
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Theses and Dissertations (ETDs)

January 2010

Abstractions and Algorithms for Control of Extensible and Abstractions and Algorithms for Control of Extensible and

Heterogeneous Virtualized Network Infrastructures Heterogeneous Virtualized Network Infrastructures

Charles Wiseman
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Recommended Citation Recommended Citation
Wiseman, Charles, "Abstractions and Algorithms for Control of Extensible and Heterogeneous Virtualized
Network Infrastructures" (2010). All Theses and Dissertations (ETDs). 379.
https://openscholarship.wustl.edu/etd/379

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/379?utm_source=openscholarship.wustl.edu%2Fetd%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Jonathan Turner, Chair

Christopher Gill
Chenyang Lu
Keith Sawyer

Bill Smart
Tilman Wolf
Ken Wong

ABSTRACTIONS AND ALGORITHMS FOR CONTROL OF EXTENSIBLE

AND HETEROGENEOUS VIRTUALIZED NETWORK INFRASTRUCTURES

by

Charles Gordon Wiseman

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2010
Saint Louis, Missouri

ABSTRACT OF THE DISSERTATION

Abstractions and Algorithms for Control of Extensible and Heterogeneous

Virtualized Network Infrastructures

by

Charles Gordon Wiseman

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2010

Research Advisor: Professor Jonathan Turner

Virtualized network infrastructures are currently deployed in both research and com-

mercial contexts. The complexity of the virtualization layer varies greatly in different

deployments, ranging from cloud computing environments, to carrier Ethernet appli-

cations using stacked VLANs, to networking testbeds. In all of these cases, many

users are sharing the resources of one provider and each user expects their resources

to be isolated from all other users. There are many challenges associated with the

control and management of these systems, including resource allocation and shar-

ing, resource isolation, system security, and usability. Among the different types of

virtualized infrastructures, network testbeds are of particular interest due to their

widespread use in education and in the networking research community.

Networking researchers rely extensively on testbeds when evaluating new protocols

and ideas. Indeed, a substantial percentage of top research papers include results

gathered from testbeds. Network emulation testbeds in particular are often used

ii

to conduct innovative research because they allow users to emulate diverse network

topologies in a controlled environment. That is, researchers run experiments with a

collection of resources that can be reconfigured to represent many different network

scenarios. The user typically has control over most of the resources in their experiment

which results in a high level of reproducibility. As such, these types of testbeds provide

an excellent bridge between simulation and deployment of new ideas. Unfortunately,

most testbeds suffer from a general lack of resource extensibility and diversity.

This dissertation extends the current state of the art by designing a new, more general

testbed infrastructure that expands and enhances the capabilities of modern testbeds.

This includes pertinent abstractions, software design, and related algorithms. The

design has also been prototyped in the form of the Open Network Laboratory network

testbed, which has been successfully used in educational and research pursuits. While

the focus is on network testbeds, the results of this research will also be applicable to

the broader class of virtualized system infrastructures.

iii

Acknowledgments

I would like to thank my advisor, Dr. Jonathan Turner, for all of his guidance

during my dissertation research. It has been a pleasure working with him, and I am

particularly grateful for all the intellectual freedom he gave me to pursue topics that

interested me most. His ability to understand theoretical subtleties while still keeping

practical details in mind is incredible, and is something that I have benefited from

greatly.

The students of the Applied Research Laboratory have all provided countless hours

of discussion, both research related and not. It has been a pleasure working with

them, and I hope that the friendships built in ARL will continue far into the future.

My sincerest thanks also to all of the students that contributed to the Open Network

Laboratory. I could not have accomplished all that I have without that help.

A special thanks goes to the staff members in the Applied Research Laboratory: Ken

Wong, Jyoti Parwatikar, John DeHart, Dave Zar, and Fred Kuhns. Each of them

has taught me an enormous amount ranging from technical details to what research

is really about to how to work effectively in a team. Their advice, friendship, and

knowledge has made ARL an unparalleled place to be a graduate student.

I would also like to thank the National Science Foundation for funding my research

and providing me many opportunities to share my work with others.

There are countless other teachers, coworkers, and friends without whom I would not

be where I am today. I want to thank two in particular who played a significant role

in setting me on my current path: Guy Mauldin and L. G. Smith. I had the good

fortune of taking classes from both of them at Science Hill High School. It was from

them that I first began to understand the joy of teaching that has driven me to follow

in their footsteps.

My family has continued to provide their loving support over the years of my educa-

tion. They were always ready to encourage me when I needed it and never hesitated

to offer anything they could do to help. I thank them also for patiently listening to

all of my detailed rants and diatribes on obscure bits of computing technology.

iv

Finally, I owe more than I can express here to my wife, Sandra. She kept me moving

forward every day and helped me on many occasions to step back from the trees to

see the forest again.

Charles Gordon Wiseman

Washington University in Saint Louis

August 2010

v

Dedicated to my wife.

vi

Contents

Abstract . ii

Acknowledgments . iv

List of Tables . ix

List of Figures . x

List of Listings . xii

List of Algorithms . xiii

1 Introduction . 1
1.1 Related Work Overview . 3
1.2 Summary of Chapters . 8

2 Testbed Infrastructure . 9
2.1 Design . 10
2.2 Framework . 14

2.2.1 Infrastructure . 14
2.2.2 Abstractions . 15
2.2.3 Implementation Details . 19

2.3 Aggregate Types . 21
2.4 Resource Scheduling . 25
2.5 The Open Network Laboratory . 26

2.5.1 Current Resources . 29
2.6 Example Sessions . 31

2.6.1 TCP Dynamics . 31
2.6.2 Data Center Networking . 34
2.6.3 Overlay Networking . 34

2.7 Operational Details . 37
2.8 Educational Benefits . 42

2.8.1 Instructor Support Structure 43
2.8.2 Instructor Considerations . 43
2.8.3 Courses Studied . 45
2.8.4 Interaction Data . 45
2.8.5 Observations . 48

vii

3 Specialized Packet Processing Platforms 50
3.1 PC . 51

3.1.1 PC Base Type . 51
3.1.2 PC Host Specialization . 56

3.2 NetFPGA . 62
3.2.1 NetFPGA Base Type . 62
3.2.2 NetFPGA Ethernet Switch Specialization 64
3.2.3 NetFPGA IPv4 Router Specialization 67
3.2.4 NetFPGA Traffic Generator Specialization 72

3.3 IXP . 75
3.4 Network Processor-based Router Specialization for the IXP 78

3.4.1 Data Plane . 79
3.4.2 Control Plane . 83
3.4.3 Programmability . 84
3.4.4 Example Plugins . 89
3.4.5 Performance . 94
3.4.6 Related Work . 96
3.4.7 NPR Conclusions . 97

4 Testbed Scheduling . 98
4.1 Related Work . 100
4.2 Scheduling Problem Statement . 101
4.3 Linear Testbed Graphs . 103

4.3.1 Minimizing Bandwidth . 104
4.3.2 Maximizing Packing . 109
4.3.3 Linear Graph Evaluation . 110
4.3.4 Discussion . 120

4.4 General Testbed Graphs . 121
4.4.1 Related Network Flow Problems 122
4.4.2 Minimizing Bandwidth in General Graphs 125
4.4.3 General Graph Evaluation . 132
4.4.4 Discussion . 144

5 Conclusion . 146

Appendix A Source Code for the Host Specialization 150

Appendix B Specialization Description for the NPR 162

References . 185

viii

List of Tables

2.1 Comparison of Courses That Use ONL. 45

4.1 Potential values of xi(e) . 108

ix

List of Figures

2.1 Testbed software overview. 14
2.2 Base description for a 4 port network processor card. 16
2.3 Simple specialization description for an IPv4 router. 18
2.4 Software Components of the Central Resource Daemon. 20
2.5 An example aggregate description . 23
2.6 Example virtual and physical networks 27
2.7 Testbed network with example session mappings 32
2.8 An example session in ONL studying TCP dynamics. 33
2.9 An example session in ONL studying data center networks. 35
2.10 An example session in ONL for PC-based overlay networking. 36
2.11 All communication paths between software components. 38
2.12 Layout of the three networks in the testbed. 39
2.13 Email Interactions Over the Course of One Semester. 44
2.14 Email Counts in Course A (With ONL). 46
2.15 Email Counts in Course A (Without ONL). 47
2.16 Email Counts in Course B (With ONL). 47

3.1 Configuration menu for the PC8core type 55
3.2 Configuration menu for the PC8core Host specialization 61
3.3 ONL session with NetFPGA Ethernet switches 66
3.4 An IPv4 network featuring three different types of routers. 71
3.5 Utilizing a NetFPGA to stress test a router. 74
3.6 Basic block diagram of the IXP 2800 78
3.7 Data plane of the NPR. 80
3.8 Control plane of the NPR. 83
3.9 Adding a filter in the RLI. 87
3.10 Example topology for a distributed game application. 91
3.11 Design of the Regular Expression Matching Engine. 93
3.12 Unicast throughput results for the NPR. 94

4.1 An example testbed graph. 104
4.2 MAXPACK response times for different backbone sizes. 114
4.3 MAXPACK response times for different average backbone degrees. . . 115
4.4 MAXPACK response times for different user start time flexibilities. . 115
4.5 MAXPACK response times for different request orderings. 116
4.6 MAXPACK response times for different infrastructure edge capacities. 116

x

4.7 MAXPACK rejection rates for different backbone sizes. 117
4.8 MAXPACK rejection rates for different average backbone degrees. . . 118
4.9 MAXPACK rejection rates for different user start time flexibilities. . . 119
4.10 MAXPACK rejection rates for different request orderings. 119
4.11 MAXPACK rejection rates for different infrastructure edge capacities. 120
4.12 An example application of transform. 126
4.13 Testbed graph used in the GMB evaluation. 133
4.14 GMB response times for different backbone sizes. 135
4.15 GMB response times for different average backbone degrees. 136
4.16 GMB response times for different user start time flexibilities. 137
4.17 GMB response times for different request orderings. 138
4.18 GMB response times for different infrastructure edge capacities. . . . 138
4.19 GMB rejection rates for different backbone sizes. 140
4.20 GMB rejection rates for different average backbone degrees. 141
4.21 GMB rejection rates for different user start time flexibilities. 141
4.22 GMB rejection rates for different request orderings. 142
4.23 GMB rejection rates for different infrastructure edge capacities. . . . 143
4.24 GMB rejection rates for common parameter settings. 144

xi

List of Listings

3.1 PC8core.hw . 52
3.2 PC8core-Host.shw . 57
3.3 NetFPGA.hw . 63
3.4 NetFPGA-EthernetSwitch.shw . 65
3.5 NetFPGA-IPv4Router.shw . 68
3.6 NetFPGA-PacketGenerator.shw . 73
3.7 IXP.hw . 76
3.8 nstats.c . 90
A.1 host main.cc . 151
A.2 host globals.h . 152
A.3 host requests.h . 153
A.4 host requests.cc . 154
A.5 host configuration.h . 158
A.6 host configuration.cc . 159
B.1 NPR.shw . 163

xii

List of Algorithms

4.1 MINBW(U,A, l, T, S) . 105
4.2 findMapping(U, T) . 106
4.3 MAXPACK(U,A, l, T, S) . 110
4.4 GMB(U,A, l, T, S) . 125
4.5 findGeneralMapping(U, T) . 128

xiii

Chapter 1

Introduction

Computer networking researchers today have an extraordinary opportunity to see

their work affect people around the world via the Internet. Indeed, one of the strengths

of the Internet is that anyone can develop new applications that anyone with an

Internet connection can use. Networking researchers are generally more interested in

fundamental questions about the structure of the Internet and the devices that make

it up. This includes the design of new networking algorithms, protocols, and services

that support new application classes. Of course, any such ideas must be rigorously

tested and evaluated before being deployed in the actual Internet. Network testbeds

provide an environment that is designed specifically to fill this role.

A network testbed is simply a collection of networking and systems resources that

share a common infrastructure. The resources could be any network devices such as

PCs, routers, and firewalls. The infrastructure that underlies the testbed resources

takes many different forms depending on the design of the individual testbed. Com-

monly included are a unified authentication system for accessing the various resources,

isolation mechanisms to ensure that concurrent experiments do not interfere with each

other, and tools that aid in the configuration and use of the testbed resources.

Researchers have come to rely extensively on testbeds for developing, testing, and

evaluating new ideas. Indeed, many papers published in top networking conferences

present experimental results gathered in a network testbed. There are a number of

reasons why this is true.

First, testbeds contain resources that are otherwise not available to many researchers.

The largest testbeds have hundreds or thousands of nodes (mostly PCs). Smaller

1

research groups and universities do not have the capability to purchase and operate

these large installations just for the purpose of conducting networking experiments.

Some testbeds also include specialized or high-end equipment that is particularly

difficult to acquire, mostly due to high cost. By placing such technology in a testbed

environment, many more researchers and educators benefit for each dollar spent.

Second, testbeds allow new ideas to be evaluated across a wide range of network

topologies and scenarios. Many testbeds give users the ability to reconfigure exper-

imental network topologies explicitly. Others provide resources at a large variety of

network locations, which leads to diverse network paths between the set of commu-

nicating pairs. In either case, the result is that users can experiment with network

conditions that would be very difficult to reproduce in a local, non-shared lab setting.

Third, many testbeds open avenues of research that are difficult or impossible to

pursue in the commodity Internet. The extent to which this is true varies greatly

from testbed to testbed. Some testbeds support network services that are simply

not available in the current Internet, such as multicast or network path provisioning.

Other testbeds allow users to replace various layers of the standard networking pro-

tocols with enhanced or entirely new protocols, e.g. to test a new congestion control

algorithm.

Fourth, testbeds provide a common platform for comparing similar research projects.

Of course, this is dependent on researchers publishing their methodology and results,

but when they do, it allows other groups to more easily make fair comparisons to

their work. This also encourages researchers to report their own results accurately

and fairly.

Network testbeds also provide an excellent avenue for educators and students to

explore practical aspects of computer networking and systems. Indeed, all of the

above reasoning also applies in an educational context. Testbed environments give

students the opportunity to get hands-on experience across a variety of networking

devices and/or scenarios without the risk of damaging a production system.

For all of these reasons, network testbeds are an important class of systems that have

become essential to enabling ongoing research in networking. Moreover, there are

challenging research opportunities that arise during the design of testbeds, including

2

resource allocation, resource isolation, heterogeneity, extensibility, ease of use, and

ease of management. Our experience building a local testbed has exposed many of

these challenges. The National Science Foundation’s Global Environment for Network

Innovations (GENI) [26] project, which aims to build a generalized large-scale testbed,

has further heightened community interest in how these types of systems should be

designed.

This dissertation explores the current state of the art in networking testbeds in order

to design and build a more sophisticated testbed environment. To begin, an overview

of related work is given next.

1.1 Related Work Overview

There are a few different areas of important related work to discuss. We will start

with a description of some of the more popular existing testbeds. There are two broad

categories of network testbeds: overlay and emulation. Overlay testbeds exist as

overlay networks on the Internet and as such allow testing under the actual conditions

present in the Internet. They also provide the ability to deploy long-running services

on the Internet, although isolation among concurrent users is typically very poor. On

the other hand, emulation testbeds allow users to emulate different network topologies

and conditions in a controlled and strongly isolated environment. This is normally

accomplished by separating the testbed environment from the Internet and connecting

the testbed resources with switches and routers that support many virtual networks

on top of the same physical substrate.

The most widely used network testbed in current research is PlanetLab [55], which

is an overlay testbed that has been in operation for over five years. PlanetLab con-

sists of a large number of PCs with Internet connections scattered around the globe.

At the time of this writing, there are over 1000 PlanetLab nodes at over 475 sites.

Each PlanetLab node can support multiple concurrent experiments by instantiating

one virtual machine on the node for each active experiment. The PlanetLab control

software takes user experiment requests for a set of nodes and contacts the individ-

ual nodes to add the virtual machines for the user. Researchers use PlanetLab to

debug and refine their new services and applications in the Internet context. They

3

can also advertise services and applications, and allow others (on PlanetLab nodes

or not) to treat them as an actual deployment. PlanetLab’s success has resulted

in large numbers of active experiments, particularly before major conference dead-

lines. Unfortunately, PlanetLab has no admission control and no limit on the number

of experiments on each node. This leads to extremely poor and unpredictable per-

formance as each active experiment is competing for both processor cycles and the

limited network bandwidth available on the node.

There have been a few efforts to overcome the deficiencies of PlanetLab through the

design of new nodes that enable better and more consistent performance while still

operating in the PlanetLab context. The Supercharged PlanetLab Platform [66] and

VINI [9] are both in their early stages of deployment and have the potential to enable

a broader set of useful experiments than standard PlanetLab, but neither project

will result in substantial changes to the PlanetLab control and management scheme.

Nevertheless, the design of the nodes themselves will be useful when we consider what

abstractions are needed to represent arbitrary network resources.

SatelliteLab [24] is a newer overlay testbed that supports heterogeneous edge devices.

That is, the testbed contains desktop PCs, laptop PCs, and handheld devices that

are connected to the Internet over a range of link types, including broadband, ISDN,

Wi-Fi, and cellular connections. Users can then test their applications across widely

varied network conditions. Of course, it would be difficult to have user-written code

running on devices like cell phones, so they break their architecture into two tiers.

Standard PlanetLab nodes form the backbone of the testbed and that is where users

run their applications. The edge devices only forward traffic with pre-built code

from the testbed operators. As a result, SatelliteLab provides users with network

heterogeneity that is lacking in other testbeds, but does not actually allow users to

experiment with code on anything other than PlanetLab PCs.

Another overlay testbed is the Resilient Overlay Network (RON) testbed [4]. RON

is similar to PlanetLab in the sense that it is a collection of PCs with Internet con-

nections, but it is a much smaller-scale testbed with less than 40 nodes. The limited

size of the testbed led RON to be managed in a much different way than PlanetLab.

Namely, it is a cooperative environment where users are given logins on every node

in the testbed and are then expected to coordinate usage out-of-band. The testbed

4

operators reserve the right to revoke or deny any accounts, but even that happens

strictly through manual intervention. While there is definitely appeal to an open,

friendly system like this, it clearly does not scale to large systems with many users.

Moving on to emulation testbeds, Emulab [69] is another one of the most popular

testbeds. Once again, this testbed provides access to a large number of PCs. Emu-

lab nodes have at least two network interfaces. One interface is used solely for the

control network so that users have out-of-band access to the nodes for the purposes

of configuration and monitoring. The other interface(s) can be configured according

to the needs of each individual experiment so that the nodes can act as end hosts or

routers. As with other emulation testbeds, Emulab uses a small number of switches

and routers as a programmable patch panel that indirectly connects all of the PCs.

Virtual Local Area Networks (VLANs) are used by the switches and routers to allow

arbitrary topologies to be built on top of the PCs while also ensuring that traffic in

each experiment is isolated from traffic in others. Additional nodes are automati-

cally inserted behind the scenes so that users can configure link properties in order

to emulate network contexts that do not exist in a fixed LAN.

The Emulab software has been made available so that other groups can use it to run

their own testbeds. A number of these Emulab-powered testbeds are currently operat-

ing, although most of them are not open to the public. One exception is the DETER

testbed [11] that is focused on security research. The control infrastructure is identi-

cal to Emulab, but additional software components were added to ensure that users

researching security holes and other dangerous exploits remain both contained in the

testbed and isolated from other experiments. The Wisconsin Advanced Internet Lab-

oratory (WAIL) [67] is another such testbed that utilizes the Emulab software base.

WAIL is unique among the Emulab testbeds in that they have extended the software

to support commercial routers as fundamental resources available to researchers. The

documentation on the website indicates that users do not have write access to router

configurations by default, and, unfortunately, there is not yet any detailed documen-

tation that discusses how they have modified the Emulab model to support these

heterogeneous resources.

The Open Network Laboratory (ONL) is another emulation testbed that is similar

in some respects to Emulab. ONL was originally built around a small number of

5

hardware routers with a focus on performance evaluation studies. In recent years,

ONL has been expanded to include more diverse types of networking technology

and has now been used as a prototyping environment for the ideas and algorithms

developed as part of this dissertation. A more detailed description of ONL is provided

in Chapter 2.

There is another class of testbed that is not being considered directly in our work, but

that faces some of the same issues as emulation and overlay testbeds: wireless sensor

network testbeds. Numerous wireless sensor network testbeds have been deployed and

studied, and an overview of the most prominent such testbeds is given here. Wireless

sensor network testbeds are usually used only locally by the research group that

deployed them. Motelab [68] and Orbit [57] are two exceptions. In each case, users

can access the testbed remotely over the Internet and upload their own code on to

the sensor motes. The nature of sensor networks led to a simple and effective control

infrastructure that allocates the entire sensor network to one user at a time. Users

make reservations ahead of time, and the control software ensures that only the user

who has the current reservation has access to the motes. Emulab also has an extension

for wireless sensor networking called Mobile Emulab [37] that leverages the existing

Emulab control software. Finally, projects such as TWIST [34] and Sensenet [23]

are not aimed at sharable testbeds, but do describe fairly generic infrastructures

that could be used by others who wish to deploy their own wireless sensor network

testbeds.

Simulations are also used extensively in networking research for initial exploration

and evaluation of new algorithms and protocols. Researchers often build their own

simulators that are tailored to their current needs. There are a few more commonly

used simulation platforms, such as ns-2 [50], which is a discrete event simulator that

has native support for common networking protocols and components. In general,

simulations provide an excellent first step towards realization of any new idea. They

are, however, limited in scope due to the difficulty in building a high fidelity simulation

of an entire network. It requires a substantial effort to faithfully simulate every aspect

of an operating network. Moreover, the time to run such simulations can become

prohibitive. Some efforts have been made to build distributed network simulators [40,

60], but it is usually easier (and faster) to move to real networks once simulations

6

become too large. Emulation testbeds in particular ease the transition away from

simulation by providing controlled and contained environments for experimentation.

There are a few other areas of networking research that are related to testbeds.

Cloud computing has recently become a popular topic of discussion both in the public

and among researchers. The actual definition of cloud computing has been much

debated [7], but cloud computing infrastructures share many properties of testbed

infrastructures. Indeed, in both cases, users run their own applications on resources

located somewhere in the Internet that are controlled by a single entity. As such,

the design of cloud computing systems is of interest here. A few research proposals

exist that address this directly, e.g., Eucalyptus [51] and Seattle [12]. There are

also a number of commercial cloud computing solutions such as Amazon’s EC2 [2]

and Google’s AppEngine [28]. Although little has been published about the design

internals of these commercial clouds, it is still possible to use them as examples for

usage patterns when comparing cloud computing to network testbeds.

Finally, there are some common elements in the control and management of testbeds

and of general operational networks. In each case, there are potentially large num-

bers of distributed resources that have to be managed by the provider. The actual

research questions for the two areas do not overlap much, but the mechanisms used

to address network control plane issues are similar. For example, testbeds typically

support end-user-driven experiments that utilize some set of the testbed resources,

while an operational network is configured by the network provider in response to a

set of high-level policy decisions. For example, Internet Service Providers use VLAN

stacking to provide Carrier Ethernet services to large enterprise customers in order

to allow physically separate locations to appear logically co-located. The ISP must

manage VLANs and network capacity across all such customers. Both cases also rely

on easy deployment of changes to the underlying networks. This, in turn, requires a

software infrastructure that can present all the relevant information to the user/op-

erator and then enact changes across the entire network. Most network management

solutions are tied to the actual network equipment such as Cisco’s IOS [16]. There

are other commercial solutions like OpenNMS [52] that are less hardware-dependent

but generally do not scale well. Some research has also been done to try to simplify

the entire management plane by redesigning the control protocols from the ground

up, e.g., the 4D architecture [29].

7

1.2 Summary of Chapters

The rest of the dissertation is organized as follows.

Chapter 2 describes a new, more general testbed framework that encompasses impor-

tant features of current testbeds and adds new features such as resource heterogeneity

and extensibility. Design goals and choices are given for this new framework, followed

by the set of core abstractions and software components that comprise the framework.

One specific instance of a testbed based on this framework, the new Open Network

Laboratory, is described in detail including implementation details and usage exam-

ples.

Chapter 3 provides an overview of a set of packet processing platforms that are

available in the new Open Network Laboratory and have been specialized for use in

the testbed environment. The Network Processor-based Router, which was developed

as part of this dissertation research, is described in detail.

Chapter 4 discusses the problem of scheduling and reserving resources in a testbed

environment. A general framework for solving this type of scheduling problem is

described, and results are given that highlight the scheduler’s performance in the

Open Network Laboratory.

Finally, Chapter 5 concludes the dissertation.

8

Chapter 2

Testbed Infrastructure

Virtualized network and system infrastructures are becoming more and more com-

monplace across a variety of commercial and research deployment contexts. Cloud

computing environments use end system virtualization to allow many applications

to share computational and storage resources owned by one cloud provider. ISPs

use VLAN stacking to provide carrier Ethernet services across wide area networks to

large enterprise customers. Network testbeds use various types of virtualization to

share network nodes and links among many concurrent virtual network experiments

running on the shared testbed substrate. Fundamentally, these types of systems use

virtualization to share the resources of one provider among many customers or users.

More importantly, the resources assigned to each customer are isolated from those of

other customers.

Configuration and management in non-virtualized infrastructures is already a difficult

task. Supporting virtualization layers adds further complexity whereby providers

must configure their networks to meet the isolation and performance requirements of

all of their customers. Our work in this area is focused on network testbeds, although

the ideas explored here could be applied in other virtualized infrastructure settings.

Researchers have come to rely extensively on testbeds for developing, testing, and

evaluating new ideas. Interestingly, nearly all existing testbeds have only PCs as

user configurable resources. There are clear benefits to this choice, including simpler

testbed management software and user familiarity with the PC platform. However,

a testbed with a diverse collection of heterogeneous resources would provide a num-

ber of benefits to the research community. Researchers would be able to conduct

9

experiments with a variety of networking devices and technologies in a contained en-

vironment. This is also useful for educators who are interested in giving students

hands-on experience with networking technologies other than PCs. Natural addi-

tions to such a testbed would include network processor systems, FPGAs, and other

hardware-based or commercial devices. Access to these types of high performance,

reconfigurable nodes would also allow researchers to test new protocols and ideas

under realistic conditions while still operating in an isolated setting. PCs alone can

certainly be used to emulate the functionality of many different devices, but they can

not sustain Internet-scale throughput or match delay characteristics of more special-

ized technologies.

Most existing testbeds also provide only a low level interface to users for configuring

nodes in their virtual networks. This is a reasonable choice for PC-only testbeds,

although including higher level tools would reduce the manual configuration burden.

In the case of a testbed with heterogeneous components, it is necessary to include

configuration interfaces that export higher level abstractions to users (e.g., routes,

packet filters, queueing parameters, etc) as most users will not be familiar with the

native configuration tools for resources such as FPGAs or network processors. Of

course, many types of devices can be reprogrammed to support a range of networking

functionality. It is thus important to support extensible resources, where users can

select among the different possibilities for each device type and even add and configure

their own new functionality if necessary.

Based on the above observations, this chapter describes the design, implementation,

and usage of a new, more general testbed framework that encompasses and extends

the current state of the art. The framework is targeted at testbeds that have pro-

visioned interconnections (emulation or overlay), although it is applicable with some

modifications to any testbed. For simplicity, it will be described it the context of an

emulation testbed.

2.1 Design

Some terminology is now defined before the actual design is given. A node is one

piece of hardware in the testbed that a user might request. This could include PCs,

10

switches, routers, etc. A session is one instance of a virtual network running on

the testbed. Each session begins when the user requests resources from the testbed

and ends when those resources are released back to the testbed. Sessions generally

range in length from a few minutes to a few days, although they could run for longer

periods.

Most emulation testbeds share a few basic design objectives. The first is the ability

to support multiple concurrent sessions in the testbed. This clearly leads to better

utilization of the testbed resources as the number of nodes in the testbed grows.

Objective: The testbed can host many concurrent sessions.

It is also common to provide isolation among sessions, i.e., actions in one session

should have no impact on other concurrent sessions. Users are thus given the impres-

sion that their session is running in a native, unshared environment rather than a

testbed. This is also necessary for a high level of reproducibility, which is one of the

major benefits of running sessions in an emulated environment.

Objective: Concurrent sessions are isolated from each other.

One of the obvious weaknesses of most existing testbeds is a lack of node hetero-

geneity. Indeed, only a very small number of testbeds offer nodes other than PCs.

Those that do, such as WAIL and SatelliteLab, do not actually let users configure

those nodes in any substantial way. A testbed that contains a variety of nodes would

be a significant boon to the research community. Researchers (and educators) would

be able to conduct sessions with a variety of networking technologies in a safe, con-

trolled environment. Access to high performance, configurable devices would also

allow researchers to test their protocols under realistic network conditions while still

in a testbed context. PCs can certainly be used to emulate the functionality of

many different network devices, but they are not capable of sustaining Internet-scale

throughput or matching delay characteristics of specialized technology. As such, we

feel that building an emulation testbed framework that supports diverse networking

11

technologies would be an important step forward. We will use resource type, or simply

type, to refer to a node class. That is, each node in the testbed is of a specific type,

such as an Ethernet switch, a programmable router, or a PC.

Objective: The testbed must support a wide range of diverse networking
devices.

It is also important for testbed control and management to remain as simple as

possible. This is particularly important when it comes to adding new resource types

to the testbed. The testbed infrastructure should be designed to minimize the effort

of adding new types, and ideally it should be handled without the need to modify

any of the testbed software. This burden is entirely on the testbed managers, not

the users, but reducing the time spent on ongoing management tasks frees up testbed

staff to improve the testbed in more substantive ways. In other words, the testbed

itself should also be easily extensible.

Objective: The testbed infrastructure must be extensible to support
simple management.

One of the primary reasons for having a testbed that supports heterogeneous resources

is for users to interact and gain experience with varied networking technologies. It

is difficult for that to happen if there is very little visibility into the operation and

configuration of the nodes. Of course, not every resource type is user-configurable. For

example, simple learning Ethernet switches do not require any configuration. Most

resource types, however, have many control knobs and configuration possibilities.

Users will benefit the most when they have access to as many of those options as

possible.

Objective: The testbed must support exposure of complex configuration
interfaces.

12

On the other hand, too many configuration options can make it difficult for novice

users to get started. This problem is only compounded if there are many different

resources types each of which has its own set of control knobs to learn. One solution is

to keep the resources opaque and not give users too much control. Since that violates

the previous design objectives, a better approach is to enable the testbed software to

make session configuration and execution simple for new users while still providing

expert users a higher level of node control.

Objective: Configuring sessions must be simple enough for novices.

A related consideration is how resources are shared among users. One approach is

to virtualize all the nodes in the testbed and allow multiple users to share the same

node simultaneously. This is clearly not a viable option here, as many networking

devices do not support virtualization. PCs are one of the few types that are easily

virtualized, although PC virtualization typically leads to poor performance isolation.

Another approach is to allocate nodes solely to one user at a time, which fits more

closely with the previous objective. Of course, the testbed may only have a small

number of nodes of some resource types, so a reservation-based scheduling system

should be used to allow users to share nodes easily over time. Scheduling sessions

in this context is not a trivial problem, but it does provide an effective means to

share testbed resources while still meeting the other design objectives. One possible

scheduling framework is described in detail in Chapter 4. Note that virtualization is

still used in the testbed substrate network in order to provide traffic and link isolation

(e.g., by using VLANs on backbone switches to separate traffic on different virtual

links). The testbed as a whole is, of course, a virtualized platform, whether or not

individual nodes in the testbed are virtualized.

Decision: Nodes are only assigned to one user at any given time and are
shared according to some resource scheduling policy.

13

Figure 2.1: Testbed software overview.

2.2 Framework

One possible testbed framework is now presented that is based on the design choices

in the previous section. The software infrastructure is given first followed by the core

abstractions that allow the infrastructure to meet to the design objectives.

2.2.1 Infrastructure

An overview of a general software infrastructure is shown in Figure 2.1. There are

three main pieces: the Remote Laboratory Interface, the Central Resource Daemon,

and the Node Daemons. There is also a testbed firewall whose primary function is to

keep experimental traffic from leaving the confines of the testbed network, although

it also serves as a normal firewall that blocks external malicious traffic.

The Remote Laboratory Interface (RLI) is the user interface to the testbed. It runs

on the user’s computer and is used to build session topologies, configure nodes, and

monitor the user’s experimental network. Clearly, the RLI must present a consistent

and intuitive view of the diverse resources in the testbed. The primary goal of the

RLI is to make user interaction with testbed resources as easy as possible for novice

users without restricted the needs of more advanced users.

The RLI communicates with the Central Resource Daemon (CRD) on behalf of the

user. The CRD is responsible for instantiating and removing sessions. Whatever

14

scheduling policy is used for the testbed would be invoked by the CRD to ensure that

the user has the right to use all of the needed resources for their session at that time.

It also ensures that every node in the user’s topology is in the proper state before

giving them access to the node. Finally, the CRD relays control messages from the

RLI to the nodes rather than having the RLI contact nodes directly. This way, the

RLI only needs a single point of contact for the testbed, keeping firewalls (testbed and

user) simpler. Note that in practice, the CRD may be split into many coordinating

parts that fill the different roles played by the CRD.

The Node Daemons (NDs) accept control messages from the CRD and the RLI. Not

every resource type will have a Node Daemon (e.g., a simple Ethernet switch), but

most will. There is one ND for each resource type that supports it, and every node

of that type runs the daemon. The ND understands how to interact with the node

and makes any necessary changes based on the control messages received.

2.2.2 Abstractions

Given the above simple software structure, this section will fill in the details of how the

various components actually work together to support the design objectives for the

testbed. The most important abstraction to consider is the resource type abstraction.

Designing this abstraction correctly is critical to allowing the testbed infrastructure

to support resource heterogeneity and extensibility. This in turn allows the testbed

to include highly configurable and programmable resources that can be utilized in a

variety of ways by the users.

Each type is represented in two parts: the base description and the specialization

description. The base description is a representation of the physical device, e.g., a

PC, network processor card, or FPGA. Although this description could encompass

many things about the hardware, there is no need for the core of the description to

be complex. Indeed, the base description of each type only needs to contain a unique

identifier and a list of network interfaces. That is enough to accurately represent a

node in a virtual network topology in the RLI and in the CRD. Figure 2.2 shows a

possible XML [18] example for a network processor card that has four 1 Gb/s Ethernet

ports.

15

<base-type id="np-card">
<network-interfaces>
<port number="0" linktype="GigE" />
<port number="1" linktype="GigE" />
<port number="2" linktype="GigE" />
<port number="3" linktype="GigE" />

</network-interfaces>
</base-type>

Figure 2.2: Base description for a 4 port network processor card.

When the user starts a session, the RLI sends the virtual network topology to the

CRD. The CRD works within the testbed resource allocation policy to assign instances

of the required types to the user and to configure the testbed substrate for the session.

All assignment decisions and operations in the CRD use only the base descriptions

of each node in a user’s topology.

The second part of the type representation is the specialization description. The

specialization description framework allows the RLI to present a simple user inter-

face to the user that encompasses many different resource types. The specialization

abstraction represents one set of functionality supported by a particular type. For ex-

ample, an IPv4 router built on top of a network processor card, or a traffic generator

built on top of a NetFPGA. Ideally, the RLI will use the specialization description

to automatically provide all of the GUI menus, tables, etc. for the type. This would

allow new types to be added to the testbed without the need to change the RLI. Of

course, the description specification needs to be fixed so that the RLI can parse it, but

general enough to support most common user interactions with diverse networking

technologies.

There are two basic ways for users to interact with a node. They can send configu-

ration updates to the node, and they can monitor the node. Configuration updates

can include anything that changes the operational state of the device. For example,

a router might accept configuration requests to modify the routing state and to con-

figure queues. In general, networking devices keep most of their operational state in

tables or data structures that can be viewed as tables. The specialization descrip-

tion will thus include generic table elements that can be tailored for each device as

part of the specialization. Every table and general configuration command is either

16

associated with the global node state or per-port state. For example, a router may

have a separate routing table at each input port, or a global routing table shared by

all input ports. Monitoring requests are used to get real-time data from the device.

Continuing the router example, it may support monitoring the packet rates at each

network interface as well as monitoring current queue lengths. Monitoring commands

are also tied either to a particular port or to the node globally.

