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1. Introduction

To satisfy the needs of real-time applications and
communication protocols, operating systems pro-
vide timers. In BSD! kernels, timers are provided
by the callout facility, which allows a function and
argument to be registered to be called at a future
time. A clock interrupt routine periodically checks
the outstanding callouts, and calls the functions
due to be called.

There are four measures of performance of the
callout facility:

1. Time to set a callout.

2. Time to cancel a callout.

3. Time to process a clock tick.

4. Time to process an expired callout.

Also of interest is the maximum amount of time
that interrupts can be locked out during these op-
erations. If interrupts are locked out for too long,
time-critical I/O events may be missed by the sys-
tem.

‘The existing implementation takes constant time
(usually) to process a clock tick or an expired call-
out, but takes linear time (in the number of out-
standing callouts) to set or cancel a callout. In-
terrupts are locked out for the duration of a set
or cancel operation, which can take linear time
in the number of outstanding callouts. Qur new
implementation achieves worst-case constant time
for all operations except processing a clock tick,
for which it achieves average-case constant time.

1Throughout this paper, “BSD” refers to 4.4BSD-Lite
and its derivatives, such as NetBSD,

It also never locks out interrupts for more than a
constant amount of time.

Why Redesign? When we examined a typical
UNIX workstation kernel, we found only 5-6 out-
standing callouts (in use by RPC, NFS, and TCP).
With such a small number of outstanding callouts,
taking linear time to start or stop a callout is not
very onerous, and the BSD implementation seems
adequate. So why bother with a new implementa-
tion anyway?

Clearly, our new implementation is motivated by
environments which have a large number of out-
standing timers. Network protocol implementa-
tions provide the easiest example. Typically, for
every packet sent by a reliable transport protocol
such as TCP, a retransmission timer is started. If
an acknowledgement arrives promptly, the timer is
cancelled; when the timer expires, the packet is re-
transmitted. Several recent network implementa-
tions [CIRS89] have been tuned to send packets at
a rate of 25,000-40,000 packets per second. The
situation is exacerbated because most transport
protocols use sliding window protocols (in which
a large number of packets are allowed to be out-
standing to allow pipelined throughput) and be-
cause servers often maintain several outstanding
conversations with clients. Most other network
protocols also use several timers for error recovery
and rate control.

How then can the BSD TCP implementation
get away with two callouts? This is possible be-
cause the TCP implementation maintains its own
timers for all outstanding packets, and uses two
kernel callouts as clocks to run its own timers.
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TCP maintains its packet timers in the simplest
fashion: Whenever its single kernel timer expires,
it ticks away at all its outstanding packet timers.
This method works reasonably well if the granu-
larity of timers is low.2 However, it is desirable to
tmprove the resolution of the retransmission timer
to allow speedier recovery.® With a large number
of finer granularity timers, it is necessary to have
more efficient timer algorithms. Rather than have
every protocol duplicate these efficient algorithms
[CIRS89, TNML93), it is better to have the kernel
directly provide an efficient callout facility.

Besides networking applications, process control
and other real-time applications will also bene-
fit from large numbers of fine granularity timers.
Also, the number of users on a system may grow
large enough to lead to a large number of outstand-
ing timers. This is the reason cited (for redesign-
ing the timer facility) by the developers of the IBM
VM/XA SP1 operating system[Dav89].

With a large number of cutstanding callouts, it
becomes important to bound the amount of time
that interrupts can be locked out. Finally, regard-
less of the number of callouts, the current UNIX
limit of one timer per process seems too restric-
tive. This forces user applications that need mul-
tiple timers either to fork additional processes or
to maintain their own timers.

Therefore we believe that we can make a case
for new callout and timer implementations that are
scalable, robust, and flexible. Unlike many scalable
designs, there is no performance penalty when the
number of outstanding callouts is small. Also, the
increase in the code size is small (158 lines for the
new callout facility, and 310 lines for the extended
interval timer facility). Thus, considering the gen-
eral environments in which UNIX kernels are and
will be deployed, the new implementation appears
to be a wise and cheap piece of insurance.

