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ABSTRACT

Predictive Alternatives in Bayesian Model Selection

by

Womack, Andrew

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, May, 2011.

Professor Jeff Gill, Chairperson

Model comparison and hypothesis testing is an integral part of all data analyses.

In this thesis, I present two new families of information criteria that can be used to

perform model comparison. In Chapter 1, I review the necessary background to mo-

tivate the thesis. Of particular interest is the role of priors for estimation and model

comparison as well as the role that information theory can play in the latter. As we

will see, many existing forms of model comparison can be viewed in an information

theoretic manner, which motivates defining new families of criteria. In Chapter 2, I

present the two new criteria and discuss their properties. The first criterion is based

purely on posterior predictive densities and Kullback-Leibler divergences and decom-

poses into terms that describe the fit and complexity of the model. In this manner,

it behaves similar to popular criteria, such as the AIC or the DIC. I then present
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the second family of criteria, which are a modification of the marginal distribution

by an appropriate Rényi divergence. This modification of the marginal allows the

investigator to use priors that reflect vague prior knowledge while not suffering the

paradoxes that can arise from such priors. One particularly nice aspect of this family

of criteria is that it subsumes the Bayes’ factor as a special case and produces an infi-

nite family of criteria that are asymptotically equivalent to the Bayes’ factor. In this

manner, the criteria can be modified to achieve certain goals in small samples while

maintaining asymptotic consistency. I conclude the thesis with a short discussion of

the computational difficulties that arise when using the criteria and explore possible

ways to overcome them.
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1. Background

This chapter presents the basic constructions and results from Bayesian statistics that

motivate the thesis. In order to place the thesis in the proper context, we consider

traditional Bayesian problems of estimation and selection. In particular, we consider

parametric models with parameters θk ∈ Θk where Θk is a pk dimensional space,

taken as a subset of Rk. Within this class of models, we provide the basic background

on estimation, prediction, and model comparison.

1.1 Estimation

1.1.1 Bayes Theorem

There are two basic tenets of Bayesian statistics: (1) all unknown values are given

probability distributions and (2) beliefs are updated via Bayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)
, (1.1)

where P (A|B) is the conditional probability that event A occurs if event B has

already occurred. In the context of statistics, one usually takes A to be some quantity

of interest and B the observed data. There are several alternative approaches to

motivating and defining probability theory and formula (1.1). Following the work of
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Kolmogorov [1, 2], a measure theoretic approach views (1.1) as a consequence of the

measure theoretic definition of conditional probability. In contrast, statisticians such

as Rényi [3] and Cox [4] place conditional probabilities in a more central role. Cox’s

framework–as discussed in Jaynes’ [5] presents some desirable properties for extending

Aristotelian logic from deductive to inductive logic. Probability theory (at least

with finite additivity) is derived as the unique system of logic to achieve the desired

goal. The essential elements of the theorem are: the positive real representation

for plausibilities,; the functional relationship between the plausibility of a statement

and the plausibility of its negation; associativity in reasoning about conjunctions

and a density argument [6]. The conclusion of the theorem is that the product rule

P (A∩B) = P (A|B)P (B) = P (B|A)P (A) and the complement rule P (AC) = 1−P (A)

are the unique rules needed to extend Aristotelian logic and the rules for disjunctions

are derived as a consequence of the rules for conjunctions and negations. While this

theorem provides a natural motivation of tenet (2), it does not justify tenet (1).

1.1.2 Exchangeability and Priors

The most complete way to motivate tenet (1) is to invoke theorems about ex-

changeable random variables [7, 8]A sequence of random variables X1, . . . , Xn, . . . is

said to be exchangeable if the distribution of X1, . . . , Xk is the same as the distri-

bution of Xτ(1), . . . , Xτ(k) for all premutations τ in the group Sk and for all k ∈ N.

The deFinetti-Hewitt-Savage theorem states that a sequence of exchangeable random
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variables can be represented by a sequence of conditionally independent and identi-

cally distributed random variables, when conditioning on a particular measure µ on

the space of probability measures. In particular, if X1, . . . , Xn, . . . is an exchangeable

sequence, then

P (X1 ∈ A1, . . . , Xn ∈ An) =

∫
P (X1 ∈ A1, . . . , Xn ∈ An|Q)dµ(Q)

=

∫
P (X1 ∈ A1|Q) · · ·P (Xn ∈ An|Q)dµ(Q)

=

∫
Q(A1) · · ·Q(An)dµ(Q). (1.2)

In terms of a generative process for the data, one assumes that Q is chosen via

µ before any data are generated and the Xi are then generated by that Q. The

simplest Bayesian models are formed when one considers an exchangeable sequence

of random variables {Xi : i = 1, . . . , n}, with realizations {xi : i = 1, . . . , n},

which are assumed to arise as iid draws from a distribution Q(A) = F (A|θ). The

mixing measure is taken as Π(B) = P (θ ∈ B). Essentially, one makes the subjective

determination that the distribution of Q is restricted to a finite dimensional subspace

of the space of all probability measures. The F (A|θ) proposed is the likelihood

function and Π(B) is the prior distribution of θ. These are usually assumed to be

absolutely continuous with respect to some measures (dx and dθ) and the densities

are given by f(x|θ) and π(θ). One then uses Bayes’ rule to update beliefs about θ

by computing the posterior density of θ,

p(θ|x1, . . . , xn) =
f(x1, . . . , xn|θ)π(θ)

m(x1, . . . , xn)
. (1.3)
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The normalizing constant m(x1, . . . , xn) is given by the marginal density of the xi,

m(x1, . . . , xn) =

∫
f(x1, . . . , xn|θ)π(θ)dθ. (1.4)

As we will see, this marginal is key to Bayesian model comparison and can be sensitive

to misrepresentations of the prior π(θ). When performing a statistical analysis, if we

had access to π, then the problem can be trivial. Even given an assumption like X

are exchangeable from a particular distribution, the theorem can provide restrictions

on the likelihood f(x|θ), but offers no insight into the class of π which could generate

the data. de Finetti originally proved this theorem for the case where the X i are

exchangeable Bernoulli random variables. The likelihood is a Bernoulli distribution

with parameter 0 < θ < 1 and the prior is some mixing measure which is unrestricted

on (0, 1). The fact that the assumption of exchangeability provides no restriction

for the mixing measure even in this simple case provides quite a strong argument

for the Subjective Bayesian interpretation of probability put forth by De Finetti,

Savage, and Lindley. We were able to make assumptions to limit the likelihood,

but any inferences about marginal distributions depend upon choices for a mixing

distribution and these are subject to the personal beliefs and predilections of the

investigator (or, perhaps less personally, they are subject to the beliefs of a group or

population of investigators).
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1.1.3 Posterior Consistency

Though the D-H-S theorem provides no restriction on the prior π, when making

inferences about θ through Bayes’ rule the influence of π can be asymptotically neg-

ligible. Given the generative process assumed for the data, each particular dataset

is to be generated by a specific value of θ. Calling this value θ0, we ask: “Does

p(θ|x1, . . . , xn) concentrate around the true value θ0 as n → ∞?” The idea of con-

centration is given by the notion of consistency [9]: a posterior is said to be consistent

at θ0 if there exists a set of sequences Xn(ω)–indexed by ω–with probability 1 (given

θ = θ0) such that for all neighborhoods U of θ0 we have

Π(U |Xn(ω))→ 1.

What is most important for us is that two reasonable priors will eventually give rise

to posteriors that are very similar. Thus, prior distributions that are mis-specified or

are weak (i.e. diffuse) are eventually overcome by the data. However, one must take

caution against pathological priors, such as those discussed

Theorem 1.1.1 (Posterior Robustness). Suppose that the likelihood function is f(x|θ)

and that θ0 is in the interior of Θ. Let π1, π2 be two priors that are positive and con-

tinuous at θ0 such that their posteriors are consistent at θ0. Then

lim
n→∞

∫
|π1(θ|xn)− π2(θ|xn)|dθ = 0

with probability 1.

Proof. (see [9])
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1.1.4 The Roles of Priors

Beyond these simple statistical models, many models are given in a hierarchical

fashion where partial, rather than full, exchangeability is assumed. In these models,

the data often come in groupings xj = {x1j, . . . , xnjj} for j = 1, . . . , J . The first

exchangeability assumption means that both members within each group and the

groups themselves are exchangeable. This gives rise to a parameter mbfφ, with

respect to which the groups are conditionally independent. It also gives rise to group

level variables θj, with respect to which individuals within a group are conditionally

independent,

xij ∼ f(x|θj,φ)

θj ∼ π(θ|φ)

φ ∼ π(φ).

In this type of model, the prior distribution plays two roles. First, it induces the

correlation structure of the data (π(θ|φ)). In this manner, this prior is used in a

modeling context, providing structure to the data and shrinking the θj towards areas

of high probability according to π(θ|φ). Second, the prior aids in estimation of φ

6



through (π(φ)). To see this more clearly, the parameters θj can be viewed as a

parameter expanded version of the likelihood function for the data,

f(x1, . . . ,xJ |φ) =
∏
j

f(xj|φ)

=
∏
j

∫
f(xj|θj,φ)π(θj|φ)dθj

=

∫ ∏
j

(f(xj|θj,φ)π(θj|φ)) dθ1 . . . dθj

=

∫ ∏
i,j

(f(xij|θj,φ)π(θj|φ)) dθ1 . . . dθj,

where Fubini’s rule has been applied after making the appropriate measurability as-

sumptions. Alternatively, one could also interpret this model as though the θj are

the parameters that are of most interest and not knowing φ is merely a nuisance. In

this case, the likelihood of interest is

f(x1, . . . ,xJ |θ1, . . . ,θj) =

∫
f(x1, . . . ,xJ |θ1, . . . ,θJ ,φ)π(φ|θ1, . . . ,θJ)dφ

=

∫
f(x1, . . . ,xJ |θ1, . . . ,θJ ,φ)

π(θ1, . . . ,θJ |φ)π(φ)

π(θ1, . . . ,θJ)
dφ

=

∫ ∏
j (f(xj|θj,φ)π(θj|φ))π(φ)dφ

π(θ1, . . . ,θJ)

=

∫ ∏
ij (f(xij|θj,φ)π(θj|φ))π(φ)dφ∫ ∏

j (π(θj|φ))π(φ)dφ
,

where partial exchangeability has been used in the expression π(θ1, . . . ,θJ |φ) =∏
j π(θj|φ).

When a statistical problem calls for treating φ as the true parameter that gen-

erates the data, then the first interpretation is used and a full probability model is
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specified. However, if φ is merely a nuisance then one can often provide an esti-

mate of the posterior of interest p(θ1, . . . ,θj|x1, . . . ,xJ) by using an Empirical Bayes

approach. This approach treats φ as though it is just a number and ignores any

distributional assumptions made about it. One simply finds the value φ∗ which max-

imizes f(x|η) and inferences are drawn about the θj using the conditional posterior

density p(θj|x,φ∗). In this context, the parameter φ can also be considered to be

a tuning parameter and many researchers simply change the value of the parameter

until the desired posterior behavior is observed for the problem.

1.1.5 Prior Specification

For this project, we are concerned with full probability specifications. When one

implements a hierarchical model (and thus most of the prior specification is used for

modeling heterogeneity in the data and the last part is used for estimation purposes)

the problem often arises as to how one should specify the prior π(φ). There are many

possible choices, but 1.1.1 suggests that as long as we maintain positivity, continuity,

and consistency then the posteriors will eventually become very “similar” . There

are essentially three alternative approaches to specifying the prior. The first is to

fully specify a subjective prior for φ [10, 11], the second is to choose a convenient

family of conditionally conjugate priors (which will aid in MCMC estimation), and

the third is to use some default “objective” prior . The first method is considered

ideal as it provides a full probability analysis which represents the expert beliefs of
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the practitioner or those that have been agreed upon in a field. Nonetheless, these

priors often present computing challenges, are difficult to elicit, and must be elicited

for each model. Alternatively, the second method can provide a good approxima-

tion to a full probability analysis while presenting fewer challenges in computation

and elicitation (though they still require an elicitation for each model). Finally, the

third option is advantageous when there are many models to consider (and so full

or partial elicitation is too time consuming) or there is only weak prior knowledge

(for example that φ0 lies within some set). In these situations, the full probability

model is not specified; rather, one can use some particular rules for defining priors

that represent a minimal amount of information. There are several issues with this

final method. First, if diffuse priors were used, one must be sure that these corre-

spond to integrable (proper) posteriors for some minimal sample size . Second, it is

often hard to determine what “diffuse” means in different contexts. Third, as will

be shown, these priors are problematic for model comparison. Despite these caveats,

these priors often provide “nice” posterior distributions (i.e. frequentist matching,

unbiased). Moreover, practitioners may prefer “objective” priors because they have

weak prior knowledge or due to the difficulties associated with prior elicitation and

having only a finite amount of resources devoted to gaining knowledge from experts

that might be better spent in building likelihoods. [12]

Before the discussion of various default “objective” priors, we present a brief ex-

ample of a simple model that exhibits consistency even for prior distributions that
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become increasing diffuse. We present this example for three reasons. First, the con-

jugate framework is easy to see. Second, the entire class of conjugate priors provides

consistency. Third points on the boundary of set of hyperparameters will also provide

consistent posteriors. However, as we will see later, letting the hyperparameters tend

towards the boundary is problematic when comparing models.

Example 1.1.1 (Exponential Distribution). Suppose that x1, . . . , xn are iid E(θ) and

θ ∼ Gamma(α, β) for some α, β > 0. Then the posterior p(θ|xn, α, β) is Gamma(α+

n, β +
∑
xi). For any given (α, β) which are positive and finite, these posteriors

converge weakly to δθ0(θ) where θ0 = limn→∞
n∑
i xi

. In fact, letting (α, β) = (0, 0)

provides the prior π(θ) ∝ θ−1 and posterior Gamma(n,
∑
xi), which also converges

weakly to δθ0(θ). This prior provides a posterior which is exactly frequentist matching1

and provides unbiased estimation of θ0 via the posterior mean.

