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ABSTRACT OF THE DISSERTATION

X-Ray Polarimetry with X-Calibur

by

Qingzhen Guo

Doctor of Philosophy in Physics

Washington University in St. Louis, 2014

Professor Henric Krawczynski, Chair

X-ray polarimetry is a prime tool to investigate the unexplored compact sources

and to provide crucial information that other techniques can not produce. By measur-

ing the degree and orientation of the polarization of radiation from a cosmic source,

unique inferences about the morphology and the magnetic field structure can be made.

Krawczysnki’s group at Washington University is working on a uniquely sensitive

scattering polarimeter, X-Calibur, to be used in the focal plane of a focusing X-

ray telescope. The design of X-Calibur is based on Thomson/Compton/Rayleigh

scattering effects. All these scattering processes share the property that the photons

scatter preferentially to the direction perpendicular to the electric field vector. X-

Calibur consists mainly of a low-Z scintillator stick as Compton scatterer and high-Z

semiconductor CdZnTe detectors surrounding the Compton scatterer to absorb the

xiv



scattered photons. It performs X-ray polarimetry measurements in the energy range

2-75 keV when it is carried on a satellite, and in the 20-75 keV range when it is

carried on a balloon. X-Calibur achieves a high detection efficiency of >80% and an

averaged energy resolution (FWHM) of 3 to 5 keV over the energy band at a very

low background level.

First, I report on the optimization of the scattering X-ray polarimeter X-Calibur

on board InFOCµS X-ray telescope balloon flight at Fort Sumner (NM) in Fall 2014.

The optimization is based on Monte Carlo simulations of polarized and unpolarized

X-ray beams and the most important background components. I calculated the sen-

sitivity of the polarimeter for the upcoming balloon flight in Fort Sumner and for

additional longer balloon flights.

Additionally, I describe the optimization of the design to extend the energy range

of the polarimeter towards lower energies. Such a broadband polarimeter would use

LiH as the scatterer as it combines a high efficiency for scattering interactions even

at <10 keV energies (as opposed to photoelectric effect absorption interactions) with

a relatively high density.

Lastly, I describe the scientific potential of spaceborne observations of blazars

with a first generation X-ray polarimeter mission like X-Calibur, GEMS and XIPE.

I present a proposed observation program including observations strategies, sources

of interest, recommended accompanying multiwavelength observations, and the ob-

servations results. The analysis uses the daily flux values of all monitored sources by

the RXTE All-Sky Monitor (2-12 keV) and Swift BAT 70-month hard X-ray survey

xv



(15-50 keV). Based on the analysis, fifteen sources are selected as target candidates

for the science investigations.

xvi



1. The polarization of cosmic X-ray sources

1.1 Elementary processes producing polarized X-rays

Spectral and morphological studies of X-ray emissions play an important role in

the study of astrophysical sources [1], and have led to the Nobel prize award going

to Riccardo Giacconi in 2002, one of the pioneers of imaging X-ray telescopes. The

fields of imaging, spectral and imaging spectropolarimetric observations are rather

mature [2–7]. Largely unexplored X-ray polarimetry is a prime tool to investigate

sources which are so compact that they cannot be imaged [8].

This chapter presents several motivations for using polarimetry of X-rays and γ-

rays as an astrophysical tool and describes why polarimetric observations can provide

unique insights into the geometries of X-ray and γ-ray emitting objects. Many of

the emission mechanisms leading to the production of highly polarized X-rays and γ-

rays are non-thermal and far from equilibrium, for example, highly energetic particle

beams propagating through very strong magnetic fields [9]. Several mechanisms can

lead to photon emission with large linear polarizations that are dependent upon the

exact source geometry. Lei et al. gave a detailed review of emission mechanisms

that can generate polarized X-rays and γ-rays that depend on exact source geometry
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[9]. Polarization measurements can thus be used to constrain the geometry of these

sources.

Electrons play a crucial role in the radiation process. Compared to heavily charged

particles like protons and ions, it is much easier to accelerate electrons because they

have a relatively small mass. The type of the electromagnetic radiation and its

properties depend on the electron’s speed. In the following sections, I will discuss

several important types of radiation mechanisms and the polarization properties of

the X-rays generated in these radiation processes.

1.1.1 Cyclotron emission

In cosmic settings, electromagnetic radiation is emitted by accelerated charges,

and charges accelerate owing to electromagnetic forces. With a pitch angle α between

the magnetic field B and the instantaneous velocity v, the motion of the electron in a

uniform magnetic field is a combination of circular motion and uniform motion along

B, as shown in Figure 1.1 [9, 10]. The electron is accelerated perpendicular to the

vector of its velocity v.

Usually one refers to the emission of non-relativistic electron moving in magnetic

field as cyclotron emission. The angular cyclotron frequency is:

ωL =
eB

m0c
. (1.1)

Here e is the charge of an electron and m0 is the rest mass of electron.
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Figure 1.1. This figure illustrates the motion of an electron in a uniform
magnetic field B with a pitch angle α [10].
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The radiation power per unit solid angle is proportional to sin2θ:

dP

dΩ
∝ sin2θ (1.2)

while θ is the angle between the vector of the emitted photon and the acceleration

vector of the electron [10]. The intensity of the radiation emission is distributed as a

dipolar pattern as shown in Figure 1.2 [9, 11]. There is no radiation in the direction

parallel to the acceleration vector. The intensity of the radiation is greatest in the

direction perpendicular to the acceleration vector. The emitted photon is polarized

with the vector of its electric field in the plane of the acceleration and velocity vectors

(see Figure 1.2).

For a single non-relativistic electron in magnetic field, the total radiation power

in unit erg/s is given by the following equation:

PCyc = 1.6× 10−15β2B2sin2α. (1.3)

Here β = v/c, B is the magnetic induction in Gauss, and α is the pitch angle between

B and v.

In most astrophysical settings, cyclotron emission is not as important as syn-

chrotron emission (see Section 1.1.2) because the magnetic fields associated with most

of the astrophysical sources are weak, between 10−8 and 10−6 G. This is because the

angular cyclotron frequency (see Equ. 1.4) is very small, and the radiation power

of the non-relativistic electrons is also very low. However, for astrophysical sources
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Figure 1.2. This illustration presents a polar diagram of the intensity of
the radiation emitted by a non-relativistic accelerated electron [9].

5



Figure 1.3. The intensity of radiation emitted by a relativistic accelerated
electron is beamed in the observers frame of reference [9].
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with strong magnetic fields (e.g. neutron stars) the cyclotron emission becomes very

important.

1.1.2 Synchrotron emission

In magnetic field, relativistic electrons emit synchrotron emission. It is named

synchrotron emission because it was first discovered in a synchrotron accelerator [12].

The angular synchrotron frequency is:

ωL =
eB

γm0c
. (1.4)

Here, γ is the Lorentz factor, γ = (1− β2)−1/2, β = v/c, and c is the speed of light.

For a single relativistic electron in a magnetic field, the total radiation power in

unit of erg/s is given by the following equation:

PSyn = 1.6× 10−15β2γ2B2sin2α. (1.5)

In this case, the Lorentz transformation from the inertial frame of the electron to that

of the observer is important. The consequences are that the emission from relativistic

charges is concentrated into the forward direction in which the particle is moving

(see Figure 1.3). As the particle spirals around the magnetic field line, it emits

a beam that hits the observer periodically. The Fourier transform of the emission

exhibits a broad maximum at a frequency that is characteristic for the duration of

the individual observed pulses. Synchrotron emission is thus inherently a broadband
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emission process, in contrast to the more monoenergetic cyclotron emission. The

energy spectra of the emitting electrons can often be approximated by a power-law

distribution. The energy spectrum of the emitted photon will also be a power law.

