Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-95-17

1995-01-01

Formal Specification of a Dynamically Configurable Distributed
System

Ram Sethuraman and Kenneth J. Goldman

The Programmers' Playground is a programming environment that supports end-user
construction of distributed multimedia applications. The system implements a new
programming model that is based, in part, upon ideas from the formal I/0 automaton model of
Lynch and Tuttle. Important features of The Programmers' Playground are a separation of
communication and computation and graphical support for dynamic reconfiguration. This paper
provides a formal specification of the Playground programming model and runtime system in
terms of the 1/0 automaton model on which it is based. Exploiting the compositionality
properties of the 1/0 automaton model, the formal specification is describd as... Read complete
abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Sethuraman, Ram and Goldman, Kenneth J., "Formal Specification of a Dynamically Configurable
Distributed System" Report Number: WUCS-95-17 (1995). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/376

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/376?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/376

Formal Specification of a Dynamically Configurable Distributed System

Ram Sethuraman and Kenneth J. Goldman

Complete Abstract:

The Programmers' Playground is a programming environment that supports end-user construction of
distributed multimedia applications. The system implements a new programming model that is based, in
part, upon ideas from the formal I/0 automaton model of Lynch and Tuttle. Important features of The
Programmers' Playground are a separation of communication and computation and graphical support for
dynamic reconfiguration. This paper provides a formal specification of the Playground programming
model and runtime system in terms of the I/0 automaton model on which it is based. Exploiting the
compositionality properties of the I/0 automaton model, the formal specification is describd as a
composition of several modules. A behavioral specification of each module is presented, followed by an I/
0 automaton that implements each specification. We present the specification in two stages, a
centralized specification that captures the allowable behaviors, and then a detailed distributed
implementation.


https://openscholarship.wustl.edu/cse_research/376?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/376?utm_source=openscholarship.wustl.edu%2Fcse_research%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages

Formal Specification of a
Dynamically Configurable Distributed System

Ram Sethuraman and Kenneth J. Goldman

WUCS-95-17

July 1995
(revised November 3, 1995)

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899






Formal Specification of a
Dynamically Configurable Distributed System

Ram Sethuraman Kenneth J. Goldman*

15 July 1995
Revised 3 November 1895

Abstract

Abstract: The Programmers’ Playground is a programming environment that supports end-
user construction of distributed multimedia applications. The system implements a new pro-
gramming model that is based, in part, upon ideas from the formal I/Q automaton model of
Lynch and Tuttle. Important features of The Programmers’ Playground are a separation of
communication and computation and graphical support for dynamic reconfiguration.

This paper provides a formal specification of the Playground programming model and run-
time system in terms of the I/O automaton model on which it is based. Exploiting the com-
positionality properties of the I/O automaton model, the formal specification is described as a
composition of several modules. A behavioral specification of each module is presented, followed
by an I/O automaton that implements each specification. We present the specification in two
stages, a centralized specification that captures the allowable behaviors, and then a detailed
distributed implementation.

1 Introduction

The Programmers’ Playground[5] is a software library and run-time system designed to support
end-user construction of distributed multimedia applications. Design goals include the separation
of communication from computation, dynamic reconfiguration, and the uniform treatment of dis-
crete and continuous data types. The current version of Playground supports applications written
in C4++ on top of the Solaris operating system. Communication among modules is dynamically
configured by end-users using graphics tools. Physical migration[4, 15] and end-user construction
of direct-manipulation user interfaces for distributed applications[11] are also supported. An un-
dergraduate course in distributed application paradigms has been taught using Playground as the
programining environment. Also, Playground has been used to implement a video-conferencing
application on top of an ATM network [2] built at Washington University.

The system is based on a new high-level approach to interprocess communication. Functional
components of a concurrent system are written as encapsulated application programs that act upon
local data structures, some of which may be published for external use. Relationships among these
applications are specified by logical connections among their published data structures. Whenever
an application updates published data, communication takes place implicitly according to the
configuration of logical connections. The Playground programming model is based on ideas from the
formal I/0 automaton model of Lynch and Tuttle [10], a natural model of distributed systems that

*This research was supported in part by the National Science Foundation under grant CCR-94-12711.



provides compositionality properties and a clear separation of input and output actions. However,
there are important semantic differences between the Playground semantics and the I/0 automaton
model, particularly in terms of asynchrony and in the handling of input actions.

In this paper, we come full circle to provide a formal description of the Playground run-time
system in terms of the I/O automaton model. Providing a formal semantics for a system provides
the obvious advantages of a clear understanding of the semantics and the ability to reason carefully
about the properties of the system. In addition, it provides a vehicle with which one can explore
the impact of potential new features on the overall semantics of the system.

We begin by modeling a centralized Playground run-time system automaton that is composed
with a set of application automata. The application automata model the computational components
whose communication structure is dynamically configured by programmers and end-users. The
Playground run-time system automaton acts as an intermediary between the application automata
and is responsible for transporting data among the various application automata according to the
(dynamically changing) configuration. The centralized run-time system captures the set of allowable
behaviors that we expect from any distributed implementation.

In the course of this discussion, certain key properties of user-configurable systems emerge. For
example, the fact that reconfiguration requests are imposed externally rather than by the modules
themselves requires a careful understanding of the interval in which two modules may be considered
“connected.”

Building on the centralized system specification, we formally model the distributed implemen-
tation of the run-time system as the composition of several components. Exploiting the composi-
tionality properties of the I/0 automaton model, we separately specify the allowable behaviors of
each of the components. Safety and liveness properties are formally stated, as well as restrictions
on how the external environment must interact with each component. To complete the presentation
of each module, complete I/0O automata implementing these specifications are provided.

The remainder of the paper is organized as follows. Section 2 reviews basic concepts of the I/O
automaton model as used in this paper. Section 3 summarizes Playground’s programming model,
and provides a comparison of the programming model and the formal I/0 automaton model, high-
lighting important similarities and differences. In Section 4, we model the centralized Playground
run-time system. This is followed in Section 5 by a formal description of the distributed implemen-
tation. In Section 6, we outline a proof showing that our distributed implementation presented in
Section 5 solves the Playground specification provided in Section 4. The paper concludes with a
discussion of the utility of this formal framework for the study of additional communication and
synchronization features that are envisioned for the Playground programming model and run-time

system.

2 The I/O Automaton Model

This section provides a brief overview of the I/0 automaton model [10]. The model is both the
basis for the Playground programming model and the formal framework we will use to describe the
Playground semantics and implementation.

An I/O automaton is a state machine with a signature consisting of a set of input actions
and a set of locally controlled actions (divided into output actions and internal actions). Locally
controlled actions are under the control of the automaton, while input actions may occur at any
time. Automata may be composed such that when an output action of one automaton occurs, all
automata having a same-named action as an input action make a state transition simultaneously.
A behavior of an I/O automaton is a sequence of input and output actions that may oceur in an



erecution of that automaton.

The I/O Automaton model provides a framework in which one can write precise statements of
the problems to be solved by modules in concurrent systems, careful algorithm descriptions and
correctness proofs. In addition, the model can be used for carrying out complexity analysis and
for proving impossibility results. The I/O automaton model is significantly different from CCS [12)]
and CSP [6] in that input and output actions in the I/Q automaton model are distinguished, and
an I/0O automaton cannot block an input action from occurring. In that sense, I/O automata are
similar to I/O-systems (7, 8, 9]. The following introduction to the model is adapted from [10],
which explains the model in more detail, presents examples, and includes comparisons to other
models. Readers already familiar with the I/O automaton model may skip this section without
loss of continuity.

2.1 I/O Automata

1/0O automata are best suited for modeling systems in which the components operate asynchronously.
Each system component is modeled as an I/0 automaton, which is essentially a nondeterministic
(possibly infinite state) automaton with an action labeling each transition. An automaton’s actions
are classified as either ‘input’, ‘output’, or ‘internal’. An automaton can establish restrictions on
when it will perform an output or internal action, but it is unable to block the performance of an
input action.

Formally, an aciion signature § is a partition of a set acts(S) of actions into three disjoint sets
in(.9), out(S), and int(S) of input actions, output actions, and internal actions, respectively. We de-
note by ext(5) = in(S)U out(S) the set of external actions. We denote by local(S) =out(S)Uint(S)
the set of locally-controlled actions. An I/0 automaton A consists of five components:

e an action signature sig{A4),

a set states(A) of states,

a nonempty set start(A) C states(A) of start states,

a transition relation steps(A) C states(A) x acts(sig(A)) x states(A) with the property that
for every state s’ and input action  there is a transition (&', ,s) in steps(4), and

» an equivalence relation part(A) partitioning the set local( A) into at most a countable number
of equivalence classes.

We refer to the actions in the signature of A as the actions of A, denoted acts(A) The equivalence
relation part(A) will be used in the definition of fair computation. Each class of the partition may
be thought of as a separate process. We refer to an element (s',7,s) of steps(A) as a step of A. If
(s',m,8) is a step of A, then 7 is said to be enabled in s’. Since every input action is enabled in
every state, automata are said to be input-enabled. This means that the automaton is unable to
block its input.

An ezecution of A is a finite sequence sp, 7y, 81, - - -, T, 85, OF an infinite sequence sg, 71, S1, %2, - .
of alternating states and actions of A such that (s;, 7iy1,8i+1) is 2 step of A for every i and
so € start(A). The schedule of an execution o, denoted sched(a), is the subsequence of @ consisting
of the actions appearing in o. The behavior of an execution or schedule o of 4, denoted beh(a),
is the subsequence of « consisting of ezternal actions. The same action may occur several times in
an execution or a schedule; we refer to a particular occurrence of an action as an event.



2.2 Composition

We can construct an automaton modeling a complex system by composing a collection?! of automata,
modeling the simpler system components. When we compose a collection of automata, we identify
an output action m of one automaton with the input action 7 of each automaton having = as an
input action. Consequently, when one automaton having = as an output action performs =, all
automata having 7 as an action perform 7 simultaneously {automata not having 7 as an action do
nothing).

Since we require that at most one system component controls the performance of any given
action, we must place some compatibility restrictions on the collections of automata that may be
composed. Namely, their sets of output actions must be disjoint, and no automaton may have an
internal action that is also an action of another automaton.