These two classes of interaction provide a generic framework for specifying the in-

terface exported by a device. Configuration updates consist of a message type and

a series of parameters to accompany the request. If the update is associated with

per-port state on the node, the port number is also sent with the request. The RLI

automatically adds a GUI menu item for that type that gathers the needed param-

eters and then sends the entire request to the ND for the appropriate node. In the

case of a table, the RLI generates add, remove, and update entry messages for the

user as they modify the table in the RLI. The ND calls a message handler for the

request that understands how to parse the parameters and enact the update on the

node. This restricts the specialization-specific software to the NDs. The ND sends

any result information back to the RLI, which is often a simple success or failure

code, but could also include a series of parameters that will be displayed to the user.

Monitoring requests are represented the same way, as a message type and a series

of parameters. The ND again calls a message handler to respond to the request. In

this case, the response will consist of a timestamp and the requested data. Requests

can also be periodic, e.g., monitoring a value every second and returning the result.

The RLI uses the results to display real-time charts of the data that allow the user

to track soft state in their virtual network.

Figure 2.3 shows one possible specialization description for the example router de-

scribed above. This specialization has one configuration table, one configuration

command, and three monitoring commands. The table contains routing information,

where each table entry consists of the standard CIDR address range for this route,

and the output port and next hop IP addresses for matching packets. The other

configuration command is for setting the queue threshold (number of bytes the queue

can store) and quantum (a parameter of the packet scheduling policy) for one par-

ticular queue. The monitoring commands are, in order, for monitoring the number

17

<specialization id="ipv4-router" base="np-card">
<configuration>
<table name="route table">

<param name="cidr-address" type="string" />
<param name="output-port" type="integer" />
<param name="next-hop-ip" type="string" />

</table>
<command name="set-queue-param">

<param name="queue" type="integer" />
<param name="threshold" type="integer" />
<param name="quantum" type="integer" />

</command>
</configuration>
<monitor>
<command name="rx-packet-count">

<param name="port" type="integer" />
</command>
<command name="tx-packet-count">

<param name="port" type="integer" />
</command>
<command name="queue-length">

<param name="queue" type="integer" />
</command>

</monitor>
</specialization>

Figure 2.3: Simple specialization description for an IPv4 router.

of packets received on one particular port, the number of packets transmitted out

one particular port, and the current length (number of bytes currently stored) in one

particular queue.

Together, one base and one specialization description represent a resource type. Each

base may have multiple specialization types associated with it, but each specialization

type has only one base. This separation allows hardware resources to support many

different types of functionality. This is particularly useful for technologies like network

processors or FPGA platforms that can be programmed to function as a variety of

network devices. It also provides a means to support multiple interfaces for a type

that are targeted at different levels of expertise. A novice interface might only support

the most basic interaction with a device while an expert interface would expose every

possible control knob.

18

2.2.3 Implementation Details

The RLI parses all available type and specialization descriptions to build menus for

adding each type and each specialization to a user’s virtual network. Note that

users can add types without any specialization if they do not need a higher level

interface and plan to configure every node manually. Once added to a topology,

each specialized node can be configured according to its specialization description via

menus and dialogs that are accessed by clicking on the node.

By design, the RLI is not part of the trusted code base for the testbed because it is

run on remote PCs under the control of users. The CRD is therefore responsible for

all security checking, user authentication, and messaging protocol verification.

Once the user is ready to start a session, the RLI sends the user’s virtual topology

to the CRD to instantiate the session. The CRD only uses the type description, not

the specialization description, for each node. As mentioned above, the CRD has four

primary functions. To keep the implementation clean, some of those functions are

broken out into separate software processes as shown in Figure 2.4.

The Relay accepts messages from all user RLIs and routes them either to the Node

Daemons or to the Session Manager as needed. This serves as the gateway to the

testbed for the RLIs. It also performs simple security and isolation checks to ensure

that users attempting to send messages to a particular node actually have that node

assigned to them in a current session.

The Session Manager handles the bulk of the work in the CRD and maintains all state

related to the testbed. This state includes current session information, reservations,

and descriptions of the nodes and physical network for the testbed. Adding new types

or new nodes to the testbed is accomplished by adding new entries into tables in the

testbed database and requires no modifications to the Session Manager or any other

ONL software components. The scheduler subsystem is invoked to add and remove

reservations. It is also called to verify that the user has a valid reservation when a

new session request arrives. The Session Manager then initiates the new session by

performing any initial configuration for all the nodes and links in the user’s virtual

network.

19

Figure 2.4: Software Components of the Central Resource Daemon.

Configuring the underlying physical testbed network is handled by the Network Man-

agement Daemon. The Network Management Daemon supports two basic func-

tions: adding/removing a virtual switch and adding/removing nodes to/from a virtual

switch. The actual mapping from virtual links and switches in a user virtual network

to the physical links in the testbed network is handled by the scheduler in the Session

Manager. The Network Management Daemon simply adds or removes the mappings

as requested. In general, any virtualization technology supported by the underly-

ing network could be used by the Network Management Daemon. In practice, the

most common approach would be to configure and remove VLANs for each switch

or link in the user’s virtual network. This functionality is not complex, but it could

be tied closely to the types of switches and routers used in the testbed. Separating

it from the Session Manager allows this infrastructure to be more easily adapted to

changes in the physical network as only the Network Management Daemon would

need modification.

The Node Manager subsystem of the Session Manager contacts the appropriate Node

Daemons for any initial configuration. The Node Daemons are split into two parts,

20

corresponding to the base type and specialization of the node. The Base Node Dae-

mon is responsible for initializing the node at the beginning of a session and for

bringing the node back to a known state at the end of a session. It also starts the

appropriate Specialization Node Daemon at the end of its initialization. The Spe-

cialization Node Daemon interacts with the RLI to respond to configuration and

monitoring requests defined in the specialization description.

This split enforces a clean separation between the specializations for every type.

More importantly, it allows users to add their own specializations for a type by

providing the specialization interface description and the Specialization Node Daemon

associated with it. For example, a user might add a firewall specialization to a PC

by writing a simple Specialization Node Daemon and description for adding and

removing firewall filtering rules. Note that the Specialization Node Daemon is a

standard socket program and so users will be free to use any programming language

to build one. None of the testbed software infrastructure needs to be modified to

handle the new specialization.

2.3 Aggregate Types

A recent trend in networking research is to build high performance systems out of

many distinct components [5,62]. For example, one might build a 10 Gb/s router out

of 10 PCs each with a 1 Gb/s NIC connected to a common Ethernet switch. This

aggregate node would then be configured and operated as if it were one single piece

of equipment. The framework described above is also very well suited to support this

type of research.

In the testbed framework as described above, users could add nodes and links indi-

vidually to their session and logically view that collection as a aggregate node. Of

course, configuration would then have to be done manually to each of the nodes in

the aggregate, rather than configuring the single aggregate node directly. Instead, the

framework includes an additional abstraction specifically to facilitate usage of these

aggregate nodes.

21

The aggregate description provides the RLI with everything needed to treat an arbi-

trary collection of resources as a single entity. There are three main sections to each

aggregate description file: the resource set, the device description, and the interface

description. An example is shown in Figure 2.5 for a 5 port router based on 5 PCs

that are specialized as standard end hosts.

The resource set defines all node and links that make up one instance of an aggregate

node. Each node in the aggregate can be either a base type or a specialization. The

links specify how all the nodes in the aggregate are interconnected. Together, they

describe exactly what the testbed infrastructure will need to allocate for each instance

of the aggregate type in question.

The device description defines how the aggregate node will actually look to the user.

Primarily, this means a listing of the logical network interfaces that the user will

interact with. In this regard, the device description is very similar to the base type

description for normal nodes.

Finally, the interface description contains all of the configuration and monitoring

commands supported by the aggregate node. This is precisely the same as the spe-

cialization description for non-aggregate types.

In Figure 2.5, the resource set consists of 5 PCs that are running the “end-host”

specialization, and an Ethernet switch. Each node in the set is given a label that

is used in link specifications to dictate how the nodes are connected to one another.

For example, the first link shows that “pc1” port 0 is connected to “switch” port

0, where “pc1” refers to the first node in node list, and “switch” refers to the last

node in the nodes list. The device description is similar to the base description, as

in Figure 2.2, and in this case indicates that this aggregate type should be displayed

as a single device having 5 ports. Each port listing also describes how that aggregate

port relates to a physical port on one of the nodes within the aggregate. That is,

when a link is attached to one of the aggregate ports it must actually be attached to

one port on one of the nodes in the aggregate. In the example, each of the 5 ports is

connected to a different port on the “switch” node. Lastly, the interface description

uses the same structure as Figure 2.3, with configuration and monitoring commands

that are appropriate to an IP router.

22

<aggregate id="pc-router">
<resources>

<node label="pc1" base="pc" specialization="end-host" />
<node label="pc2" base="pc" specialization="end-host" />
<node label="pc3" base="pc" specialization="end-host" />
<node label="pc4" base="pc" specialization="end-host" />
<node label="pc5" base="pc" specialization="end-host" />
<node label="switch" base="ethernet-switch" />
<link end1="pc1" end1port="0" end2="switch" end2port="0" />
<link end1="pc2" end1port="0" end2="switch" end2port="1" />
<link end1="pc3" end1port="0" end2="switch" end2port="2" />
<link end1="pc4" end1port="0" end2="switch" end2port="3" />
<link end1="pc5" end1port="0" end2="switch" end2port="4" />

</resources>
<device>

<network-interfaces>
<port number="0" node="switch" nodeport="5" />
<port number="1" node="switch" nodeport="6" />
<port number="2" node="switch" nodeport="7" />
<port number="3" node="switch" nodeport="8" />
<port number="4" node="switch" nodeport="9" />

</network-interfaces>
</device>
<interface>

<configuration>
<table name="route table">

<param name="cidr-address" type="string" />
<param name="output-port" type="integer" />
<param name="next-hop-ip" type="string" />

</table>
</configuration>
<monitor>
<command name="rx-packet-count">

<param name="port" type="integer" />
</command>
<command name="tx-packet-count">

<param name="port" type="integer" />
</command>

</monitor>
</interface>

</aggregate>

Figure 2.5: An example aggregate description for a 5 port router built with 5 PCs
and a switch.

23

As with the base and specialization descriptions, the aggregate description has an

accompanying Aggregate Node Daemon. Every instance of an aggregate node results

in a separate instance of the Aggregate Node Daemon being started. The Aggregate

Node Daemon is responsible for receiving and processing the messages for the ag-

gregate node, as with the Specialization Node Daemon. In this case, however, the

Aggregate Node Daemon acts primarily as a request translator and relay. It takes

configuration and monitoring requests in the context of the aggregate node and then

formulates and sends new requests to the individual Base and/or Specialization Node

Daemons that are part of the aggregate. One original request to the Aggregate Node

Daemon could cause zero or more new requests to be sent to other Node Daemons.

The Aggregate Node Daemon then gathers the responses (if any) and sends its re-

sponse back to the RLI.

As an example, consider again the aggregate description in Figure 2.5. The “pc-

router” aggregate type has a global routing table. When an entry is added, the RLI

will send one message to the Aggregate Node Daemon with the request to add a route.

The Aggregate Node Daemon might, in turn, send a request to each of the five PCs

in its resource set to add a local route on that PC. After getting the responses back

from all five Specialization Nodes Daemons, the Aggregate Node Daemon would send

a success or failure reply back to the RLI. On the other hand, when the RLI sends

a request to monitor the received packet count on port 0 of the aggregate node, the

Aggregate Node Daemon might send only a single request to the PC that is acting

as port 0.

Treating aggregate nodes in this way results in many of the same benefits to the

testbed infrastructure and users as with specializations. Most importantly, it allows

users to configure aggregates the same way that they do any other node. The RLI

is the only software component that needs to be aware of aggregates. It uses the

description to present a single node to the user, but the session information it sends

to the CRD contains the actual base node topology representation of each aggregate

node. The CRD has no knowledge of aggregates. The Node Daemons likewise have

no need to change based on whether or not the node is part of an aggregate. They

respond to the requests they receive as normal, from the RLI or from an Aggregate

Node Daemon.

24

The only caveat is that the Aggregate Node Daemon for each aggregate has to be

started by some other daemon in the testbed. There are several ways to accomplish

this. Perhaps the simplest is to allow the Base Node Daemons to start Aggregate

Node Daemons, and have the RLI elect one of the nodes in the each aggregate to act

as the Aggregate Node Daemon.

The result is that new aggregate types can be added at any time by any user without

the need for any of the existing software to change. The new aggregate description

must be provided and the associated Aggregate Node Daemon written, but nothing

else in the infrastructure is aware of the new aggregate type. Moreover, this framework

allows aggregates of aggregates naturally and without any additional complications.

2.4 Resource Scheduling

As discussed in Section 2.1, testbeds must be able to support many concurrent sessions

that share the available resources in the testbed. This work focuses on testbeds that

assign non-virtualized, non-shared nodes to every node in each user’s virtual topology.

This assignment is done with a testbed scheduler.

Recall that each physical node is given to at most one user at any time. The scheduling

policy is thus used to determine how nodes should be shared when the demand is

higher than the capacity for any particular resource type. The full description of the

problem and one possible solution are given in Chapter 4, but a brief overview of the

problem is given here.

There are two basic scheduling approaches: resources are either given on-demand or

reserved in advance. In the former case, the scheduler looks strictly at the physical

resources that are not in use by any other current session, as in standard admission

control. This is how most emulation testbeds operate. The latter case is somewhat

more complicated. The scheduler must keep a time line of reservations that deter-

mines which resources are available at any given time. In addition to the virtual

network to be emulated, user requests include a period of time when that virtual

network should be active. When a new request is made, all previously accepted reser-

vations with overlapping times are considered. Any reservations whose start time

25

has not come (i.e., are not yet active) could potentially be remapped to a new set

of physical resources, if necessary to “make room” for the new reservation. Clearly,

maintaining a schedule of network mappings is a generalization of pure on-demand

admission control. This dissertation will consider this more general problem.

Note that scheduling virtual networks in testbed environments has been studied pre-

viously [3, 58, 59]. It is a variant of the general network embedding problem, long

known to be NP-hard. As such, heuristic approaches will be considered.

The scheduler takes a virtual network request and attempts to find a mapping from

the virtual network onto the available physical resources. If a mapping is found,

the physical resources in that mapping are added to a reservation for the user. The

scheduler ensures that each physical node is mapped to no more than one virtual

node across all virtual networks. It also ensures that there is enough capacity in the

underlying testbed network to support every virtual link without causing interference

with other virtual links (within the same reservation or not). Of course, the scheduler

has to consider every previously accepted reservation when finding a new mapping,

and any mapping that meets these requirements could be returned by the scheduler.

Figure 2.6 shows a simple example mapping. In the figure, different shapes represent

different types, with rectangles representing the infrastructure switches that are hid-

den from the user. The edge labels are edge capacities. Node labels show an example

mapping from nodes in the user network to nodes in the testbed network. The dashed

lines show one mapping from an edge in the user network to the corresponding path

in the testbed network.

2.5 The Open Network Laboratory

The Open Network Laboratory has been operating for a few years now [22]. It has

been used primarily as an educational tool in graduate and undergraduate networking

and architecture courses [74, 76]. It has also been used for conducting research on a

variety of networking topics including overlay multicast mechanisms [32] and peer-to-

peer systems [36]. Originally, ONL was designed to give users access to four locally

built extensible hardware routers [15] and a few dozen PCs for traffic generation.

26

Figure 2.6: a) Example user virtual network, and b) example testbed physical net-
work.

27

The basic communication framework used by early versions of ONL was similar to that

shown in Figure 2.1, but none of the abstractions discussed in Section 2.2.2 existed

and no thought was given to supporting heterogeneous technology or different sets of

functionality on the same technology.

When it was decided to incorporate a second type of programmable router, the RLI

was reworked extensively to add support for the new router (i.e., all of the config-

uration and monitoring menus had to be added based on the design of the router).

Unfortunately, there was no clear path in the RLI or in the CRD to allow both types

of routers to exist together in the same virtual topologies. So, for a time, there were

actually two ONL testbeds running in parallel, one for each of the router types. This

situation, along with the desire to add additional types of networking technology to

the testbed, drove our initial work to extend and enhance ONL.

ONL has now been reworked from the ground up to support all of the design goals

given in Section 2.1. All of the software components have been completely rewritten,

and the interfaces have changed to support the framework as described in Section 2.2.

The CRD uses the base type description to represent all nodes in the testbed. All

reservation and configuration operations are thus type independent. The actual node

states and descriptions are stored in a database, and adding new nodes or new types

is a simple matter of adding new entries to the databases tables; no code has to be

rewritten. The RLI now supports both the base type and specialization descriptions,

building all menu and configuration options directly from the XML files for each base

type and specialization. In principle, users could run any program that conforms

to the CRD interface, but, practically speaking, the RLI is a very complex piece

of software that would not be easy to replicate. New Base Node Daemons, and

Specialization Node Daemons have been written to conform to the new interface as

well. There is a template Specialization Node Daemon that can be easily modified to

build new specializations. Of course, any programming language that supports socket

programming can be used, but the template and associated messaging libraries are

currently only available in C++.

Now that these changes are in place, the two types of routers and a small number

of other resources have been combined into one testbed that forms the current ONL.

28

The next section provides some details about the resource types currently available

in the testbed.

2.5.1 Current Resources

The Network Services Platform (NSP) [15] is the custom-built IP router from the

original version of ONL. It is designed to operate in a similar fashion to larger,

scalable router platforms. Each of the eight 1 Gb/s ports houses an FPGA and

a general-purpose processor. The ports are connected via a 2 Gb/s cell switch. All of

the standard packet processing tasks are handled by the FPGA. Users write plugins

for the general-purpose processor to dynamically extend the router’s functionality.

ONL currently contains four NSPs.

The second resource type in ONL is the Intel IXP 2800 network processor [1]. IXP

2800s have seventeen cores: sixteen MicroEngine packet processing cores and one

XScale management core. The particular systems used in ONL are Radisys ATCA-

7010 [56] boards that have five 1 Gb/s ports for each of two IXPs. ONL currently

contains seven of these boards and therefore fourteen total IXPs. The IXPs support

one particular router specialization, the Network Processor-based Router, which is

described fully in Chapter 3.

The NetFPGA [44] is a relatively new FPGA-based device that has already seen

substantial use in both research and education. There are a number of projects readily

available including IPv4 routers, Ethernet switches, OpenFlow switches [43], and

packet generators [20]. Some of these projects already have specializations available

in ONL, and more should be available soon. There are currently six NetFPGAs in

ONL.

ONL has three different types of PCs for use as end hosts or for emulating other

network technologies. The first PC type is a single-core processor with a 1 Gb/s data

interface. The second PC type is a dual-core processor with a 1 Gb/s data interface.

The third PC type is an eight-core processor with a 10 Gb/s data interface. Each

node of these different types also has separate out-of-band control and management

interface. Users are given SSH access to the control interface for every PC in their

29

topology for the duration of their session. A standard set of utilities and traffic

generators is installed by default. Users are welcome to install other software in their

user directory (which is shared across all the PCs), but users are not currently given

a root shell. Any software that requires root privileges is installed by the testbed

staff, and users are granted access through normal sudo mechanisms. Note that all

of the PCs run kernels that allow for Click [38] to operate as a kernel module. There

are currently 72 single-core PCs, 34 dual-core PCs, and 28 eight-core PCs.

All of the nodes are indirectly connected through a small number of “backbone”

configuration switches. VLANs are used extensively in the switches to enforce isola-

tion among different sessions. All of the configuration of these switches takes place

automatically and invisibly from a user’s perspective, via the Network Management

Daemon. The reservation system is responsible for ensuring that the configuration

switches have sufficient capacity to guarantee that no session could ever interfere with

any other session. VLANs also provide a way for ONL to support standard Ethernet

switches in experimental topologies as “virtual” resource types that do not correspond

to individual pieces of hardware. This is supported only via specialized code running

in the CRD.

There are currently eight backbone switches in ONL, of two different types. The first

type is the Netgear GSM7352S [45], which has 48x1 Gb/s ports and 4x10 Gb/s ports

for connecting to other switches. There are six of these switches in ONL. The second

switch type is the Arista 7148SX [6], which has 48x10 Gb/s ports and 2x1 Gb/s ports

for out-of-band management. Every user-allocatable node in the testbed is attached

to one of these switches. For nodes with multiple ports, every port is connected to

the same switch. One of the 1 Gb/s ports on each Netgear switch and one of the 1

Gb/s management ports on each Arista switch are connected to a physically separate

management network along with the CRD. The switches are manually configured to

only allow access via that separate network, thereby ensuring that users can not send

configuration changes to the switches.

One possible layout of the testbed data network is shown along the middle of Fig-

ure 2.7. Indeed, this was the actual data network used in ONL for a number of years.

The figure also shows how three concurrent sessions might be scheduled and mapped

30

to the testbed network. The top of the figure shows RLI screenshots from each ses-

sion. The node and link mappings for each session are included in the testbed network

diagram below the screenshot. The colors of the different types in the RLI correspond

to the colors of the blocks in the diagram. Circles in the backbone switches corre-

spond to virtual switches in the user session. For example, the left topology has one

hardware router, two network processor systems, three virtual switches, and seven-

teen PCs. Note that the three sessions in this example are mapped to distinct subsets

of the backbone switches only for clarity. In practice, different virtual networks can

and often do overlap in complicated ways when mapped onto the testbed network.

2.6 Example Sessions

ONL can be used to conduct networking experiments over a wide range of areas.

Three examples follow to illustrate some of these possibilities.

2.6.1 TCP Dynamics

The first example is a simple session to study TCP dynamics over a shared bottleneck

link. A screenshot is shown in Figure 2.8. The topology configuration window is on

the left, and two real-time charts are on the right. The 8 port device at the bottom

right of the central square is an NSP. The 4 port device at the top left of the square is

a NetFPGA running as an IPv4 router. The two 5 port devices at the other corners

are NPRs. The small ovals are virtual switches, and the other symbols represent PCs.

Two TCP flows are started at the same time, one from a PC in the top left of the

topology to a PC in the bottom right, and the other from a PC in the bottom left

to a second PC in the bottom right. Network routes are configured statically so that

both flows share the bottom link in the central square as a bottleneck link. The

link capacity is set to 100 Mb/s. Initially, both flows share a 100 KB queue at the

bottleneck. Half way through the flows, the router is reconfigured to map one of the

flows to a different queue.

31

Figure 2.7: Testbed network with session mappings for three user virtual networks.

32

Figure 2.8: An example session in ONL studying TCP dynamics.

33

The results are shown on the right of Figure 2.8. The top chart shows the bandwidth

of each flow, and the bottom chart shows the queue lengths of the two queues at the

bottleneck. When the flows share a queue, they do not converge to their fair share

of 50 Mb/s each. This follows because each flow is attempting to use packet drops

as feedback to adjust its sending rate, but the shared queue leads to uneven drops

for each flow. When one of the flows is remapped so that each flow is in a separate

queue, the standard TCP queueing behavior is seen. Weighted Deficit Round Robin

scheduling is used at the bottleneck, and each queue has the same quantum. As a

result, the two flows quickly converge to their expected fair share of the link.

2.6.2 Data Center Networking

The second example uses ONL to replicate one segment of a data center network.

A screenshot of the ONL topology is shown in Figure 2.9. This session uses six

NetFPGAs as data center switches. In this case, they are running as OpenFlow

switches, and the OpenFlow controller, NOX [30], is running on one of the PCs at

the bottom of the hierarchy. This network is organized in a similar fashion to a fat

tree (e.g., as in PortLand [48]), but with twice as many PCs connected to each edge

switch as in a standard fat tree.

ONL allows users to build data center networks like this one quickly and easily. The

result is that it is much faster to study a broad range of possibilities than it would be

without a testbed infrastructure. In this example, ONL is being used to study slight

modifications to fat tree topologies, but it could also be used to explore completely

different data center topologies without any extra overhead.

2.6.3 Overlay Networking

The final example session is an overlay network scenario, where the overlays are built

on top of a virtual network in ONL. This particular overlay network is based on the

Forest [32] architecture that is designed to support highly interactive virtual worlds.

Forest networks are built around provisioned tree-structured communication channels

called comtrees. Comtrees support both unicast and multicast packet delivery. In a

34

Figure 2.9: An example session in ONL studying data center networks.

typical Forest application, such as a First Person Shooter game, each comtree is

associated with a separate game session or world instance. Within that comtree,

then, each multicast address is associated with the state of some object in the game,

such as a player’s avatar. The multicast mechanism in Forest is extremely light-weight

in order to support the high levels of churn in state subscription changes within such

virtual worlds.

Figure 2.10 shows a screenshot of a Forest overlay operating within ONL. The four

PCs in the middle of the topology implement Forest routers and are connected to one

another by a full mesh of overlay links (implemented by the IP routers in the ONL

context). The PCs around the periphery represent end systems in a Forest network

and each of them is connected by an overlay link to one of the four Forest routers.

In this sample session, the end systems are sending artificial traffic that is passing

over pre-configured multicasts spanning several different comtrees. The four real-time

charts in the figure show traffic rates (in packets/s) at each of the four Forest routers.

The staircase packet rates are due to end systems entering and leaving comtrees at

staggered times.

35

Figure 2.10: An example session in ONL for PC-based overlay networking.

36

2.7 Operational Details

There are a few management details that are worth noting and discussing here, as

they impact the actual operation of the testbed.

Figure 2.11 is a representation of all of the software components in the testbed frame-

work. Arrows between the various components show possible communication paths

between the software components. The three distinct pieces of the CRD are shown

separately, as they are three separate processes, and the Specialization Nodes Dae-

mons are shown with dashed lines they may or may not be running on any given node.

As the figure shows, the Relay routes requests from the RLIs to either the CRD or

the Base Node Daemons. When the CRD contacts individual Base Node Daemons

to start or stop a session, it does so directly rather than going through the Relay.

This is a simplification of the original design, but a reasonable one. The CRD and

Relay (and Network Management Daemon) all run on one trusted server. Therefore,

routing messages from the CRD to the nodes via the Relay adds no extra security

and unnecessarily overloads the Relay.

Recall from above that every node in the testbed is connected to the set of backbone

switches. Recall also that most of the nodes have a separate control interface for

out-of-band node access. This implies that there are two separate networks in the

testbed: the “data” network for user session data connections, and the “control”

network for remote access that does not interfere with the data network. In fact,

there is also a third network in the testbed that is used to manage the backbone

switches and other infrastructure equipment. Figure 2.12 shows how the testbed

nodes and infrastructure is connected via these three networks. Each of these three

networks is physically separate from the others to keep the associated traffic cleanly

separated.

The figure does not show how the testbed nodes are actually connected to the back-

bone switches in the data network, but the detailed layout for a previous version

of ONL is given in Figure 2.7. There are a small number of servers on the control

network along with the control interfaces of the testbed nodes. The testbed firewall is

connected to the external Internet, and filters all incoming connections to the testbed

and outgoing connections from the testbed. In general, the firewall is configured to

37

Figure 2.11: All communication paths between software components.

38

Figure 2.12: Layout of the three networks in the testbed.

39

be as closed as possible with particular emphasis placed on restricting outgoing traffic

from the testbed. User logins over SSH are redirected by the firewall to a login server

shared by all users. There is also a testbed server that runs all trusted software in-

cluding the CRD. Users are not allowed access to the testbed server. There is also at

least one separate development computer for building and testing testbed software.

This computer is also restricted to allow only testbed staff members, and additionally

serves as an extra path into the testbed control network in the case of firewall or login

server failures.

The testbed server also connects to the management network. This network consists

of all of the testbed infrastructure equipment that is hidden from the users. Each

of the backbone switches has at least one management interface that connects to

this network. All of the power-related infrastructure is attached to the management

network as well. Uninterruptable Power Supplies (UPSes) are used for all power in

the testbed to cover power outages. Remote Power Controllers such as the Synaccess

NP-08G2 [64] are used for per-node power control. This allows nodes to be automat-

ically power cycled if they become unreachable and provides a means to completely

shutdown the testbed regardless of the current state of the nodes under extended

power or air conditioning outages.

Another important operation detail is that the RLI does not contact the Relay di-

rectly. Instead, each user configures an SSH tunnel [53, 65] from their computer to

the testbed. Specifically, the tunnel is terminated on the login server (where the SSH

connection terminates) and then packets received from the tunnel are forward to the

testbed server and the Relay particularly. All communication from the RLI and all

responses to the RLI are sent over the tunnel. The two major reasons to do this are

to simplify testbed and user firewall configurations (exactly one port has to be open

on each side), and to encrypt all data between the RLI and the testbed. The latter

is important as it allows authentication from the RLI to happen securely.

Within the testbed, each user has his or her own home area. All user home areas

actually reside on the testbed server and are NFS [47] mounted over the control

network on the login server. Similarly, user accounts and groups reside ultimately on

the testbed server but are shared to the other servers and testbed nodes via NIS [49].

A user’s home area is also exported to all nodes in their virtual network at the

40

beginning of each session and removed at the end of the session. In other words, only

the home area for the user assigned to a node is available on that node, and only

for the duration of their session. This gives users full access to all of their files on

each node while minimizing the damage a user could do if they were to compromise a

node. SSH access to each testbed node is also restricted to only allow the current user

assigned to that node to log in. This is accomplished by dynamically adding/removing

users to/from per-node access control groups at session begin and end time.

Finally, all of the PCs in ONL use a two-stage booting process. The first stage has

each PC load a diskless kernel and file system over the network via PXE. The file

system only needs to supply the most basic Linux environment. The last step of

this first stage boot is to start a special ONL daemon that contacts the CRD to

announce that this node is ready to start the second stage. The CRD responds with

the location of a file system to load onto the disk of the node. There is a special

directory on the testbed server that contains all the images for each PC type, and

this directory is made available read-only over NFS to every node. The node then

reformats the disk and writes the file system image to the disk. Many tools could

be used to do this. ONL currently uses FSArchiver [25]. Once finished, a kexec is

issued for the default kernel now loaded on the disk. This standard kexec system call

overwrites the running kernel with the new kernel and executes it.

There are a number of benefits to using this two-stage configuration. First, every

time a node reboots it is guaranteed to come back up in a clean and well-known

state. Second, updating node software or configuration for a particular PC type only

requires modifying and re-saving the default image. Then, as each node is rebooted

at the end of every user session it will pick up the modification automatically when

it reloads the default image. Third, it allows the testbed staff to build and supply

multiple possible kernel or file system choices for each node. A simple dialog box on

the RLI is used to choose between the available images and then that choice is passed

on to node when it assigned to the user. Although ONL does not currently support

it, this also provides an avenue to allow users to build and supply their own kernel

images for conducting research that requires kernel modifications.

41

2.8 Educational Benefits

There are clear benefits to using testbeds like the Open Network Laboratory in net-

working and systems education. First and foremost, they help students to gain prac-

tical experience with otherwise abstract networking concepts. This is certainly true

in any field, but networking technology in particular is driven by practical real world

needs rather than theoretical constructs. Testbeds provide a place where students are

able to start building their own insights and instincts about running systems that are

very difficult to be taught directly by educators. This includes giving students a place

where they can make mistakes configuring complex systems without any concern that

they could hamper operations of a production network. To date, courses have been

taught using ONL at the following universities: Washington University in St. Louis,

University of Massachusetts Amherst, University of Kansas, DePauw University, and

the Jordan University of Science and Technology.

Some efforts have been made to characterize student learning in ONL specifically [75,

76]. A few undergraduate and graduate networking courses at a small number of

universities were modified to use ONL for laboratory assignments instead of the more

typical simulation environment. Those courses were analyzed and compared to their

predecessors in order to understand how using ONL affected the students’ ability to

learn fundamental networking concepts. That analysis suggested that using ONL

provided better pacing to the course, which allowed the students more time to focus

on the most important concepts rather than focusing on less important details. Anec-

dotal evidence was also collected via informal student surveys. Overall the students

were much more enthusiastic about using ONL instead of a simulation program to

bridge the gap between lectures and networking practice. They also generally found

the testbed software easy to use and understand. Some more formal learning assess-

ments have also been conducted, but with such small sampling sizes that it is difficult

to say anything quantitatively.

The other concern when using a testbed environment is the burden on the instruc-

tor and teaching assistants. If the amount of work required from an instructor is

substantially higher when using a testbed, then it is far less likely that testbeds will

become more widely adopted in networking courses. The rest of this section details

42

an assessment done to answer this very question for the Open Network Laboratory.

Note that this study was done using a previous version of the testbed.

2.8.1 Instructor Support Structure

The normal interaction between instructor (and any teaching assistants) and students

is augmented by the ONL support staff who backstop the instructor. The ONL staff

help the instructor to answer questions concerning seemingly strange system behavior.

This approach relieves the instructors of many of the anxieties that might arise from

using experimental equipment and has worked surprisingly well with the majority of

questions and issues being handled by the instructor. Section 2.8.4 quantifies these

interactions in detail, but a summary is shown in Figure 2.13 where the labeled arrows

indicate how many emails were sent between students, instructors, and the ONL staff

over one full semester. Details about courses A and B are given in Section 2.8.3.

All interaction is initially handled by email and goes through the instructor who is

expected to answer most of the questions. The instructor should only need occasional

help from the ONL staff. Students are only allowed to contact the ONL staff directly

when there is evidence of system failures.

2.8.2 Instructor Considerations

From an instructor’s perspective, some aspects of using ONL in a course are no

different than using any other computer system, but there are also operational issues

that are somewhat unique to ONL.

First, instructors need to work out solutions to their laboratory assignments before

distributing them to students. Although this is a good idea for assignments in any

course, it is a particularly important precept if the instructor is also new to the virtual

laboratory. The typical problem is that the instructor’s mental model disagrees with

ONL’s conceptual model in some subtle way. One example is the link rate parameter

mentioned earlier. Although common misconceptions are documented in the ONL

tutorial pages and summarized in FAQs, it is easy to overlook the distinctions.

43

Figure 2.13: Email Interactions Over the Course of One Semester.

Second, each laboratory assignment should be preceded by paper-and-pencil exercises

that emphasize the main concepts addressed by the assignment and develop approxi-

mation skills that can be used for sanity-checking experimental results. Troubleshoot-

ing exercises in which students are asked to postulate the source of unexpected mea-

surement results and propose mini-experiments for verifying these postulates provide

useful mental preparation.

Third, students should be counseled on efficient ways to conduct their experiments.

For example, many of the initial RLI features can be explored without actually reserv-

ing hardware resources. A common mistake made by students in the first assignment

is to reserve hardware and then spend the entire time going through the various RLI

menus instead of actually using the hardware.

Fourth, there is a high level of paranoia that develops when more than one course is

using the facility during the same period. “Hey, University XXX students are evil

because they are using our resources” is a common complaint from students. The

ONL staff has done a good job in coordinating assignment due dates to keep the

44

Table 2.1: Comparison of Courses That Use ONL.
Course A Course B

Department ECE CS
Only graduate students? yes no
Non-networking students? yes no
Number students 29 21
Number of labs 4 4
Labs requiring programming 0 2
Programming difficulty n/a basic; any

language

actual contention level low, but instructors still need to pay attention and foster a

cooperative attitude.

2.8.3 Courses Studied

Our observations in this section are based on two courses taught in 2007, Course A

and Course B, conducted at different universities as shown in Table 2.1. The main

differences between these courses are:

• Course A is aimed specifically at giving breadth to graduate students that may

not be majoring in networking.

• Course B requires students to write basic socket programs to transmit UDP

packets. The course survey indicated that the programming was not a significant

hurdle because they were allowed to use any language.

2.8.4 Interaction Data

Data was collected on the amount of email interaction between students, instruc-

tors, and ONL staff as indicators of the amount of work accompanying laboratory

assignments for instructors and support staff. The data is normalized to a class of 29

students, the size of Course A.

45

Figure 2.14: Email Counts in Course A (With ONL).

Figure 2.14 shows some of the data for Course A during the semester. It shows the

number of daily emails from the instructor to students and ONL staff (lab staff) with

a distinction between emails that were and were not related to a lab assignment. One

observation is that there was very little interaction with ONL staff except near the

beginning of the first assignment, i.e., the instructor handled most of the questions.