Synchrotron emission can be highly polarized. The radiation from a single elec-

tron is generally elliptically polarized with a circular (linear) polarization fraction

that decreases (increases) with increasing electron energy. The net polarization is

calculated by the integration over all the electrons that have contributed to the total

intensity. For electrons with a power-law energies distribution, dN/dE ∝ E−p , in a

uniform magnetic field, the observable fraction of polarization is as follows [9,10,13]:

Π =
p+ 1

p+
7

3

. (1.6)

1.1.3 Curvature emission

Curvature radiation is a special form of synchrotron emission emitted by rela-

tivistic charged particles streaming along a curved magnetic field. It is important in

rapidly rotating neutron stars and pulsars [17, 18]. At any moment, the motion of a

single electron is similar to that in a uniform magnetic field. Therefore, the radia-

tion properties of curvature emission are very similar to that of synchrotron except

with some adjustments of the parameters. In the curvature radiation process, the

polarization vector lies parallel to the vector of the magnetic field.
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1.1.4 Bremsstrahlung radiation

In plasma, electrons and ions collide. The electrons decelerate more strongly

than the ions, and convert some of their kinetic energy into emitted photons. This

radiation process is called Bremsstrahlung radiation, or free free radiation. During

the Bremsstrahlung radiation process, the law of conservation of energy is satisfied.

The emission of photons is likely to be perpendicular to the electron’s plane of

motion. The polarization vector is parallel to the direction of deceleration. Depending

on the scattering angle, the polarization fraction can reach the maximum of ∼ 80%

[9].

1.1.5 Scattering

Photons can scatter off free or quasi-free electrons. Depending on the energy of

the photon we distinguish between Thomson scattering (Eγ ≤ 10 keV) and Compton

scattering (Eγ ≥ 10 keV). Owing to the kinematics of the interaction, photons lose

negligible energy in the Thomson scattering process. When the photon energies is a

significant fraction of the electron rest mass (i.e. the Compton scattering regime),

the photons can lose a large fraction of their energy to the recoiling electron. Figure

1.4 shows a schematic view of the Compton scattering process off a valence electron

of an atom. The photon is scattered with some reduction in energy and momentum.

When a photon scatters off an energetic electron and gains energy, we call the process

inverse Compton scattering. Inverse Compton scattering is very important in studies
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Figure 1.4. Schematic diagram of the Compton scattering process. The
incident photon at energy E0 interacts with a valence shell electron leading
to the energy of the photon being reduced to Esc and an ejected Compton
electron at energy Ee− [19].

of mechanisms producing X-rays and γ-rays in astrophysics. The high-energy emission

from blazars for example is thought to originate as inverse Compton emission.

The cross section of Thomson and Compton scatterings is the Klein-Nishina cross

section [20]:

dσ

dΩ
=
r20
2

k21
k20

[
k0
k1

+
k1
k0
− 2sin2(θ)cos2(η)

]
(1.7)
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where r0 refers to the classical electron radius, while k0 refers to the wave vectors

before scattering and k1 refers to that after scattering. θ is the scattering angle

between k0 and k1, and η is the angle between the scattering plane and the electric

vector of the incident photon. k1 can be computed as function of k0 and θ by the

Compton scattering equation as following:

∆λ =
h

mec
(1− cos(θ)). (1.8)

The degree of linear polarization of the scattered photons is given by

ΠP = 2
1− sin2(θ)cos2(η)

k0
k1

+
k1
k0
− 2sin(θ)cos(η)

. (1.9)

Both Compton and inverse Compton scattering are able to generate photons with

a non-zero polarization fraction from unpolarized beams. An X-ray or γ-ray beam

may undergo multiple scatterings. In this case, scattering is also able to depolarize

an originally polarized beam, which leads to the reduction of the degree of linear

polarization [9]. The fraction of linear polarization from Compton or inverse Comp-

ton scattering depends on the relative orientation of the electric field of the incoming

photons and their scattering planes. Scattered beam will be composed of polarized

components from all incident directions for an isotropic distribution of incident pho-

tons. These components can cancel each other and leave a completely non-polarized

beam [9].
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1.1.6 Other effects affecting the polarization

Radiation can become polarized and/or depolarized when interacting with a mag-

netized plasma. In magnetars, only one polarization direction can propagate, leading

to a polarization of the thermal emission from the magnetar surface [22]. In most ob-

jects, the polarization can change owing to energy dependent Faraday rotation when

the photons traverse a magnetized plasma.

1.2 Cosmic sources of polarized X-rays

1.2.1 Black holes

The two most common types of black holes are stellar mass black holes (the

endpoints of the evolution of massive stars) with typical masses of between ∼3 and 20

solar masses, and supermassive black holes that are located at the centers of galaxies

with typical masses of several million to several billion solar masses. Both types

of black holes can be copious emitters of X-rays when they accrete matter through

an accretion disk. Stellar mass black hole can accrete matter from a companion.

Supermasive black holes accrete matter from the interstellar medium. The accretion

disks of stellar mass black holes thermally emit X-rays as the accretion disk material

heats up owing to viscous dissipation inside the accretion disk. The accretion disks of

supermassive black holes thermally emit optical/UV radiation and emit X-rays owing

to hot electrons in (most likely) magnetically heated accretion disk coronas.
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There are a few unknown topics of black holes of great interest, for example, the

geometry and dynamics of the X-ray source regions. X-ray observations of black holes

can also be used to test the predictions of the theory of General Relativity in regimes

of strong-field gravities.

Stark & Connors [23–25] showed that polarization fraction which is dependent on

energy would be generated by gravitational lensing, relativistic aberration, beaming

and so on. Schnittman & Krolik [26, 27] calculated the expected polarization signa-

ture. Photon at higher energy is generated closer to the black hole than that at lower

energy. Owing to the strong spacetime curvature around the black hole, these high

energy photons are more likely to be scattered as they can return to the accretion

disk [26,27].

1.2.2 Neutron stars, magnetars and pulsars

Neutron stars provide a chance to study the behavior of matter and radiation at

high density and under the influence of strong magnetic fields. Magnetic fields are so

strong in these objects that intrinsically polarized emission is a virtual certainty, and

the observed polarization is thus a measure of the geometrical arrangement of the field

and emitting gas. Fundamental physics associated with the behavior of radiation in

strong magnetic fields is expected to yield a characteristic signature in the polarized

spectrum of the most extreme class of magnetized objects.

In pulsar magnetospheres, the presence of high-energy particles can lead to emis-

sion of curvature and synchrotron radiation. Solely based on the observed photon en-
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ergy spectrum, it is difficult to distinguish the curvature radiation from synchrotron

radiation. Dyks [29] illustrated some models of the phase dependence of the X-ray

and γ-ray polarization signatures in pulsars. Given more compact emission regions

at high energies, a higher polarization degree of hard X-ray is potentially shown by

these objects [31].

1.2.3 Jets in AGNs

The collimated outflows (jets) from Active Galactic Nucleis (AGNs) are strong

emitters of X-ray emission. One would like to use the emission to study the structure

and make up of the jets, and ultimately to learn how jets are launched and accelerated,

and how they maintain their collimation. Polarization provides a way to probe the

structures of the magnetic fields inside jets. Particles moving through a standing

shock accelerated in a helical field leads to synchrotron emissions and polarization

direction swings [47]. At optical wavelengths, an event like this has been observed

from BL Lac objects [103]. The electron population can produce photon emissions

extending from optical to the γ-ray range by inverse Compton scattering a photon

field.

