cocultured with MDA-MB-231 breast cancer cells 

incubated in acidified media (pH 6.8)  incubated for 7 days, (f) Fibroblasts cocultured with 

MDA-MB-231 breast cancer cells incubated in acidified media (pH 6.5)  incubated for 7 days. 

Scale bar is 100 um. Red represents OCT-4+ cells, and Green represents Vimentin+ fibroblasts. 
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Figure 2.5: Murine monoclonal anti-OCT 4 staining in 3T3 fibroblast cells under different 

conditions. (a) OCT-4 staining of GFP+ fibroblasts cultured in normal media for 7 days. (b) 

OCT-4 staining of GFP+ fibroblasts cultured in acidified media (pH 6.5) for 7 days. (c) OCT-4 

staining of GFP+ fibroblasts co-cultured with MDA-MB-231 tumor cells in acidified media (pH 

6.5) for 7 days. Red represents OCT-4+ cells, and Green represents GFP+ fibroblasts. Scale bar 

represents 100 𝜇𝑚 and is at 40x magnification. Note Supplementary figure 1b is a replicate of 

figure 2f and shown here again primarily for comparison. 
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2.6: Co-Culture of Fibroblast-GFP cells with PMEC cells. (a) Co-culture of primary 

mammary epithelial cells with 3T3-GFP-fibroblasts for 7 days, and stained with OCT-4. (b) Co-

culture of primary mammary epithelial cells with fibroblasts in acidified media for 7 days. Cells 

without GFP are primary mammary epithelial cells. 
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2.3.2 Ex vivo expression of OCT-4 in tumor tissue 

We next investigated OCT-4 expression in xenografts from three tumor models: 4T1luc, EMT-6, 

and BxPC-3. Cardiac muscle was used as an in vivo negative control due to the low propensity of 

that tissue to stem cell activity.  Expectedly, we did not detect OCT-4 expression in heart tissue 

(Figure 2.7). Tumors were 0.5 cm to 1.5 cm in size on excision. The average pH level in 4T1 

tumor models was 6.8 +/- 0.1 pH units as measured by an invasive 5 mm probe. This is 

consistent with previous studies, which reported acidity in BxPC-3 and EMT-6 tumor models 

and the importance of the pH for chemotherapy resistance.19   In contrast, OCT-4 expression was 

detected in all three tumor tissues (Figure 2.8) and was localized to certain cells in and around 

the tissue section. The entirety of the section was considered to be tumor. These results suggest 

that OCT-4 expression spans multiple human and murine tumor types. OCT-4 expression, 

however, seems to be sparse, with only a few tissue areas showing positive staining.  
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Figure 2.7  Negative control for anti-OCT-4: (a) Heart muscle stained for anti-OCT-4.  
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2.3.3 Identification of fibroblasts expressing OCT-4 in tumor tissue 

Fibroblasts are an important and common cell type in cancer stromal tissue. To verify that the 

OCT-4 positive cells were fibroblasts, we co-stained tissues for the fibroblast marker vimentin 

and OCT-4 (Figure 2.9). Co-staining indicated that OCT-4 localized in the vicinity of vimentin 

Figure 2.8: Murine Monoclonal anti-OCT-4 staining of tumor and stroma.  Oct-4 

expression (red) in (a) 4T1luc tumor; (b) EMT-6; (c) 4T1 luc tumor margin; (d) BxPC-3 

tumor. Scale bar is 500 𝜇m. 
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positive cells, with several instances of co-localization (yellow, Figure 2.9), suggesting that these 

cells are indeed fibroblasts. Our data suggest the presence of three populations of cells: OCT-4+, 

vimentin+, and a subset of cells positive for both OCT-4 and vimentin.  MDA-MB-231 is a 

human breast cell carcinoma cell line that has high intrinsic expression of OCT-4.  We did not 

assess subcellular distribution of OCT-4 or vimentin in the tissue sections.  



 42 

 

 

  

Figure 2.9: Co-staining for OCT-4 (red) & Vimentin (green) in tumor tissues. 10x bright field 

images with crop-outs being subsets of the original 10X images.   (a) Co-staining of BxPC-3 tumor 

tissue (b) Staining of MDA-MB-231 tumor tissue (c) Staining of EMT-6 tumor Yellow indicates areas 

of co-localization. Scale bar represents 500 𝜇𝑚 for the low magnification image, and 100 𝜇m for 

magnified regions. 
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Literature values and independent pH measurements in our laboratory show that the pH in the 

tumor area ranges from 6.5-7.0. By chronically maintaining the extracellular pH below 7, cancer 

cells can stimulate non-tumor cells to reprogram via pH-related stress. This process could aid the 

recruitment of surrounding cells into the tumor matrix.2,20  

2.4 Discussion 

The extracellular pH of tumors has been implicated in the metastasis and behavior of 

tumor cells, and changes in this pH could modify the downstream behavior of cancer. 18 To our 

knowledge, this is the first report of the expression of OCT-4 in the vicinity of tumors, 

particularly in supporting stromal cells. Stress based in vitro OCT-4 expression has been reported 

previously for stem cells.14,21 Our data suggests that chronic mild acidity, which is present in the 

tumor environment along with other stressors, is capable of inducing OCT-4 expression in 

murine fibroblasts and may be sufficient to induce OCT-4 expression in vivo.  These 

observations suggest that tumor cells in vivo may be capable of reprogramming surrounding 

stromal cells using environmentally mediated factors.  

 There are a few caveats to the above platform. The tumors were all xenografts and it is 

not known if this phenomenon occurs in spontaneous tumor models. We focused primarily on 

murine fibroblasts to facilitate in vivo assessment of the phenomenon with the same cells. It is 

also unclear if the in vivo OCT 4 expression changes with tumor size in this study.  

 Ex vivo histology showed expression of OCT-4 in cells that are not fibroblasts. Other 

than MDA MB-231 tumors, which had high intrinsic expression of OCT-4, the positive cells did 

not make up the bulk of the tumor mass. We posit that these cells may be endothelial or other 
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epithelial cells in the stromal region, or perhaps some small subset of cancer cells. This 

hypothesis is supported by in vitro expression of OCT4+ in PMEC cells, a primary mammary 

epithelial cell line, under acidic conditions.   

 This report offers observational evidence that mild acidity does induce some degree of OCT-4 

expression in vivo, therefore confirming previous findings about stress based OCT-4 expression. 

However, it is not clear how long these cells maintain the OCT-4 expression nor if the 

expression induces any other pluripotent stem cell phenotype. To rule out the possibility of 

artifact, we tested both a mouse monoclonal and a rabbit polyclonal anti-OCT-4 antibody. We 

observed similar results with both antibodies, although OCT-4 localization at times alternated 

between cytoplasmic (murine monoclonal) and nuclear (rabbit polyclonal), depending on the 

type of antibody used (Figure 2.2, Figure 2.5). 

Fibroblasts are traditionally considered to be strong supporting actors in the tumor 

microenvironment. The concept that chronic physiological extracellular acidity can have 

significant effects on the expression of reprogramming markers, such as OCT-4 both in vitro and 

in vivo, suggests a possible mechanism for the phenotypic changes in cancer associated 

fibroblasts. One report indicates that acidity may actually transform fibroblasts into cancerous 

tissue.22  Some preliminary data (Figure 2.10) demonstrate that implantation of these acid treated 

cells induces tumor growth in athymic nude mice. For this study, fibroblast cells were not co-

cultured with tumor cells. Further, the concept that acid mediated stress can induce the presence 

of factors that cause reprogramming in vivo raises the question of what happens if intratumoral 

pH is changed in vivo. Indeed, pH changes in vivo can inhibit tumor growth.23  
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Figure 2.10: Dorsal GFP images of in vivo growth of acid treated fibroblasts. (a) GFP image 

of mouse 1: acid treated 3T3 cells on its left flank, and 7 day pH 7.4 treated 3T3 cells in its right 

flank. (b) GFP image of mouse 2: acid treated 3T3 cells on its left flank, and 1 day pH 7.4 

treated 3T3 cells in its right flank. (c) GFP image of mouse 3: 7 day control 3T3 cells on its left 

flank, and 1 day pH 7.4 treated 3T3 cells in its right flank.  
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Overall, this study reveals that the stroma of tumors express OCT-4. Based on in vitro 

data, it is likely that chronic mild acidic stress could facilitate cell reprogramming. Given the 

ubiquity of extracellular acidic environments in some solid cancers, this process could be a 

common occurrence in vivo. We demonstrated that pH evidently has an important effect on both 

cancer cells and the supporting stroma. These results further support the relevance of the 

extracellular matrix and its environment to cancer behavior, prognosis, and therapy. In particular, 

the increasing evidence that tumors actively maintain an extracellular acidic environment implies 

a causative role for pH in tumor survival and proliferation.  There is thus an intersection between 

the significant work involved in cancer metabolomics, the Warburg effect, and the tumor 

microenvironment.  Future work will focus on replicating this observed phenomenon in vivo in 

human subjects, as well as developing a platform to modulate this acidic pH in vivo.  
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Chapter 3: Mathematical simulation of a pH 

modulating nanoparticle: Identification of Calcium 

Carbonate as an ideal candidate for increasing pH in 

vivo 
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Chapter Summary  

Modeling the pH change in vivo from a nanomaterial can be used to identify the ideal material 

for increasing pH in vivo, as well as give insight on expected pH changes and pharmacokinetics. 

In this chapter, we demonstrate a unique physiological pH sensitivity by CaCO3 due to the high 

stable calcium concentration in vivo. In particular, the results of this chapter predict that CaCO3 

nanoparticles will increase pH only in physiologically acidic regions without any resultant 

metabolic alkalosis. In the process, we develop a simulation for nanoparticle distribution and 

degradation.   
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3.1 Introduction:   

Recently, tumor extracellular acidity has been revisited as a potential target for cancer 

therapy. Models on tumor extracellular pH (pHe) demonstrate a significant correlative relationship 

between tumor invasiveness and the increased production of acid in most tumors. 1,2 To maintain 

normal intracellular pH (pHi) and to promote growth by degradation of the extracellular matrix, 

tumor cells actively transport the excess protons generated during enhanced glycolysis, the 

Warburg effect, to the extratumoral environment. 3 This leads to a sustained acidic tumor 

environment, with an average extracellular pH of 6.8, as opposed to the buffered and highly 

regulated interstitial pH of about 7.4 in the vicinity of healthy tissue.4 Cells are thought to actively 

use this 4 fold increase in hydrogen ion concentration to degrade the tumor matrix and thus sustain 

its growth. 2,3  This has led to a hypothesis that low pHe may be important for inducing tumor 

growth and metastasis.  

Local extracellular acidity has been demonstrated to have active effects on a variety of 

tumor and stromal cells.  For instance, in vitro and in vivo trials have demonstrated immunologic 

anergy in cytotoxic T cells suggestive of possible reasons for tumors avoiding immunosurveillance 

in spite of the high lymphocytic presence in many tumors. 5,6 Other trials have demonstrated the 

upregulation of a variety of proteins, including p53 and p21, when placed under acidic conditions 

in vitro. 7,8 In addition, modulating extracellular acidity appears to change chemotherapy 

sensitivity in tumors putatively due to changes in charge of drug molecules and intracellular 

signaling changes downstream. 8-10 Given that pH in cancer can follow a wide range (5.6 - 7.0)4,8, 

depending on type and size, clinical variability seen under chemotherapy may be due to underlying 

pH differences.  



 54 

Although ample evidence suggests that extracellular pH plays an important role in tumor 

growth and metastasis, most studies modulating extracellular pH in vivo have been impractical to 

implement clinically. We explore herein using a nanoparticle approach to modulate intratumoral 

pH. One candidate includes CaCO3.  CaCO3 has a low solubility in water, allowing its presence in 

nanoparticle form within aqueous solutions11-15 and relatively high pKa of 9, ensuring rapid pH 

increase under acidic conditions. In addition, CaCO3 can deliver 9.03*106 protons per 100 nm 

particle, a thousand fold increase over dendrimeric approaches in terms of capacity. Other groups 

have used CaCO3 particles for acid sensitive drug delivery11-13,15
 suggesting it is a prime candidate 

for buffering only in tumor acidic regions. CaCO3 also has the additional advantage of being 

composed of natural products found in the body, and because it follows basic chemistry for rate 

equations, the dissolution and solubility in vivo can be simulated easily. Nevertheless, 

mathematical models do not yet exist to predict what change of pH would occur in vivo.  

Nanomaterials remain a largely empirical science. Much of the synthesis and production 

has been done by trial and error. Although modeling of polymer growth and kinetics are well 

known, atom by atom based modeling breaks down at the greater than ten nanometer size range 

to become non-practical due to data size and computing time constraints.  As such relatively little 

though has been done to simulate and then predict what changes will occur in vivo post 

nanoparticle administration.  

There are however a few principles that have been established to understand dynamics 

based on observations, including the importance of surface charge and functionalization to 

stability. Thus far modelling has been applied to networks of hydrogels16 such as nanoparticle 

transport in coronary arteries 17, modeling of particle erosion and drug release 18-21,  and kinetics 

of aggregation for gold nanoparticles 22. Simulations thus far have largely focused on using 
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chemical engineering techniques, diffusion laws, and mass transfer equations, or modeling based 

on existing data. These may allow for predictions of behavior, including elements such as pH 

response in vivo that can guide design and application.23  

CaCO3 nanoparticle diffusion in the tumor, and its potential subsequent effect on pH has 

not yet been simulated. Doing so would provide a mathematical model to explain its diffusion and 

change in pH under varying tumor circumstances, potentially gleaning an understanding of how 

to improve its efficacy in changing tumor pH in vivo.  
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3.2 Methods 

3.2.1 Overall methodology of the simulation of CaCO3 dissolution in vivo. 

Simulations were run in MATLAB using a numerical iteration approximation. Equations (1-6) are 

derived from a tissue cylinder model of diffusion and diffusion of CaCO3 from a nanoparticle under 

the conditions of constant infusion. Equations (5) and (6) were used to determine the initial CaCO3 

and pH distributions in the tissue cylinder model. Changes in CaCO3 and pH were then numerically 

approximated using equations (3) and (4).  