The increased interaction with ONL staff during the week of March 1 was due to

an overly aggressive security policy that resulted in the blocking of connections from

student hosts that fit the profile of attack activity.

It is interesting to note that there was little interaction in the third assignment.

The assignment involved exploring network behavior due to the competition between

TCP and UDP flows and designing/performing an experiment to prove or disprove a

hypothesis (e.g., UDP achieves a higher utilization on the bottleneck link than TCP).

In fact, this assignment generated the most student interest: they were excited and

pursued the problem on their own (without checking with the instructor).

To give some perspective to Figure 2.14, Figure 2.15 shows the same type of email

interaction data for the same course taught previously when assignments involved

socket programming and ns-2 [50] simulations instead of ONL. In this figure, lab staff

refers to the local computer support staff, not the ONL staff. At first glance, the data

indicates that instructors can expect to be interrupted by students less than if they

were using ONL. Actually, this observation seems reasonable for two reasons:

• There were fewer operational issues. Students asked fewer questions on how to

write socket programs. With ONL, there were operational issues; e.g., using

SSH to access ONL resources.

46

Figure 2.15: Email Counts in Course A (Without ONL).

Figure 2.16: Email Counts in Course B (With ONL).

• There were fewer questions regarding what to do in socket programming assign-

ments. With ONL, there were more questions regarding the precise meaning of

an assignment’s requirements and how to meet those requirements.

The second point is worth elaborating. In the non-ONL course, there may have been

more improper collaboration between students. Since students did not have to log

into the system and set up their own experiment, they may have solved projects

jointly and thus had peers to help and answer questions. In the ONL version of the

course, peers could not really provide much help when something did not seem to

behave as expected and had to work through a problem until they required expert

advice.

Informal discussions with the teaching assistant in Course B corroborated this ob-

servation. Furthermore, there was a clear evolution in the type of student-instructor

interactions as the semester progressed. Interactions at the beginning of the course

47

concerned more operational ONL/RLI issues as the students were familiarizing them-

selves with a foreign environment. Towards the end of the course, the student ques-

tions evolved into discussions focused more on fundamental networking concepts than

on operational issues.

Another important statistic is that the volume of email shown in Figure 2.14 (the ONL

case) that is above that shown in Figure 2.15 (the non-ONL case) is not particularly

significant. The benefit of increased student engagement and thinking precision far

outweighs the small increase in student-instructor interaction time.

Figure 2.16 shows the interaction data for Course B. The most significant difference

with Course A is that there is interaction on almost every day during the last two

assignments. Furthermore, there is more interaction with ONL staff than in Course

A. This increase in interaction can be explained by noting that these two assignments

involved developing router plugins.

Developing a router plugin is almost equivalent to writing a module in C for an

embedded processor where the normal debugging facilities are absent. The plugin en-

vironment delivers the packets to the user plugin in network byte order with attached

packet headers. Errant code can hang the plugin processor requiring the student to

abandon an experiment and restart – a time consuming process. As such, writing a

plugin is initially daunting to students who are used to interactive debugging tools,

simple data formats, and rapid retries.

Note that a shortcoming of the email counting approach is that it does not distinguish

between those emails that were caused by ONL problems and those that were just

about the assignment.

2.8.5 Observations

In closing, some observations from discussions with the course instructors, teaching

assistants, and the ONL staff are given.

It would be interesting to collect data in classes that are dominated by undergraduate

students. Graduate students are generally more knowledgeable and more capable of

48

coping with non-ideal situations. On the other hand, undergraduate students are less

likely to struggle through such situations and ultimately complete assignments.

It is clear that good ONL assignments focus graduate students on fundamental net-

working principles. In fact, laboratory assignments give all students an opportunity

to reflect on fundamental concepts and to see them in practical terms. Bringing to-

gether theory and practice in this way is certainly one of the main strengths of using

a virtual laboratory for assignments.

It appears that with graduate students, the ONL assignments have not promoted

peer-to-peer interaction. One teaching assistant said: “Many graduate students don’t

do peer-to-peer instruction. They want to figure it out themselves. And if they can’t,

they’re going straight to an expert.” Peer-to-peer interaction is difficult to quantify

although cooperative approaches to learning appear to correlate with improved stu-

dent satisfaction and superior outcomes. However, there is nothing preventing an

instructor from using an ONL experiment running in real time to initiate a discussion

about a fundamental concept.

49

Chapter 3

Specialized Packet Processing

Platforms

The previous chapter described a new testbed framework that supports node hetero-

geneity and extensibility at a fundamental level. The primary driver for this is to

support research and educational objectives that can take advantage of complex net-

working technology. Such technology can often be quickly reconfigured to fill many

different roles in the network. Configuring these types of complex devices can be

daunting to users, particularly when multiple different types of technology are being

used in conjunction. To that end, the testbed framework also includes an extensible

user interface that provides users with a consistent and intuitive view of their virtual

networks.

This chapter presents a series of examples that illustrate the extensibility of the

testbed framework. Specifically, the examples come from testbed nodes currently in

the Open Network Laboratory, which is a prototype implementation of the general

testbed framework. Each example includes a description of the networking device in

question along with one or more of the specializations that are available to users in

ONL.

Three types of nodes will be discussed. The first example is a standard PC type

with a single simple specialization for normal end host behavior. The second ex-

ample uses the NetFPGA platform developed at Stanford University [27, 44]. Three

specializations are described that reflect three different existing NetFPGA projects

that have been ported to the ONL environment. Finally, the third example is a net-

work processor system based on Intel IXP 2800s [1]. This last example contains a

50

detailed description of one particularly complex IPv4 router specialization, the Net-

work Processor-based Router [71], which was developed as part of this dissertation

research.

3.1 PC

The first example platform is one of the PC types available in ONL. Namely, this

PC type has two quad-core Intel Nehalem [35] processors, 12 GB of memory, one 10

Gb/s data interface, and one 1 Gb/s control interface. The base description for this

type is given first, followed by one simple specialization.

3.1.1 PC Base Type

The ONL base description for this PC type is shown in Listing 3.1.

Note that this description is substantially different from the example base description

shown in Figure 2.2. That example description illustrated the bare minimum needed

for the generic testbed framework. The base description shown here in Listing 3.1 is

the actual one used by the RLI in the current version of the Open Network Laboratory.

As such, there are additional fields that are used by the RLI for various purposes.

Each of the fields in the listing will now be discussed.

Line 2 of the listing declares that this is base type, or “hardware,” description named

“PC8core.” There is also a version attribute for supporting different versions of the

same type. Line 3 is an additional field necessary in the ONL environment that

denotes whether or not this type is part of a “cluster.” In this context, clusters are

types that have some physical inter-dependencies and therefore must be allocated

together. The PC8core type has no such dependencies, and so the field is set to

“false.” The “daemon” field gives the default TCP port number for the Base Node

Daemon associated with this type. The port number for this type is 3551, while a

value of “-1” would indicate that there is no Base Node Daemon for this type.

51

1 <?xml version="1.0"?>
2 <hardware typeName="PC8core" version="1">
3 <clusterOnly>false</clusterOnly>
4 <daemon>3551</daemon>
5 <componentType>host</componentType>
6 <fields/>
7 <init opcode="0" numParams="1">
8 <displayLabel>UserDaemonPath</displayLabel>
9 <description>UserDaemonPath</description>

10 <param editable="true">
11 <plabel>path</plabel>
12 <ptype>string</ptype>
13 </param>
14 </init>
15 <commands/>
16 <monitoring>
17 <command opcode="62" numParams="2">
18 <displayLabel>UserData</displayLabel>
19 <description>user data read from file</description>
20 <units>unknown</units>
21 <param editable="true">
22 <plabel>file</plabel>
23 <ptype>string</ptype>
24 </param>
25 <param editable="true">
26 <plabel>field</plabel>
27 <ptype>int</ptype>
28 </param>
29 </command>
30 <command opcode="63" numParams="2">
31 <displayLabel>UserDataTS</displayLabel>
32 <description>user data read from file with time stamp</description>
33 <units>unknown</units>
34 <param editable="true">
35 <plabel>file</plabel>
36 <ptype>string</ptype>
37 </param>
38 <param editable="true">
39 <plabel>field</plabel>
40 <ptype>int</ptype>
41 </param>

Listing 3.1: (a) PC8core.hw; the base description for the 8-core PCs currently avail-
able in ONL.

52

42 </command>
43 </monitoring>
44 <ports numPorts="1" interfaceType="10G">
45 <fields/>
46 <commands/>
47 <monitoring/>
48 </ports>
49 </hardware>

Listing 3.1: (b) PC8core.hw; the base description for the 8-core PCs currently avail-
able in ONL.

The “componentType” field is used by the RLI for two reasons: graphical node

representation and automatic IP address assignment. The valid values are “host,”

“switch,” “router,” and the special value “any.” Each of the three non-special values

has a different graphical icon in the RLI to facilitate easy recognition of different

types in a large network. The RLI also uses these different values in its automatic

IP address and subnet assignments. As the user builds their topology in the RLI, IP

subnets and addresses are calculated and assigned automatically to every node. Of

course, the algorithm that handles these assignments needs to know if each node is

something that extends, participates in, or terminates a subnet. The special “any”

value dictates that this type of node could be used in any of the three roles and that

there isn’t a clear reason to default to one role over the others. In such a case, the

RLI automatically generates an additional menu that forces the user to choose which

role each node of this type will fill when the node is initially added to their topology.

The PC8core type is set by default to act as a “host.”

Lines 6 through 43 are actually sections that are used primarily in specialization de-

scriptions. That is, they contain information related to configuration and monitoring.

In base descriptions such as this one, this means configuration and monitoring com-

mands that are independent of any specializations and can be used whether or not

there is an active Specialization Node Daemon.

Line 6 shows an empty “fields” section. Although unused here, this section can be used

to declare a set of parameters that are shared among multiple tables or commands in

the rest of the description. Similarly, line 15 shows an empty “commands” section,

which means that there are no configuration commands for the PC8core base type.

53

Lines 7 through 14 define the “init” section. This section is used to list any initial-

ization parameters that could be set and passed to the Base Node Daemon during

node set up. The PC8core type has only one parameter. The “UserDaemonPath”

parameter is used to pass the file system location of the Specialization Node Daemon,

if any. It is declared in the base type description and defined specifically in the spe-

cialization description. Lines 10 through 13 describe the actual parameter that is sent

to the Base Node Daemon. Each parameter has an “editable” attribute that specifies

whether or not the user is allowed to modify the parameter. The “plabel” field is

just a label string that is displayed to the user when they are editing or viewing this

parameter, and the “ptype” field indicates what type of parameter this is (string,

integer, boolean, etc). If there were a default value for this parameter, it would be

given in a “default” field after the “ptype” field. Again, in the PC8core base type

and other base types there is no default value, but the value must be given in each

specialization description.

Lines 16 through 43 define two monitoring commands that are supported by the

Base Node Daemon. The two commands are nearly identical, so only the first will

be discussed in detail. Line 17 declares a monitoring command that requires two

parameters. There is also an “opCode” attribute that is a unique identifier used by

the Base Node Daemon to identify this command. The “displayLabel” field contains

the string label that the user will see in the monitoring menu for this command, in this

case “UserData.” This “UserData” command is used to monitor data that the user

writes to a file. The Base Node Daemon periodically reads the file and returns the

values to the RLI to be displayed on real-time charts. The two parameters needed to

handle this command are given on lines 21 through 28. The first parameter is a string

parameter for the name of the file with the user’s data, and the second parameter

is the field or column number within the file to read. That is, the user’s data file

may have multiple columns of data, and each monitoring command sent could read

a different column. In this way, users are able to easily monitor data produced by a

node without the need to supply a Specialization Node Daemon.

Finally, lines 44 through 48 describe the network interfaces for the PC8core base

type. There is only one interface, as indicated by the “numPorts” attribute. The

“interfaceType” attribute is used to specify the type of the interface. ONL currently

has two types of interfaces: “1G” and “10G,” corresponding to 1 Gb/s Ethernet and

54

Figure 3.1: RLI screenshot of the configuration menu for the PC8core type.

10 Gb/s Ethernet, respectively. The single interface on the PC8core type is a 10

Gb/s interface. Note that the ONL infrastructure currently assumes that all network

interfaces on one node are of the same type. Lines 45 through 47 define the per-port

fields, configuration commands, and monitoring commands, respectively. In this case,

there are no per-port commands of any kind.

Figure 3.1 is an RLI screenshot of a topology with a single PC8core node. In the

figure, the user has clicked on the PC icon to open the configuration and monitoring

menu. The top of the menu lists some useful information for the node, including

the node’s logical name, IP addresses, interface type, etc. The next menu section

lists all of the configuration commands, including the initialization command. In this

screenshot, the user has highlighted the “Port 0” menu option, which would normally

expand into a second menu with all of the per-port configuration options but in this

case shows nothing as there are no per-port commands. Finally, the third menu

section contains both monitoring commands that were defined in Listing 3.1.

55

3.1.2 PC Host Specialization

Although PCs are certainly capable of emulating most networking devices, they are

most commonly called on to act as standard end hosts in the Open Network Lab-

oratory. As such, all the PC types available in ONL have end host specializations

available. The end host specialization for the PC8core base type described above is

shown in Listing 3.2.

Line 2 of the listing declares that this is a specialization, or subtype, description

with the name “Host.” Line 3 uses the “hwType” section to denote that this is

a specialization of the PC8core base type, and the “resource” field on line 4 lists

specifically the file name of the XML description for the base type. All specializations

must have these declared and have the base type file available.

The rest of the specialization description file uses the same syntax and structure as the

base description file. The specialization inherits everything from the base type, much

as happens with class-based inheritance in object oriented programming languages.

All fields and commands in the base type are also available in the specialization. Any

fields or commands can be replaced or overridden with new values in the specialization

description.

For example, lines 8 through 16 of Listing 3.2 override the “UserDaemonPath” ini-

tialization parameter that was originally defined in the base description file. In this

case, everything is left unchanged with the exception that the specialization provides

a default value (line 14) for the parameter. This path, “/users/onl/pc8core/host”

is the full path on the ONL file system to the Specialization Node Daemon for this

specialization.

The other new section to note in this specialization is the route table, which is de-

scribed on lines 24 through 108. All tables have two sets of fields, configuration

commands, and monitoring commands: one set that is table-wide and one that is

per-entry in the table. The route table for this Host specialization has no table-wide

commands of any kind. Line 28 starts the “entry” section, which describes everything

about one table entry. Every table entry has two representations: data and display.

The data representation is the true form of the table, where every table field is de-

lineated and treated separately. The RLI also supports a display representation that

56

1 <?xml version="1.0"?>
2 <subtype typeName="Host" version="1">
3 <hwType typeName="PC8core">
4 <resource>PC8core.hw</resource>
5 </hwType>
6 <componentType>host</componentType>
7 <fields/>
8 <init opcode="0" numParams="1">
9 <displayLabel>UserDaemonPath</displayLabel>

10 <description>UserDaemonPath</description>
11 <param editable="true">
12 <plabel>path</plabel>
13 <ptype>string</ptype>
14 <default>/users/onl/pc8core/host</default>
15 </param>
16 </init>
17 <commands/>
18 <monitoring/>
19 <ports>
20 <fields/>
21 <commands/>
22 <monitoring/>
23 <tables>
24 <routeTable title="RouteTable">
25 <fields/>
26 <commands/>
27 <monitoring/>
28 <entry name="route" numFields="3" numColumns="2" enable="false">
29 <fields>
30 <field editable="true">
31 <plabel>prefix</plabel>
32 <ptype>ipaddress</ptype>
33 <default>0.0.0.0</default>
34 </field>
35 <field editable="true">
36 <plabel>mask</plabel>
37 <ptype>int</ptype>
38 <default>32</default>
39 </field>
40 <field editable="true">
41 <plabel>nexthop</plabel>
42 <ptype>nexthop</ptype>
43 <default>0</default>
44 </field>

Listing 3.2: (a) PC8core-Host.shw; the end host specialization description for an
8-core PC.

57

45 </fields>
46 <commands>
47 <addCommand opcode="73" numParams="3">
48 <displayLabel>AddRoute</displayLabel>
49 <description>add_route</description>
50 <param editable="true">
51 <plabel>prefix</plabel>
52 <ptype>field</ptype>
53 </param>
54 <param editable="true">
55 <plabel>mask</plabel>
56 <ptype>field</ptype>
57 </param>
58 <param editable="true">
59 <plabel>nexthop</plabel>
60 <ptype>field</ptype>
61 </param>
62 </addCommand>
63 <deleteCommand opcode="75" numParams="3">
64 <displayLabel>DeleteRoute</displayLabel>
65 <description>delete route</description>
66 <param editable="false">
67 <plabel>prefix</plabel>
68 <ptype>field</ptype>
69 </param>
70 <param editable="false">
71 <plabel>mask</plabel>
72 <ptype>field</ptype>
73 </param>
74 <param editable="false">
75 <plabel>nexthop</plabel>
76 <ptype>field</ptype>
77 </param>
78 </deleteCommand>
79 <command opcode="74" numParams="3">
80 <displayLabel>Update Nexthop</displayLabel>
81 <description>update route’s next hop</description>
82 <param editable="false">
83 <plabel>prefix</plabel>
84 <ptype>field</ptype>
85 </param>
86 <param editable="false">
87 <plabel>mask</plabel>
88 <ptype>field</ptype>
89 </param>

Listing 3.2: (b) PC8core-Host.shw; the end host specialization description for an
8-core PC.

58

90 <param editable="true">
91 <plabel>nexthop</plabel>
92 <ptype>field</ptype>
93 </param>
94 </command>
95 </commands>
96 <monitoring/>
97 <display>
98 <column title="prefix/mask" width="120">
99 <fieldName>prefix</fieldName>

100 <symbol>/</symbol>
101 <fieldName>mask</fieldName>
102 </column>
103 <column title="nexthop" width="50">
104 <fieldName>nexthop</fieldName>
105 </column>
106 </display>
107 </entry>
108 </routeTable>
109 </tables>
110 </ports>
111 </subtype>

Listing 3.2: (c) PC8core-Host.shw; the end host specialization description for an
8-core PC.

59

is used purely to customize how the tables are actually displayed to the user. The

“numFields” entry attribute declares how many actual fields there are in the table,

and the “numColumns” declares how many columns will be displayed to the user.

The Host specialization route table has three data fields: route prefix, route mask, and

next hop. Fields are described in exactly the same way as parameters, i.e., they have

a “plabel” display name, a “ptype” variable type, and a “default” value. In this case,

the “prefix” field uses the special type “ipaddress,” which is a string representation of

an IP address in standard dotted decimal notation. The “mask” is a normal integer,

and the “nexthop” is another special type for passing next hop information that often

includes both an output port number and a next hop IP address. These three fields

are referred to explicitly in the commands that follow their declaration.

Route table entries for this specialization also have three per-entry commands. In

fact, all tables must define at least two per-entry commands: the add command

and the delete command. The RLI looks for these commands specifically within

the entry section for each table. Zero or more other commands can be added that

use or modify an existing table entry. As is often the case, the add and delete

commands for the route table in the Host specialization involve every field in the

table entry. For example, lines 50 through 53 describe the prefix parameter to be

sent to the Specialization Node Daemon with every add route command. Notice that

the “ptype” is “field”, meaning that the parameter refers to a previously defined

field with the same “plabel” as the parameter. The third per-entry command is the

“Update Nexthop” command, which is used to modify the “nexthop” value in an

existing table entry. The Specialization Node Daemon requires all three fields in

order to correctly execute the update command, so all three are once again included

as parameters. Also note that the first two parameters, the “prefix” and the “mask”

are not editable, but the “nexthop” parameter is editable by the user. The result

is that when a user selects a route table entry and chooses the “Update Nexthop”

command, the RLI generates a dialog box that shows the values of the “prefix” and

“mask” in a non-editable box. The “nexthop” is, of course, in an editable box in the

dialog. This ensures that the user only modifies the “nexthop” value as intended for

the command.

60

Figure 3.2: RLI screenshot of the configuration menu for the Host specialization of
the PC8core type.

Finally, the “display” section for the route table is contained on lines 97 through 106.

This section defines how the user will actually see each entry in the table. Recall from

line 28 that there are two columns in the displayed table. Each column has a title

defined in the “title” attribute for the column section, and consists of a series of one

or more fields and symbols. This table combines the “prefix” and “mask” fields into

a single column separated by a “/” thereby resulting in the standard CIDR notation

for a route.

Figure 3.2 is an RLI screenshot of a topology with a single node of this specialization

type. It is nearly identical to Figure 3.1. The only difference between the two is

that now there is a route table defined with the per-port configuration options for the

node, as expected from Listing 3.2. Note that the monitoring commands are available

in the specialization even though they were defined only in the base description. The

figure also contains a second window showing the actual route table for the node.

This particular route table shows two routes each with a nexthop that indicates all

matching packets should be sent out port 0.

To complete this example, all of the source code for the Specialization Node Daemon

for the Host specialization is provided in Appendix A. There are 6 C++ source

files that together contain 421 lines of code (including blank lines, comments, etc)

61

and that comprise all of the user-written code for this Specialization Node Daemon.

Every Specialization Node Daemon also relies on a shared C++ library that simplifies

the details of the messaging protocol and other processing tasks. The library is

provided to the user, and there is no need for the user to modify or even have a deep

understanding of the library source code.

3.2 NetFPGA

NetFPGAs [41] are particularly versatile networking platforms that can be used as

routers, switches, traffic generators, and anything else that NetFPGA developers can

build. The platform itself is a PCI card with a medium-sized FPGA (Xilinx Virtex

II Pro [77]) and 4x1 Gb/s network interfaces. Developed at Stanford University, the

NetFPGA has been widely adopted in both networking research and education. It

has also been available in the Open Network Laboratory for some time [73].

This section will describe how the NetFPGA can be used in ONL to fill three different

roles in the network. Each of these three examples relies on pre-existing NetFPGA

hardware designs and software. That is, no new NetFPGA functionality has been

added in order to build the specialization description and Specialization Node Dae-

mon. Before these specializations are discussed, the base description for the NetFPGA

is given.

3.2.1 NetFPGA Base Type

The base description for the NetFPGA is shown in Listing 3.3.

The NetFPGA base description is nearly identical to the one for the 8-core PC in

Listing 3.1. Indeed, only three lines in the description are different. Line 2 specifies

the type name to be “NetFPGA” rather than “PC8core.” Line 5 sets the default

“componentType” to “any.” Recall that this special value for the “componentType”

means that each node of this type could act as a “host,” “switch,” or “router.” The

RLI will thus ask the user to choose which of these behaviors to use as each NetFPGA

node is added to their topology. Lastly, line 44 indicates that this type has four 1 Gb/s

62

1 <?xml version="1.0"?>
2 <hardware typeName="NetFPGA" version="1">
3 <clusterOnly>false</clusterOnly>
4 <daemon>3551</daemon>
5 <componentType>any</componentType>
6 <fields/>
7 <init opcode="0" numParams="1">
8 <displayLabel>UserDaemonPath</displayLabel>
9 <description>UserDaemonPath</description>

10 <param editable="true">
11 <plabel>path</plabel>
12 <ptype>string</ptype>
13 </param>
14 </init>
15 <commands/>
16 <monitoring>
17 <command opcode="62" numParams="2">
18 <displayLabel>UserData</displayLabel>
19 <description>user data read from file</description>
20 <units>unknown</units>
21 <param editable="true">
22 <plabel>file</plabel>
23 <ptype>string</ptype>
24 </param>
25 <param editable="true">
26 <plabel>field</plabel>
27 <ptype>int</ptype>
28 </param>
29 </command>
30 <command opcode="63" numParams="2">
31 <displayLabel>UserDataTS</displayLabel>
32 <description>user data read from file with time stamp</description>
33 <units>unknown</units>
34 <param editable="true">
35 <plabel>file</plabel>
36 <ptype>string</ptype>
37 </param>
38 <param editable="true">
39 <plabel>field</plabel>
40 <ptype>int</ptype>
41 </param>

Listing 3.3: (a) NetFPGA.hw; the base description for the NetFPGA.

63

42 </command>
43 </monitoring>
44 <ports numPorts="4" interfaceType="1G">
45 <fields/>
46 <commands/>
47 <monitoring/>
48 </ports>
49 </hardware>

Listing 3.3: (b) NetFPGA.hw; the base description for the NetFPGA.

ports instead of the one 10 Gb/s port available for the 8-core PC. Otherwise, all the

initialization parameters and monitoring commands are the same for the NetFPGA

as for the 8-core PC.

3.2.2 NetFPGA Ethernet Switch Specialization

The first example specialization for the NetFPGA is an Ethernet switch. Standard

Ethernet switches require no special configuration, and the NetFPGA version is no

different. As such, the specialization is relatively simple. There are no configura-

tion commands and the only monitoring commands are per-port packet counters.

Listing 3.4 is the specialization description for the NetFPGA Ethernet switch.

The associated Specialization Node Daemon simply loads the existing Ethernet switch

code onto the NetFPGA at start time. It then reads counters on the NetFPGA to

get the per-port packet receive and transmit counts.

The top of Figure 3.3 shows an Ethernet network topology with 5 NetFPGAs acting

as Ethernet switches, 5 virtual Ethernet switches, and 25 PCs. The 5 small ovals are

the virtual Ethernet switches and the 5 larger circles are the NetFPGAs. The PCs

in this case are single-core PCs running an end host specialization similar to the one

described above for 8-core PCs. The bottom of the figure shows a chart monitoring

packet rates through the Ethernet switch in the middle of the topology when there

are many flows traversing the network.

64

1 <?xml version="1.0"?>
2 <subtype typeName="Ethernet Switch" version="1">
3 <hwType typeName="NetFPGA">
4 <resource>NetFPGA.hw</resource>
5 </hwType>
6 <componentType>switch</componentType>
7 <fields/>
8 <init opcode="0" numParams="1">
9 <displayLabel>UserDaemonPath</displayLabel>

10 <description>UserDaemonPath</description>
11 <param editable="true">
12 <plabel>path</plabel>
13 <ptype>string</ptype>
14 <default>/users/onl/netfpga/ethernet_switch</default>
15 </param>
16 </init>
17 <commands/>
18 <monitoring/>
19 <ports>
20 <fields/>
21 <commands/>
22 <monitoring>
23 <command opcode="100" numParams="0">
24 <displayLabel>RXPKT</displayLabel>
25 <description>read rx packet count</description>
26 <units>packets</units>
27 </command>
28 <command opcode="101" numParams="0">
29 <displayLabel>TXPKT</displayLabel>
30 <description>read tx packet count</description>
31 <units>packets</units>
32 </command>
33 </monitoring>
34 </ports>
35 </subtype>

Listing 3.4: NetFPGA-EthernetSwitch.shw; Ethernet switch specialization for the
NetFPGA.

65

Figure 3.3: An Ethernet network with real-time packet counts from one NetFPGA
Ethernet switch.

66

3.2.3 NetFPGA IPv4 Router Specialization

The second example NetFPGA specialization is an IPv4 router. The specialization

description is given in Listing 3.5. This specialization is remarkably similar to the

host specialization for the 8-core PC. The only significant difference is that the “com-

ponentType” is set to “router” here, instead of “host.”

Figure 3.4 shows an example using this specialization that might be seen in an in-

troductory networking course. The user’s topology is shown on the left of the figure.

The 4 port device at the bottom right of the central “square” is a NetFPGA running

the IPv4 router specialization. The 8 port device above it is an NSP and the 5 port

devices to the left are NPRs. The small ovals connected to each of the routers are

virtual Ethernet switches. The other symbols are hosts.

In this example, the user is studying TCP dynamics over a shared bottleneck link.

Three TCP flows are sent from hosts in the bottom left of the topology to hosts in the

bottom right across the link from the NPR to the NetFPGA. Two of the flows share

an outgoing queue at the bottleneck link and the third flow has its own queue. The

link capacity is set at 500 Mb/s, the shared queue is 1 MB in size, and the non-shared

queue is 500 KB in size. The first flow is a long-lived flow, the second is a medium

length flow, and the third is a short flow.

The top right of Figure 3.4 shows the throughput seen by each flow and the bottom

right shows the queue lengths at the bottleneck. The first flow consumes the entire

bottleneck capacity in the absence of other traffic. Once the second flow begins, the

two attempt to converge to a fair share of the link, but the third flow begins before

they reach it. The NPR is using a typical Weighted Deficit Round Robin scheduler.

The user has configured the two queues to receive an equal share of the capacity by

setting their scheduling quanta to be the same. The result is that the third flow gets

250 Mb/s of the 500 Mb/s link because it is the only flow in its queue, and the first

two share the remaining 250 Mb/s because they are sharing a queue.

67

1 <?xml version="1.0"?>
2 <subtype typeName="IPv4Router" version="1">
3 <hwType typeName="NetFPGA">
4 <resource>NetFPGA.hw</resource>
5 </hwType>
6 <componentType>router</componentType>
7 <fields/>
8 <init opcode="0" numParams="1">
9 <displayLabel>UserDaemonPath</displayLabel>

10 <description>UserDaemonPath</description>
11 <param editable="true">
12 <plabel>path</plabel>
13 <ptype>string</ptype>
14 <default>/users/onl/netfpga/ipv4_router</default>
15 </param>
16 </init>
17 <commands/>
18 <monitoring/>
19 <ports>
20 <fields/>
21 <commands/>
22 <monitoring/>
23 <tables>
24 <routeTable title="RouteTable">
25 <fields/>
26 <commands/>
27 <monitoring/>
28 <entry name="route" numFields="3" numColumns="2" enable="false">
29 <fields>
30 <field editable="true">
31 <plabel>prefix</plabel>
32 <ptype>ipaddress</ptype>
33 <default>0.0.0.0</default>
34 </field>
35 <field editable="true">
36 <plabel>mask</plabel>
37 <ptype>int</ptype>
38 <default>32</default>
39 </field>
40 <field editable="true">
41 <plabel>nexthop</plabel>
42 <ptype>nexthop</ptype>
43 <default>0</default>
44 </field>

Listing 3.5: (a) NetFPGA-IPv4Router.shw; IPv4 router specialization for the NetF-
PGA.

68

45 </fields>
46 <commands>
47 <addCommand opcode="73" numParams="3">
48 <displayLabel>AddRoute</displayLabel>
49 <description>add_route</description>
50 <param editable="true">
51 <plabel>prefix</plabel>
52 <ptype>field</ptype>
53 </param>
54 <param editable="true">
55 <plabel>mask</plabel>
56 <ptype>field</ptype>
57 </param>
58 <param editable="true">
59 <plabel>nexthop</plabel>
60 <ptype>field</ptype>
61 </param>
62 </addCommand>
63 <deleteCommand opcode="75" numParams="3">
64 <displayLabel>DeleteRoute</displayLabel>
65 <description>delete route</description>
66 <param editable="false">
67 <plabel>prefix</plabel>
68 <ptype>field</ptype>
69 </param>
70 <param editable="false">
71 <plabel>mask</plabel>
72 <ptype>field</ptype>
73 </param>
74 <param editable="false">
75 <plabel>nexthop</plabel>
76 <ptype>field</ptype>
77 </param>
78 </deleteCommand>
79 <command opcode="74" numParams="3">
80 <displayLabel>Update Nexthop</displayLabel>
81 <description>update route’s next hop</description>
82 <param editable="false">
83 <plabel>prefix</plabel>
84 <ptype>field</ptype>
85 </param>
86 <param editable="false">
87 <plabel>mask</plabel>
88 <ptype>field</ptype>
89 </param>

Listing 3.5: (b) NetFPGA-IPv4Router.shw; IPv4 router specialization for the NetF-
PGA.

69

90 <param editable="true">
91 <plabel>nexthop</plabel>
92 <ptype>field</ptype>
93 </param>
94 </command>
95 </commands>
96 <monitoring/>
97 <display>
98 <column title="prefix/mask" width="120">
99 <fieldName>prefix</fieldName>

100 <symbol>/</symbol>
101 <fieldName>mask</fieldName>
102 </column>
103 <column title="nexthop" width="50">
104 <fieldName>nexthop</fieldName>
105 </column>
106 </display>
107 </entry>
108 </routeTable>
109 </tables>
110 </ports>
111 </subtype>

Listing 3.5: (c) NetFPGA-IPv4Router.shw; IPv4 router specialization for the NetF-
PGA.

70

Figure 3.4: An IPv4 network featuring three different types of routers.

71

3.2.4 NetFPGA Traffic Generator Specialization

The final example specialization for the NetFPGA is a packet generator [20]. NetF-

PGAs are an excellent platform for traffic generation as they are able to produce line

rate traffic on all four ports for packets of any size. This packet generator is trace-

based, i.e., it builds and sends packets based on previously recorded data. In this

case, packets are specified in the standard PCAP file format used by many network

monitoring tools. The specialization description for the NetFPGA packet generator

is shown in Listing 3.6.

As the listing shows, this specialization supports two commands. The first is a per-

port command that is used to set the packet generation parameters. Each of the

four ports is used independently, and there are four parameters needed to configure

each port: the packet trace file, the rate to send packets, the number of iterations

through the trace file, and the inter-packet delay. Note that the packet rate and

inter-packet delay are related and so one of the two must be set while the other

must be “-1.” The second command is the “SendPackets” command that tells the

NetFPGA to begin sending packets based on the per-port configuration commands.

The per-port configuration parameters are retained across multiple invocations of the

“SendPackets” command, but can be modified at any time or removed by setting the

trace file parameter to the empty string.

An example user session utilizing the NetFPGA packet generator specialization is

shown in Figure 3.5. For this example, NetFPGA packet generators are used to

stress test the NPR capabilities. The topology is given in the top of the figure. There

are actually two separate networks in this configuration. The one on the left is used to

generate the packet traces needed for the packet generator, and the one on the right is

used to perform the actual stress test. To generate the traces, the hosts send packets

via normal socket programs and the user runs tcpdump on the nodes to record the

packet streams.

The bottom of Figure 3.5 shows the results from one particular stress test. The NPR

natively supports IP multicast (details in the next section), and this test is meant to

determine if the packet fanout has any effect on peak output rate for minimum size

packets. The fanout is the replication factor for each incoming packet. Four sets of

72

1 <?xml version="1.0"?>
2 <subtype typeName="PacketGenerator" version="1">
3 <hwType typeName="NetFPGA">
4 <resource>NetFPGA.hw</resource>
5 </hwType>
6 <componentType>host</componentType>
7 <fields/>
8 <init opcode="0" numParams="1">
9 <displayLabel>UserDaemonPath</displayLabel>

10 <description>UserDaemonPath</description>
11 <param editable="true">
12 <plabel>path</plabel>
13 <ptype>string</ptype>
14 <default>/users/onl/netfpga/packet_generator</default>
15 </param>
16 </init>
17 <commands>
18 <command opcode="100" numParams="0">
19 <displayLabel>SendPackets</displayLabel>
20 <description>send packets based on set trace parameters</description>
21 </command>
22 <monitoring/>
23 <ports>
24 <fields/>
25 <commands>
26 <command opcode="101" numParams="4">
27 <displayLabel>SetTraceParams</displayLabel>
28 <description>set packet trace parameters</description>
29 <param editable="true">
30 <plabel>trace_file</plabel>
31 <ptype>string</ptype>
32 </param>
33 <param editable="true">
34 <plabel>pkt_rate_kbps</plabel>
35 <ptype>int</ptype>
36 <default>100</default>
37 </param>
38 <param editable="true">
39 <plabel>num_iterations</plabel>
40 <ptype>int</ptype>
41 <default>1</default>
42 </param>

Listing 3.6: (a) NetFPGA-PacketGenerator.shw; Packet generation specialization for
the NetFPGA.

73

43 <param editable="true">
44 <plabel>inter_pkt_delay_ns</plabel>
45 <ptype>int</ptype>
46 <default>-1</default>
47 </param>
48 </command>
49 </commands>
50 <monitoring/>
51 </ports>
52 </subtype>

Listing 3.6: (b) NetFPGA-PacketGenerator.shw; Packet generation specialization for
the NetFPGA.

Figure 3.5: Utilizing a NetFPGA to stress test a router.