Previous Work: Varghese and Lauck [VL87]
described a number of new schemes to imple-
ment timers. The basis of our implementation
is Scheme 6 in [VL87], which is based on a data
structure called a hashed timing wheel. The work

2Currently TCP uses two virtual clocks: one with 200 ms
ticks and one with 500 me ticks.

3The larger the recovery time, the larger the amount of
data that could have been sent, especially at high speeds.
While packet loss due to corruption is rare today, packet
loss due to congestion is still quite commeon.

in [VL87] is mostly theoretical and does not con-
sider some of the issues that occur in actual op-
erating systems; for example, it assumes that all
the per tick bookkeeping can be done at the in-
terrupt level, which is clearly infeasible in a real
system. A few fairly well known networking imple-
mentations (e.g., [CJRS89, TNML93]) have used
the ideas in [VL87] in specialized timer packages
for their networking routines (as opposed to a gen-
eral operating system facility). Brown [Bro88] ex-
tends hashed timing wheels to what he calls calen-
dar queues; the major difference is that calendar
queue implementations also periodically resize the
wheel in order to reduce the overhead? of stepping
through empty buckets. For timer applications,
the clock time must be incremented on every clock
tick anyway; thus adding a few instructions to step
through empty buckets is not significant. Davison
[Dav89] describes a timer implementation for the
IBM VM/XA SP1 operating system based on cal-
endar queues. In our setting, the small improve-
ment in per tick bookkeeping (from resizing the
wheel periodically)} does not appear to warrant the
extra complexity of resizing.

Organization: The rest of the paper is orga-
nized as follows. Section 2 describes the existing
NetBSD 1.0 kernel implementation of the callout
facility. Section 3 reviews a timing wheel algorithm
proposed in [VL87]. Section 4 illustrates how we
implemented this algorithm in the NetBSD 1.0 ker-
nel and the implementation issues that we encoun-
tered. We also describe in Section 5 an extension
to the user-level interval timer facility to allow mul-
tiple outstanding timers; this was essential for the
performance tests of the new callout facility, but
we believe this feature is useful in its own right.
Section 6 presents performance results. Section 7
describes future work in the areas of dynamic stor-
age allocation and cleaning up the interval timer
interface. Finally, Section 8 states our conclusions.

2. Existing Callout
Implementation

In the existing BSD implementation, each callout
is represented by a callout structure containing

4The improvement is not worst-case, but is demon-
strated empirically for certain benchmarks.
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a pointer to the function to be called (c_func), a
pointer to the function’s argument (c.arg), and
a time (c_time) expressed in units of clock ticks.
Outstanding callouts are kept in a linked list,
sorted by their expiration times. The c¢_time mem-
ber of each callout structure is differential, not
absolute—the first callout in the list stores the
number of ticks from now until expiration, and
each subsequent callout in the list stores the num-
ber of ticks between its own expiration and the
expiration of its predecessor.

ik i I I B I

Figure 1: The calltodo data structure.

This data structure (called calltodo, see
Figure 1) dictates the performance. Because the
times are differential, the clock interrupt routine
hardclock() needs only to decrement the time of
the first callout in the list and check whether it be-
comes zero, which takes constant time. If the first
callout has expired, a software clock interrupt is
generated. Its handler, softclock(), repeatedly
checks the callout at the head of the list, and if it
is expired (c_time member equal to zero}, removes
it and calls its function. Interrupts are locked out
while the calltodo list is being manipulated, but
not while the function is executing.