Compared to synchrotron self-Compton models, a higher fraction of polarization at

high energies is predicted in hadronic jet emission models for low-synchrotron-peaked

blazars as the X-ray emission could originate in this case as synchrotron emission of

high-energy protons [38].
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2. X-ray and γ-ray polarimeters and their results to date

So far NASA has launched just one dedicated X-ray polarimetry experiment and

there is just one unambiguous astrophysical result available at the time of writing

this thesis due to the difficulty of measuring the polarization of X-rays. Measuring

the polarization properties of X-rays requires many more photons than imaging or

spectroscopic studies.

In this chapter, I will give a brief review of X-ray polarimetry missions to date

and the upcoming X-ray polarimetry experiments besides X-Calibur.

2.1 X-ray polarimetry missions to date

2.1.1 OSO-8

The 8th Orbiting Solar Observatory (OSO-8) with a focusing Bragg crystal reflec-

tometer on board was launched in June 1975. OSO-8 was the first high-sensitivity

solar polarimetry satellite mission [49]. The sun was its primary target. Four in-

struments carried on OSO-8 were dedicated to observations of other celestial X-ray

sources. OSO-8 mission terminated operations on October 1st in 1978.

The Bragg reflectometer was used to measure the polarization of the X-rays from

the Crab Nebula and pulsar at 2.6 keV and 5.2 keV [48]. The X-ray polarization
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degree at 2.6 keV of Crab nebula was measured to be (19.2±1.0)%, and the position

angle was (156.4±1.4)◦. The corresponding measured values were (19.5± 2.8)% and

(152.6±4.0)◦ at 5.2 keV [49]. These results are consistent with radiation arising from

synchrotron processes [48]. Observations of Cygnus X-1 provided weak evidence for a

polarized signal, indicating a polarization fraction of a few percent. The polarization

fraction detected by OSO-8 was (2.44±0.85)% at a direction of (162±10)◦ [49].

The low efficiency of the OSO-8 polarimeter (arising form the narrow bandpass of

the Bragg reflectometer) severely limited the observing program, and sensitivities to

polarization degrees below 5% were achieved only for 3 sources beyond the Crab neb-

ula detection [51]. The polarimeter was not able to perform accurate measurements

of the phase resolved polarization properties of the Crab pulsar owing to the limited

photon statistics [49].

2.1.2 INTEGRAL

The INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) was a

satellite mission launched on October 17, 2002. INTEGRAL carried two γ-ray tele-

scopes [53]. The spectrometer SPI (SPectrometer on INTEGRAL, Germanium array)

[54] was designed for line spectroscopy measurements from 20 keV to 8 MeV of the

γ-ray. The Imager IBIS (Imager on Board the Integral Satellite, CdTe array) [56]

was designed for imaging measurements from 15 keV to 10 MeV. There were also two

monitors on board INTEGRAL, JEM-X and OMC. JEM-X [55] measured the X-ray

in the energy range from 3 to 35 keV [53].
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INTEGRAL performed polarization studies of the Crab Nebula and Cygnus X-1

with the goal of constraining the polarization properties of their hard X-ray emission.

Dean et al. reported a polarization of the 100 keV-1 MeV emission of 46% ± 10% with

a position angle of (123.0±11)◦ based on the 2003 to 2006 SPI data [61]. The IBIS

was used to study the Crab in the energy range from 200 to 800 keV [31]. There were

not any significant polarization reports for either pulsar peak. A polarization degree

>72% with the position angle at (120.6±8.5)◦ was reported in the off-pulse region. No

polarization was detected for the phase bins corresponding to the pulsar pulses. The

results were modified to > 88% and (122.0±7.7)◦ if the bridge region was also taken

into account. Cygnus X-1 was also studied with the IBIS instruments. A polarization

fraction of (67±30)% with a position angle of (140±15)◦ was found between 250 and

400 keV. Data from 200 keV to 1 MeV taken by IBIS were analyzed and the results

indicated a higher polarization degree [31]. The large (mostly systematic) error on

the polarization fraction highlights the difficulty to measure polarization properties

with an instrument that was not designed for this purpose.

2.1.3 IKAROS

The Interplanetary Kite-craft Accelerated by Radiation Of the Sun mission (IKAROS)

was launched with the wide field-of-view Gamma-ray Burst Polarimeter (GAP) with

a sensitive energy band from 50 to 300 keV. The GAP measured the polarization of

X-rays based on measuring the azimuthal distribution of Compton scattered photons.

A dodecagon plastic scintillator, located at the center of the detector assembly, serves
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as Compton scatterer. It is read out by a PMT (photomultiplier tube). The scatterer

is surrounded by 12 CsI scintillators with PMT readout [57].

The GAP observations revealed three GRB polarization detections. The GRBs

GRB100826A, GRB110301A and GRB110721A were found to be polarized on confi-

dence levels of 99.9%(3.5σ), (70±22)% and (84+16
−28)% , respectively [62,63]. The data

indicates polarization fractions of between 27% and 84%.

2.2 Other upcoming X-ray polarimetry experiments

2.2.1 ASTRO-H

The Japanese led ASTRO-H mission (scheduled to launch in 2015/2016) carries

four focusing X-ray and γ-ray telescopes [58]. Two of them are Soft X-ray Telescopes

(SXTs), operated from 0.3 keV to 12 keV [58]. A micro calorimeter spectrometer array

and X-ray CCD array are located in the focal plane of the two SXTs, respectively

[58].

There are two more Hard X-ray Telescopes (HXTs) which will operate from 5 keV

to 80 keV. The Hard X-ray Imager carried on the HXT consists of Si and CdTe cross

strips detectors. The Soft γ-ray Detector carried on HXT, called Si/CdTe Compton

Camera, consists of Si and CdTe pixelized detectors, and a collimator [64]. The Soft

γ-ray Detector can do Compton polarimetry at >50 keV energies for sources that

are brighter than several tens of mCrabs. The spectropolarimetric observations with
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ASTRO-H may also be deteriorated by similarly large systematic errors as polarimetry

is not the primary focus of the experiment.

2.2.2 PoGOLite

The light-weight Polarized γ-ray Observer (PoGOLite) [65] is a balloon experi-

ment designed for the polarization measurements and studies of hard X-rays and soft

γ-rays emission between 25 keV and 100 keV from compact astrophysical sources [66].

PoGOLite is made of 217 Phoswich Detector Cells (PDCs), which are plastic scin-

tillator rods, with each rod being surrounded by BGO [65]. Plastic scintillators are

used for both the Compton scattering and the photoabsorption process to maximize

the effective area at 20-100 keV.

The Crab Pulsar and Cygnus X-1 are the primary target sources for the first

balloon flights with PoGOLite. The polarization direction and fraction of incident

photons are determined by events detected in coincidence in two or more detectors.

These events are largely caused by a Compton scattering in one detector element

followed by a photoelectric effect absorption process in another scattering element.

Other event types include multiple Compton scattering events as well as chance co-

incidences. The MDP (minimum detectable polarization) is estimated to be about

10% for a 200 mCrab Crab-like source for a single PoGOLite balloon flight [65].
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2.2.3 ACT

The Advanced Compton Telescope (ACT) [67] is a concept for a next-generation

Compton telescope. The ACT is being developed based on the technique of imaging

used in COMPTEL on board CGRO and improved with advanced technologies of

detector and integrated readout electronics. The ACT would use an array of 3-D

position sensitive Ge detectors [67].