74

traffic are sent to the NPR in succession. The first set has a fanout of one, meaning

that each input packet is sent out one other port. The second set has a fanout of

two, the third has a fanout of three, and the last has a fanout of four. In each case,

the total input rate is set so that the total output rate would be 5 Gb/s if the router

dropped no packets, and the input and output rates are each shared equally by all 5

ports. The chart shows the aggregate input rate (solid line) and output rate (dashed

line) at the router. In each test, the output rate is around 3 Gb/s, showing that the

fanout has little effect on the eventual output rate. Other tests confirm that the peak

forwarding rate for minimum size packets is around 3 Gb/s for unicast traffic as well.

3.3 IXP

The final type described in this chapter is the Intel IXP 2800 [1]. The IXP 2800,

like most network processors, is designed specifically for rapid development of high

performance networking applications. The Open Network Laboratory uses one spe-

cific IXP-based platform. The Radisys ATCA-7010 [56] is a server blade that uses

ATCA-based technology, which is an industry standard for networking components

that has broad industry support. ATCA technology is also proving to be a boon to

networking research, as it enables the assembly of powerful, yet highly flexible exper-

imental networking platforms. Each Radisys ATCA-7010 board has two IXP 2800s,

a shared TCAM, and ten 1 Gb/s data interfaces. In our context, we use the two IXPs

as separate five port nodes, assigning five of the data interfaces to each IXP.

The base description for the IXP is shown in Listing 3.7. Once again, the base

description is very similar to the previous base descriptions. The IXP, like the NetF-

PGA, has a default “componentType” of “any” as it could easily be used to fill many

different roles in the network. The only other noteworthy difference is that the “clus-

terOnly” field is set to “true” for the IXP. This is because one physical ATCA board

is being treated as two separate IXP nodes and so each pair must be allocated to-

gether. Currently, the RLI includes some IXP-specific code to handle this additional

requirement.

Before moving on to describe the IPv4 router specialization of the IXP, some addi-

tional architectural details about the IXP 2800 are given. In general, the IXP has

75

1 <?xml version="1.0"?>
2 <hardware typeName="IXP" version="1">
3 <clusterOnly>true</clusterOnly>
4 <daemon>3551</daemon>
5 <componentType>any</componentType>
6 <fields/>
7 <init opcode="0" numParams="1">
8 <displayLabel>UserDaemonPath</displayLabel>
9 <description>UserDaemonPath</description>

10 <param editable="true">
11 <plabel>path</plabel>
12 <ptype>string</ptype>
13 </param>
14 </init>
15 <commands/>
16 <monitoring>
17 <command opcode="62" numParams="2">
18 <displayLabel>UserData</displayLabel>
19 <description>user data read from file</description>
20 <units>unknown</units>
21 <param editable="true">
22 <plabel>file</plabel>
23 <ptype>string</ptype>
24 </param>
25 <param editable="true">
26 <plabel>field</plabel>
27 <ptype>int</ptype>
28 </param>
29 </command>
30 <command opcode="63" numParams="2">
31 <displayLabel>UserDataTS</displayLabel>
32 <description>user data read from file with time stamp</description>
33 <units>unknown</units>
34 <param editable="true">
35 <plabel>file</plabel>
36 <ptype>string</ptype>
37 </param>
38 <param editable="true">
39 <plabel>field</plabel>
40 <ptype>int</ptype>
41 </param>

Listing 3.7: (a) IXP.hw; the base description for the IXP 2800.

76

42 </command>
43 </monitoring>
44 <ports numPorts="5" interfaceType="1G">
45 <fields/>
46 <commands/>
47 <monitoring/>
48 </ports>
49 </hardware>

Listing 3.7: (b) IXP.hw; the base description for the IXP 2800.

some unusual architectural features relative to general purpose processors that heavily

influence how it is used.

Figure 3.6 is a block diagram showing the major components of the IXP. To enable

high performance, while still providing application flexibility, there are 16 multi-

threaded MicroEngine (ME) cores that are responsible for the majority of the packet

processing in the system. Each ME has eight hardware thread contexts (i.e., eight

distinct sets of registers). Only a single thread is active at any given time on one

ME, but context switching takes a mere 2-3 clock cycles (about 1.5-2 ns). These

threads are the mechanism by which IXP applications deal with the memory latency

gap. Indeed, there are no caches in the IXP because caches are not particularly

effective for networking applications that exhibit poor locality-of-reference. There is

no thread preemption, so a cooperative programming model must be used. Typically,

threads pass control from one to the next in a simple round-robin fashion. This

is accomplished using hardware signals, with threads commonly yielding control of

the processor whenever they need to access memory that is not local to the ME.

This round-robin style of packet processing also provides a simple way to ensure that

packets are forwarded in the same order they are received. Finally, each ME has a

small hardware FIFO connecting it to one other ME, which enables a fast pipelined

application structure. These FIFOs are known as next neighbor rings.

The IXP 2800 also comes equipped with 3 DRAM channels and 4 SRAM channels.

There is an additional small segment of data memory local to each ME along with

a dedicated program store with a capacity of 8K instructions. A small, shared on-

chip scratchpad memory is also available. Generally, DRAM is used only for packet

buffers. SRAM contains packet meta-data, ring buffers for inter-block communication,

and large system tables. In our systems, one of the SRAM channels also supports a

77

Figure 3.6: Basic block diagram representation of the IXP 2800 [66].

TCAM, which is used for IP route lookup and packet classification. The scratchpad

memory is used for smaller ring buffers and tables.

Finally, there is an (ARM-based) XScale Management Processor, labeled “MP” in

Figure 3.6, that is used for overall system control and any tasks that are not handled

by the rest of the data path. The XScale can run a general-purpose operating system

like Linux or a real-time operating system like VxWorks. Libraries exist that provide

applications on the XScale direct access to the entire system, including all memory

and the MEs.

3.4 Network Processor-based Router Specializa-

tion for the IXP

Unfortunately, Network Processors (NPs) like the IXP pose significant challenges to

research users. While network equipment vendors can afford to invest significant time

and effort into developing NP software, it is more difficult for academic researchers

to develop and maintain the necessary expertise. There are several reasons that NPs

78

are challenging to use. First, it can be difficult to obtain NP-based products, since

manufacturers of those products sell primarily to equipment vendors and not to end

users. Second, developing software for NPs is challenging because it requires pro-

gramming for parallel execution, something most networking researchers have limited

experience with, and because it requires taking advantage of hardware features that

are unfamiliar and somewhat idiosyncratic. Third, there is no established base of

existing software on which to build, forcing researchers to largely start from scratch.

The Network Processor-based Router (NPR) was designed, implemented and de-

ployed in order to address these challenges. The NPR is relatively easy to use and

can be readily extended through the addition of software plugins. All standard router

tasks such as route lookup, packet classification, queue management, and traffic moni-

toring are handled natively, which enables users to focus on new network architectures

and services without the need to develop an entire router from the ground up. In

addition, a plugin environment is provided with significant processing and memory re-

sources, and an API that implements common functions needed by most users. This

makes it possible for users to develop plugins for non-trivial network experiments

without having to write a substantial amount of new code.

This section will describe the NPR in detail. The NPR specialization description is

too large to include directly here, but it is given in Appendix B.

3.4.1 Data Plane

The software organization and data flow for the NPR are shown in Figure 3.7. Note

the allocation of MEs to different software components. The main data flow pro-

ceeds in a pipelined fashion starting with the Receive block (Rx) and ending with the

Transmit block (Tx). Packets received from the external links are transferred into

DRAM packet buffers by Rx. Rx allocates a new buffer for each incoming packet and

passes a pointer to that packet to the next block in the pipeline, along with some

packet meta-data. In order to best overlap computation with high latency DRAM

operations, Rx processing is broken up into two stages with each stage placed on a

separate ME. Packets flow from the first stage to the second over the next neighbor

ring between the MEs.

79

Figure 3.7: Data plane of the NPR.

Note that, in general, the information passed between blocks in the diagram consists of

packet references and selected pieces of header information, not packet data. Thus,

packets are not copied as they move (logically) from block to block. Each block

can access the packet in DRAM using its buffer pointer, but since DRAM accesses

are relatively expensive, the system attempts to minimize such accesses. Also note

that most blocks operate with all eight threads running in the standard round-robin

fashion.

The Multiplexer block (Mux) serves two purposes. Each packet buffer in DRAM has an

associated 32B entry in SRAM that stores some commonly needed information about

the packet, such as the packet length. Mux initializes this meta-data for packets

coming from Rx. Its second function is to multiplex packets coming from blocks

other than Rx back into the main pipeline. This includes packets coming from the

XScale and packets coming from plugins. A simple user-configurable priority is used

to determine how to process packets from the different sources.

The Parse, Lookup, and Copy block (PLC) is the heart of the router. Here, packet

headers are inspected to form a lookup key that is used to find matching routes or

filters in the TCAM. Routes and filters are added by the user, and will be discussed

further in Section 3.4.3. Based on the result of the TCAM lookup, PLC takes one

of five actions. First, the packet can be sent out towards the external links via the

Queue Manager block (QM). Second, the packet can be sent to the XScale if it has

80

some special processing needs not handled by the ME pipeline. Third, the packet

can be sent to a plugin ME (hosting user code). Plugins will be discussed fully in

Section 3.4.3, but, as can be seen in Figure 3.7, plugins will be able to forward packets

to many other blocks including the QM, Mux, and other plugins. Fourth, the packet

can be dropped. Finally, multiple references to the same packet can be generated and

sent to distinct destinations. For example, one reference may be sent to a plugin and

another directly to the QM. In fact, this mechanism allows the base router to support

IP multicast (among other things). Reference counts are kept with the packet meta-

data in SRAM to ensure that the packet resources are not reclaimed prematurely.

Note that this does not allow different “copies” to have different packet data because

there is never more than one actual copy of the packet in the system.

Before moving on, it is worth discussing the design choices made for PLC. Three

MEs all run the entire PLC code block with all 24 threads operating in a round-robin

fashion. One alternative would be to break up the processing such that Parse is

implemented on one ME, Lookup on a second, and Copy on a third. Our experience

shows that the integrated approach chosen here yields higher performance. This is

primarily due to the nature of the operations in PLC. To form the lookup key, Parse

alternates between computation and high latency DRAM reads of packet headers,

and Lookup spends most of its time waiting on TCAM responses. On the other

hand, Copy is computation-bound due to the potentially complex route and filter

results that must be interpreted. Combining all three blocks together provides enough

computation for each thread to adequately cover the many memory operations.

Continuing down the main router pipeline, the QM places incoming packets into one

of 8K per-interface queues. A weighted deficit round robin scheduler (WDRR) is used

to pull packets back out of these queues to send down the pipeline. In fact, there is

one scheduler for each external interface, servicing all the queues associated with that

interface. Each queue has a configurable WDRR quantum and a configurable discard

threshold. When the number of bytes in the queue exceeds the discard threshold,

newly arriving packets for that queue are dropped. The QM has been carefully

designed to get the best possible performance using a single ME. The design uses

six threads. One handles all enqueue operations, and each of the remaining five

implements the dequeue operations for one outgoing interface. This decouples the

two basic tasks and enables the QM to achieve high throughput.

81

Following the QM is the Header Format block (HF) that prepares the outgoing Eth-

ernet header information for each packet. It is responsible for ensuring that multiple

copies of a packet (that have potentially different Ethernet source addresses) are han-

dled correctly. Finally, the Transmit block (Tx) transfers each packet from the DRAM

buffer, sends it to the proper external link, and deallocates the buffer.

There are two additional blocks that are used by all the other blocks in the router. The

first is the Freelist Manager block (FM). Whenever a packet anywhere in the system is

dropped, or when Tx has transmitted a packet, the packet reference is sent to the FM.

The FM then reclaims the resources associated with that packet (the DRAM buffer

and the SRAM meta-data) and makes them available for re-allocation. The Statistics

block (Stats) keeps track of various counters through-out the system. There are a

total of 64K counters that can be updated as packets progress through the router.

Other blocks in the system issue counter updates by writing a single word of data

to the Stats ring buffer, which includes the counter to be updated and increment

to be added. For example, there are per-port receive and transmit counters that

are updated whenever packets are successfully received or transmitted, respectively.

There are also counters for each route or filter entry that are updated both before

and after matching packets are queued in the QM. This provides a fine-grained view

of packet flow in the router. The counters all ultimately reside in SRAM, but there

are 192 counters that are also cached locally in the Stats ME. One thread periodically

updates the SRAM counterparts to these counters while the other threads all process

update requests from the ring buffer.

The final block in the diagram is the XScale. The primary purpose of the XScale is

to control the operation of the data plane, as discussed in detail in the next section.

However, the XScale also plays a small role in the data plane. Specifically, it handles

any IP control packets and other exceptional packets. This includes all ICMP and

ARP handling as defined by the standard router RFCs. All messages generated by

the XScale are sent back through Mux to PLC, allowing users to add filters to redirect

these packets to plugins for special processing, should they desire to do so.

82

Figure 3.8: Control plane of the NPR.

3.4.2 Control Plane

The XScale’s main function is to control the entire router and act as the intermediary

between the user and the data plane. This is accomplished by a user-space control

daemon running under Linux on the XScale. Libraries provided by Intel are used to

manage the MEs and the memory in the router, and a library provided by the TCAM

vendor contains an API for interacting with the TCAM. Figure 3.8 summarizes the

most important roles of the XScale daemon. Messages come from the user to request

certain changes to the system configuration. Typically the first such request is to

start the router, which involves loading all the base router code (i.e., everything

except plugins) onto the MEs and enabling the threads to run. Once the data path

has been loaded successfully, there are several types of control operations that can be

invoked.

The first of these involves configuration of routes and filters, which are discussed

in detail in Section 3.4.3. The XScale also supports run-time configuration of some

data plane blocks, by writing to pre-defined control segments in SRAM. For example,

queue thresholds and quanta used by the QM can be dynamically modified by the

user in this way.

The XScale also provides mechanisms to monitor the state of the router. All of the

counters in the system are kept in SRAM, which allows the XScale to simply read the

memory where a certain counter is stored to obtain the current value. These values

can be sampled periodically in order to drive real-time displays of packet rates, queue

83

lengths, drop counters, etc. The system can support dozens of these ongoing requests

concurrently.

All plugin operations are also handled by the XScale. In particular, this involves

adding and removing user-developed plugin code on the plugin MEs and passing con-

trol messages from the user to the plugins after they are loaded. The control messages

are forwarded by the XScale through per-plugin rings, and replies are returned in a

similar way. The XScale is oblivious to the content of these control messages, allowing

users to define whatever format and content is most appropriate for their applications.

Plugins can also effect changes to the router by sending requests through these rings

to the XScale. Once a plugin is loaded, users can add filters to direct specific packet

flows to the plugin.

3.4.3 Programmability

Now that the basics of the NPR have been covered, we turn our attention to the

progammable components of the router. There are two primary facets of the overall

programmability of the NPR: plugins and filters. Together they provide users a rich

selection of options with which to customize processing and packet flow in the NPR.

Plugin Framework

Recall from Figure 3.7 that five MEs are used to host plugins. NPR users are free to

load any combination of code blocks onto these MEs. In addition to the five MEs,

there are five ring buffers leading from PLC to the plugins which can be used in

any combination with the MEs. For example, each plugin may pull packets from a

separate ring (this is the default behavior) or any subset of plugins may pull from

the same ring. The ring buffers, then, are a level of indirection that adds versatility

to potential plugin architectures. The NPR also sets aside 4KB of the scratchpad

memory and 5MB of SRAM exclusively for plugin use.

84

The actual processing done by any particular plugin is entirely up to the plugin

developer. Plugins are written in MicroEngine C, which is the standard C-like lan-

guage provided by Intel for use on MEs. The most important differences between

MicroEngine C and ANSI C are dictated by the IXP architecture. First, there is no

dynamic memory allocation or use because there is no OS or other entity to manage

the memory. Second, all program variables and tables must be explicitly declared

to reside in a particular type of memory (registers, ME local memory, scratchpad,

SRAM, DRAM) as there is no caching. Finally, there is no stack and hence no recur-

sion. Also recall from the IXP review that the eight hardware contexts share control

explicitly (no preemption).

To help users who are unfamiliar with this programming environment, we have de-

veloped a framework that lowers the entry barrier for writing simple to moderately

complex plugins. Our framework consists of a basic plugin structure that handles

tasks common to most plugins and a plugin API that provides many functions that

are useful for packet processing.

In the basic plugin structure, there are three different types of tasks to which the

eight threads are statically assigned at plugin compile time. The first of these tasks

deals with packet handling. The framework takes care of pulling packets from the

incoming ring buffer and then calls a user supplied function to do the actual plugin

processing. When the function returns, the packet is pushed into the outgoing ring.

As can be seen in Figure 3.7, the packet can be sent back to MUX that results in the

packet being matched against routes and filters in the TCAM a second time. This is

useful if something in the packet, such as the destination IP address, has changed and

the packet might need to be re-routed. Alternatively, the plugin can send the packet

directly to the QM so that it will be sent out to the external links. Packets can also

be redirected to the next plugin ME via the next neighbor rings. In fact, although it

is not shown in the figure to avoid confusion, plugins even have the ability to send

packets to any other plugin ME by writing directly to the five ring buffers leading

from PLC to the plugins.

The second type of task is the periodic task. Some plugins may need to do processing

that is not dictated purely by packet arrivals. In such cases, plugin developers can

assign threads to the periodic task that has the thread sleep for a configurable time

85

and then call another user provided function to do the periodic processing. The last

type of task is the control task, first mentioned in Section 3.4.2. This provides a

mechanism for plugins to receive and respond to control messages from the RLI. As

an example, we have a plugin that delays packets by N ms, where N can be set via a

control message. These messages and their responses go through per-plugin control

ring buffers as shown in Figure 3.8. These rings are also used for plugins to request

modifications to the system outside the plugin MEs. Such requests are processed by

the XScale and allow plugins to modify queue parameters, add or remove routes and

filters, and even add or remove plugin code from other plugin MEs.

To support plugin developers, we provide a plugin API. The API consists of helper

functions for common packet processing steps as well as functions that hide some of

the complexity of interacting with packets and packet meta-data.

Filters

In order to actually get packets to plugins, filters are installed to direct packet flows

to specific destinations in the router. More generally, filters are used to modify

default behavior of the router by superseding standard IP routing. As mentioned

in Section 3.4.1, filters and routes are stored in the TCAM. Routes are simpler and

used only for standard IP routing. That is, the packet’s destination IP address is

compared to the route database and the longest matching address prefix is returned.

The result also contains the external interface that the packet should be forwarded

on. Each NPR supports 16K routes.

Filters are more general than routes and include more fields in the lookup key and

more options for the action to be taken. Figure 3.9 shows a screenshot of the dialog

box provided by the RLI for adding filters. In general, the fields in the top half of the

window constitute the lookup key and those in the bottom half describe what should

happen to any matching packets. Each key field can be specified as a particular value

or as “*,” which means that any value for that field should match. An expanded

version of the standard IP 5-tuple forms the core of the lookup key, including source

and destination IP address ranges, source and destination transport protocol ports,

and the IP protocol. For TCP packets, the TCP state flags are also part of the key

86

Figure 3.9: Adding a filter in the RLI.

allowing filters to match particular parts of TCP flows. The plugin tag is a 5 bit

field that plugins can modify to force different matches to occur on any subsequent

passes the packet takes through PLC. Finally, there are the exception bits that allow

exceptional traffic, such as packets with a Time-to-Live of 0, to be matched and

potentially handled in some way other than the default. In this particular example,

the beginning of any HTTP flow from hosts in the 192.168.0.0/16 subnet going to

192.168.1.64 will be matched. Note that the TCP flags indicate only TCP SYN

packets (and not SYN-ACKs) will match. This works by setting the tcpflags mask to

be all ones, i.e., all flags must match exactly. Then, only the second bit (the SYN

bit) is set in the actual tcpflags field.

The rest of the fields determine exactly what happens to packets that match the filter.

The most important fields are port plugin selection, output ports, and output plugins

because they determine whether or not the matching packets will go directly to the

QM or to a plugin. In the figure, the filter is configured to send the packets to plugin

2. The output ports field is part of the data that is passed to the plugin as well, so

that the plugin knows where to send the packet next (if it decides to forward the

87

packet). Note that the output plugins field actually refers to the ring buffer leading

by default to that plugin ME, but any plugin is capable of reading from any of the

five rings, so plugin developers are free to configure plugins to process packets from

the ring buffers in other ways as well. The multicast field can be set if multiple copies

of the packet are desired. In that case, any combination of ports and plugins can be

set in the output ports and output plugins fields, and copies will be sent by PLC to

each of the specified destinations. The qid determines which of the 8K per-interface

queues the packet enters when it reaches the QM. In the event of multiple copies,

each copy will go into the same numbered queue for whichever interface it is destined.

Users can also specify that all matching packets should be dropped by selecting the

drop field.

There are actually two different filter types in the NPR, differentiated by the selection

of the aux field. If the field is not set, the filter is called a primary filter, and if it is,

an auxiliary filter. The lookup key fields and actions all have the same meaning for

either type, but auxiliary filters cause an additional reference to the matching packet

to be created by PLC and sent to the destination contained in the auxiliary filter.

This means that auxiliary filters represent a separate set of potential matches. On the

other hand, primary filters are logically in the same set of potential matches as routes.

This is where the priority field in the filter comes into play. All routes are assigned the

same priority while each filter has its own priority. When a packet matches multiple

primary filters, the highest priority filter is considered to be the matching one, unless

the route priority is higher. In that case, the matching route is used to determine

how the packet is forwarded. For auxiliary filters, the highest priority auxiliary filter

is considered to be a match. Although matching packets against filters with priorities

can potentially be fairly complex, the TCAM allows us to lay out all routes and filters

in such a way that higher priority entries (and longer prefixes for routes) come first in

the TCAM tables and are thus the first match returned when the TCAM is queried.

The end result is that a single packet can match one primary filter or route, and one

auxiliary filter. This can be quite useful if the user wishes to have passive plugins

that monitor certain packet streams without disturbing the normal packet flow. Each

NPR supports 32K primary filters and 16K auxiliary filters.

88

3.4.4 Example Plugins

To provide a more concrete view of the capabilities of the NPR plugin environment,

we now describe three example plugins that have been written and tested in the

router.

Network Statistics

The first example is a simple plugin that keeps a count of how many packets have

arrived with different IP protocols. The code written by the developer is shown in

Listing 3.8 and consists mostly of API calls to read the IPv4 header from the packet

in DRAM. First, the packet reference is filled in from the input ring data by calling

api_get_pkt_ref(). The packet itself resides in a 2KB DRAM buffer with the be-

ginning of the packet header at some offset into that buffer (to accommodate packets

that may increase in size). The offset is part of the meta-data for that packet, so the

second step is to read the meta-data using api_read_meta_data(). Once we have

the offset, api_get_ip_hdr_ptr() is called to calculate the address of the IP header.

api_read_ip_hdr() reads the header into a local struct, which grants easy access

to the header fields. Finally, based on the IP protocol one of four different plugin-

specific counters is incremented with api_increment_counter(). These counters

can be monitored easily in the RLI so that the user can see, in real time, how many

packets of each type are passing through the plugin. The plugin does not explicitly

decide where packets should go next and so by default all packets will be sent to the

QM after leaving the plugin. This plugin has no need for periodic tasks or for control

messages from the RLI so all eight threads are devoted to handling packets as they

arrive.

Network Support for Distributed Games

Our next example is a system that provides network services in support of highly

interactive distributed games. The network provides support for a distributed collec-

tion of game servers that must share state information describing the current status

of various objects in the game world (e.g., user avatars, missiles, health packs, etc).

89

1 api_pkt_ref_t packetRef; // packet reference
2 api_meta_data_t metaData; // local copy of meta-data
3 unsigned int ipHdrPtr; // pointer to IP header (DRAM)
4 api_ip_hdr_t ipHdr; // local copy of IP header
5
6 api_get_pkt_ref(&packetRef);
7 api_read_meta_data(packetRef, &metaData);
8
9 ipHdrPtr = api_get_ip_hdr_ptr(packetRef,

10 metaData.offset);
11 api_read_ip_hdr(ipHdrPtr, &ipHdr);
12
13 switch(ipHdr.ip_proto)
14 {
15 case PROTO_ICMP: api_increment_counter(0); break;
16 case PROTO_TCP : api_increment_counter(1); break;
17 case PROTO_UDP : api_increment_counter(2); break;
18 default : api_increment_counter(3); break;
19 }

Listing 3.8: nstats.c; code for the network statistics plugin.

State update packets are distributed using a form of overlay multicast. These updates

are labeled with the game world region where the associated object is located and

each region is associated with a separate multicast data stream. Servers can subscribe

to different regions that are of interest to them, allowing them to control which state

updates they receive.

Figure 3.10 shows an example ONL session for the distributed game application. This

configuration uses 12 routers and 36 end systems acting as game servers, each sup-

porting up to 10 players. The routers in this system host two distinct plugins that im-

plement the region-based multicast. While it would have been possible to implement

this application using the built-in IP multicast support, the use of application-level

multicast frees the system from constraints on the availability of IP addresses, and

enables a very lightweight protocol for updating subscriptions, making the system

very responsive to player activity.

The first of our two plugins is a Multicast Forwarder that forwards the state update

packets sent by the game servers, and the second is a Subscription Processor. The

subscription state for each region in the game world is a bit vector specifying the

subset of the five outgoing links that packets with a given region label should be

90

Figure 3.10: Example topology for a distributed game application.

forwarded to. These bit vectors are stored as a one-dimensional array in SRAM,

which is shared by the two plugins. One megabyte of SRAM has been allocated to

these multicast bit vectors, allowing up to one million regions in the game world.

The subscription processor runs on one ME and handles subscription messages from

all router interfaces. A TCAM filter is configured for each of the router’s input ports,

directing all subscription packets to the subscription processor’s input ring. Each of

these messages contains one or more records with each record containing a join or a

leave request for one region. The subscription processor reads each of these records

from the packet in DRAM and updates the corresponding state in the subscription

bit vector. All eight threads are used to process subscription packets.

Four of the MEs are used to host multicast forwarders. These MEs share a single

input ring and process different packets in parallel. Altogether, 32 distinct packets

can be processed concurrently (using the eight hardware thread contexts in each ME).

A TCAM filter is configured for every port, to direct all state update traffic to the

shared input ring. To process a packet, the multicast forwarder reads the packet

header to determine which multicast stream the packet belongs to and then reads the

subscription bit vector for that region to determine which ports the packet should

be forwarded to. It then replicates the packet reference information as needed, and

forwards these packet references to the appropriate queues in the QM. Note that the

packets themselves are never copied.

91

Regular Expression Matching

The last and most complex example is a set of plugins that are used for high speed reg-

ular expression matching of packet data using Deterministic Finite Automata (DFAs).

These could be used for any application based on deep packet inspection, such as net-

work intrusion detection and content-based routing. The basic operation involves

following state transitions in a DFA for every input character received, where one

DFA encompasses many regular expressions. This topic has been studied extensively

and we take advantage of many state of the art techniques in our plugins.

Regular expression matching is a memory intensive application both in terms of mem-

ory and bandwidth. To reduce the space requirements, we utilize both default tran-

sition compression and alphabet reduction [10]. This allows us to fit more regular

expressions into the memory available to plugins. Another technique involves pat-

tern partitioning of the set of regular expressions to form multiple DFAs [78]. This

can reduce the overall space needs, but increases the memory bandwidth since all of

the DFAs have to be traversed for each input character. Fortunately, the hardware

threads available on the plugin MEs provide the necessary parallelism to support this

requirement.

As in the previous example, there are two types of plugins. The Packet Loader

prepares packets for the Matching Engines that actually run the DFAs. An auxiliary

filter directs a copy of every packet to the Packet Loader. This ensures that even if

our plugins fall behind in packet processing and potentially drop packets the actual

packet stream will remain unaffected. The Packet Loader reads the packet header

and passes the packet payload to the first Matching Engine through the next neighbor

ring between them.

Up to four Matching Engines can be added to run on the remaining MEs depending

on how many threads are needed. Figure 3.11 shows the design of the Matching

Engine. As discussed above, the regular expressions are partitioned to produce a

set of DFAs and each DFA is then run exclusively by one thread on one ME. One

thread on each Matching Engine is used for synchronization, so up to seven threads

can be processing DFAs. There is a one-to-one mapping of matching threads and

DFAs, meaning that each matching thread always processes packet data against one

92

Figure 3.11: Design of the Regular Expression Matching Engine.

particular DFA. Each packet is processed against all DFAs in order to determine if

there are any matches.

The synchronization thread has two tasks. The first is to read data from the incoming

next neighbor ring so that the local matching threads can access it, as well as passing

the data to the next Matching Engine if there is one. The thread’s main task is to

handle synchronization of packet data across the matching threads. Synchronization

is implemented through the use of a circular buffer stored in shared local memory.

The synchronization thread writes data to the buffer so that the matching threads

can read it. Each matching thread can then proceed through the buffer at its own

pace, and the synchronization thread ensures that data that has been processed by

all the threads is flushed.

Each matching thread invokes its DFA on the input data one character at a time.

Alphabet translation is first performed on the input character (the translation table

is stored in local memory). The next state is then found by traversing the DFA, and

processing continues with the next character. As is shown in Figure 3.11, the DFAs

are stored hierarchically in memory with some state information in the scratchpad

memory, some in SRAM, and some in DRAM. The memory layout is generated ahead

of time so that states more likely to be reached are stored in faster memory. The

figure also shows an example of the actual state information. Recall that we use

the default transition method noted above. Each state contains a small number of

labeled transitions and a default transition. If none of the labeled transitions are for

the current input character, the default transition is taken. The operational details

are given in [10].

93

Figure 3.12: Unicast throughput results for the NPR.

3.4.5 Performance

We include here a brief performance evaluation of the NPR as a baseline reference for

plugin developers. UDP flows consisting of equally sized packets were directed to the

router for aggregate input rates of up to 5 Gb/s, with input and output bandwidth

split equally among the five interfaces. Figure 3.12 shows the forwarding rate when

packets proceed directly through the main pipeline with no plugins installed. The

different curves represent the output rate for flows of different packet sizes, where

the labels indicate the UDP payload size of the packets. Note that the input and

output rates are reported relative to the external interfaces. As such, an input rate

of 5000 Mb/s means that all five input links are completely saturated.

For packets with UDP payloads larger than 150 bytes, the NPR is able to keep up

with any input rate. Streams of smaller packets cause the router to drop packets at

high input rates. For 100 and 50 byte packets, the output rate levels off near 4 Gb/s.

It is interesting to note that the output rate is higher in the 50 byte case than in the

100 byte case. This apparent anomaly is a product of the way the Rx and Tx blocks

interact with the external interfaces. Packets actually arrive in fixed-size cells that

Rx reassembles into full packets. A UDP payload size of 100 bytes forces incoming

packets to take two of these cells while 50 byte UDP payloads can fit in a single

cell. This means that Rx has significantly more work to do in the former case, which

results in a lower overall output rate. As packets continue to decrease in size, the

94

peak output rate continues to decrease. For minimum size Ethernet frames (UDP

payload of 18 bytes), the output rate is around 3 Gb/s.

We performed the same evaluation with the entire input stream directed through a

single null plugin. The null plugin uses the basic plugin structure described in Sec-

tion 3.4.3 with an empty function to handle packets. The packets are then forwarded

to the QM. The results were identical, which means that a single plugin is capable of

handling every packet that the router can forward.

Native multicast performance was also evaluated, as shown in Figure 3.5, and de-

scribed in Section 3.2.4.

The NPR was also evaluated with the distributed gaming plugins installed. Recall

from Section 3.4.4 that the multicast forwarder plugins are responsible for generating

multiple references to incoming packets based on the current subscriptions for that

packet’s multicast group. In the NPR, the packet replication factor, or fan-out, can be

between 0 and 4 as there are 5 interfaces and packets are never sent out on the interface

on which they arrived. To test the forwarding capability of the multicast plugins, UDP

streams with UDP payloads of 150 bytes (a typical size for incremental game state

updates) were directed through the plugins. As with the baseline evaluation, the

input and output bandwidth was split equally among the five interfaces. Note that

as the fan-out increases the input packet rate needed to produce the same output

rate decreases. The peak output rates for fan-outs of 1, 2, 3, and 4 are, respectively,

4 Gb/s, 4.5 Gb/s, 4 Gb/s, and 3.6 Gb/s. To understand this result, consider how

the workload changes as the fan-out changes. For low fan-outs the plugins have to

process more packets per second, but the per-packet work is lower. On the other

hand, when the packet rate is lower the per-packet work is significantly higher. This

leads to optimal performance when the fan-out is 2, given the characteristics of the

router.

To explore the bottlenecks in our system, we used Intel’s cycle-accurate simulation

environment. Unsurprisingly, no single block is responsible for not keeping up with

line rate for small packets. As mentioned above, Rx has limitations for some size

packets. For minimum size packets, both the QM and PLC blocks peak between 3

and 3.5 Gb/s. We could enable the main router path to perform better by using more

MEs in those cases, but we believe that their use as plugin MEs is ultimately more

95

beneficial. The traffic conditions that cause the router to perform sub-optimally are

also unlikely to occur for extended periods. Under realistic traffic patterns the router

is able to keep up with line rate.

We also monitored packet latency during the above evaluation by periodically sending

ping packets through the router and recording the round-trip time. When the router

is otherwise idle, the average RTT is around 100 µs with a standard deviation of

around 2 µs. Note that much of that time is accounted for at the end hosts. The

one-way, edge-to-edge latency of the router is no more than 20 µs. As expected due to

the IXP architecture, these values do not change significantly with a change in router

load. Indeed, even under the heaviest load for minimum-sized packets the average

RTT doesn’t change and the standard deviation only increases to around 4 µs for

packets that are not dropped.

3.4.6 Related Work

Router plugin architectures are certainly not a new idea [21]. Indeed, the NSP [15],

described in Section 2.5.1, uses a general purpose processor on each port of a hardware

router in order to run user plugins. There have also been other extensible routers

based on network processors. For example, [63] describes a router that uses the

IXP 1200 network processor for fast-path processing in a standard PC, and [66]

describes an ATCA-based platform that allows PlanetLab [55] applications to achieve

significantly better performance by incorporating IXP 2850 network processors as

fast-path elements and line cards. In the traditional software router space, Click [38]

takes a modular approach to extensibility by providing a framework for connecting

various forwarding and routing modules together in an arbitrary fashion. XORP [33]

is similar in nature to Click, but it is focused on modular routing stack components.

Our work is based in part on all of these previous efforts, but aims to fill a different

role. The NPR provides users direct access to a significant portion of the router

resources, a software base on which to build, and the ability to have router code

that performs substantially better than on a standard PC. Moreover, our routers are

already deployed in the Open Network Laboratory, which allows anyone to experiment

with them in a sandboxed environment.

96

There is another body of related work that aims specifically to ease software de-

velopment for NPs. One example is NP-Click [61], which provides a programming

model that abstracts away many of the architectural aspects that make programming

difficult. Shangri-La [14] is another example where a compiler and thin run-time en-

vironment are used to support higher-level programming languages. These systems

employ many complex optimizations to bring application performance to similar lev-

els achieved by hand-written assembly code. These approaches are complimentary to

the NPR plugin framework. Ultimately, the framework provides direct low-level ac-

cess to the plugin MEs that allows such solutions to be run directly as any other NPR

plugins. Of course, there has been no ongoing support for NP-Click or Shangri-La,

whereas the NPR is available for anyone to use.

3.4.7 NPR Conclusions

The NPR has been used in a number of networking and architecture courses. For

example, a local advanced architecture class focused on multi-core processors utilized

the NPRs for their final projects. There were ten groups and all ten of the projects

were completed successfully. The projects ranged from TCP stream reassembly to

complex network monitoring to network address translation. Feedback from that class

and others has been incorporated into the NPR and particularly into the plugin API.

Based on our experience so far, we believe that the NPR is an excellent platform

for network study and experimentation. Our plugin framework provides a flexible

structure and API that helps users unfamiliar with similar systems to build expertise

without hindering experts.

97

Chapter 4

Testbed Scheduling

Recall from Section 2.4 that most testbeds, including the new framework described

in Chapter 2, support multiple concurrent user sessions that are guaranteed to be

isolated from one another. This is accomplished with a collection of switches and

routers that indirectly connect all of the resources in the testbed and an associated

testbed scheduler.