 

𝑪𝒂𝑪𝑶𝟑(𝒔) ⇋  𝑪𝒂𝟐+ + 𝑪𝑶𝟑
𝟐−  (𝑲𝒂𝟏 = 𝟒. 𝟒𝟓 ∗ 𝟏𝟎−𝟕)      (1a) 

𝑯𝟐𝑶 + 𝑯𝑪𝑶𝟑
− ⇋ 𝑯𝟑𝑶+ + 𝑪𝑶𝟑

𝟐− (𝑲𝒂𝟐 = 𝟒. 𝟔𝟗 ∗ 𝟏𝟎−𝟏𝟏)                           (1b) 

𝑯𝟐𝑶 + 𝑯𝟐𝑪𝑶𝟑 ⇋ 𝑯𝟑𝑶+ + 𝑯𝑪𝑶𝟑
−                   (1c) 
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[𝑯+] =
𝑹𝒑𝒎𝒂𝒙
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The solubility of CaCO3 (Cb), in equation (2) is a function of pH, the solubility product (Ksp), 

and equilibrium constants Ka1 and Ka2, obtained from equations (1a, 1b).  The rate of change in 

CaCO3 concentration (C) and in particle radius (r), seen in equation (3), are derived from Fick’s 

law, and is a function of the diffusion coefficient (D), the surface area of diffusion (A), the distance 

of diffusion (d) estimated at 0.1 mm, the solubility of CaCO3 (Cb), the volume of the tissue cylinder 

(C), and the concentration of CaCO3 in vivo (Cs). For equation (4), we simplified equation (3) by 

approximating A/V to 1/L, where L is the length of the tissue cylinder, estimated at 1 mm. The 

change in concentration of protons can then be converted to a change in a pH of a buffer by dividing 

by buffering constant, B= 28 mM/pH.35   

For equation (5), Rcmax was empirically determined by starting at the maximum degradation 

rate in the tissue at pH of 6.65 and then multiplying by a correction factor until the distribution of 

CaCO3 appeared optimal, in this case approximately 0.5 mm from the capillary. The resulting 

degradation correction factor was used throughout for simulating CaCO3 degradation. The radius 

of the capillary (rc) was set at 10 𝝁m. The partition coefficient (k) of the capillary is dependent on 

the capillary pore radius, estimated at 500 nm and particle radius, defined as 100 nm. The initial 

concentration of CaCO3 (Cd) in the capillary was estimated as 5% of the infused concentration (set 

as 1 mg in a 20 g mouse).   

Rpmax was empirically determined as the point at which the average pH in the tissue was 6.65, 

identified as 0.0225 M/s. The diffusion coefficient (Dp) was estimated as the diffusion of a particle 

with a molecular weight of 1 Da in an extracellular matrix.  We used the following constants for 
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the simulation based on literature values or model assumptions: r = 50 nm, Ka1 = 4.45*10-7, Ka2 = 

4.69*10-11, Ksp = 6*10-9, M = 100.0869 g/mol, 𝜌 = 2.71 g/mL. 

3.2.1.1 Modeling IV Injection 

The derivation of the above equations are as follows. In general, we can assume that under 

ideal conditions the CaCO3 particles are injected via intravenous infusion, allowing for a constant 

stable concentration within the blood. The particles can also be assumed to not enter cells due to 

the lack of any targeting motifs. We can assume that the liver, spleen, and kidney, remove 

approximately 95% of CaCO3 dose, as suggested by radioactive Cu64 experiments. As such, we 

make the assumption that the dose of CaCO3 at the tumor site is:  

(7) 𝐶𝑏 = 0.05𝐶𝑖𝑛𝑓𝑢𝑠𝑒𝑑  

As the particles enter the tumor, we can look at the tumor vasculature model as a parallel 

combination of tissue cylinders, each composed of a cylinder of length z, radius 𝑟𝑐 =
1

2
𝑑𝑐, and a 

pore size of 𝑟𝑝. The particles themselves should not have changed significantly, based on TEM 

images of serum incubation, and as such should retain their initial diameter a. Each capillary 

supplies a tissue area of radius 𝑟𝑡 which marks the boundary of that tissue cylinder. Because the 

tumors are poorly perfused, we can also make the assumption that the tissue cylinder has negligible 

contributions to it from other capillaries. (Figure 3.1) 
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Figure 3.1: Visualization of the tumor tissue cylinder. Blue cylinder represents a blood vessel of 

diameter d, in a tissue cylinder of rt. A tumor volume is simulated as a sum of these cylinders 
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3.2.1.2 Modeling Pre-Injection pH gradient 

The pH at r= 𝑟𝑐 is maintained at a pH of 7.4. However within the tumor tissue, there is some 

rate of proton production 𝑅𝑝𝑚𝑎𝑥 that is a function of pH. We assume there is no convection of 

protons, no contribution from 
𝑑

𝑑𝜃
, and 

𝑑

𝑑𝑧
, and the system is at steady state. We can also make the 

assumption that the system is smooth, and as such, @𝑟 = 𝑟𝑐  
𝑑[𝐻+]

𝑑𝑟
= 0.  As such, we can derive 

the distribution of protons in the tumor tissue from the equations.  

(8)    0 = −
1

𝑟

𝑑

𝑑𝑟
(𝑟𝐷𝑝

𝑑[𝐻+]

𝑑𝑟
) + 𝑅𝑝𝑚𝑎𝑥  

(9)   [𝐻+] =
𝑅𝑝𝑚𝑎𝑥

4𝐷
(𝑟2 − 𝑟𝑐

2) +
𝑅𝑝𝑚𝑎𝑥𝑟𝑐

2

2𝐷
𝑙𝑛|𝑟𝑐/𝑟| + 10−7.4 

(10)   𝐷 = 1.013 ∗ 10−4 ∗ 1−.46 

We assume: 𝑅𝑝𝑚𝑎𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 0.0225 empirically identified as the point that makes the 

average pH=~6.8 
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The resulting proton gradient in the tissue can be seen in Figure 3.2.   
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Figure 3.2: pH gradient in a tumor. The blue circle represents the capillary area. The tissue 

cylinder is approximated in the figure as being 100 𝜇m large.  
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3.2.1.3 Modeling CaCO3 Diffusion in the Tumor 

The capillary also contains pores that range in size from 100 to 500 nm depending on tumor type. 

For the purpose of this simulation, we can assume the pore size is 𝑟𝑝 = 500 nm.  This results in a 

partition coefficient:  

(11) 𝑘 = (1 −
𝑎

𝑟
)

2

  

The concentration of CaCO3 immediately outside of the capillary then can be calculated as:  

(12) 𝐶𝑡 = 𝑘 ∗ 𝐶𝑏 = 0.05 ∗ 𝑘 ∗ 𝐶𝑖𝑛𝑓𝑢𝑠𝑒𝑑 

The tumor tissue consumes this CaCO3 at a rate 𝑅𝑐𝑚𝑎𝑥. We can assume, similar to the proton 

gradient that there is no convection of CaCO3, no contribution from 
𝑑

𝑑𝜃
, and 

𝑑

𝑑𝑧
, and the system is 

at steady state. We can also make the assumption that the system is smooth, and as such, @𝑟 =

𝑟𝑐  
𝑑[𝐶𝑎𝐶𝑂3]

𝑑𝑟
= 0.  As such, we can derive the distribution of CaCO3 in the tumor tissue from the 

formula: 

(13) 0 = −
1

𝑟

𝑑

𝑑𝑟
(𝑟𝐷𝑝

𝑑[𝐶𝑎𝐶𝑂3]

𝑑𝑟
) − 𝑅𝑐𝑚𝑎𝑥   

(14) [𝐶𝑎𝐶𝑂3] =
𝑅𝑐𝑚𝑎𝑥

4𝐷
(𝑟𝑐

2 − 𝑟2) +
𝑅𝑐𝑚𝑎𝑥𝑟𝑐

2

2𝐷
𝑙𝑛 |

𝑟

𝑟𝑐
| + 𝑘 ∗ 𝐶𝑏 

To calculate the diffusion coefficient through the interstitial fluid we can use the following 

equations. The diffusion of CaCO3 in plasma : 

(15) 𝐷𝑝𝑙𝑎𝑠𝑚𝑎 =
𝑘𝐵𝑇

6𝜋𝜇𝑅
; T= 37C, kB=, 𝜇, 𝑅 = 50 ∗ 10−9 𝑚  

(16) 
𝐷𝑚

𝐷
= (1 −

𝑎

𝑟
)

2

[1 − 2.1 (
𝑎

𝑟
) + 2.09 (

𝑎

𝑟
)

3

− 0.95 (
𝑎

𝑟
)

5

]  (Renkin’s equation) 
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Make the assumption that Dm =Dif (diffusion in the interstitium for the nanoparticle). Using 

Maxwell’s equation, we can solve for Dt- diffusion coefficient in tissue.  

(17) 
𝐷𝑇

𝐷𝐼𝐹
=

2𝐷𝐼𝐹+𝐷𝐶𝑒𝑙𝑙−2𝜙(𝐷𝐼𝐹−𝐷𝐶𝑒𝑙𝑙)

2𝐷𝐼𝐹+𝐷𝐶𝐸𝑙𝑙+𝜙(𝐷𝐼𝐹−𝐷𝐶𝑒𝑙𝑙)
 ; For CaCO3 Dcell = 0;  

(18) 
𝐷𝑇

𝐷𝐼𝐹
=

2𝐷𝐼𝐹−2𝜙(𝐷𝐼𝐹)

2𝐷𝐼𝐹+𝜙(𝐷𝐼𝐹)
 ; assume 𝜙 = 0.7, cell fraction of volume  

(19) 𝐷𝑇 =
2𝐷𝐼𝐹−2𝜙(𝐷𝐼𝐹)

2𝐷𝐼𝐹+𝜙(𝐷𝐼𝐹)
𝐷𝐼𝐹   

 

3.2.1.4 Calculating degradation of CaCO3 (Rcmax) as a function of pH 

Rcmax, however is not constant, but is instead a function of pH, with increased 

degradation at lower pHs. CaCO3 dissolution can be determined as a function of pH using the 

following formulas.  

(20)  CaCO3 dissolution is mediated by the following three equations. 

𝐶𝑎𝐶𝑂3(𝑠) < − >   𝐶𝑎2+ + 𝐶𝑂3
2− 

𝐻2𝑂 + 𝐻𝐶𝑂3
− < − > 𝐻3𝑂+ + 𝐶𝑂3

2− 

𝐻2𝑂 + 𝐻2𝐶𝑂3 < − > 𝐻3𝑂+ + 𝐻𝐶𝑂3
− 

Using standard reaction rate equations one can determine the solubility of CaCO3 in a biological 

medium as a function of pH.  

(21)  𝐶𝑏 =  √
𝐾𝑠𝑝

𝐾𝑎1∗𝐾𝑎2

((10−𝑝𝐻)2+𝐾𝑎110−𝑝𝐻+𝐾𝑎1𝐾𝑎2)

 

The change in radius in each particle can be determined as:  
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(22)  
𝜕𝑟

𝜕𝑡
=

𝐷𝐶𝑎𝐶𝑂3

𝑎𝜌
(𝐶𝑠 − 𝐶𝑏) 

The change in pH then at any point can be further determined as:  

(23)   
𝜕𝑝𝐻

𝜕𝑡
=

𝐷

𝑎
∗ 4𝜋(

𝑎

2
)2 ∗ (𝐶𝑠 − 𝐶𝑏) ∗

𝑁

𝑀
∗ (

4

3
𝜋𝑑3 −

4

3
𝜋(

𝑎

2
)3) ∗

1

𝐵
  

The rate of degradation then Rcmax =  

(24) 𝑅𝑐𝑚𝑎𝑥 = −𝐷 ∗ (𝐶𝑠 − 𝐶𝑏)  

To simplify the simulation, assume that Rcmax is average across all of the space based on the 

average pH in the tumor volume. If so, we can calculate Rcmax under the conditions at t=0, to 

calculate the initial distribution of CaCO3. We assume that CaCO3 does not change size 

significantly in aggregate during diffusion through the matrix while being consumed.   

  



 65 

3.2.1.5 Modeling change in pH over time 

As the CaCO3 is consumed in each space point, the CaCO3 changes as does the pH. This can then 

be iteratively solved per point. 

pH changes are equal to:  

(25) 
𝜕𝑝𝐻

𝜕𝑡
= 𝐷 ∗ (𝐶𝑠 − 𝐶𝑏) ∗ 𝑑𝑉 ∗

1

𝐵
  (1/s)  

(26) 𝑝𝐻(𝑥, 𝑦) =  𝑝𝐻(𝑥, 𝑦) + 𝑑𝑝𝐻 ∗ 𝑑𝑡 

(27) pH(x,y) = -log (10−𝑝𝐻 + Rpmax*Area); 

CaCO3 changes are equal to:  

(28)  𝐶𝑏 =  √
𝐾𝑠𝑝

𝐾𝑎1∗𝐾𝑎2

((10−𝑝𝐻)2+𝐾𝑎110−𝑝𝐻+𝐾𝑎1𝐾𝑎2)

 

(29) 
𝜕𝐶

𝜕𝑡
= 𝑅𝑐𝑚𝑎𝑥 = −𝐷 ∗ (𝐶𝑠 − 𝐶𝑏)  

(30) 𝐶𝐶𝑎𝐶𝑂3 = 𝐶𝐶𝑎𝐶𝑂3 − 𝑅𝑐𝑚𝑎𝑥 ∗ 𝑑𝑡 ∗ 𝐴𝑟𝑒𝑎  

i. When 𝐶𝐶𝑎𝐶𝑂3=0; iteration stops for that point  
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In aggregate, when simulated, the pH appears as visualized in Figure 3.3. 

  

Figure 3.3: Simulated over time, this figure demonstrates the increase in pH around a capillary due 

to CaCO3. To see the whole change, the tumor is approximately 1 mm x 1 mm. Scales are kept 

constant from 6.5 to 7.4 (pH), and 0 to 1 𝜇M (CaCO3 distribution) 
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3.3 Results  

3.3.1 Simulation of CaCO3 nanoparticle dissolution in vivo predicts 

asymptotic pH increase and buffering to pH 7.4  

CaCO3 is an important biomaterial that is widely available in different forms. Although 

CaCO3 solutions can serve as buffering agents, a saturated aqueous solution of this salt has 

a predicted pKa of about 9, suggesting the potential to induce metabolic alkalosis in vivo. 

In the solid state, CaCO3 exists predominantly as calcite, aragonite, or vaterite polymorphs. 

Each of these polymorphs differ in their crystal lattice structure. Unlike calcite and 

aragonite, which are not soluble in aqueous medium, vaterite is more soluble because of its 

low thermodynamic stability compared to the other polymorphs found in nature. For our 

intended application, slow but consistent dissolution in mildly acidic solutions is an 

essential criterion for a regenerative pHe buffering agent. To prevent metabolic alkalosis 

in surrounding healthy tissue, the preferred material should only increase the pH to about 

7.4 (normal body pH).   