We can think of each state of a composition as a state vector indexed by the names of the
component automata. Given an execution @ = $5m157 ... of A, let a|A; (read “o projected on A;”)
be the sequence obtained by deleting 7;5; when 7; ¢ acts(4;) and replacing the remaining §; by
$;2)-

When an execution of a system is projected onto any component, the result is an execution of
that component. The same is true for schedules and behaviors. Other important compositionality
results for I/O automata may be found in [10].

2.3 Fairness

We may think of each class in the partition of locally-controlled actions of an automaton as a
separate “control thread” that is responsible for the actions in that class. Of all the executions
of an I/O automaton, we are primarily interested in the “fair” executions -~ those that permit
each of these “threads” to have infinitely many chances to perform output or internal actions.
Each equivalence class of a component is an equivalence class of the composition. Hence, that
compaosition retains the essential control structure of the system’s primitive components.

A fair ezecution of an automaton A is defined to be an execution a of A such that the following
conditions hold for each class C' of pari(A):

1. If & is finite, then no action of C is enabled in the final state of c.

2. If o is infinite, then either a contains infinitely many events from C, or « contains infinitely
many occurrences of states in which no action of C is enabled.

2.4 Problem Specification

A problem to be solved by an I/O automaton is formalized as a set of behaviors. An automaton
is said to solve a problem P provided that its set of fair behaviors is a subset of P. Although
the model does not allow an automaton to block its environment or eliminate undesirable inputs,
we can formulate our problems (i.e., correctness conditions) to require that an automaton exhibits
some behavior only when the environment observes certain restrictions on the production of inputs.

We want a problem specification to be an interface together with a set of behaviors. We therefore
define a schedule module H to consist of two components, an action signature sig(H), and a set
scheds(H ) of schedules. Fach schedule in scheds(H) is a finite or infinite sequence of actions of H.
Subject to the same restrictions as automata, schedule modules may be composed to form other
schedule modules. The resulting signature is defined as for automata, and the schedules scheds(H)

!The collection must be countable, but here we deal only with finite collections.



is the set of sequences 3 of actions of H such that for every schedule module H’ in the composition,
B|H' is a schedule of H’.

It is often the case that an automaton behaves correctly only in the context of certain restrictions
on iis input. A useful notion for discussing such restrictions is that of a module ‘preserving’ a
property of behaviors. A set of sequences P is said to be prefiz-closed if f € P whenever both g
is a prefix of @ and o € P. A module M (either an automaton or schedule module) is said to be
prefiz-closed provided that finbehs(M) is prefix-closed.

Let @ be a set of actions and let M be a prefix-closed module, such that ® Nint(M) = 0. Let P
be a nonempty, prefix-closed set containing sequences of actions from ®. We say that M preserves
P if fn|® € P whenever §|® € P, v € out(M), and Br|M € finbehs(M). Informally, a module
preserves a property P iff the module is not the first to violate P: as long as the environment only
provides inputs such that the cumulative behavior satisfies P, the module will only perform outputs
such that the cumulative behavior satisfies P.

In [10], it is shown that if each component of a composition preserves a property, then the
composition preserves the property. A definition for the composition of schedules is also provided,
and it is shown that the schedules of a composition of components are the same as the composition
of the schedules of the components.

3 The Playground Programming Model

The Programmers’ Playground is designed to support end-user construction of distributed multime-
dia applications. The system is based on a connection-oriented model of interprocess communication
in which independent applications interact with an abstract environment. This section provides
a brief informal overview of The Programmers’ Playground in sufficient detail for understanding
the more formal system descriptions that follow. For the purposes of this paper, the Playground
programming model is taken as “given.” Information on related programming models and details
about the Programmers’ Playground goals, design, implementation may be found elsewhere [3, 5).

Playground provides a model of interprocess communication in which each application in a
system has a preseniation that consists of data structures that may be externally observed and/or
manipulated by its environment. A distributed application consists of a collection of independent
applications and a configuration of logical connections among the data structures in the application
presentations. Whenever published data structures are updated, communication occurs implicitly
according to the logical connections.

Playground communication is declarative, rather than imperative. One declares direct high-level
logical connections among the state components of individual applications, as opposed to directing
communication within the control flow of the application. Once the high-level relationships between
state components are declared, if a particular state change in one application should be reflected
in the state of another application, then this can be recognized by the system and the necessary
comminication can be handled implicitly. Thus, output is essentially a byproduct of computation,
and input is handled passively, treated as a modifier (or an instigator) of computation.

This declarative approach simplifies application programming by cleanly separating computa-
tion from communication. Playground applications do not make explicit requests to establish or
effect communication, but instead are concerned only with the details of the local computation.
Communication is declared separately as high-level relationships among the state components of
different applications.

With implicit communication, it is the configuration (and not directives from within the pro-
gram) that determine whether or not communication will take place. This means that choices



can be made at configuration time about whether applications will communicate and about how
they will communicate (point-to-point, multicast, etc.) without modification of the applications
themselves.

The Playground programming model is based on three fundamental concepts: data, control,
and connections, presented here in terms of The Programmers’ Playground implementation.

3.1 Data

The components of an application’s state may be kept private or they may be published in a
dynamically changing presentation so that other applications may access the data. Playground
provides a library of publishable data types, including base types (integer, real, boolean, and string),
tuples with named fields, and various aggregates. The types may be nested arbitrarily. FEach
presentation entry has a public name and access privileges. Recently, two media types (audio and
video) have been added.

The environment: Each Playground application interacts with an abstract environment
through its presentation. The environment consists of a collection of other applications that are
unknown to this application but that may read and modify the data items in its presentation (as
permitted by the access privileges).

Behaviors and specifications: A behaevior of an application is a sequence of values held by
the data items in its presentation. It is the view that the environment has of the application, and
(symmetrically} the view that the application has of its environment. A Playground application can
be described in terms of a behavioral specification including: the data items in the presentation, the
behaviors that may be exhibited by the application, and any assumptions made about the allowable
behaviors of the environment. Dividing the presentation into input {write-only) data items and
output (read-only) data items can simplify the task of constructing a behavioral specification and
such a division can be enforced using access protection. Behavioral specifications are similar to the
schedule module specifications in the I/Q automaton model, except that I/O automaton behaviors
are sequences of actions, while our behaviors are sequences of state changes at the presentation.

3.2 Control

The conirol portion of an application defines how its state changes over time and in response
to its environment. Insulated from the structure of its environment, a Playground application
interacts entirely through the local data structures published in its presentation. An application
may autonomously modify its local state, and it may react to “miraculous” changes in its local
state cause by the environment. This suggests a natural division of the control into two parts:
active conirol and reactive conitrol. Playground applications may have a mixture of both active and
reactive control.

Active control: The active control carries out the ongoing computation of the application. For
example, in a discrete event simulation, the active control would be the iterative computation that
simulates each event. External updates of simulation parameters could affect the course of future
iterations, but would not require any special activity at the time of each change. Input simply
steers the active computation without requiring immediate attention on arrival. Active control is
analogous to the locally controlled actions of an 1/0 automaton.

Reactive control: The reactive control carries out activities in direct and immediate response
to input from the environment. An application with primarily reactive control simply reacts to
each input from the environment, updating its local state and presentation as dictated by that
input change. For example, a data visualization application could be constructed so that each time



some data element changes, the visualization is updated to reflect the change. In the above discrete
event simulation, one might add reactive control to check the consistency of simulation parameters
that are modified by the environment. Reactive control is analogous to the input actions of an I/0O
automaton,

Specifying control: The active control component of a Playground application is defined
by the “mainline” portion of the module. Reactive control is specified by associating a reaction
function with a presentation data item. This function defines the action to be carried out when
that data item is updated by the environment. As a simple example, one might associate with
data item z an enqueue operation for some local queue ¢g. With each external update to z, the new
value of £ would be enqueued into ¢ for later processing by the application.

Atomicity: In order to preserve atomicity of reactive control and consistent semantics for
active control, active and reactive control are not arbitrarily interleaved. The run-time system
ensures that each reaction function runs as an atomic step as far as the active control can tell.
Similarly, the active control may specify atomic steps during which the run-time system prevents
both external updates to the presentation and execution of reactive control.

3.3 Connections

Relationships between data items in the presentations of different applications are declared with
logical connections between those data items. These connections define the communication pat-
tern of the system. Connections are established by a special Playground application, called the
connection manager, that enforces type compatibility across connections and guards against access
protection violations by establishing only authorized connections.

Connections are declared separately from applications so that one can design each application
with a local orientation and later connect them together in various ways. Connections are designed
to accommodate both discrete data (such as sets of integers) and continuous data (such as audio and
video) in a single high-level mechanism, with differences in low-level communication requirements
handled automatically by the run-time system according to data type information.

Playground supports two kinds of connections, simple connections and element-to-aggregate
connections. A given data item may be involved in multiple connections of both kinds.

Simple connections: A simple connection relates two data items of the same type, and may
be either unidirectional or bidirectional. The semantics of a unidirectional connection from integer
z in application A to integer y in application B is that whenever A updates the value of z, item ¥
in application B is correspondingly updated. If the connection is bidirectional, then an update of
y’s value by application B would also result in a corresponding update to z in A. Since no locking
schemes have been implemented, updates to data items on the ends of a bidirectional link may
cross without seeing each other. Arbitrary fan-out and fan-in are permitted so that multiple simple
connections may emanate from or converge to a given data item. If £ in the above example is also
connected to integer z in application C, then whenever z is updated, so are both y and z.

Element-to-aggregate connections: A Playground aggregate is an organized homogeneous
collection of elements, such as a set of integers or an array of tuples. The element fype of an
aggregate is the data type of its elements. For example, if s is a set of integers, the element
type of s is integer. An element-to-aggregate connection results when a connection is formed
between a data item of type T and an aggregate data item with element type T. If an element-to-
aggregate connection is created between each client’s type T data structure and a server’s sef(7)
data structure, then the server will see a set of client data structures, and each client may interact
with the server through its individual element. In this paper, we do not model the element-to-
aggregate connections formally since they are actually implemented by the run-time system as a



collection of simple connections, one for each element.

