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components move from one location to another while joining or leaving groups of other components in
their vicinity. New distributed algorithms are likely to be required as the nature of applications shifts with
the emergence of this new kind of computing environment. Formal methods have an important role to
play in the midst of these developments both in terms of helping the research community better
understand fundamental issues germane to mobile computing and by providing pratical solutions to
difficult design problems.
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Abstract

Mobile computing is emerging as an important new paradigm which has the potential to reshape our
thinking about distributed computation. Mobility has far-reaching implications on what designers and users can
assume about communication patterns, resource availability, and application behaviors as components move from
one location to another while joining or leaving groups of other components in their vicinity, New distributed
algorithms are likely to be required as the nature of applications shifts with the emergence of this new kind of
computing environment. Formal methods have an important role to play in the midst of these developments both in
terms of helping the research community better understand fundamental issues germane to mobile computing and by
providing practical solutions to difficult design problems.
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Background

Recent advances in miniaturization and wireless communication are creating a powerful and flexible new
computing paradigm known as “mobile computing.” For cur purposes, this term can be broadly defined as any
wireless networking technology that allows for communication between pairs of computing hosts where at least one
is able {o move freely throughout a given coverage area. This type of network yields an important advantage over
other networking technologies: it allows the user to bring computing resources quickly and flexibly to any location,
withont taking the time or paying the cost to set up a more traditional wired connection, and to cost-effectively
move those resources to another location when necessary. This flexibility can greatly increase the efficiency and
productiviy of the people and organizations using those resources. Also, speed and flexibility of resource
deployment are absolutely essential in a crisis management or battlefield scenario, and mobile computing may
provide solutions for the information needs of these types of environments.

Because wireless communication is characterized by frequent voluntary and involuntary disconnections and
configuration changes, designers of mobile systems are faced with unprecedented technical challenges particularly in
the areas of dependabilty and modularity. Without dependability, the benefit of the added flexibility is lost. In an
essentially open system with components moving freely from one location to another, modular design must ensure
the correctness of components over a very broad range of environments and must facilitate adaptability to changing
resource availability and computing/communication contexts. We contend that achieving dependability will require a
greater reliance on pragmatically-minded formal methods as well as on novel design strategies. Furthermore, we
believe that the notion of modularity and composition must be reexamined, both at the formal level and from a
practical perspective, in light of the presence of mobility. Finally, we are convinced that location will emerge as a
key concept both in reasoning about and in the design of certain classes of mobile systems. These and related issues

define the main themes of this position paper.

Much mobile computing research has been focused on relatively narrow issues. These include building
mobility support into the Internet Protocol (IP) [4, 5] and distributed operating systems issues such as memory and
file management [7, 9). At the applications level, researchers are attempting to predict what new kinds of
applications will be demanded by users of mobile computing [1, 10] and are trying to produce new design practices
and methodologies to meet the software engineering challenges brought on by mobile computing [2, 8]. A key
question is how to produce mobile-aware applications quickly and dependably. Researchers are just now beginning
to recognize the importance of finding the right language-level abstractions [2, 6]. Our hope is that the right
abstractions, coupled with pragmatically-minded formal treatment of problems, can help the developer meet these

requirements.

Our reasearch goal is to understand the fundamental issues facing mobile computing and to develop practical
design solutions for the flexible and rapid deployment of mobile applications. Towards this aim, we are involved in
the development and evaluation of new models, constructs, design techniques, and distributed algorithms.

Formal Model

Research issues. A formal treatment of mobility requires an appropriate model, an associated notation,
and the means to analyze programs and specifications. Much of the formal arsenal can be borrowed from existing
work on distributed computing but it must be angmented to account for the distinctive features of mobile
computing. The representation of, operations permitted upon, and ways to reason about the location of programs are
some of the most basic issues we face in this endeavor. They affect the manner in which one specifies properties of
mobile programs, codes mobile applications, and verifies their correctness. Related to location and movement is the
issue of how best to model the transient and location-dependent nature of the interactions among programs. To
complicate things further, interactions may be considered at different levels of abstraction and mobile computations
may have to be treated as open systems in which new programs may come into existence or disappear at will. We
favor an application-oriented perspective and we are investigating modes of interaction that simplify the rapid
development and deployment of applications.

Two issues which many consider to be central to mobile computing are the power and bandwidth
limitations. While we acknowledge their practical significance and we expect them to impact our work on
distributed mobile algorithms, we do not see these issues as fundamental but more akin to architectural and
performance constraints in traditional distributed computing. One analyzes the power and bandwith implications of a



particular design choice without employing a programming notation in which these concepts appear explicidy. This
is also consistent with the way in which performance and computational complexity are treated today.