 Because CaCO3 dissolution is regulated by basic rate equations, a simulation of its 

dissolution and prediction of the expected pH changes in vivo and in vitro is possible 

(Figure 3.4). Dissolution of CaCO3 under mildly acidic conditions follows several steps: 

  

𝐶𝑎𝐶𝑂3(𝑠) ⇋  𝐶𝑎2+ + 𝐶𝑂3
2−  (𝐾𝑎1 = 4.45 ∗ 10−7)           (31a) 

𝐻2𝑂 + 𝐻𝐶𝑂3
− ⇋ 𝐻3𝑂+ + 𝐶𝑂3

2− (𝐾𝑎2 = 4.69 ∗ 10−11)                              (31b) 

𝐻2𝑂 + 𝐻2𝐶𝑂3 ⇋ 𝐻3𝑂+ + 𝐻𝐶𝑂3
−              (31c) 
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Generation of carbonate in equation (31) drives CaCO3 dissolution under acidic pH 

conditions following L’Chatelier’s principle. Previous studies have modeled the pH 

changes in response to CaCO3 dissolution in aqueous medium.24 Adapting this model to a 

tissue cylinder approach (Figure 3.4a), we derived the following equations: 

  

 Cb =  √
𝐾𝑠𝑝

𝐾𝑎1∗𝐾𝑎2

((10−𝑝𝐻)2+𝐾𝑎110−𝑝𝐻+𝐾𝑎1𝐾𝑎2)

             (32) 

𝐽 = −𝐷
𝑑𝐶

𝑑𝑥
→

𝜕𝐶

𝜕𝑡
=

𝐴

𝑉
𝐷

(𝐶𝑠−𝐶𝑏)

𝑑
→

𝜕𝑚

𝜕𝑡
= 𝐴𝐷

(𝐶𝑠−𝐶𝑏)

𝑑
→  

𝜕𝑟𝑝

𝜕𝑡
=

𝐷

𝜌

(𝐶𝑠−𝐶𝑏)

𝑑
                           (33) 

𝑑𝑝𝐻

𝑑𝑡
= −

𝐷

𝐵

(𝐶𝑠−𝐶𝑏)

𝑑
∗

1

𝐿
               (34) 
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Fig. 3.4 Simulation of CaCO3 dissolution in vivo predicts tumor pHe will increase only to 7.4. (a) 

Tissue can be simulated as a series of cylindrical capillaries each supplying a larger cylindrical 

volume of tissue. (b) Rate of change in size of CaCO3 particle reaches an equilibrium at pH = 7.4 

under in vivo conditions. (c) The distribution of 100 nm CaCO3 nanoparticles in a circular cross 

section is simulated to reach ~0.5 mm away from the capillary with constant infusion and degrades 

minimally over 60 minutes. (d) Spatial pH distribution over time increases from 6.5 to 7.4 by 60 

minutes, and remains at 7.4 for at least 24 h. Capillary source is represented by blue circle in both 

(c) and (d). 
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The solubility of CaCO3 (Cb) is a function of the solubility product (Ksp), pH, and the 

equilibrium constants (Ka1 and Ka2). Change in concentration of CaCO3 is a function of the 

CaCO3 concentration (Cs), the solubility (Cb), the surface area (A), the diffusion distance 

(d), and volume (V). The radius of the particle (rp) is additionally dependent on the density 

of CaCO3 (𝜌). The change in pH is also dependent on the buffering constant, and 

approximates A/V as 1/L, where L is the length of the tissue cylinder. Using equations (32-

34), an equilibration point occurs for dissolving CaCO3 at a pH of 7.4 (Figure 1b). This 

suggests that CaCO3 will only increase pH in acidic environments such as those found in 

the pHe of solid tumors and that this process is unlikely to induce metabolic alkalosis 

because the pH will not exceed 7.4.  

To visualize this process in a 3D model, we modeled nano-CaCO3 diffusion in a tissue 

matrix using a tissue cylinder model (Figure 1a), where a single capillary is assumed to 

feed a tissue cylinder.  From this model, we derived the equation for the distribution of 

CaCO3 in the tissue cylinder as a function of the radius (r), capillary radius (rc), diffusion 

coefficient of CaCO3 (Dc), the partition coefficient (k), degradation rate (Rcmax), and the 

influx dose (Cd) as follows: 

 

[𝐶𝑎𝐶𝑂3] =
𝑅𝑐𝑚𝑎𝑥

4𝐷𝑐

(𝑟𝑐
2 − 𝑟2) +

𝑅𝑐𝑚𝑎𝑥𝑟𝑐
2

2𝐷𝑐
ln |

𝑟

𝑟𝑐
| + 𝑘 ∗ 𝐶𝑑         (35) 
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The diffusion coefficient (Dc) of the particle in tissue, which is dependent on particle size, 

was estimated using the Renkin equation.25 We also derived the initial pH distribution from 

diffusion of protons from the capillary to be the following as a function of the rate of proton 

production (Rpmax), diffusion of the proton (Dp), radius (r), and capillary radius (rc):  

 

[𝐻+] =
𝑅𝑝𝑚𝑎𝑥

4𝐷𝑝

(𝑟2 − 𝑟𝑐
2) +

𝑅𝑝𝑚𝑎𝑥𝑟𝑐
2

2𝐷𝑝
ln |

𝑟𝑐

𝑟
|  + 10−7.4         (36) 

The change in proton concentration is thus determined by numerically solving equations 

(32), (34), and (36) by iteration. Similarly, CaCO3 concentrations can be calculated by 

using a combination of equations (32), (33), and (35) over the associated tissue cylinder. 

We find that the CaCO3 concentrations are relatively constant over time, predicting a 

particularly slow dissolution process (Figure 3.4c). In addition, the simulation predicts that 

the pH does not exceed its maximum of 7.4 by 24 h (Figure 1d). This profile predicts that 

in vivo CaCO3 dissolution is acid selective and therefore is an ideal nanomaterial for 

modulating the acidic pHe of solid tumors.  
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3.4 Discussion  

We find several interesting observations with regards to the simulation. One is that the 

simulation predicts a halt in pH increase at pH=7.4.  This is ideal for the proposed acid 

sensitivity of CaCO3 to tumors. However, it goes one step further than seen in the literature by 

suggesting that the mechanism of CaCO3 equilibration is due to a reaction rate equilibrium. 

Simulations using the transport phenomena present two independent observations. 1) The CaCO3 

distribution area, based on the assumptions above, from one capillary is quite large, extending to 

almost 1 mm3. This may be due to an over estimation of the interstitial pore size, or may be real. 

2) Previous simulations had suggested a very rapid pH modulation, on a nanosecond time scale. 

With the distribution simulation, this appears to occur on the order of seconds to minutes, 

reflecting pH data that we have seen during in vivo experiments.  

The primary limitation is the assumption of 𝑅𝑐𝑚𝑎𝑥 and solubility of CaCO3 in the area based 

on the average pH in the area as opposed to a value for every point.  Future simulations may take 

into account these aspects. In doing so, a more accurate simulation may be able to found, 

particularly during the full degradation phase. The model also currently lacks the ability to take 

into account that the concentration in blood is not constant during IV injection, but generally a 

bolus. To account for this, one can use the formula: 

(37) 𝐶 = 𝐶𝑜𝑒−𝑘𝑒𝑓𝑓∗𝑡 , where 𝑘𝑒𝑓𝑓 is the clearance rate. 

However, for the CaCO3, clearance rate is unknown, and as such poorly simulated. That may be 

able to be tackled with data from further studies. 

 We also assume that the CaCO3 dissolution during the initial distribution phase has 

negligible impact on CaCO3 radius. Based on the simulation parameters demonstrating that 
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changes in CaCO3 distribution take a significant amount of time, this concept may be true. 

However, simulating the initial distribution phase of the CaCO3 may be useful.    

 In addition, for dosing purposes, the simulations suggest that a larger amount of CaCO3 is 

necessary at the beginning during the pH increase phase than at the point of stability. This 

implies that a bolus dose followed by a continuous low does infusion would be the ideal dosing 

range to maintain a normal physiological pH. It also implies that failure to maintain the CaCO3 

dosage high enough would result in a return to acidity. Compliance thus will be of large 

importance. 

Finally, the escape of CaCO3 after CaCO3 in the blood stream and/or lymphatics after its 

disappearance has not been explored.  In this simulation, we assume that for time t>0, there are 

no major changes in the CaCO3 distribution in the tumor. However, particles may continue to 

diffuse differently throughout the tissue as dissolution reduce their individual diameters. 

Alternatively, they may also return to the blood stream over time, particularly with concentration 

in the blood stream dropping to close to zero. Accounting for these kinetics would add greatly to 

the robust nature of the model.  

Nevertheless, in conclusion, the current model allows for the testing and understanding of 

multiple aspects, including 1) the distribution of CaCO3 in tissue as a function of particle size and 

pore sizes, and 2) the subsequent effects on pH over time.  This model provides the ability to 

predict pH changes in the tumor that would otherwise not be possible. 
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Chapter Summary  

  Nano-CaCO3 crystals show promise to demonstrate impact on tumor growth as both a 

therapy and as a vehicle, but are not widely adopted due to high batch to batch variability during 

traditional water based synthesis due to spontaneous crystal growth. CaCO3 crystals have a stable 

size of approximately 1-2 microns post grinding. The knowledge on how to create and stabilize 

the formation of nano-scale CaCO3 is lacking. In this study, we discover a novel reproducible 

vacuum assisted CaCO3 nanocrystal synthesis that increase yield, reduce size, and reduce 

aggregation. We find that the mechanism of action of synthesis is dependent primarily on the 

aerosolization of ammonium bicarbonate, with the reproducible size constrained phenomenon 

primarily due to the nano-crystalline form of ammonium bicarbonate. In this chapter we identify 

the critical fundamental variables for making this particularly robust technique more widely used 

for nano-CaCO3 synthesis. Further, we demonstrate the ability for this method to produce other 

metal carbonate nanocrystals of gold, iron, and zinc carbonate. Finally, we demonstrate the 

stabilization of nano-CaCO3 using albumin to allow for in vivo injection. 
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4.1 Introduction 

Nano-CaCO3 has had a growing interest in a number of applications in tumor therapy as a 

platform for drug delivery, and its mechanism of synthesis has broader interest in a wide number 

of fields including geology and bone mineral biology. 1-8  Although a number of groups have 

attempted to produce CaCO3 nanoparticles, the majority have been developed in water, and 

nano-CaCO3 water based synthesis is generally not reproducible from batch to batch.3,9-11  This is 

due to the rapid crystal growth of CaCO3 when synthesized in water that can make it hard to 

control crystal type and size.12,13  

Recently, a gas diffusion anhydrous ethanol assisted method, using CaCl2 dihydrate, was 

utilized to produce 100 nm amorphous CaCO3 to avoid the crystal growth from water during 

synthesis.14 However, the amorphous particles changed crystallinity and grew when added to 

aqueous solutions, which is a potential problem during injection into in vivo systems.  

In this chapter we describe the synthesis of nano CaCO3 crystals of the vaterite form using 

two different techniques that build on the both water and ethanol based synthetic techniques. 

There is little known about the mechanism of these techniques, such as what variables control 

size, yield, and distribution. In order to make this method practical, we explore a step by step 

analysis of the method by investigating variables such as solvent type, concentration and mass of 

starting reagents, duration of synthesis, and combinations of volume and surface area.  

For the gas diffusion method, counterintuitively, we find that the concentration, volume, and 

surface area of CaCl2 have no effect on size.  Instead, we discover that only the number of runs 

using the same batch of ammonium bicarbonate and the amount of ammonium bicarbonate 

controls size. TEM analysis of ammonium bicarbonate reveals nanocrystalline precursors whose 
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size follows the above observations and explain the reproducibility. Time, volume, and amount 

of reagents can change yield. This also allows a wider range of solvents to be used than simply 

EtOH. We observed that this phenomenon can be found in other organic solvents such as MeOH 

and DMF, but breaks down in the presence of substantial amounts of water. We also demonstrate 

that this synthesis technique can be extended to gold, iron, or zinc carbonate crystals.  

Based on these observations, we posit a model for the synthesis mechanism based on the 

aerosolization of ammonium bicarbonate nanocrystals, with larger nanocrystals being 

aerosolized and deposited first, and smaller ones being deposited later. As such, size, and yield 

can be controlled by the number of runs or amount of ammonium bicarbonate. This knowledge 

allows the possibility of scaling up production of Nano CaCO3 with significant reproducibility. 

This is crucial for being able to use CaCO3 as a platform nanotechnology similar to gold or silver 

nanoparticles. Controlling size is critical for these studies to maximize the enhanced permeation 

and retention effect necessary for the accumulation of nanoparticles in tumors.15 For instance, in 

the case of CaCO3, we and others have demonstrated that 100 nm CaCO3 has can neutralize 

extracellular acidic pH.1-3,16 Smaller CaCO3 particles could even be used to enter the intracellular 

space.   

Stabilizing CaCO3 in aqueous solutions remains a challenge. To tackle this question we 

evaluate a number of different solvents and their effect on CaCO3 crystallinity and size over 

time. We discover that albumin is capable of maintaining particle size in aqueous solution, 

allowing further stability and in vivo applications.  

By systematically evaluating variables involved in vacuum assisted CaCO3 nanoparticle 

synthesis we have identified a model to design and produce a reproducible set of CaCO3 particles 

of various sizes and yields. In the process, we have characterized a uniquely robust method of 
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nanoparticle synthesis that is based on the aerosolization of a reagent under vacuum, in this case 

ammonium bicarbonate.  By identifying albumin as a stabilizing medium, we open up nano-

CaCO3 for in vivo applications. 
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4.2 Materials and Methods  

4.2.1 Synthesis of 100 nm nano-CaCO3 

We synthesized 100 nm CaCO3 nanoparticles using a gas diffusion method. CaCl2*6H2O (220 

mg) was dissolved by vortexing in anhydrous ethanol (50 mL). The resulting solution was 

transferred to a 100 mL beaker covered with parafilm. After puncturing small holes in the parafilm, 

the beaker was placed in a desiccator (with drierite) surrounded by four 20 mL vials containing 

excess dry ammonium bicarbonate (~9-10 g).  The entire system was placed under vacuum for 25 

h. The particles were centrifuged at 6800 g for 10 min, excess ethanol decanted, and the residue 

was left to dry in open air before use.  