1.1.6 Improper Priors

One of Fisher’s primary objections to the use of Bayes’ rule in statistical estimation

is that definitions of priors are not necessarily invariant to transformations of the pa-

rameter [13] . While it is true that a prior produced under a specific parameterization

transforms by the appropriate rules, how a prior is built depends on how one reasons

in particular parameterizations. A simple example is reasoning about a parameter

θ ∈ [0, 1]. Since [0, 1] is compact, it might be reasonable to use a uniform prior for

1The posterior distribution of the parameter and the sampling distribution of an UMVUE coincide.
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θ. However, the same reasoning applies to any reparameterization θ 7→ θa for any

a > 0. One can therefore easily object to using uniform priors on reasonable compact

sets. Though Fisher’s objection does not apply to any particular prior (which can

be defended by its creator), it does cast doubt on the practice of defining methods

through which one should define priors. For the elicitation of a proper prior, one

often finds an easy to understand parameterization and provides some structure to

the prior (conjugate family for example). The hyperparameters are then changed un-

til the prior reflects expert knowledge. This method, though convenient in practice,

has a lot of subjective choices involved and making different choices could heavily

influence the prior derived.

One approach is to devise a method to define priors that are invariant to certain

transformations. Jefferys devised the first two approaches along these lines. The most

obvious way to define priors which have an invariance property is to use a group G of

transformations of θ and seek a measure which is invariant to the left (or right) group

action. This measure, denoted by πG is the left (right) Haar measure associated to the

parameter space [5,14] . Often the space of transformations is not compact and so the

measure πG need not be finite. In these cases, one obtains what is called an improper

prior because it lacks integrability and therefore cannot represent subjective beliefs.

These priors are dependent upon finding an appropriate class of transformations and

the choice of this set of transformation can often be difficult. However, can sometimes
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be induced through an allowable set of transformation of the data. A simple example

is a location-scale family, presented presently.

Example 1.1.2 (Invariant Prior for Location-Scale Family). Consider f(x|µ, σ) =

1
σ
f
(
x−µ
σ

)
where f represents the error structure of some physical process, for example

measuring a distance with a ruler. An appropriate class of transformations of the

data allows the investigator to change the point of initial measure and the units used

for the measurement. The transformation is x′ = α(x−x0). To see that the likelihood

is invariant to such transformations, note that

1

σ
f

(
x− µ
σ

)
dx =

1

σ
f

(
α((x− x0)− (µ− x0))

ασ

)
dx =

1

σ′
f

(
x′ − µ′

σ′

)
dx′

where µ′ = α(µ − x0) and σ′ = ασ. If we want to induce this same structure on the

prior, then

π(µ, σ)dµdσ = π(µ′, σ′)dµ′dσ′ = α2π(α(µ− x0), ασ)dµdσ

The general solution of this equation is π(µ, σ) ∝ σ−2. It is interesting to note that

this prior also corresponds to the prior under Jeffreys’ more general rule.

When a specific set of transformations cannot be found, Jeffreys provided the

general rule of defining πJ(θ) ∝
√
|I(θ)| where I(θ) is the Fisher information with

(I(θ))ij = Cov(∂θi log (f(x|θ)) , ∂θj log (f(x|θ))) [15] . It is easy to see that this

definition of the prior is invariant to both transformations of θ and to transformations

of x, although it does depend upon x in some manner (for instance if the xi are iid

given θ, then the Jeffreys’ prior is multiplied by the number of observations). When
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these priors are improper, they are considered as defined only up to a multiplicative

constant. However, there is at least one case where the prior obtained is in fact

proper.

Example 1.1.3 (Jeffreys’ Prior for Bernoulli Data). Suppose that the data are iid

Bernoulli with parameter θ. The Fisher information for a single observation is θ−1(1−

θ)−1 and so the Jeffrey’s prior is πJ(θ) ∝ θ−.5(1− θ)−.5 which can be normalized and

gives rise to a Beta(.5, .5) prior distribution.

Jeffreys’ reasoning has been extended (see [16, 17]to the definition of reference

priors (πN), which seek to minimize the expected mutual information between the

posterior and prior distributions,

I =

∫ ∫
log

(
p(θ|xn)

π(θ)

)
p(θ|xn)dθm(xn)dxn (1.5)

in the case when n → ∞ and supp π is constrained to a sequence of nested com-

pact sets whose union is the entire parameter space. Inherent in the reference prior

definition is the order of the parameters in the model, finding priors first for those

that are deemed the most important and moving through the parameter list sequen-

tially. When this is ignored, one simply recovers the Jeffreys’ prior. When ordering is

used, the priors obtained often behave better in multidimensional settings than the

Jeffreys’ prior (and often correspond to a modified or independence Jeffreys’ prior).

The advantage of the reference prior definition over the Jeffreys’ definition is that the

Fisher information often does not exist but the mutual information does. When these
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default priors give rise to proper posteriors, they can be used to perform a default

data analysis. In addition to being used as priors, these measures can also be used

as base measures when defining minimum information priors subject to prior con-

straints. Defining A =
∫

log
(

π(θ)
πN (θ)

)
π(θ)dθ, a few simple constraints can be elicited

from an expert (e.g. support of moments) and the proper prior π, which minimizes

A subject to those constraints, can be found. [18].

1.2 Model Comparison

1.2.1 Bayes Factors

In addition to the important goal of estimating the parameters of a model, statistics

is also concerned with different forms of hypothesis testing. In the Bayesian frame-

work, this is achieved through the use of probability theory. We have a finite number

of models Mk : k = 1, . . . , K, each equipped with a sampling density fk(x|θk) and

prior πk(θk). The models themselves also have prior probabilities π(Mk). If we define

θ = {θk : k = 1, . . . , K}, f(x|θ,Mk) = fk(x|θk), and π(θ|Mk) = πk(θk), then

p(Mk|x) =
m(x|Mk)π(Mk)

m(x)
(1.6)

where

m(x|Mk) =

∫
f(x|θ,Mk)π(θ|Mk)dθ =

∫
fk(x|θk)πk(θk)dθ = mk(x)

m(x) =
K∑
k=1

m(x|Mk)π(Mk).
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Defining the Bayes’ Factor [19] as BF`k(x) = m`(x)
mk(x)

, it is easy to see that the ratio of

probabilities of two models is p(M`|x)
p(Mk|x)

= BF`k(x) π(M`)
π(Mk)

and that (1.6) can be re-written

as

p(Mk|x) =

(
K∑
`=1

p(M`|x)

p(Mk|x)

)−1
=

(
K∑
`=1

BF`k(x)
π(M`)

π(Mk)

)−1
.

An important result concerning Bayes factors comes from the notion of the merg-

ing of predictive densities. Given two priors for the same model that give rise to

consistent posteriors, the predictive densities pr`(z|xn) = m`(z,xn)
m`(xn)

converge weakly

to the same distribution almost surely (given θ0) [9]. We can use this result to

show that two marginals for the same model under different priors provide similar

asymptotic behavior. Take the sequence of data x and separate it into two pieces

xn = {x1, . . . , xn} and zn = {xn+1, . . .}. We can find n large enough such that the

difference

∣∣∣∣m`(x)−mk(x)
m`(xn)

mk(xn)

∣∣∣∣ = |m`(zn|xn)−mk(zn|xn)|m`(xn)

can be made arbitrarily small so that the two marginal distributions agree up to a

multiplicative constant. This property of the marginal distributions can also be seen

from the Schwarz approximation (BIC) of the marginal distribution. The Schwarz ap-

proximation (see [20,21]) says that the marginal is asymptotically (up to a constant)

log (m`(x)) ≈ log
(
f`(x|θ̂`)

)
− p

2
log (n) where p is the dimension of θ. This approx-

imation establishes the consistency of Bayes’ Factors for null and nested hypothesis

testing through the asymptotic distribution of the log likelihood ratio.

15



1.2.2 A Paradox from Improper Priors

Though the above discussion suggests that the choice of prior can be asymptotically

negligible, it can have a large influence in finite samples and even provide evidence

strikingly contradictory to a frequentist analysis. This was first noted by Jeffreys and

later termed the Lindley paradox after a landmark paper by Lindley in 1957 [22]. In

essence, when testing a point null hypothesis, the evidence for the null can be made

arbitrarily large through manipulation of the prior. Lindley showed that while a test

of statistical significance can reject the null hypothesis at the α level, the posterior

probability of the null hypothesis can be made to be larger than 1−α. While not too

surprising–a poor prior ought to give poor evidence until there is a massive quantity

of data–it suggests that care must be taken when specifying priors and using Bayes’

Factors. For an example of the paradox in action, consider the Bayes’ Factor for 1.1.1.

Example 1.2.1 (Exponential Null Hypothesis Test). Suppose that x1, . . . , xn are iid

E(θ) and we have models M0 : θ = θ0 and M1 : θ ∼ Gamma(α, 1) for some α > 0.

Further assume that the true value of θ is θ∗. The corresponding marginal densities

evaluated at x are

m0(x) = θn0 exp (−nxθ0) ≈ θn0 exp

(
−nθ0

θ∗

)
m1(x) =

Γ(n+ 1)α

(nx+ α)n+1
≈
√

2π√
n

(θ∗)n+1α exp (−n− αθ∗) .

For fixed α, this provides an asymptotically consistent choice of the true model and

n→∞. However, when n is fixed, allowing α→ 0 provides BF01 →∞ regardless of
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the value of θ∗. In this example, the posteriors for M1 are consistent for any α, even

α→ 0 (which corresponds to an improper uniform prior distribution when computed

on compact subsets of (0,∞)).

In 1.2.1 the prior density exhibits mass loss as α → 0. Though the support of

each prior is (0,∞), letting α → 0 produces priors which converge to δ0(θ). Taking

this limit creates virtually no change in the posterior distribution of θ for a moderate

sample size, but the mass loss is exhibited in the marginal distribution of x. If θ∗

were indeed 0, then the only data set with any support would have each xi = 0.

This type of example can be made with virtually any prior that has open support.

Simply let the prior tend to a distribution on the boundary of the set and the null

hypothesis is chosen (except in discrete sampling cases where the MLE could lie on

the boundary of the set). This not only provides a criticism of proper priors, but also

strongly suggests that improper priors cannot be used for comparing model. First,

unless one can propose a very good prior, the Bayes’ Factor may will provide weights

of evidence that are heavily influenced by the prior, regardless of the effect of the prior

on the posterior. In fact, priors that exhibit little effect on posterior distributions for

small samples exhibit large effect on marginals. For improper priors, in turn, even if

the posterior distribution is proper and has “nice” properties, the prior and marginal

distributions are only defined up to an arbitrary constant.
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1.2.3 Overcoming Issues with Improper Priors

To overcome issues with marginal densities as prior specifications become more

vague (or when priors are chosen based on convenience and not elicitation), sev-

eral alternative model selection criteria can be employed. These include information

criteria–like the BIC, which ignores contributions from the prior–and minimal sample

methods, which use some notion of training samples. Some of these criteria emerged

from an attempt to robustify the marginal distribution and maintain it as the soul

arbiter of model quality. Others merely propose a minimization of a particular loss

function. While none can truly replace the Bayes’ Factor computed from well elicited

priors, any criterion that provides the same asymptotic consistency of the Bayes’

Factor while reducing prior dependence merits study.

The first class of loss functions seeks to mimic the behavior of a different informa-

tion criterion, the AIC of Akaike [23,24]. The AIC seeks to correct the bias in the log

likelihood that comes from using the MLE instead of the true value of the parameter.

Similar to evaluating the log likelihood at the MLE, Aitkin [25] suggested looking at

Eθ|x [f(x|θ)] as a measure of model adequacy. This measure allows the use of vague

priors, but reflects the same bias as using the plug-in estimator of the MLE. The bias

is precisely the dimension of the parameter space, and so–like in the AIC–one can

use this as a penalty for the criterion [26] . Similar criteria appear as a term for fit
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(often based on deviance) and a term for complexity (as in the BIC, but without the

log (n)). The DIC [27] uses the deviance D(θ) = −2 log (f(x|θ)) to build

DIC = D + pD = 2D −D(θ)

where D is the posterior expectation of the deviance, θ is the posterior mean, and

pD = D −D(θ) is an estimation of model complexity. Similarly, Gelfand and Ghosh

[28] developed a more generic framework for defining criteria that seeks to minimize

a particular predictive loss for a given model. They also obtain a deviance based fit

term and a penalty term that is a measure of model complexity.

The second class of methods tries to mimic the marginal distribution. The most

basic method takes a Bayesian cross validation approach [29] and looks at a predictive

density m(x)
m(xi1 ,...,xik )

where k is the size of a minimal sample (the smallest sample one

needs for an improper prior to yield a proper posterior) and all observations are

exchangeable. After computing a ratio of these measures, Berger and Pericchi suggest

robustifying this measure by taking averages, medians, and geometric means over all

possible minimal samples, producing the intrinsic Bayes’ Factors (IBF). In addition

to these data dependent measures, Berger and Pericchi [30] developed priors based

on an asymptotic consideration of this method, termed intrinsic priors. These priors

have generated considerable interest among researchers and have been used with great

success in a number of problems [31–34] . O’Hagan, in contrast, suggests creating a
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measure of model adequacy by dividing out by a fraction of the information in the

marginal [35,36] , defining the fractional marginal as

FBF =
m(x)∫

f(x|θ)bπ(θ)dθ

where 0 < b < 1. He discusses many choices of b, but b = k
n

provides the most

clear analogue to the IBF. Beyond these approaches, [37] developed the more general

method of expected posterior priors (EPP), defining a prior for each model as

π∗i (θi) =

∫
pi(θi|z)m∗(z)dz

where m∗ is a fixed distribution, often taken to be the marginal from the simplest

model in consideration and z is a minimal sample (a sample with the smallest size that

provides a proper posterior). In contrast to using the same m∗ for all models, Iwaki

[38] used the posterior predictive densities of the models to define a data dependent

version of this approach. It is important to note that methods like Iwaki’s and

O’Hagan’s are fully Bayesian, but are using some particular loss functions as opposed

to only using marginals. The EPP method, on the other hand, is is based purely on

marginals when one takes m∗ to be a fixed proper distribution which does not depend

on the data.