The scheduler takes a virtual network request and attempts to find a mapping from

the virtual network onto the available physical resources. If a mapping is found, the

physical resources in that mapping are allocated to the user and the physical network

is configured (typically with VLANs) to emulate the virtual topology. The scheduler

must ensure that each physical node is mapped to only one virtual node across all

virtual networks. Moreover, there must be enough capacity in the infrastructure

switches and routers to support every virtual link without causing interference with

other virtual links. Any mapping that meets these requirements could be returned by

the scheduler. There are two testbed design choices that affect the associated testbed

scheduler.

One of these design choices is how the resources are allocated to users. That is, the

resources are either given on-demand or reserved in advance. In the former case, the

scheduler looks strictly at the physical resources that are not in use by any other

experiment, as in standard admission control. This is how most emulation testbeds

operate. The latter case is somewhat more complicated. The scheduler must keep a

time line of reservations that determines what resources are available at any given

time. In addition to the virtual network to be emulated, user requests include a period

of time when that virtual network should be active. When a new request is made, all

98

previously accepted reservations that overlap are considered. Any reservations whose

start time has not come (i.e., are not yet active) could potentially be remapped to a

new set of physical resources. Clearly, maintaining a schedule of network mappings

is a generalization of pure on-demand admission control.

The second testbed design choice is whether or not the testbed nodes are typed. In

most testbeds, homogeneous PCs are the only user-allocatable resource, meaning that

all physical nodes can be treated more or less equally. Other testbeds support het-

erogeneous resources. This might include many different PC configurations or other

networking technologies altogether, such as programmable routers and reconfigurable

hardware. In this case, every node is assigned a type that reflects these diverse re-

source possibilities. Naturally, finding mappings with typed nodes is a more general

problem than with non-typed nodes, which results in more complicated schedulers.

In order to support the needs of the general testbed framework, it is necessary to build

a testbed scheduler that can operate under the more general design decisions. This

chapter will therefore focus on designing schedulers that support both reservations

and typed nodes.

Scheduling virtual networks in testbeds is a variant of the general network embedding

problem, which is known to be NP-hard. As such, this work will explore heuristic

scheduling approaches. In particular, this chapter will present a new class of sched-

ulers that use Mixed Integer Programs (MIPs) to optimally solve key subproblems by

incorporating knowledge of the physical network topology of the testbed. These new

schedulers are evaluated and results presented for response times to new requests

and for the probability of rejecting requests. There are a large number of factors

that affect the performance, including the size and shape of the virtual and physical

topologies, reservation durations, and user flexibility. This work also provides a new

way to characterize the work load for testbed schedulers to assist in understanding

the limitations and bottlenecks of different approaches.

Note that this work assumes every testbed node is assigned to at most one user at

any given time. In other words, allocation of nodes to users is all or nothing. This

is necessary when dealing with many networking technologies that are not easily

virtualized or shared by multiple concurrent users. However, it would be relatively

99

easy to extend this work to incorporate node virtualization for resource types that

support it.

4.1 Related Work

Emulab [69] provides access to a large number of heterogeneous PCs that are used to

emulate many different types of networks. The Emulab scheduler, assign, is based on

simulated annealing [58]. It has support for typed nodes in order to take advantage of

the different PC classes available in the testbed, but does not support future resource

reservations. Emulab does, however, allow users to put their rejected experiment

requests into a scheduling queue that assign periodically reevaluates. In this case,

the scheduler is still only performing admission control. Recent work [59] suggests

that Emulab is working on support for a more general resource reservation model.

There is a related embedding problem in overlay testbeds, such as PlanetLab [55].

PlanetLab nodes are PCs connected directly to the Internet, and users choose specif-

ically which nodes they want to use as part of their experiment. Many users select

nodes in an ad-hoc manner, but there has been some effort to allow users to make more

informed decisions. Services like SWORD [54] gather real-time data about resources

available on nodes (e.g., CPU and memory utilization) and the network paths be-

tween pairs of nodes (e.g., path capacity and latency). Given that information, users

specify node and path constraints for their desired experiment, and standard con-

straint satisfaction techniques are used to find a mapping [17]. Of course, there are

no guarantees that resources remain at the current utilization levels after they are

chosen for an experiment.

Similar ideas have been extended for use in network virtualization research. In this

case, users specify full virtual network topologies that are embedded into a well-known

and provisioned substrate network. Although the mapping problem is generally the

same as in emulation testbeds, the goals are somewhat different. It is usually assumed

that the virtual network can be embedded in multiple ways, and schedulers attempt

to find the “best” solution. One approach is to use constraint satisfaction, as above,

to try to find a minimum (monetary) cost embedding [42]. Other approaches include

standard optimization techniques that focus on balancing load across nodes and along

100

network paths [80] and some work on redesigning the substrate to make the embedding

problem simpler [79]. These ideas also carry over to other areas such as embedding

routings in wireless sensor networks [46].

4.2 Scheduling Problem Statement

At the core of building schedules of testbed resources is finding mappings from user-

defined virtual networks to a fixed physical testbed network. Not surprisingly, it is

easiest to reason about network mappings using network graph structures and algo-

rithms. Indeed, many existing graph problems are related to the testbed mapping

problem, including multi-commodity flow and subgraph isomorphism. Note that the

general testbed mapping problem is known to be NP-hard by reduction to the mul-

tiway separator problem [3].

User virtual networks and the physical testbed network are represented as undirected

graphs. The physical testbed topology will be referred to as the testbed graph and be

denoted T = (V T , ET). A virtual user topology will be referred to as a user graph and

be denoted U = (V U , EU). Edges have capacities equal to network link capacities,

denoted by cap(e) for all e in ET or EU . Each vertex has an associated type that

corresponds to a particular kind of resource in the testbed (e.g., a router or PC),

denoted by type(v) for all v in V T or V U .

The testbed graph has one special vertex type used to represent the switches and

routers that indirectly connect all of the other nodes in the testbed. These infras-

tructure vertices are hidden from users and are never directly part of any user graph.

Instead, they are used to form paths through T that correspond to edges in U . An

example is shown in Figure 2.6, where the dashed line in each graph shows one such

mapping from an edge in U to a path in T . A complete mapping from U to T is

represented by M = (MV ,ME). MV = {(vU1 , vT1), (vU2 , v
T
2), . . .} is a set of vertex map-

pings, where vUi ∈V U and vTi ∈V T . ME = {(eU1 , ρT1), (eU2 , ρ
T
2), . . .} is the set of edge

to path mappings described above, where eUi ∈EU and ρTi = (eT1 , e
T
2 , . . . , e

T
k), eTi ∈ET ,

is a path in T . Every mapping must be consistent with the associated user graph

and testbed graph. This means that every edge and vertex in U is contained in the

mapping, and that the endpoints of each edge in U must be mapped to the endpoints

101

of the corresponding path in T :

∀(vU , wU)∈EU , (vU , vT), (wU , wT)∈MV ⇐⇒ (4.1)

((vU , wU), ρT)∈MEwhere ρT = ((vT , z1), . . . , (zm, w
T))

Recall that users request a reservation for resources in advance. This request is

defined as R = (U,A, l), where U is the user graph representing a virtual network,

A = (t1, t2) is the range of acceptable start times, and l is the length of time they

need to run their experiments. If a request is accepted, it can not be moved in time

or revoked. It is, however, permitted to remap any future reservations (i.e., those

with begin times after the current time) on to a different set of physical resources. As

such, the scheduler keeps an ongoing schedule of accepted requests. This schedule is

represented by the set S = {S1, S2, . . . , Sn}, where Si = (Ui,Mi, bi, fi) is one accepted

request with user graph Ui, mapping Mi from Ui to T , request begin time bi, and

request finish time fi. Naturally, the begin time must fall within the user’s provided

start time range and the reservation must be the correct length:

t1 ≤ bi ≤ t2 (4.2)

bi < fi = bi + l (4.3)

The problem, then, is to find a mapping from a new user graph to the testbed graph

that is feasible given the current schedule. The schedule needs two properties to

remain feasible. First, at any time, each vertex in T is mapped to at most one vertex

over all Ui in the schedule:

∀vT∈V T , (1) (vU , vT)/∈MV
i ,∀i, 1≤i≤n, vU∈V U

i or (4.4)

(2) (vU , vT)∈MV
i ,∃i, 1≤i≤n, vU∈V U

i and

(wU , vT)/∈MV
j ,∀i 6=j, wU 6=vU∈V U

j

102

Second, at any time, the sum of all user graph edge capacities that are mapped to

each edge in the testbed graph must be less than or equal to that edge’s capacity:

∀eT ∈ ET , cap(eT) ≥
∑
e∈XT

e

cap(e), where (4.5)

XT
e : {eU | (eU , ρT)∈ME

i , ∃i, 1≤i≤n, and eT∈ρT}

The formal problem statement follows. Given a testbed graph T with typed vertices

and edge capacities, a schedule S = {S1, S2, . . . , Sn} of previously accepted reser-

vations, and a new reservation request R = (U,A, l), find a new feasible schedule

S ′ = S ∪ {(U,M ′, b, f)} where M ′ is a consistent mapping from U to T subject to

conditions (4.1), (4.2), (4.3), (4.4), and (4.5). If no such mapping exists, leave S

unchanged and reject R.

The next two sections describe two solutions to this problem. Both solutions are based

on Mixed Integer Programs (MIPs) that are used to solve the mapping problem while

trying to maximize the likelihood of accepting future reservation requests. The first

solution uses a simpler MIP base that results in faster response times but is only

applicable to certain testbed graphs. The second solves the problem for any testbed

graph at the cost of higher response times.

4.3 Linear Testbed Graphs

The simplest testbed graph structure is a linear series of N infrastructure nodes.

Each user-allocatable node is connected to exactly one of these infrastructure nodes,

i.e., nodes with multiple edges are connected to the same infrastructure node. Lin-

ear testbed graphs arise naturally when using switches that are equipped with high

capacity “stacking” connections. One such example is shown in Figure 4.1. Indeed,

this testbed graph was the actual testbed graph for the Open Network Laboratory

for a number of years. This testbed graph will also be used for the evaluation in the

next section. The edge capacities shown are in Gb/s. Note that the labels next to

nodes are used to indicate how many of that type of node are connected to the same

infrastructure node. For example, the circle in the upper left actually represents four

103

Figure 4.1: An example testbed graph.

nodes of the same type, each with eight 1 Gb/s links to the left-most infrastructure

node.

Although the problem formulation specifically allows accepted reservations to be

remapped to a different set of testbed nodes, the schedulers presented here do not

do so. Instead, they attempt to build schedules that maximize the probability of

accepting future requests. Two variations of the same basic scheduler are considered

that differ in the heuristic used to achieve this goal. The first, denoted MINBW,

minimizes usage of bandwidth between infrastructure nodes. The second, denoted

MAXPACK, extends the first by computing packing scores for the user graph across

all subsets of infrastructure nodes and considering potential subsets in order of the

packing score. These two schedulers are clearly related, but the distinction is made

in order to better characterize different approaches to the scheduling problem. Note

that both of the following descriptions are applicable only for a linear testbed graph.

Similar approaches would work for star and tree graphs, and more generally for any

graph with only one path between any pair of nodes.

4.3.1 Minimizing Bandwidth

The pseudocode for MINBW is shown in Algorithm 4.1. As described in the previous

section, the inputs are the user’s virtual network graph U , the range of acceptable

start times A, the length of the requested experiment l, the testbed graph T , and

the current schedule of accepted reservations S. The first step is to compute the set

104

of potential begin and finish times, P , for this request. Resource availability only

changes at existing reservation boundaries, so we need only consider candidate start

times that correspond to the finish time of an existing reservation. For example, if no

reservations overlap with the acceptable time range for U , then computePossibleTimes

will return only one possible time in P (typically at the beginning of the range).

Algorithm 4.1 MINBW(U,A, l, T, S)

P ⇐ computePossibleTimes(A, l, S)
for all (b, f) ∈ P do
O ⇐ findOverlappingReservations(b, f, S)
T ′ ⇐ T −O
if enoughNodesAvailable(U, T ′) then
M ⇐ findMapping(U, T ′)
if validMapping(M) then
S ⇐ S ∪ (U,M, b, f)
return TRUE

end if
end if

end for
return FALSE

Next, MINBW attempts to find a mapping from U to T for each time in P . Recall

that these schedulers do not attempt to remap any previous reservations. As such,

findOverlappingReservations is used to get the set of reservations that intersect (b, f),

and then all resources from the overlapping reservations are removed from T to form

T ′. Here, subtraction means that all testbed nodes from reservations in O are removed

from V T and all capacity used along edges in O is subtracted from the edge capacities

in ET . enoughNodesAvailable is called next to check that there are at least as many

nodes of each type in T ′ as in U . If there are not, then there is no reason to continue.

In fact, even a scheduler that attempts to remap other reservations can never accept

U at this point because there are not enough nodes of each type left. This will be

used in the evaluation section to give bounds on the rejection rate of the scheduler.

If there are enough nodes of each type in T ′, then findMapping is called to try to find

a mapping from U to T ′. If a valid mapping is found, then that mapping is added

to the schedule. Otherwise the next candidate time is tested, until either a valid

mapping is found or there are no more times to try.

105

findMapping is the Mixed Integer Program that is the core of these linear graph

schedulers. The basic idea is to directly incorporate the structure of the testbed

graph into the MIP and then have the MIP compute a mapping from the user graph

to the testbed graph directly. For both schedulers presented here, findMapping uses

an objective function that minimizes the bandwidth used on the edges between in-

frastructure nodes. The findMapping pseudocode is shown in Algorithm 4.2.

Algorithm 4.2 findMapping(U, T)

Let N be the number of infrastructure nodes in T
Let eTi , 1≤i≤N−1, be the edge connecting infrastructure nodes i and i+ 1
Let L be the number of distinct node types in U
Let αj, 1≤j≤L, be the set of nodes of type j in U
Let βij, 1≤j≤L, 1≤i≤N, be the number of nodes of type j on infrastructure node i

Variables: ∀u∈V Uand ∀i, 1≤i≤N, Ii(u)∈{0, 1}
∀e∈EUand ∀i, 1≤i≤N−1, xi(e)≥0

Objective: min
∑
e∈EU

N−1∑
i=1

xi(e)

s.t. ∀i, 1≤i≤N−1,
∑
e∈EU

xi(e) ≤ cap(eTi)

∀u∈V U ,
N∑
i=1

Ii(u) = 1

∀j, 1≤j≤L, and ∀i, 1≤i≤N,
∑
u∈αj

Ii(u) ≤ βij

∀e=(u, v)∈EU , and ∀i, 1≤i≤N−1,

xi(e) =
∣∣∣cap(e)(i∑

k=1

Ik(u) +
N∑

k=i+1

Ik(v)

)
− cap(e)

∣∣∣

There are a number of constants used in the MIP formulation that are derived from

U and T . N is the number of infrastructure nodes in the testbed graph. N = 5

for the example graph shown in Figure 4.1. Recall that only linear testbed graphs

are being considered, where the N infrastructure nodes are connected in a line by

N−1 edges. These edges are referred to as infrastructure edges. eTi is the edge from

infrastructure node i to infrastructure node i+1. The infrastructure nodes are thus

106

ordered so that infrastructure nodes i and i+1 are adjacent in the linear topology.

L is the number of node types in U . For example, in Figure 2.6a, there are three

different node types, so L=3. The MIP will have to ensure that the number of each

type mapped to individual infrastructure nodes does not exceed the number available

on that infrastructure node. αj, then, is the set of nodes of type j in U , and βij is

the number of nodes of type j available on infrastructure node i.

There are only two sets of variables in the MIP. First, Ii(u) is a binary variable that is

used to indicate which infrastructure node each u∈V U is mapped to. That is, Ii(u)=1

if and only if u is mapped to infrastructure node i, and Ii(u)=0 otherwise. Second,

xi(e) is a positive, real-valued variable representing the bandwidth used between

infrastructure node i and infrastructure node i+1 due to edge e ∈ EU . For example,

the highlighted edge to path mapping in Figure 2.6 would cause x1(e=(A,D))=1,

but x1(e=(A,B))=0. Note that even though the xi(e) variables are allowed to be

real-valued, the MIP formulation will force every xi(e) to be either zero or the edge

capacity, cap(e). Bandwidth used between infrastructure nodes is then minimized by

setting the objective function to minimize the sum of all xi(e) values.

There are four sets of constraints that govern the MIP. The first set ensures that the

total bandwidth mapped to each infrastructure edge is less than the available capacity

on that edge. The second set ensures that every node in U is mapped to exactly one

infrastructure node. The third set uses the αj and βij constants to ensure that the

number of each type of user node mapped to each infrastructure node is less than

the number available on that node, as discussed above. All of these constraints are

reflecting the conditions described in the previous section. The last set of constraints,

on the other hand, ties the MIP variables together.

Each constraint from this last set is used to set the value of the associated xi(e)

variable based on the mapping of e=(u, v)’s endpoints to infrastructure nodes. For

each value of i, the constraint ensures that xi(e)=cap(e) if and only if e is mapped to

a path in the testbed graph that uses infrastructure edge i, and xi(e)=0 otherwise.

The mapping of u and v determines that path. Consider partitioning the testbed

graph along infrastructure edge i such that all infrastructure nodes 1,. . .,i are on the

“left” and infrastructure nodes i+1,. . .,N are on the “right.” Then, xi(e)=cap(e) if

u and v are mapped to different sides of this partition. Recall that Ik(u)=1 indicates

107

Table 4.1: The values of xi(e), e = (u, v), given the mapping of u and v to infrastruc-
ture nodes.

xi(e=(u, v))
Ik(u)=1,∃k≤i Ik(u)=1, ∃k>i

u is on the “left” u is on the “right”

Ik(v)=1,∃k<i+1
|0| |−cap(e)|

v is on the “left”

Ik(v)=1,∃k≥i+1
|cap(e)| |0|

v is on the “right”

that user node u is mapped to infrastructure node k. So,
∑i

k=1 Ik(u) is 1 when u is

on the left of infrastructure edge i and 0 when it is on the right. The same is true

for v. There are thus four cases for the values of Ik(u) and Ik(v) that determine the

value assigned to xi(e), as shown in Table 4.1. If both endpoints are mapped to the

same side of the partition, then the total of both sums in the constraint is 1, leading

to xi(e)=0. Otherwise, the end points are mapped to different sides of the partition,

leading to xi(e)=cap(e). Note that the absolute value is necessary when u is on the

right and v is on the left. Of course, absolute value is not a linear function and thus

these constraints can not be used directly in the MIP.

Although it is not shown in the formulation for clarity, there is a standard linear

and integer programming technique that is used in findMapping to handle absolute

values. Specifically, each xi(e) variable is replaced with a pair of auxiliary variables

x+
i (e) and x−i (e). In the last set of constraints, xi(e) is replaced with x+

i (e) − x−i (e)

and the absolute value is no longer used on the right hand side of the equation. Both

auxiliary variables are non-negative. If the right hand side evaluates to cap(e), then

x+
i (e) = cap(e) and x−i (e) = 0. On the other hand, if the right hand side is −cap(e),

then x+
i (e) = 0 and x−i (e) = cap(e). In every other constraint and the objective

function, xi(e) is replaced with x+
i (e) + x−i (e). The objective function thus ensures

that both auxiliary variables are minimized, meaning that at most one of them is non-

zero. If either is non-zero, then it must be cap(e). The result is that x+
i (e) + x−i (e)

correctly holds the values specified in Table 4.1.

108

If findMapping finds a solution to the MIP, then the values of Ii(u) contain a valid

mapping from U to T , which is then returned to MINBW. By minimizing the band-

width across infrastructure nodes, findMapping is attempting to conserve as much of

a scarce resource as possible for future requests. If, however, the infrastructure edge

capacities are high, then it is possible that there could be more contention over node

usage.

4.3.2 Maximizing Packing

The second scheduler, MAXPACK, is derived from MINBW and shares the same

basic structure. MAXPACK uses a modified heuristic based on node packing to try

to increase the probability that future requests can be accepted. As in MINBW,

MAXPACK does not attempt to remap any existing reservations.

The pseudocode for MAXPACK is given in Algorithm 4.3. Everything is the same

as in MINBW until after enoughNodesAvailable is called. If there are enough nodes

of each type available in T ′, then findValidSubsets computes the set Q that contains

all subsets of T ′ that have at least as many nodes of each type as are in U . Here, a

subset of T ′ is any contiguous set of infrastructure nodes and all of their connected

non-infrastructure nodes. If there are N infrastructure nodes, then a subset would

be defined as all infrastructure nodes k1 to k2, where 1≤k1≤k2≤N , and the non-

infrastructure nodes connected to them. For every subset in Q, a packing score is

computed and then Q is reordered using the packing scores. Each subset is passed to

findMapping in order of best packing score first until either a valid mapping is found

or there are no more subsets. The findMapping method is unchanged from the version

used in MINBW.

There are many possibilities for computing the packing score. The goal is to map the

user graph onto as few infrastructure nodes as possible, thereby increasing the number

of resources available on each other infrastructure node. As mentioned above, this is

related to minimizing bandwidth usage across infrastructure nodes, but the results can

be different. Using fewer infrastructure nodes could actually increase the bandwidth

usage between infrastructure nodes in the subset, but it does decrease the usage (to

zero) between infrastructure nodes in the subset and those not in the subset. This

109

Algorithm 4.3 MAXPACK(U,A, l, T, S)

P ⇐ computePossibleTimes(A, l, S)
for all (b, f) ∈ P do
O ⇐ findOverlappingReservations(b, f, S)
T ′ ⇐ T −O
if enoughNodesAvailable(U, T ′) then
Q⇐ findValidSubsets(T ′)
for all T ′i ∈ Q do
Zi ⇐ computePackingScore(U, T ′i)

end for
Q⇐ reorderSubsetsByPackingScore(Q,Z)
for all T ′i ∈ Q do
M ⇐ findMapping(U, T ′i)
if validMapping(M) then
S ⇐ S ∪ (U,M, b, f)
return TRUE

end if
end for

end if
end for
return FALSE

work uses a relatively simple packing score. First, if T ′i has exactly the same number

of nodes of each type as U , then T ′i has the best packing score possible. In other

words, if U could be packed on to T ′i such that T ′i has no unmapped nodes afterward,

then that is the best possible packing. Otherwise, subsets with more unmapped nodes

have a higher score than those with fewer unmapped nodes. That is, the score is the

number of unmapped nodes in the subset. This simple scoring scheme treats nodes

of different types equally, but it could easily be extended to give more or less weight

to certain types depending on their relative availabilities, historical usage, etc.

4.3.3 Linear Graph Evaluation

Characterizing testbed scheduler performance is difficult due to the many parameters

that can affect the results. This section identifies a small number of key parameters

to study and provides a framework to generate a series of user requests that put a

110

target average load on the scheduler. Results are given for response times to new

requests and for the request rejection percentages of the two schedulers.

There are three broad categories of parameters to consider: the testbed graph, user

graphs, and length and start time flexibility of requests.

The testbed graph shown in Figure 4.1 is used for these evaluations. As mentioned

earlier, this was the testbed graph for the Open Network Laboratory for a period of

approximately two years. During that time, the MAXPACK scheduler was used to

handle all reservations in ONL.

In these evaluations, the base testbed graph is kept constant but the capacity of the

infrastructure edges is parametrized, denoted IEC. The capacity of these edges is

often the limiting factor that leads to rejecting requests. All of the infrastructure

nodes in this graph have 48x1 Gb/s ports that are connected together with vendor-

specific 12 Gb/s stacking connections, so IEC is usually set to 12. IEC values of 3,

6, 9, and ∞ are also used in the evaluation.

The various types available in the testbed affect how user graphs are generated.

In particular, there are two classes of nodes: backbone nodes and edge nodes. In

Figure 4.1, the circles, triangles, and diamonds represent types that are used as

backbone nodes, and the hexagons represent edge nodes. In reality, the circles and

triangles are two types of programmable routers, the diamonds are NetFPGAs [44],

and the hexagons are PCs. There are enough PCs that the number of PCs is very

rarely the limiting factor when considering a new request.

User graph topologies are randomly generated using two parameters. The first param-

eter is the backbone size, BBS, which is the number of backbone nodes in the graph.

The BBS backbone nodes are chosen uniformly at random from among all nodes in

the testbed graph. This ensures that no user graph uses more of any type than are

available in the testbed and balances the number of different types in proportion to

the number available. The chosen backbone nodes are then connected randomly to

form a tree. BBS values will vary from 2 to 8. The second parameter is the average

backbone degree, ABD, which is used to determine the final shape of the user graph.

Edges are added randomly between backbone nodes until twice the number of edges

divided by the number of backbone nodes is at least ABD. ABD values will range

111

from 1 to 5, where ABD =1 guarantees that no edges will be added beyond the initial

tree. Finally, all unused network interfaces in the user graph are connected to edge

nodes.

The next parameter is the user’s start time flexibility, F . The flexibility is defined

as the length of the start time range, A=(t1, t2), divided by the reservation length, l.

That is, F=(t2−t1)/l, where t1, t2, and l are given in the same units. F will range

from 0 to 3, but will default to 0 unless otherwise noted. Ideally, larger values of F

will lead to lower rejection probabilities.

The final parameter is the order in which requests are processed by the scheduler,

denoted O. All orderings are based on the start times of the requests. Of course, the

scheduler operates in an on-line fashion and thus has no control over the request order,

but it is certainly true that many scheduling problems have solutions that are greatly

impacted by the ordering of input events. In the testbed scheduling context, requests

are naturally in rough order of increasing start time. For comparison, three orderings

are explored here. O= random places the requests in random order with respect to

their start times. O=increasing places the requests in order of strictly non-decreasing

start times, and O= decreasing places them in order of strictly non-increasing start

times.

All of these parameters can ultimately affect the performance of a scheduler, so a sim-

ple framework is needed to understand the contributions of the different parameters.

This work defines a new metric that captures these effects: the testbed scheduling

load, L. Ideally, the average load reflects the average percentage of resources used in

the testbed. This is complicated by having different node types, as the percentage of

each type currently in use could be substantially different, and different types could

be the limiting factor at different times. Rather than use a definition of load that at-

tempts to incorporate these nuances, we use a simple probabilistic model to generate

a sequence of requests that has the desired load. Given requests with a particular

value of BBS, average lengths of l, B total backbone nodes in the testbed graph,

and a desired load of L, we compute the average time between request start times,

τ , as τ=((BBS/B) ∗ l)/L. That is, if the average reservation has length l and uses

BBS/B% of the testbed resources, then a new reservation request should start every

τ time units to achieve an average load of L. All of the following experiments use

112

this structure to generate 10000 requests with a particular value of BBS and L. The

average reservation duration has little impact because it is only used to compute τ

such that the desired load is seen across all 10000 requests. The intervals between

successive start times are randomly generated from a geometric distribution with

mean τ .

Experiments were conducted that varied all of the parameters discussed above. Each

experiment ran one of the schedulers with all of the parameters fixed. The scheduler

processed all 10000 requests and the response times where recorded for each request.

The rejection percentage for the experiment was also recorded. All of the results

presented are for a load that varies from L= 0.1 to L= 1.0. Each chart shows the

results for different values of one parameter, while the others parameters remained

fixed. Unless otherwise noted, the following values are used as the default fixed values

for each parameter: IEC = 12, BBS = 2, ABD = 3, F = 0, and O= random. All of

these results were gathered on a Linux PC with dual quad-core processors running at

2.3 GHz and 12 GB of memory. The Gurobi [31] MIP solver was used for findMapping.

Response Time

Figure 4.2 shows average response time results for MAXPACK as the backbone size is

varied from 2 to 8. First, note that the average response times are all under 130 ms.

This is typical over the entire evaluation. Moreover, the maximum response time over

all experiments conducted for MAXPACK was 572 ms. This occurred for an accepted

request with BBS=8 and a load of 1.0. In that experiment, the average acceptance

response time was 120 ms with a standard deviation of 84 ms. In a normal testbed

usage scenario, this means that the maximum response time even including network

transit times between the user and the testbed will be under one second.

The left chart of Figure 4.2 shows the average response times for accepted requests,

and the right chart shows the same for rejected requests. There are two important

trends to notice. First, the response time increases as the request size increases. The

acceptance times suggest that the increase is exponential. This is consistent with

a MIP-based scheduler whose size (number of variables and number of constraints)

increases as the user graph size increases. The second trend is a decrease in response

113

Figure 4.2: MAXPACK response times for different backbone sizes.

times as the load increases for rejections. This follows because there are fewer re-

sources left in the testbed graph when the load is higher. Fewer resources lead to

fewer candidate times for the request, and thus the MIP is called fewer times. This is

particularly true for MAXPACK where there are also fewer candidate subsets to try.

The results for MINBW are not shown, but they are similar overall. The only notable

difference is that the rejection times are lower because the MIP is called fewer times

for MINBW.

Figure 4.3 shows the average response times as the average backbone degree is varied.

Note the y-axis scales (scales on all the response time charts are set differently in order

to highlight the data in that chart). Clearly, ABD has very little effect on response

times. There is a slight decrease in response times as ABD increases due to the nature

of the user graphs. The backbone size does not change for these experiments. Higher

average backbone degrees result in user graphs with fewer edges and fewer nodes.

This leads to less MIP variables and constraints and thus to faster response times.

Next, Figure 4.4 shows the response times as the user’s start time flexibility is varied.

As expected, the response times increase as the flexibility increases. Higher flexibilities

provide the scheduler more opportunities to fit the request into the schedule at the

cost of running findMapping more times per request. The rejection response times

are substantially higher for higher flexibilities. This follows because findMapping is

potentially called many times before it is ultimately determined that the request must

be rejected. The effect is less significant for higher loads because it is more likely that

114

Figure 4.3: MAXPACK response times for different average backbone degrees.

Figure 4.4: MAXPACK response times for different user start time flexibilities.

there are simply not enough nodes available at higher loads resulting in fewer calls to

findMapping.

Different request orderings are evaluated next, and the results are shown in Figure 4.5.

In this case, there are no substantial differences to the average response times.

Finally, the response times for different infrastructure edge capacities are shown in

Figure 4.6. The acceptance times are unaffected by IEC. There is a slight decrease

in rejection times as IEC increases from 3 Gb/s to 12 Gb/s. For small values of IEC,

fewer requests are accepted because of capacity limitations, which leads to fewer nodes

in use at any given time. Therefore, those requests that are rejected are less often

rejected at the enoughNodesAvailable check for smaller values of IEC. This results in

slightly higher average rejection response times. Of course, no requests are rejected

115

Figure 4.5: MAXPACK response times for different request orderings.

Figure 4.6: MAXPACK response times for different infrastructure edge capacities.

by findMapping when the infrastructure edge capacities are set to ∞. All rejections

thus happen before findMapping is ever called and so the rejection times are near

zero.

Rejection Rate

The second set of results concerns the rejection rate of requests. Two different re-

jection rates are used to reflect different aspects of the problem. The first is the

absolute rejection rate, which is the percentage of requests rejected out of the 10000

requests in each experiment. The absolute rejection rate is useful in understanding

the scheduler’s overall performance from a user’s perspective, i.e., how often their

116

Figure 4.7: MAXPACK rejection rates for different backbone sizes.

requests get rejected. The second rate is the scheduler rejection rate. Recall that

the schedulers ensure that there are enough nodes of each type available before ever

trying to find a mapping. Let Rn be the number of requests that do not proceed

past this check for any of the candidate times. No scheduler can ever accept such a

request because there are not enough nodes of the correct types available. Let Rs be

the number of requests rejected otherwise, i.e., those requests for which the sched-

uler attempts to find a mapping at least once. The scheduler rejection rate, then, is

defined as Rs/(10000 − Rn). Better schedulers will have smaller scheduler rejection

rates, but even optimal schedulers may still have non-zero scheduler rejection rates if

there is not enough capacity on the infrastructure edges. All results shown here are

for MAXPACK, and the rates are similar for MINBW.

Figure 4.7 shows both rejection rates for requests with different backbone sizes.

Clearly, increasing the size of the user graphs impacts the absolute rejection rate.

As the number of backbone nodes increases, it becomes more likely that overlapping

requests will overuse nodes or infrastructure edge capacity. The scheduler rejection

rates do not increase substantially for larger values of BBS, which implies that the

increases in absolute rejection rate are due to a lack of nodes rather than a lack of

infrastructure edge capacity.

Next, Figure 4.8 shows the rejection rates as the average backbone degree is var-

ied. Different values of ABD have very little effect on the rejection rates. The only

noteworthy difference is that the scheduler rejection rate is somewhat larger when

117

Figure 4.8: MAXPACK rejection rates for different average backbone degrees.

ABD = 5. Recall that the backbone size is fixed for these requests, so larger val-

ues of ABD result in user graphs with fewer nodes overall and more edges between

backbone nodes. As such, it is less likely that the requests will be rejected at the

enoughNodesAvailable check, which leads to higher scheduler rejection rates.

The rejection rates for different user start time flexibilities are shown in Figure 4.9.

Increasing flexibility decreases the rejection rates as expected, although the decrease

is minimal for F >1. This is true for both the absolute and scheduler rejection rates.

However, note the increase in scheduler rejection rate for F = 2 and F = 3 for high

loads. The absolute rejection rate is always lower for higher flexibilities, but the

scheduler rejection is actually higher in that region. To understand this, recall that

the scheduler rejection rate is the percentage of rejected requests for which at least

one attempt was made to find a mapping. Higher flexibilities result in more potential

times that the request might fit into the schedule and thus more opportunities for

findMapping to be called.

Figure 4.10 shows the rejection rates for different request orderings. There is no dif-

ference in rejection rates when the requests are ordered by increasing start time or

decreasing start time. There is, however, a significant difference when the requests

are randomly ordered. This is due to the nature of scheduling problems and how

MAXPACK packs user requests onto as few infrastructure nodes as possible. Specif-

ically, processing requests in start time order ensures that each new request only

contends for resources with reservations that precede it in on the scheduling time

line. MAXPACK is able to take advantage of this to pack the user graphs onto the

118

Figure 4.9: MAXPACK rejection rates for different user start time flexibilities.

Figure 4.10: MAXPACK rejection rates for different request orderings.

testbed graph more efficiently. On the other hand, when requests are randomly or-

dered the schedule becomes filled with reservations that leave small gaps in the time

line. These small gaps are not easily used later as requests that overlap them must

contend with previously accepted reservations on both sides of the gap, rather than

just reservations that come first in the schedule.

Finally, the infrastructure edge capacities are varied and the results are shown in

Figure 4.11. Both rejection rates increase as IEC is decreased, as expected. IEC=∞
removes any bandwidth limitations from the testbed graph, which results in a zero

scheduler rejection rate, also as expected. It is interesting to note that the rates are

very close for IEC = 9 and IEC = 12. This suggests that a transition in behavior

occurs somewhere between values of 9 and 12. If so, it is likely that this is a transition

from being fundamentally constrained by the available infrastructure edge bandwidth

119

Figure 4.11: MAXPACK rejection rates for different infrastructure edge capacities.

to being constrained by the performance of a heuristic scheduler. The other possibility

is that it is an artifact of the testbed graph that has the only 4 nodes of one type

connected to the same infrastructure node. This was done because, at the time, those

4 nodes were generally only used together in practice and not in combination with

the other backbone node types.

4.3.4 Discussion

This MIP-based approach works reasonably well given the parameters explored in the

previous section. More importantly, the MAXPACK scheduler was used successfully

in practice for over a year in the Open Network Laboratory. This was due in large part

to the usage patterns seen in the testbed. During the summer months, the average

load was small (less than 30%), and most of that load is from research projects which

tend to use larger, more diverse topologies. On the other hand, the average load is

higher (closer to 50%) during the fall and spring semesters when ONL is used mostly

by students in networking courses. Course topologies are, however, generally much

smaller. As seen in the evaluation, the scheduler can handle many smaller topologies

or a few larger topologies.

Scaling up to handle higher loads is not trivial. Increasing the testbed graph size

does not impact scheduler performance directly, but having more resources available

allows users to build larger virtual networks. Rejection rates will be largely unaffected,

assuming that user graphs increase proportionally to the testbed graph. Response

120

times, however, could grow to be unacceptably large because the number of variables

and constraints in the MIP increases linearly with the user graph size. If there

are N infrastructure nodes in the testbed graph, L distinct node types in the user

graph, |V | nodes in the user graph, and |E| edges in the user graph, then there are

O(N |V | + (N−1)|E|) variables and O((N−1) + |V | + LN + (N−1)|E|) constraints.