Callouts are set and canceled using timeout()
and untimeout(), respectively. timeout(func,
arg, time) registers func(arg} to be called at
the specified time. untimeout(func¢, arg) can-
cels the callout with matching function and argu-
ment. Because the calltodo list must be searched
linearly, both operations take time proportional to
the number of outstanding callouts. Interrupts are
locked out for the duration of the search,

There is one complication: Because the process-
ing of expired callouts by softclock(), which can
be interrupted by hardclock(), might take longer
than one clock tick, callouts might become over-
due. This is represented in the calltode list by
callouts at the start of the list with negative c_time
members. A c_time member of —¢ indicates that
the callout is overdue by ¢ ticks. hardclock()

must decrement all non-positive c_time members
at the beginning of the list, as well as the first pos-
itive c_time member in the list. Therefore, the
processing of a clock tick does not necessarily take
constant time (if there are a number of expired
timers at the head of the list that softclock()
has not yet processed).

3. Replacement Callout
Algorithm

The algorithm used by the existing implementation
is very similar to Scheme 2 of [VL87]. The new
implementation is based on Scheme 6 of [VL87].

Figure 2: The callwheel data structure.

Instead of a single sorted list of callout struc-
tures, we use a circular array of unsorted lists.
The array, called callwheel (see Figure 2),
contains callwvheelsize entries. All callouts
scheduled to expire at time ¢t appear in the
list callwheellt ¥ callwheelsize], and their
c.time members are set to ¢ / callwheelsize.
callwheelsize should be chosen to be comparable
to the maximum possible number of outstanding
callout structures.
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On each clock tick, the appropriate list must be
traversed completely, the c_time member of each
callout in the list decremented, and the expired
callouts handled and removed. In the worst case,
all outstanding callouts could be in the same list,
but since the number of lists is comparable to the
maximum number of outstanding callouts, and the
lists are processed in a round-robin fashion, the av-
erage list length is a small constant. Thus, it takes
average-case constant time to process a clock tick.
To handle an expired timer still requires nothing
more than removing the callout from a list, which
takes worst-case constant time, and then calling its
function.

Setting a callout requires determining the appro-
priate list and inserting at the head, which takes
worst-case constant time. For canceling 2 callout,
the original Scheme 6 algorithm assumes that it
will be given a handle to the callout (i.e. an iden-
tifier which locates the callout immediately), in
which case it needs only to delete the callout from
the list, taking worst-case constant time. But the
existing timeout () interface does not use handles,
8o this becomes a problem in the implementation.
Section 4 will describe how this problem has been
overcome in two different ways. The original al-
gorithm also assumes that each timer routine (es-
pecially the equivalent of hardclock()) runs to
completion, and does not worry about the details of
mutual exclusion and locking out interrupts. These
problems are also addressed in Section 4.

4. Replacement Callout
Implementation

callwheelsize is constrained to be a power of 2,
equal to 26allvwheelbits This gimplifies the di-
vision and remainder operations to bit shifting and
masking. The lists in callwheel are doubly-linked
(requiring an additional member in the callout
structures), allowing the removal of a callout
structure given only a pointer to it.

The old hardclock() had to manipulate the
calltodo structure, but the new hardclock()
has nothing to do but increment the global
ticks variable® (which the old hardclock()

5 Actually, hardclock() also does other things entirely
unrelated to the callout facility.

did anyway), which represents the current
time. softclock() has its own static vari-
able, softticks. softclock() repeatedly checks
whether softticks equals ticks, and if not, in-
crements softticks and checks all the callouts
in callwheel[softticks & callwheelmask],ex-
piring the ones with c_time members equal to zero,
decrementing the c_time members of the others.
As an optimization, after hardclock() increments
ticks, it checks to see if softticks equals ticks
- 1 and callwheel[ticks & callwheelmask] is
empty. If not, a software interrupt is gener-
ated to cause softclock() to run. Otherwise,
hardclock() increments seftticks itself rather
than incur the overhead of a software interrupt,
since that is all softclock() would have done.

Figures 3, 4, and 5 show the new code for
hardclock() and softclock().