ACT would be able to measure a broad spectral band from 0.2 to 10 MeV for

Compton imaging, from 10 keV to 10 MeV for spectroscopy with an accurate timing

of 1µs and novel capabilities for X-ray and γ-ray polarization measurements [67].

2.2.4 GEMS

The Gravity and Extreme Magnetism Small explorer (GEMS) was a proposed X-

ray polarimetry mission. GEMS was designed to use two X-ray telescopes, each with

focusing X-ray mirrors and a soft X-ray polarimeter. Each soft X-ray polarimeter

would be made of three time projection chambers which would be used to track the

photoelectrons ejected in photoelectric effect interactions.

Baumgartnera [69] estimated that the modulation factor µ100 of GEMS increases

from zero to 0.6 from 2 to 10 keV. It would have been able to perform measurements

of the polarization of 2-10 keV, but have the best sensitivity at 2-5 keV [107].
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GEMS was an approved NASA Small Explorer (SMEX) mission with a projected

2014 launch. The program was terminated due to schedule delays and financial prob-

lems in 2012.

2.2.5 XIPE

The X-ray Imaging Polarimetry Explorer (XIPE) was a small spectral and imaging

polarimetry mission concept that was proposed as a small ESA mission in 2012 [70].

Unfortunately the proposal was not selected.

XIPE was designed to use existing X-ray optics with demonstrated properties.

XIPE would use a polarimeter similar to the one used by GEMS. However, the read-

out would be different. Wheras GEMS combines readout strips with drift time mea-

surements, XIPE would use a proportional chamber with a 2-D pixel readout. For a

faint 1 mCrab source, was estimated to be around 14% for an observation time of 105

s in the energy range 2-10 keV [70].
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3. Optimization of the design of the hard X-ray polarimeter

X-Calibur

3.1 Overview of X-Calibur

Our Washington University group is developing the scattering polarimeter, X-

Calibur. In this chapter, I report on the optimization of X-Calibur when used in the

focal plane of the InFOCµS X-ray telescope. We plan to fly the experiment in Fall

2014 from Fort Sumner (NM) on a high-altitude (40 km) balloon flight. About 70%

of this chapter has been published as a refereed journal paper [71]. I am the leading

author of that paper. I wrote 80% of the text of the paper (my advisor wrote the

rest), and contributed almost all the analysis results presented in the paper. David

Fleming (a undergraduate researcher) contributed Figure 3.4 to the paper.

X-Calibur is a polarimeter for the focal plane of an imaging mirror assembly

similar to the ones used in the HERO [74], HEFT [75], InFOCµS [73] and NuSTAR

[75,76] experiments. X-Calibur uses low-Z and high-Z materials to scatter and absorb

incident X-ray photons, respectively. The design aims at achieving the best possible

polarization sensitivity in the hard X-ray (20-75 keV) band. Three properties make

X-Calibur more sensitive than the competing hard X-ray polarimeters designs: high

dectection efficiency, low background and reduced systematic uncertainties. Most
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Figure 3.1. InFOCµS balloon gondola. The X-Calibur polarimeter will
be located in the focal plane of the Wolter X-ray mirror (40 cm diameter)
with a focal length of 8 m [72,73].
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hard X-ray Compton polarimeters (e.g. POGO [77], GRAPE [78, 79], and HXPOL

[80]) use only 10-20% of the photons that imping on the detector assembly while the

detector configuration of X-Calibur can achieve >80% detection efficiencies over most

of its energy range. X-Calibur achieves lower background levels than other hard X-

ray polarimeters that do not use focusing optics and use massive detector elements to

collect the photons. The Grazing incidence mirrors change the polarization properties

of X-ray by less than 1% [81, 82]. Ring bearing is designed for X-Calibur to reduce

and minimize the systematic uncertainties. X-Calibur is designed to spin around the

optical axis during the observations which will be used to distinguish φ-modulations

caused by detector effects from that caused by the polarization of the observed source.

The X-Calibur design trades a high detection efficiency for imaging capabilities.

This is well justified given that the most interesting targets for X-Calibur (accret-

ing black holes and neutron stars) are too small to be spatially resolved by current

technology. Below, I report on the sensitivity of X-Calibur when flown with differ-

ent mirror assemblies on balloon-borne missions. NASA approved a one-day balloon

flight of X-Calibur in the focal plane of the InFOCµS X-ray telescope [73] from Fort

Sumner (NM, 34.47◦N, 104.24◦W) in Fall 2014 and a >20 day long duration balloon

flight from McMurdo (Antarctic) in 2015. The InFOCµS telescope will be equipped

with a 40 cm diameter 8 m focal length Wolter type Al mirror assembly developed at

Nagoya University, as shown in Figure 3.1. The mirror was flown already on the 2001

and 2004 InFOCµS balloon flights and comprises 255 double reflection shells, each

made of 0.17 mm thick Al-foils with a multilayer coating for a broad energy range, as

25



Figure 3.2. The InFOCµS Al-mirror assembly. It comprises 255 double
reflection shells, each made of 0.17 mm thick Al-foils with a multilayer
coating for a broad energy range [72,73].
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shown in Figure 3.2. The effective area of the mirror assembly is shown in the Figure

3.6.

In this chapter, I present results from Monte Carlo studies of the polarimetric

performance of X-Calibur and the optimization of the design based on the simulations.

3.2 General considerations

In general terms, a scattering polarimeter like X-Calibur uses the fact that X-rays

preferentially Raleigh, Thomson, or Compton scatter perpendicular to the orientation

of their electric field vectors. The angular dependence of the scattering processes is

described by the Klein-Nishina cross section as Equ. 1.7. If one accumulates many

events from a linearly polarized beam and determines the azimuthal scattering angle,

the distribution will reveal a sinusoidal modulation with a 180◦ periodicity with an

amplitude and phase depending on the polarization degree and direction, respectively.

An important parameter describing a polarimeter is the amplitude of the azimuthal

scattering angle distribution for a 100% linearly polarized signal. This amplitude is

known as the modulation factor, µ, and is defined as:

µ =
Cmax − Cmin
Cmax + Cmin

, (3.1)

where Cmax, Cmin refer to the maximum and minimum numbers of counts in the

azimuthal scattering angle histogram. The performance of a polarimeter can be

characterized by the Minimum Detectable Polarization (MDP) [83]. The MDP is
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the minimum degree of linear polarization which can be detected with a statistical

confidence of 99% in a given observation time T:

MDP =
4.29

µRsrc

√
Rsrc +Rbg

T
, (3.2)

Here, Rsrc and Rbg are the source and background rates of events entering the analysis,

and T is the integration time.

3.3 The X-Calibur design

X-Calibur uses a low-Z scattering stick to maximize the probability of a first

Compton interaction. A high-Z Cadmium Zinc Telluride (CZT) assembly is used

to absorb the scattered X-rays in photoelectric effect interactions, see Figure 3.3.

Owing to the properties of the Klein-Nishina scattering cross section, the azimuthal

scattering angle distribution peaks at angles ±90◦ from the preferred orientation of

the electric field vector.