Base model. In selecting a model to build upon, we believe that it is important to consider one that is
visible within the distributed computing community, is least likely to introduce modeling artifacts, has well
understood analytical methods, and facilitates direct transfer of results to other established models. There are about
half a dozen models of concurrency that might be considered to meet these requriements. We favor UNITY [3],a
model originally proposed by Chandy and Misra. The UNITY programming notation reduces distributed computing
to a very small number of constructs: conditional multiple-assignment to shared variables and weakly-fair statement
selecticn. The UNITY proof logic is simple, a specialization of temporal logic motivated by the desire to extricate
proofs directly from program text in the tradition of sequential programming. Any results obtained in UNITY will
be directly relevant for most state-based models (e.g., temporal logic, TLA, etc.). From a practial perspective,
another attractive feature of choosing UNITY is the relatively easy (almost mechanical) implementation path from
UNITY to traditional programming languages. In the remainder of this section we preseat some preliminary ideas
regarding the directions we intend to pursue towards adapting UNITY to mobile computing.

Expressing location and movement. The UNITY model is a state-based approach 1o programming
with an interleaved execution model. The following trivial program, for instance, initializes variables x and z (to an
arbitrary value and zero, respectively) and places the sum of the two initial values into z.

program Sum
declare X, z: integer
initially z=0
assign z=x+zllx:=0
end

The parallel bar combines two assignment statements into one. A box (J) is used to separate single statements when
more then one is present.

By analogy with real-time modeling where time is most often introduced as a distinguished variable not
accessible to the programmer, one can capture mobility by introducing a distinguished location variable for each
individual program. The program above could be viewed as mobile by simply attaching a locaticn variable (which
might be named A by convention) and an initial location (if known) in the program declaration. A mobile version of
the program above may be generated by simply writing

program Sum at A

which indicates that the initial value of the location variable 2 (actually Sum.A) is arbitrary. Restrictions on how
such a location variable is accessed and updated would have to reflect the characteristics of the computation. Because
the code in Swm does not change A, it must be assumed that Sum can move only under outside control {to be
specified) or has a fixed position. Moreover, Sum is neither aware of its movement nor able to control it, implicitly
or explicitly. This is usually the case in a cellular network, for instance, where the location of the mobile units is
determined by the car or person carrying the computer but is constrained to movements from one cell to a
neighboring one (as long as the unit is on). The verification of any hand-off algorithm must rely on this
assumption. Protocols involved in reestablishing connectivity at the time a mobile computer is powered up may
have to assume that initial locations are arbitrary. In some applications a program may have to know its own
location and behave accordingly while not in others. In the former case the location is directly accessible by the
program while in the latter the location plays a role only in reasoning about the computation. As automation
technology advances it is also conceivable that certain programs may have the ability to achally control the
movement of their carrier which may be, for example, a robot doing deliveries in an office building. The notation
introduced so far is the simplest we can conceive of and we plan to evaluate its implications further.

A modular notation for transient interactions. We turn next to the question of how programs
interact with each other. UNITY provides two forms of interaction or composition, union and superposition. The
union of two programs is defined as an interleaved execution of all assignment statements in the two programs in a
state space consisting of all variables of the two programs—variables having identical names become shared.
Program a is said to be superposed on program b if every statement of a is synchronized with some statement of b
and no statement of @ writes to (but can read) any variable of b. Inference rules for deriving the properites of a



composite program from those of the components are also available. Both forms of composition are static in nature.
Our intent is to revisit them from a mobile perspective, i.¢., we are interested in the implications of a model where
programs share variables or synchronize statements only under ceratin conditions usually having to do with
proximity. If successful, we will provide both a novel generalization of the two UNITY methods of program
composition and also some interesting new constructs for interactions among mobile programs. Of course, these are
not the only forms of interactions we plan to explore, only the most direct extensions of UNITY. A more careful
analysis of mobile applications will be used to identify other interesting candidates.