3.4 Playground and the I/O automaton model

The Playground programming model is partly based on the I/0 automaton model, so it is natural
that we use the I/0O automaton model to provide a formal semantics for the Playground program-
ming model and its implementation. However, due to several considerations (primarily due to
implementation, expressive power, and scalability), there are some important differences between
the Playground programming model and the I/O automaton model on which it is based. Therefore,
before proceeding with the formal description, we highlight the similarities and differences between
the formal I/O automaton model and the Playground programming model.

We may think of each application in The Programmers’ Playground as an I/O automaton
whose action signature corresponds to the set of presentation entries in the application in the
following way. Each presentation entry z that is “readable” by the environment would have an
associated set of output actions named z,4:(v), where v is a value in the domain of the variable z.
Similarly, each presentation entry 2 that is “writable” by the environment would have an associated
set of input actions named #;,(v). Presentation entries that are both “readable” and “writable”
would have both sets of actions (input and output). Thus, the behavior of the automaton would
correspond to the set of changes occurring at the presentation that forms the boundary between the
application and the environment. OQutput actions would correspond to state changes initiated by
the application, and input actions would correspond to state changes initiated by the environment.
In this way, behavioral specifications of a Playground application are essentially the same as I/O
automaton schedule modules.

When collections of I/O automata are composed to form larger systems, communication occurs
through shared actions of the same name. However, to avoid potential name clashes, Playground
uses a configuration of logical connections to define the relationships among presentation entries
in different applications. Thus, instead of defining communication according to like-named presen-
tation entries, Playground defines communication according to a separately declared configuration
of logical connections. A logical connection from 2 in one application to y in another application,
establishes a relationship from output at z to input at 3.

Although the above relationships suggest strong similarities between the formal I/O automaton
model and the Playground programming model, there are three important semantic differences. The
first distinction is that while shared actions in an I/O automaton composition occur simultaneously
and atomically, there is necessarily some physical delay between the output at one Playground
application and the corresponding input at other Playground applications. Therefore, one can think
of each automaton representing a Playground application as interacting with another automaton
that represents the Playground run-time system. Thus, while the output of one application is
shared atomically with the run-time system, the corresponding receive occurs later as an output
from the system that is shared with the receiving application. This explicit introduction of the
message delivery system as a separate automaton is, in fact, is the way most distributed systems
are modeled using the I/0 automaton model, and it is the technique we will be using to describe
the formal semantics of Playground.

The second important semantic distinction is that while the sharing of actions in a system
of I/O automaton is statically defined by the signatures of the composed automata, the configu-
ration of a Playground system is dynamically changing under external control. As users change
the logical configuration of a running Playground system, the communication pattern among the
applications changes accordingly. To describe this dynamically changing communication pattern
in I/O automaton model, we let the implementation of our explicit run-time system contain state



information about the dynamically changing logical connection structure. With this configuration
information, the system can direct output from each application to the appropriate destination
applications. Thus, although the set of actions shared between each application and the run-time
system is static, the actual events that occur in the execution depend upon the logical configuration
known to the run-time system.

The third distinction concerns a subtle but important difference between the input actions of
1/0 automata and input in the Playground programming model. Input actions of an I/0 automaton
are always enabled and can execute at any time. In Playground, however, there are two exceptions
to this in order to accomodate atomic steps and reaction functions. Both are handled automatically
by the run-time system, and we will formally model both of them in the same way.

When a Playground application is inside of an atomic step, multiple presentation entries may
be written. At the conclusion of the atomic step, the updated presentation entries are each output
before any input is processed. One could model this as a single, more complex, action that updates
several presentation entries and is shared with the run-time system. Another possibility is to
consider only a restricted set of executions in which the run-time system respects special output
actions from the each application marking the beginning and end of its atomic steps. The run-time
system buffers messages for the application and forwards them as input only when the application
signals it is is “ready,” between atomic steps.

Because we want reaction functions to appear atomic as far as the active control can tell, no
input may occur while a reaction function is executing. By itself, this is not a departure from
the I/0 automaton model since input actions also occur atomically. However, because reaction
functions are allowed to update presentation entries as part of their execution, output may result.
In contrast to this, recall that the I/0 automaton model has a strict separation of input and output
actions; no action may represent both input and output.? One can avoid this semantic difference by
writing Playground applications in which reaction functions update only local variables and do not
update the presentation. However, we have found that allowing reaction functions to update the
presentation provides significant expressive power for applications programmers., Therefore, rather
than rule out the possibility of reaction functions performing output, we model each reaction
function as an input action followed by a (possibly empty) series of output actions. Just as in
the case of atomic steps, the run-time system buffers input from the environment during reaction
functions and a “ready” action is used to signal the end of each reaction function.

4 Centralized Specification

A centralized view of the Playground system is shown in Figure 1. The logical connections
among the applications are dynamically configured by the users through interaction with the system.
Of course, users also interact with the applications, but this interaction is outside the scope of the
run-time system, so we do not model it. We model each application as an I/O automaton whose
actions correspond to publishing and unpublishing data in the application presentation, writing to
published data and experiencing external updates to published data. The run time system delivers
messages to their ultimate destination according to the configuration of the logical connections.

Before presenting the formal specification of the system, we define a few useful terms. The
first two definitions will be used to define safety and liveness conditions for the I/O automata that
model the various components of the Playground system.

2QOtherwise, the fact that shared actions occur simultaneously and atomically in the I/O automaton model would
result in the possibility of specifying infinite work to be done in finite time. However, this is not a danger in the
Playground model because communication is asynchronous.



Users

Application ; Application

Figure 1: A Centralized Playground System

An automaton A is a fransducer for the action sets II; and II;, denoted II; 4 II,, iff
1. the argument types of all the actions in II; and Il are the same, and

2. if B is a prefix of a schedule of A, the sequence of argument values in 8|11 is a prefix of the
sequence of argument values in 8]11;.

Moreover, an automaton A is a live transducer for the action sets II; and I3, denoted II; et I, iff
1. H1 '{“3 Hg, and

2. if B is a schedule of A, then the sequence of argument values in 3| II; is the sequence of
argument values in 8|I1;.

When describing sets II; and II, for use in the above definitions, we will use an action name without
arguments as a shorthand for the set of all actions with that name.

For convenience in discussing systems of applications with presentations, we let P be a set of
presentation variable names and 7 be a totally ordered set of application names. We let the letters
z, y and z denote arbitrary elements of P and the letters ¢, 7 and k denote arbitrary elements of Z.
Thus z; denotes the presentation item 2 of application A;. Also, for each element of 2z € P we let
type(z) denote the set of possible values held by the variable named 2.

Finally, since queues are a common abstraction in message passing systems, we define four

operations on queues. If ¢ is an arbitrary queue, then
1. eng(q,t) appends item £ to g,
2. t « deg(q) removes the item at the head of g, or L if ¢ is empty, and assigns it to ¢,
3. head(q) is the value of the head of ¢, or L if ¢ is empty, and

4. extract(t, g) removes the first occurrence ¢ from g, or returns L if there is no such item £in ¢.

10



4.1 Applications

A Playground application is modeled as an I/O automaton with actions to publish and unpublish
presentation data items and to write and read published variables. For flexibility, we intentionally
allow the behavior of an application to be arbitrary, except for a few simple restrictions. We specify
only the schedule module of the application, as we are not concerned with the internal state. An
application schedule module A; has the following action signature:

Input Actions:
Update;(z, v) where v € type(z)

QOutput Actions:
Publishi(z)
UnPublishi(z)
Write;(x, v) where v € iype(z)
Ready;

For an arbitrary sequence o of actions, we say that z; is locally published after « iff there exists a
Publish;(z) action in « and no later Unpublish;(z} action occurs in «. We say that « is application
well-formed iff for every UnPublish;(z) action in «, there exists a unique preceding Publish;(z)
action.

We can now define the set of allowable behaviors of an application. Let o be an arbitrary
sequence of actions in sig(A;). Then « € behs(A;) iff

1. A; preserves application well-formedness in «, and
2. if ¢ is application well-formed, then

(a) (Safety) For all prefixes 8 of a, if 8 ends with Write;(z, v), then z; is locally published
after 3.

(b) (Liveness) At least one Ready; occurs in a. Also, if an Update;(z,v) or Write;(z, v)
occurs in ¢, then a Ready; occurs later in o.

The safety property specifies that updates can be sent out only for published variables. The
liveness condition specifies that the application should allow data to arrive infinitely often. There-
fore, the only liveness constraint we specify on a Playground application is that it perform a Ready;
action when it is prepared to accept incoming updates. If Update;(z,v) and Write;(z,v) actions
occur infinitely often, then so must Ready; actions. Multiple writes can occur before a ready action,
but an application cannot indefinitely block updates from the environment.

The reason for the Ready; action is to model atomic steps and reactive control as implemented in
Playground. Since reaction functions run atomically and may write to presentation variables, we use
the Ready; action to signal the end of both reaction functions and atomic steps. Note, however, that
this interaction is handled automatically by the Playground library used to construct Playground
applications. Playground programmers do not send explicit Ready; signals to the veneer. Instead,
the same effect is achieved in the library by allowing updates to arrive whenever the active control
accesses (reads or writes) the presentation, and preventing updates from occurring during atomic
steps and reaction functions.

11



4.2 The Playground Schedule Module (P)

The Playground run time system manages the configuration of user applications. It transports data
according to the dynamically changing configuration of the applications, accepts requests from the
applications to publish and unpublish presentation data items, and processes configuration requests
by the user.

The following schedule module specifies the safety and liveness properties of the Playground
system. In Section 5, we provide a distributed implementation of this schedule module.

The Playground schedule module P has the following action signature:

Input Actions:
Publish;(z)
Unpublish;(z)
Reg_Connect(z;, y;)
Reg_Disconnect(z, y;)
Write;(z, v) where v € type(z)
Ready;

Output Actions:
Confirm_Connect(z;, y;j)
Confirm_Disconnect(z;, y;)
Update;(z,v) where v € type(z)
Published(z;)
Unpublished(z;)

The Publish;(z) and Unpublish;(z) actions accept publish/unpublish requests from application
A;. We distinguish multiple publishes of a data item. If a data item is unpublished and republished,
then we model it here with a different variable name. Reg_Connect(x;, y;) and Req_Disconnect(z;, y;)
actions accept requests to create and delete logical connections between published data items, re-
spectively. The system informs its environment that the connection has been made successfully by
the Confirm_Connect(z;, y;) output action. The system confirms that a connection has been broken
by the Confirm_Disconnect(z;, y;) action. Updates to Playground data items are accepted by the
Write;(z, v) action. If the Playground data item has been published and is connected to some data
item, then the system outputs this update to the destination j by the Update;(z, v) output action.
Recall that the application must perform a Ready; action whenever it becomes ready to accept an
update to its published data items.