1.2.4 Model Focus and Selection Criteria

When considering statistical models from a fully Bayesian perspective, the no-

tion of what a parameter is becomes somewhat muddled. That is to say that in the
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Bayesian perspective all analysis can be treated as some sort of missing data problem.

Quantities that one knows are treated as known and all other quantities are given

distributions that reflect the lack of knowledge of the investigator. In this sense, once

a set of distributional assumptions has been made in a problem then any other set of

distributional assumptions that lead to the same states of knowledge can be treated

as equivalent. In stark contrast to frequency based statistics, where parameters are

immutable aspects of nature, the Bayesian treats all quantities distributionally. As

prior distributions can play two distinct roles–modeling and estimation–and we can

consider parameters at multiple levels in a hierarchy, which parameter one wishes to

focus on when analyzing a particular set of data is subject to the views of the individ-

ual investigator. When considering a loss function L(a|Y ) = Eθ|Y [L(θ,a|Y )], the

action a is often intimately connected with the parameter θ, as it is when using loss

function for choosing posterior summary statistics where the connection is important

to the question at hand. However, in the context of model selection, tying a criterion

to a specific θ can become problematic due to the dual role played by priors. When

considering a hierarchical model, the choice of level of hierarchy is called the level of

model focus [27]. When using a decision criterion that references a specific parame-

ter, the investigator determines the appropriate level of focus for a given analysis. If

one chooses this level based on convenience, then the model comparison tool changes

dramatically and can fail to correspond to the appropriate model.
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Consider a model where we specify sampling distribution f(y|θ,φ) with prior

π(θ|φ)π(φ) where the priors are integrable. There are then a myriad of choices for

sampling distribution (initially denoted as f(y|θ,φ)),

f(y|φ) =

∫
f(y|θ,φ)π(θ|φ)dθ

f(y|θ) =

∫
f(y|θ,φ)π(φ|θ)dφ.

If we consider using a particular level of model focus in an information criterion, we

necessarily assume that higher levels in the hierarchy are used only to help estimate

parameters and do not represent any additional modeling of the parameters. If we

compute the posterior expected log likelihood, we can easily see differences in the

criterion.

Eθ,φ|Y [log (f(Y |θ,φ)] = log (m(Y )) + Eφ,θ|Y
[
log

(
p(θ,φ|Y )

π(θ,φ)

)]
= log (m(Y )) + Eφ|Y

[
Eθ|φ,Y

[
log

(
p(θ|φ,Y )

π(θ|φ)

)]]
+ Eφ|Y

[
log

(
p(φ|Y )

π(φ)

)]
= Eφ|Y [log (f(Y |φ))] + Eφ|Y

[
Eθ|φ,Y

[
log

(
p(θ|φ,Y )

π(θ|φ)

)]]
= log (m(Y )) + Eθ|Y

[
Eφ|θ,Y

[
log

(
p(φ|θ,Y )

π(φ|θ)

)]]
+ Eθ|Y

[
log

(
p(θ|Y )

π(θ)

)]
= Eθ|Y [log (f(Y |θ))] + Eθ|Y

[
Eφ|θ,Y

[
log

(
p(φ|θ,Y )

π(φ|θ)

)]]
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As is easily seen, each posterior expected log likelihood appears as the “full” value

minus some bias term. This type of analysis–which applies to the DIC–can be ex-

tended to provide critiques of the FBF and Gelfand’s method.

Invariance to issues of model focus is an additional reason for why the marginal

distribution is afforded a unique role in model selection. Marginal distributions, as

well as distributions derived from marginal distributions, are the only objects that are

invariant to the choice of model focus. In fact, since posterior predictive distributions

are defined in terms of ratios of marginal distributions (pr(Z|Y ) = m(Z,Y )
m(Y )

) they are

also invariant to choice of model focus. One must exercise caution, however, when

defining posterior predictive densities as they are often defined in terms of conditional

independence with respect to a particular parameter (Z ⊥⊥ Y |θ). One then defines

the posterior predictive density as

pr(Z|Y ) =

∫
f(Z|θ,Y )p(θ|Y )dθ =

∫
f(Z|θ)p(θ|Y )dθ.

The particular choice of conditional independence implies the definitions of condi-

tional sampling densities. In particular, we have f(Z|θ,Y ) = f(Z|θ) and

f(Z|θ,φ,Y ) =
p(φ|θ,Z,Y )f(Z|θ,Y )

p(φ|θ,Y )
=
p(φ|θ,Z,Y )f(Z|θ)

p(φ|θ,Y )

f(Z|φ,Y ) =

∫
f(Z|θ,φ,Y )p(θ|φ,Y )dθ,

and it is easy to verify that they all lead to the same posterior predictive density.

While the initial choice of conditional independence appears to be tied to a choice

of model focus, the choices differ. When choosing a conditional independence re-
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lationship, the investigator is envisioning a particular sampling scheme for future

observations from the process under consideration. As such, the particular choice of

independence relationship is tied to a data-based inferential problem, and not to the

whims of the investigator or the convenience of a specific hierarchical level. After the

predictive inferential goal is established, the posterior predictive density is fixed. It

is in this way that posterior predictive distributions can be viewed as being indepen-

dent of the choice of model focus. Of the methods discussed, the BF, IBF, EPP, and

Iwaki’s method are invariant to issues of model focus.

1.3 Information Theory

In this chapter, we discuss some general results in information theory that motivate

the selection criteria developed in the dissertation. Historically, information theory

began with the work of Claude Shannon. Beyond its applications in signal processing

(for which it was introduced), information theory is now used regularly across science

and engineering as well as in statistics. For example, the Bernardo rule for deriving

a reference prior uses the quantity

I =

∫ ∫
log

(
p(θ|xn)

π(θ)

)
p(θ|xn)dθm(xn)dxn

which is the expected mutual information between θ and xn. The mutual information

in a channel was first defined in Shannon’s groundbreaking paper [39] and minimizing

this mutual information provides the most efficient encoding for the channel. Though

there is a deep geometry involved in information theory [40–44] , this geometry is
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mostly tied to estimation problems and the manifolds developed are manifolds for

particular families of distributions (for example, a particular exponential distribution

where the manifold is defined in terms of the parameters of the exponential family).

Since we are performing statistical estimation in terms of placing a prior distribution

over such a manifold, the geometry is most interesting when defining a prior distri-

bution. When considering model selection, we would like to build criteria that view

models only through observable data in order to avoid issues of model focus. Thus

we restrict out attention to measures of divergence between distributions which can

be applied to predictive and marginal densities.

1.3.1 Shannon Entropy and K-L Divergence

Suppose that we have a discrete distribution given by p = (p1, . . . , pn) and define

a function H(p) by the properties [45]

1. H(p1, . . . , pn) is symmetric in its arguments

2. H(p, 1− p) is continuous for p ∈ [0, 1]

3. H(.5, .5) = log (2)

4. H(tp1, (1− t)p1, p2, . . . , pn) = H(p1, . . . , pn) + p1H(t, 1− t) for t ∈ [0, 1]

then the unique function H, called the Shannon Entropy, is

H(p1, . . . , pn) =
∑

pi log

(
1

pi

)
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Proof. The proof of this fact is reduced to the following, due to Erdös (see Rényi [45]

for a proof of Erdös’ theorem). If f is a function defined on N such that f(nm) =

f(n) + f(m) and limn→∞ f(n + 1) − f(n) = 0 then f(n) = c log (n). In order to

use this to prove the form of H, we can define an appropriate f and use continuity.

Define

f(n) = H

(
1

n
, . . . ,

1

n

)
.

It is easy to see that the additivity condition extends to t1, . . . , tn in the n−simplex

using induction. In general, the additivity condition can be further extended to

break down the measure of information into one over all measure of information plus

a conditional expectation. Define R latent groupings as Gr = {kr+1, . . . , kr+1} where

k1 = 1 and kR+1 = n, the probability of being in group Gr as ωr =
∑kr+1

i=kr+1 pi, and

pr to be the vector formed by pi
ωr

for i ∈ Gr. The function H satisfies

H(p) = H(ω) +
R∑
r=1

H(pr)ωr.

In fact, this equation is equivalent to the simple additivity condition and so the

Shannon entropy will be the unique information function with this additivity property.

To see how this extended additivity property implies leads to the Shannon entropy,

consider p to be a vector of length mn with each element being 1
mn

. Define the

groupings by kr = (r − 1)n for r = 1, . . . ,m, then each ωr is 1
m

and each pr is a

vector of length n with each element being 1
n
. Thus, the additivity condition gives us

f(mn) = f(m) + f(n). Now, we have to show that limn→∞ f(n+ 1)− f(n) = 0 and

26



we will be able to apply Erdös’ theorem. Using the additivity condition, we can see

that

f(n+ 1) = H

(
n

n+ 1
,

1

n+ 1

)
+

n

n+ 1
f(n).

Because H(0, 1) = 0 and the continuity assumption, H
(

n
n+1

, 1
n+1

)
→ 0. It follows

that f(n+ 1)− f(n)→ 0 and f(n) = c log (()n). Since H(.5, .5) = f(2) = log (2), we

can conclude that c = 1

The interpretation of the Shannon entropy is fairly straightforward. The amount

of information from observing outcome i is log
(

1
pi

)
and so the Shannon entropy is

the expected information of the probability vector. Because 0 ≤ pi ≤ 1 for all i, it is

easy to see that the Shannon entropy is positive, with the value being 0 if and only

if the probability vector contains a single 1. It is an easy calculus problem to show

that
∑
pi log

(
1
qi

)
is minimized when qi = pi for all i. And so, given two probability

vectors, we can define the average information difference of p from q to be

DKL(p||q) =
n∑
i=1

pi log

(
pi
qi

)
.

This is the divergence introduced to Kullback and Leibler [46] and represents the

information gain when q is proposed as the probability distribution and p is the

actual probability distribution. In this way, the Shannon entropy can be viewed as

the information gain of p from the uniform distribution.
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1.3.2 Rényi Divergences

In order to generalize the idea of information gain when one distribution is replaced

by another, Rényi [45] proposed replacing the average of the logarithms with a more

generic average

Dg(p||q) = g−1

[∑
i

pig

(
log

(
pi
qi

))]

where g is a strictly increasing function If we define p1 ? p2 to be the distribution

induced by independence, then Rényi also requires additivity:

Dg(p1 ? p2||q1 ? q2) = Dg(p1||q) +Dg(p2||q2). (1.7)

This requirement is actually quite strict and g has to satisfy g(x + y) = g(x) +

a(x)g(y) = g(y) + a(y)g(x). Thus for all x and y, which induces the equality a(x) =

1 + kg(x) for all x. In the case where k = 0, one obtains g(x+ y) = g(x) + g(y) and

so g is a linear function and the K-L divergence is obtained. However, for k 6= 0, we

have

a(x+ y)− 1

k
= g(x) + a(x)g(y) =

a(x)− 1

k
+ a(x)

a(y)− 1

k
,

which implies that a(x + y) = a(x)a(y). The monotonicity assumption tells us that

a(x) = c exp ((α− 1)x) and so g(x) = 1
k
(c exp ((α− 1)x)− 1). Substituting this back

into (1.7), we get

Dα(p||q) =
1

α− 1
log

([∑
pi

(
pi
qi

)α−1])
.
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For a continuous probability space with measures P and Q, define h = dP
dQ

when

Q� P and define

Dα(P ||Q) =
1

α− 1
log

(∫
hα−1dP

)
Dα(p||q) =

1

α− 1
log

(∫ (
p(x)

q(x)

)α−1
p(x)dx

)
(1.8)

where p and q and the densities of P and Q when both are absolutely continuous

with respect to the measure given by dx. It is easy to see that these measures of

divergence are continuous in α > 0.

In order to state some simple properties of the Rényi divergences, we need access

to Jensen’s inequality. If φ is a convex function on R and g is a µ integrable function

for a probability measure µ, then φ
(∫

gdµ
)
≤
∫
φ(g)dµ.

If we consider the function φ(x) = x
α−1
α′−1 for α > α′ (where neither is 0), then φ

is convex. Thus Dα′(P ||Q) ≤ Dα(P ||Q) whenever α′ ≤ α. When 0 < α < 1, we can

use the fact that

Dα(p||q) =
1

α− 1
log

(∫ (
p(x)

q(x)

)α−1
p(x)dx

)
= − 1

1− α
log

(∫ (
p(x)

q(x)

)α
q(x)dx

)
and that φ(x) = xα is concave to conclude the fact that∫ (p(x)

q(x)

)α
q(x)dx <

(∫
q(x)dx

)α
= 1 and so Dα(p||q) > 0 for all α.

A few values of α provide straightforward interpretation

• D∞(p||q) = log
(

ess. supx
p(x)
q(x)

)
: often infinite

• D2(p||q) = log
(∫ p(x)2

q(x)
dx
)

: the log expected ratio of the densities (related to

χ2)
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• D1(p||q) =
∫

log
(
p(x)
q(x)

)
p(x)dx: the K-L divergence

• D 1
2
(p||q) = −2 log

(∫ √
p(x)q(x)dx

)
: twice the log affinity (related to Hellinger)

• D0(p||q) = − log
(∫

supp(p(x))
q(x)dx

)
: log measure of common support

Intuitively, the α divergence depends on lower probability outcomes (under p) as α

becomes smaller. To see the connection between D2 and the Pearson χ2 distance,

notice that the Pearson distance is

∫ (
p(x)

q(x)
− 1

)2

q(x)dx = exp (D2(p||q))− 1.