Success will be determined by a number of formal and pragmatic considerations. They include the
development of inference rules for proving properties of composite computations from those of the individual mobile
programs, an assessment of the extent to which these new constructs actually simplify the writing of mobile
applications, the development of efficient implementations, etc. These are issues for future research, but in order to
provide the reader with a more concrete example of the kind of constructs we are investigating at this time we
consider next a simple illustration of how one might augment UNITY with transient variable sharing capabilites.
For this purpose we revisit the mobile version of the Sum program above and transfrom it into a roving Reader
which sums up the electric consumption in a building. This is done by collecting readings from electric meters
located around the building. When near an electric meter, the variable x is shared with its counterpart in the meter,
call it n, and its value may be added 1o the total and reset to zero in the same step. The code for the Reader is
obtained by tagging the variable x as shared.

program Reader at A
declare x : shared integer

z: integer
initially z=0
assign z=x+zllx:=0

end
The code for the electric meters may assume the form

program Meter(i) at A=1oc())
declare o : shared integer
initially =0
assign n=n+l

end

where loc(/) is the unique location of the sth electric meter. (We assume that all variables have uniques names by
implicitly extending their declared names with the program name which is unique by convention.)

The remaining problem is how to tie x and #. We want the sharing to take place only when the Reader is
at the same location with some Meter({) and it i3 desirable to hide the presence of sharing from both participants.
For this purpose we add an Interactions section that describes the transient sharing among variables belonging to

different programs,

Interactions
Reader x = Meter(i).n
when Reader A=Meter(i} A
engage Meter(i).n
disengage Reader.x = 0 || Meter(i).n = Meter(i).n

Here we consider only pairwise sharing but the approach generalizes to an arbitrary number of programs. The
predicate following when specifies the conditicns under which the sharing takes place, when the location of the two
programs is the same. The engage clause specifies what value to take on when the variables become shared, the
value of the electric meter. In general, this expression would reconcile two or more possibly distinct values. The
disengage clause specifies what value each variable is left with when the transient period of sharing is over: xis
reset to zero and 1 keeps the shared value—it may be its original count if the summation did not take place in the
Reader. These statements can encapsulate data hoarding and re-integration policies like the ones in [7] and they are
more general than strategies for keeping files coherent in that we make no assnmptions about the values of the
variables before integration. So far, small examples we worked out (e.g., electronic mail, notification propagation)



have shown the potential for a highly decoupled style of computing in which programs behave correctly with litde
or no knowledge of the context in which they find themselves.

Proof logic implications. Because locations are simply variables, reasoning from first principles
about the behavor of a mobile computation such as the one sketched above is relatively straighforward. However,
the assumed atomic nature of the engagement and disengagement protocol can bring about significant complications,
especially when one considers complex patterns of variable sharing among multiple programs, the transitivity of the
sharing relation, and the potential for simultaneous engagements and disengagements. At this point we have a good
grasp of the complexity of these issues, Future work will need to address many important and challenging technical
issues. They include the development of inference rules similar to the ones existing today for union and
superposition and the study of specialized interaction forms that are easy to verify and implement.

Design Schemas

Because verifying a completed program is very costly, our prior research has pursued program derivation as
a more promising alternative. We plan to continue our investigation into pragmatic design strategies but turn our
attention to the use of application-driven design schemas, both of a syntactic and semantic nature. We hope to
identify schemas that can be readily used by the average designer. The above meters/reader program is one ¢example
of what we mean by a schema. The program does not make use of the full generality of transient interaction, and
this can make proofs simpler. For instance, the interactions are limited to pairwise variable sharing. Because there
is never a group of three or more variables that get shared, we don’t have to worry about the transitive quality of
variable sharing. Note also that the disengagement value does not change one of the variables, and sets the other
variable to zero. This preserves several important properties of the program, most notably the fact that no spurious
values are introduced into the summation.

Distributed Algorithms

Traditional distributed algorithms are designed for networks of static hosts. The assumptions made by these
algorithms are often not valid in the mobile setting. Mobility challenges us to re-evaluate the implicit assumptions
and requirements behind these algorithms and to develop new ones for a novel class of algorithms. The density of
mobile components can affect the strategies for route maintenance and a message broadcast, e.g., in highly
populated regions a broadcast message can spread like a ripple on the surface of the water with the guarantee that any
component that traverses the fronter of the ripple will receive the broadcast message. Movement vectors can be used
to optimize information transfers, e.g., predicting where a mobile unit will be and delivering a message to that
location for later pickup. When information about the movement pattern of components is available it may help
reduce the overall message volume. The impact of these and other factors specific to mobile applications are a
central theme of our investigation.

Conclusions

Our approach to the study of mobile computing is distinctive in its emphasis on formal methods,
application-oriented design strategies, and program visualization (not discussed in this paper). The principal research
concerns of our project are: (1) a UNITY-like model of mobile computing; (2) a design methodology based on use
of schemas and novel modular strategies; and (3) new distributed algorithms targeted to the specifics of mobile
applications.
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