For convenience in reasoning about executions, we define a tagging scheme for the message
system actions. Let o be a sequence of actions of the message system. Let ar be an arbitrary
sequence of tags, where one tag is associated with each event in a. We say that the labeling o is

consistent iff
1. no two Write; events have the same tag,

2. if a Write;(z, v) event and a Update;(y, w) event have the same tag then

a) v = w, and
b) the Write; event occurs before the Update; event in a.

12



Two events with the same tag are considered corresponding events. Note that these tags do not
exist in the implementation. They are omnisciently assigned in this discussion for the sole purpose
of reasoning about action sequences.

The following terms will be used to define the set of allowable behaviors of the Playground
system.

For an arbitrary sequence « of actions in sig(P), we say that z; is published after o iff there
exists a Published(z;) action in @ and no later Unpublished(z;) action occurs in a. Let o = fr.
If w is a Write;(z,v) or Update;(z,v) event and 7y contains a Ready; event, then we say that a is

application-live.

Let « be an arbitrary sequence of actions € sig(P). We say that « is system well-formed iff it
is application well-formed and, for sequences # and v such that o = Sz,

L. if 7 is a Req_Conneci(z;, y;) or Reg_Disconnect(z;, y;) event then z; and y; are published after

B,

1 connected 1

e T P PR U E
] ]
!‘( ..... Torem et Qroee el e e ) JEDEEEERERRP >|( ..... 4 >{< ..... 5 >|
} !
______ A - ——— e e e v e ]
setup tear-down
Req_Connect Confirm_Connect Req_Disconnect Confirm_Disconnect

Figure 2: Sample execution showing setup, tear-down and connected intervals

Consider an execution sequence as shown in Figure 2. The execution subsequence between a
Reg_Connect(z;, y;) and Confirm_Connect(z:, y;) event is the connection setup interval. The exe-
cution subsequence between a Reg.Disconnect(z;, y;) and Confirm_Disconnect(z;, yj) event is the
connection tear-down interval. The connected inierval for (z:,y;) is the period in which updates to
z; are propagated to y;. The start of the connected interval occurs within the setup interval while
the end of the connected interval occurs within the tear-down interval. Therefore, the user is guar-
anteed that the interval (3) between the Confirm_Connect(z;,y;) and the Req_Disconnect(z;, y;)
events is fully contained by the connected interval. The connected interval also ends as soon as
either of the endpoints of the link is unpublished.

If an update to the presentation data item z; occurs before the Request.Connect(z;, y;) event,
then the update will not be sent to y;. If y; is unpublished, then once an update for y; is dropped,
all subsequent updates to it are also dropped. This implies that not only are updates delivered in
order, but that the sequence of updates cannot have gaps within a given connected interval.

We now define the set of allowable behaviors of the system. Let a be an arbitrary sequence of
actions € sig(P). Then « € behs(P) iff

1. P preserves well-formedness in a.

2. (Safety) If o is well-formed, then there exists a consistent labeling such that

13



(2) Req.Connect(z;, y;) Confirm_Connect(z;, y;),
Reg_Disconnect(z;, y;) L Confirm_Disconnect(z;, y;), and

(b) if there exists an Update; event in «, then there exists a corresponding Write; event in
a.

(c) Publishi(z) 5 Published(z;),
Unpublish;(z) 4 Unpublished(z;),

(d) ¥ a Write;(z, v;) precedes Write;(z, vz) in & and both the events occur in a connected
interval of (z;,y;) and the corresponding Update;(y,ve) event occurs in «, then it is
preceded by the corresponding Update;(y, v;) occurs earlier in c.

3. (Liveness) If « is well-formed and application-live, then there exists a consistent labeling such
that

(2) Publishi(z) & Published(z;),
Unpublish;(z) L Unpublished(z;),
(b) if a Req_Connect(z;, y;) occurs in e, then either
i. alater Confirm_Connect(z;, y;) event occurs, or
il. alater Unpublished(z;) or Unpublished(y;) event accurs.

(¢) if a Reg_Disconnect(z;, y;) occurs in @, then either

i. a later Confirm_Disconnect(z;, y;) event occurs, or
il. a later Unpublished(x;) or Unpublished(y;) event occurs.

(d) if a Write;(z, v) event occurs in the connected interval for (z;, y;), then either

i. a later corresponding Update;(y, v) occurs, or
ii. a later Unpublished(y;) event occurs.

The safely conditions state that a Confirm_Connect(z;,y;) event cannot occur unless a
Req_Connect(z;,y;) event has occurred, and that a Confirm._Disconnect(z;, y;) event cannot oc-
cur unless a Reg_Disconnect(z;, y;) event has occurred. Similarly, a Published(z;) event is preceded
by a Publish;(z) event, while an Unpublished(z;) event is preceded by a Unpublish;(z) event. An
Update; event cannot occur unless the corresponding Write; event has already occurred. Also, we
guarantee FIFO ordering between application pairs. Updates from one application to the other are
received in the order sent.

The liveness conditions state a Publish;i(z) event is eventually followed by a Published(z;)
event, while an Unpublish;(z) event is eventually followed by an Unpublished(z;) event. Also,
a Regq_Connect(z;, y;} event is eventually followed by a Confirm_Connect(;, y;) event unless ei-
ther z; or y; is unpublished. Similarly, a Req.Disconnect(z;,y;) is eventually followed by a
Confirm_Disconnect(z;, ;) event unless either z; or y; is unpublished. Also if a Write;(z, v) event
occurs while z; are y; are connected, then eventually an Update;(y, v) occurs unless y; is unpub-
lished.

Semantics of message delivery: Referring to Figure 2 we consider each interval marked on the
figure as a separate case.

Case 1: If an update to the presentation data item 2; occurs before the Request.Connect(z;, ;)
event then it will not be sent to y;.

Case 2: If the update occurs after the Request_Connect(z;,y;) event but before
theConfirm_Connect(z;, ;) event then we cannot tell externally whether the update occurred in

14



interval 1 or interval 2. If an earlier update in this interval was delivered, then we know that the
link has been created and that subsequent updates will also be delivered. If it occurred during
interval 1 then the update will not be transmitted to y;. On the other hand, if the update occurred
during interval 2, then it will be sent to y;.

Case 3: If the update occurs during interval 3 (after the Confirm_Connect(z;, y;) event and
before the Request.Disconnect(z;, y;) event) then it will definitely be sent to y;.

Case 4: If the update occurs after the  Request.Disconnect(zi, y;)
and before Confirm.Disconnect(z;,y;) event then it may or may not be sent to y;. Externally,
we have no way of knowing whether the update occurred during interval 4 (will be sent) or during
interval 5 (the update will not be sent).

Case 5: If the update occurs after the Confirm_Disconnect(z;, y;) event then it will definitely
not be sent to y;.

5 Distributed Implementation

The Playground system is designed as a software library, run-time system, and programming envi-
ronment that insulates the applications programmer from the operating system and the network.
The current version supports applications written in C++ on top of the 5Solaris operating system
with sockets as the underlying communication mechanism.

An overview of the distributed implementation is shown in Figure 3. The Playground system
has been implemented in a distributed manner by a collection of veneers, one per application, com-
municating among each other via the network. In the implementation, the veneer is compiled into
the application. Here, we model it as a separate automaton since it is distinct from the part of the
application written by the application programmer. The veneer embodies a library of publishable
data types and a communication protocol subsystem. As shown in Figure 4, all communication
into or out of an application goes through the veneer. The veneer acts as an intermediary between
the message system and the application, hiding the message formatting and transmission details
from the modules. The veneer handles encoding data prior to transmission, decoding data, atomic
steps, and registration and invocation of reactive control.

The veneers also communicate among themselves and with a special module called the connec-
tion manager. The connection manager has the presentation information of every application (only
type information, not data) and the configuration of the applications. The presentation information
is sent to the connection manager by the veneers associated with each application. Requests by
users to establish and drop logical connections are handled by the connection manager, which also
checks access rights and type compatibility. The connection manager informs the endpoint veneers
of a new logical connection to set up the connection. The connection manager is not a communi-
cation bottleneck because once it has set up a connection, communication on that connection is
handled by the individual veneers.

We model each veneer, the connection manager and the network as separate I/QO au-
tomata. These automata are composed to form the Playground system. The veneers commu-
nicate among themselves and with the connection manager by passing messages. A message

15



is a (MesgType, Payload) pair. The message types are Publish(?), Unpublish(Z/), AddLink(A),
RemoveLink(R), Handshake(?{), Goodbye(G), ConfirmConnect(CC), ConfirmDisconnect(CD),
ClearLink(CL) and Data(D). For brevity, we will use the term link to refer to a logical connection.

For message types P and U, the payload consists of a variable name ;. For message types A,
R, H, G, CC and CD, the payload consists of a pair (z;,y;) of variable names. Lastly, for data
messages, (D) the payload is of the form (z, v), where v € type(x). For message m, we use type(m )
to refer to the message type and payload(m) to refer to the message payload.

We generalize the notions of transducer and live transducer defined in Section 4. In this section
we overload the notations ~» and ~ by allowing the form of the action arguments to be speci-

fied. For example, we say Write;(z, v) 4 SendMesg;(j, (D, (z;, v))) to mean that A is a transducer
defined as before that issues output actions of the form SendMesg;(j, (D, (2:,v))) in response to
inputs of the form Write;(z, v). In other words, we allow a syntactic relationship between the input
and output action arguments to be specified, rather than require that the arguments be identical.