To see the connection betweenD 1
2

and the Hellinger distance, notice that the Hellinger

distance is ∫ (√
p(x)−

√
q(x)

)2
dx = 2

(
1− exp

(
D 1

2
(p||q)

))
In fact, we have already seen a number of Rényi divergences. The most obvi-

ous place where they are being used is when computing the posterior expected log-

likelihood for the DIC,

∫
log (f(x|θ) p(θ|x)dθ = log (m(x)) +

∫
log

(
p(θ|x)

π(θ)

)
p(θ|x)dθ

= log (m(x)) +D1(p(·|x)||π)

= log (m(x) exp (D1(p(·|x)||π))) .

They also appear in Aitkin’s posterior Bayes’ Factor,

∫
f(x|θp(θ|x)dθ = m(x)

∫
p(θ|x)2

π(θ)
dθ = m(x) exp (D2(p(·|x)||π)) .
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Most notably, they appear in O’Hagan’s FBF because the fractional marginal is

m(x)∫
f(x|θ)bπ(θ)dθ

=
m(x)∫

m(x)
(
f(θ|x)
π(θ)

)b
π(θ)dθ

=
m(x)1−b∫ (f(θ|x)

π(θ)

)b−1
f(θ|x)dθ

= (m(x) exp (Db(p(·|x)||π)))1−b

All three of these measures of model adequacy appear as the marginal modified by a

Rényi entropy of the posterior distribution from the prior distribution for the param-

eters. It is now apparent why these measures behave differently. The fit term from

the DIC and the posterior Bayes’ Factor are using Rényi entropies with a fixed α. As

we collect more and more data, if we have a sequence of consistent posteriors, then

eventually the Rényi divergences become infinite. In contrast, the FBF maintains a

check on the growth of the divergence by forcing α = α(n) → 0. In this way, the

FBF produces behavior similar to the Bayes’ Factor, whereas the other two quantities

allow for model comparison to select the alternative whenever the null is true, even

as the amount of data becomes infinite.

In the following chapter, we wish to build criteria using information integrals in

the family the Rényi introduced. One family will be purely based on K-L divergences

and the other will be built on the entire family of Rényi divergences. One important

aspect of the latter will be its asymptotic correspondence to Bayes’ Factors. For entire

families for any value of α, behavior like that of a Bayes’ Factor can be achieved when

one has access to minimal samples and predictive densities. This is in stark contrast
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to the family of posterior divergences exhibited above, as the only ones that can

possibly exhibit consistent model selection are the FBFs, and consistency is not even

guaranteed for them.
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2. New Alternatives for Model Selection

In this chapter, we will introduce some new families of information criteria to be used

for model comparison and selection. The first is a criterion based purely on predictive

densities and the Kullback-Leibler Divergence. This measure will include a fit term

based on the posterior Bayes’ Factor (although any measure that behaves in a similar

fashion would suffice) and a term which penalizes for complexity by looking at the

relative K-L Divergences of the two models. This can be extended in a number of

ways, which are discussed but not explored fully. The second family is based upon

modifying the marginal distribution by an appropriate Rényi divergence. This is a

large and flexible family of criteria that provide asymptotic selection properties of

the Bayes’ factor while allowing the use of diffuse and improper priors. It is clearly

seen that this family provides analogues to the intrinsic and fractional Bayes’ factor

by placing Iwaki’s method in a larger family of criteria.

2.1 Posterior Predictive Information Criterion

The Signed Divergence

Consider two distributions f and g for data x. We want to find an intrinsic measure

which provides a natural definition of of the relative quality of the two models in
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terms of information for discrimination I(f, g). A natural choice is one of the K-L

divergences D(f ||g) or D(g||f) or the Jensen-Shannon divergence D(f ||g) +D(g||f).

The only problem is that each of these measures is positive and so gives us no notion

of which model provides more discrimination. In order to do this, it is reasonable to

look at the difference in K-L divergences, defining a new signed divergence here by

I(f, g) = D(f ‖ g)−D(g ‖ f),

which is clearly anti-symmetric in its variables. In contrast to the Jensen-Shannon

divergence which would take the sum of the K-L Divergences, we focus on taking the

difference in order to determine which model provides more information for discrim-

ination. Though a somewhat vague notion itself, this measure of divergence should

favor, in terms of sign, the distribution which is more diffuse. This is because the

value of a K-L divergence is strongly influenced by sets of small measure. In fact, the

signed divergence can be viewed as a difference in two other K-L divergences:

I(f, g) = D(f ‖ g)−D(g ‖ f)

=

∫
log

(
f

g

)
f −

∫
log

(
g

f

)
g

=

∫
log

(
f

g

)
f +

∫
log

(
f

g

)
g

= 2

∫
log

(
f

g

)
f + g

2

= 2

[∫
log

(
2f

f + g

)
f + g

2
+

∫
log

(
f + g

2g

)
f + g

2

]
= 2 [D(h ‖ g)−D(h ‖ f)]
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where h is the probability density f+g
2

. The sign of this divergence favoring a more

diffuse distribution can now be viewed as saying that the distribution which is more

diffuse is the distribution which is closer to the average of the two distributions. This

notion of diffuseness can be solidified by looking at two classical examples.

Proposition 2.1.1. Suppose the F is a Bernoulli distribution with parameter q and

that G is a Bernoulli distribution with parameter p. Further suppose that max{p, 1−

p, q, 1− q} = max{q, 1− q}. Then I(F,G) ≤ 0 and I(F,G) = 0 if and only if p = q

or p = 1− q.

Proof. Without loss of generality, we can assume that q = max{q, 1 − q} and thus

assume q ≥ 1
2
. Define

Iq(p) = I(F,G) = (p+ q) log

(
q

p

)
+ (2− p− q) log

(
1− q
1− p

)
For fixed q, it is easy to see that Iq ∈ C∞(0, 1) and Iq(1 − q) = 0 = Iq(q). Thus,

I(F,G) = 0 whenever q = 1
2
. Suppose the q > 1

2
. The first two derivatives of Iq are:

I ′q(p) = log

(
q

p

)
− log

(
1− q
1− p

)
− q

p
+

1− q
1− p

I ′′q (p) = −1

p
− 1

1− p
+

q

p2
+

1− q
(1− p)2

Algebraic manipulation shows that

I ′′q (p) =
(1− 2p)(q − p)
p2(1− p)2

It is easy to see that I ′q(q) = 0 and that I ′′q (p) = 0 has only two solutions, one at

p = q and one at p = 1
2
. If Iq(p) were to have more roots than p = q and p = 1− q,
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then Iq would have to have more inflection points. And so the sign of I ′q(1 − q) will

tell us the sign of Iq(p) for p ∈ (1− q, q). Define T (q) = I ′q(q). It is easy to see that

T (1
2
) = 0. Also,

T ′(q) = (2q − 1)

(
− 1

(1− q)2
− 1

q2

)
which is negative for all q > 1

2
. Thus, T (q) < 0 for all q > 1

2
and we can conclude

that Iq(p) < 0 for all 1− q < p < q.

Remark 2.1.1. We can easily compute the signed divergence for two univariate nor-

mal distributions. Suppose that f is a normal density with mean µ and precision s

and the g is a normal density with mean θ and precision t.

D(f ‖ g) = Ef
[

1

2
log
(s
t

)
− s

2
(y − µ)2 +

t

2
(y − θ)2

]
=

1

2
log
(s
t

)
− s

2
Ef
[
(y − µ)2

]
+
t

2
Ef
[
(y − θ)2

]
=

1

2
log
(s
t

)
− 1

2
+
t

2
Ef
[
(y − θ)2

]
=

1

2
log
(s
t

)
− 1

2
+
t

2
Ef
[
(y − µ+ µ− θ)2

]
=

1

2
log
(s
t

)
− 1

2
+
t

2
Ef
[
(y − µ)2

]
+
t

2
(µ− θ)2

=
1

2
log
(s
t

)
− 1

2
+

t

2s
+
t

2
(µ− θ)2

Symmetry dictates that

D(g ‖ f) =
1

2
log

(
t

s

)
− 1

2
+

s

2t
+
s

2
(θ − µ)2

Thus the signed divergence is

I(f, g) = log
(s
t

)
+

1

2

(
t

s
− s

t

)
+

1

2
(µ− θ)2(t− s)
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Proposition 2.1.2. Suppose that f is a normal density with mean µ and precision

s and that g is a normal density with mean θ and precision t. Further suppose that

s ≥ t. Then I(f, g) ≤ 0 and I(f, g) = 0 if and only if s = t.

Proof. Fix s > 0 and define x = t
s
. Define

Is(x) = I(f, g) = log (x) +
1

2

(
x− 1

x

)
+
s

2
(µ− θ)2(x− 1)

For fixed s, Is(x) ∈ C∞(0,∞). Trivially Is(1) = 0 so we have shown that I(f, g) = 0

whenever s = t. Also,

I ′s(x) =
1

x
+

1

2

(
1 +

1

x2

)
+
s

2
(µ− θ)2 > 0

If s > t then x < 1 and I ′s(x) > 0 together with Is(1) = 0 imply that I(f, g) < 0.

Remark 2.1.2. The measure I can be easily computed for multivariate normal distri-

butions. Let f be a normal density in d dimensions with mean µ and precision matrix

S. Let g be a normal density in d dimensions with mean θ and precision matrix T .

Some algebra shows that

I(f, g) = log

(
|S|
|T |

)
+

1

2
tr
(
S−1T − T−1S

)
+

1

2
(µ− θ)T (T − S)(µ− θ). (2.1)

This is analogous to the measure for univariate normal distributions. In fact, when-

ever T = tI, S = sI, µ = µ01, and θ = θ01, where I is the d × d identity matrix

and 1 is a length d vector of ones, the measure collapses to d times what one would

get with the corresponding univariate measure.
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These examples help solidify what we mean by saying one distribution is more

diffuse than another. In the Bernoulli example, the signed divergence follows the dis-

tribution which has parameter furthest from 1
2
, which corresponds to the distribution

with larger standard deviation. In the Gaussian example, the signed divergence fol-

lows the distribution with larger standard deviation. We will use this measure when

f and g are the posterior predictive densities of two different models. This measure

should then favor (in terms of sign) the model which is more complex because inte-

grating out the parameters will make that particular predictive density less narrow.

Essentially, one of the nicest aspects of Bayesian statistics will provide leverage over

the models: integration to marginalize out a variable creates an automatic Occam’s

razor.

2.2 The PPIC

Suppose that we have two models Mi, i = 1, 2. That is, suppose that we have

sampling distributions Fi(y|θi) and priors Πi(θi) such that the Bayesian predictive

distributions Fi(y|Y ) (from collecting data Y ) are mutually absolutely continuous.

We can find a measure µ with respect to which the Fi(y|Y ) are both absolutely

continuous. Define the predictive densities (with respect to µ) as fi(y|Y ) where y

is data from a fully repeated experiment. When predictive densities have common

support we can define the following information theoretic quantity:

38



Definition 2.2.1. Define the quantity

Wα(M1,M2) = log

(
f1(Y |Y )

f2(Y |Y )

)
− αI(f1, f2) (2.2)

What Wα represents is a term for fit (the log-ratio of the predictive distributions)

minus a term that takes into account the difference in average predictive discrimina-

tion of the two models. Since the second term favors models with more spread and

more complex models have more spread due to integrating out parameters, we can

see that subtracting the signed divergence provides a check on overfitting in complex

models. The next proposition shows a simple consistency property of the measure

Wα.

Proposition 2.2.1. Suppose Mi : yj
iid∼ fi(x|θi) for j = 1, . . . , n and i = 1, 2 where

the θi are fixed. Then Wα(M1,M2) is asymptotically consistent for all α ∈ (0, 1).

Proof. Suppose that M1 is the true model, then

log

(
f1(y1, . . . yn|θ1)
f2(y1, . . . yn|θ2)

)
= log

(
n∏
j=1

f1(yj|θ1)
f2(yj|θ2)

)

=
n∑
j=1

log

(
f1(yj|θ1)
f2(yj|θ2)

)

≈ nD1(f1 ‖ f2)

where D1 is the Kullback-Leibler Divergence for an observation set of cardinality 1.

It is easy to see that

I(f1, f2) = n [D1(f1 ‖ f2)−D1(f2 ‖ f1)]
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Thus, we can conclude that

Wα(M1,M2) ≈ n (αD1(f2 ‖ f1) + (1− α)D1(f1 ‖ f2)) > 0

and we would select M1 asymptotically. Asymmetry provides the result that M2

being the correct model gives W < 0 and M2 would be chosen asymptotically.

Remark 2.2.1. There is an interesting observation about the asymptotic form of

W 1
2

from this proposition. When g has actually generated the independent data, then

W 1
2
(M1,M2) ≈ n

∫ (
g − f1+f2

2

)
log
(
f1
f2

)
. The criteria selects precisely the model which

is has less divergence separating it from the data generating process than from the

mixture model of the two models with equal weightings. This may suggest that a

choice of α = 1
2

is appropriate for the test, but we will see that may not penalize

complex models enough to get consistency, although it will still provide a check on

complexity, much like that in the AIC or DIC.