4.2.2 Synthesis of 20 and 300 nm CaCO3. 

A double decomposition reaction was used to prepare the CaCO3 particles by mixing 0.1 M each 

of CaCl2*2H2O and NaHCO3 at room temperature. The premix solutions of CaCl2*2H2O and 

NaHCO3 were prepared in water and polyethylene glycol (1:5 v/v; average molecular weight 1450 

Da) for ~20 nm, and water and ethylene glycol (1:5 v/v; molecular weight 62.07 g/mol) for ~300 

nm particles. The synthesized CaCO3 particles were collected by sequentially washing the product 

with ethanol, methanol and acetone, followed by drying at 60 °C for 1 h. (Figure 4.1) 

4.2.3 Modified Synthesis of CaCO3 

CaCl2 Hexahydrate (Sigma Aldrich) was dissolved in a volume of anhydrous ethanol as 

described above, and placed in a 400 mL beaker in a dessicator (with drierite), surrounded by 20 

mL glass vials filled with ammonium bicarbonate of a controlled mass (typically 20 g per vial) 

and placed under vacuum for 1- 3 days. The specific days, volume, mass, or surface area are as 

described below. (Figure 4.1) 
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 Figure 4.1. Synthesis and Experimental Schema for nano-CaCO3 synthesis. (a) Synthesis 

schema for the gas diffusion method for nano-CaCO3 synthesis. (b) Synthesis schema for 

synthesis of nano-CaCO3 using sol-gel. Both methods can be used to make 20 nm, 100 nm, and 

300 nm particles. Synthesis was followed by suspension in an aqueous solvent followed by in 

vivo experiments in murine models.  
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4.2.7 Synthesis of AuCO3, ZnCO3, FeCO3 

140-200 mg of AuCl3, FeCl3, and ZnCl2 (Sigma Aldrich) was dissolved in 50 mL  of anhydrous 

ethanol as described below, and placed in a 400 mL beaker in a desiccator (with drierite), 

surrounded by 20 mL glass vials filled with ammonium bicarbonate of a controlled mass 

(typically 20 g per vial) and placed under vacuum for 2 days.  

4.2.8 Transmission Electron Microscope (TEM). 

TEM micrographs were obtained using a FEI Spirit TEM (Hillsboro, USA) operated at 120 kV.  

A 400-mesh Formvar® carbon-coated copper grid was glow-discharged in a vacuum evaporator 

(Denton, Moorestown, New Jersey) for 30 s.  The sample was prepared by placing 2 μL of 

sonicated CaCO3 nanoparticles solution onto the grid and wicking off the excess sample with filter 

paper after 30 s. Alternatively, for EtOH or DMSO solvent based solutions, 3 𝝁L of particle 

solution were placed on the grid and left to dry out at room temperature or with the aid of a heat 

gun.  

4.2.9 X-Ray Diffraction (XRD).  

XRD patterns were obtained by using the Bruker d8 Advance X-ray Diffractometer (Bruker, 

USA) configured with a Cu X-Ray tube with 1.5418 Å for analysis of powder samples using 

LYNXEYE_XE detector. For the analysis, fine acetone ground CaCO3 nanoparticles were kept 

on a Zero Diffraction Plate (MTI Corporation, USA).  XRD data were scanned from 20-60 

degrees, with a 0.04 degree step size, a 0.5 s per step count time, with sample rotation turned on 

(15 rotations per min), with a coupled two-theta/theta scan. The Bruker Diffrac.Eva program was 

used for the evaluation and processing of X-ray diffraction scan data. Search-match operations 
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included search by DI list, by name, using chemistry filters, and creating an International Centre 

for Diffraction Data (ICCDD PDF) database filter.   

4.2.10 Hydrodynamic diameter and electro-kinetic zeta potential. 

To study agglomeration kinetics of CaCO3 nanoparticles, hydrodynamic diameter (Dh) was 

measured using DLS (Malvern Instruments, Southborough, Massachusetts).  Agglomeration 

kinetics were measured on the basis of data obtained from TR-DLS.   

The zeta potential was measured using a Malvern Zetasizer Nano ZS instrument.  An applied 

voltage of 100 V was used for the nanoparticles. A minimum of three measurements were made 

per sample.  

4.2.11 Identification of stable aqueous medium for nano-CaCO3.  

Nano-CaCO3 was resuspended in the following solvents: (1) dIH2O; (2) Dulbecco’s PBS, 

(3) PBS, 1 mM CaCl2, and 1 mM MgCl2 ; (4)  PBS, CaCl2, MgCl2 and 2% bovine serum 

albumin; (5) fetal bovine serum (FBS); and (6) a solution consisting of 20% (PBS, CaCl2, 

MgCl2, and  2% bovine serum albumin) in 80% FBS. The results of particle stability were 

analyzed by TR-DLS for up to 7 h, TEM under aqueous conditions, TEM under serum, and 

XRD after 7 h.  

4.2.12 Yield measurement 

Yield was determined by centrifuging 10 mL of particle ethanol solution at 6800 x g for 10 

minutes into Eppendorf tubes and air dried. Mass was measured before and after of the tube, 

giving the concentration per 10 mL which was multiplied by the volume of solution remaining.  
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4.3 Results 

4.3.1 Independent facile synthetic methods produce pure vaterite 

nanoparticles with controlled size range from 20 – 300 nm 

The malformation of blood and drainage vessels around solid tumors creates an 

environment for the selective retention of nanoparticles through the enhanced permeation 

and retention (EPR) effect.15 Typically, materials with core diameters less than 500 nm are 

preferred to enhance intravascular dynamics and diffusion to tumor cells further from the 

blood vessels.15,17    

Unfortunately, CaCO3 nanoparticles that are stable in aqueous solutions have been 

difficult to synthesize at sub-micron sizes without the use of harsh conditions (custom high 

pressure systems), doping materials (lipid-based surfactants), other additives such as 

phosphate, polystyrene, and drugs, or a combination of calcium phosphate and calcium 

carbonate.1,2,4,7,18 Attempts to prepare pure nano-CaCO3 have generally resulted in the 

production of materials with core diameter > 500 nm3,5,9 due to difficulty in controlling the 

particle’s growth. Furthermore, CaCO3 nanoparticles can rapidly grow to larger crystalline 

polymorphs (calcite, vaterite, or aragonite) when placed under aqueous conditions via a 

variety of mechanisms.8,12-14,19  

Building on literature methods, we have identified two independent methods to produce 

pristine sub-micron vaterite nano-CaCO3 with distinct size ranges at 20 nm, 100 nm, and 

300 nm. Synthesis of the 100 nm nano-CaCO3 was accomplished by using a gas diffusion 

method (Figure 4.1, Methods section).14 The stepwise approach of exposing calcium 

chloride in anhydrous ethanol to controlled amounts of ammonium bicarbonate, followed 
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by gradual air drying of the product, afforded a simple and highly reproducible method to 

prepare these nanoparticles. To provide flexibility in particle size, we used a double 

decomposition reaction method between hydrated calcium chloride and sodium bicarbonate 

at room temperature. Size control was achieved by mixing the reactants in a mixture of 

solvents consisting of 1:5 ratio of water/polyethylene glycol (20 nm) and water/ethylene 

glycol (300 nm). The ethylene glycol and polyethylene glycol were used to modulate the 

diffusion rate of calcium and carbonate ions, thereby controlling nucleation and growth by 

particle cluster formation.20,21 This approach revealed that solvent viscosity can serve as a 

modular strategy to prepare pure vaterite nanoparticles.  

The size and morphology of synthesized nano-CaCO3 were determined by transmission 

electron microscopy (TEM) and dynamic light scattering (DLS) (Figure 4.2). Typical TEM 

micrographs revealed that nano-CaCO3 were primarily spherical, as expected for vaterite.  

The geometric mean diameters of the nano-CaCO3 were 20 ± 1.4 nm, 100 ± 8.3 nm and 

300 ± 14.6 nm (Figure 4.2a-c). Expectedly, DLS revealed a slight increase in the 

hydrodynamic diameter (Dh) for all particle sizes because of the interaction of solvent 

molecules with the surface of particles, creating a thin layer of solvent molecules (Figure 

2d). 
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Fig. 4.2 Independent facile synthesis methods can produce nano-CaCO3 at various sizes. 

(a) TEM of 20 nm vaterite demonstrates rod like particles with a tendency for aggregation. 

(b) TEM of 100 nm vaterite shows spherical particles.  (c) TEM for 300 nm vaterite 

demonstrates larger spherical particles. (d) DLS results in ethanol for the 3 particle sizes 

replicates TEM findings. (e) XRD of 100 nm CaCO3 demonstrates vaterite signature.  
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However, two peaks were observed in the DLS profile of the 20 nm nanoparticles, in 

which one peak exhibited smaller Dh than the physical diameter. These peaks could arise 

from the asymmetric shape of the particles, as shown in the 20 nm particles (Figure 4.2a).22 

Larger sizes were typically spherical, accounting for the lack of a second smaller peak. 

Irrespective of the synthesis method, all three sizes of the nano-CaCO3 showed peaks at 

theta angles of 24.8, 27.1, 32.8 and 43.9, which are consistent with the characteristic 

hexagonal vaterite crystalline structure of CaCO3 (Figure 4.2e & Figure 4.3). Because 

vaterite is more soluble in aqueous media than other CaCO3 polymorphs, these materials 

are suitable for use in neutralizing the acidic pHe of tumors if they can remain stable in 

aqueous environments without rapidly converting to the less soluble calcite.  
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 Figure 4.3. X-Ray diffraction post addition of albumin based solvent shows stability in all three sizes of 

particles.  (a) XRD of 20 nm nano-CaCO3 is identical in EtOH and in 2% albumin + PBS + CaCl2 + MgCl2 

solution.  (b) XRD of 100 nm nano-CaCO3 is identical in EtOH and in 2% albumin + PBS + CaCl2 + 

MgCl2 solution.  (c) XRD of 200 nm nano-CaCO3 is identical in EtOH and in 2% albumin + PBS + CaCl2 

+ MgCl2 solution. All plots, when compared to literature, match the structure of vaterite.  
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4.3.2 Albumin prevents rapid conversion of vaterite nanoparticles to calcite or 

calcium phosphate in aqueous medium and serum  

The solubility and stability of these vaterite nanoparticles are critical for successful 

biological applications in vivo. We explored a variety of biologically compatible media to 

identify the optimal storage conditions and vector for intravenous (I.V.) administration of 

the nano-CaCO3 (Figure 4.4; Figure 4.5). DLS analysis shows a rapid increase of the 100 

nm vaterite nanoparticles from 100 nm to over 500 nm within a few seconds in saline and 

in phosphate buffered saline (PBS; Figure 4.4a). The observed morphological change in 

PBS could be attributed to calcite or CaPO4 formation.  However, addition of 2% albumin 

to PBS remarkably stabilized the materials for extended periods, demonstrating the 

potential of formulating vaterite nanoparticles in this medium for I.V. administration 

(Figure 4.4a,b). A similar trend was observed with the 20 nm and 300 nm nano-CaCO3 

(Figure 4.6). 

We further determined the long-term particle stability in different media for up to 7 h. 

Time-resolved DLS (TR-DLS) suggests that the particles in aqueous albumin containing 

solution exist in pairs of 2 or 3 (size 2-3 times larger than in ethanol), which dissociate into 

individual particles upon exposure to fetal serum (Figure 4.4a, Figure 4.6). TEM confirmed 

the high stability of the particles in albumin solution (Figure 4.4b, Figure 4.6). X-Ray 

Diffraction (XRD) analysis did not show any change in crystallinity in albumin-based 

aqueous media (Figure 4.4c). The nano-CaCO3 exhibited stability in both morphology and 

size in fetal bovine serum (Figure 4,4d, Figure 4.6). 

These results suggest that albumin, which has a high affinity for calcium,23 serves as a 

calcium sink that prevents aggregation and calcium phosphate formation in PBS. The 
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minimal change in TEM (structural) and X-ray diffraction (crystalline) analyses confirms 

that extensive double replacement to form CaPO4 did not occur. In general, clusters of three 

nano-CaCO3 form in albumin solutions, which separate into single particle serum is added 

to the mixture. The additional serum stability conferred on nano-CaCO3 in aqueous albumin 

solution indicates that pre-formulation of the nanoparticles in this medium is ideal for in 

vivo application, where serum is abundant.  
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Fig. 4.4 Nano-CaCO3 is stabilized in an albumin based solution. (a) DLS results of 100 nm 

particles show that stability in serum > PBS+BSA+CaCl2 > PBS+CaCl2 > Saline = DI 

Water > PBS. (b) TEM shows 100 nm particles in albumin solution have unchanged 

morphology surrounded by albumin. (c) XRD of 100 nm particles in albumin solution at 

24 h shows no changes in crystalline structure. (d) TEM of particles post serum incubation 

demonstrate no change in structure, with particles embedded in serum protein.  
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 Figure 4.5  CaCO3 grows in size in a variety of solvent incubations for 100 nm nano-CaCO3 except 

albumin containing solutions. (a), At synthesis, particles are monodisperse and 100 nm in size. Scale 

bar represents 50 nm.  (b), When placed into deionized H2O, particles rapidly grow to be > 1 𝜇m. 

Scale bar is 1 𝜇m.  (c), When 100 nm nano-CaCO3 is placed into 15 mM saline, particles grow to 

greater the > 1 𝜇m. Scale is 1 𝜇m.  (d), When placed into PBS, particles become cuboidal in shape and 

large. Scale bar is 1 𝜇m.   (e), Coating particles with a hydrophobic coating using Poly-Vinyl 

Pyrrolidone (PVP), slows reaction and makes growth slightly slow. Scale bar is 0.5 𝜇m. (f), Coating 

particles with a hydrophobic coating  using Poly-2-Vinyl Pyrrolidone (PVP), slows reaction and 

makes growth slightly slow. Scale bar is 0.5 𝜇m.  (g), Adding CaCl2 and MgCl2 to the PBS solution 

slows CaCO3 growth, with some reaction appearing to occur. Scale is 200 nm. (h), Adding 2% 

albumin to a solvent of PBS + CaCl2 + MgCl2 preserves particle morphology.  
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Figure 4.6. 20 nm and 300 nm particles show stability in albumin containing solution and in 

serum. (a) DLS results over time in a variety of aqueous solvents for 20 nm particles 

demonstrates that particles on addition to serum separate from an aggregate in 2% albumin.   (b), 

TEM of 20 nm particles in PBS + CaCl2 + MgCl2 + 2% albumin shows separation . Scale bar is 

200 nm. (c), TEM of 20 nm particles post serum incubation shows retention of morphology.  (d), 

DLS results over time in a variety of aqueous solvents for 300 nm particles show the same trend 

as 20 nm and 100 nm particles in solvent stability. (e), 300 nm particles under 2% albumin + 

PBS show some slight increase in size. Scale bar for large image is 200 nm. Scale bar for 

magnified image is 100 nm.  (f), 300 nm particles in serum show retention of shape and 

morphology. Scale bar is 200 nm. 
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Synthesis of CaCO3 nanoparticles via the vacuum assisted method occurs in a solution of CaCl2 

hexahydrate in EtOH placed in a beaker covered by a parafilm with small holes punctured 

through (Figure 4.7). Ammonium bicarbonate is placed in small uncapped vials surrounding the 

beaker, usually 10 – 20 g of ammonium bicarbonate per vial (Figure 4.7). Both of these reagents 

are placed in a dessicator including drierite, and placed under continuous house vacuum for 24 to 

48 hours (Figure 4.7).   
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Figure 4.7. (a) Synthesis contraption. Solid ammonium bicarbonate is placed around CaCl2 

hexahydrate over varying periods of time in order to synthesize vaterite based CaCO3 

nanoparticles.  