5.1 The Veneer
5.1.1 The Veneer Schedule Module (V;)

The veneer schedule module has the following action signature:

Input Actions:
Publish;(z)
Unpublishi(z)
Write;(z, v) where v € type(z)
Ready;
ReceiveMesg;( M)

Internal Actions:
ProcessDataMesg;

DiscardInput;(z, v)
DiscardQuiput;( M) where type(M) =D

Output Actions:
Update;(z, v) where v € type(z)
SendMesg;(em, M)
SendMesg;(j, M)

The veneer accepts requests to publish/unpublish Playground data items by the Publish; and
Unpublish; actions respectively. Updates made by applications to Playground data items are ac-
cepted by the Write; action. External updates to Playground data items at the local application
occur via the Update; action. The application must perform the Ready; action whenever it is ready
to accept updates to its published data items. The veneer communicates with other veneers via
the network automaton by using the SendMesg; and ReceiveMesg; actions. The internal action
DiscardInput; is responsible for removing from the InBox updates to those variables that have been
unpublished in the period between the time that the update arrived and the time that it gets to the
head of the InBox. The action DiscardQutput; removes updates from the OutBox if there exists no
outgoing link. The link could be deleted by the time the update gets to the head of the QutBox.
The other internal actions prepare data and information messages that are sent to peer applications.

16



Let o be a sequence of actions in sig{ V). If 8 is a subsequence of a be-
ginning with a SendMesgi(cm,(CC,(2i,y;))) or SendMesg;(em,(CC,(z:,y;))) action and no
SendMesg;(em, (CD, (zi, y;))) or SendMesg;(em, (CD, (x;,y;))) occurs in B, then we say that is a
connected interval for (z;, y;).

We now define the set of allowable behaviors of the veneer. Let & be an arbitrary sequence of
actions in sig( V). Then & € behs( V) iff

1. V; preserves application well-formedness in «,

2. (Safety) if a is application well-formed, then

(a) Publishi(z) Y SendMesg;(cm, (P, z;)), Unpublish;(z) i SendMesg;(cm, (U, z;)),

(b) Write;(z,v) & SendMesyi(§, (D, (y;, v))) il Write;(x,v) occurs while z; and y; are
connected, ReceiveMesg;{D, (z;,v) G Update;(z, v),

(c) ReceiveMesgi( A, (i, %)) A SendMesg: (7, (H, (z:, 4;))),
ReceiveMesgi(R, (i, ;)) N SendMesgi(7, (G, (=i, 4;))),

(d) ReceiveMesg;(H, (=i, ;) i SendMesgi{cm, (CC, (zi, ¥;))),
ReceiveMesgi(G, (i, y;)) A SendMesg;(cm, (CD, (i, %)),

3. (Liveness) if « is application well-formed and application-live, then

(a) Publishi(z) A SendMesgi(em, (P, (5, 1)), Unpublish;(z) i SendMesgi(cm, (U, (=i, 37))),

(b) ReeciveMesgi(A, (i,3;)) + SendMesgi(i, (¥, (zi, 1)),
ReceiveMesgi(R, (zi, 1;)) i SendMesgi(7,(G, (%, 4))),
(c¢) for j < i, then
ReceiveMesg;(H, (zi, ) Vi SendMesg;i(cm, (CC, (@i, y7))),
ReceiveMesgi(G, (zi, 45)) i SendMesgi{cm, (CD, (2, 45))),

(d) Write;(z,v) G SendMesg;(7, (D, (y;, v))), if the Write action occurs in a connected
interval for (z;, y;).

(e) if a ReceiveMesg;(D, (z;, v) event occurs in o, then eventually either an Update;(z, v)
event or an Unpublish;(z) event occurs.

Informally, the safety conditions say that if a publish or unpublish type message is sent, then the
publish/unpublish action must have occurred. Also, if a data message is sent out, then a write event
must have occurred. If an update event occurs, then a data message must have been received. The
last two safety conditions pertain to the handshake mechanism for making and deleting connections.
If a handshake message is sent out, then an addlink message must have been received. Similarly,
if a goodbye message is sent out, then a removelink message must have been received. If a confirm
connect message is sent out, then a handshake must have been received. If a confirm disconnect
message is sent out, then a goodbye message must have already been received.

The liveness conditions say that if a publish or unpublish event occurs, then eventually a
publish/unpublish message is sent to the connection manager. Receipt of an addlink message
is eventually followed by the sending of a handshake message. Receipt of a droplink message
is eventually followed by the sending of a goodbye message. Receipt of a handshake message

17



eventually leads fo a confirm connect message being sent to the connection manager by the node
with the higher id. If a write action occurs when two variables are connected then eventually the
data message will be sent. If a data message is received at an application, then, provided that the
application is live, eventually the update event occurs or the variable is unpublished.

5.1.2 The Veneer Automaton

The state of the veneer automaton consists of the following components. InBoz and QutBoz are
queues that store messages. These messages can be data messages or requests to publish /unpublish
variables. The message format has been described earlier. PSetis the set of published variables and
LSet is the set of logical connections to and from the application. OutLinkSet is the set of outgoing
links from a variable. IncompleteLinkSet is the set of links being created for which the handshake
process is still unfinished. The send_mode flag is set when the veneer is ready to send updates
for a variable on all links from that variable. The ready flag controls communication between the
veneer and the application. Initially, all the above sets and queues are empty and the flags are set
to FALSE.

The action signature is the same as that of the schedule module. The transition relation is
shown in Figure 5. The Publish and Unpublish actions accept publish/unpublish requests from the
application. They simply queue a message onto the OutBoz. The publish or unpublish event is
actually processed only when this message gets to the head of the QutBoz. This ensures that all
updates that occur before a publish or unpublish event are processed before the publish/unpublish
event is processed. The veneer accepts messages from the network by the ReceiveMesg action and
sends messages to the network by the SendMesg;(j, M) and the SendMesg;(cm, M) actions. The
messages can be of the types described earlier.

Messages from the connection manager to add or delete a link initiate a handshake or tear-
down protocol respectively. The connection manager is sent a message of type CC or CD as the
case may be when the handshake terminates. The veneer uses a handshake process to create a link
when it receives a message from the connection manager. The connection manager sends addlink
messages to both endpoints of the link . The veneer with the higher id is the one to initiate the
handshake. It enqueues a (7, (zi,y;)) message onto the OutBoz when it receives a (A, (i, 3;))
message. It also adds (z;,y;) to IncompleteLinkSet. The veneer with the Jower id waits for the
handshake message to arrive from the other endpoint. It adds (z, ;) to IncompleteLinkSet when
it receives a handshake or addlink message, whichever comes first. When this veneer has received
both handshake and addlink messages, it adds the link to its LSet and sends a handshake message
back to the other endpoint to indicate that it has made the link. The veneer which initiated the
handshake waits until a handshake message returns, and then adds the link to its LSet. It then
enqueues 2 (CC, (i, y;)) message onto the jt OutBox. At the time that a link is added to LSet, it
is removed from IncomnpleteLinkSet.

The veneer uses a tear-down process to delete a link. This is to ensure that all messages in
transit on the link and those already in the InBoz are delivered before the link is deleted. The
veneer enqueues a goodbye message ((H, (2, %;))) onto the OutBoz when it receives a (R, (=i, ;)
message from the connection manager. When this message gets to the head of the OutBoz, the
veneer removes (z;, y;) from LSet and sends the message to application;. Note that the connection
manager sends a droplink message only to the upstream side of the link. When the veneer receives
a goodbye message, it removes the link from its linkset and enqueues a (CD, (2, ;)) message onto
the OutBoz. Since the network guarantees FIFQ delivery of messages, when the veneer receives a
goodbye message, all messages ahead of it must have been delivered.

Updates to Playground data items are accepted by the Write;(z,v) action which enqueues

18



the update onto the OutBoz if the concerned variable is published and there exists at least one
outward link from that variable. When the data message gets to the head of the OutBoz, the
veneer prepares to send the update to all veneers that are connected to this variable. The internal
action ProcessDataMesg initializes the QutLinkSet with the set of outgoing connections from the
variable. It also sets send_mode to TRUE. This puts the veneer in a state in which it can transmit
a message onto all the links in the OutLinkSet. The action SendMesg;(j,(D,(y;, v))) is enabled
when send mode is TRUE, (z;,y;) € OutLinkSet and (D, (z;,v)) is at the head of the OutBoz. It
sends the message out and removes (z;,y;) from OuiLinkSet. When OutLinkSet becomes empty,
the message at the head of the QutBox is dequeued and send_mode is set to FALSE. It may happen
that a message may reach the head of the QutBoz and there may be no outgoing link from that
variable. This happens when a goodbye message was in the OutBoz ahead of the data update. In
such a situation, the DiscardInput;) action dequeues the message from the OutBouz.

A data message is queued onto the InBoz. An update is sent to the application by the Update;)
action. The Update;(z, v) action is enabled when (z;, v) is at the head of the InBoz and the ready
flag is TRUE. It provides the update to the application and dequeunes the data message from the
InBoz. The Ready; action simply sets the ready flag to TRUE. If 2; is ¢ PSef and (z;,v) is at the
head of the InBox then the DiscardInput; action is enabled. This action simply drops an update
as the presentation item it was destined for does not exist any longer.

If the message received is of type CL, then the veneer removes the connection (which may still
not have been completed) without performing the handshake. The connection manager sends such
a message when one of the endpoints of the connection is unpublished. In this case, the tear-down
protocol is not carried out and no acknowledgment is sent to the connection manager once the link
is deleted.

The set of locally controlled actions is partitioned into 2 equivalence classes. The set of
DiscardInput; and Update; actions are in the same class while all the rest are in the other equivalence
class,

We assume that all queues are of infinite length. Obviously, this is not achievable in practice.
Since the veneer is compiled with the application, the application would block if any of the quenes
are full. The system has been implemented in such a way that it will not block if the queues become
full. If the QutBoz becomes empty, then the veneer drains the OutBoz even it is in the middle of
enqueueing a message onto the QutBoz. If the veneer is reading from the network and the InBoz
becomes full, then the veneer hands control to the part that interfaces with the application to
supply updates and tries to empty the InBoz.

5.2 The Connection Manager

The connection manager is itself a Playground application. It acts as a repository for presentation
and link information. Information on the presentations of all the applications and the logical
connections between them is stored here. The presentation information is sent to the connection
manager by the veneers associated with each module. In Playground, a graphical front-end is
provided to display this information for a user and to allow direct manipulation of the configuration.
The connection manager also acts as an “introduction service,” managing the set-up of logical
connections. The connection manager checks requests to add and delete links for type validity
and protection. If the connection can be created, it informs the concerned veneers which then
run a handshake protocol to set up the link. The node which initiates the handshake informs
the connection manager when the connection has been created. Deleting connections is handled
similarly. Once a connection has been created, the veneers can communicate directly over the
network. The data does not go through the connection manager. We first describe the connection

19



manager schedule module, then present an automaton that implements this specification. Note
that we do not model protection information here.