If it were not for the lack of handles in the exist-
ing timeout () /funtimeout() interface, the imple-
mentation of those functions would be straightfor-
ward, and there would be nothing to say about
them here. There are two possible soluticns to
the problem. We could try to find a way, given
a function pointer and argument pointer, to pro-
duce a pointer to the matching callout in con-
stant time. A hash table is the obvious mech-
anism. The disadvantage is that a hash ta-
ble cannot guarantee constant time in the worst
case; it can only provide constant time in the
expected case. The other solution would be
to provide new interface functions called, say,
setcallout() and unsetcallout(), which work
very much like timeout() and untimeout(), ex-
cept that setcallout({) returns a handle, and
unsetcallout() takes a handle as its only argu-
ment. The disadvantage here is that existing code
elsewhere in the kernel already uses the existing
interface. In the new implementation, both solu-
tions are used. Both interfaces are available for
adding and removing callouts to and from a single
callwheel. A hash table is used only by the old
interface.

At first, we used a closed-chaining hash table. If
untimeout(func, arg) were called, and no out-
standing callout matched the specified function
and argument, the entire hash table would have
to be searched. We did not expect untimeout()
ever to be called this way, but it turns out that
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struct callout {

struct callout #*c_next; /* next callout in queune */
atruct callout **c_back; /* pointer back to the ptr %/
/* pointing at this struct %/
struct callout *hash_next; /* next and back pointers x/
struct callout *+hash_back; /#* for the callhash array */

/#* hash_back is NULL iff this callout is not in the hash table. */
struct callout_handle {
unsigned long lo, hi;
} handle; /* handle for this callout */
/% The lowest calloutbits of handle.hi are the %/
/+ index into the callout array of this callout, */

void *c_arg; /* function argument */

void (*#c_func) __P((void #)); /* function to call #/

int c_time; /* ticks to the event >> callwheelbits */
};
int ticks; /% Current time, in ticke. %/
static int softticks; /* Like ticks, but for softclock(). */

atatic struct callout #nextsoftcheck; /+ Next callout to be checked. */

Figure 3: Declarations used by hardclock() and softclock().

void hardclock{frame)
register struct clockframe *frame;

{
/* The real hardclock() also does other, non-callout-related things. =/
ticke++;
if (callwheel[ticks & callwheelmask]) { /# This condition changed, #/
if (CLKF_BASEPRI(frame)) {
/#* Save the overhead of a software interrupt; w/
/* it will happen as soon as we return, so do it now. %/
(void)splaoftclock();
softclock();
} else
setsoftclock();
}
else if (softticks + 1 == ticks) ++softticks; /* This line is new. =/
}

Figure 4: The new hardclock() function. From the old function, several lines dealing with calltedo
have been removed, one line has been changed, and one line has been added.
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void softclock(}

{
register struct callout #»c;
register int steps; /#* Fumber of steps taken since %/
/% ve last alloved interrupts. %/
register int s;
8 = gplhigh():
steps = 0;
while (softticks != ticks) {
if (++steps >= MAX_SOFTCLOCK_STEPS) {
nextsoftcheck = NULL;
splx(s); /#* Give hardclock() a chance. &/
(void) splhigh();
steps = 0;
}
¢ = callwheel [++softticks & callwheelmask];
wvhile (¢) {
if (c~>c_time > 0) {
——c—>c_time;
¢ = c=->¢c_next;
if (++steps >= MAX_SOFTCLOCK_STEPS) {
nextsecftcheck = ¢;
splx(e); /+* Give hardclock() a chance., »/
(void) splhigh();
¢ = nextsoftcheck;
steps = 0;
}
}
elese {
if {(nextsoftcheck = xc->c_back = c->c_next)
nextsoftcheck->c_back = c->¢_back;
if (c->hash_back) callhash_remove(c);
¢lse if (++c—>handle.lo == 0) c->handle.hi += calloutsize;
splx(e);
c->c_func(c->c_arg);
{void) splhigh();
steps = 0;
c=>c_next = callfree;
callfree = c;
¢ = nextsoftcheck;
}
}
}
nextsoftcheck = NULL;
s8plx(s);