2.2.1 Examples

Proposition 2.2.2. The Wα test can be made to have arbitrarily small Type I error

rate for a point null test of the mean of independent normally distributed data when

the precision is known and α ∈
(
1
2
, 2
)

Proof. Suppose that M1 : Yi
iid∼ N (0, 1) and that M2 : Yi

iid∼ N (µ, 1) with prior

π(µ) = c. Then the posterior for µ is µ ∼ N (Y , 1/n) under M2. The predictive
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density under M2 for a replicated experiment is determined by working through the

quadratic form:

Q = (y − µ1)T (y − µ1) + n(µ− Y )T (µ− Y )

= µ (1 + n)µ− 2µ
(
1Ty + nY

)
+ f(Y )

= Qµ +

(
y − 1

n
JY

)T (
I − 1

2n
J

)(
y − 1

n
JY

)
+ f(Y )

where I is the n× n identity matrix, J is an n× n matrix of 1′s, 1 is a vector of 1′s

of length n, Qµ is a quadratic form in µ, f(Y ) is some function of Y , and n is the

size of the data set. Thus the predictive density for y given that we have observed

data Y under model M2 is multivariate normal with mean Y 1 and precision matrix

I − 1
2n
J .

Now we need to compute the predictive densities at the data itself

f1(Y |Y ) =

(
1√
2π

)n
exp

(
−1

2
Y TY

)

f2(Y |Y ) =

(
det
[
I − 1

2n
J
])

(
√

2π)n
exp

(
−1

2

(
Y − Y 1

)T (
I − 1

2n
J

)(
Y − Y 1

))
=

1

2(
√

2π)n
exp

(
−1

2

(
Y TY − nY 2

))

This provides a measure for discrimination of

Wα(M1,M2) =
1

2
log (2)− n

2
Y

2 − α log (2) +
3α

4
+
nα

4
Y

2

Under the assumption that M1 is true, we know that nY
2

has a chi-squared distribu-

tion with 1 degree of freedom, we can see that the probability that W (M1,M2) < 0
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is the probability that nY
2
< 3α−2 log(2)(2α−1)

2−α . This probability is greater than .5

whenever α > −0.7. Additionally, it is easy to see that this probability grows to 1 as

α approaches 2. Choice of α in this range provides control of Type I error.

When M2 is the correct model, we know that nY
2

has a non-central chi-squared

distribution with 1 degree of freedom and non-centrality parameter n(µ∗)2, where µ∗

is the actual value of µ generating the data. We can easily see that the probability

that Wα < 0 increases to 1 as n increases for any α < 2.

Definition 2.2.2. We can define the model averaging weights for this comparison by:

Pα(M1 �M2) =
exp (Wα(M1,M2))

1 + exp (Wα(M1,M2))

where P (M1 � M2) is the probability that model M1 is preferred to model M2. Note

that this definition provides P (M1 �M2) = 1− P (M2 �M1).

Proposition 2.2.3. exp (Wα(M1,M2)) is a discounted version of the posterior Bayes’

Factor.

Proof. Simple calculation provides:

exp (Wα(M1,M2)) =
f1(Y |Y ) exp (−D(f1 ‖ f2))
f2(Y |Y ) exp (−D(f2 ‖ f1))

Remark 2.2.2. It is interesting to note that using the above model averaging weight

for the test in Proposition 2.2.2 provides a good model averaging weight for M1 when

M1 is true, dependent on the level of significance chosen. In fact, choosing a Type
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I error rate of 0.05 provides α ≈ 1.548 and we can plot the cumulative distribution

function of the model averaging weight (see Fig 2.2.2). The model averaging weight

has an upper limit of about 0.607.

Figure 2.1. CDF of model averaging weights for Remark 2.2.2
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Proposition 2.2.4. Suppose that M1 : yi|X i
iid∼ N (X iβ1i, 1) and that M2 : yi|X i,Zi

iid∼

N (X iβ2i + Ziγi, 1) for i = 1, . . . , n and that the priors on all of the coefficients in

each model is a constant. Then the test is can be made to have arbitrarily small Type

I error rate (with for 0.5 < α < 2). In particular, as |γ| grows the probability of

rejecting M1 when it is true goes to 0 for fixed α ∈ (.5, 2).

Proof. Let X be a matrix whose i-th row is X i. Define Z similarly. Without loss

of generality, we can orthogonalize the columns of Z to the columns of X. Let
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q = |βk|, r = |γ|, Q = X(XTX)−1XT , and R = Z(ZTZ)−1ZT . Suppose that we

have gathered data Y . We can compute the difference in K-L Divergences by letting

S = I − 1
2
Q, T = S − 1

2
R, µ = QY , and θ = µ+RY . We get a difference of K-L

Divergences which is

I(M1,M2) = r log (2)− 3r

4
− 1

4
Y TRY

Evaluating the log predictive densities at the data Y provides us with

log

(
f1(Y |Y )

f2(Y |Y )

)
= r

log (2)

2
− 1

2
Y TRY

We get a discrimination measure of

Wα(M1,M2) =
3rα

4
− r log (2) (2α− 1)

2
− 2− α

4
Y TRY

Whenever M1 is true, we know that Y TRY has a chi-squared distribution with r

degrees of freedom. Using properties of this distribution, we can choose α to set the

Type I error rate. In particular, for any α > .5, we know that 3∗α−2 log(8)(2α−1)
2−α > 1 and

the probability that Wα > 0 is increasing to 1 as r increases for any fixed 0.5 < α < 2.

Whenever M2 is the true model, we know that Y TRY has a non-central chi-squared

distribution with r degrees of freedom and non-centrality parameter λn = γ∗ZTZγ∗

where γ∗ is the actual value of γ that generated the data. In fact, λn = nλ where

λ > 0, it is easy to see that P (W < 0) is increasing as n grows.

Proposition 2.2.5. Suppose that we have two linear models with known precision

and design matrices X1 = X +Z1 and X2 = X +Z2 where Zi is orthogonal to X
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for i = 1, 2. Define Q = X(XTX)−1X and Ri = Zi(Z
T
i Zi)

−1X i where Q and Ri

are full rank and have ranks q and ri (i = 1, 2). Suppose we have collected data Y of

size n. For any α ∈ (1
2
, 2) if a model is correct, it is chosen with probability 1 as n

grows. Additionally, If the two models have the same residual sum of squared errors,

then the model with fewer parameters is chosen.

Proof. This is easily established by noting that

Wα(M1,M2) = (r2 − r1)
[

3α− 2 log (2) (2− α)

4

]
+

2− α
4
Y T (R1 −R2)Y

Clearly the last two claims are true. There are two independent non-central chi-

squared distributions in the formula for Wα (Y TRiY for i = 1, 2). If one of the

models is true, its non-centrality parameter will be the larger of the two non-centrality

parameters and that model will be chosen with probability 1 as n grows. In fact, if

neither model is the true model, then the model with the larger value of the non-

centrality parameter will be chosen with probability 1 as n grows and if the models

have the same non-centrality parameter, then the model with fewer parameters is

chosen.

Remark 2.2.3 (Varying α). As the examples showed, a fixed α provided a fixed

Type I error rate asymptotically. In order to get consistency, one must allow α =

α(n) → 2 in an appropriate manner to balance Type I and Type II error rates. The

examples discussed we can modify α to a function of n and obtain a test that is always

asymptotically consistent when the number of parameters is fixed.
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Fix α0 ∈
(
1
2
, 2
)
, define

α(n) = 2− 2− α0

a(n)

Choosing a(n) as an increasing function of n such that

lim
n→∞

a(n) =∞ lim
n→∞

a(n)

n
= 0

provides us with the result that Type I error goes to 0 in the nested case and that the

growth of

r2 ×
3α− 2 log (2) (1− 2α)

2− α

is slower than n and so Type II error also goes to 0. This also provides consistency

in the case of non-nested linear models and so consistency can be achieved across all

linear model comparisons with fixed parameter spaces (that is, not having a fixed set of

covariates that one can include and not increasing this set of covariates as n→∞).

2.2.2 Multiple Model Comparison

Although the criterion has been initially defined for the comparison of two models,

it can be easily extended to handle multiple model comparison. Suppose that there

are k models M1, . . . ,Mk and define the Wα(i) by

Wα(i) =

(
log (fi(Y |Y ))− α

k∑
j=1

∫
fj(y|Y ) log (fi(y|Y )) dy

)
Here it is assumed that all of the integrals in the definition are finite. The difference

in two of these is given by

Wα(i)−Wα(j) = log

(
fi(Y |Y )

fj(Y |Y )

)
− α

k∑
`=1

∫
f`(y|Y ) log

(
fi(y|Y )

fj(y|Y )

)
dy
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which has a direct interpretation as a correction to the posterior Bayes’ Factor which

takes into account the predicted posterior Bayes factor when assuming each model in

the class of considered models is correct. The quantity

D(g||f ;h) =

∫
log

(
g(x)

f(x)

)
h(x)dx = D(f ||h)−D(g||h)

is a difference in K-L divergences and represents the difference in the amount of

information gained over f versus that gained over g when h is true distribution. The

difference in Wαs becomes

Wα(i)−Wα(j) = log

(
fi(Y |Y )

fj(Y |Y )

)
− α

k∑
`=1

D(fi||fj; f`)

The decomposition of Wα into terms representing fit and complexity can be easily

seen. Each model Mi has a posterior mode θ̂i. The model selection criterion then

decomposes as

Wα(i) = log (fi(Y |Y ))− α
k∑
j=1

∫
fj(y|Y ) log

(
fi(y|θ̂i)

)
dy

− α
k∑
j=1

∫
fj(y|Y ) log

(
fi(y|Y )

fi(y|θ̂i)

)
dy

The term

α

k∑
j=1

∫
fj(y|Y ) log

(
fi(y|Y )

fi(y|θ̂i)

)
dy

is a natural expression for the complexity of Mi. In comparison to the complexity

term in the DIC

pD =

∫
log

(
fi(Y |θi)
fi(Y |θ∗i )

)
pi(θi|Y )dθi
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the term in Wα(i) expresses complexity in terms of the uncertainty in predicted values,

and not the uncertainty in estimates of the parameter. This measure of complexity

takes into account the entire class of models under consideration as it is the sum of

integrals with respect to the predictive density of each model under consideration.

On the other hand, the term(
log (pri(Y |Y ))− α

k∑
j=1

∫
prj(y|Y ) log

(
fi(y|θ̂i)

)
dy

)

is a natural term for model fit. It is the difference of the log Posterior Bayes’ Factor

and a sum of expectations of the log-likelihood evaluated at the posterior mode. This

sum takes into account each model in the class considered, reflecting uncertainty

about which model in the class should be assumed correct when considering the fit

of a particular model. Of particular interest for Wα is the fact that it decomposes

as terms that represent fit and complexity while being invariant to model focus, in

contrast to other information criteria that penalize based on complexity. The key

innovation is that Wα is not a model internal criterion, but a criterion that engages

all models in the class of considered models while determining the fit and complexity

of a particular model.

2.3 Predictively Modified Bayes’ Factors

In contrast to the PPIC, where the criteria is defined in a model external manner

using only predictive densities, we define a model internal selection criteria in the

section using both predictive and marginal densities. The key is to combine the
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insights of the fractional and intrinsic Bayes’ Factors with predictive densities to

obtain a large family of criteria that behave like Bayes’ Factors but also provide the

investigator with a certain amount of flexibility and control. For this section we have

a single statistical model with the following densities (distributions if necessary):

Prior Density of θ : π(θ)

Sampling Density of y : f(y|θ)

Marginal Density of y : m(y) =

∫
f(y|θ)π(θ)dθ

Posterior Density of θ : p(θ|y) =
f(y|θ)π(θ)

m(y)

Predictive Density of New Data z :

pr(z|y) =

∫
f(z|θ)p(θ|y)dθ

We have formed the posterior predictive density under the assumption that z ⊥⊥ y|θ.

This choice of predictive density is part of the formulation of the model and represents

how one views the data generation process for future observations. We will call I the

information we need to form this posterior predictive density and implicitly condition

on it throughout the section. It is important to note that I also describes some

information about z, for example its length and any design considerations that need

to go into creating an appropriate distribution, as well as the prior π used to form

the posterior distribution.

Define the αth modified marginal to be

mα(y) =

(∫
pr(y|z)α−1pr(z|y)dz

) 1
α−1

= m(y) exp (Dα(pr(·|y)||m(·)))
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Before we begin with the general properties of this family of criteria, we will review

the case α = 2 and z is a minimal sample with some detail. This is precisely the

method devised by Iwaki.

2.3.1 Iwaki’s Expected Posterior Predicted Priors

In his 1997 paper, Iwaki considered taking prior π(θ) that are improper and pro-

posed replacing this improper prior with a kind of posterior distribution that could

be learned from the data. In order to avoid the issues with over fitting in Aitkin’s

posterior Bayes’ factor, he suggested replacing the prior with

π̃(θ) =

∫
p(θ|z)pr(z|y)dz

where z is a sample of the smallest number of observations such that p(θ|z) is a proper

density. Such a sample is what we mean by a minimal training sample. This modified

prior was proposed because it is indeed proper (as is easily shown using Fubini’s

Theorem) and, though it is data dependent, it is in a somewhat weak way. Suppose

that the original posterior is consistent at the true value θ0 and that the parameter

space is a complete and separable metric space. Further assume that under a minimal

sample f(z|θ) is a bounded function of θ a.e. pr(z|y). Since p(θ|y)
w→ δθ0(θ) we

have

pr(z|y) =

∫
f(z|θ)p(θ|y)dθ → f(z|θ0) a.e.

This suggests that π̃, which is p(θ|z) integrated against pr(z|y), will at least exhibit

the uncertainty induced by all possible minimal samples arising from the true process.
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Defining π̃(θ′|θ) =
∫
p(θ′|z)f(z|θ)dz and changing the order of integration using

Fubini (making the necessary measurability assumptions), we can see that

π̃(θ′) =

∫
π̃(θ′|θ)p(θ|y)dθ

which shows that π̃(θ′|θ) → π̃(θ′|θ0). These priors are a correction to the original

prior which exhibits minimal learning while not conditioning on a particular minimal

sample (or averaging over all possible minimal samples like in the IBF).