5.2.1 The Connection Manager Schedule Module (CM)

The connection manager has the following action signature:

Input Actions:
Req_Connect(z;, y;)
Req_Disconnect(z;, y;)
ReceiveMesgem(M)

Internal Actions:
ProcessDeferredRequest(z;, y;)

Qutput Actions:
SendMesgem (i, M)
Confirm_Connect(z;, y;)
Confirm_Disconnect(z;, y;)
Published(z;)

Unpublished(z;)

The connection manager communicates with the network by the SendMesg.,, and ReceiveMesg.,
actions. Requests to add and delete logical connections are made by the user to the connec-
tion manager by the Req_Connect and Reg_Disconnect actions. The connection manager confirms
that a connection has been made or deleted by the Confirm_Connect and Confirm_Disconnect
actions respectively. The connection manager delays requests to add or delete a connection un-
til a prior tequest for that connection is confirmed, so that at most one connection request for
a given pair of variables is in progress. However, multiple connection requests for different vari-
ables may proceed simultaneously, including those with a common endpoint. The internal action
ProcessDeferredRequest processes a deferred request for the connection (z;,y;) when the current
request for that connection is confirmed. The connection manager informs user that a data item has
been published by the Published action. It informs the user of unpublish events by the Unpublished
action. For convenience in reasoning about executions of the connection manager, we use the
action name publish(z;) as a shorthand for the action ReceiveMesg.m(P, ;). Similarly, we use
unpublish(z;) as a shorthand for the action ReceiveMesgen(U, ;).

Consider an arbitrary sequence of actions o = aye; from sig( CM). We say that z; and y; are
connected after o iff

1. z; and y; are published after «,

2. Confirm_Connect(z;, y;) is the last event in oy,

3. no Regq_Disconnect(z;,y;) occurs in oz, and

4. no unpublish(z;) or unpublish(y;) event occurs in a;.

Let @ be an arbitrary sequence of actions from sig(CM). We say that a is connection manager
well-formed Hf

1. for every Unpublished(z;) in e, there exists a unique, preceding Published(z;) action,

20



2. for all prefixes § of a, if § ends with a Reg_Connect(z;,y;) or Req_Disconnect(z;,y;) event
then z; and y; are published after 8, and

3. if the last action of f is a Reg_Disconnect(z;,y;) event, then 8 = (15, such that the last
event of By is a Req_Connect(z;, y; ) event and no Reg-Connect(z;, y;), Req_Disconnect(z;, y;),
Unpublished(z;) or Unpublished(y;) event occurs in fs.

The tagging scheme is extended for reasoning about behaviors of the connection manager. Let
c be a sequence of actions of the connection manager. Let ar be an arbitrary sequence of tags,
where one tag is associated with each event in a.

We say that the labeling o is connection manager consistent iff
1. if SendMesg.n(j, M) and SendMesgcn(k, N) have the same tag, then j# kor M # N

2. if a SendMesgcn (7, (A, (=i, y;))) event and a Reg_Connect(z;, y;) event have the same tag
then, the Req_Connect(z;, y;) event occurs before the SendMesgen (7, (A, (i, y;))) event in a.

3. if a SendMesg.n(j,(R, (2, y;))) event and a Req_Disconnect(z;, y;) event have the same tag
then, the Reg_Disconneci(z;, y;) event occurs before the SendMesgen (7, (R, (=i, 3;))) event in
a.

4. no two Req_Connect or Req_Disconnect events have the same tag.

Two events with the same tag are considered corresponding events.

We define the set of allowable behaviors of the connection manager. Let o be an arbitrary
sequence of actions € sig{ CM ). Then a € behs(CM) iff

1. CM preserves well-formedness in «,

2. (Safety) if o is connection manager well-formed, then there exists a connection manager
consistent labeling ap such that

(a) Reg_Connect(x;,y;) g Confirm_Connect(z;, y;),
Reg_Disconnect(z;, y;) e Confirm_Disconnect(z;, y; ),

(b) For every SendMesgcnm (7, (A, (zi,y;))) or SendMesg.n (i, (A, (zi,y;))) action in «, there
exists a corresponding Req.Connect(zi,y;) action that precedes it in «.  Simi-
larly, for every SendMesg.n(i,(R,(zi,3;))) action in o, there exists a corresponding
Req_Disconnect(z;, y;) action that precedes the send event in a.

(c) ReceiveMesg.n(CC, (zi, y;)) car Confirm_Connect(z;, y; ),
RecetveMesgem(CD, (2i, ¥;)) cur Confirm_Disconnect(z;, y;),

(d) ReceiveMesgm(P,z;) 5 Published(z;),
ReceiveMesgon (U, z;) u Unpublished(z;),

3. (Liveness) if o is connection manager well-formed, then there exists a connection manager
consistent labeling a7 such that
(a) Reg.Connect(x;, y;) =4 Confirm_Connect({z;, y; ),

Reg_Disconnect(zi, y;) 2 Confirm_Disconnect(z;, y; ),

21



(b) For each Req-Connect(z;,y;) action in «, a SendMesgem(i, (A, (=i,3;))) action oc-
curs later in « as does a SendMesg.,(J, (A, (=i, y;))) action. Similarly, for each
Reg_Disconnect(z;, y;) action in «, a SendMesg.m (7, (R, (=i, yj))) action occurs later in
o action, where type(M) = R.

(c) ReceiveMesg.m(CC, (i, 4;)) 124 Confirm_Connect(z;, y;),
ReceiveMesgcm(CD, (i, ¥)) i Confirm_Disconnect(zi, y;),

(d) ReceiveMesgom(P,z;) &5 Published(s;),
ReceiveMesg .(U, z;) 124 Unpublished(z;),

The safety conditions state that for a confirm connect (confirm disconnect) event to occur,
the corresponding request connect (request disconnect) event must have occurred and a confirm
connect (confirm disconnect) message must have been received earlier in the execution. Also, if an
add link or drop link request message is sent,then the corresponding request must have occurred
prior to the send. For a published (unpublished) event to occur, a publish (unpublish) message
must have been received earlier.

The liveness conditions state that if a request connect (request disconnect) event or a confirm
connect (confirm disconnect) message is received, then the confirm connect (confirm disconnect)
event will eventually occur. Also if a request connect occurs, then eventually an addlink messages
will be sent to both endpoinis. If a request disconnect event occurs then a drop link message will
be sent to the upstream veneer. If a published (unpublished) message is received, then a publish
(unpublish) event will eventually occur in the execution.

5.2.2 The Connection Manager Automaton

The state of the connection manager consists of the following data structures. PSef is the set of
published variables, LSet is the set of logical connections, and Requests is a queue which stores re-
quests to add/remove logical connections. The requests are stored as ordered pairs of destinations
and messages. For example, a request to add alink between the Playground data items z; and y; is
stored as (i, (A4, (2, 15))). Requests still being processed are stored in the UnconfirmedRequests set.
In addition. there are two queues: DeferredRequesis and ConfirmedRequests. Confirmed requests
are queued onto the ConfirmedRequests queue. Any request to create or delete a link which is still
being processed is queued onto the Deferred Requests queue to be processed later. Requests stored
in the above two queues and the UnconfirmedRequests set are of the type (A, (=, y;)) for create
connection requests and are of the type (R, (;, 3;)) for delete requests. There is a Presentation Up-
dateQueue that stores incoming publish/unpublish messages. Initially, all the queues and sets are
empty. Publish/unpublish messages from veneers are stored in the PresentationUpdateQueue.

The transition relation for the connection manager automaton is shown in Figure 8. When
the Reg_Connect(z;,y;) action occurs, the connection manager checks to see if there is a request
for connection (z;,y;) in the unconfirmed set or the confirmed queue. If so, it queues the re-
quest onto the DeferredRequests queue. If not, it puts the request into the UnconfirmedRequests
set and also queues add link messages (of type .A) onto the Requests queue. The requests are
duly sent out by the SendMesg.m(i, M) action. When the connection manager receives an ac-
knowledgment from a veneer informing it that both endpoints have created the link, it removes
the connection from UnconfirmedRequests and queues it onto the ConfirmedRequests quene. The
Confirm_Connect(z;, y;) action then removes the connection from ConfirmedRegquests and inserts it

22



into the LSet. A Regq_Disconnect(x;,y;) action is handled analogously. The only difference is that
the drop link message is sent only to the upstream end of the link, not to both endpoints.

The connection manager receives messages from the veneers informing it of changes in their
presentations. The publish/unpublish messages are enqueued onto the PresentationUpdateQueue.
then When the message gets to the head of the queue, the The Published action is enabled when
the publish message gets to the head of the queue. This action adds the published variable to the
PSet. When the unpublish action reaches the head of PresentationUpdateQueue, the Unpublished
action is enabled. This action removes the variable from the PSet. All links in the LSet to and from
that variable are removed. The endpoints are sent messages of type CL to make them to delete the
link. Any request involving the unpublished variable that has not yet been confirmed is removed
from the queue or set it is in. For all add link requests that are being processed, clear link messages
are sent to the concerned veneers.

All SendMesgen (¢, M) actions are in the same equivalence class. The ProcessDeferred Request(z;, y;)
actions are in a separate equivalence class. The Confirm_Connect(z;, y;) and Confirm_Disconnect(z;, i)
actions are in the same equivalence class. The Published(z;) and Unpublished(z;)} actions are in the
same equivalence class.

5.2.3 The Network Schedule Module N

The network transfers messages among vencers and the connection manager. Our model is that of a
lossless network. We only specify a schedule module for the network as we are not interested in the
mechanics of the transfer, and are concerned solely with the behavior of the network. The network
delivers messages in pairwise FIFO order. The network schedule module N has the following action

signature:

Input Actions:
SendMesg;(j, M) where jis the destination of the message M and i € I U {em}

Output Actions:
ReceiveMesgi(M) i € I U {cm})
The network accepts a message by the SendMesg;(j, M) action and delivers the message M to

the recipient j by the ReceiveMesg;( M) action.
Let o be an arbitrary sequence of actions in sig(N). Then a € behs(N) iff, there exists a

protocol consistent labeling e such that

1. (Safety) For every ReceiveMesg;( M) action in e, there exists a corresponding SendMesg;(j, M)
action preceding it c.