Figure 5: The new softclock() function. It is entirely different from the old one.
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such calls are quite common. In the old implemen-
tation, the cost of canceling a non-existent callout
was about the same as canceling an existent call-
out (both require a linear search of the calltodo
structure). We wanted both sorts of calls to have
equal costs in the new implementation as well, so
we switched to an open-chaining hash table, in
which only one bucket needs to be searched in
any case. This required the addition of two more
members to the callout structure, so that each
callout, which might already belong to a doubly-
linked list in callwheel, might also belong to 2
doubly-linked list in callhash (the hash table).
timeout () always inserts the new callout into the
hash table, and untimeout () always removes it,
but softclock() must check to see whether an
expiring callout is in the hash table before remov-
ing it. Fortunately, it need not compute the hash
function to do this; it can merely check the links
in the the callout structure.

The hash function was chosen to be fast to com-
pute, but still provide a fairly even distribution
among the buckets. callhashgize is constrained
to be a power of 2, equal to 2¢allhashbits
Both the func and arg pointers are likely to be
longword-aligned, so the lowest 2 bits of each are
not used. The lower bits of function pointers are
likely to be more random than the higher bits, so
the next higher callhashbits bits of func are
used. For data pointers, the low bits might be
constant (in the case of pointers to large aligned
structures, such as mbufs} or they might be the
only bits that are significant (in the case of point-
ers into an array, for example). Therefore, we use
not only the next higher callhashbits bits from
arg, but also the next higher callhashbits bits
above those. The three bit strings, each of length
callhashbits, are aligned and XORed to produce
the index into the hash table. The computation re-
quires 3 shifts and 3 boolean operations.

For the new setcallout() interface, the de-
sign of the handle was not trivial. A simple
pointer to a callout structure would not be safe,
because those structures get recycled. Between
the time setcallout() returns a pointer and the
time unsetcallout() is passed that pointer, the
callout could have expired and been reused, in
which case the call to unsetcallout() will can-
cel someone else’s callout. The solution was to
give each callout structure an ID that gets in-

cremented each time the callout is canceled by
unsetcallout{). The ID is included in the han-
dle, so that unsetcallout{) can compare the
IDs before canceling the callout. The size of the
ID must be large enough that it will never wrap
around. 32 bits was deemed insufficient. But the
handle also needs to include a “pointer” to the
callout structure, and a real pointer is overkill.
Since all of the callout structures are allocated
as a single array at boot time, we only need an in-
dex into this array, which takes calloutbits bits
(this is much less than 32). So a callout_handle
structure contains two unsigned longs, 1o and hi.
The lowest calloutbits bits of hi are the in-
dex into the callout array, and all remaining bits
are used for the ID. Incrementing the ID amounts
to incrementing lo, and if the result is zero,
adding calloutsize = 262110utbits 14 Each
callout structure contains a full callout handle
structure, with the lowest calloutbits bits of hi
initialized at boot time, so that unsetcallout()
may compare the entire handle, rather than just
the ID portion.

The only remaining wrinkle in the implementa-
tion is motivated by the desire to limit the time
that interrupts may be disabled. timeout() and
untimeout (}, which use the hash table, cannot
guarantee a limit on the time that interrupts are
disabled, but setcallout() and unsetcallout ()
can (and do). hardclock() always takes constant
time.® The remaining concern is softclock(),
which must lock out interrupts while it is ma-
nipulating the callwheel structure. While it
is traversing a list (which could be long in the
worst case), it cannot allow itself to be inter-
rupted by untimeout() or unsetcallout(}, be-
cause those functions might remove a callout
structure right out from under softclock(). This
problemn was eliminated by a bit of unholy data-
sharing between softclock() and untimeout()
and unsetcallout(). As softclock() tra-
verses a list, it uses a local pointer into the
list. Whenever it wishes to enable interrupts
briefly, it first copies its local pointer into the
global variable nextsoftcheck, then enables in-
terrupts, then disables interrupts, then copies
nextsoftcheck back into its local pointer. When-
ever untimeout() or unsetcallout() cancels a
callout, it checks to see whether nextsoftcheck