We then further determined how to make this synthesis process more efficient by exploring 

both the variables and the mechanism behind this method. We considered the following variables 

towards identifying efficient CaCO3 synthesis, including time under vacuum, concentration of 

CaCl2, volume of solution, exposed surface area of CaCl2 solution, surface area of ammonium 

bicarbonate, amount of ammonium bicarbonate, number of runs, and amount of water in the 

EtOH solvent. Temperature was held at room temperature, the desiccator size was 11.5” in 

diameter, and vacuum pressure was kept at maximum house vacuum.  

 CaCO3 has a thermodynamic equilibrium point at > 1 𝜇m in aqueous solution. Because 

we consistently see 100 nm particles, we focused on kinetic or other constraints on size. In 

particular, we hypothesized three possibilities for the mechanism constraining size in particle 

formation: one, a nucleation event of CaCO3 that then grows with repeated deposition; two, 

CaCl2 hexahydrate forms size constrained small water droplets in the EtOH; or three, 

aerosolization of ammonium bicarbonate under vacuum creates size constrained particles. 

4.3.3 CaCO3 particles do not grow from repeated layer by layer deposition in 

ethanol assisted synthesis.  

To test the first hypothesis, we investigated the change in the size of the nanoparticles over 

time under synthesis. We hypothesized that CaCO3 deposition could occur by the initial 

aerosolizing ammonium bicarbonate to form a nucleating event that then grew with additional 

ammonium bicarbonate depositing over time, similar to processes seen in gold or silver 
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nanoparticles and in more classical water based synthesis techniques for CaCO3.
1,24 In this case, 

we expect that each CaCO3 particle itself would grow in size with increasing time under the 

reaction. If not true, we would expect that the number of particles would change but not the size, 

i.e. changing yield independent of size. We approached this question by testing the yield and size 

distribution of CaCO3 after different amounts of time under vacuum.  

We find that nano-CaCO3 synthesis occurs very quickly after starting vacuum flow. 

However, we found that it took approximately 24 hours to synthesize quantities useful for animal 

experiments, and as such we used this time point as an initial baseline. When comparing the 

yield at 24 hours versus 72 hours, we find a 10 fold increase in yield (Figure 4.8a). In 

comparison, increasing the volume of CaCl2 solutions by four fold only increased the yield by 

1.4x (Figure 4.8a). In addition, via TEM, we find that there are no changes in the size of the 

particles with the increase in time, suggesting a non-layering synthesis mechanism (comparing 

Figure 4.8b and 4.8c). The increase in yield does evidently have a tradeoff with aggregation, 

with a larger degree of clumping of individual particles with larger amounts of time, but no 

merging of the particles (Figure 4.8c). The lack of crystal fusion in the clumps adds further 

evidence against the possibility of a nucleation and growth mechanism. 
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Figure 4.8. (a) Yield increases with number of days substantially, and volume by a minor part. 

(b) TEM of particles after 24 hours (50 mL volume, 4 mg/mL CaCl2(H2O)6 concentration, 4 

vials), scale bar 500 nm. (c) TEM of particles after 38 hours (50 mL volume, 4.4 mg/mL 

CaCl2(H2O)6 concentration, 4 vials), scale bar 500 nm.  

 

4.3.4 CaCO3 size is not influenced by the amount or state of CaCl2(H2O)6 in 

the EtOH solution  

In our second theory, if CaCl2 hexahydrate was to form micellar-like size constrained 

droplets in the EtOH solution, we would expect the particle size to be dependent on the 
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concentration of CaCl2 hexahydrate or other factors of the solution itself. Micelle size is typically 

controlled by the ratio of aqueous to non-aqueous solution and surfactant concentration. We 

investigated whether any micellar-like phenomenon was occurring here by varying the 

concentration of CaCl2 in solution, the surface area of exposure, and the volume of solution, and 

assessing the resulting size of particles via TEM. If true, we would expect that the putative nano-

droplets of CaCl2 hexahydrate would be directly related to these factors.  

As such, we tested CaCO3 synthesis at different concentrations, volumes and surface areas 

of solutions. We find that the concentration of CaCl2 hexahydrate in EtOH does not affect size of 

the resulting particles when controlling for surface area and volume (comparing Figure 4.9a and 

4.9b). Going further, we tested changing surface area while controlling volume, and we find no 

change in average particle size (comparing Figure 4.9c and 4.9d). When we test changes in the 

absolute amount by changing volume we also find no change in size (comparing Figure 4.9e and 

4.9f).  These results conclude that the size of the particle is not restricted by amount or 

concentration of the CaCl2 hexahydrate EtOH solution.  
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Figure 4.9. CaCl2(H2O)6 solution has no effect on size.  (a) TEM of particles made under 4.4 

mg/mL CaCl2(H2O)6, with 4 vials ammonium bicarbonate, in 50 mL over 3 days in a 77 mm 

diameter beaker, scale bar is 500 nm.  (b) TEM of particles made under 16 mg/mL CaCl2(H2O)6 

with 4 vials ammonium bicarbonate in 50 mL volume over 3 days in a 77 mm diameter, scale bar 

is 1 𝜇m. (c) TEM of particles made in a 4.4 mg/ mL CaCl2(H2O)6 concentration in 50 mL 

volume, in a 68 mm diameter flask for 1 day, scale bar is 200 nm. (d) TEM of particles made in 

a 2.8 mg/mL CaCl2(H2O)6 concentration in a 50 mL volume with 77 mm diameter over 2 days, 

scale bar is 100 nm.(e) Particles made in a 4.4 mg/mL CaCl2(H2O)6 concentration with 4 vials in 

68 mm diameter, with 50 mL volume over 1 day, scale bar is 200 nm. (f) 4.4 mg/mL 

CaCl2(H2O)6 4 vials 77 mm diameter in 223 mL volume over 3 days, scale bar is 200 nm.  
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4.3.5 Synthesis is dependent on the aerosolization of ammonium bicarbonate 

for changes in size and yield 

 Given the above results, we tested the third hypothesis that synthesis is dependent on the 

aerosolization process of ammonium bicarbonate under vacuum. The original reports of the 

method did not report the amount of ammonium bicarbonate used, and generally kept the amount 

in large excess compared to the concentration of CaCl2 hexahydrate. If it is dependent on 

ammonium bicarbonate then we would expect that the size would change based on changes in 

ammonium bicarbonate, such as amount, age, or number of runs. 

Because of the nature of the synthesis reaction, during experimentation, it is possible to 

retain the approximately same mass of ammonium bicarbonate experiment after experiment due 

to its solid state. In all of the experiments seen in Figure 4.10, the number of vials of ammonium 

bicarbonate ~ 20 g per vial remained constant at 15 vials unless noted otherwise. Per 

experimental run, we find that size and yield decreases (compare Figure 4.10a to 4.10b and 

4.10c, Figure 4.11). We postulate that this effect is due to decreasing amounts of ammonium 

bicarbonate aerosolizing and smaller crystals aerosalizing during each experimental run. Indeed, 

this effect aligns directly with the age of the ammonium bicarbonate reducing the yield and size 

of particles (Figure 4.11a, c, d). Combining an old series of vials with a new vial results in a 

mixed batch of particles, including both smaller and larger particles, suggesting particle is based 

purely on the ammonium bicarbonate at the solid to gas interface and not forming in transit to the 

gas-liquid interface (Figure 4.11b).   
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We were able to replicate this effect by reducing the absolute amount of ammonium 

bicarbonate below the point of excess. When testing synthesis with a 1:1 or 1:2 ratio of 

ammonium bicarbonate and CaCl2 hexahydrate, we find a significantly smaller diameter particle 

adding credence to this hypothesis (compare Figure 4d to 4f). However, it is clear that the size 

appears to plateau at 100 nm quickly above the 1:1 point.  

 

Figure 4.10. Ammonium bicarbonate has an effect on size (a) TEM images of particles on the 

first run of 300 g ammonium bicarbonate over two days, scale bar is 200 nm. (b) TEM images 

of particles on the approximately third run, at approximately the same mass of ammonium 

bicarbonate over two days, scale bar is 100 nm. (c) TEM images of particles on the 

approximately fifth run, at approximately the same mass of ammonium bicarbonate over two 

days, scale bar is 100 nm. (d) TEM images of particles on the first run using 127 mg of 
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ammonium bicarbonate, over two days, scale bar is 200 nm. (e) TEM images of particles on 

the first run using 57 mg of ammonium bicarbonate, over two days, scale bar is 200 nm. (f) 

TEM images of particles on the first run using 7.9 mg ammonium bicarbonate, over two days, 

scale bar is 200 nm.  

 

Figure 4.11. Particle size and yield is dependent on the age of ammonium bicarbonate.  a) 

Yield over time via aging of ammonium bicarbonate over runs b) TEM of synthesis using a mix 

of new and old NH4CO3, scale bar is 200 nm c) TEM of synthesis using 2 months old NH4CO3, 

scale bar is 200 nm, subset, scale bar is 50 nm d) TEM of synthesis using over 6 month old 

ammonium bicarbonate, scale bar is 200 nm, subset, scale bar is 50 nm. 
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The surface area of ammonium bicarbonate, in general, did not change the size (compare 

Figure 4.12a vs 4.12b). However when placing a large amount of ammonium bicarbonate in a 

400 mL beaker, a relatively low surface area to mass, we find large fused aggregates / 

microparticle formation (Figure 4.12c). Reducing the amount of ammonium bicarbonate or 

increasing the surface area was able to correct for the aggregation effect (Figure 4.12b, 4.12d).  

 

Figure 4.12. Particle size is not dependent on surface area of ammonium bicarbonate. a) 

TEM of particle synthesis using 30 grams of NH4CO3 in a 100 mL beaker, scale bar 200 nm b) 

TEM of particle synthesis using 30 grams of NH4CO3 in a 400 mL beaker, with some particle 

clumping noted, scale bar 200 nm c) TEM of particle synthesis using 157 g of NH4CO3 in a 400 
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mL beaker, scale bar 1 𝜇m d) TEM of particle synthesis using approximately 157 g of NH4CO3 

spread across 15 vials, scale bar 500 nm. 

Given the dependence on NH4CO3 we took TEM of the ammonium bicarbonate samples. 

TEM of the ammonium bicarbonate samples fresh and after several runs revealed nanocrystals 

that aligned with the above observations. (Figure 4.13a, 4.13b). In particular, in the fresh 

ammonium bicarbonate the nanocrystals are closer to the larger 100 nm. (Figure 4.13a)  In the 

ammonium bicarbonate after several runs we find the nanocrystals are closer to 20 nm 

suggesting that the larger ammonium bicarbonate disappeared with runs, and explaining the 

lowering size.  

 

 

Figure 4.13 TEM of Ammonium bicarbonate a) TEM of fresh ammonium bicarbonate pre 

reaction, scale bar 500 nm, subset 100 nm b) TEM of ammonium bicarbonate after reaction x3, 

scale bar 200 nm 
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4.3.6 Ammonium bicarbonate constrained synthesis of CaCO3 can use a 

variety of organic solvents  

Given the constrained size by ammonium bicarbonate we hypothesized that a similar 

synthesis of CaCO3 would occur in other organic solvents. (Figure 4.14). We find that MeOH 

has identical particle formation, with a high yield. Synthesis in DMF is curious in that we see a 

mix of small and large particles. The synthesis technique does break down in water with large 

aggregates forming.  We found that small amounts of water (0.4%, 200 𝜇L) can be tolerated 

(Figure 4.14a). In particular hypothesize that the formation of vaterite instead of amorphous 

CaCO3, as described previously14, is due to the increased water concentration from the 

hexahydrate. Larger amounts of water (20%, 10 mL), on the other hand caused a disruption of 

the spherical structure and created large aggregates (Figure 4.14b). This may be related to the 

capacity of the dessicator to dry out the EtOH + H2O solution.  
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Figure 4.14 Ammonium bicarbonate constrained CaCO3 synthesis in other solvents:  a) 

With 200𝜇L water in 50 mL EtOH b) with 20% water/EtOH c) in DMF d) in MeOH 

4.3.7 Ammonium Bicarbonate Constrained Vacuum Assisted Synthesis can be 

used to create other carbonate nanoparticles. 

We find that applying the same exact synthesis technique albeit with 140 mg to 200 mg of 

AuCl2, FeCl2¸or ZnCl2 induces the similar formation of the respective carbonate nanoparticles, 

constrained to approximately 100 nm in size. This validates the hypothesis that the size 

constraint comes from the ammonium bicarbonate crystals and not the salt-EtOH solution. 

(Figure 4.15). 
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Figure 4.15 Ammonium bicarbonate constrained metal carbonate synthesis in EtOH. Scale 

bar 0.5 μm, subset 100 nm a) AuCO3 b) ZnCO3 c)FeCO  
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4.4. Discussion 

CaCO3 suffers from poor replicability and ill-understood synthesis steps. To better 

understand CaCO3 nanoparticle formation, we undertook a detailed study on the factors involved 

in size determination and yield in a highly reproducible synthesis procedure based on ammonium 

bicarbonate aerosolization (Table 4.1).  

Table 4.1: Summary of factors and effect on size and yield. 