2. (Safety) If there exists a SendMesy;(j, M) action with tag a, followed by SendMesg;(§, M)
action by the same application with tag b, then the corresponding ReceiveMesg;( M) action
with tag a precedes the ReceiveMesg;( M) action with tag b.

3. (Liveness) For each SendMesg;(j, M) action in a there exists a corresponding ReceiveMesg;( M)
action.

The first safety condition states that the network cannot create messages. The second safety
condition states that messages between every pair of applications will be delivered in FIFO order.
The liveness condition states that the network must deliver messages eventually.

23



6 Proof Sketch

We compose the veneers, connection manager automaton and any network automaton that im-
plements the network schedule module and hide the message sending and receive actions to ob-
tain the implementation automaton I We present a proof sketch that our implementation(l)
solves the centralized Playground schedule module presented in Section 4.2. We must show that
fairbehs(I) C fairbehs(P). Let B be a fair behavior of I It is clear that the components of the
distributed implementation P preserve system well-formedness, as the only actions in the well-
formedness condition are input actions performed by the user. Thus 8 is well-formed. Let us prove
that fairbehs(I) satisfy the safety properties of fairbehs(P).

Lemma 1: (Safety) Let a be an execution in fairbehs(P). If there exists an Update; event in
o, then there exists a corresponding Write; event in a.

We denote the Write;(M) event with tag ¢ by Write;(M;). The network guarantees that a
sequence of messages sent by application A; to A; is delivered to in order without any messages
being lost. A message accepted by the network and not yet delivered toits destination is considered
to be “in transit.” The in transit sequence for the link 2;, y; is the sequence of messages in transit
from application A4; to A;. Consider the sequence S of messages formed by concatenating OutBoz;,
the in transit sequence for the link z;,3; and InBoz;. The number of messages M; in the sequence
S denoted by M;(S) is less than or equal to 1 in all reachable states.

This can be proved by induction on the length of the execution by considering the effect each
individual action of the compositon has on the assertion. We provide an operational reasoning here
to give the intuition behind the conclusion that the above safety property is satisfied. One of the
preconditions for the Update;( M) action is that (M;) is at the head of InBoz;. From the proof of
the above assertion, we know that some Write;(z, v) event must have occurred to set this condition.

Lemma 2: (Safety) Let a be an execution in fairbehs(P). If Write;(z, vs) precedes Write;(z, vg)
in @ and both the events occur in the connected interval of (z;,y;). If the Update;(y,vs) event
occurs in @, then it is preceded by the corresponding Update;(y, v;).

Recall that if a data item is published twice, the two names are considered distinct. One of the
preconditions for the Update; event is that y; is in the Pset. Once y; is unpublished, the condition
y; € Pset becomes false and stays false forever. Thus if y; is unpublished before Update;(y, v;)
occurs, then all updates still in transit or in InBoz; will be discarded. The network preserves the
message ordering sequence. Thus, updates are queued in the InBox in the order that they were
sent. If the update events occur, they occur in the same order as the write events.

Lemma 3: (Safety)

Let « be an execution in fairbehs(P). Req_Connect(z;,y;) A Confirm.Connect(z;, ;) in a.

The precondition of the Confirm_Connect(z;, y;) action is that (A, (z;,y;)) is the at the head
of the ConfirmedRequests queue. Such a request can be queued onto the ConfirmedRequests queue,
only when a confirm connect message is received. This can be seen from the actions of the con-
nection manager. For such a message to arrive, the veneers must have performed the handshake
process in response to addlink message from the connection manager. These messages are enqueued
onto the Requests queue only when a Reg_Connect(z;, y;) action occurs.

Lemma 4: (Safety)
Let o be an execution in fairbehs(P).Req_Disconnect(z;, y;) L Confirm_Disconnect(z;, y;) in
a.

24



The proof is on the same lines as the previous one. Only the message type is different and
the endpoint veneers conduct a tear-down process by sending goodbye messages instead of going
through a handshake process.

We now have to prove that fairbehs(J) satisfy the liveness properties of fairbehs(P).
Lerama 5: (Liveness) Let o be an execution in fairbehs(P). If a Write;(z,v) event occurs in
@ in the connected interval for (z;, y;), then either

1. a later corresponding Update;(y, v) occurs, or

2. alater Unpublish;(y) event occurs.

Once a Write;(z, v) event occurs during the connected interval for (=, 3;), the update will be
delivered to application A; by the network and sender liveness properties. The fairness properties
of the sender and receiver automata ensure that messages in the queues will eventually be delivered
to their destinations. By the liveness of the application automaton 4; and the veneer automaton
V;, the update reaches the head of InBoz;. If y; € Pset, the Update;(y, v) action is enabled and
remains continuously enabled until an Unpublish;(y;) action occurs. If an unpublish event has
occurred, then y; ¢ Pset. Further, this condition remains true for all subsequent states. In this
case, the Discard;(y;,v) action is enabled and remains continuously enabled. The above liveness
property follows from the fairness of the veneer and application automata.

Lemma 6: (Liveness) Let o be an execution in fairbehs(P). If a Reg_Connect(z;, y;) occurs in
«, then either

1. alater Confirm_Connect(z;, y;) event occurs, or
2. alater Unpublish;(z) or Unpublish;(y) event occurs.

A Req_Connect(z;,y;) event causes (i, (A4, (=i, 3;))) and (7, (A, (2, y;))) requests to be queued
onto the Requests queue. Eventually, these requests are sent and received by the destination ve-
neers. These veneers go through a handshake protocol. That the handshake process terminates
is easily seen. The veneer with the higher id sends a handshake message to the veneer at the
other end of the link. The veneer with the lower id sends a handshake message when it has re-
ceived both the addlink and the handshake messages. The initiator of the handshake sends a
confirm connect message to the connection manager when it gets back a handshake message. The
confirm connect message arrives at the connection manager and (A, (z;, y;)) is removed from the
UnconfirmedReguests set and queued onto the ConfirmedRequesis queue. Eventually, this request
moves to the head of the queue and enables the precondition of the Confirm_Connect(z;, y;) action.

Lemma 7: (Liveness) Let a be an execution in fairbehs(P). If a Req.Disconnect(w;, y;) occurs
in o, then either

1. alater Confirm_Disconnect(z;, y;) event occurs, or
2. alater Unpublish;(z) or Unpublish;(y) event occurs.

The proof is similar to that of Lemma 6.
Theorem: fairbehs(I} C fairbehs(P). The proof follows immediately from the lemmas.

25



7 Conclusions and Future Work

We have provided a formal specification of the semantics of the Playground programming model
and we have presented a formal description of a distributed implementation of that model. The
system, as currently implemented, provides separation of computation from communication and
dynamic reconfiguration.

The precise description of the semantics of the programming model provides a basis for com-
parison to the semantics of other models, as well as a foundation for understanding possible en-
hancements to the programming model. The formal I/O automaton implementation description
provides an abstract formulation of the Playground run-time system, abstracting away details that
are specific to the operating system and programming language.

We advocate the use of a formal semantics for real systems not only to provide a better un-
derstanding of the system for its users, but also as an important part of the design process. It
provides a deeper understanding of the system and its implementation, and in some cases may lead
to useful design changes in the system itself. In fact, our analysis has convinced us to change the
design to enable us to reason more easily about the executions of the system. The changes include
exchanging goodbye messages when a link is to be torn down, and having the connection manager
buffer requests for a link until all prior requests for that link are confirmed.

We have presented a proof sketch to give the reader a sense that our distributed implementation
does indeed solve the specification, without getting involved in all the details that an actual proof
would entail. However, one possible direction for future work would be a complete assertional proof
that that the formal I/O automaton description of the system implements the formal specification.
Following this, one would want to conduct a detailed study of the actual C++ implementation
to verify that it indeed implements the formal I/O automaton description. Ideally, this could be
carried out on a component by component basis, verifying that each major software component of
the run-time system implements its corresponding I/0Q automaton in the formal description.

The current implementation uses asynchronous message delivery with pairwise FIFO ordering,.
We plan to implement causal delivery of messages. Consider three applications A;, 4; and Ay,
where there exists a logical connection from A; and A to A4; and also from A; to A;. If there
is a causal relationship between messages generated by applications A; and A, then messages at
application A; will be delivered in that order. The veneer and the application need not be aware
that such an ordering scheme is in place. The protocols can piggyback sequencing information in
every message. The receiving protocols could use this information to decide whether to accept the
message, or to buffer it till all the messages preceding it in the causal sequence are received. Causal
delivery of messages is discussed in [1, 14].

References

[1] Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and atomic group
multicast. ACM Transactions on Computer Systems, 9(3):272-314, August 1991.

[2] Jerome R. Cox, Jr., Mike Gaddis, and Jonathan S. Turner. Project Zeus: Design of a broad-
band network and its application on a university campus. IEEE Nelwork, pages 20-30, March

1993.
[3] Kenneth J. Goldman et al. http://www.cs.wustl.edu/cs/playground.

26



[4] Kenneth J. Goldman. Data interfaces as support for module migration. In Proceedings of the
Second International Workshop on Configurable Distributed Systems, March 1994. Position
paper, as invited panelist.

[5] Kenneth J. Goldman, Bala Swaminathan, Michael D. Anderson, T. Paul McCartney, and
Ramachandran Sethuraman. The Programmers’ Playground: I/O abstraction for user-
configurable distributed applications. IEEE Transactions on Software Engineering. to appear.

(6] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, New Jersey, 1985.

[7] Bengt Jonsson. A model and proof system for asynchronous networks. In Proceedings of the {th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August 1985,

[8] Bengt Jonsson. Compositional specification and verification of distributed systems. Technical
Report SICS/R-90/90010, Swedish Institute of Computer Science, October 1990.

[9] Bengt Jonsson. Simulations between specification of distributed systems. In Proceedings of the
2nd International Conference on Concurrency Theory, LNCS 527, pages 346-360. Springer—
Verlag, August 1991.