®For its callout-related duties, that is.
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points at the structure just removed, and if so,
it sets nextsoftcheck to point to the next struc-
ture in the list. softclock() keeps track of the
number of steps it has taken since it last en-
abled interrupts, and whenever the count reaches
MAX_SOFTCLOCK STEPS, it briefly enables them.
Therefore, softclock() never disables interrupts
for more than a constant amount of time. There
are no guarantees on the timeliness of callout expi-
rations, but there never were in the old implemen-
tation either.

5. Multiple Timers

Testing, the performance of the new callout imple-
mentation would be easiest to do in a user-level
process. A user process can cause callouts to be
set, canceled, and expired via the interval timer fa-
cility, through the getitimer() and setitimer()
system calls.

Unfortunately, the existing interval timer facil-
ity allows each process only one outstanding real-
time timer, which means one outstanding callout.
The first tests used multiple processes to achieve
multiple outstanding callouts, but there were mys-
terious problems whenever more than 80 processes
were spawned, no matter how high MAXUSERS was
set.

While this was a pragmatic reason, we also be-
lieve that users will benefit from the ability to al-
low each process to have multiple outstanding real-
time timers. Our extensions involved adding a new
timer type tag, ITIMER.MULTIREAL, and overload-
ing the semantics of the other arguments passed to
getitimer() and setitimer().

The details of the interface extensions are de-
scribed in Figures 6 and 7. The extended interface
allows the user process to create many real-time
timers, which have 64-bit kernel-chosen handles as-
sociated with them, as well as 64-bit user-chosen
labels. The user process can change the values
and labels of existing timers, and destroy existing
timers. Whenever a timer expires, the timer is put
in a queue, and a SIGALRN is sent to the process.
The process can pop an expired timer off of this
queue and obtain both its handle and its label.

The implementation of the extended timer facil-
ity required much new code in the getitimer()

and setitimer() system calls, of course. Also,
two new pointer members were added to the proc
structure to keep track of running and queued
timers belonging to the processes.” Since each
timer is represented by an mrtimer structure allo-
cated from a shared pool, code needed to be added
to exit () to free any timers still belonging to the
dying process. Each mrtimer structure contains
a pointer to the process that owns it, so one pro-
cess cannot forge handles and trick the kernel into
manipulating timers belonging to another process.

The kerne! may be configured at compile-time
to use either the timeout() interface or the
setcallout () interface for the ITIMER_MULTIREAL

facility.

6. Performance

Three kernels were tested on a Sun 4/360. All
included the ITIKER MULTIREAL facility. In one
kernel, it used the timeout () interface to the old
callout facility. In another kernel, it used the
timeout () interface to the new callout facility. In
the last kernel, it used the setcallout () interface
to the new callout facility.

In each test, one process created a number of
outstanding timers set for random times far in
the future, causing a number of outstanding call-
outs. It then created one more timer, and re-
peatedly set it for a random time farther in the
future than the others, causing repeated calls to
untimeout () and timeout () (or unsetcallout()
and setcallout(),depending on which kernel was
being used). The results show that the time for
the original callout facility increases linearly with
the number of outstanding callouts, whereas the
time for the replacement callout facility is constant
with respect to the number of outstanding callouts,
for both the old interface (using hashing) and the
new interface (using handles). (See Figure 8 and
Table 1.) The new interface performs very slightly
better, and provides guaranteed constant time op-
erations, but the old interface is needed for com-
patibility with the rest of the kernel.