Factor Size Yield  

Concentration of CaCl2 No Effect Increase 

Volume of CaCl2 solution No Effect Increase 

Surface area of CaCl2 

solution 

No Effect No Effect 

Time under vacuum No Effect Increase 

# of runs Decreases  Decreases 

Amount of ammonium 

bicarbonate  

Increases size to 100 nm Increases 

Surface Area of ammonium 

bicarbonate 

No effect (to a point) No Effect 

 

 Aerosolization based nanoparticle synthesis is rare, especially resulting in monodisperse 

nano-crystals. Indeed, previous studies have shown that controlling aerosolization is difficult. 25 
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As a result, more classical synthesis techniques control size by time-based deposition or 

restriction from a micellar nano-bubble form. However, for this synthesis technique we find a 

counterintuitive phenomenon, with neither of those effects occurring. Note that the solution is 

not being homogenized as there is no stirring involved, and yet the particles are remarkably 

monodisperse. This phenomenon adds credence to the dependence of the nanoparticle size on 

ammonium bicarbonate nanocrystals.  

 Thus, vacuum assisted synthesis of CaCO3 reveals a rare method of synthesis of 

nanoparticles via aerosolization of a solid reagent, in this case nano-crystal ammonium 

bicarbonate. Future work will look at exploring nanoparticle generation in this class of synthesis, 

particularly expanding on the ability to produce carbonate nanocrystals of other metals, including 

gold, iron and zinc.. The reliance on a relatively small number of variables of only one reagent 

makes this synthesis technique particularly robust, explaining its high reproducibility.  

Overall, CaCO3 as a nanomaterial has multiple uses in vivo as a drug delivery carrier and 

therapeutic. To be used widely, we describe the mechanism behind vacuum assisted CaCO3 

synthesis. In this study we demonstrated the only underlying involved in determining the size of 

CaCO3 particles was the ammonium bicarbonate nanocrystals. Moreover, because the nanoparticle 

size is dependent only on a very limited number of variables during synthesis, we find that the 

synthesis method is particularly robust and allows the synthesis for a wide range of nanocrystals. 

Controlling the crystal growth of a nanoparticle has continued to be difficult. The identification of 

albumin enables the use of CaCO3 in vivo for exploring the therapeutic implications of CaCO3The 

extension of the method to other carbonate crystals, as described here for gold, zinc, and iron, 

opens a new field for carbonate crystal engineering.  
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Chapter 5: Biodistribution and Toxicity Screening of 

CaCO3 in vivo 
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5.1 Introduction 

Cancer therapy remains a difficult problem, with significant side effects and off target effects 

of common methods. Nano-CaCO3 may potentially be a useful platform for tumor therapy via 

two mechanisms, pH sensitive drug delivery and direct modulation of the local pH. 1-4 

Nano-CaCO3 has significantly useful properties over other nanoparticle platforms.  The 

degradation products of Nano-CaCO3 are only calcium, which is regulated by the kidney and 

deposited into the bone and CO2 which is rapidly excreted via the lungs. As a result long term 

foreign deposition issues are hypothesized to not a problem. In addition, CaCO3, is tightly 

controlled in the body to a certain pH, in this case 7.4.4 This is particularly ideal, as the 

extracellular acidity induced by Warburg metabolism results in an extracellular pH between 6.4 

to 7.2.5,6 As a result, CaCO3 dissolves selectively in these acidic regions resulting in both the 

delivery of any cargo, and the neutralization of the pH towards more physiological range. These 

pH changes alone have been shown to inhibit cancer growth, putatively due to changes in 

enzyme kinetics, and are promising for synergy with other therapies, including chemotherapy, 

radiation therapy, and immunotherapy. 7-18 

For synergy to be possible, understanding the biodistribution and toxicity of CaCO3 

nanoparticles is critical. However, unlike more standard gold and silver nanoparticles, nano-

CaCO3 does not have significantly different intrinsic contrast to normal tissue due to the high 

prevalence of calcium and carbonate in the body.  As a result, nano-CaCO3 has not been imaged 

in vivo.  Imaging and/ or quantification of amount is critical to understand both timing and extent 

of distribution of the particle for CaCO3 to be a useful platform.  
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There are several challenges towards imaging nano-CaCO3 in vivo. TEM imaging of CaCO3 

are hard to visualize due to equivalent electron density surrounding globules. Calcium and 

carbonate measurements themselves are difficult to differentiate from the background 

concentrations of calcium and carbonate. Because the particles dissolve in vivo, surface 

modification with fluorescent or other contrast agents is not reliable.   

Among imaging systems then, MR has the widest clinical translation possibility as MR allows 

full depth penetration and time course imaging. MR has been used in the past to follow 

magnetite nanoparticle distributions.19,20 In order to image nano-CaCO3 we undertook the 

synthesis of a magnetite impregnated CaCO3 nanocrystal of similar properties to nano-CaCO3.  

MR imaging of vaterite-magnetite allows for biodistribution testing of nano-CaCO3 both in 

animal models, and in the future, in humans. The results of this study allow for the use of nano-

CaCO3 as an organic biodegradable alternative to metal and polymeric nanoparticles for 

nanotechnology in cancer therapy.  
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5.2 Materials and Methods 

5.2.1  Transmission Electron Microscope (TEM). 

TEM micrographs were obtained using a FEI Spirit TEM (Hillsboro, USA) operated at 120 kV.  

A 400-mesh Formvar® carbon-coated copper grid was glow-discharged in a vacuum evaporator 

(Denton, Moorestown, New Jersey) for 30 s.  The sample was prepared by placing 2 μL of 

sonicated CaCO3 nanoparticles solution onto the grid and wicking off the excess sample with filter 

paper after 30 s. Alternatively, for EtOH or DMSO solvent based solutions, 3 𝝁L of particle 

solution were placed on the grid and left to dry out at room temperature or with the aid of a heat 

gun.  

5.2.2 X-Ray Diffraction (XRD).  

XRD patterns were obtained by using the Bruker d8 Advance X-ray Diffractometer (Bruker, 

USA) configured with a Cu X-Ray tube with 1.5418 Å for analysis of powder samples using 

LYNXEYE_XE detector. For the analysis, fine acetone ground CaCO3 nanoparticles were kept 

on a Zero Diffraction Plate (MTI Corporation, USA).  XRD data were scanned from 20-60 

degrees, with a 0.04 degree step size, a 0.5 s per step count time, with sample rotation turned on 

(15 rotations per min), with a coupled two-theta/theta scan. The Bruker Diffrac.Eva program was 

used for the evaluation and processing of X-ray diffraction scan data. Search-match operations 

included search by DI list, by name, using chemistry filters, and creating an International Centre 

for Diffraction Data (ICCDD PDF) database filter.   

5.2.3 Hydrodynamic diameter and electro-kinetic zeta potential. 
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To study agglomeration kinetics of CaCO3 nanoparticles, hydrodynamic diameter (Dh) was 

measured using DLS (Malvern Instruments, Southborough, Massachusetts).  Agglomeration 

kinetics were measured on the basis of data obtained from TR-DLS.   

The zeta potential was measured using a Malvern Zetasizer Nano ZS instrument.  An applied 

voltage of 100 V was used for the nanoparticles. A minimum of three measurements were made 

per sample.  

5.2.4 Determination of toxicity in rats 

3 month old Sprig Dawley rats (n=3) were injected with an allometrically dosed 25.4 

mg/Kg (to match the dose originally given to mice) of 30 mg/mL 100 nm CaCO3 particles 

in 2% rat serum albumin PBS supplemented with CaCl2 and MgCl2.  For control, 3 month 

old Sprig Dawley rats (n=3) were injected with a vector of 2% rat serum albumin PBS 

supplemented with CaCl2 and MgCl2 at an equivalent volume dosage as in the treated 

group. 

5.2.5 Determination of toxicity in cells 

HT1080 cells were grown to near confluency in a 96 well plate and incubated with 

CaCO3 at a decreasing concentration for 24 hours both under original IMDM media, and 

IMDM media that was acidified to pH of 6.45 by titration with 1M HCl. Toxicity was 

assessed via the sulfarhodamine B assay.   

5.2.6 Imaging Test of Vaterite-magnetite nanocomposite 

81 mg of Vaterite-magnetite was suspended in 1 mL of 2% BSA in PBS with MgCl2 and CaCl2 

and then diluted five times, each time by a factor of 10. The resulting 1 mL solutions (81 mg/mL, 

8 mg/mL, 0.8 mg/mL , 0.08 mg/mL, and 0.008 mg/mL ) were placed in eppendorf tubes and the 



 124 

transverse relaxation rate constant (R2) for each dilution was measured using a Car-Purcell-

Meiboom-Gill-type spin-echo sequence employing 12 echo times ranging from 13 to 300 ms and 

a TR of 2 sec.  The transverse relaxivity of the particle (r2) was calculated based on the linear 

relation (assuming low concentrations of particles) between R2 and particle/iron concentration; 

       R2,obs = R2,0 + r2 [NP], 

where R2,obs is a measured transverse relaxation rate constant, R2,0 is the calculated transverse 

relaxation rate constant in the absence of the nanoparticle (often referred to as the "background" 

R2), r2 is the transverse relaxivity of the particle, and [NP] is the nanoparticle concentration. 

5.2.7 in vivo imaging 

Three nude mice were injected with HT1080 tumors in the dorsal flank and grown to 

approximately 1.5 cm x 1.5 cm. 1 mg of vaterite-magnetite was injected via tail vein and 

measured using a Car-Purcell-Meiboom-Gill-type spin-echo sequence employing 12 echo times 

ranging from 13 to 300 ms and a TR of 2 sec at T= post injection, ~1-3 hours, 4-6 hours, and 24 

hours post injection. 
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5.3 Results  

5.3.1 Synthesis and characterization of vaterite-magnetite 

The process of synthesizing the nano-composites is similar to the vaterite nanoparticle 

synthesis process. Magnetite particles with a mean size of 15 nm (± 2.30 nm) were obtained 

from Nano Research Facility of Washington University in St. Louis, USA and used for the 

synthesis process. These magnetite particles were suspended in DI water and added to a 

solution of hydrated calcium chloride. The remainder of the steps matched those we have 

reported before for the vaterite particle synthesis. During the synthesis process the addition 

of ethylene glycol to the solution was done to increase the viscosity of the solution and 

thereby reduce the molecular diffusion21 giving particle sizes of 100 ± 8.5 nm. Thus, it is 

seen that the viscosity of the solution plays a major role in the formation of the metastable 

vaterite nanoparticles. Removal of water through washing is essential as the presence of 

water encourages the particles to nucleate further and change phase from vaterite to calcite. 

Fig. 5.1, presents the TEM images of the particles dispersed in methanol and it can be seen 

that the vaterite particles have a characteristic spherical shape and size range of 100 ± 8.5 

nm. Also, the images of the vaterite-magnetite nano-composites show dark spots matching 

the size of the added magnetite nanoparticles within the bulk vaterite particle.  
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Fig. 5.1 TEM images of Vaterite-Magnetite particles when dispersed in methanol. (A) 

Agglomerates of the vaterite-magnetite nano-composites. Inset in A: Scaled up image of the 

vaterite-magnetite particles (scale bar of 20nm). The black dots indicated by arrows within the 

bulk of the CaCO3 particle are the magnetite nanoparticles 

  

20 nm 
500 𝜇m 
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5.3.2 CaCO3 with magnetite incorporated remains vaterite.  

 To confirm the crystal phase of the CaCO3 or magnetite-CaCO3 nanoparticle, XRD patterns 

were obtained by using the Bruker d8 Advance X-ray Diffractometer (Bruker, USA) configured 

with a 1.5418 Å Cu X-Ray tube for analysis of powder samples using LYNXEYE_XE detector. 

The diffraction pattern has clear represenation of vaterite phase of CaCO3 as shown in Fig. 3. 

However, there was a very small intensity peak of aragonite phase was also observed. Diffraction 

pattern of magnetite-CaCO3 shows the consistancy in phase purity.  (Figure 5.2) 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 XRD Characterization of CaCO3 and magnetite-CaCO3 (m-CaCO3) composite 
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5.3.3 Stability of CaCO3 in aqueous medium  

A chemical compound used for biomedical application needs colloidal stability, help in storage, 

transport and delivery of the compund into patient body. The synthesized particles may have huge 

utility as pH neutralizers in cells22-24 due to their small size and high pH neutralization capacities. 

To check their feasibility for pH neutralization in vivo, the size and stability of these particles in 

different solvents is checked using Time-resolved dynamic light scattering technique (TR-DLS) 

for duration of 30 minutes. The stability of both, the vaterite nanoparticles and the nano-

composites in a variety of solvents such as water, saline, Bovine serum albumin, Dulbecco’s 

Modified Eagle Medium (DMEM), ethanol, methanol and Phosphate Buffer Saline (PBS). The 

Fig. 5.3 shows the stability tests imply that albumin has a high affinity for the calcium 

carbonate and resists two particles from coming together, thus stabilizing the particles in a 

solution. The PBS solution encourages precipitation of the particles by increasing their 

supersaturation.25 This leads to rapid precipitation encouraged by the addition of divalent 

ions (Mg+2 or Ca+2) into the solution. The particles are also quite stable in DMEM which 

indicates their possible applications in growing cell cultures requiring alkaline pH 

environments. The results thus indicate that both the synthesized particles would be useful 

for industrial applications in solvents such as ethanol and would be good for biomedical 

applications by dissolving the same in a solution of albumin. 
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Fig. 5.3 Stability test of vaterite nanoparticles in various solvents measured by TR-DLS. (A) 

Vaterite-Magnetite nano-composites, the order of stability as 2% Albumin>Ethanol = 

DMEM>Saline>PBS+MgCl2>Methanol>Water. 

5.3.4 Imaging of nano-CaCO3 ex vivo and in vivo 

 Phantom tests demonstrate a sensitivity up to 0.1 mg/mL , a 100 fold dilution from 

normal injection doses of 1 mg in 100 𝜇𝐿. Injection in vivo demonstrates a T2 drop (and a 

1/T2 rise, first in the kidney, then liver, and finally tumor. This can be visualized in the T2 

map as T2 drops post injection. We find that the particles cause a drop relatively rapidly, 

with a trough at around 6 hours with almost complete return of signal by 24 hours. The 

significant reduction of T2 in the bladder suggests a large renal clearance. (Figure 5.4) 

A 
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Figure 5.4. MR Imaging of CaCO3. (a) Ex vivo phantom imaging of vaterite-magnetite at 

different concentrations. (b) Change in 1/𝜏 over time in liver, kidney, and HT1080 tumor. (c) 

Visualization of T2 changes with vaterite magnetite injection.  