The low-Z/high-Z combination leads to a high fraction of unambiguously detected

Compton events and suppresses the detection of elastically scattered neutrons that

can mimic Compton events. The first X-Calibur flight will use a scintillator as the

scattering stick. The scintillator is triggered when sufficient energy is deposited and

read out by a PMT, allowing us to look for coincidences in the scintillator and CZT

detectors and to get a better understanding of the background level. I will use the

data gathered during the flight to perform detailed comparisons between the simulated
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Figure 3.3. Left and center panels: conceptual design of the X-Calibur
detector assembly consisting of a scattering slab (red) surrounded by ab-
sorbing CZT detectors (blue and white). The scattering slab is aligned
with the optical axis of an X-ray mirror (not shown here). A large frac-
tion of the Compton scattered photons are subsequently photo-absorbed
in the high-Z CZT detectors. The distribution of the azimuthal scattering
angles constrains the linear polarization of the incoming radiation. In the
left panel, the white rectangles at the top (front-side, with a cylindrical
bore in the center) and bottom (rear end) of the detector assembly show
optional additional CZT detectors. The right panel shows the polarimeter
with the readout electronics inside a fully active CsI shield which can be
rotated around the optical axis.

29



and measured energy spectra in the CZT detectors for ON (source + background)

and OFF (background only) observations. Simulated and observed background data

will test the predictive power of our background model by plotting the simulated and

measured CZT energy spectra: (i) for all events detected in the CZT detectors, (ii) for

all events detected in the CZT detectors with and without a trigger in the scintillator

slab, (iii) for all events detected in the CZT detectors with and without a shield veto,

and (iv) for all events detected in the CZT detectors with and without a trigger in

the scintillator slab, and for both event classes with and without a shield veto.

The length of the scintillator of X-Calibur is 14 cm. It was chosen to yield a Comp-

ton scattering probability of >90% for 75 keV photons. We performed a dedicated

Monte Carlo study to optimize the diameter d of the scattering slab, accounting for

the point spread function of the X-ray mirror, the defocus of the X-ray beam away

from the focal point, and alignment errors (see Table 3.1). Figure 3.4 shows the Figure

of Merit (FoM) as function of d. The FoM is chosen to be proportional to the modu-

lation factor and the square root of the detection efficiency (the fraction of incident

photons being scattered and reaching the CZT detectors). In the signal-dominated

regime, this FoM will be inversely proportional to the MDP. A thicker scattering stick

catches a higher fraction of photons and thus leads to a higher detection efficiency.

I infer the azimuthal scattering angle from the position of the triggered CZT pixel

assuming that the X-ray is scattered at the optical axis. For a thicker scattering stick

the spatial uncertainty of the scattering location leads to larger errors in the inferred

azimuthal scattering angle. As a consequence, the modulation factor decreases. Fig-
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Figure 3.4. Figure of Merit values plotted vs. Scintillator Diameter pre-
pared by David Fleming. The peak is at diameter around 1.1 cm.

ure 3.4 shows that the FoM exhibits a broad maximum for diameters between 1 cm

and 1.3 cm. For our simulations described below, I assume a diameter of 1 cm.

The CZT detector confiuration is made of 32 detector units (each 2×2×0.2 mm3,

more units for longer scattering sticks) with a monolithic cathode oriented towards

the inside of the assembly and 8×8 anode pixels each (2.5 mm pitch) oriented towards

the outside. The length of the CZT assembly is longer than the scattering stick to

catch a high fraction of the scattered X-rays. In the following I assume that the CZT

detectors will operate at an energy threshold of 15 keV. Such a threshold is sufficiently

low for a balloon flight, as < 20 keV X-rays are almost completely absorbed in the

atmosphere. For a satellite borne experiment, one would like to go to a lower energy

threshold of about ∼1-2 keV. As mentioned above, I infer the azimuthal scattering

angle from the position of the CZT pixel with the highest signal assuming that all
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photons scatter at the optical axis. The residual atmosphere at balloon altitudes (2.9

g cm−2) absorbs X-rays below 20 keV and the X-Calibur mirror is limited to 6 75

keV energies. Below I will thus plot our results only in the 20-75 keV energy range.

The degree of linear polarization can be measured based on events with (or without)

a trigger of the PMT reading out the scintillator stick. The events with a scintillator

hit have a somewhat lower level of background contamination. In X-Calibur, there is

no crosstalk between the low-Z Compton scatterer and the high-Z photoelectric-effect

absorber as these two detector elements are well separated from each other. Some

of the alternative Compton polarimeter designs suffer from optical and/or electronic

crosstalk that can lead to the misclassification of background events as Compton-

events. The polarimeter and the front-end readout electronics will be located inside

an active CsI (Na) anti-coincidence shield with a passive top (see Figure 3.3) to

suppress charged and neutral particle backgrounds. In the simulations, I assume the

active shield is 5 cm thick and the passive shield is 2 cm thick. The active shield is

read out by 4 PMTs with a high quantum efficiency super-bi-alkali photo cathodes

placed at the rear end of the shield. The PMT trigger information allows effectively

rejecting background from signal events.

3.4 Simulations

This section describes the simulations for the optimization of the X-Calibur de-

sign. For this purpose, I simulated polarized and unpolarized X-ray beams and the
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Table 3.1
Budget of errors important for the optimization of the thickness of the
scattering slab for a one-day balloon flight of X-Calibur on InFOCµS [73].

Error Source Error [arcmin] Error [mm]

PSF 75% Cont. Radius 2 4.6

Max. Defocus <0.85 <2

Max. Pointing Error <1 <2.3

Max. Align. Error <0.85 <2

Total <4.9 <10.6
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most important background sources. The simulations account for the atmospheric

absorption at float altitude (130,000 feet) and for the mirror throughput.

3.4.1 Simulation details

Our Monte Carlo study uses the Geant4 simulation package [84] and a detector

simulation code. I used the GEANT4 package with the Livermore Low-Energy Elec-

tromagnetic Models [85] to simulate 2 million polarized and 2 million unpolarized

photons. Photons with energies between 20 keV and 75 keV were generated accord-

ing to the Crab spectrum as measured with the Swift Burst Alert Telescope (BAT)

telescope [86]:

dN

dE
= 10.17

(
E

1keV

)−2.15

ph cm−2s−1keV −1, (3.3)

I account for atmospheric absorption at a floaing altitude of 130, 000 feet using

the NIST XCOM attenuation coefficients for an atmospheric depth of 2.9 g cm−2

[87]. The simulations assume observations at a zenith angle of 10◦. Figure 3.5 shows

the atmospheric transmissivity. It increases rapidly from 0.1 to 0.6 in the 20-60 keV

range. Figure 3.6 shows the effective area of the Nagoya University Al mirror as

function of the photon energy. The throughput is 95 cm2, 60 cm2 and 40 cm2 at 20

keV, 30 keV and 40 keV respectively.

The incident photons and their secondaries are tracked through the detector vol-

umes recording interaction locations and energy depositions occurring along the way.
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Figure 3.5. The X-ray transmissivity at a floating altitude of 130,000
feet calculated with the NIST XCOM attenuation coefficients [87] for an
atmospheric depth of 2.9 g cm−2.
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Figure 3.6. The effective area as function of the photon energy of the
mirror that will be used in the first InFOCµS balloon flight planned for
2014.

The detector simulation code determines the energy deposited in the pixels of indi-

vidual detectors, and generates a signal if the energy exceeds the trigger threshold. If

an event triggers more than one detector element, all the energy detected in adjacent

detector elements is summed together with the highest energy deposited. I use the

position information of highest energy deposited in the analysis.