7It would have been easier to use three pointers, but
there were already 8 bytes of padding in the structure. By
using only two pointers, it was possible to add the members
without changing the size of the structure.
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The existing interface, setitimer (ITIMERREAL, value, ovalue), sets the process’s real-time inter-
val timer to value->it_value, putting the former contents into ovalue if ovalue is not NULL. The
timer decrements in real time, causing a SIGALRM when it reaches zero. If value->it.interval was
not zero, the timer reloads with that value, otherwise it stops.

The new interface, setitimer (ITTMER MULTIREAL, value, ovalue), behaves similarly, but with the
following differences:

o ovalue must nol be NULL; it must point to a struct itimerval.

o If value->it_value is not zero, and ovalue->it_value is {-1, -1}, this is a create-new-timer
operation. ovalue~>it_interval must already be set to an arbitrary user-chosen “label” for
the new {imer. ovalue->it_value will be overwritten with a kernel-chosen “handle” for the
timer. The timer will be initialized with value.

o If value->it_valueis not zero, and ovalue->it_valueis not {-1, -1}, this is a reset-existing-
timer operation. ovalue->it_value is interpreted as a timer handle, and ovalue->it_interval
must already be set to an arbitrary user-chosen label, which may differ from the existing timer’s
current label. The existing timer iz removed from the expired timer queue (see getitimer())
if necessary, and its value and label are overwritten with value and ovalue->it_interval. As
with ITIMERREAL, ovalue is overwritten with the former value of the timer. If the handle in
ovalue->it_value did not refer to an existing timer, -1 is returned and errno is set to EINVAL.

o If value-»itwvalue is zero, this is a cancel-timer operation. value->it_interval and
ovalue->it.interval are ignored. ovalue->it_value is interpreted as a timer handle. If the
handle is valid and the timer exists, it is destroyed, and its final value is stored in ovalue.
Otherwise, -1 is returned and errno is set to EINVAL. Note that timers in the expired queue (see
getitimer()) are still considered to exist.

Figure 6: Extensions to setitimer().

The existing interface, getitimer (ITIMER REAL, value), writes the current contents of the process’s
real-time interval timer into value.

The new interface, getitimer (ITIMER MULTIREAL, value), behaves similarly, but with the following
differences:
o value->it_value must be set by the user before the call. value->it_interval is ignored.

o If value~>it_value is {-1, -1}, this is a reap-expired-timer operation. As timers expire, they
are enqueued. This call removes the timer at the head of the queue, writes its handle into
value->it_value, and writes its label into value->it_interval. If the timer is not set up to
reload, it is destroyed, otherwise it starts running again (its next expire time is based on it last
expire time, not the time at which it was reaped). If the queue is empty, -1 is returned and
errno is set to EAGAIN. When a process exits, all of its running and queued timers are destroyed.
It is impolite for a long-lived process to let timers expire and neither reap them nor cancel them,
because that wastes system resources.

¢ In all other cases, value->it.value is interpreted as a timer handle. If the handle is valid
and the timer exists, value is overwritten with the current timer value. Otherwise, it is left
untouched, -1 is returned, and errno is set to BINVAL.

Figure 7: Extensions to getitimer().
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Figure 8: Real-time performance comparison of callout implementations.
Table 1: Selected data points from the graph of Figure 8.
number of outstanding timers
kernel 0 200 400 600 800 1000
old callout 1.367 3.969 6.638 9.404 12.017 14.608
new callout with hash table | 1.366 1.360 1.377 1.363 1.379 1.364
new callout with handles 1.319 1.325 1.3290 1.327 1325 1.329

The exact number of outstanding callouts can-
not be known exactly, because other parts of the
kernel also use callouts. However, a search through
the kernel code only revealed about 5 or 6 of them,
being used by RPC, NFS, and TCP.