Larger user graphs thus have proportionally larger MIP formulations, which leads to

a potentially exponential increase in response time.

This approach could also be modified to work for a somewhat broader range of testbed

graphs. Indeed, modifying the formulation for star-based testbed graphs is relatively

simple. Slightly more general tree-based topologies could be supported as well. There

is a fundamental limitation to this approach, however. Using indicator variables to

store the mapping of user graph nodes to infrastructure nodes in the testbed allows

the bandwidth used along all the associated paths to be computed directly. This

assumes that there is only one path between any two nodes in the testbed graph.

If there are multiple possible paths, as in a ring topology, then the current MIP

formulation has no way to choose between them. This approach is therefore limited

to testbed graphs that do not have multiple paths between any pair of nodes.

4.4 General Testbed Graphs

The previous section described scheduling algorithms that are applicable only to lin-

ear testbed graphs. The linear graph structure allows the scheduler to use relatively

simple Mixed Integer Programs that in turn result in very fast response times. Un-

fortunately, many testbeds rely on more complicated testbed topologies in order to

increase the number and size of concurrent user graphs. The current Open Network

Laboratory testbed graph is one example that is not linear. Indeed, the ONL testbed

graph is designed specifically such that there are many possible paths between every

pair of nodes. Given a corresponding scheduler, these types of testbed graphs greatly

increase the underlying capacity between all nodes. This section describes one such

scheduler that operates on any testbed graph regardless of its structure. The only

restriction is that non-infrastructure nodes with multiple edges must have all of their

edges connected to the same infrastructure node.

121

As with the linear testbed graph schedulers, this scheduler will not attempt to remap

previously accepted reservations. Rather, it takes the same approach as MINBW and

finds mappings that minimize the capacity used between infrastructure nodes. This

forces as many user nodes as possible on to common infrastructure nodes and thereby

increases the likelihood that future requests can be satisfied. This generalization of

MINBW will be denoted GMB (Generalized Minimum Bandwidth).

Finding mappings from user graphs to testbed graphs in the general case is closely

related to other network graph problems. In particular, the mapping problem is

similar to the standard multi-commodity flow problem as well as one variant known

as the unsplittable flow problem. The GMB algorithm is based on these problems, so

brief overviews of each problem will be given before describing GMB.

4.4.1 Related Network Flow Problems

The multi-commodity flow problem (MCF) [19] is a network flow problem where

many different commodities are flowing through a shared physical infrastructure.

Each commodity has one fixed point of entry into the network, one fixed point of exit

from the network, and a flow capacity demand. The demand represents the “size”

of the commodity in terms of the shared resources in the network. For example, the

distribution of physical goods over a transportation network can be modeled as an

instance of MCF. Each item (or group of similar items) is a separate commodity that

is stored in one physical location and needs to be moved to another. The demand

for each commodity in such problems is typically related to the shipping weight, as

there are only so many trucks, train cars, or boats available to go between each pair

of locations. In the networking context, many routing problems are formulated as

instances of MCF, particularly when working with optical wavelength routing. The

formal problem statement for MCF follows.

Given a directed graph G = (V,E) where every edge (u, v) ∈ E has capacity cap(u, v)

and a set of commodities K with ki = (si, ti, di) where si is the source vertex, ti is

the sink vertex, and di is the demand for commodity i, find an assignment of flows

to G for all commodities where fi(u, v) is the flow along edge (u, v) for commodity i

122

subject to the following constraints:

∀(u, v) ∈ E,
|K|∑
i=1

fi(u, v) ≤ cap(u, v) (4.6)

∀(u, v) ∈ E, fi(u, v) = −fi(v, u) (4.7)

∀u ∈ V, u 6= si, ti,
∑
w∈V

fi(u,w) = 0 (4.8)

∑
w∈V

fi(si, w) =
∑
w∈V

fi(w, ti) = di (4.9)

The first three constraints are slight modifications to constraints shared by all net-

work flow problems: the capacity constraint, skew symmetry, and flow conservation.

The capacity constraint, 4.6, ensures that the total flow over all commodities across

each edge does not exceed the capacity of that edge. Skew symmetry, 4.7, and flow

conservation, 4.8, together enforce that the per-commodity flow into a vertex equals

the per-commodity flow out of that vertex, with the exception of the source and sink

vertices for that commodity. Finally, 4.9 is the demand constraint that forces there

to be exactly di units of flow in the network for commodity i.

There are many variations on this basic problem. This standard formulation is a

decision problem: either all the commodities can be assigned paths in the network

or not. Note that the above constraints can be used to directly formulate a Linear

Program to solve MCF. In the standard formulation, there is no objective function.

Some variants include edge costs that should be minimized. Others have no fixed per-

commodity demands and instead attempt to maximize the amount of each commodity

that can be pushed through the network.

One important characteristic of MCF is that commodity flows can be split at each

vertex. The entire flow demand enters the network at si and leaves at ti, but it can

split arbitrarily at other vertices. For example, the flow for commodity i coming in

to vertex u might be 1 unit all on one edge, but the flow out of u might be split

among three edges, one with 0.5 units of flow and the other two with 0.25 units

each. Another variant of considerable interest in the testbed scheduling context adds

123

an additional constraint that commodity flows can not be split at any vertex. This

variant is known as the unsplittable flow problem (UFP) [13].

UFP is an extremely difficult problem. Even simple special cases are NP-hard. For

example, the Knapsack problem can be reduced to UFP where G has a single edge.

There have been some efforts to find polynomial time approximation algorithms for

UFP [8, 39], but they tend to only work for special cases, such as uniform edge

capacities, and have relatively poor performance bounds.

Testbed schedulers must solve a problem very similar to UFP. The virtualization tech-

niques used to share testbed network capacity (i.e., VLANs) do not have provisions

for arbitrarily splitting network flows along multiple paths. The few multipath rout-

ing techniques that exist at that level do not provide a sufficient amount of control

to ensure the necessary traffic isolation among multiple users that is required in a

testbed. Therefore, every user edge must be mapped to exactly one testbed network

path, not split across multiple paths.

Indeed, the testbed scheduling problem is easily related to UFP by treating the

testbed graph as G in UFP and mapping every edge in the user graph as a sepa-

rate commodity. Unfortunately, testbed scheduling has additional constraints that

can not be captured as part of UFP. Most importantly, the source and sink vertices

for each user edge are not fixed and as such there is no way to assign vertices to si

and ti for each commodity. Finding a mapping from user nodes to testbed nodes is

not orthogonal to finding a mapping between user edges and testbed paths. In other

words, the testbed scheduling problem requires per-commodity source and sinks that

are assigned dynamically as part of the scheduling algorithm. Once again, this fur-

ther complicates an already difficult problem. The testbed scheduling problem must

also handle typed nodes, which UFP (and most other network graph algorithms) do

not support. The GMB algorithm described in the next section is still based on this

idea of treating user edges as commodities in UFP along with additional constraints

added to handle the differences.

124

4.4.2 Minimizing Bandwidth in General Graphs

The GMB algorithm uses the same basic structure as the MINBW algorithm. The

pseudocode for GMB is shown in Algorithm 4.4. All of the steps through the call

to enoughNodesAvailable are identical to MINBW. If there are enough nodes in T ′

to potentially satisfy the request, then GMB will attempt to find a mapping from U

to the testbed graph. There are only two differences between MINBW and GMB.

First, the original findMapping used in the linear algorithms has been replaced with

findGeneralMapping. Second, there is an additional transform step before the mapper

is called. Together, these two changes allow GMB to operate on any testbed graph.

Algorithm 4.4 GMB(U,A, l, T, S)

P ⇐ computePossibleTimes(A, l, S)
for all (b, f) ∈ P do
O ⇐ findOverlappingReservations(b, f, S)
T ′ ⇐ T −O
if enoughNodesAvailable(U, T ′) then
T ′′ ⇐ transform(T ′)
M ⇐ findGeneralMapping(U, T ′′)
if validMapping(M) then
S ⇐ S ∪ (U,M, b, f)
return TRUE

end if
end if

end for
return FALSE

As described in the previous section, findGeneralMapping is based on the unsplit-

table flows problem. It is a Mixed Integer Program, like the original findMapping,

that has many of the constraints of standard MCF and UFP as well as additional

constraints unique to the testbed scheduling problem. The transform step before find-

GeneralMapping is called is essentially a preprocessing step that prepares the testbed

graph for the MIP. transform has two primary goals that are related. First, it mod-

ifies T ′ to produce a graph that is more closely related to UFP. Second, it reduces

the size of T ′ to the minimal graph needed for findGeneralMapping so that the size of

the MIP is as small as possible. An example of the modifications made by transform

is shown in Figure 4.12. The edge labels are edge capacities, and different shapes

represent different types of nodes. Rectangles represent infrastructure nodes.

125

Figure 4.12: An example application of transform.

126

As Figure 4.12 shows, the transform function replaces every vertex of the same type

with a single vertex that represents that type. These new vertices will be referred

to as type vertices. transform also adds a single edge with infinite capacity from

each type vertex to each infrastructure switch that had vertices of that type before

the transformation. For example, the figure shows there was only one circle vertex

attached to the top infrastructure node and so the circle type vertex has only one

edge to that infrastructure node. On the other hand, there were diamonds connected

to every infrastructure node and so the diamond type vertex has edges to every

infrastructure node.

These new type vertices will serve as the source and sink vertices for all edges in

the user graph. The type vertex associated with one end point of each user edge

will serve as the source, and the type vertex associated with the other end point

will serve as the sink. Either type vertex can serve as the source or as the sink

and can be chosen differently for each user edge. Using these vertices as the sources

and sinks allows every user edge to have a fixed source and sink, regardless of which

vertices and edges are ultimately chosen for the mapping. The edge capacities for

edges between type vertices and infrastructure nodes is set to infinity to ensure that

no artificial restrictions are placed on possible mappings due to the transformation.

findGeneralMapping will have other constraints that enforce the correct limitations

based on available nodes of each type.

After the transform step, the findGeneralMapping MIP is called in order to try to

find a valid mapping from U to the testbed graph. Note that one important piece

of information is lost in the transformation: the number of available vertices of each

type on each infrastructure node. That information is needed to ensure that any

mappings found are feasible. As such, it is added as auxiliary information to T ′′ so

that findGeneralMapping has access to it. The findGeneralMapping MIP is shown in

Algorithm 4.5.

As in findMapping, findGeneralMapping relies on a small number of constants and

vertex and edge sets that are derived from U and T . V T
I is the set of all vertices

in T that represent infrastructure nodes. Similarly, ET
I is the set of all edges in

T that connect one infrastructure node to another. That is, only edges that have

infrastructure nodes as both end points are in ET
I . K = |EU | is the number of edges

127

Algorithm 4.5 findGeneralMapping(U, T)

Let V T
I be the set of infrastructure nodes in T

Let ET
I be the set of edges connecting infrastructure nodes in T

Let K be the number of edges in U and (xk, yk) be the kth such edge
with capacity capk

Let L be the number of distinct node types in U
Let αj, 1≤j≤L, be the set of nodes of type j in U
Let βuj, 1≤j≤L, u∈V T

I , be the number of nodes of type j on infrastructure node u
Let γj, 1≤j≤L, be the type vertex in T for type j

Variables: ∀k, 1≤k≤K and ∀(u, v)∈ET , fk(u, v) ≥ 0

∀k, 1≤k≤K and ∀(u, v)∈ET
I , Fk(u, v)∈{0, 1}

∀u∈V T
I and ∀x∈V U , Iu(x)∈{0, 1}

Objective: min
K∑
k=1

∑
(u,v)∈ET

I

fk(u, v)

s.t. ∀(u, v)∈ET ,
K∑
k=1

(fk(u, v) + fk(v, u)) ≤ cap(u, v)

∀k, 1≤k≤K, and ∀u∈V T
I ,
∑
w∈V T

(fk(u,w)− fk(w, u)) = 0

∀k, 1≤k≤K, and ∀u∈V T
I ,
∑
w∈V T

I

Fk(u,w) ≤ 1

∀k, 1≤k≤K, and ∀(u, v)∈ET
I , fk(u, v) = capk ∗ Fk(u, v)

∀x∈V U ,
∑
u∈V T

I

Iu(x) = 1

∀j, 1≤j≤L, and ∀u∈V T
I ,
∑
x∈αj

Iu(x) ≤ βuj

∀k, 1≤k≤K, and ∀j, 1≤j≤L, and ∀u∈V T
I ,

fk(γj, u) =

{
capk ∗ Iu(xk) if xk is type j

0 otherwise

fk(u, γj) =

{
capk ∗ Iu(yk) if yk is type j

0 otherwise

128

in U . In terms of MCF, K is also the number of commodities. Each user edge is

denoted (xk, yk) with capacity capk. L, αj, and βuj are the same as in the original

findMapping. Finally, γj ∈ V T is the type vertex for type j in T that was added

during the transform step.

There are three sets of variables in the MIP. fk(u, v) comes straight from the MCF

formulation and is the amount of flow for commodity k along edge (u, v) ∈ ET . Each

flow variable is positive and real-valued. The formulation forces every flow value to

be either zero or the capacity of the user edge associated with that commodity. This

is accomplished in part by the set of Fk(u, v) variables, which are binary indicators.

Each Fk(u, v) variable indicates whether or not any flow for user edge k is assigned

to testbed edge (u, v). Finally, there is second set of indicator variables, Iu(x), that

serves the same purpose as in findMapping. Namely, they indicate whether or not

user node x ∈ V U has been assigned to infrastructure node u.

The objective function is similar to the findMapping objective function. The total

flow used along every infrastructure edge in T is minimized. This keeps the maximum

amount of capacity available for future requests and thereby increases the probability

that future requests can be satisfied.

The are seven sets of constraints in the MIP, some of which come from MCF, some

from UFP, and some of which are unique to testbed scheduling. The first set of

constraints is the version of the MCF capacity constraint set for undirected graphs.

Recall that MCF operates on directed graphs, whereas testbed scheduling uses undi-

rected graphs. This formulation does not use any form of skew symmetry, but does

assume that all flows are bidirectional. The result is that a flow along edge (u, v)

implies an equal amount of flow in both directions, but fk(u, v) 6= fk(v, u). To ac-

counts for this, the capacity constraints explicitly ensure that the total flow for all

commodities along every edge in both directions is less than the capacity of that edge.

Of course, for MCF-like behavior, there must be some notion of flow conservation

across each vertex. This is represented in the second set of MIP constraints, which is

the undirected version of the MCF flow conservation constraint set. These constraints

force the total flow into a vertex to equal the total flow out of the vertex, on a per-

commodity basis. Note that the constraints only apply to flow into and out of the

129

infrastructure nodes. This excludes only the type vertices, which follows because

those vertices will serve as the source and sink vertices for every commodity.

The third and fourth constraint sets are derived from UFP. Specifically, the Fk(u, v)

indicator variables are used to ensure that all per-commodity flows are not split

across multiple paths. First, constraints are added to the Fk(u, v) variables to ensure

that each commodity has at most one Fk indicator set for all edges going from one

infrastructure node to another. That is, each commodity is only allowed to have

flow along no more than one outgoing edge from each infrastructure node. Together,

these Fk values form a single flow path through the infrastructure nodes for each

commodity. The fourth set of constraints assigns the actual flow values according to

the indicator variables. If Fk(u, v) is set to one, then fk(u, v) is assigned a flow value

equal to the capacity of the associated user edge. If Fk(u, v) is set to zero, then so it

fk(u, v).

The fifth and sixth constraint sets are the same as in the original findMapping. First,

they ensure that every user vertex is mapped to exactly one infrastructure node in T .

Second, they ensure that the number of vertices of each type on each infrastructure

node is no more than the number available on that infrastructure node. Recall that βuj

is derived from additional data associated with T that was lost after the preprocessing

transform step.

The final set of constraints is derived from the MCF demand constraints and is where

the type vertices act as per-commodity source and sink vertices. Each user edge has

two endpoints, and each endpoint is of a specific type. For example, user edge k might

have endpoints of type i and j (i and j might or might not be the same). This would

result in commodity k in the MIP having γi as its source and γj as its sink. Unlike

standard MCF, however, this MIP must ensure that the flow for commodity k actually

includes the physical nodes that were assigned as the endpoints of the associated user

edge. These mappings are already contained in the Iu(x) indicator variables. The first

half of the last constraint set forces the flow from each commodity’s source vertex

through the correct infrastructure node first. Similarly, the second half forces the

last edge along the flow path through the correct infrastructure to the sink vertex.

In other words, there are actually only two cases. If commodity xk is of type j

and xk is assigned to infrastructure node u, then the flow from γj to u is equal to

130

capk. Otherwise, the fk(γj, u) is zero, either because xk was mapped to a different

infrastructure node or because xk is not of type j. The flow assignments for the sinks

are similar.

The end result is that the two sets of indicator variables are used to map every user

vertex to exactly one infrastructure node and every user edge to a single path, if

there are enough resources available. The Iu(x) and fk(u, v) variables contain that

mapping. If it is indeed a valid mapping, then GMB adds it to the current schedule.

Otherwise the user is notified that the request has been rejected.

Note that there are a few minor details left out of this formulation for clarity. First,

many testbed graphs (such as the current ONL testbed graph) are multigraphs. That

is, they have multiple edges between the same pair of infrastructure nodes. This for-

mulation treats edges simply as pairs of vertices, which is not compatible with multi-

graphs. As such, the transform function is used to implement one standard approach

to modify multigraphs in to non-multigraphs. If there are multiple edges directly con-

necting the same two infrastructure nodes, then transform inserts additional vertices

in to the “middle” of each such edge. The result is that these edges are now distin-

guishable by their endpoints. The new vertices are treated by findGeneralMapping as

additional infrastructure nodes.

There is one other complication related to multigraphs. The objective function mini-

mizes flow along all infrastructure edges. If there are multiple choices for sending flow

between two infrastructure nodes, then this objective function will naturally try to

even the distribution of flow across all available choices. Unfortunately, this is not a

desirable outcome. Consider the following example. There are only two infrastructure

nodes, and there are two edges between them each with a capacity of 10. If a request

arrives with two edges of capacity 1 that are each mapped to the infrastructure edges,

then the objective function will assign them to different infrastructure edges resulting

in a remaining capacity of 9 on each edge. If a second request then arrives with a

single edge of capacity 10, then it will have to be rejected because there is not a

single path with enough capacity even the total capacity is more than enough. To

avoid this situation, the actual findGeneralMapping MIP includes edge costs for all

infrastructure edges. The objective function then includes the cost of each edge as a

131

coefficient to the flow variables for that edge. Costs are chosen to force all possible

flows along the same edge when multiple choices are available.

Finally, the testbed framework described in Chapter 2 includes support for virtual

switches in user topologies in addition to virtual links. findGeneralMapping therefore

also supports virtual switches. They are treated in a similar manner to other user

nodes, i.e., a virtual switch type node is added during the transform step that is used

as the source and sink for all edges that involve a virtual switch. They are somewhat

special, however, because they are not ultimately physical nodes assigned to the user.

They are assigned directly to infrastructure nodes (via the Iu(x) indicator variables),

but there are no restrictions on how many virtual switches can be assigned to each

infrastructure node. Instead, there are additional constraints that force all vertices

connected to a single virtual switch (except other virtual switches) to be mapped

to the same infrastructure node as that virtual switch. This is handled by setting

the indicator variables for all vertices connected to the virtual switch to match the

indicator variable for the virtual switch across all infrastructure nodes.

4.4.3 General Graph Evaluation

The evaluation of GMB uses the same framework used for the MINBW and MAX-

PACK evaluations. Refer to Section 4.3.3 for the details and descriptions of all pa-

rameters. There are a small number of differences between the two evaluations. Most

importantly, the testbed graph used to evaluate GMB is shown in Figure 4.13.

As before, the rectangles represent infrastructure nodes and the other shapes represent

different node types. The two infrastructure nodes along the middle of the graph are

10 Gb/s Ethernet switches with 48 ports each. The six infrastructure nodes along

the top and bottom are 1 Gb/s Ethernet switches with 48 ports each. These latter

switches also have four 10 Gb/s connections each, which are used to connect to the

10 Gb/s switches.

The testbed graph is similar to the current ONL testbed graph. Indeed, the graph

used for the evaluation contains everything in the actual ONL graph. Triangles

represent IXPs, circles represent NSPs, diamonds represent NetFPGAs, and hexagons

132

Figure 4.13: Testbed graph used in the GMB evaluation.

133

represent PCs. Note that there are actually multiple distinct types of PCs, but they

have been grouped together here for simplicity. Additional nodes were added so that

every port on every infrastructure switch is occupied. This included adding additional

nodes of existing types as well as adding one additional type. The additional type

is a representation of a newer version of the NetFPGA platform that will likely be

included in ONL in the near future. Each of these nodes has four 10 Gb/s interfaces.

They are also represented in the figure by diamonds. These nodes are added to the

set of backbone nodes for random user graph generation. The PCs connected to the

10 Gb/s switches are used during the last step of random graph generation to connect

to any used network interfaces on 10 Gb/s backbone nodes.

All of the parameters are varied as in the linear graph evaluations, with two ex-

ceptions. The values of IEC have changed to reflect the new testbed graph edge

capacities. Specifically, IEC defaults to 10, and values of 5, 15, 20, and ∞ are also

explored. Two request orderings are also evaluated in addition to increasing, de-

creasing, and random. O = swapN is an intermediate step between the increasing

start time and completely random orderings. The requests are initially ordered as in

O= increasing. One request is then chosen uniformly at random and swapped with

the request immediately after it. This random swapping is repeated a total N times,

where N is the number of requests (10000 for these evaluations). This produces a

request ordering that is a reasonable approximation of the orderings seen in practice.

O= swap10N is similar to swapN except that 10N random swaps are performed. The

other parameters remain the same, with default values of BBS = 2, ABD = 3, and

F = 0. All of these results were gathered on a Linux PC with dual quad-core pro-

cessors running at 2.3 GHz and 12 GB of memory. The Gurobi [31] MIP solver was

used for findGeneralMapping.

Response Time

Figure 4.14 shows the average response times for GMB as the backbone size varies.

The average responses time over all accepted requests are shown on the left, and

the average response times for rejected requests are shown on the right. Note the

different y-axis scales. As expected, the response times grow as the user graph size

increases. For the largest user graphs, average acceptance response times are between

134

Figure 4.14: GMB response times for different backbone sizes.

1 and 1.2 s. The maximum response time seen over all GMB evaluations was 3.8 s

and occurred with BBS = 8 and a load of 0.1. The average acceptance time in that

case was 1.15 s with a standard deviation of 0.45 s and a minimum of 0.26 s. The

figure suggests that the response time increase might be exponential with respect to

the backbone size, which would follow naturally for any Integer Program formulation.

Overall, response times decrease as the load increases. The reasoning here is similar

to that for MAXPACK. That is, higher loads on the testbed leave fewer unassigned

resources available and therefore restrict the number of choices available to the MIP

solver. This is particularly true for rejection times where the scheduler is able to

determine that there are no feasible solutions more quickly. Indeed, this trend will

be seen over many of the following charts as well. The other important characteristic

of the rejection times shown in Figure 4.14 is that they do not continue to increase

at the same rate as the user graph size increases. Once again, this follows because

larger user graphs need more resources and it is less likely that all of those resources

will be available at the same time.

Next, Figure 4.15 shows the responses times as the average backbone degree is varied.

Note the y-axis scale differences (scales on all the response time charts are set differ-

ently in order to highlight the data in that chart). There are only minor differences

in both the acceptance and rejection times for different values of ABD. In both cases,

higher backbone degrees lead to slightly smaller responses times. This effect comes

directly from the MIP formulation and user graph generation. The backbone size is

fixed, and so higher values of ABD produce user graphs with fewer edges and fewer

135

Figure 4.15: GMB response times for different average backbone degrees.

nodes. This results in fewer MIP variables and constraints, and therefore in faster

response times.

The user’s start time flexibility is varied next and the results are shown in Figure 4.16.

Recall that F =0 implies no flexibility, i.e., that the requests specify only one possible

start time. Increasing F allows the scheduler to try to fit the request into more places

along the current schedule time line, at the cost of higher response times. Consider

the acceptance response times for F = 1. For low loads, the response times are very

close to the case with no flexibility because there is very little resource contention

and most requests are accepted immediately. The response time grows linearly up

until a load of 0.8 as more and more requests must be tried with more than one start

time. Finally, the response times level off for loads above 0.8, with an increase of

around 40 ms over F = 0. This time difference corresponds to the time for a single

rejection, as can be seen when F =0 in the rejection times chart. That means that on

average findGeneralMapping is run twice for every accepted user request. Increasing

F beyond 1 does not substantially increase the acceptance times because the increased

flexibility only allows a very few additional requests to be accepted.

The rejection times do increase substantially for more flexible user requests, which

follows because findGeneralMapping will be called more times. Most striking are

the results for F = 3. For low loads, there are less overlapping reservations and so

computePossibleTimes returns fewer potential times to try resulting in fewer calls

to findGeneralMapping. High loads have many more potential times, but there are

many less nodes available. The result is that most of the potential times are rejected

136

Figure 4.16: GMB response times for different user start time flexibilities.

at the enoughNodesAvailable check. Medium loads represent the worst case where

findGeneralMapping is called most often.

Next, the response times for different request orderings are shown in Figure 4.17.

The acceptance times are not affected by the order in which requests are received.

The rejection times are, however, significantly affected. Rejection times for requests

in increasing or decreasing start time order are near zero. As the ordering becomes

more random, the rejection times increase. Recall that these are the average response

times over all rejected requests. When the requests are received in order of increasing

or decreasing start time, nearly all the rejections are due to the lack of available nodes.

Therefore, findGeneralMapping is not called for most of the rejections, which results in

a very low average response time. On the other hand, randomly ordering the requests

causes the number of rejections to increase. In fact, these additional rejections are

largely requests that were accepted when ordered by start time. For example, consider

a load of 0.5. Out of the 10000 requests, ∼500 were rejected because there were not

enough nodes available and so findGeneralMapping was never called. This number

does not change for different orderings. The other ∼9500 requests were accepted

when O= increasing. For O= swapN, ∼9250 requests were accepted and ∼250 where

rejected because findGeneralMapping was unable to find a valid mapping given the

previously accepted requests. Approximately 8350 were accepted and ∼1150 were

rejected by findGeneralMapping when O = swap10N, and ∼7600 were accepted and

∼1900 were rejected by findGeneralMapping where O= random. So, different request

orderings only affect the average rejection response times indirectly by affecting the

rejection rates. This will be examined further in the rejection rate evaluation.

137

Figure 4.17: GMB response times for different request orderings.

Figure 4.18: GMB response times for different infrastructure edge capacities.

Finally, the response times for different values of the infrastructure edge capacity

are shown in Figure 4.18. The acceptance times remain largely unaffected as IEC

changes. There is a small decrease in acceptance times when the infrastructure edge

capacities are under 10 Gb/s. This is due to the nature of the requests that can

be accepted in those cases. Specifically, no requests with any 10 Gb/s links can be

accepted when IEC is less than 10 and so all accepted requests only have 1 Gb/s

links. It is easier for the MIP solver to find mappings when the user edge capacities

are all uniform, and therefore the average acceptance times are lower.

The rejection times fall into three groups. First, the rejection times are near zero when

the infrastructure edge capacities are infinite. In that case, the only reason to reject a

request is because there are not enough nodes of each type available, which is detected

138

immediately by enoughNodesAvailable. The second group is for infrastructure edge

capacities of 10, 15, and 20 Gb/s. This grouping indicates that increasing the edge

capacities only slightly has no impact on response times. Lastly, the rejection times

are higher when the infrastructure edge capacities are less than 10 Gb/s. Again, this is

because many of the rejected requests have user edge capacities that are greater than

any single infrastructure edge capacity. This may seem somewhat counter-intuitive.

After all, it should be easy for the scheduler to recognize that there is no way that

10 Gb/s edges can be mapped to a testbed graph that has no 10 Gb/s edges. The

truth is that the MIP solver struggles with this because it always begins by finding

a solution to the relaxed problem where all integer variables are treated as linear.

It then uses that initial solution as a starting point to find an integer solution. In

the findGeneralMapping formulation, this results in a relaxed solution that allows

arbitrary flow splitting. From there, it takes many solver iterations to show that

there is indeed no feasible solution.

Rejection Rate

The other important metric for characterizing scheduler performance is the rejec-

tion rate. This evaluation uses the same two rejection rates that were used in the

MAXPACK and MINBW evaluations. Namely, the absolute rejection rate and the

scheduler rejection rate. The former is the percentage of the 10000 requests that are

rejected for any reason. The latter is the percentage of rejected requests for which

findGeneralMapping was run at least once.

Figure 4.19 shows the rejection rates for GMB as the average backbone size is varied.

The chart on the left shows the absolute rejection rates, and the chart on the right

shows the scheduler rejection rates. Note the different y-axis scales. The absolute

rejection rate increases as the load increases, as expected. It also increases as the

backbone size increases, although the rate of increase drops as BBS increases. This

is due to the way the user graphs are generated. As BBS increases for a fixed load,

the number of overlapping requests decreases. The result, as intended, is that the

total number of backbone nodes in use at any given time is the same regardless of

the backbone size of individual requests. The increases in absolute rejection rate are

139

Figure 4.19: GMB rejection rates for different backbone sizes.

instead due to either a lack of non-backbone nodes or a lack of infrastructure edge

capacity.

Indeed, these differences can be discerned from the scheduler rejection rates. As

Figure 4.19 shows, the scheduler rejection rate increases from BBS = 2 to BBS = 4

then levels off for BBS =6. It then drops sharply for BBS =8 to rejection rates less

than those for smaller requests. This is due to a shift in the primary reason that the

requests were rejected. Namely, most requests with backbone sizes less than 8 are

rejected because there is not enough infrastructure edge capacity, which results in a

higher scheduler rejection rate. On the other hand, there are generally not enough

non-backbone nodes to support larger requests and so most requests are rejected due

to a lack of nodes when the backbone size is 8.

Next, Figure 4.20 shows the rejection rates for different values of the average backbone

degree. Clearly, increasing or decreasing the average number of inter-backbone edges

has very little impact on the rejection rate.

Figure 4.21 shows the rejection rates as the user’s start time flexibility is varied. As

expected, increasing the flexibility decreases the rejection rates. There are diminishing

returns after the flexibility increases past 1. The key point is that by having a

flexibility of only 1, users substantially increase their acceptance probability. This

is particularly true for medium loads, where the absolute rejection rate is around

one third of the rate when the user has no flexibility. The same general features are

present for the scheduler rejection rates. Note that the same increase in scheduler

140

Figure 4.20: GMB rejection rates for different average backbone degrees.

Figure 4.21: GMB rejection rates for different user start time flexibilities.

rejection rates for high flexibilities and high loads is present here as it was in the

MAXPACK evaluation.

Next, the rejection rates for different request orderings are shown in Figure 4.22. As

the order changes from less random to more random, the rejection rates increase.

Recall from the response time evaluation that the number of requests rejected at

the enoughNodesAvailable check is relatively constant across different orderings for

a fixed load. The increased absolute rejection rates for more random orderings are

thus due primarily to the inability of findGeneralMapping to find a mapping. This

is evident in the scheduler rejection rates. Note that the same requests (same user

graphs, same lengths, same start time ranges) where used in all five cases. The only

difference is the order in which they are processed by GMB. This behavior was also

141

Figure 4.22: GMB rejection rates for different request orderings.

present in the MAXPACK evaluations, and the reasoning is similar here. In this case,

the differences are even greater due to the possibility of user graphs with 10 Gb/s

edges, as is shown next.

Figure 4.23 shows the rejection rates as the infrastructure edge capacity is varied. As

expected, the rejection rates are higher for lower infrastructure edge capacities. For

IEC less than 10 Gb/s, the rejection rates are much higher because any request with

a 10 Gb/s link will be rejected by findGeneralMapping. Naturally, IEC =∞ ensures

that the scheduler rejection rate is zero. Values of IEC from 10 Gb/s to 20 Gb/s

result in the expected proportional decreases in the scheduler rejection rates. That

is, doubling IEC cuts the rejection rate nearly in half. Recall that the default random

ordering is used here. Compared to the other parameters, increasing IEC has the

most dramatic effect on the scheduler rejection rate under random orderings. This

follows from the testbed graph used in the these evaluations. Namely, there is an

abundance of infrastructure edge capacity assuming that only 1 Gb/s edges are used

in user graphs. Once 10 Gb/s edges are also used, the capacity rapidly dwindles

under high load. Randomly ordering the requests exacerbates this issue. Consider a

request with multiple 10 Gb/s edges. When requests are ordered randomly, such a

request might be processed and accepted early in the order, which results in a large

percentage of the infrastructure edge capacity being used by a single request. Many

subsequent overlapping requests both before and after would then be rejected. On the

other hand, when O= increasing that same request might be rejected because of the

142

Figure 4.23: GMB rejection rates for different infrastructure edge capacities.

previously accepted requests. So one high capacity request has a higher probability

of “blocking” many other requests under a random ordering.

Given all of these results, it is clear that user start time flexibility, request ordering,

and infrastructure edge capacity all play significant roles in the rejection rates. IEC

is not something that is easily increased in practice as it is very costly to include the

additional infrastructure nodes and links necessary for such an increase. The ordering

in which requests are received is also not something that can be controlled, but it is

certainly true that the request ordering in practice is closest to the swapN ordering.

O = random was used as the default ordering for all of the above evaluations to

understand the scheduler’s performance under difficult circumstances. Similarly, the

user’s start time flexibility is determined entirely by the users, and these evaluations

used F =0 to characterize GMB given difficult requests.

One final set of evaluations was conducted that instead reflects the most common

parameter settings found in testbeds like the Open Network Laboratory. For these

final evaluations the user graph backbone size was varied as before, from BBS = 2

to BBS = 8. The average backbone degree and infrastructure edge capacity are

unchanged from above, with ABD = 3 and IEC = 10. The request ordering and

flexibility are modified, with O = swapN and F =1. Again, these values were chosen

to evaluate GMB in the average practical case. The results are shown in Figure 4.24.

The absolute rejection rate is under 40% even for large user requests and high loads.

143

Figure 4.24: GMB rejection rates for common parameter settings.

Most importantly, the scheduler rejection rate is under 10% for all request sizes and

loads.

4.4.4 Discussion

Overall, increasing the size of the user graphs has the most impact on response times

and is clearly the factor that determines how well this approach scales. Larger testbed

graphs do not directly result in substantially longer response times, but they do

provide the opportunity for users to build larger requests. Of course, the limits on

acceptable response times are determined primarily by how the testbed is actually

used. If user sessions last only a few hours, then response times should be kept as

low as possible. If user session last days or more, then it is more reasonable for the

scheduler’s response time to be higher. The results here show that responses are low

enough for any use in medium-sized testbeds.

The rejection rates for different request orderings certainly suggest that remapping

previously accepted reservations could lead to higher acceptance rates. For example,

the scheduler could attempt to find a mapping for the current request as in GMB.

If that fails, then the scheduler could temporarily remove all accepted requests that

come after the current request and then attempt to map all of the outstanding requests

in order. If the scheduler succeeds then the new schedule can be used as is, and if

not then it could revert to the original schedule and reject the current request. Of

144

course, there are many possible variations on this general approach, but the main

idea is to leverage the ordering characteristics as much as possible within the bounds

of the testbed scheduling problem.

There are other interesting questions related to different request orderings. A sched-

uler with total future knowledge is naturally unaffected by ordering. Given the con-

straints of the testbed scheduling problem, however, even a practical optimal scheduler

might perform poorly. Requests have to be accepted or rejected at request arrival

time. Once the decision is made, it can not be changed. Accepted requests can also

not be moved in time even if the original request had high flexibility. Schedulers

do have the option of remapping nodes and links to different testbed resources for

accepted requests, but even that is not absolute. The evaluation did not include a

concept of the “current” time relative to the schedule, but in reality reservations that

are active can not be remapped. So, it is unclear precisely how well even an optimal

scheduler could perform. In the future, it would be interesting to explore this from

an adversarial perspective to build worst-case orderings.