3.4.2 Background simulations

In this subsection, I report on background simulations. I simulated the most

important backgrounds such as the Cosmic X-ray Background (CXB) [88], secondary

γ-rays (upward and downward components), cosmic ray protons and electrons (of

primary and secondary origin, the primaries move downwards, the secondaries move

upward and downward) [89] with the MEGALIB software package [90]. I scaled these
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Figure 3.7. This figure shows the energy spectra of the simulated back-
ground sources. The CXB (black curve) is from M. Ajello et al. [88],
and the red solid curve represents upward secondary γ-rays [89]. The red
dashed curve represents downward secondary γ-rays [89]. The green solid
curve is the primary proton flux [89], and the green dashed curve is the
secondary proton flux [89]. The blue solid line is the primary electron flux
[89] and the blue dashed line is the secondary electron flux [89]

background models taking the altitude, latitude, the effect of solar activity and earth

magnetism on primary partile fluxes in Fort Sumner in fall 2014 into account. The

neutron background was not modeled since the detailed studies of Parsons et al.

[91] showed that neutrons do not contribute substantially to the background in CZT

detectors [91] in a balloon flight. Neutrons lead to activation which is a concern for

a satellite [92]. The models cover the entire solid angle (4π sr) and the energy range

between 20 keV and 100 GeV. In our background simulations, the incident particles

were generated on a spherical surface of 46 cm radius surrounding the detector model.
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Figure 3.7 shows the background input spectra used in the simulations. Below a

few hundred keV, the incident background is dominated by the CXB for all direc-

tions not shielded by the Earth. From 200 keV to ∼400 MeV, the upward-moving

secondary γ-rays resulting from cosmic ray interactions in the atmosphere dominate

the background. Above 10 GeV, cosmic ray (CR) protons are the main contributors

to the background. Different shield configurations and shield thicknesses were sim-

ulated to optimize the shield design. I compared the background level for different

shield designs, i.e. fully active shields with wall thicknesses between 2 cm and 10 cm

and active/passive shield combinations.

The configuration shown in the right panel of Figure 3.3 represents a compromise,

balancing the background rejection power with the mass and complexity of the shield.

The shield combines a 5 cm active portion with a 2 cm thick passive Pb-cover and a

Pb-collimator.

3.5 Expected performance

3.5.1 Azimuthal scattering distributions

The left panel of Figure 3.8 shows exemplary azimuthal scattering distributions for

unpolarized and polarized incident X-ray beams before correction for non-uniformities.

The results correspond to 5.6 hours of on-source observations of the Crab pulsar and

nebula during a one-day balloon flight of the experiment from Fort Sumner using the

Nagoya University Al mirror. Even for an unpolarized incident X-ray beam, the φ-
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Figure 3.8. The left panel shows distribution of azimuthal scattering an-
gles for a polarized beam (solid lines) and an unpolarized beam (dashed
lines). The right panel shows distributions of azimuthal scattering angles
for a polarized X-ray beam after correcting for binning effects. All events
triggering one or more CZT detectors have been used in the analysis.
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Figure 3.9. The detection rate of Compton events for scattering sticks
made of various materials (assuming a balloon flight with X-Calibur and
the Nagoya University mirror at an altitude of 130,000 feet). The calcu-
lation assumes a source with a Crab-like flux and energy spectrum. The
different lines show the results for the different scattering sticks and, for
the scintillator stick, for different trigger requirements.

distribution shows a modulation owing to the large pixel size (2.5 mm) and associated

aliasing effects. Before computing the MDP with Equs.3.1 and 3.2 I correct for bin-

ning effects by dividing the polarized distributions by the unpolarized distributions.

The correction attens the φ-distributions of the unpolarized beams and leads to a

sinusoidal modulation of the φ-distributions of the polarized beams (see right panel

of Figure 3.8. See [14] for a detailed description of the correction procedure and for

a study of the validity of Equ. 3.2 when the correction is used. X-Calibur achieves

modulation factors of ∼ 0.5 (see Table 3.3 and Figure 3.11).
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Table 3.2
Sizes of different scattering sticks and CZT detector assemblies discussed
in the text.

Design 1 Design 2 Design 3 Design 4

Scatterer Scintillator EJ-200 Be LiH Li

Diameter 1.3 cm 1.3 cm 1.3 cm 1.3 cm

Length of Scatterer 14 cm 9 cm 18 cm 32 cm

CZT Unit 0.2× 2× 2cm3 0.2× 2× 2cm3 0.2× 2× 2cm3 0.2× 2× 2cm3

Length of CZT assembly 16 cm 12 cm 20 cm 34 cm

3.5.2 Performance with 4 different scattering materials

I compared the performance achieved with a scintillator scattering stick with that

achieved with scattering sticks made of alternative materials, i.e. Be, Li and LiH.

Table 3.2 lists the physical characteristics and dimensions of the different scattering

sticks and the CZT detector assemblies for each case. When a plastic scintillator is

used as the scattering material, the stick is read out with a photomultiplier. The other

three scattering materials are assumed to be passive. The length of all scattering sticks

was chosen to yield a Compton scattering probability of 90% for 80 keV photons. The

most important results, including the rates of Compton events for a Crab like source

RCrab [Hz], the peak detection efficiency and the energy at which this efficiency is

achieved, the modulation factor µ and the Minimum Detectable Polarization MDP,

are discussed below and are summarized in Table 3.3.

Note that the background for most competing polarimeter designs is indeed high

as they have wide field of views and use very massive detectors [14]. However, the
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Figure 3.10. The energy dependence of the detection efficiency (num-
ber of detected events divided by the number of photons incident on the
polarimeter)
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Figure 3.11. Comparison of the modulation factor. The binning was
chosen to have 8 statistically independent bins spaced logarithmically be-
tween 20 keV and 75 keV. The different lines show the results for different
scattering materials. The lines between the data points are only shown to
guide the eye.

X-Calibur background is much lower-as I use focusing optics and a thick shield. The

residual X-Calibur background is almost negligible for strong sources (like the Crab

Nebula). For such sources (i.e. all the sources that X-Calibur will observe during the

first balloon flight), it pays off to use all events-even if they do not have a trigger signal

in the scintillator. For weak sources and long observations it becomes advantageous

to use the scintillator trigger. For example, for a 106 s observations of a 25 mCrab

source, the MDP is 4.5% when I require the scintillator to be triggered while it is

5.5% for the case without scintillator trigger requirement.

Figure 3.9 and Figure 3.10 shows the detection rates and the detection efficiencies

achieved with the different scattering sticks. In Figure 3.9, the thick solid line shows

the detection rates without the trigger requirement in the scintillator (i.e. using the
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stick as a passive scatterer) while the thin solid line shows the detection rates with a

2 keV threshold in the scintillator. The efficiency is defined here as the fraction of the

photons impinging on a detector assembly that trigger the instrument and enter the

polarization analysis for an ideal thin beam. The simulations show that the lower-Z

materials lead to higher rates and efficiencies, especially at <50 keV energies. The

scintillator (solid line) gives the lowest rates and efficiencies while LiH (dash-dotted

line) gives the highest. The high efficiencies of the X-Calibur design close to 100%

can be explained by the fact that with ideal X-ray mirrors, all source photons hit

the scattering stick, a large fraction of the photons Compton scatter in the low-Z

material, and most of the scattered photons can escape the stick and are detected

in the CZT detectors. The modulation factors are close to 0.5 for all four scattering

sticks ( Figure 3.9). The LiH scatterer achieves the best MDP (3.02%) followed by

Li (3.06%), Be (3.13%), and the Scintillator (4.5% when scintillator triggered at a 2

keV threshold while 3.41% when using it as passive scatterer) ( Figure 3.12). The

lower-Z materials perform better, but the scintillator can be read by a PMT to give a

coincidence signal to identify proper Compton events. As mentioned above, I use the

scintillator for the first X-Calibur flight as it allows us to perform detailed tests of the

performance and backgrounds of the polarimeter. Note that the <25 keV polarimeter

response is relatively more important in space than for a balloon-borne mission (in

the latter case, the atmosphere absorbs most of the <25 keV flux). In a space borne

mission, a LiH scattering stick performs much better than a scintillator stick and

would be our preferred choice.
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Table 3.3
Comparison of the performance achieved with the four different scattering
materials.