Since the prior obtained is proper and non-degenerate as n → ∞, it leads to the

same sort of asymptotic model selection behavior as any marginal obtained from a

properly defined subjective prior. Beyond using this machine to create proper priors

from improper priors, it does not seem unreasonable to use it in robustifying a proper

prior. If a proper prior is specified poorly, then this method can create a prior which

pulls that prior towards the distribution that the data suggests is true while not

overpowering the information in the prior (unless a minimal sample would do so

anyhow). We conclude this discussion of Iwaki’s method, we present three examples

of these priors.

Example 2.3.1 (Normal Mean). Suppose that yi
iid∼ N (µ, 1) and that the prior density

is π(µ) ∝ 1. The posterior predictive distribution is N
(
y, n+1

n

)
and π̃ is a Gaussian

with mean y and standard deviation
√

2n+1
n

. This example most clearly demonstrates

the fact that π̃ converges to a distribution that is not degenerate as n→∞. In fact,

if y → µ0, then this prior is N (µ0,
√

2).
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Example 2.3.2 (Bernoulli Distribution). Suppose that yi are iid Bernoulli with pa-

rameter θ. Suppose that the prior is a Beta(α, β) distribution and we have observed

s successes and f failures. If we let z be two observations, then

π̃(θ) =
Γ(a+ b+ 2)θa−1(1− θ)b−1

Γ(a)Γ(b)
×(

θ2
(s+ a+ 1)(s+ a)

(a+ 1)(a)
+ 2θ(1− θ)(f + b)(s+ a)

(b)(a)
+ (1− θ)2 (f + b+ 1)(f + b)

(b+ 1)(b)

)

If we take α = β → 0 (the Haldane prior), we get π̃ as a mixture of three pieces. Two

are point masses at 0 and 1 with weights f(f+1)
n(n+1)

and s(s+1)
n(n+1)

, respectively. The third is

a uniform distribution with weight 2sf
n(n+1)

.

Example 2.3.3 (Gamma Distribution). Suppose that yi are iid Gamma(θ, b) with

b > 0 fixed and π(θ) ∝ 1
θ
. A minimal sample z has one observation. The posterior

distribution is Gamma(
∑
yi, nb) and

π̃(θ′|θ) =
(θ′)b−1θbΓ(2b)

(θ′ + θ)2bΓ(b)2

Integration with respect θ is complicated, and π̃ is

π̃(θ) = (
∑

yi)
bθb−1

Γ((n+ 1)b)

Γ(b)2Γ(nb)

∫ ∞
0

u2b−1

(u+ 1)(n+1)b
exp

(
−u
∑

yiθ
)

du

The integral in the formula converges and is similar to the confluent hypergeometric

function (and similarly quite terrible to compute). Since the φ(x) = exp (()− x) is a

convex function, and u2b−1

(u+1)(n+1b
is integrable (n at least 2), we can
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2.3.2 General Properties

First, we will try to characterize the maximum and minimum values of the modified

marginals. Finding good upper bounds will be easy, but lower bounds will be more

difficult. In addition, we will characterize the amount of information gain with the

Rényi entropy is providing asymptotically, showing that it is bounded for an infinite

class of criteria which will provide the same asymptotic behavior as a traditional

marginal. Before we begin, we note that because the modified marginals can be

defined purely in terms of predictive densities that the modified marginals do not

exhibit issues of model focus and are not subject to the indeterminacy of the undefined

constants that arise from improper priors.

Proposition 2.3.1. Suppose that an MLE exists. Then mα(y) ≤ f(y|θ̂y) so long as

z is such that p(θ|z) is a proper posterior.

Proof. Suppose that α > 1 and consider the integral
∫
pr(y|z)α−1pr(z|y)dz. We can

bound the term pr(y|z) by writing it as an integral and using the two assumptions.

pr(y|z) =

∫
f(y|θ)p(θ|z)dθ ≤

∫
f(y|θ̂y)p(θ|z)dθ = f(y|θ̂y)

Thus for α > 1, we have

mα(y) =

(∫
pr(y|z)α−1pr(z|y)dz

) 1
α−1

≤ f(y|θ̂y) (pr(z|y)dz)
1

α−1 = f(y|θ̂y)

To get the bound for general α, use the fact that the Rényi divergences are ordered,

and so for α′ ≤ 1 we have m′α(y) ≤ mα(y) ≤ f(y|θ̂y).
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Proposition 2.3.2. If π is a proper prior, then for any z and any α > 0, we have

mα(y) ≥ m(y). In fact, the lower bound is characterized by the common support of

the marginal and posterior predictive densities.

Proof. The first statement follows trivially since the Rényi divergences are bounded

below by 0. The second follows from the fact the D0(pr||m) = − log
(∫

A
m
)

and so

mα(y) ≥ m(y × 1∫
A
m
,

where A = {z : pr(z|y) > 0} is the support of the posterior predictive density.

Remark 2.3.1. This proposition, though entirely trivial to prove, shows the difficulty

in finding a lower bound if we use an improper prior. The difficulty comes from the

fact that
∫
supp pr

m need not be finite for any sample y (we will see at least one example

of this later). The problem is essentially this, once an improper measure is employed,

it is impossible to determine that the Rényi divergences are bounded below. We will

show an example where the change from existing for all α > 0 and for only some α

greater than a lower bound can be subtle and arise from small changes in model.

Example 2.3.4 (Normal Means). Suppose that yi
iid∼ N (µ, 1) for i = 1, . . . , n with

prior π(µ) ∝ 1. Suppose that z is a sample of size n0 ≥ 1. Then mα exists for all

α > 0 and for all n0. To show that mα exists, it suffices to show that the z′Σ−1z

term yields an integrable Gaussian from the quadratic form in the exponential of

pr(y|z)α−1pr(z|y). This quadratic form is provides

Σ−1 = In0 + 1n0(1
′
n0

1n0)
−11′n0

(
αn

n+ n0

− 1

)
,
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which is positive definite so long as αn
n+n0

> 0, which is trivially true for and α > 0.

Note that under this improper prior, the value α = 0 does not give rise to a positive

definite matrix.

In contrast, suppose that yi
iid∼ N (µ, σ2) for i = 1, . . . , n with prior π(µ, σ) ∝ σ−1.

Suppose that z is a sample of size n0 ≥ 2. Then mα exists for all α > 1
n

and for all

n0. To show that mα exists, we must compute the general form, which turns out to be

mα(y) =

(
n0

n+ n0

) 1
2 1

(
√
π)n

1

(yT (In − 1n(1′n1n)−11′n)y)
n
2

×
Γ
(
n−1
2

) 1
1−α Γ

(
n0−1
2

) α
1−α

Γ
(
n+n0−1

2

) α
1−α

 Γ
(

(n+n0−1)α
2

)
Γ
(
nα−1

2

)
Γ
(

(n0−1)α
2

)


1
1−α

To see why α > 1
n

, consider the Γ
(
nα−1

2

)
in the denominator. Since the Γ function

has a singularity at 0, this term makes the entire modified marginal 0 as α→ 1
n

from

above. Of course, we could define this quantity for α for 0 < α < 1
n

but it is not clear

how that will behave with respect to the rest of the modified marginals (for example,

we might lose the ordering property).

As the next theorem shows, finding a lower bound for the modified marginal is

not problematic for fixed α > 1 when minimal samples are available. In order to

do this, we need to make some assumptions about the posterior distributions and

some information integrals which are relatively weak in the case of exchangeable

observations. In fact, what we show is that the Rényi divergence converges to a

stable value for fixed α > 0 and z of a fixed sample size.
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Theorem 2.3.1. Suppose that the posterior distribution converges weakly to δθ0 where

θ0 is the true value of θ and that we have the necessary measureability assumptions

to apply Fubini’s Theorem where necessary. Further suppose that z is a replicated

sample with fixed sample size which is at least the minimal sample size. Assume

that f(z|θ) is bounded as a function of θ and integrable with respect to p(θ|y) for n

large enough and that Dα(θ) = exp (Dα(f(·|θ)||m(·))) is a bounded function of θ and

integrable with respect to p(θ|y) for n large enough. Then

exp (Dα(pr(·|y)||m(·)))→ Dα(θ0)

Proof. Let n be sufficiently large. First, use Fatou’s Lemma, the assumption that

f(z|θ) is bounded, and that p(θ|y)
w→ δθ0 to show that

Dα(θ0)
α−1 =

∫ (
f(z|θ0)α

m(z)

)
dz

=

∫ ((
lim
∫
f(z|θ)p(θ|y)dθ

)α
m(z)

)
dz

=

∫ ((
lim
∫
f(z|θ)p(θ|y)dθ

)α
m(z)

)
dz

=

∫
lim

((∫
f(z|θ)p(θ|y)dθ

)α
m(z)

)
dz

=

∫
lim

(
pr(z|y)α

m(z)

)
dz

≤ lim

∫ (
pr(z|y)α

m(z)

)
dz

≤ lim

∫ (
pr(z|y)α

m(z)

)
dz
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Now, use the assumption that α > 1, Jensen’s inequality, and Fubini’s Theorem to

show that ∫
pr(z|y)α

m(z)
dz =

∫ (∫
f(z|θ)p(θ|y)dθ

)α
m(z)

dz

≤
∫ ∫

(f(z|θ))α p(θ|y)dθ

m(z)
dz

=

∫ ∫
(f(z|θ))α

m(z)
p(θ|y)dθdz

=

∫ ∫
(f(z|θ))α

m(z)
dzp(θ|y)dθ

=

∫
Dα(θ)α−1p(θ|y)dθ

The assumption that Dα is bounded and the weak convergence of the posterior implies

that ∫
Dα(θ)α−1p(θ|y)dθ → Dα(θ0)

α−1

Thus, we can conclude that

Dα(θ0)
α−1 ≤ lim exp ((α− 1)Dα(pr(·|y)||m(·)))

≤ lim exp ((α− 1)Dα(pr(·|y)||m(·)))

≤ Dα(θ0)
α−1

and so

lim exp (Dα(pr(·|y)||m(·))) = Dα(θ0)

As a corollary, we can conclude using the result from Iwaki’s method that for

any model, z, and α satisfying the conditions of the theorem, we get behavior that
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is asymptotically equivalent to using the Bayes’ Factor from a proper prior. This

is a rather strong statement. Under relatively mild conditions, an entire class of

information criteria that allow the use of both proper and improper priors behaves

asymptotically as classical Bayesian methods of model comparison. To see where the

proof breaks down for 0 < α ≤ 1, note that we cannot use Jensen’s inequality (as

φ(x) = xα is no longer convex) to get an appropriate upper bound for the integral.

When minimal samples are available, there is hardly any reason to want to use 0 <

α ≤ 1, but when using fully replicated experiments we will have to use α → 0+ in

order to penalize complex models enough to get consistency. The proof of the theorem

does show that we can get an upper bound for appropriate 0 < α < 1 since

Dα(θ0) ≥ lim

(
1∫

m(z)1−αpr(z|y)dz

)1−α

.

We conclude this discussion of existence and asymptotic properties by showing that

the positivity of Dα for fractional α and a fully replicated experiment is equivalent

to showing the positivity for a minimal sample when a minimal example exists.

Theorem 2.3.2. Suppose that 0 < α < 1 and that z is a fully replicated experiment.

Further assume that all of the zis and yis are exchangeable. Let z0 be any minimal

sample from z and z1 be the data comprising of the rest of the zis. Assume that order

of integration with respect to the zi can be arbitrarily reordered without changing the

value of the integral. Then

Dα(pr(z|y)||m(z)) ≤ Dα(pr(z0|y)||m(z0)).

58



Proof. First, notice that α < 1 implies that

Dα(pr(z|y)||m(z)) =

(
1∫

m(z)1−αpr(z|y)αdz

) 1
1−α

and so finding a lower bound for Dα(pr(z|y||m(z)) is equivalent to finding an upper

bound for
∫
m(z)1−αpr(z|yαdz. Now, use the assumption that we can arbitrarily

order the integration to get∫ ∫
m(z1|z0)1−αpr(z1|z0,y)αdz1m(z0)

1−αpr(z0|y)αdz0.

The proof will be completed if we can show that
∫
m(z1|z0)1−αpr(z1|z0,y)αdz1 ≥ 1.

Since 0 < α < 1, we can use the fact the φ(x) = xα is concave and the fact that

m(z1|z0) is a proper distribution to get∫
m(z1|z0)1−αpr(z1|z0,y)αdz1 =

∫
m(z1|z0)

(
pr(z1|z0,y)

m(z1|z0)

)α
dz1

≥
(∫

m(z1|z0)
pr(z1|z0,y)

m(z1|z0)
dz1

)α
=

(∫
pr(z1|z0,y)dz1

)α
= 1

2.3.3 Choice of α

Though the choice of α is effectively arbitrary for large samples so long as α is

fixed and the replicated data has a fixed sample size, the choice of α can have a

large impact on the criteria for small sample sizes. The choice of α should be made
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to achieve some small sample objective, such as obtaining a certain expectation or

Type I error rate. Since the Rényi divergences are ordered, increasing α increases the

amount of additional information one is providing to a model for comparison. This

suggests that smaller values of α should favor “smaller” models while larger values of

α should favor larger models. In order to exhibit this, we analyze a simple class of

models where the Bayes’ Factor using modified marginals has a known distribution

when the nested model is true, the class of linear models with known precision.