5.3.5 Toxicity Studies 

For CaCO3 nanoparticles synthesized by this method to be a standard platform particle 

for use in situations similar to more classical gold or metal based nanoparticles, a 

biologically inert phenotype is necessary. Indeed, in cell studies we find that there is no 

specific toxicity on HT1080 cells up to 1.20 mg/mL. In vivo, we tested this hypothesis using 

a rat animal model for translational toxicity studies. Indeed, we find little to no significant 

changes in organ weights, blood chemistries, and blood counts 24 hours after 25 mg/Kg 
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CaCO3 injection compared to control (Figure 5.5). There was a significant albeit slight rise 

in blood urea nitrogen, but because there was no concurrent creatinine or liver enzyme rise, 

the rise was suggested to be nonspecific and may resolve with larger numbers of replicates 

(Figure 5). There was nonspecific pathology across both control and treated groups that 

was attributed to age. Given these results, we conclude that nano-CaCO3 is not inducing 

widespread toxicity, and infer that this is most likely due to the pH not increasing beyond 

7.4 in normal organs as reported before.  
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Figure 5.5. CaCO3 is non-toxic (a) Toxicity of 100 nm CaCO3 particles in standard pH 7.4 

IMDM media. (b) Toxicity of 100 nm CaCO3 particles in pH 6.45 IMDM media. (c) Organ 

weights with vector versus 100 nm CaCO3. (d) Serum biomarker values (e) Complete blood 

count. (f) Platelet count. 
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5.4 Discussion 

The ability to visualize CaCO3 in vivo allows for practical design of dosing and 

pharmacokinetics. The ability to impregnate magnetite nanoparticles into the existing 

nanoparticle formation is a significant improvement to answer this question. The magnetite in 

particular is uniformly distributed across the particle, allowing for a better approximation of the 

location of the entire particle.  

However there are limitations with this model. Although magnetite allows for MR based 

noninvasive imaging, it also has poor resolution and low sensitivity. As such, it is unclear exactly 

when CaCO3 finishes clearing. It is also unclear whether the reduction in signal is due to 

dissolution or washout of the particles.  

Toxicity studies of the CaCO3 nanoparticles are important validation points for the 

practical usage of CaCO3. Calcium and Carbonate are on their own easily degradable and 

biocompatible. However, as a nanoparticle, the existence of liver and kidney toxicity remains a 

concern. The results from the rat studies suggest minimal acute toxicity. Further studies on 

chronic toxicity will be ideal.  

Future studies on the material will look at other methods to validate biodistribution. Other 

possibilities include Raman Microscopy and C13 mass spectrometry as methods to visualize the 

intrinsic properties of the material, rather than using a co-carrier such as magnetite. 
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Chapter 6: Systemic Administration of Nano-CaCO3 

Inhibits Tumor Growth and Metastasis via Local pH 

Increase 
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6.1 Introduction 

The current understanding of cancer development has evolved from a simple view of 

uncontrolled growth stemming from gene mutation within a single cell to that of complex 

interactions between different cell types and their local chemical environment. In particular, 

the 4-5 fold increase in the extracellular hydrogen ion concentration around tumor cells, 

previously considered a byproduct of upregulated glycolysis, appears to support elevated 

tumor growth, immune evasion, and metastasis.1-5 To combat these effects, various cancer 

therapies focusing on modulating extracellular pH (pHe) of tumors have been investigated.6 

For instance, intracellular modulators of intrinsic proton transport and production such as 

proton pump and carbonic anhydrase IX inhibitors have inhibited tumor growth by 

increasing pH in vivo.1,6,7 However, the intracellular targets of these drugs are expressed in 

non-cancerous cells and therefore can have off-target toxic effects.7 In addition, redundancy 

of intracellular pathways can lead to drug resistance and loss of therapeutic efficacy over 

time.8,9 

To avoid intracellular resistance pathways, dietary alterations including sodium 

bicarbonate can raise the systemic extracellular pH.2  Although a positive response has been 

observed in some tumors, this approach requires the administration of large amounts of the 

salt, does not target the tumors directly, has a transient effect on tumor pHe because of the 

rapid clearance from circulation, and is expected to induce metabolic alkalosis, and 

consequent morbidity.10  

An alternative approach to directly modulate the acidic pHe of tumors is to develop 

nanoparticle delivery vehicles with sustainable buffering capacity. This approach could 

minimize the drug resistance potential seen in intracellular therapies, but also add the 
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selectivity seen with nanotechnology.11 Cationic secondary amine dendrimers have been 

used to respond to acidic pH, particularly to escape the lysosome, for intracellular drug 

delivery.12 However, dendrimers are capable of neutralizing only a small number of protons 

(10-20 mole) per nanoparticle, thereby limiting their buffering capacity. Unless a non-

desirable continuous infusion of the polyamine nanoparticles is used, their buffering 

capacity is not regenerative and the products of amine protonation could induce off-target 

toxicity. Inorganic nanoparticles, such as doped CaCO3, have been used for acid sensitive 

drug release.13,14 However, rarely has any biocompatible inorganic nanoparticle been 

intentionally designed and used to modulate tumor pHe. 

In this work, we developed methods to prepare monodisperse nano-CaCO3 with size 

ranges from 20 – 300 nm. We also identified a method to stabilize the materials in aqueous 

media. Simulations and in vitro testing show that regenerative buffering capacity is 

obtained because the products of this interaction, water and bicarbonate, dissociate from 

the bulk nanoparticle core, creating a new surface to neutralize additional protons produced 

by the cells. In addition, we demonstrate that nano-CaCO3 with distinct sizes can selectively 

localize in the extracellular region of tumors and selectively modulate the pHe of tumors in 

rodents, with the net effect of preventing or reducing tumor growth and metastasis (Figure 

6.1).  
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6.2 Materials and Methods  

6.2.1 Determination of pH change in acidic media versus normal media.  

We determined CaCO3 dissolution over time by measuring pH changes in conditioned acidic 

media and fetal bovine serum. Conditioned media was from a 7-day incubation of media with 

HT1080 cells and an initial pH ~ 6.2. Final concentrations of CaCO3 in the cell free solutions were 

controlled at 0.67 mg/mL. CaCO3 was added to conditioned media or serum in ~10 𝝁L of aqueous 

vector (PBS + CaCl2 + MgCl2 + 2% bovine serum albumin) under hypoxic 5% CO2 conditions. 

The pH was then measured after 1 hr. 

 Figure 6.1. Schema of nano-CaCO3.  (a) High dose CaCO3 enters via EPR and increases 

pH to 7.4. Over time this continuous dose allows chronic maintenance of pH 7.4 
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6.2.2 Determination of nano-CaCO3 dose-dependent pH changes in HT1080 

cell culture medium. 

HT1080 cells were plated at 105 cells/well in a 24 well plate overnight under hypoxic conditions 

(0.3% O2 and 5% CO2), and then incubated with increasing amounts of 20 nm, 100 nm and 300 

nm particles for 24 and 96 h. The particles were directly added and resuspended in media via 

vortexing under hypoxic conditions (0.3% O2 and 5% CO2). The pH was measured after 24 and 

96 h incubation. n = 3 for each sample.   

6.2.3 Animal studies. 

All animal studies were conducted in accordance with protocols approved by the Washington 

University Animal Studies Committee. Mice were purchased from Charles River Laboratory.  

6.2.4 Determination of pHe changes in vivo post bolus particle intravenous 

injection.  

HT1080 tumors were grown subcutaneously in dorsal flanks of athymic nude mice, in 

dorsal bilateral flanks. Tumors generally grew in one flank. When the tumors growth 

reaches approximately 50 mm3 or greater, the extracellular pH was measured using an 

external pH electrode. Prior to these experiments, the mice had daily I.V. CaCO3 (1 mg) 

treatments for 3 weeks. Treatments were discontinued for at least 5 days before performing 

the in vivo pH measurements. The average initial pH was 6.94 +/- 0.147. 

The pH was measured using an extracellular pH electrode implanted into the tumor 

following a 15 min equilibration period after electrode entry. The pH electrode was 

calibrated within the week. About 1 mg of each size of particles (20 nm, 100 nm, 300 nm) 

in a 100 𝝁L solution consisting of PBS, CaCl2, MgCl2 and 2% bovine serum albumin was 

injected intravenously in individual mice. Approximately 100 𝝁L of aqueous vector (PBS, 
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CaCl2, MgCl2, and 2% bovine serum albumin), 100 𝝁L of 0.84% sodium bicarbonate in 

deionized (dI) water, and 100 𝝁L of 7.5% sodium bicarbonate in dI water were each serially 

injected intravenously into the same mouse with 1 h gaps for measurement. Tumor sizes at 

time of injection for this experiment were 12 mm x 9 mm (20 nm particles), 13.7 mm x 

12.5 mm (100 nm), 13.5 mm x 15.5 mm (300 nm), 12.5 x 16.5 mm (.84% bicarbonate), 

12.5 x 16.5 mm (7.5% bicarbonate), and 12.5 x 16.5 mm (vector). In general, the pH was 

then followed each minute for a minimum of 1 h, or up to 3 h if any changes were seen. 

Animals could tolerate this pH measurement procedure for approximately 4 h and exhibits 

complete recovery after treatment. Bleeding, if any, was also noted.  

6.2.5 Measurement of pH increases post multiple injections.  

HT1080 tumors were grown subcutaneously in the dorsal bilateral flanks of athymic nude 

mice. Typically, tumors grew in one flank. When grown to approximately 8.5 mm × 8.5 

mm, extracellular pH was measured using an external pH electrode. The pH was measured 

initially following a 15 min equilibration period post probe entry. About 100 𝝁L of 1 mg 

particles (100 nm) in a solution of PBS, CaCl2, MgCl2, and 2% albumin was injected I.V. 

every hour for 3 h. The pH was measured continuously throughout. 

6.2.6 Determination of tumor growth after CaCO3 administration.  

HT1080 tumors were grown subcutaneously in the dorsal flanks of six athymic nude mice 

(age ~ 8-10 weeks). After tumor growth reached about 100 mm3, I.V. treatment with nano-

CaCO3 was initiated for three mice. About 1 mg of particles (100 nm) in 100 𝝁L of a 

solution consisting of PBS, CaCl2, MgCl2, and 20 mg/mL of albumin was injected I.V. 

every 24 h for 5 days in three mice. The tumor size was measured for each day concurrently 

between treated and control for 12 days. The pH in the tumor region was then measured for 



 145 

each mouse as described above. During analysis, tumors that were considered too small to 

measure but deemed palpable, were assigned the largest size measured on Day 1 (50 mm3) 

as a conservative estimate.   

6.2.7 Determination of the effect of continuous infusion of CaCO3 on 

tumor growth and metastasis.  

4T1luc-GFP tumors were implanted into the mammary fat pads of Balb/c mice (syngeneic) 

at 400,000 cells per mouse for 3 mice. On day 1 of implantation bioluminescence was used 

to measure tumor size. 3 mg of nano CaCO3 was suspended into 200 𝝁𝑳 of EtOH along 

with 100 𝝁M Cypate from a DMSO stock and placed in a Lynch coil connected to an Alzet 

Osmotic Pump (Model 2004, DURECT Corporation, Cupertino, CA 95014) with a 28 day 

infusion time (0.15 𝝁L/hr), and implanted on day 2. These pumps were implanted and 

connected via jugular venous catheter into the animal. Animals were rested for 2-3 days. 

On day 6, 1 mg of CaCO3 in 2%BSA+PBS+CaCl2 was injected IV, and the animals imaged 

on day 6 post implantation, and then imaged approximately every 4 days by 

bioluminescence. To detect lung metastasis, the primary tumor was obstructed by a black 

covering and a long exposure taken on the chest region.  3 control mice were similarly 

implanted with orthotopic mammary fat pad tumors and followed by bioluminescence 

similarly for metastasis and the primary on day 1, 6, and every 4 days for up to 28 days. 

These mice did not get an osmotic pump.  

6.2.8 Determination of the effect of continuous infusion of CaCO3 on 

tumor extravasation (metastasis mimicking model). 

Pre IV injection of tumors 3 mg of nano CaCO3 was suspended into 200 𝝁𝑳 of EtOH along 

with 100 𝝁M Cypate from a DMSO stock and placed in a Lynch coil connected to an Alzet 
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Osmotic Pump (Model 2004, DURECT Corporation, Cupertino, CA 95014) with a 28 day 

infusion time (0.15 𝝁L/hr), and implanted 3 days prior to tumor implant via jugular venous 

catheter into the animals. These were implanted On the day of injection, 1 mg of CaCO3 in 

2% BSA was injected via tail vein into each balb/c mouse.  3-5 minutes after 1 million 

4T1luc GFP cells were injected by tail vein into the 3 balb/c mice. The mice were imaged 

2 hours post implantation by bioluminescence, 2 days after, 6 days after, 10 days after and 

16 days after before being sacrifice.  

 

  



 147 

 6.3 Results  

6.3.1 Efficacy of modulating the acidic pHe of tumors in vivo depends on 

CaCO3 nanoparticle size 

Predicated on the simulation studies, we assessed the buffering capacity of the 

nanoparticles in cell-free media under 5% CO2 and hypoxic (0.3% O2) conditions (Figure 

6.2a). In non-acidified conditioned media (pH 7.4), the solution pH was largely unchanged 

in the presence of different sizes and concentrations of vaterite nano-CaCO3, as predicted 

by simulations above. However, treatment of acidic conditioned media (pH 6.2) with any 

of the particles (0.67 mg/mL) showed a rapid increase in pH, which did not exceed 7.2. 

Similarly, the pH remained at about pH 7.2 after 24 h incubation of human fibrosarcoma 

(HT1080) cells in normal cell culture conditions, irrespective of the nanoparticle doses used 

(Figure 6.2b). At 96 h post HT1080 cellular induced acidification, nanoparticle size-

dependent pH changes were observed, with the 20 nm materials having the highest increase 

in pH. This could be attributable to the higher diffusion rate and the larger surface area of 

the 20 nm nano-CaCO3.  
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Fig. 6.2 Nano-CaCO3 increases pH up to 7.4 in vitro. (a), pH change in media at 5% CO2 

shows a significant increase in pH when using particles as compared to vector alone. All 

solutions were added in 10 𝜇L solvent (2% albumin + PBS with CaCl2 and MgCl2). (b), pH 

change versus dose when incubated with HT1080 (human fibrosarcoma) cells using 

different particle sizes shows an increase in pH with one dose of CaCO3, as well as a 

differential effect on pH at later time points of growth depending on size. Error bars refer 

to the standard error across n = 3 biologic replicates. 
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Despite recent advances in noninvasive methods to measure pH, they still suffer from 

poor sensitivity to pHe and poor temporal resolution needed to measure the dynamic 

changes in pH.15,16 To improve these parameters, we used an invasive pH electrode probe 

for determining the in vivo pH (Figure 6.3a). I.V. administration of 1 mg bolus injections 

of each of the 3 types of nano-CaCO3 in HT1080 tumor-bearing mice neutralized the pH 

for over 3 h. The 100 nm nano-CaCO3 showed the highest 𝛥pH and longest effect (Figure 

6.3b). The 20 nm particles appeared to diffuse into and out of the tumor area more rapidly 

than the 100 nm particles.  