Scintillator Scintillator Be-CZT LiH-CZT Li-CZT

-CZT (passive)-CZT

RCrab(InFOµCS)[Hz] 1.58 3.68 4.17 4.46 4.49

Peak efficiency 0.76 (69 keV) 0.87 (65 keV) 0.86 (70 keV) 0.87 (65 keV) 0.88 (70keV)

µ 0.52 0.48 0.48 0.48 0.47

MDP 4.5 % 3.4% 3.1 % 3.1% 3.0%
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Figure 3.12. Comparison of the MDP for a one-day 5.6 hrs on-source
observation of the Crab Nebula with X-Calibur and the Nagoya Univer-
sity mirror. The different lines show the results for different scattering
materials.

45



Energy [keV]
20 30 40 50 60 70

 S
ig

n
a

l 
R

a
te

 [
H

z
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 CZT_Wall

CZT_Top

CZT_Bottom

Figure 3.13. Comparison of detection rates in the CZT walls and in the
additional CZT detectors at the front-side and rear end of the CZT de-
tector assembly of the reference design Figure 3.3.

3.5.3 Performance with additional CZT detectors

In this section I discuss the performance improvement achieved with additional

CZT detectors placed at the two ends of the CZT detector assembly (see the white

rectangles in the left panel of Figure 3.3). I use the same assumptions as in the

previous sections. Figure 3.13 shows the simulated detection rates: (i) in the standard

detector assembly, (ii) in the additional CZT detector at the front-side of the detector

assembly, (iii) in the additional CZT detectors at the rear end. The simulation results

show that the detection rates in the additional CZT detectors are very low. The

reference X-Calibur design thus does not include the additional detectors.
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3.5.4 Performance of the 8 CZT detector rings

The CZT detector configuration of X-Calibur is made of 8 rings of four detectors

each (32 detector units altogether). In the following, I number the detector rings from

1 at the front end to 8 at the rear end of the assembly (Figure 3.3). The left panel

of Figure 3.14 shows the detection rates for all 8 rings. The right panel of the same

figure shows the MDPs achieved with the different rings. Owing to the geometry of

the scintillator/CZT detector configuration, ring #2 sees most events as it detects

forward, backward, and sideward scattered photons. From ring #3 to ring #8, fewer

and fewer events are detected, as most of the events are scattered near the front end

of the scintillator. Ring #1 sees a substantial number of events, but less than ring

#7, because it can only detect backscattered photons.

I simulated the energy spectra detected in each ring of CZT detectors to study

how the energy resolution deteriorates owing to the fact that the primary photons

deposit some energy in the scintillator, which I cannot measure accurately owing

to the scintillator’s poor energy resolution. Photons with energies of 20, 60, and

80 keV were generated and the simulations accounted for an inherent RMS energy

resolution of the CZT detectors of 2 keV. Figure 3.15 shows energy spectra for 20 and

60 keV photons, and Figure 3.16 shows the energy resolution for each detector ring.

The energy resolution is better at lower photon energies owing to the smaller relative

fraction of energy lost to the Compton electron. The CZT ring #8 has a better energy
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detector assembly and ring #8 at the rear end.
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Figure 3.15. The top panel shows the energy depositions measured in
CZT rings # 8, # 5, # 2 and # 1 when a 20 keV photon beam Compton
scatters in the scintillator. The bottom panel shows the same for a 60 keV
photon beam. The simulations include an energy resolution with a RMS
of 2 keV.

resolution than the other 7 CZT rings because it only sees backscattered photons with

a narrow range in scattering angles.
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Figure 3.17. Residual background rate for the active/passive shield design.

3.5.5 Optimization of the shield design

I computed the residual background level for different shield designs. I compared

the performance achieved with the 5 cm active CsI shield with that of a passive Pb

shield with the same mass (wall thickness 1.96 cm). Figure 3.17 shows the background

rates in the CZT detectors for the two shields. The active shield used with a 50 keV

active veto threshold outperforms the passive shield of the same mass by one order of

magnitude in terms of the residual background rate. I simulated active shields with

wall thicknesses of 3, 5, and 7 cm. Figure 3.18 shows the residual background energy

spectrum for these shield configurations. The residual background rate decreases

monotonically with the thickness of the active shield. For our balloon flight, the

dominating background comes from the albedo photons (upward secondary γ-rays)

from the earth side. Our simulation studies show that a thick active shield suppresses
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Figure 3.18. Residual background rate of the reference design (active CsI
shield, passive Pb front end) as function of the thickness of the active
shield.

this background most effectively. The balloon flight results from Slavis et al. [93, 94]

back up the results. Balancing the background rejection power with the mass and

complexity of the shield, I choose a 5 cm CsI (Na) shields with a 2 cm passive front

shield as our reference design (Figure 3.3).

Table 3.4 shows the contributions of different background components to the total

background rate for the reference design and a veto energy threshold of 50 keV. As

expected, the secondary γ-rays are the main contributor to the residual background

rate. Figure 3.19 shows the residual background rate as function of the CsI (Na)

energy threshold. The rate increases with the veto threshold of the shield. I choose

50 keV as the veto trigger threshold of the CsI (Na) active shield leading to a residual

background rate of 0.007 Hz. The veto rates in the active shields are 57.21 Hz. As-

52



Figure 3.19. The residual background rate as function of the CsI (Na)
veto threshold for the same flight altitude. I assume a veto threshold of
50 keV for our sensitivity estimates.

Table 3.4
Contributions of different background components in cm−2s−1keV−1 to the
total background rate for the reference design and a veto energy threshold
of 50 keV.

CXB Secondary γ-rays Protons Electrons

with scintillator trigger 1.3× 10−8 9.8× 10−7 6.5× 10−11 2.1× 10−9

no scintillator trigger 6.8× 10−8 2.0× 10−5 3.9× 10−10 2.8× 10−8

suming that each background hit vetoes the CZT detectors for 5 µsec, the background

will cause a dead time of 0.03%.
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Figure 3.20. Simulated outcome of a 5.6 hrs on-source observation of
the Crab Nebula (from top to bottom: Reconstructed flux, reconstructed
polarization degree, and reconstructed polarization direction) with X-
Calibur and the Nagoya University mirror for a balloon flight altitude
of 130,000 feet. The green lines show the assumed model distributions:
the Crab spectrum is from [86]; I assume the polarization degree and di-
rection change continuously from the values measured at 5.2 keV with
OSO-8 [48] to the values measured at 100 keV with INTEGRAL [61].
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3.5.6 Predicted sensitivity of X-Calibur when flown on balloons

On the one-day balloon flight from Fort Sumner, we expect to be able to observe

several sources, including the Crab pulsar and nebula, for a few hours. Simulations

performed for sources at different zenith angels θ, show that Rsrc scales proportional

to cos1.3θ). I use this scaling law when estimating MDPs. Assuming a 5.6 hrs ob-

servation of the Crab X-Calibur achieves a Minimum Detectable Polarization degree

(MDP, 99% confidence level) of 4.5%. Figure 3.20 shows the outcome of a 5.6 hrs

on-source observation of the Crab Nebula (from top to bottom: Reconstructed flux,

reconstructed polarization degree, and reconstructed polarization direction) with X-

Calibur and the Nagoya University mirror for a balloon flight altitude of 130,000 feet.