Finally, it should be noted that the rejection rates presented here are focused on

whether requests were accepted or rejected. It would also be reasonable to evaluate

scheduler performance in terms of overall testbed utilization rather than number of

requests rejected. In other words, the scheduler could characterized by the percentage

of the nodes and infrastructure capacity actually in use by the accepted requests. For

example, consider a case where the scheduler could either accept two small requests

or one large request. Certainly accepting two requests instead of just one is desirable,

but the large request might utilize more testbed nodes than the smaller two requests

together. This would lead to higher resource utility in the testbed.

145

Chapter 5

Conclusion

Network testbeds provide researchers, educators, and students a safe environment in

which to conduct network experimentation. Researchers rely on testbeds to build and

evaluate new networking systems, services, and protocols. Educators and students

utilize testbeds to explore practical aspects of networking theory and to gain hands-on

experience with common networking tools. In either case, testbeds can allow users

to quickly configure and reconfigure experiments that span many possible network

conditions.

This dissertation has explored practical and theoretical problems related to the design

and implementation of network testbeds. After exploring the current state of the art

for testbeds, it became clear that most existing testbeds lack resource heterogene-

ity. Specifically, the majority of operating testbeds are based entirely on PCs. PCs

do offer a familiar platform that is capable of emulating many networking technolo-

gies, but they can not match the performance characteristics of those technologies.

Moreover, they do not offer users the opportunity to interact with and learn about

other networking systems. The few testbeds that do contain heterogeneous resources

typically only offer limited or restricted access to those resources.

To that end, Chapter 2 presented the design of a new, more general testbed framework

that naturally supports resource heterogeneity. Any type of networking device can

be included in the testbed framework, from PCs to network processors to hardware

routers. One of the most important features of the proposed framework is that new

types of nodes can be added quickly and easily, without the need to modify any of

the infrastructure software.

146

Once users have access to diverse types of networking devices, they also need to be able

to interact with and configure those devices in an intuitive way. Of course, this can

be quite challenging as different devices often have widely varied user interfaces. The

new testbed framework therefore also includes a unified graphical user interface, the

Remote Laboratory Interface (RLI), through which users can configure all the nodes

in their experimental networks. Specifically, the RLI supports generic descriptions

of the functionality available on each different type of node available in the testbed.

The RLI uses these descriptions to present the user with a consistent user interface

for each different type based on those descriptions.

The testbed framework also includes all of the infrastructure software needed to man-

age the resources in the testbed. All of the details for adding and removing user

sessions, ensuring nodes are in a clean state before a new session starts, and con-

figuring the testbed network are handled automatically. These software components

treat all of the various resources generically, i.e., the software operates based on the

hardware-level descriptions of each resource type. This allows new types of resources

and new instances of those types to be added to the testbed with very little work. In

the prototype testbed using this framework, new types and nodes can even be added

without restarting any infrastructure software.

Many networking devices such as network processors, FPGAs, and PCs are capable

of fulfilling many different roles in the network. For example, an FPGA might be

programmed to act as a router in one experiment and as a traffic generator in another.

The testbed framework also supports this notion of type extensibility at a fundamental

level. Each type of resource in the testbed can have multiple specializations that

correspond to different sets of functionality. This also allows the framework to provide

multiple configuration interfaces targeted at users with different levels of expertise.

Most importantly, new specializations can be added or existing specialization modified

by any user without the need for the underlying testbed infrastructure to be modified

in any way.

Given the design of this testbed framework, there is one particularly difficult and

interesting problem to consider: resource sharing. Most existing testbeds employ a

simple first-come first-served admission control policy. When a user wants to run an

experiment, they ask for the resources for that experiment. If those resources are

147

available immediately, the user is granted access to the necessary nodes. If those

resources are not available immediately, the user’s request is rejected and they have

to try again later.

The testbed framework presented in this dissertation takes a different approach. Users

reserve time on the testbed in advance of when they actually wish to use the resources.

For example, a user could make a reservation to use a certain set of resources for four

hours starting sometime in the afternoon on the following day. Such a reservation

system is a generalization of the pure admission control approach and adds a schedul-

ing dimension to an already difficult problem. The framework uses a heuristic-based

solution that relies on Mixed Integer Linear Programs to optimally solve a key sub-

problem based on network graph embedding. Although the solution is not optimal, it

performs very well under typical testbed workloads. Moreover, the scheduler response

time is often under one second, and rarely longer than a few seconds, for reasonably

sized testbeds. The problem, solution, and evaluation were described in Chapter 4.

The testbed framework has also been thoroughly prototyped in the form of the Open

Network Laboratory (ONL) testbed. ONL currently contains hardware routers, net-

work processor systems, FPGA platforms, and multiple types of PCs. Most of these

different types can and do support multiple specializations. Some of the types along

with example specializations have been discussed in detail in Chapter 3.

ONL is open to all researchers, educators, and students. It has already been used

successfully in undergraduate and graduate networking and systems courses across a

small number of universities. In general, the response has been positive. Students

enjoy the chance to get hands-on experience, and find that the RLI provides an

intuitive interface to the testbed resources.

Although focused mostly on testbeds with fixed resources and hard performance guar-

antees, the framework could also be applied to other testbed environments. This

includes overlay-style testbeds where each node is shared amongst many users and

there are no guarantees about network capacity. Moreover, the framework could be

adapted to support network configuration in other virtualized infrastructure settings.

For example, application resource sharing in data centers and cloud computing en-

vironments, or Internet Service Provider management of customer Carrier Ethernet

domains. In each of these cases, there are resources owned by a single entity that

148

are being shared by many users. The infrastructure developed for the generic testbed

framework could therefore be applied to ease the ongoing configuration and manage-

ment burden associated with these different virtualized systems.

In closing, there are many inherent challenges in designing and deploying testbeds

that are truly useful to the networking community. The ongoing Global Environment

for Network Innovations initiative is clear proof that there is a strong interest in

building large-scale, heterogeneous testbeds. It has also shown that actually building

such a testbed is an extremely difficult endeavor. The framework described in this

dissertation has the potential to impact that work substantially. The abstractions,

algorithms, and infrastructure presented here are relatively simple, yet still powerful

enough to describe and configure a wide range of complex networking scenarios.

149

Appendix A

Source Code for the Host

Specialization

This appendix contains all of the source code for one example Specialization Node

Daemon. Specifically, this is the daemon counterpart to the “host” specialization of

the “PC8core” base type from the Open Network Laboratory described in Section 3.1.

Each of the 6 files that make up this Specialization Node Daemon are given below.

150

1 #include <iostream>
2 #include <sstream>
3 #include <cstdio>
4 #include <cstdlib>
5 #include <string>
6 #include <list>
7 #include <vector>
8 #include <map>
9 #include <exception>

10 #include <stdexcept>
11
12 #include <unistd.h>
13 #include <errno.h>
14 #include <stdlib.h>
15 #include <stdint.h>
16 #include <memory.h>
17 #include <pthread.h>
18 #include <sys/types.h>
19 #include <netinet/in.h>
20
21 #include "shared.h"
22
23 #include "host_configuration.h"
24 #include "host_globals.h"
25 #include "host_requests.h"
26
27 namespace host
28 {
29 dispatcher* the_dispatcher;
30 nccp_listener* rli_conn;
31
32 configuration* conf;
33 };
34
35 using namespace host;
36
37 int main()
38 {
39 log = new log_file("/tmp/host.log");
40 the_dispatcher = dispatcher::get_dispatcher();
41 rli_conn = NULL;
42 conf = new configuration();

Listing A.1: (a) host main.cc; the main routine.

151

43 try
44 {
45 rli_conn = new nccp_listener("127.0.0.1", Default_ND_Port);
46 }
47 catch(std::exception& e)
48 {
49 write_log(e.what());
50 exit(1);
51 }
52
53 register_req<configure_node_req>(NCCP_Operation_CfgNode);
54
55 register_req<add_route_req>(HOST_AddRoute);
56 register_req<delete_route_req>(HOST_DeleteRoute);
57
58 rli_conn->receive_messages(false);
59
60 pthread_exit(NULL);
61 }

Listing A.1: (b) host main.cc; the main routine.

1 #ifndef _HOST_GLOBALS_H
2 #define _HOST_GLOBALS_H
3
4 namespace host
5 {
6 extern dispatcher* the_dispatcher;
7 extern nccp_listener* rli_conn;
8 extern configuration* conf;
9 }; // namespace host

10
11 #endif // _HOST_GLOBALS_H

Listing A.2: host globals.h; a header file containing all global variable declarations.

152

1 #ifndef _HOST_REQUESTS_H
2 #define _HOST_REQUESTS_H
3 namespace host
4 {
5 class configure_node_req : public configure_node
6 {
7 public:
8 configure_node_req(uint8_t *mbuf, uint32_t size);
9 virtual ~configure_node_req();

10 virtual bool handle();
11 }; // class configure_node_req
12
13 static const NCCP_OperationType HOST_AddRoute = 73;
14 class add_route_req : public rli_request
15 {
16 public:
17 add_route_req(uint8_t *mbuf, uint32_t size);
18 virtual ~add_route_req();
19 virtual void parse();
20 virtual bool handle();
21
22 protected:
23 uint32_t prefix;
24 uint32_t mask;
25 uint32_t output_port;
26 uint32_t nexthop_ip;
27 uint32_t stats_index;
28 }; // class add_route_req
29
30 static const NCCP_OperationType HOST_DeleteRoute = 75;
31 class delete_route_req : public rli_request
32 {
33 public:
34 delete_route_req(uint8_t *mbuf, uint32_t size);
35 virtual ~delete_route_req();
36 virtual void parse();
37 virtual bool handle();
38
39 protected:
40 uint32_t prefix;
41 uint32_t mask;
42 }; // class delete_route_req
43 };
44 #endif // _HOST_REQUESTS_H

Listing A.3: host requests.h; the header file containing class definitions for the re-
quests this Specialization Node Daemon supports.

153

1 #include <iostream>
2 #include <sstream>
3 #include <cstdio>
4 #include <cstdlib>
5 #include <string>
6 #include <list>
7 #include <vector>
8 #include <map>
9 #include <exception>

10 #include <stdexcept>
11
12 #include <unistd.h>
13 #include <errno.h>
14 #include <stdlib.h>
15 #include <stdint.h>
16 #include <memory.h>
17 #include <pthread.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <netinet/in.h>
21
22 #include "shared.h"
23
24 #include "host_configuration.h"
25 #include "host_globals.h"
26 #include "host_requests.h"
27
28 using namespace host;
29
30 configure_node_req::configure_node_req(uint8_t *mbuf, uint32_t size):
31 configure_node(mbuf, size)
32 {
33 }
34
35 configure_node_req::~configure_node_req()
36 {
37 }
38
39 bool
40 configure_node_req::handle()
41 {
42 write_log("configure_node_req::handle()");
43
44 conf->set_port_info(node_conf.getPort(), node_conf.getIPAddr(),
45 node_conf.getNHIPAddr());

Listing A.4: (a) host requests.cc; the source file containing classes for the requests
this Specialization Node Daemon supports.

154

46 crd_response* resp = new crd_response(this, NCCP_Status_Fine);
47 resp->send();
48 delete resp;
49
50 return true;
51 }
52
53 add_route_req::add_route_req(uint8_t *mbuf, uint32_t size):
54 rli_request(mbuf, size)
55 {
56 }
57
58 add_route_req::~add_route_req()
59 {
60 }
61
62 bool
63 add_route_req::handle()
64 {
65 write_log("add_route_req::handle()");
66
67 std::string prefixstr = conf->addr_int2str(prefix);
68 if(prefixstr == "")
69 {
70 write_log("add_route_req: handle(): got bad prefix");
71 rli_response* rliresp = new rli_response(this, NCCP_Status_Failed);
72 rliresp->send();
73 delete rliresp;
74 return true;
75 }
76
77 std::string nhstr = conf->addr_int2str(nexthop_ip);
78 if(nhstr == "")
79 {
80 write_log("add_route_req: handle(): got bad next hop");
81 rli_response* rliresp = new rli_response(this, NCCP_Status_Failed);
82 rliresp->send();
83 delete rliresp;
84 return true;
85 }

Listing A.4: (b) host requests.cc; the source file containing classes for the requests
this Specialization Node Daemon supports.

155

86 NCCP_StatusType stat = NCCP_Status_Fine;
87 if(!conf->add_route(port, prefixstr, mask, nhstr))
88 {
89 stat = NCCP_Status_Failed;
90 }
91
92 rli_response* rliresp = new rli_response(this, stat);
93 rliresp->send();
94 delete rliresp;
95
96 return true;
97 }
98
99 void

100 add_route_req::parse()
101 {
102 rli_request::parse();
103
104 prefix = params[0].getInt();
105 mask = params[1].getInt();
106 output_port = params[2].getInt();
107 nexthop_ip = params[3].getInt();
108 stats_index = params[4].getInt();
109 }
110
111 delete_route_req::delete_route_req(uint8_t *mbuf, uint32_t size):
112 rli_request(mbuf, size)
113 {
114 }
115
116 delete_route_req::~delete_route_req()
117 {
118 }

Listing A.4: (c) host requests.cc; the source file containing classes for the requests
this Specialization Node Daemon supports.

156

119 bool
120 delete_route_req::handle()
121 {
122 write_log("delete_route_req::handle()");
123
124 std::string prefixstr = conf->addr_int2str(prefix);
125 if(prefixstr == "")
126 {
127 write_log("delete_route_req: handle(): got bad prefix");
128 rli_response* rliresp = new rli_response(this, NCCP_Status_Failed);
129 rliresp->send();
130 delete rliresp;
131 return true;
132 }
133
134 NCCP_StatusType stat = NCCP_Status_Fine;
135 if(!conf->delete_route(prefixstr, mask))
136 {
137 stat = NCCP_Status_Failed;
138 }
139
140 rli_response* rliresp = new rli_response(this, stat);
141 rliresp->send();
142 delete rliresp;
143
144 return true;
145 }
146
147 void
148 delete_route_req::parse()
149 {
150 rli_request::parse();
151
152 prefix = params[0].getInt();
153 mask = params[1].getInt();
154 }

Listing A.4: (d) host requests.cc; the source file containing classes for the requests
this Specialization Node Daemon supports.

157

1 #ifndef _HOST_CONFIGURATION_H
2 #define _HOST_CONFIGURATION_H
3
4 namespace host
5 {
6 typedef struct _port_info
7 {
8 std::string nic;
9 std::string ip_addr;

10 std::string next_hop;
11 } port_info;
12
13 class configuration
14 {
15 public:
16 configuration();
17 ~configuration();
18
19 void set_port_info(uint32_t portnum, std::string ip,
20 std::string nexthop);
21
22 bool add_route(uint16_t portnum, std::string prefix,
23 uint32_t mask, std::string nexthop);
24 bool delete_route(std::string prefix, uint32_t mask);
25
26 std::string addr_int2str(uint32_t addr);
27
28 private:
29 static const uint32_t max_port = 0;
30 port_info port[max_port+1];
31
32 int system_cmd(std::string cmd);
33 };
34 };
35
36 #endif // _HOST_CONFIGURATION_H

Listing A.5: host configuration.h; the header file containing class definitions for a
singleton Linux PC configuration class.

158

1 #include <iostream>
2 #include <sstream>
3 #include <cstdio>
4 #include <cstdlib>
5 #include <string>
6 #include <list>
7 #include <vector>
8 #include <map>
9 #include <exception>

10 #include <stdexcept>
11
12 #include <unistd.h>
13 #include <errno.h>
14 #include <stdlib.h>
15 #include <stdint.h>
16 #include <memory.h>
17 #include <pthread.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/socket.h>
21 #include <netinet/in.h>
22 #include <arpa/inet.h>
23
24 #include "shared.h"
25
26 #include "host_configuration.h"
27 #include "host_globals.h"
28
29 using namespace host;
30
31 configuration::configuration()
32 {
33 port[0].nic = "data0";
34 }
35
36 configuration::~configuration()
37 {
38 }

Listing A.6: (a) host configuration.cc; the source file containing classes for a singleton
Linux PC configuration class.

159

39 void
40 configuration::set_port_info(uint32_t portnum, std::string ip,
41 std::string nexthop)
42 {
43 std::string logstr = "configuration::set_port_info(): port="
44 + int2str(portnum);
45 write_log(logstr);
46
47 if(portnum > max_port) return;
48
49 port[portnum].ip_addr = ip;
50 port[portnum].next_hop = nexthop;
51
52 if(port[portnum].next_hop == "0.0.0.0")
53 {
54 system_cmd("/sbin/ifconfig " + port[portnum].nic + " down");
55 system_cmd("/sbin/ifconfig " + port[portnum].nic + " "
56 + port[portnum].ip_addr + " netmask 255.255.255.0");
57 system_cmd("/sbin/ifconfig " + port[portnum].nic + " up");
58 }
59 else
60 {
61 system_cmd("/sbin/ifconfig " + port[portnum].nic + " down");
62 system_cmd("/sbin/ifconfig " + port[portnum].nic + " "
63 + port[portnum].ip_addr + " netmask 255.255.255.240");
64 system_cmd("/sbin/ifconfig " + port[portnum].nic + " up");
65 }
66
67 system_cmd("echo 14400 > /proc/sys/net/ipv4/neigh/" + port[portnum].nic
68 + "/gc_stale_time");
69 system_cmd("arping -q -c 3 -A -I " + port[portnum].nic + " "
70 + port[portnum].ip_addr);
71 }
72
73 bool
74 configuration::add_route(uint16_t portnum, std::string prefix,
75 uint32_t mask, std::string nexthop)
76 {
77 std::string cmd = "/sbin/route add -net " + prefix + "/" + int2str(mask);
78 if(nexthop == "0.0.0.0")
79 {
80 cmd += " dev " + port[portnum].nic;
81 }

Listing A.6: (b) host configuration.cc; the source file containing classes for singleton
Linux PC configuration class.

160

82 else
83 {
84 cmd += " gw " + nexthop;
85 }
86 if(system_cmd(cmd) != 0) { return false; }
87 return true;
88 }
89
90 bool
91 configuration::delete_route(std::string prefix, uint32_t mask)
92 {
93 std::string cmd = "/sbin/route del -net " + prefix + "/" + int2str(mask);
94 if(system_cmd(cmd) != 0) { return false; }
95 return true;
96 }
97
98 std::string
99 configuration::addr_int2str(uint32_t addr)

100 {
101 char addr_cstr[INET_ADDRSTRLEN];
102 struct in_addr ia;
103 ia.s_addr = htonl(addr);
104 if(inet_ntop(AF_INET,&ia,addr_cstr,INET_ADDRSTRLEN) == NULL)
105 {
106 return "";
107 }
108 return std::string(addr_cstr);
109 }
110
111 int
112 configuration::system_cmd(std::string cmd)
113 {
114 write_log("configuration::system_cmd(): cmd = " + cmd);
115 int rtn = system(cmd.c_str());
116 if(rtn == -1) return rtn;
117 return WEXITSTATUS(rtn);
118 }

Listing A.6: (c) host configuration.cc; the source file containing classes for singleton
Linux PC configuration class.

161

Appendix B

Specialization Description for the

NPR

This appendix contains the specialization description for the Network Processor-based

Router described in detail in Section 3.4.

162

1 <?xml version="1.0"?>
2 <subtype typeName="NPR" version="1">
3 <hwType typeName="IXP">
4 <resource>IXP.hw</resource>
5 </hwType>
6 <componentType>router</componentType>
7 <description>IXP based router</description>
8 <assigner name="statsIndex" min="1" max="127"/>
9 <fields>

10 <field editable="false">
11 <plabel>sampling0</plabel>
12 <ptype>double</ptype>
13 <default>100</default>
14 </field>
15 <field editable="true">
16 <plabel>sampling1</plabel>
17 <ptype>double</ptype>
18 <default>50</default>
19 </field>
20 <field editable="true">
21 <plabel>sampling2</plabel>
22 <ptype>double</ptype>
23 <default>25</default>
24 </field>
25 <field editable="true">
26 <plabel>sampling3</plabel>
27 <ptype>double</ptype>
28 <default>12.5</default>
29 </field>
30 </fields>
31 <rebootCommand opcode="0" numParams="1">
32 <displayLabel>RebootParameters</displayLabel>
33 <description>Reboot Parameters</description>
34 <param>
35 <plabel>CPaddr</plabel>
36 <ptype>string</ptype>
37 </param>
38 </rebootCommand>
39 <init opcode="0" numParams="1">
40 <displayLabel>UserDaemonPath</displayLabel>
41 <description>UserDaemonPath</description>
42 <param editable="true">
43 <plabel>path</plabel>
44 <ptype>string</ptype>
45 <default>/users/onl/ixp/npr</default>
46 </param>
47 </init>
48 <commands>
49 <command opcode="98" numParams="3">
50 <displayLabel>SetSamplingRates</displayLabel>
51 <description>set sampling rate percentages</description>
52 <param editable="true">

Listing B.1: (a) NPR.shw; specialization description for the NPR.

163

53 <plabel>sampling1</plabel>
54 <ptype>field</ptype>
55 </param>
56 <param editable="true">
57 <plabel>sampling2</plabel>
58 <ptype>field</ptype>
59 </param>
60 <param editable="true">
61 <plabel>sampling3</plabel>
62 <ptype>field</ptype>
63 </param>
64 </command>
65 </commands>
66 <monitoring>
67 <command opcode="101" numParams="1">
68 <displayLabel>StatsPreQPkt</displayLabel>
69 <description>read pre queue packet count for stats index</description>
70 <units>packets</units>
71 <param editable="true">
72 <plabel>index</plabel>
73 <ptype>int</ptype>
74 </param>
75 </command>
76 <command opcode="102" numParams="1">
77 <displayLabel>StatsPostQPkt</displayLabel>
78 <description>read post queue packet count for stats index</description>
79 <units>packets</units>
80 <param editable="true">
81 <plabel>index</plabel>
82 <ptype>int</ptype>
83 </param>
84 </command>
85 <command opcode="103" numParams="1">
86 <displayLabel>StatsPreQByte</displayLabel>
87 <description>read pre queue byte count for stats index</description>
88 <units>bytes</units>
89 <param editable="true">
90 <plabel>index</plabel>
91 <ptype>int</ptype>
92 </param>
93 </command>
94 <command opcode="104" numParams="1">
95 <displayLabel>StatsPostQByte</displayLabel>
96 <description>read post queue byte count for stats index</description>
97 <units>bytes</units>
98 <param editable="true">
99 <plabel>index</plabel>

100 <ptype>int</ptype>
101 </param>
102 </command>
103 <command opcode="105" numParams="1">
104 <displayLabel>ReadRegisterByte</displayLabel>

Listing B.1: (b) NPR.shw; specialization description for the NPR.

164

105 <description>read byte count for register</description>
106 <units>bytes</units>
107 <param editable="true">
108 <plabel>index</plabel>
109 <ptype>int</ptype>
110 </param>
111 </command>
112 <command opcode="106" numParams="1">
113 <displayLabel>ReadRegisterPacket</displayLabel>
114 <description>read packet count for register</description>
115 <units>packets</units>
116 <param editable="true">
117 <plabel>index</plabel>
118 <ptype>int</ptype>
119 </param>
120 </command>
121 </monitoring>
122 <tables>
123 <table title="PluginTable" enabled="false">
124 <assigner name="microengines" min="0" max="4"/>
125 <fields>
126 </fields>
127 <commands>
128 <command opcode="92" numParams="1">
129 <displayLabel>PluginDebugging</displayLabel>
130 <description>plugin debugging</description>
131 <param editable="true">
132 <plabel>file_name</plabel>
133 <ptype>string</ptype>
134 </param>
135 </command>
136 </commands>
137 <monitoring>
138 </monitoring>
139 <entry name="plugin" numFields="2" numColumns="2" enabled="false">
140 <fields>
141 <field editable="true">
142 <plabel>microengine</plabel>
143 <ptype>int</ptype>
144 <tableAssigned>microengines</tableAssigned>
145 </field>
146 <field editable="true">
147 <plabel>path</plabel>
148 <ptype>string</ptype>
149 <help>the full path name of uof file including the file name</help>
150 </field>
151 </fields>
152 <commandLog/>
153 <commands>
154 <addCommand opcode="85" numParams="2">
155 <displayLabel>AddPlugin</displayLabel>
156 <description>add plugin</description>

Listing B.1: (c) NPR.shw; specialization description for the NPR.

165

157 <param editable="true">
158 <plabel>microengine</plabel>
159 <ptype>field</ptype>
160 </param>
161 <param editable="true">
162 <plabel>path</plabel>
163 <ptype>field</ptype>
164 </param>
165 </addCommand>
166 <deleteCommand opcode="86" numParams="1">
167 <displayLabel>DeletePlugin</displayLabel>
168 <description>delete plugin</description>
169 <param editable="false">
170 <plabel>microengine</plabel>
171 <ptype>field</ptype>
172 </param>
173 </deleteCommand>
174 <command opcode="89" numParams="2">
175 <displayLabel>PluginCommand</displayLabel>
176 <description>plugin command</description>
177 <param editable="false">
178 <plabel>microengine</plabel>
179 <ptype>field</ptype>
180 </param>
181 <param editable="true">
182 <plabel>message</plabel>
183 <ptype>string</ptype>
184 </param>
185 </command>
186 </commands>
187 <monitoring>
188 <command opcode="87" numParams="2">
189 <displayLabel>PluginCounter</displayLabel>
190 <description>monitor plugin counter</description>
191 <units>packets</units>
192 <param editable="false">
193 <plabel>microengine</plabel>
194 <ptype>field</ptype>
195 </param>
196 <param editable="true">
197 <plabel>counter</plabel>
198 <ptype>int</ptype>
199 </param>
200 </command>
201 </monitoring>
202 <display>
203 <column title="plugin" width="115">
204 <fieldName>path</fieldName>
205 </column>
206 <column title="microengine" width="50">
207 <fieldName>microengine</fieldName>
208 </column>

Listing B.1: (d) NPR.shw; specialization description for the NPR.

166

209 </display>
210 </entry>
211 </table>
212 </tables>
213 <ports>
214 <fields>
215 </fields>
216 <commands>
217 </commands>
218 <monitoring>
219 <command opcode="68" numParams="1">
220 <displayLabel>ReadQueueLength</displayLabel>
221 <description>read queue length</description>
222 <units>bytes</units>
223 <param>
224 <plabel>queue_id</plabel>
225 <ptype>int</ptype>
226 </param>
227 </command>
228 <command opcode="107" numParams="0">
229 <displayLabel>RXPKT</displayLabel>
230 <description>read rx packet count</description>
231 <units>packets</units>
232 </command>
233 <command opcode="108" numParams="0">
234 <displayLabel>RXBYTE</displayLabel>
235 <description>read rx byte count</description>
236 <units>bytes</units>
237 </command>
238 <command opcode="109" numParams="0">
239 <displayLabel>TXPKT</displayLabel>
240 <description>read tx packet count</description>
241 <units>packets</units>
242 </command>
243 <command opcode="110" numParams="0">
244 <displayLabel>TXBYTE</displayLabel>
245 <description>read tx byte count</description>
246 <units>bytes</units>
247 </command>
248 </monitoring>
249 <tables>
250 <routeTable title="RouteTable">
251 <fields>
252 <field editable="true">
253 <plabel>priority</plabel>
254 <ptype>int</ptype>
255 <default>56</default>
256 <updateCommand opcode="91">
257 <displayLabel>Set Table Priority</displayLabel>
258 <description>priority for routing table. range (0-60)</description>
259 </updateCommand>
260 </field>

Listing B.1: (e) NPR.shw; specialization description for the NPR.

167

261 </fields>
262 <commands>
263 </commands>
264 <monitoring>
265 </monitoring>
266 <entry name="route" numFields="4" numColumns="3" enable="false">
267 <fields>
268 <field editable="true">
269 <plabel>prefix</plabel>
270 <ptype>ipaddress</ptype>
271 <default>0.0.0.0</default>
272 </field>
273 <field editable="true">
274 <plabel>mask</plabel>
275 <ptype>int</ptype>
276 <default>32</default>
277 </field>
278 <field editable="true">
279 <plabel>nexthop</plabel>
280 <ptype>nexthop</ptype>
281 <default>0</default>
282 </field>
283 <field editable="true">
284 <plabel>statsIndex</plabel>
285 <ptype>int</ptype>
286 <hwAssigned>statsIndex</hwAssigned>
287 </field>
288 </fields>
289 <commands>
290 <addCommand opcode="73" numParams="4">
291 <displayLabel>AddRoute</displayLabel>
292 <description>add_route</description>
293 <param editable="true">
294 <plabel>prefix</plabel>
295 <ptype>field</ptype>
296 </param>
297 <param editable="true">
298 <plabel>mask</plabel>
299 <ptype>field</ptype>
300 </param>
301 <param editable="true">
302 <plabel>nexthop</plabel>
303 <ptype>field</ptype>
304 </param>
305 <param editable="true">
306 <plabel>statsIndex</plabel>
307 <ptype>field</ptype>
308 </param>
309 </addCommand>
310 <deleteCommand opcode="75" numParams="3">
311 <displayLabel>DeleteRoute</displayLabel>
312 <description>delete route</description>

Listing B.1: (f) NPR.shw; specialization description for the NPR.

168

313 <param editable="false">
314 <plabel>prefix</plabel>
315 <ptype>field</ptype>
316 </param>
317 <param editable="false">
318 <plabel>mask</plabel>
319 <ptype>field</ptype>
320 </param>
321 <param editable="false">
322 <plabel>nexthop</plabel>
323 <ptype>field</ptype>
324 </param>
325 </deleteCommand>
326 <command opcode="74" numParams="4">
327 <displayLabel>Update Nexthop</displayLabel>
328 <description>update route’s next hop</description>
329 <param editable="false">
330 <plabel>prefix</plabel>
331 <ptype>field</ptype>
332 </param>
333 <param editable="false">
334 <plabel>mask</plabel>
335 <ptype>field</ptype>
336 </param>
337 <param editable="true">
338 <plabel>nexthop</plabel>
339 <ptype>field</ptype>
340 </param>
341 <param editable="false">
342 <plabel>statsIndex</plabel>
343 <ptype>field</ptype>
344 </param>
345 </command>
346 <command opcode="96" numParams="4">
347 <displayLabel>SetStatsIndex</displayLabel>
348 <description>set stats index for route</description>
349 <param editable="false">
350 <plabel>prefix</plabel>
351 <ptype>field</ptype>
352 </param>
353 <param editable="false">
354 <plabel>mask</plabel>
355 <ptype>field</ptype>
356 </param>
357 <param editable="false">
358 <plabel>nexthop</plabel>
359 <ptype>field</ptype>
360 </param>
361 <param editable="true">
362 <plabel>statsIndex</plabel>
363 <ptype>field</ptype>
364 </param>

Listing B.1: (g) NPR.shw; specialization description for the NPR.

169

365 </command>
366 </commands>
367 <monitoring>
368 <command opcode="101" numParams="1">
369 <displayLabel>StatsPreQPkt</displayLabel>
370 <description>pre queue packet count for stats index</description>
371 <units>packets</units>
372 <param editable="false">
373 <plabel>statsIndex</plabel>
374 <ptype>field</ptype>
375 </param>
376 </command>
377 <command opcode="102" numParams="1">
378 <displayLabel>StatsPostQPkt</displayLabel>
379 <description>post queue packet count for stats index</description>
380 <units>packets</units>
381 <param editable="false">
382 <plabel>statsIndex</plabel>
383 <ptype>field</ptype>
384 </param>
385 </command>
386 <command opcode="103" numParams="1">
387 <displayLabel>StatsPreQByte</displayLabel>
388 <description>pre queue byte count for stats index</description>
389 <units>bytes</units>
390 <param>
391 <plabel>statsIndex</plabel>
392 <ptype>field</ptype>
393 </param>
394 </command>
395 <command opcode="104" numParams="1">
396 <displayLabel>StatsPostQByte</displayLabel>
397 <description>post queue byte count for stats index</description>
398 <units>bytes</units>
399 <param editable="false">
400 <plabel>statsIndex</plabel>
401 <ptype>field</ptype>
402 </param>
403 </command>
404 </monitoring>
405 <display>
406 <column title="prefix/mask" width="120">
407 <fieldName>prefix</fieldName>
408 <symbol>/</symbol>
409 <fieldName>mask</fieldName>
410 </column>
411 <column title="nexthop" width="50">
412 <fieldName>nexthop</fieldName>
413 </column>
414 <column title="stats" width="50">
415 <fieldName>statsIndex</fieldName>
416 </column>

Listing B.1: (h) NPR.shw; specialization description for the NPR.

170

417 </display>
418 </entry>
419 </routeTable>
420 <table title="FilterTable">
421 <fields>
422 </fields>
423 <commands>
424 </commands>
425 <monitoring>
426 </monitoring>
427 <entry name="filter" numFields="28" numColumns="10" enabled="true">
428 <fields editable="true">
429 <field>
430 <plabel>aux</plabel>
431 <ptype>boolean</ptype>
432 <default>false</default>
433 <help>auxiliary filters make one copy of matching packets</help>
434 </field>
435 <field editable="true" width="150">
436 <plabel>destination_address</plabel>
437 <ptype>ipaddress</ptype>
438 <default>192.168.0.0</default>
439 <help>IP destination address prefix</help>
440 </field>
441 <field editable="true">
442 <plabel>destination_mask</plabel>
443 <ptype>int</ptype>
444 <default>16</default>
445 <help>IP destination address subnet mask (CIDR notation)</help>
446 </field>
447 <field editable="true" width="150">
448 <plabel>source_address</plabel>
449 <ptype>ipaddress</ptype>
450 <default>192.168.0.0</default>
451 <help>IP source address prefix</help>
452 </field>
453 <field editable="true">
454 <plabel>source_mask</plabel>
455 <ptype>int</ptype>
456 <default>16</default>
457 <help>IP source address subnet mask (CIDR notation)</help>
458 </field>
459 <field editable="true">
460 <plabel>plugin_tag</plabel>
461 <ptype>int</ptype>
462 <wildcard>-1</wildcard>
463 <default>0</default>
464 <help>5-bit field that plugins can modify to force a
465 different match on reclassification</help>
466 </field>
467 <field editable="true">
468 <plabel>protocol</plabel>

Listing B.1: (i) NPR.shw; specialization description for the NPR.

171

469 <ptype>string</ptype>
470 <default>tcp</default>
471 <pChoices editable="true">
472 <pChoice>tcp</pChoice>
473 <pChoice>udp</pChoice>
474 <pChoice>icmp</pChoice>
475 <pChoice>*</pChoice>
476 </pChoices>
477 <help>select from list or type in protocol number.</help>
478 </field>
479 <field editable="true">
480 <plabel>destination_port</plabel>
481 <ptype>int</ptype>
482 <wildcard>-1</wildcard>
483 <default>*</default>
484 <help>TCP/UDP destination port number, * is wildcard</help>
485 </field>
486 <field editable="true">
487 <plabel>source_port</plabel>
488 <ptype>int</ptype>
489 <wildcard>-1</wildcard>
490 <default>*</default>
491 <help>TCP/UDP source port number, * is wildcard</help>
492 </field>
493 <field editable="true">
494 <plabel>exception nonip</plabel>
495 <ptype>int</ptype>
496 <wildcard>-1</wildcard>
497 <default>0</default>
498 <pChoices editable="false">
499 <pChoice>0</pChoice>
500 <pChoice>1</pChoice>
501 <pChoice>*</pChoice>
502 </pChoices>
503 <help>Flag to match non-IPv4 packets, * is wildcard</help>
504 </field>
505 <field editable="true">
506 <plabel>exception arp</plabel>
507 <ptype>int</ptype>
508 <wildcard>-1</wildcard>
509 <default>0</default>
510 <pChoices editable="false">
511 <pChoice>0</pChoice>
512 <pChoice>1</pChoice>
513 <pChoice>*</pChoice>
514 </pChoices>
515 <help>Flag to match ARP packets, * is wildcard</help>
516 </field>
517 <field editable="true">
518 <plabel>exception ipopt</plabel>
519 <ptype>int</ptype>
520 <wildcard>-1</wildcard>

Listing B.1: (j) NPR.shw; specialization description for the NPR.