Intuitively, larger particles are expected to exert higher response because of their 

favorable EPR effect. However, the 300 nm nano-CaCO3 do not appear to appreciably 

increase the pHe of tumors. The poor diffusion of these particles dictates that they can only 

exert an effect in a small section of a three dimensional tumor environment. Our data also 

show that flooding the mouse with a high concentration (0.3 - 0.4 g/Kg) of sodium 

bicarbonate (~10x the nanoparticle I.V. dosage) did not induce a measurable pH change in 

the tumor region (Figure 6.3b).  

  



 150 

 

 

Fig. 6.3 I.V. injections of nano-CaCO3 increase tumor pHe in vivo up to 7.4. (a) Image of 

pH measurement setup. Probe is ~ 5 mm deep into the tumor, and ~5 mm wide, suggesting 

that any pH value measured is most likely extracellular. (b) pH change in vivo with 1 mg 

bolus intravenous injections (time point of injection symbolized on the graph as an injection 

needle) of CaCO3 particles, bicarbonate, or vector. (c) pH change with multiple injections 

of 100 nm particles in HT1080 tumor models demonstrate asymptotic changes near pH of 

7.4. 
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6.3.2 Transient neutralization of the acidic pHe can inhibit tumor growth 

The effect of persistent neutralization of the acidic pHe of solid tumors is not known at this 

time. Dynamic pH measurements in mice bearing HT1080 tumors indicate that 100 nm 

sized nanoparticles administered at a bolus dose of 1 mg (0.04-0.05 g/kg body weight) 

almost linearly increases the pH during the first 30 minutes, followed by a decrease at about 

100 minutes. Repeated dosing at selected time points can maintain the pH close to 7.4 

(Figure 6.3c), which matches the expectations of our simulation (Chapter 3).  

Consistent with our hypothesis, we found that repeated daily administration of nano-

CaCO3 significantly inhibited tumor growth (Figure 6.4a,b). Further, discontinuation of the 

nano-CaCO3 treatment partially reversed this trend, resulting in the acceleration of tumor 

growth rate (Figure 6.4c,d). This finding suggest the potential of tumor cell reprograming 

in response to an initial assault by nano-CaCO3. Future studies will explore this concept. 

Our results suggest that if a therapeutic outcome using this method is envisaged, multiple 

doses of nano-CaCO3 may be required to sustain the neutralizing effect until either 

depletion of the nanoparticles or reprogramming of the tumor cells in response to treatment. 

To achieve a sustainable tumor-inhibitory effect, it will be necessary to optimize dosing, 

combine nano-CaCO3 with other therapies, and improve targeting of the nano-CaCO3 to 

tumors.  
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Fig. 6.4 Repeated administration of 100 nm nano-CaCO3 inhibits tumor growth in vivo. (a), 

Tumor size during treatment (first box) is significantly lower than control, which partially 

equalizes after treatment ends (second box). (b), Controlling for initial size, the fold change 

in tumor size is significantly reduced in treated tumors. (c), Growth rate of treated tumors 

is decreased compared to control during treatments and only partially returns to normal 

after treatment removal. (d), Removal of CaCO3 doubled the growth rate acceleration of 

the tumor after treatment removal, with little change in control over the same time period. 

Error bars represent standard error. Error bars refer to standard error with an n= 3 biologic 

replicates for each arm. 
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6.3.2 Persistent neutralization of pH via infusion of CaCO3 can inhibit 

growth and metastasis.  

CaCO3 infusion induces a persistent amount of CaCO3 buffer in the blood stream. Under 

these conditions, we find metastasis is inhibited significantly via both the orthotopic and 

IV infusion model. In particular we find that the orthotopic tumor is significantly inhibited 

in growth. Based on the results of the IV infusion model, we note that the particles may 

have some inhibition of the extravasation step. Based on the results of the orthotopic model 

suggests that CaCO3 may have an effect on metastasis by both an effect on intravasation 

and extravasation.  (Figure 6.5) 
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Fig. 6.5 Continuous CaCO3 infusion inhibits tumor growth and metastasis. (a) Tumor 

metastasis can be seen in control versus lack therof in treatment mice in the orthotopic 

4T1 model. (b) Orthotopic tumor growth in control versus treatment. (c) Reduction in 

tumor extravasation in an IV model of metastasis under CaCO3 control vs treatment. (d) 

Quantification of the reduction in lung bioluminescence immediately post injection of 

4T1luc GFP tumor cells and 2 days later.  
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6.4 Discussion 

We have identified a facile, scalable method for mass production of sub-micron vaterite calcium 

carbonate nanoparticles that are stable in biological media. Two different methods wherein 

particle nucleation and cluster growth could be effectively controlled was demonstrated to obtain 

the desired size ranges and crystal phases of calcium carbonate nanoparticles. (Chapter 4) For the 

first time, we have demonstrated the capability of modulating the pH of solid tumors using nano-

CaCO3. Efficient neutralization of the acidic pHe of tumors depends on particle size. Our results 

suggest that large (> 300 nm) and small (< 20 nm) particles are less effective in neutralizing pHe 

in vivo because of limited diffusion and transient retention in the tumor environment, 

respectively. The ability of nano-CaCO3 to inhibit tumor growth and metastasis in vivo could 

serve as a treatment paradigm for long-term tumor static therapy. Future studies will focus on 

dose optimization, enhancement of tumor-targeting capability, determination of synergistic 

treatments with complementary therapies, and assessment of potential tumor cell reprograming 

following nano-CaCO3 treatment. A summary of all experiments in this chapter and above can 

be seen in Table 6.1.  

Table 6.1: Experimental plan to develop nano CaCO3 for modulating pH in tumors 

Experiment Objective/hypothesis  Techniques Notes 

Simulation of 

CaCO3 dissolution 

in vivo 

To analyses pH transition with 

𝜇m resolution 

MATLAB Simulation of nano 

CaCO3 dissolution 

in vivo 
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Synthesis of 

CaCO3 

nanoparticles 

Synthesis of 20 nm, 100 nm and 

300 nm 

Sol-gel 

synthesis, gas 

diffusion 

synthesis 

Morphological 

controlled 

nanoparticle 

synthesis 

Characterization 

of nanoparticles 

Morphology, zeta potential TEM, DLS Fractal nature and 

hydrodynamic 

diameter 

Crystal nature XRD Vaterite  

Aqueous Solvent 

Identification 

Stability of nanoparticles TR-DLS, 

TEM, XRD 

Using different 

vector system 

In vitro cell free 

testing of nano-

CaCO3 

Test the kinetics and dose 

response pH neutralization in cell 

free conditioned media and 

serum   

pH probe CaCO3 dissolution 

and pH changes in 

conditioned media  

In vitro cell 

incubation with 

particles 

Dose response on pH change 

post incubation period with cells  

pH probe, 

HT1080 Cell 

culture 

To verify the 

experimental results 

of cell free 

experiments with 

cells  

In vivo testing of 

nano-CaCO3 

pH changes in vivo post bolus 

particle IV injection 

HT1080 

tumors, 
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ncr/ncr nude 

balb/c mice 

To verify pH 

modulating in model 

organism 
pH increases post multiple 

injections 

 HT1080 

tumors, 

ncr/ncr nude 

balb/c mice 

Demonstrate decrease in tumor 

growth from the increase in pHe 

over time in immunodeficient 

mice 

HT1080 

tumors, 

ncr/ncr nude 

balb/c mice 

Tumor growth rate 

is inhibited with 

CaCO3 that partially 

reverses with 

removal 

Demonstrate inhibition in tumor 

growth and metastasis from the 

increase in pHe over time in 

immunocompetent mice with 

continuous infusion 

4T1luc-GFP 

tumors, Balb/c 

mice 

Metastasis and 

tumor growth  is 

inhibited with 

CaCO3 continuous 

infusion. 

 

A shortcoming of our study is the difficulty in using an invasive method to determine in 

vivo pHe, which could affect the accuracy of the pH measurement. Additionally, repeated 

measurements requiring removal and replacement of the pH probe is cumbersome and 

prone to error. These challenges could be addressed by developing a precise and accurate 

noninvasive imaging approach to measure pH longitudinally. 
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Chapter 7. Conclusions and Future Directions 
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7.1 Conclusions 

 The extracellular pH of cancer remains a hallmark worth manipulating for cancer 

treatment. Prior to this work, it had been difficult to modulate pH in tumors in a sustainable 

fashion in vivo without significant side effects for long durations.1-7 In this thesis we describe the 

importance of pH on the extracellular environment in cancer and demonstrate the development 

of a nanomaterial method to modulate this pH in vivo. This new tool enables both providers and 

researchers to practically tackle the question of extracellular pH modification. We discover that 

the use of the novel nanomaterial (nano-CaCO3 ) does have a significant therapeutic effect on 

both tumor growth and metastasis, at dosage levels of carbonate that are almost 8000x smaller 

than by oral systemic dosing of aqueous sodium bicarbonate. 1,3 In the process, we present new 

biological observations, diffusion and dissolution modeling of nanomaterials, novel material 

synthesis methods, new MR contrast agents for bio distribution profiling, and the use of 

nanomaterials in osmotic pumps for continuous administration.  

 The observation of OCT-4 expression under acidic stress in fibroblast stromal cells is 

significant in that it demonstrates how the acidic pH generated by tumors has a functional effect 

on its surroundings. The implications of this observation remain significant, including a potential 

avenue to explain the recruitment of stromal cells to the tumor microenvironment. Perhaps 

further interesting is how widespread the phenomenon appears, in multiple solid tumor types, 

further emphasizing the ubiquity of pH and its downstream effects as a hallmark of cancer.  

 The mathematical modeling of CaCO3 dissolution in vivo is one of only a few studies 

describing modeling of a nanomaterials. 8-11The subsequent studies validate the model’s 
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prediction, primarily that CaCO3 despite having a pKa of 9, in vivo, retains a physiological pH 

sensitivity to 7.4. It also implies significant things about the proposed biodistribution and pH 

maintenance paradigms that influenced doping schedule. For instance, because there is a stable 

point at 7.4, raising the pH itself to 7.4 may require substantial amounts of nanoparticle, but 

maintaining the pH requires very little, only enough to remove any newly produced acid. 

Importantly this also meant that under continuous infusion, the first bolus would be used 

primarily to increase pH, with subsequent dosages only serving to increasing the buffering 

capacity of the tissue.  Continuous presence of a small amount CaCO3 nanoparticles thus is very 

important to maintain this equilibrium.  The pH dropping again would mean the entire process 

has to start over. This fundamental prediction influences the usage of the continuous osmotic 

pump and helps explains the significantly greater growth inhibition under continuous infusion 

than daily bolus injections.  

 The synthesis of nano-CaCO3 required a new way to develop and stabilize nano-crystals. 

Carbonate nano-crystals in particular are hard to make and grow because of their propensity to 

fuse and become larger. Interestingly, in the process of development, we discover a vacuum 

diffusion method where the size is actually a function of the ammonium bicarbonate 

nanocrystals. This result means that we can make carbonate nanocrystals of a number of metals 

as shown by the formation of AuCO3, FeCO3, and ZnCO3.  

 An important component of making pH modulation a practical therapeutic modality was 

toxicity and biodistribution. Via this section, we demonstrate the production, characterization 

and imaging of CaCO3-magnetite which identified CaCO3 as undergoing an approximately 24 

hour clearance pattern. Toxicity studies with rats also demonstrate the safety of CaCO3 

suggesting further its capability to be a practical therapeutic modality.  
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 Further studies then looking a pH increases demonstrate how CaCO3 injection induces a 

localized increase in pH at the tumor site that only goes up to 7.4. The therapeutic implications 

are seen both in a serial injection model of a fibrosarcoma, and a continuous infusion model of 

syngeneic breast cancer model. We see both growth inhibition and importantly metastasis 

inhibition. This effect validates what was seen during systemic administration of base albeit 

without the toxic side effects of metabolic alkalosis.   
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7.2 Future Work  

Further work remains to be done to continue the story and make the therapeutic 

modulation of pH a viable therapeutic modality in the clinic. These studies can be roughly 

divided into explorations of biology and biological effects, as well as advances in the material 

science.  

Focusing on the biology, further studies will explore whether the nano-CaCO3 induced 

pH increase causes downstream biological effects on both the tumor and surrounding stroma, 

including OCT-4 expression observed as being caused by extracellular acidity. With this tool, 

many of the earlier in vitro studies on pH can be validated in vivo. Identification of changes in 

protein expression and RNA/DNA expression of both the stroma and tumor cells will guide 

subsequent therapeutic questions. The synergy with other therapies is an entirely separate field of 

study that will be exciting to dive into. Already, we know that several chemotherapies have 

significant susceptibility to extracellular pH. Increasing pH may synergistically increase those 

chemotherapies effectiveness.  

Focusing on the materials science, further work is needed on methodology for scaling the 

materials, develop of an appropriate pump to distribute longer than 1 month. A larger pump for 

larger animals will be needed to demonstrate benefit. Alternative delivery methods, including 

peritoneal administration, remains possible and unexplored. Nano-CaCO3 remains unadorned. 

Although this is valuable for systemic nonspecific administration, this means further work is 

necessary to add a targeting capability to the particle, including adding a coating, and/or a 

targeting group, potentially increasing the retention of nano-CaCO3. The development of other 

carbonates such as gold carbonate, zinc carbonate, and iron carbonate, may have utility on both 



 166 

the extracellular pH in cancer, but also applications throughout the sciences. Further work is 

necessary to characterize these other carbonate nanocrystals for their properties.   

Excitingly, nano-CaCO3 lays a foundation for significant headway into a number of 

biological questions regarding modifying pH in cancer, and advancing the field of material 

science for nanocrystal design and engineering. Perhaps most importantly, nano-CaCO3 enables 

the practical application of a novel therapeutic modality: increasing the extracellular pH in 

cancer.  
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