[10] Nancy A. Lynch and Mark R. Tuttle. An introduction to Input/Output Automata. CWI-
Quarterly, 2(3), 1989.

[11] T. Paul McCartnrey and Kenneth Goldman. Visual specification of interprocess and intrapro-
cess communication. In Proceedings of the 10th International Symposium on Visual Languages,
pages 80-87, October 1994,

[12] R. Milner. Commaunication and Concurrency. Prentice-Hall, 1989.

[13] Gruia-Catalin Roman and Kenneth C. Cox. A declarative approach to visualizing concurrent
computations. IEEE Computer, 22(10):25-36, October 1989.

[14] Bala Swaminathan and Kenneth J. Goldman. An incremental distributed algorithm for com-
puting biconnected components. In Proceedings of the 8th International Workshop on Dis-
tributed Algorithms, WDAG ’94. Springer-Verlag, 1994.

[15] Bala Swaminathan and Kenneth J. Goldman. Dynamic reconfiguration with I/Q abstraction.
In Proceedings of the Tth IEEE Symposium on Parallel and Distributed Computing, October

1995. To appear.

27



Users

Network
\“"‘-—-—-________________-——“-" ]
Veneer; . - . Veneerj
Appi APPJ

TFigure 3: Distributed Implementation of Playground Message System

Publish ; (x) ——————| OutBox

Unpublish,(x) ————1 - "% -~ == SendMesg; (, M)

Write; (x, V) ———t

Updatex, v) =<~ - < - <= ReceiveMesg (VM)

nBox

Readyi _—

TFigure 4: Veneer

28



Input Actions:

» Publish;(z)
Effect: eng(OutBoz, (P, z;))

o Unpublish;(z)
Effect: eng(OutBoz, (U, z;))

o Write;(z, v)
Effect: if z; € PSet A3 (z;,y;) € LSet
eng(OutBos, (D, (z:, v)))

e Ready;
Effect: ready; — TRUE

Internal Actions:

o ProcessDataMesg;
Precondition: head(OuiBoz) = (D, (z;, v)) A send_mode = FALSE
Effect: V(zi,y;) € LSet
QutLinkSet — OutLinkSet U {(zi,y;)}
send_mode «— TRUE

s DiscardInput;(z,v)
Precondition: head(InBozx) = (z,v) A z; & PSel
Effect: deq(InBox)

o DiscardOutpul;(D, (y;,v))
Precondition:  head(OQutBoz) = (D, (x4, v)) A (2, y;) & LSet
Effect: deg( QutBoz)

Qutput Actions:

o Updatei(z,v)
Precondition: (z,v) = head(InBoz) A z; € PSet
Effect: deg(InBoz)

o SendMesg;(cm, M)
Precondition: M = head(OutBoz) A type(M) € {P,U,CC,CD}

Effect: if M =(P,z)
PSet « PSet U {z}
it M = (U, z:)
PSet — PSet -~ {z}
deg(OutBox)

e SendMesg;(j, (D, (y;,v)))
Precondition: head(QutBoz) = (D, (2;,v)) A (z:, y;) € OutlinkSet A send_mode = TRUE
Effect: OutLinkSet « QutLinkSet — {(zi, y;)}
if QutLinkSet = §
deq( OutBox)
send_mode «— FALSE

Figure 5: Veneer Transition Relation (the message types Publish, Unpublish, AddLink, Re-
moveLink, Handshake, Goodbye and Data are abbreviated by the first letter of the type name)

29



Output Actions:

o SendMesgi(j, (H, (3, 7))
Precondition: head(OutBoz) = (M, (y;,v))
Effect: deq( OutBoz)

o SendMesg: (7, (G, (5, v)))
Precondition: head(OutBoz) = (G, (y;,v))
Effect: LSet «— LSet — (zi,y;)
deg(OutBoz)

Input Actions:

o ReceiveMesgi(D, (zi, v))
Effect: eng(InBoz, (z, v))

o ReceiveMesg;(A, (21, 37))
Effect: i z; € PSel
ifi>j
IncompleteLinkSel — IncompleteLinkSet U {(z:, y;)}
eng(QuiBoz, (M, (2, y;)))
else
if (z:, y;) € IncompleteLinkSet
LSet « LSel U {(zi, y;)}
IncompleteLinkSet « IncompleteLinkSet — {{z:,y;)}
eng(OutBoz, (H, (zi, ¥;)))
else
IncompleteLinkSel — IncompleteLinkSet U {(z;, y;)}

o ReceiveMesgi(M, (21, %))
Effect: if z; € PSet
ifi>jg
LSet — LSet U{(zi, )}
IncompleteLinkSel « IncompleteLinkSet — {(2i, y;)}
enQ(OutBazl (CC, (.’L‘,—, yJ)))
else
if (zi, ;) € IncompleteLinkSet
LSet — LSet U {(=i, y;)}
IncompleteLinkSet — IncompleteLinkSet — {(zi, y;)}
eng(OutBoz, (H, (z:, ¥;))).
else
IncompleteLinkSet «— IncompleteLinkSet U {(z;, y;)}

* ReceiveMesgi(R, (2i, v;))
Effect: eng(OutBoz, (G, (i, 1))

. ReceiveMcsg,'(g, (yj, 1‘:‘))
Effect: LSet — LSel — (2i,4;)
eng(OuiBoz, (CD, (3, :)))

o ReceiveMesgi(CL, (i, y;))
Effect: LSet — LSel — (z;,u;)
IncompleteLinkSet — IncompleteLinkSet — {(z;, y;)}

Figure 6: Veneer Transition Relation (the message types Publish, Unpublish, AddLink, Re-
moveLink, ClearLink, Handshake, Goodbye and Data are abbreviated by the first letter of the

type name)

30



We denote the fact that a request for a particular link is being processed by processing_request(z;, y;).
This means that (A, (z;, ;7)) € UnconfirmedRequesis V (R, (zi,y;)) € UncorfirmedRequests V (A, (z;, 35))} €
ConfirmedRequests V (R, (z:, 4;)) € ConfirmedRequests.

Input Actions:

o Req_Connect(z;, y;)
Effect: if z; € PSet Ayj € PSet Az, y;) & LSet

if processing_request(z;, y;)
eng(DeferredRequests, (A, (zi, 1))

else
UnconfirmedRequests «— Unconfirmed Requests U {(A, (zi, 3;))}
eng(Requests, (1, A, (z:, y;)))
eng(Requests, (5, A, (i, 4;)))

o Req Disconnect(z;, y;)
Effect: if (zi,y;) € LSet
if processing_request(zy, y;)
eng(Deferred Requests, (R, (i, )))
else
UnconfirmedRequests — UnconfirmedRequests U {(R, (z:, %))}
eng( Requests, (i, R, (i, 3;)))

o ReceiveMesge, (M)
Effect: if M = (P, )
eng( Presentation UpdateQueune, (P, 3;))
ifM=(U, %)
eng( Presentation UpdateQueue, (U, z;))

ReceiveMesg.m(CC, (2, ¥;))
Effect: UnconfirmedRequesis « UnconfirmedRequests — {(A, (z:, ;))}
eng(Confirmed Requests, (A, (zi, 7))

ReceiveMesgem(CD, (2, ;)
Effect: UnconfirmedRequests +— UnconfirmedRequests — {{R, (z;, 3;))}
enq( ConfirmedRequests, (R, (2i, 7))

Internal Actions:

¢ ProcessDeferredRequest(x;, yj)
Precondition: if not processing_request(z;, y;)

extract(request, Deferred Requests)

if request = (A, (zi, 1)) A (21, 9;) & LSet A si,y; € PSet
eng( Requests, (i, A, (21, 7))
enq(Requests, (7, A, (#i, %))
UnconfirmedRequests «— UnconfirmedRequests U {(A, (=i, 3;))}

if request = (R, (i, y;)) A (xi,15) € LSet A s;,y; € PSet
eng(Requests, (i, R, (zi, ¥;)))
UnconfirmedRequests «— UnconfirmedRequests U {(R, (z;, y; )}

Figure 7: Connection Manager Transition Relation

31



Qutput Actions:

o SendMesgem(j, M)

*

Precondition:

Effect:

head(Requests) = (7, M)
deq{ Requests)

Confirm_Connect(z;, y;)

Precondition:
Effect:

head( ConfirmedRequests) = (A, (=i, y;))
LSet — LSet U {(xi,3;)}
deq(ConfirmedRequests)

o Confirm_Disconnect(z;, y;)

Precondition:
Effect:

Published{z;)
Precondition:
Bffect:

Unpublished(z;)
Precondition:
Effect:

head(ConfirmedRequesis) = (R, (2, y5))
LSet — LSet — {(zi,9;)}
deq( ConfirmedRequesis)

head( PresentationUpdateQueune) = (P, z;)
PSet — PSet U {z;}
deq(Presentation UpdateQuene)

head(Presentation UpdateQueue) = (U, z;)
PSet — PSel — z;
We refer to a link involving z; as (v;, wi) where 2; = v V 2y = uy

V(vj, wy} € LSet
enq(Requests, (CL, (v, wy)))
eng(Requests, (CL, (wy, v;)))
LSet — LSet — {v;, wy}

Y(A, (v, w)) € UnconfirmedRequesis

eng( Requests, (CL, (v;, we)))

eng(Requests, (CL, (w, v7)))

Unconfirmed Requests «— UnconfirmedRequests — {(A, (v;,wi))}
Y(R, (v, wr)) € Unconfirmed Requesis

UnconfirmedRequesls — UnconfirmedRequests — {(R, (vj, wz))}

Y(A, (v;, wi)) in ConfirmedRequesis
eng(Requests, (CL, (v;, wi)))
eng( Requests, (CL, (wr, vj)))
extraci(A, (v;, we))

Y(R, (v;, wx)) € ConfirmedRequests
extract(R, (v, wi))

V(A, (v, w)) in DeferredRequests
extraci(A, {v;, wi))

Y(R, (v;, wi)) € DeferredRequests
extract(R, (v, we))

Figure 8: Connection Manager Transition Relation

32



	Formal Specification of a Dynamically Configurable Distributed System
	Recommended Citation
	Formal Specification of a Dynamically Configurable Distributed System

	tmp.1439928365.pdf.uBrcO