172

521 <default>0</default>
522 <pChoices editable="false">
523 <pChoice>0</pChoice>
524 <pChoice>1</pChoice>
525 <pChoice>*</pChoice>
526 </pChoices>
527 <help>Flag to match packets with IP options, * is wildcard</help>
528 </field>
529 <field editable="true">
530 <plabel>exception ttl</plabel>
531 <ptype>int</ptype>
532 <wildcard>-1</wildcard>
533 <default>0</default>
534 <pChoices editable="false">
535 <pChoice>0</pChoice>
536 <pChoice>1</pChoice>
537 <pChoice>*</pChoice>
538 </pChoices>
539 <help>Flag to match packets with TTL=1,TTL=0, * is wildcard</help>
540 </field>
541 <field editable="true">
542 <plabel>tcp fin</plabel>
543 <ptype>int</ptype>
544 <wildcard>-1</wildcard>
545 <default>*</default>
546 <pChoices editable="false">
547 <pChoice>0</pChoice>
548 <pChoice>1</pChoice>
549 <pChoice>*</pChoice>
550 </pChoices>
551 <help>Flag to match TCP FIN packets, * is wildcard</help>
552 </field>
553 <field editable="true">
554 <plabel>tcp syn</plabel>
555 <ptype>int</ptype>
556 <wildcard>-1</wildcard>
557 <default>*</default>
558 <pChoices editable="false">
559 <pChoice>0</pChoice>
560 <pChoice>1</pChoice>
561 <pChoice>*</pChoice>
562 </pChoices>
563 <help>Flag to match TCP SYN packets, * is wildcard</help>
564 </field>
565 <field editable="true">
566 <plabel>tcp rst</plabel>
567 <ptype>int</ptype>
568 <wildcard>-1</wildcard>
569 <default>*</default>
570 <pChoices editable="false">
571 <pChoice>0</pChoice>
572 <pChoice>1</pChoice>

Listing B.1: (k) NPR.shw; specialization description for the NPR.

173

573 <pChoice>*</pChoice>
574 </pChoices>
575 <help>Flag to match TCP RST packets, * is wildcard</help>
576 </field>
577 <field editable="true">
578 <plabel>tcp psh</plabel>
579 <ptype>int</ptype>
580 <wildcard>-1</wildcard>
581 <default>*</default>
582 <pChoices editable="false">
583 <pChoice>0</pChoice>
584 <pChoice>1</pChoice>
585 <pChoice>*</pChoice>
586 </pChoices>
587 <help>Flag to match TCP PSH packets, * is wildcard</help>
588 </field>
589 <field editable="true">
590 <plabel>tcp ack</plabel>
591 <ptype>int</ptype>
592 <wildcard>-1</wildcard>
593 <default>*</default>
594 <pChoices editable="false">
595 <pChoice>0</pChoice>
596 <pChoice>1</pChoice>
597 <pChoice>*</pChoice>
598 </pChoices>
599 <help>Flag to match TCP ACK packets, * is wildcard</help>
600 </field>
601 <field editable="true">
602 <plabel>tcp urg</plabel>
603 <ptype>int</ptype>
604 <wildcard>-1</wildcard>
605 <default>*</default>
606 <pChoices editable="false">
607 <pChoice>0</pChoice>
608 <pChoice>1</pChoice>
609 <pChoice>*</pChoice>
610 </pChoices>
611 <help>Flag to match TCP URG packets, * is wildcard</help>
612 </field>
613 <field editable="true">
614 <plabel>qid</plabel>
615 <ptype>int</ptype>
616 <default>0</default>
617 <help>datagram queues(0-63) reserved queues(64-8191)</help>
618 </field>
619 <field editable="true">
620 <plabel>statsIndex</plabel>
621 <ptype>int</ptype>
622 <hwAssigned>statsIndex</hwAssigned>
623 <help>statistics index for monitoring matching flows</help>
624 </field>

Listing B.1: (l) NPR.shw; specialization description for the NPR.

174

625 <field editable="true">
626 <plabel>multicast</plabel>
627 <ptype>boolean</ptype>
628 <default>false</default>
629 <help>IPv4 multicast filter (makes multiple copies)</help>
630 </field>
631 <field editable="true">
632 <plabel>port_plugin_selection</plabel>
633 <ptype>string</ptype>
634 <default>port(unicast)</default>
635 <pChoices editable="false">
636 <pChoice>port(unicast)</pChoice>
637 <pChoice>plugin(unicast)</pChoice>
638 <pChoice>ports and plugins (multicast)</pChoice>
639 <pChoice>plugins(multicast)</pChoice>
640 </pChoices>
641 <help>determines how matching packets are forwarded to either
642 a plugin or directly to an output port for unicast filters,
643 and to only plugins or ports and plugins simultaneously
644 for multicast filters</help>
645 </field>
646 <field editable="true">
647 <plabel>drop</plabel>
648 <ptype>boolean</ptype>
649 <default>false</default>
650 <help>check this to drop all matching packets</help>
651 </field>
652 <field editable="true">
653 <plabel>output_ports</plabel>
654 <ptype>string</ptype>
655 <default>0</default>
656 <pChoices editable="true">
657 <pChoice>0</pChoice>
658 <pChoice>1</pChoice>
659 <pChoice>2</pChoice>
660 <pChoice>3</pChoice>
661 <pChoice>4</pChoice>
662 <pChoice>use route</pChoice>
663 </pChoices>
664 <help>comma separated list of ports for multicast</help>
665 </field>
666 <field editable="true">
667 <plabel>output_plugins</plabel>
668 <ptype>string</ptype>
669 <default>0</default>
670 <pChoices editable="true">
671 <pChoice>0</pChoice>
672 <pChoice>1</pChoice>
673 <pChoice>2</pChoice>
674 <pChoice>3</pChoice>
675 <pChoice>4</pChoice>
676 </pChoices>

Listing B.1: (m) NPR.shw; specialization description for the NPR.

175

677 <help>comma separated list of microengines for multicast</help>
678 </field>
679 <field editable="true" width="150">
680 <plabel>sampling_type</plabel>
681 <ptype>int</ptype>
682 <default>0</default>
683 <pChoices editable="false">
684 <pChoice>0</pChoice>
685 <pChoice>1</pChoice>
686 <pChoice>2</pChoice>
687 <pChoice>3</pChoice>
688 </pChoices>
689 <help>sampling type 0 samples 100%. 1, 2, and 3 percentages are
690 set via top level NPR menu.</help>
691 </field>
692 <field editable="true" width="50">
693 <plabel>priority</plabel>
694 <ptype>int</ptype>
695 <default>50</default>
696 <help>lower numbered priorities will match packets first</help>
697 </field>
698 </fields>
699 <commands>
700 <addCommand opcode="76" numParams="28">
701 <displayLabel>AddFilter</displayLabel>
702 <description>add filter</description>
703 <param editable="true">
704 <plabel>aux</plabel>
705 <ptype>field</ptype>
706 </param>
707 <group>
708 <param editable="true" width="150">
709 <plabel>destination_address</plabel>
710 <ptype>field</ptype>
711 </param>
712 <param editable="true">
713 <plabel>destination_mask</plabel>
714 <ptype>field</ptype>
715 </param>
716 </group>
717 <group>
718 <param editable="true" width="150">
719 <plabel>source_address</plabel>
720 <ptype>field</ptype>
721 </param>
722 <param editable="true">
723 <plabel>source_mask</plabel>
724 <ptype>field</ptype>
725 </param>
726 </group>
727 <param editable="true">
728 <plabel>plugin_tag</plabel>

Listing B.1: (n) NPR.shw; specialization description for the NPR.

176

729 <ptype>field</ptype>
730 </param>
731 <param editable="true">
732 <plabel>protocol</plabel>
733 <ptype>field</ptype>
734 </param>
735 <param editable="true">
736 <plabel>destination_port</plabel>
737 <ptype>field</ptype>
738 </param>
739 <param editable="true">
740 <plabel>source_port</plabel>
741 <ptype>field</ptype>
742 </param>
743 <group>
744 <param editable="true">
745 <plabel>exception nonip</plabel>
746 <ptype>field</ptype>
747 </param>
748 <param editable="true">
749 <plabel>exception arp</plabel>
750 <ptype>field</ptype>
751 </param>
752 <param editable="true">
753 <plabel>exception ipopt</plabel>
754 <ptype>field</ptype>
755 </param>
756 <param editable="true">
757 <plabel>exception ttl</plabel>
758 <ptype>field</ptype>
759 </param>
760 </group>
761 <group label="tcp flags ">
762 <param editable="true">
763 <plabel>tcp fin</plabel>
764 <ptype>field</ptype>
765 </param>
766 <param editable="true">
767 <plabel>tcp syn</plabel>
768 <ptype>field</ptype>
769 </param>
770 <param editable="true">
771 <plabel>tcp rst</plabel>
772 <ptype>field</ptype>
773 </param>
774 <param editable="true">
775 <plabel>tcp psh</plabel>
776 <ptype>field</ptype>
777 </param>
778 <param editable="true">
779 <plabel>tcp ack</plabel>
780 <ptype>field</ptype>

Listing B.1: (o) NPR.shw; specialization description for the NPR.

177

781 </param>
782 <param editable="true">
783 <plabel>tcp urg</plabel>
784 <ptype>field</ptype>
785 </param>
786 </group>
787 <param editable="true">
788 <plabel>qid</plabel>
789 <ptype>field</ptype>
790 </param>
791 <param editable="true">
792 <plabel>statsIndex</plabel>
793 <ptype>field</ptype>
794 </param>
795 <param editable="true">
796 <plabel>multicast</plabel>
797 <ptype>field</ptype>
798 </param>
799 <group>
800 <param editable="true">
801 <plabel>port_plugin_selection</plabel>
802 <ptype>field</ptype>
803 </param>
804 <param editable="true">
805 <plabel>drop</plabel>
806 <ptype>field</ptype>
807 </param>
808 </group>
809 <group>
810 <param editable="true">
811 <plabel>output_ports</plabel>
812 <ptype>field</ptype>
813 </param>
814 <param editable="true">
815 <plabel>output_plugins</plabel>
816 <ptype>field</ptype>
817 </param>
818 </group>
819 <group>
820 <param editable="true">
821 <plabel>sampling_type</plabel>
822 <ptype>field</ptype>
823 </param>
824 <param editable="true">
825 <plabel>priority</plabel>
826 <ptype>field</ptype>
827 </param>
828 </group>
829 </addCommand>
830 <deleteCommand opcode="77" numParams="19">
831 <displayLabel>DeleteFilter</displayLabel>
832 <description>delete filter</description>

Listing B.1: (p) NPR.shw; specialization description for the NPR.

178

833 <param editable="false">
834 <plabel>aux</plabel>
835 <ptype>field</ptype>
836 </param>
837 <group>
838 <param editable="false" width="150">
839 <plabel>destination_address</plabel>
840 <ptype>field</ptype>
841 </param>
842 <param editable="false">
843 <plabel>destination_mask</plabel>
844 <ptype>field</ptype>
845 </param>
846 </group>
847 <group>
848 <param editable="false" width="150">
849 <plabel>source_address</plabel>
850 <ptype>field</ptype>
851 </param>
852 <param editable="false">
853 <plabel>source_mask</plabel>
854 <ptype>field</ptype>
855 </param>
856 </group>
857 <param editable="false">
858 <plabel>plugin_tag</plabel>
859 <ptype>field</ptype>
860 </param>
861 <param editable="false">
862 <plabel>protocol</plabel>
863 <ptype>field</ptype>
864 </param>
865 <param editable="false">
866 <plabel>destination_port</plabel>
867 <ptype>field</ptype>
868 </param>
869 <param editable="false">
870 <plabel>source_port</plabel>
871 <ptype>field</ptype>
872 </param>
873 <group>
874 <param editable="false">
875 <plabel>exception nonip</plabel>
876 <ptype>field</ptype>
877 </param>
878 <param editable="false">
879 <plabel>exception arp</plabel>
880 <ptype>field</ptype>
881 </param>
882 <param editable="false">
883 <plabel>exception ipopt</plabel>
884 <ptype>field</ptype>

Listing B.1: (q) NPR.shw; specialization description for the NPR.

179

885 </param>
886 <param editable="false">
887 <plabel>exception ttl</plabel>
888 <ptype>field</ptype>
889 </param>
890 </group>
891 <group>
892 <param editable="false">
893 <plabel>tcp fin</plabel>
894 <ptype>field</ptype>
895 </param>
896 <param editable="false">
897 <plabel>tcp syn</plabel>
898 <ptype>field</ptype>
899 </param>
900 <param editable="false">
901 <plabel>tcp rst</plabel>
902 <ptype>field</ptype>
903 </param>
904 <param editable="false">
905 <plabel>tcp psh</plabel>
906 <ptype>field</ptype>
907 </param>
908 <param editable="false">
909 <plabel>tcp ack</plabel>
910 <ptype>field</ptype>
911 </param>
912 <param editable="false">
913 <plabel>tcp urg</plabel>
914 <ptype>field</ptype>
915 </param>
916 </group>
917 </deleteCommand>
918 </commands>
919 <monitoring>
920 <command opcode="101" numParams="1">
921 <displayLabel>StatsPreQPkt</displayLabel>
922 <description>pre queue packet count for stats index</description>
923 <units>packets</units>
924 <param editable="false">
925 <plabel>statsIndex</plabel>
926 <ptype>field</ptype>
927 </param>
928 </command>
929 <command opcode="102" numParams="1">
930 <displayLabel>StatsPostQPkt</displayLabel>
931 <description>post queue packet count for stats index</description>
932 <units>packets</units>
933 <param editable="false">
934 <plabel>statsIndex</plabel>
935 <ptype>field</ptype>
936 </param>

Listing B.1: (r) NPR.shw; specialization description for the NPR.

180

937 </command>
938 <command opcode="103" numParams="1">
939 <displayLabel>StatsPreQByte</displayLabel>
940 <description>pre queue byte count for stats index</description>
941 <units>bytes</units>
942 <param>
943 <plabel>statsIndex</plabel>
944 <ptype>field</ptype>
945 </param>
946 </command>
947 <command opcode="104" numParams="1">
948 <displayLabel>StatsPostQByte</displayLabel>
949 <description>post queue byte count for stats index</description>
950 <units>bytes</units>
951 <param editable="false">
952 <plabel>statsIndex</plabel>
953 <ptype>field</ptype>
954 </param>
955 </command>
956 </monitoring>
957 <display>
958 <column title="priority" width="50">
959 <fieldName>priority</fieldName>
960 </column>
961 <column title="type" width="100">
962 <symbol>aux:</symbol>
963 <fieldName>aux</fieldName>
964 <newline/>
965 <symbol> sampling type:</symbol>
966 <fieldName>sampling_type</fieldName>
967 <newline/>
968 <symbol>multicast:</symbol>
969 <fieldName>multicast</fieldName>
970 </column>
971 <column title="address/mask port" width="200">
972 <symbol>src:</symbol>
973 <fieldName>source_address</fieldName>
974 <symbol>/</symbol>
975 <fieldName>source_mask</fieldName>
976 <symbol> port </symbol>
977 <fieldName>source_port</fieldName>
978 <newline/>
979 <symbol>dest:</symbol>
980 <fieldName>destination_address</fieldName>
981 <symbol>/</symbol>
982 <fieldName>destination_mask</fieldName>
983 <symbol> port </symbol>
984 <fieldName>destination_port</fieldName>
985 </column>
986 <column title="protocol" width="53">
987 <fieldName>protocol</fieldName>
988 </column>

Listing B.1: (s) NPR.shw; specialization description for the NPR.

181

989 <column title="tcpflags" width="55">
990 <symbol>fin:</symbol>
991 <fieldName>tcp fin</fieldName>
992 <newline/>
993 <symbol>syn:</symbol>
994 <fieldName>tcp syn</fieldName>
995 <newline/>
996 <symbol>rst:</symbol>
997 <fieldName>tcp rst</fieldName>
998 <newline/>
999 <symbol>psh:</symbol>

1000 <fieldName>tcp psh</fieldName>
1001 <newline/>
1002 <symbol>ack:</symbol>
1003 <fieldName>tcp ack</fieldName>
1004 <newline/>
1005 <symbol>urg:</symbol>
1006 <fieldName>tcp urg</fieldName>
1007 <newline/>
1008 </column>
1009 <column title="exceptions" width="65">
1010 <symbol>nonip:</symbol>
1011 <fieldName>exception nonip</fieldName>
1012 <newline/>
1013 <symbol>arp:</symbol>
1014 <fieldName>exception arp</fieldName>
1015 <newline/>
1016 <symbol>ipopt:</symbol>
1017 <fieldName>exception ipopt</fieldName>
1018 <newline/>
1019 <symbol>ttl:</symbol>
1020 <fieldName>exception ttl</fieldName>
1021 <newline/>
1022 </column>
1023 <column title="plugin tag" width="55">
1024 <fieldName>plugin_tag</fieldName>
1025 </column>
1026 <column title="output" width="100">
1027 <symbol>dropped:</symbol>
1028 <fieldName>drop</fieldName>
1029 <newline/>
1030 <symbol>ports:</symbol>
1031 <fieldName>output_ports</fieldName>
1032 <newline/>
1033 <symbol>plugins:</symbol>
1034 <fieldName>output_plugins</fieldName>
1035 <newline/>
1036 <symbol>pluginSelection:</symbol>
1037 <fieldName>port_plugin_selection</fieldName>
1038 </column>
1039 <column title="qid" width="50">
1040 <fieldName>qid</fieldName>

Listing B.1: (t) NPR.shw; specialization description for the NPR.

182

1041 </column>
1042 <column title="stats" width="50">
1043 <fieldName>statsIndex</fieldName>
1044 </column>
1045 </display>
1046 </entry>
1047 </table>
1048 <table title="QueueTable">
1049 <fields>
1050 <field editable="true">
1051 <plabel>bandwidth</plabel>
1052 <ptype>int</ptype>
1053 <default>1000</default>
1054 <updateCommand opcode="81">
1055 <displayLabel>SetPortRate</displayLabel>
1056 <description>set port rate</description>
1057 </updateCommand>
1058 </field>
1059 </fields>
1060 <commands>
1061 </commands>
1062 <monitoring>
1063 </monitoring>
1064 <entry name="queue" numFields="3" numColumns="3" enable="false">
1065 <fields>
1066 <field editable="true">
1067 <plabel>queue_id</plabel>
1068 <ptype>int</ptype>
1069 <default>0</default>
1070 </field>
1071 <field editable="true">
1072 <plabel>threshold</plabel>
1073 <ptype>int</ptype>
1074 <default>32768</default>
1075 </field>
1076 <field editable="true">
1077 <plabel>quantum</plabel>
1078 <ptype>int</ptype>
1079 <default>346</default>
1080 </field>
1081 </fields>
1082 <commands>
1083 <addCommand opcode="78" numParams="3">
1084 <displayLabel>ChangeQueue</displayLabel>
1085 <description>change queue parameters</description>
1086 <param editable="true">
1087 <plabel>queue_id</plabel>
1088 <ptype>field</ptype>
1089 </param>
1090 <param editable="true">
1091 <plabel>threshold</plabel>
1092 <ptype>field</ptype>

Listing B.1: (u) NPR.shw; specialization description for the NPR.

183

1093 </param>
1094 <param editable="true">
1095 <plabel>quantum</plabel>
1096 <ptype>field</ptype>
1097 </param>
1098 </addCommand>
1099 </commands>
1100 <monitoring>
1101 <command opcode="68" numParams="1">
1102 <displayLabel>ReadQueueLength</displayLabel>
1103 <description>read queue length</description>
1104 <units>bytes</units>
1105 <param editable="false">
1106 <plabel>queue_id</plabel>
1107 <ptype>field</ptype>
1108 </param>
1109 </command>
1110 </monitoring>
1111 <display>
1112 <column title="queue id" width="55">
1113 <fieldName>queue_id</fieldName>
1114 </column>
1115 <column title="threshold(bytes)" width="115">
1116 <fieldName>threshold</fieldName>
1117 </column>
1118 <column title="quantum" width="70">
1119 <fieldName>quantum</fieldName>
1120 </column>
1121 </display>
1122 </entry>
1123 </table>
1124 </tables>
1125 </ports>
1126 </subtype>

Listing B.1: (v) NPR.shw; specialization description for the NPR.

184

References

[1] Matthew Adiletta, Mark Rosenbluth, Debra Bernstein, Gilbert Wolrich, and
Hugh Wilkinson. The next generation of Intel IXP network processors. Intel
Technology Journal, 6, 2002.

[2] Amazon. Elastic Compute Cloud website. http://aws.amazon.com/ec2/.

[3] David G. Andersen. Theoretical approaches to node assignment. 2002.

[4] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Mor-
ris. Experience with an evolving overlay network testbed. SIGCOMM Comput.
Commun. Rev., 33(3):13–19, 2003.

[5] Katerina Argyraki, Salman Baset, Byung-Gon Chun, Kevin Fall, Gianluca Ian-
naccone, Allan Knies, Eddie Kohler, Maziar Manesh, Sergiu Nedevschi, and
Sylvia Ratnasamy. Can software routers scale? In PRESTO ’08: Proceedings
of the ACM Workshop on Programmable Routers for Extensible Services of To-
morrow, pages 21–26, New York, NY, USA, 2008. ACM.

[6] Arista. Arista 7100 series switches. http://www.aristanetworks.com/en/

7100Series.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. Above the clouds: A Berkeley view of cloud computing.
Technical report, University of California, Berkeley, 2009.

[8] Yossi Azar and Oded Regev. Strongly polynomial algorithms for the unsplittable
flow problem. In In Proceedings of the 8th Conference on Integer Programming
and Combinatorial Optimization (IPCO), pages 15–29, 2001.

[9] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rex-
ford. In VINI veritas: Realistic and controlled network experimentation. In
SIGCOMM ’06: Proceedings of the 2006 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, pages 3–14,
New York, NY, USA, 2006. ACM.

[10] Michela Becchi and Patrick Crowley. An improved algorithm to accelerate reg-
ular expression evaluation. In ANCS ’07: Proceedings of the 3rd ACM/IEEE

185

Symposium on Architecture for networking and communications systems, pages
145–154, New York, NY, USA, 2007. ACM.

[11] Terry Benzel, Robert Braden, Dongho Kim, Clifford Neuman, Anthony Joseph,
Keith Sklower, Ron Ostrenga, and Stephen Schwab. Design, deployment, and
use of the DETER testbed. In DETER: Proceedings of the DETER Community
Workshop on Cyber Security Experimentation, pages 1–1, Berkeley, CA, USA,
2007. USENIX Association.

[12] Justin Cappos, Ivan Beschastnikh, Arvind Krishnamurthy, and Tom Anderson.
Seattle: A platform for educational cloud computing. In SIGCSE ’09: Proceed-
ings of the 40th ACM Technical Symposium on Computer Science Education,
pages 111–115, New York, NY, USA, 2009. ACM.

[13] Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Ap-
proximation algorithms for the unsplittable flow problem. In APPROX ’02:
Proceedings of the 5th International Workshop on Approximation Algorithms for
Combinatorial Optimization, pages 51–66, London, UK, 2002. Springer-Verlag.

[14] Michael K. Chen, Xiao Feng Li, Ruiqi Lian, Jason H. Lin, Lixia Liu, Tao Liu,
and Roy Ju. Shangri-La: achieving high performance from compiled network
applications while enabling ease of programming. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and implementa-
tion, PLDI ’05, pages 224–236, New York, NY, USA, 2005. ACM.

[15] Sumi Choi, John Dehart, Anshul Kantawala, Ralph Keller, Fred Kuhns, John
Lockwood, Prashanth Pappu, Jyoti Parwatikar, W. David Richard, Ed Spitz-
nagel, David Taylor, Jonathan Turner, and Ken Wong. Design of a high per-
formance dynamically extensible router. In Proceedings of the DARPA Active
Networks Conference and Exposition, May 2002.

[16] Cisco. IOS website. http://www.cisco.com/en/US/products/sw/iosswrel/

products_ios_cisco_ios_software_category_home.html.

[17] Jeffrey Considine, John W. Byers, and Ketan Meyer-Patel. A constraint satis-
faction approach to testbed embedding services. SIGCOMM Comput. Commun.
Rev., 34(1):137–142, 2004.

[18] World Wide Web Consortium. Extensible markup language (XML). http:

//www.w3.org/XML/.

[19] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, second edition, 2001.

[20] G. Adam Covington, Glen Gibb, John Lockwood, and Nick McKeown. A packet
generator on the NetFPGA platform. In The 17th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 5–7 April 2009.

186

[21] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner. Router
plugins: a software architecture for next generation routers. In Proceedings of
the ACM SIGCOMM ’98 conference on Applications, technologies, architectures,
and protocols for computer communication, SIGCOMM ’98, pages 229–240, New
York, NY, USA, 1998. ACM.

[22] John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, Charlie Wiseman,
and Ken Wong. The Open Network Laboratory. In SIGCSE ’06: Proceedings of
the 37th SIGCSE Technical Symposium on Computer Science Education, pages
107–111, New York, NY, USA, 2006. ACM.

[23] Tasos Dimitriou, John Kolokouris, and Nikos Zarokostas. Sensenet: A wireless
sensor network testbed. In MSWiM ’07: Proceedings of the 10th ACM Sympo-
sium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems,
pages 143–150, New York, NY, USA, 2007. ACM.

[24] Marcel Dischinger, Andreas Haeberlen, Ivan Beschastnikh, Krishna P. Gum-
madi, and Stefan Saroiu. Satellitelab: Adding heterogeneity to planetary-scale
network testbeds. In SIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication, pages 315–326, New York, NY, USA, 2008.
ACM.

[25] FSArchiver. File system archiver for linux. http://www.fsarchiver.org.

[26] GENI. Global Environment for Network Innovations website. http://www.

geni.net.

[27] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown. NetF-
PGA: Open platform for teaching how to build gigabit-rate network switches
and routers. 51(3):364–369, Aug. 2008.

[28] Google. AppEngine website. http://code.google.com/appengine/.

[29] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer
Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate 4d
approach to network control and management. SIGCOMM Comput. Commun.
Rev., 35(5):41–54, 2005.

[30] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado, Nick
McKeown, and Scott Shenker. NOX: Towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105–110, 2008.

[31] Gurobi. Gurobi website. http://www.gurobi.com.

[32] Mart Haitjema, Ritun Patney, Jon Turner, Charlie Wiseman, and John DeHart.
Performance-engineered network overlays for high quality interaction in virtual

187

worlds. Technical Report WUCSE-2009-18, Washington University in St. Louis,
June 2009.

[33] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson, and Pavlin Ra-
doslavov. Designing extensible IP router software. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation -
Volume 2, NSDI’05, pages 189–202, Berkeley, CA, USA, 2005. USENIX Associ-
ation.

[34] Vlado Handziski, Andreas Köpke, Andreas Willig, and Adam Wolisz. TWIST: A
scalable and reconfigurable testbed for wireless indoor experiments with sensor
networks. In REALMAN ’06: Proceedings of the 2nd International Workshop
on Multi-hop Ad hoc Networks: From Theory to Reality, pages 63–70, New York,
NY, USA, 2006. ACM.

[35] Intel. Intel nehalem microarchitecture. http://www.intel.com/technology/

architecture-silicon/next-gen.

[36] S. James and C. Crowley. IMP: ISP-Managed P2P. In Peer-to-Peer Computing,
2010. P2P ’10. IEEE Tenth International Conference on, 2010.

[37] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci, and J. Lep-
reau. Mobile Emulab: A robotic wireless and sensor network testbed. In Proc.
25th IEEE International Conference on Computer Communications INFOCOM
2006, pages 1–12, April 2006.

[38] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The Click modular router. ACM Trans. Comput. Syst., 18(3):263–
297, 2000.

[39] Petr Kolman and Christian Scheideler. Improved bounds for the unsplittable flow
problem. volume 61, pages 20–44, Duluth, MN, USA, 2006. Academic Press, Inc.

[40] Siming Lin, Xueqi Cheng, and Jianming Lv. A visualized parallel network sim-
ulator for modeling large-scale distributed applications. In Proc. Eighth Inter-
national Conference on Parallel and Distributed Computing, Applications and
Technologies PDCAT ’07, pages 339–346, December 3–6, 2007.

[41] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and Jianying Luo. NetFPGA–an open platform for gigabit-
rate network switching and routing. In Proc. IEEE International Conference on
Microelectronic Systems Education MSE ’07, pages 160–161, 3–4 June 2007.

[42] Jing Lu and Jonathan Turner. Efficient mapping of virtual networks onto a
shared substrate. Technical Report WUCSE-2006-35, Washington University,
June 2006.

188

[43] Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick
McKeown. Implementing an OpenFlow switch on the NetFPGA platform. In
ANCS ’08: Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, pages 1–9, New York, NY, USA, 2008.
ACM.

[44] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown. NetFPGA: Reusable
router architecture for experimental research. In PRESTO ’08: Proceedings of the
ACM Workshop on Programmable Routers for Extensible Services of Tomorrow,
pages 1–7, New York, NY, USA, 2008. ACM.

[45] Netgear. GSM7532S website. http://netgear.com/Products/Switches/

FullyManaged10_100_1000Switches/GSM7352S.aspx.

[46] James Newsome and Dawn Song. GEM: Graph embedding for routing and data-
centric storage in sensor networks without geographic information. In SenSys
’03: Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems, pages 76–88, New York, NY, USA, 2003. ACM.

[47] NFS. Network file system. http://nfs.sourceforge.net.

[48] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson
Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin
Vahdat. PortLand: A scalable fault-tolerant layer 2 data center network fabric.
In SIGCOMM ’09: Proceedings of the ACM SIGCOMM 2009 Conference on
Data Communication, pages 39–50, New York, NY, USA, 2009. ACM.

[49] NIS. Network information service. http://www.linux-nis.org.

[50] ns 2. ns-2 network simulator website. http://www.isi.edu/nsnam/ns/.

[51] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman,
Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus open-source cloud-
computing system. In Proc. 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid CCGRID ’09, pages 124–131, May 18–21, 2009.

[52] OpenNMS. OpenNMS website. http://www.opennms.org.

[53] OpenSSH. OpenSSH website. http://www.openssh.org.

[54] David Oppenheimer, Jeannie Albrecht, David Patterson, and Amin Vahdat. Dis-
tributed resource discovery on PlanetLab with SWORD. In WORLDS ’04: Pro-
ceedings of the First Workshop on Real, Large Distributed Systems, December
2004.

189

[55] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A blueprint
for introducing disruptive technology into the Internet. In Proceedings of
HotNets–I, Princeton, New Jersey, October 2002.

[56] Radisys. Radisys ATCA products website. http://www.radisys.com/

Products/ATCA.html.

[57] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh. Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network protocols. In Proc. IEEE Wireless
Communications and Networking Conference, volume 3, pages 1664–1669, 13–17
March 2005.

[58] Robert Ricci, Chris Alfeld, and Jay Lepreau. A solver for the network testbed
mapping problem. SIGCOMM Comput. Commun. Rev., 33(2):65–81, 2003.

[59] Robert Ricci, David Oppenheimer, Jay Lepreau, and Amin Vahdat. Lessons
from resource allocators for large-scale multiuser testbeds. SIGOPS Oper. Syst.
Rev., 40(1):25–32, 2006.

[60] George F. Riley, Mostafa H. Ammar, Richard M. Fujimoto, Alfred Park, Kalyan
Perumalla, and Donghua Xu. A federated approach to distributed network sim-
ulation. ACM Trans. Model. Comput. Simul., 14(2):116–148, 2004.

[61] Niraj Shah, William Plishker, and Kurt Keutzer. NP-Click: A programming
model for the Intel IXP1200. In In 2nd Workshop on Network Processors (NP-2)
at the 9th International Symposium on High Performance Computer Archtecture
(HPCA-9), pages 100–111. Morgan Kaufmann, 2003.

[62] U. Shevade, R. Kokku, and H. M. Vin. Run-time system for scalable network
services. In Proc. INFOCOM 2008. The 27th Conference on Computer Commu-
nications. IEEE, pages 1813–1821, April 13–18, 2008.

[63] Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb. Building
a robust software-based router using network processors. In Proceedings of the
eighteenth ACM symposium on Operating systems principles, SOSP ’01, pages
216–229, New York, NY, USA, 2001. ACM.

[64] Synaccess. Synaccess NP-08G2. http://www.synaccess-net.com/

remote-power.php/1/12.

[65] SSH Tunneling. Tunneling explained. http://www.ssh.com/support/

documentation/online/ssh/winhelp/32/Tunneling_Explained.html.

[66] Jonathan S. Turner, Patrick Crowley, John DeHart, Amy Freestone, Brandon
Heller, Fred Kuhns, Sailesh Kumar, John Lockwood, Jing Lu, Michael Wilson,

190

Charles Wiseman, and David Zar. Supercharging PlanetLab: A high perfor-
mance, multi-application, overlay network platform. In SIGCOMM ’07: Pro-
ceedings of the 2007 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages 85–96, New York, NY, USA,
2007. ACM.

[67] WAIL. Wisconsin Advanced Internet Laboratory website. http://www.

schooner.wail.wisc.edu.

[68] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. MoteLab: A wire-
less sensor network testbed. In IPSN ’05: Proceedings of the 4th International
Symposium on Information Processing in Sensor Networks, page 68, Piscataway,
NJ, USA, 2005. IEEE Press.

[69] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated ex-
perimental environment for distributed systems and networks. In OSDI ’02:
Proceedings of the 5th Symposium on Operating Systems Design and Implemen-
tation, pages 255–270, New York, NY, USA, 2002. ACM.

[70] Charlie Wiseman, Jyoti Parwatikar, Ken Wong, John DeHart, and Jonathan
Turner. Design of an extensible network testbed. In NCA ’10: Proceedings
of the 2010 Ninth IEEE International Symposium on Network Computing and
Applications, 2010.

[71] Charlie Wiseman, Jonathan Turner, Michela Becchi, Patrick Crowley, John De-
Hart, Mart Haitjema, Shakir James, Fred Kuhns, Jing Lu, Jyoti Parwatikar,
Ritun Patney, Michael Wilson, Ken Wong, and David Zar. A remotely accessi-
ble network processor-based router for network experimentation. In ANCS ’08:
Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, pages 20–29, New York, NY, USA, 2008. ACM.

[72] Charlie Wiseman, Jonathan Turner, and Patrick Crowley. The Open Network
Laboratory. In SIGCOMM ’09: Proceedings of the 2009 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications.
ACM, 2009.

[73] Charlie Wiseman, Jonathan Turner, John DeHart, Jyoti Parwatikar, Ken Wong,
and David Zar. Using the NetFPGA in the Open Network Laboratory. In
Proceedings of the 1st NetFPGA DevelopersWorkshop, 2009.

[74] Charlie Wiseman, Ken Wong, Tilman Wolf, and Sergey Gorinsky. Operational
experience with a virtual networking laboratory. In SIGCSE ’08: Proceedings of
the 39th SIGCSE Technical Symposium on Computer Science Education, pages
427–431, New York, NY, USA, 2008. ACM.

191

[75] T. Wolf. Assessing student learning in a virtual laboratory environment. Edu-
cation, IEEE Transactions on, 53(2):216 –222, May 2010.

[76] Ken Wong, Tilman Wolf, Sergey Gorinsky, and Jonathan Turner. Teaching
experiences with a virtual network laboratory. In SIGCSE ’07: Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education, pages
481–485, New York, NY, USA, 2007.

[77] Xilinx. Xilinx website. http://www.xilinux.com.

[78] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast
and memory-efficient regular expression matching for deep packet inspection. In
ANCS ’06: Proceedings of the 2006 ACM/IEEE symposium on Architecture for
networking and communications systems, pages 93–102, New York, NY, USA,
2006. ACM.

[79] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual
network embedding: Substrate support for path splitting and migration. SIG-
COMM Comput. Commun. Rev., 38(2):17–29, 2008.

[80] Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources to
virtual network components. In Proc. 25th IEEE International Conference on
Computer Communications INFOCOM 2006, pages 1–12, April 2006.

192

	Abstractions and Algorithms for Control of Extensible and Heterogeneous Virtualized Network Infrastructures
	Recommended Citation

	Abstractions and Algorithms for Control of Extensible and Heterogeneous Virtualized Network Infrastructures