Suppose that model Mi is that y|xi,βi ∼ N (xiβi, In) with πi(βi) ∝ ci. The

modified marginal for a given model is

mα(y|Mi) =

((
1

α

) 1
α−1 qi

n+ qi

) pi
2 (

1

2π

)n
2

exp

(
−1

2
yT (In −H i)y

)
,

where the replicated data zi is taken to have dimension qi design matrix ui with

nuTi ui = qix
T
i xi, H i = xi(x

T
i xi)

−1xi
T , and pi is the dimension of βi. Assuming that

we have a finite set of models so that pmax = maxi pi and choose qi = q = pmax, we

can investigate the properties of ratios of modified marginals (the modified Bayes’

Factors) for a minimal sample (n = pmax). For minimal samples, we get modified

Bayes’ Factors of the form

MoBFα(i, j) =

((
1

α

) 1
α−1 1

2

) pj−pi
2

exp

(
−1

2
yT (Hj −H i)y

)
.

We can now select an α in order to satisy some desirable minimal sample crite-

rion. Consider the case of nested hypotheses Mi ⊂ Mj, then the statistic yT (Hj −

60



H i)y has a χ2
pj−pi distribution when Mi is the true model and we can determine

P (Type I Error) = P (MoBFα(i, j) < 1|Mi is true) by considering

P

(
χ2
pj−pi > (pj − pi)

(
log(2) +

1

α− 1
log (α)

))
.

In particular, 1
α−1 log (α) is a decreasing function of α which is equal to 1 − log (2)

when α ≈ 7.6166. Choosing any 0 < alpha < 7.6166 will provide a Type I Error rate

which is less than .5, increasing to .5 as pj − pi increases for α = 7.6166. It is clear

that the Type I Error rate diminishes as n → ∞, and so choosing an α to control

it for minimal samples provides a means of controlling it for all possible samples. In

addition to controlling the Type I Error rate, we might ask that the expected value of

the logarithm of the MoBF to be a certain value. It is natural to ask that its expected

value be 0 when a nested hypothesis is true. It is easy to see that this occurs at the

value α = 7.6166.

When considering more complicated models, one can take advantage of MCMC

techniques to compute expected Type I Error rates when the nested hypothesis is

true. Generating minimal samples from the posterior predictive density of the nested

model can provide an estimate of the density of the log of the modified Bayes’ Factor

for minimal samples, which can then be used to calibrate the value of α.
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2.3.4 Analytical Examples

The first example we present is the fact that any fractional α provides a Dα > 0

which exists for any replicated sample size. In order to do this, we simply show it for

a minimal sample z, which has size 1.

Example 2.3.5 (Gamma Distribution and 0 < α < 1). Suppose that yi and z are iid

Gamma(θ, b) for b > 0 fixed and that π(θ) ∝ θ−1 and that n ≥ 1. Then

pr(z|y) =
Γ((n+ 1)b)zb−1 (

∑
yi)

nb

Γ(nb)Γ(b) (z +
∑
yi)

(n+1)b

pr(y|z) =
Γ((n+ 1)b)zb (

∏
yi)

b−1

Γ(b)n+1 (z +
∑
yi)

(n+1)b

We get ∫ ∞
0

pr(y|z)α−1pr(z|y)dz =

∫ ∞
0

(
Γ((n+ 1)b)zb (

∏
yi)

b−1

Γ(b)n+1 (z +
∑
yi)

(n+1)b

)α−1

× Γ((n+ 1)b)zb−1 (
∑
yi)

nb

Γ(nb)Γ(b) (z +
∑
yi)

(n+1)b
dz

= C(y, n, b, α)

∫ ∞
0

zbα−1

(z +
∑
yi)

(n+1)bα
dz

= C̃(y, n, b, α)

∫ ∞
0

z̃bα−1

(z̃ + 1)(n+1)bα
dz̃

= C̃(y, n, b, α)

∫ 1

0

ubα−1(1− u)nbα−1du

= C̃(y, n, b, α)B(bα, nbα)

where we have used the change of variables z̃ = z∑
yi

and u = z̃
z̃+1

and B is the

beta function. Therefore, for any replicated sample size and any 0 < α < 1 we can

conclude that Dα > 0.
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The next example is one that pushes the understanding of improper priors and

shows that in small samples on can get results from this method that might be less

than satisfactory, even for simple problems. The reason is that the example is discrete

and so one can get observations which are maximally consistent with points on the

boundary of the parameter space. For this example, we also produce the results for

the fractional marginal of O’Hagan and a particular choice of expected posterior prior.

This comparison shows the added data dependence of the modified marginal on the

data over the EPP method which is fully Bayesian.

Example 2.3.6 (Bernoulli Data with Haldane Prior). Suppose that yi and zj are iid

Bernoulli(θ) for i = 1, . . . , n and j = 1, 2 and that the prior is π(θ) ∝ θ−1(1 − θ)−1.

We will treat the prior as though it is taken as the limit as a→ 0 of a proper Beta(a, a)

prior after all computations have been done. Assume that we have observed s successes

and f failures.

First, consider the fractional method, where we take b = 1
n

, then

∫
f(y|θ)bπ(θ)dθ = B

(
s

n
,
f

n

)(
n

s

) 1
n

and so the fractional marginal is

(
n

s

)1− 1
n B (s, f)

B
(
s
n
, f
n

) ,
where B is the beta function. If we have observed s = 0 or f = 0, the fractional

marginal is 1, but when we have 0 < θ0 < 1 the probability of observing s = 0 or

f = 0 goes to 0 and the fractional marginal is asymptotically a constant times n
sf
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Second, consider using an EPP with m∗(z) arising from a Bernoulli(.5) distribu-

tion. The expected posterior prior is a mixture of three pieces, point masses at 0 and

1 with weight .25 and a uniform piece with weight .5. If s = 0 or f = 0, this provides

a marginal distribution

m(y) =


1
4

+ 1
2(n+1)

f = 0 or s = 0

1
2(n+1)

0 < s < n

However, the modified marginal exhibits some different behavior. For α = 2, we

have

m2(y) =


1 f = 0 or s = 0

2sf
n(n+1)2

0 < s < n

If we have observed only successes or failures, then the method provides weight only

to the appropriate point mass. However, if 0 < θ0 < 1, then we have comparable

asymptotic behavior to both the fractional and intrinsic methods. In fact, all three are

asymptotically equivalent (up to a constant) as using a uniform prior whenever the

true chance of success is neither 0 nor 1.

The final analytical example that we include is an example where minimal samples

are available but force one to make some design choices. In this example, it might

be more reasonable to consider a fully replicated experiment and use a fractional

power. The modifies marginal will not exist for some set of α near 0, but this set will

shrink as the sample size grows, and so we can handicap more complex models in an

appropriate manner to get consistency. We present the modified marginal across the
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spectrum of possible replicated samples and values of α in order to see what possible

behaviors the modified marginal has.

Example 2.3.7 (Linear Model with Unknown Variance). Assume that Y |β, s,X,u ∼

Nn(Xβ, Ins
−1) and π((β), s) = cs−1 where the length of β is p. Further assume that

z|Y ,β, s,X,u ∼ Nq(uβ, Iqs−1) where u is taken to be any q × p (where q > p)

matrix such that nuTu = qXTX. One obtains the following distributions

m(Y |X,u) = c
Γ
(
n−p
2

)
(
√
π)n−p|XTX| 12

(
1

Y T (In −H)Y

)n−p
2

m(z|X,u) = c
Γ
(
q−p
2

)
(
√
π)q−p|uTu| 12

(
1

zT (Iq −K)z

) q−p
2

z|Y ,X,u ∼MVT q
(
n− p,uβ̂Y ,

(
Iq +

q

n
K
) Y T (In −H)Y

n− p

)

where H ,K are the standard hat matrices for X and u, respectively. One obtains

the fractional modified marginal

mα,I(Y |X) =

(
q

n+ q

) p
2 1

(πY T (In −H)Y )
n
2

×

(
Γ
(
n+q−p

2

)
Γ
(
q−p
2

) ) α
α−1

 Γ
(
nα−p

2

)
Γ
(

(q−p)α
2

)
Γ
(

(n+q−p)α
2

)
Γ
(
n−p
2

)


1
α−1

It is easy to see that the modified marginal exists only for q > p and α > p
n

. There

are a few cases of interest to be considered, each of which can lead to consistent model

selection. However, these cases also point out important differences in the values

obtained when using a fully replicated experiment and α → 0 and those obtained for

fixed α and q.
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Case (α, p, q fixed, n → ∞). The modified marginal is asymptotically a constant,

C(α, q, p), times (
1

n

) p−1
2
(

2eπY T (In −H)Y

n

)−n
2

For two given linear models with unknown variance, the ratio of the modified marginals

is then a constant (depending on α1, p1, q1, α2, p2, q2) times the quantity(
1

n

) p1−p2
2
(
Y T (In −H2)Y

Y T (In −H1)Y

)n
2

which are the operational terms from a proper Bayes’ Factor between two such models.

Case (p, q fixed, α = a
n
, a > p fixed, n→∞). The modified marginal is asymptotically

a constant, C(a, q, p), times(
1

n

)p+a+1
2
(

2eπY T (In −H)Y

n

)−n
2

For two given linear models with unknown variance, the ratio of the modified marginals

is then a constant (depending on a1, p1, q1, a2, p2, q2) times the quantity(
1

n

)p1−p2+a1−a2
2
(
Y T (In −H2)Y

Y T (In −H1)Y

)n
2

in order to maintain the same consistency results as are obtained by a proper Bayes’

Factor, one needs to ensure that the exponent on 1
n

behaves appropriately. In partic-

ular, if p1 > p2 then one needs to ensure that a2 − a1 < 2(p1 − p2).

Case (p fixed, α = a
n
, q = bn, a > p fixed, b fixed, n → ∞). Though the constants

change (as they depend now on p, a, b), the rest of the asymptotic form is similar

to that in the last case. However, the power on 1
n

is p+a−1
2

as opposed to p + a+1
2

.
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We can clearly see that the asymptotic form once again relies on both p and a. To

obtain consistency when comparing two such models with p1 > p2, one must maintain

a2−a1 < p1−p2, which can be easily acheived by either choosing a1 = a2 or ai = pi+1.

As is easily evidenced, using criteria between the cases to compare multiple models

can easily lead to an inconsistent selection crtierion. For fixed q, any fixed α for each

model leads to consistency. However, care must be taken when allowing q to grow or

α to shrink and mixing criteria across the three cases is problematic.

2.3.5 Computational Examples

We present two computation examples where the difficulties in computation are

overcome in two ways. The first is through the clever use of α = 2 and a modification

of the method to account for latent variables. The second is an example where the

integral in z cannot be carried out directly, but both the marginals and posterior

predictive densities are available in closed form.

Example 2.3.8 (Logistic Regression). One class of models that is particularly dif-

ficult for using this method is the analysis of dichotomous and polychotomous data.

When analyzing a generalized linear model, the notion of a minimal sample and the

calculation of marginal probabilities for outcomes is difficult and makes the computa-

tion of the modified marginal computationally burdensome. Drawing on recent work of
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[47]we can simplify computation by modifying the replicated data. Consider the probit

model of [48]where we have the following hierarchical specification for i = 1, . . . , n.

yi|vi,β,xi =


1 if vi > 0

0 if vi ≤ 0

vi|β,xi ∼ N (xiβ, 1)

β|xi ∼ 1

where the dimension of β is taken to be p and we assume that xTx is full rank and

the covariates are assumed to be continuous.

The idea is to ease the computation of the marginal distribution of replicated data

by looking at the predictive densities of the latent variables as opposed to the predictive

distributions of new observations. Essentially, we view the binary outcome as a loss

of information from the underlying latent state and use the latent state build the

information criterion. The really nice thing about this framework is that the marginal

distribution of the latent state can be easily computed and a minimal sample is easy

to consider. Let vrepj be latent states for j = 1, . . . , q which arise from design a matrix

xrep where we restrict n(xrep)Txrep = qxTx. The modified marginal that we will

use is
(∫

pr(y|vrep)α−1pr(vrep|y)dvrep
) 1
α−1 where pr(vrep|y) =

∫
f(vrep|β)p(β|y)dβ.

This is equivalent to using the Rényi divergence

Dα =

(∫ (
pr(vrep|y)

m(vrep)

)α−1
pr(vrep|y)dvrep

) 1
α−1

.
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The marginal of a minimal sample is incredibly easy to compute under the unform

prior and turns out to be a constant c|(xrep)Txrep|−.5, which will greatly facilitate

computational aspects of the algorithm. Note that this is a minimal sample for the

latent space and that it is not a minimal sample if we had to further generate yrep.

Given the improper prior, it is hard to determine what sort of minimal sample yrep one

needs to obtain a finite marginal and the computation of such a marginal is somewhat

arduous. In addition, using α = 2 further reduces the computational burden since the

order of integration in β and vrep can be exchanged leading to an estimator of the

divergence of

exp (D2) ≈
1

c
|(xrep)Txrep|.5 1

N2

∑
i,j

f((vrep)(i)|β(j))

The final quantity needed to be estimated is the marginal for y, which can be done in

the fashion of [49] using data augmentation

m(y) =
f(y|β∗)c
p(β∗|y)

where p(β∗|y) ≈
∑
j

p(β∗|v(j)).

Before showing a numerical example, consider the criterion asymptotically. Using

consistency of the posterior, we can provide an estimator of the criterion by simply

substiting the predictive density with the sampling density evaluated at the true value

of the parameter,

exp (D2) ≈
(∫

pr(vrep|β0)
2dvrep

)
1

c
|(xrep)Txrep|.5 =

|(xrep)Txrep|.5

c(4π)
p
2

,
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which does not depend on the value of β0. Additionally, the MCMC calculation of

m2 is quite easy and can be done with the following steps repeated N times beginning

with a base point β(0):

1. Sample v
(k)
i from vi|β(k−1), yi, which is a truncated normal for i = 1, . . . , n.

2. Sample β(k) from β|v(k), which is multivariate normal.

3. Sample (vrep)(k) from v|β(k), which is multivariate normal (in fact independent).

4. Sample (βrep)(k) from β|(vrep)(k)

5. Evaluate f(y|(βrep)(k)).

The estimate for m2 is then

m2 ≈
1

N

N∑
k=1

f(y|(βrep)(k)).