Table 2 shows the number of instructions re-
quired for the execution of each function. The
longest paths were counted, except that in-
structions for changing the hi member of a
callout._handle structure were never counted, be-
cause that happens in only one of every 232 cases.

The compiler used was gec 2.4.5 for SPARC (which
came with NetBSD) with the -02 option.

The performance of the new hardclock() and
softclock() were not tested, but the instruction
counts suggest that hardclock() performs about
the same as before, while softclock() is about
half as fast as before (given that usually i = I,
j=0,andk+m+n<1).

The memory usage of the new callout facility
is within a constant factor of the original. Origi-
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Table 2: Instruction counts for callout functions.

instruction count

function new version original

hardclock 37 34+ 11v

softclock 274+ 20i 4+ 155+ 27+ 28e
12k 4- 54m + 37n

timeout 81 464 11¢

untimeout 80+ 114 45+ 11¢

setcallout 60

unsetcallout 55

e callouts expire.

h callouts in a callhash bucket do not match.
i: softclock is incremented ¢ times.

j: MAX_SOFTCLOCK_STEPS is reached j times.

k unexpired callouts are traversed.

m hashed callouts expire.

n non-hashed callouts expire.

t callouts are skipped in a search of calltodo.
v callouts are overdue at start of calltodo.

nally, n callout structures required 4n longwords.
The new implementation needs 9n longwords for
them, plus n to 2r for the callwheel array, plus
2n to 4n for the callhash array (unless the vast
majority of the callout structures are intended
for use with the setcallout() interface, in which
case callhagh is very small).

The ITIMERMULTIREAL facility requires ten
longwords per timer, plus two per process.

7. Future Work

Currently, the kernel panics if it runs out of call-
out structures. There was a comment in the old
callout code saying that new callout structures
should be allocated dynamically, and we would
like to fulfill that wish. We will have to enlarge
the callout_handle sitructure, because we will no
longer be able to use an index into a single callout
array—we will have to use an honest-to-goodness
pointer. The ID will then have two unsigned longs
all to itself.

There is a caveat: increasing the maximum
possible number of outstanding callouts without
increasing the size of callwheel or callhash
could degrade performance, because the average

list lengths could increase. Allowing callwheel
and callhash to grow dynamically is conceivable,
but probably not worth the effort.

We would also like to improve the appearance of
the ITIMER MULTIREAL facility. Although its de-
sign is functionally clean, the overloading of the
value and ovalue parameters is distasteful. We
would like to hide this overloading from the user,
or at least provide alternate names for structure
members which correspond to their usage.

Finally, we have just learned, to our dismay,
that after we decided to use the two longwords
of padding in the proc structure to support
ITIMER.MULTIREAL, the NetBSD authors claimed
one of those longwords for another purpose. This
conflict will have to be resolved, probably by en-
larging the structure.

8. Conclusion

We have described a new implementation of the
NetBSD timer facility that appears to be more
scalable, robust, and flexible than the current
NetBSD implementation. It is scalable (see
Figure 8) in that the overhead to start, stop, or
maintain timers does not depend on the num-
ber of outstanding timers. It is robust in that
we can precisely bound the amount of time in-
terrupts are locked out in terms of a parameter,
KAX_SOFTCLOCK_STEPS. It is flexible in that user
processes are allowed to have multiple outstanding
timers. The new implementation is fully compat-
ible with existing software because existing inter-
faces are supported. However, applications that
require slightly better performance (handles for
deleting callouts) or flexibility (more than one out-
standing timer) must use the new interfaces. The
implementation does not incur any extra cost for
these new features, and the code expansion is small
(468 lines total®). The software is available for use
or experiment at:

http://wwv.ce.wustl.edu/ amc/research/timer/

Acknowledgements: We wish to thank Ron
Minnich and Chuck Cranor for their helpful com-
ments on this paper.

8 As of this writing. We reserve the right to further de-
velop the code!
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