We exhibit this analysis using the nodal data from [49]

Since the data contains both continuous and categorical variables, we can choose a

sample of size q that respects the data structure and minimizes the Frobenius norm of

qxTx−nxrep)Txrep. Given the desire to accurately represent all of the possibilities of

values for the categorical variables, we choose the sample to have q = 8 observations.

The particular choice of minimal sample we used is presented in 2.3.8.

A comparison of the log maximized likelihoods, marginals, and m2 is presented in

table 2.3.8 where results are presented for both the proper prior used in [49]which is

independent normal with all means being .75 and standard deviations being 5. There
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Table 2.1
Nodal Data from Chib 1995

Y X1 X2 X3 X4 X5 Y X1 X2 X3 X4 X5

1 0 66 0.48 0 0 0 28 0 68 0.56 0 0 0
2 0 66 0.50 0 0 0 29 0 56 0.52 0 0 0
3 0 58 0.50 0 0 0 30 0 60 0.49 0 0 0
4 0 65 0.46 1 0 0 31 0 60 0.62 1 0 0
5 1 50 0.56 0 0 1 32 0 49 0.55 1 0 0
6 0 61 0.62 0 0 0 33 0 58 0.71 0 0 0
7 0 51 0.65 0 0 0 34 1 67 0.67 1 0 1
8 0 67 0.47 0 0 1 35 0 51 0.49 0 0 0
9 0 56 0.50 0 0 1 36 0 60 0.78 0 0 0

10 0 52 0.83 0 0 0 37 0 56 0.98 0 0 0
11 0 67 0.52 0 0 0 38 0 63 0.75 0 0 0
12 1 59 0.99 0 0 1 39 0 64 1.87 0 0 0
13 1 61 1.36 1 0 0 40 1 56 0.82 0 0 0
14 0 64 0.40 0 1 1 41 0 61 0.50 0 1 0
15 0 64 0.50 0 1 1 42 0 63 0.40 0 1 0
16 0 52 0.55 0 1 1 43 0 66 0.59 0 1 1
17 1 58 0.48 1 1 0 44 1 57 0.51 1 1 1
18 1 65 0.49 0 1 0 45 0 65 0.48 0 1 1
19 0 59 0.63 1 1 1 46 0 61 1.02 0 1 0
20 0 53 0.76 0 1 0 47 0 67 0.95 0 1 0
21 0 53 0.66 0 1 1 48 1 65 0.84 1 1 1
22 1 50 0.81 1 1 1 49 1 60 0.76 1 1 1
23 1 45 0.70 0 1 1 50 1 56 0.78 1 1 1
24 1 46 0.70 0 1 0 51 1 67 0.67 0 1 0
25 1 63 0.82 0 1 0 52 1 57 0.67 0 1 1
26 1 51 0.72 1 1 0 53 1 64 0.89 1 1 0
27 1 68 1.26 1 1 1

are a few interesting things to note about the values of m2 that one obtains. The first

is that they are relatively robust to the prior specification(except for model 2) which

suggests that the prior used provides only limited information over the flat prior.

Moreover, the ordering of the models is roughly the same as that obtained from the
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Table 2.2
Replication Design Matrix

X1 X2 X3 X4 X5

56 0.47 1 1 1
62 0.71 1 1 0
58 0.57 1 0 1
59 0.65 1 0 0
61 0.69 0 1 1
63 0.64 0 1 0
59 1.06 0 0 1
58 0.85 0 0 0

marginal, though the amount of separation between various models decreases when

using m2.

Table 2.3
Model Comparison for Nodal Data

Proper Prior Flat Prior

Model log
(
f(y|β̂y)

)
log (m(y)) log (m2(y)) log (m2(y))

C -35.1 -38.5 -36.3 -36.3
C + x1 -34.6 -43.2 -36.9 -37.8
C + x2 -32.4 -37.9 -34.9 -34.9
C + x3 -29.5 -35.3 -31.6 -31.6
C + x4 -31.3 -37.2 -33.5 -33.5
C + x5 -33.1 -39.1 -35.3 -35.3
C + x2 + x4 -28.2 -36.1 -31.7 -31.8
C + x2 + x3 + x4 -24.4 -34.5 -28.9 -29.1
C + x2 + x3 + x4 + x5 -23.8 -36.2 -29.2 -29.5

Example 2.3.9 (Balanced Random Effects Model). Another model where the utility

of the α = 2 case is easily seen is the balanced random effects model. This model is

particularly easy to analyze because the posterior distribution can be readily sampled
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from if one uses an appropriate improper prior. We assume that yij = µj + εij and

µj = µ+uj for unit i in group j for i = 1, . . . , n and j = 1, . . . , J where εij ∼ N (0, τ−1)

and uj ∼ N (0, (τr)−1). We analyze this model using the independence Jeffreys’ prior,

π(µ, τ, r) = cn
τr(n+r)

. Integrating out the uj yields a set of vectors yj = (y1j, . . . , ynj)
′

for j = 1, . . . , J where yj ∼ N (1nµ, τ
−1(In + r−11n1

′
n)). In this formulation of

the model, r = 0 corresponds to the fixed effects model and r = ∞ corresponds to

uj = 0 ∀j.

For convenience, define y = (y′1, . . . ,y
′
J)′ and

SSB = n
J∑
j=1

(yj
2 − y2), SSW =

J∑
j=1

(y′jyj − nyj2), SST = SSB + SSW

The marginal density under this prior depends only on the summary statistics SSB

and SSW as well as the constant c. In fact, using the change of variables t = SSB
SSW

r
n+r

provides

m(y) =
cΓ
(
nJ−1

2

)
J

1
2π

nJ−1
2 SSB

J−1
2 SSW

(n−1)J
2

B

(
SSB

SSW
;
J − 1

2
,
(n− 1)J

2

)

where B(x; a, b) =
∫ x
0

ta−1

(1+t)(a+b)
dx is the incomplete beta function.

The posterior distribution is expressed through conditional distributions as

µ|τ, r,y ∼ N
(
y,
n+ r

τrnJ

)
τ |r,y ∼ Gamma

(
nJ − 1

2
,
rSST + nSSW

2(n+ r)

)
rSSB

rSST + nSSW
|y ∼ Truncated Beta

(
J − 1

2
,
(n− 1)J

2
;
SSB

SST

)
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The posterior predictive density of a sample z with J ′ groups is
∫
p(z|r,y)p(r|y)dr

where

z|r,y ∼MVT nJ ′ (nJ − 1,y,Σr)

and it is assumed that z ⊥⊥ y|µ, τ, r. The covariance matrix is

Σr =

(
SSW + r

n+r
SSB

nJ − 1

)(
InJ ′ +

1

r
IJ ′ ⊗ (1n1

′
n) +

n+ r

nJr
(1nJ ′1

′
nJ ′)

)

where ⊗ is the Kronecker product.

Since the integral in z cannot be done analytically, a simple MCMC algorithm

must be implemented to compute the criterion. First, we generate random variates

r(1), . . . , r(N) using the truncated beta distribution. Then, for each r(i) generate a z(i)

using the multivariate t-distribution. Finally, compute(
1

N

N∑
i=1

(
m(z(i),y)

m(z(i))

)α−1) 1
α−1

using the formulas for the marginal distribution. The marginal for (y, z) can be easily

computed using the following formulas for sums of squared errors

SSW(y,z) = SSWy + SSWz, SSB(y,z) = SSBy + SSBz +
nJJ ′

J + J ′
(y − y)2.

We compare the ratio of modified marginals between random effects model and

the constant mean model to the many Bayes Factors obtained in [50] for the [51]

dyestuff data (both actual and simulated). The constant mean model was analyzed

using the reference prior π(µ, τ) ∝ 1
τ
. Provided in 2.3.9is a table of values for the

modified marginal for various values of α as well as marginals obtained through various
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methods (see [50] for a discussion). In addition, we also present the median intrinsic

Bayes’ Factor using partial Bayes Factors’ which come from samples comprising of

two groups.

Table 2.4
Model Comparison for Dyestuff Data

Method Actual Dyestuff Simulated Dyestuff
WG 11.85 0.17
DB, q = 0.75 5.25 0.11
DB, q = 0.1 7.88 0.18
DB, q = 1.25 9.35 0.23
I∗ 8.90 0.16
MI 4.68 0.11
B21 15.4 1
MoBF, α = 0.5 1.77 0.06
MoBF, α = 1.5 3.82 0.12
MoBF, α = 2 4.23 0.14
MIBF ∗ 7.40 0.30

This comparison highlights a fact previously seen with the Haldane prior example:

integrating out the uncertainty in z often makes this criterion more conservative than

existing methods. For the dyestuff data, the postive evidence in favor of the random

effects model using α = 2 is 4.22 using this approach, which is more conservative

than the minimum (4.68) of those presented by [50]. For the simulated data from

[51], the strong evidence against the random effects model is 0.14, which is more

conservative than 4 of the 6 Bayes factors obtained in [50]. It is easy to show the

the modified Bayes’ Factor produces consistent model selection when n is fixed and

J →∞ (arguably the point of such a model), however, it is not known whether these
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modified Bayes’ Factors will produce consistency when n→∞ for a fixed number of

groups J . However, if one uses a minimal sample which consists of two groups each

with two observations (regardless of the size of the observations in the actual data),

it is easy to see that consistency is achieved across the class of models.

2.4 Computational Issues

Though these criteria offer theoretical advantage over existing methods of model

selection in the case when one has vague prior knowledge, they can be computationally

burdensome. In particular, each method requires a number of integrations. In the

PPIC case, all of these integrations can be computed using MCMC methods, but one

then needs to take a double sum, one over the parameter space in order to compute

the predictive densities and one over the space of replicated samples. There are two

ways to speed up this computational process. The first is that one can parallelize the

estimation of the predictive densities after the samples over the parameter space has

been taken. the other is to produce only one sample of replicated data and one use

importance sampling. Importance sampling arises from the fact that

I =

∫
φ(x)f(x)dx =

∫
φ(x)

f(x)

g(x)
g(x)d(x)

to change the estimator I ≈ 1
N

∑
φ(x(i)) where samples are taken from data generated

by f and replaces it with the estimator I ≈ 1
N

∑
φ(x(i))f(x

(i))

g(x(i))
where samples are taken

from data generated by f . Using importance sampling, samples can be taken from
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only one predictive density in order to compute all of the integrals in the signed

divergences.

Computational issues also arise from the modified modified marginals, but they

arise in two ways. First, one must compute marginal distributions, which can be

computationally burdensome if one cannot integrate them analytically or with a quick

numerical method (such as quadrature. If one has to compute the marginals from

MCMC samples, there are essentially two choices for overcoming this problem. The

first is to notice that

1

m(x)
=

∫
π(θ)

m(x)
dx =

∫
f(θ|x)

f(x|θ)
dx

when one has access to a proper prior, allowing one to use a harmonic estimator:

m(x) =

(
1

N

∑
i

1

f(x|θ(i))

)−1
.

However, the merit of the criterion is that it can be used when proper priors are not

available, and so this method might create some nonsensical estimators. Moreover,

this method is computationally unstable. A correction to this method is available

from Gelfand and Dey [21], but it requires a nice tuning function. The best way to

overcome this difficulty is to use the method of Chib [49, 52], where the estimator is

replaced by

m̂(x) =
f(x|θ∗)π(θ∗)

p(θ∗|x)

where p(θ∗|x) is computed using the availability of the closed form posterior con-

ditioned on both x and some “missing“ data, integrating out the missing data by
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summing over samples of it and θ∗ is an appropriately chosen ordinate. This is the

best method when exact computations are not available, and requires the additional

sampling of the missing data for each sample from the predictive density, which adds

an additional computational burden. There is yet another computational issue when

one is computing the modified marginal for fractional α, which is that the sample

average is itself a harmonic mean, and so exhibits the same instability as does com-

puting a marginal using the harmonic mean. Essentially, sets of small probability

have a large impact on the Rényi entropies when 0 < α < 1 and so a few samples

that arise with low probability have a large impact on the estimated criterion.

2.5 Conclusions

We have presented two new methods of model comparison and selection, one which

is model external and decomposes as fit and complexity terms and another that

maintains the status of the Bayes’ Factor as the primary tool of model comparison,

even for improper priors. Both methods allow for the investigator to tune them in

order to achieve some inferential goal. In the case of the PPIC, α can be set to control

the Type I error rate or modified in such a way to get asymptotic consistency. In

the case of the modified marginals, the investigator gets to choose both the design of

the replicated data z and the particular Rényi divergence used. In this manner, the

investigator can control the Type I error rate in small samples while still maintaining

the asymptotic equivalence to the Bayes’ Factor.
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There are open questions which remain from both a theoretical and computational

perspective. From a theoretical perspective, we would like to determine if for fixed

0 < α ≤ 1 and a minimal sample what value the Rényi divergences take. Also, there

is no generic proof about the behavior of the criteria if one uses fully replicated data

and allows α → 0 in an appropriate manner. For the PPIC, there is no generic way

to determine how one needs to allow α to vary in order to obtain consistency and at

this point it needs to be determined for each problem. Additionally, the extension to

multiple models required the existence of a number of information integrals. If one of

these integrals happens to be infinite, what can one do in order to repair the method.

One possible solution is to remove the appropriate term from each summand, but

this seems like an ad-hoc way to remedy the issue. Computationally, one needs to

find ways to quickly compute all of the integrals that need to be obtained. Though

there are ways to address these issues, each adds a layer of sampling and summation,

which becomes computationally taxing as the number of replicated samples becomes

large.
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