The graphs show that the observations will give precise measurements of the polar-

ization degree and the polarization direction in several independent energy bins. We

plan to follow up on the first balloon flight with proposals for Long Duration Bal-

loon (LDB) flights. An attractive option is a LDB flight with a larger X-ray mirror

assembly and then X-Calibur would extend the spectropolarimetric coverage to 60

keV. For a 3-day balloon flight from Alice Springs, X-Calibur/InFOCµS achieves a

Minimum Detectable Polarization degree (MDP, 99% confidence level) of 2.6% for

a 16.8 hrs observation of a source with a Crab-like flux and energy spectrum. For

a 3-week balloon flight from McMurdo, estimating the background to be about 5.5

times higher than that of the balloon flight from Fort Sumner, the MDP would go
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down to ∼1.0% in a 117 hrs on-source observation. Additional mirror modules could

reduce the MDP well below the 1.0% limit.

3.6 Summary

In this chapter I described the optimization of the design of the X-Calibur Comp-

ton polarimeter by comparing the performance achieved with four different Compton

scattering materials (scintillator, Be, LiH, Li), with different CZT detector assem-

blies, and with several shield configurations. The conclusions from my study can be

summarized as follows:

• X-Calibur combines a detection efficiency of order unity with a high modulation

factor of µ ∼ 0.5. The detection efficiency and the modulation factor have values

close to the maximum theoretically possible values given the physics of Compton

scatterings.

• The lower-Z scattering sticks (i.e. Be, LiH and Li) perform better than higher-

Z scattering sticks (e.g. scintillator), especially at <20 keV energies. As the

atmosphere absorbs most of the <20 keV X-rays, we decided to use a scintillator

stick for the first balloon flight. The trigger information from the scintillator

will allow us to perform additional tests of our simulation model.

• Additional CZT detectors at the front and rear ends give only a marginal im-

provement of the detection efficiency. On a balloon-borne mission, upward

secondary γ-rays dominate the non-vetoed background rate. The simulations
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predicted a non-vetoed background rate of 9.8×10−7cm−2s−1keV −1 (with a >2

keV energy deposition in the scintillator stick and a 20 ∼75 keV energy depo-

sition in a CZT detector) and 2.0 × 10−5cm−2s−1keV −1 (a 20∼75 keV energy

deposition in a CZT detector with no scintillator trigger requirement).

• I derived excellent Minimum Detectable Polarization degrees (MDP, 99% con-

fidence level) of the Crab Nebula: 3.4% for a 1-day balloon flight from Fort

Sumner with 5.6 hrs ON-source observation; 2.0% for a 3-day balloon flight

from Alice Springs with 16.8 hrs ON-source observation; 0.7% for a 3-week

balloon flight from McMurdo with 117.6 hrs ON-source observation.
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4. Broad band scattering polarimeter

4.1 Photon electron interaction processes at soft and intermediate X-ray

energies

In a scattering process, the cross section is proportional to the square of the quan-

tum mechanical amplitude. Different processes dominate in different energy bands.

In the following I focus on the 2-75 keV energy band in which a scattering polarimeter

used in the focal plane of a focusing mirror can be operated. In principle scattering

polarimetry works to even higher energies as the Compton effect is the dominant

interaction process to energies exceeding 2 mec
2 ≈1 MeV, when pair production pro-

cesses start to dominate. The 75 keV limit mostly comes from the cutoff of the mirror

reflectivity. At photon energies below 100 keV the following three interaction pro-

cesses dominate: atomic photoelectric absorption, coherent (Rayleigh scattering off

electrons moving in the nuclear Coulomb field) and incoherent (Thomson/Compton)

scattering off quasi-free valence electrons. In this section, I discuss how one can

extend the energy range of a scattering polarimeter toward lower energies. The X-

Calibur polarimeter loses efficiency below ∼20 keV, as at those energies photoelectric

effect interactions dominate strongly over scattering interactions. We can maximize
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the probability for a scattering interaction by using a lower-Z scatterer. The best

practical materials are Li and LiH, as the H an Li are not dense enough.

Figure 4.1 shows the dominant interaction processes in LiH. At energies below

∼10 keV, photoelectric effect interactions dominate over coherent and incoherent

scattering interactions. A scattering polairmeter thus works best at energies above

10 keV. However, most astrophysical sources exhibit a steeply falling energy spectrum

with many more photons at lower energies than at higher energies. As a result, it is

attractive to use a scattering polarimeter even in the soft energy regime from a few

keV to 10 keV.

Figure 4.1 shows that coherent (Raleigh) scattering dominates over incoherent

(Thomson/Compton) scattering up to approximately 6 keV. However, above 6 keV,

the latter starts to dominate. Although different scattering processes dominate at

different energies, all scattering processes share the property that the photons scat-

ter preferentially perpendicular to the direction of the electric field vector. Thus,

for a scattering polarimeter it does not matter if the photons Raleigh or Thom-

son/Compton scatter. When a photon scatters on a bound electron, it deposits little

energy to the recoiled atom. So, in the Raleigh regime, the energy resolution of a

scattering polarimeter is particularly good and is only limited by the energy resolu-

tion of the detectors. S. Tashenov et al. [95,96] discuss a hard X-ray polarimeter that

uses mainly Raleigh scatterings.
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Figure 4.1. Cross sections for interactions in LiH. Compton (incoherent)
scattering dominates over the energy range from 10-100 keV as shown. At
the energies below 6 keV, Rayleigh scattering dominates over Compton
scattering.

61



Table 4.1
Required length of scattering stick to absorb 90% of the incoming photons.

Absorption (90%) 5 keV 60 keV

Li 3.16 cm 30.73 cm

LiH 2.47 cm 18 cm

4.2 Broadband X-ray polarimeter

In this section, I discuss the design of an X-ray polarimeter with an extended

energy bandpass. I focus in particular on a broadband polarimeter with sensitivity to

the soft X-ray band below 10 keV. For a balloon borne experiment like X-Calibur, the

<10 keV sensitivity is not relevant, as the atmosphere absorbs <20 keV photons even

at the 125,000 feet altitudes of stratospheric balloon flights. However, a space-borne

scattering polarimeter could be used in the 2-20 keV energy range.

A polarimeter using LiH or Li as the scatterer would have to be longer to achieve

a high detection efficiency. I calculate that an 18 cm long LiH slab and a 30.73 cm

long Li slab would be required to absorb >90% of the incoming photons for energies

from 2 keV to 75 keV (see Table 4.1). A polarimeter could be built to enclose the

LiH or Li scatterer with a CZT detector assembly which is slightly larger than the

LiH or Li slabs (Figure 4.2). The scattering slabs would have to be encased in a thin

(0.5 mm) Be layer to avoid the reaction of the LiH or the Li with ambient humidity

and oxygen.
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Figure 4.2. Conceptual design of the broadband X-ray polarimeter con-
sisting of a scattering LiH slab (red) with Be housing (green) surrounded
by absorbing CZT detectors (blue). The scattering slab is aligned with
the optical axis of an X-ray mirror (not shown here). A large fraction
of the scattered photons are subsequently photo-absorbed in the high-Z
CZT detectors.
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4.3 Performance estimate

I ran Monte Carlo simulations to estimate the sensitivity that such a broadband

polarimeter could achieve when used with a single X-ray mirror [97] similar to the

one used on the NuSTAR X-ray telescope. The Monte Carlo simulations use the

Geant4 simulation package [84] and the Livermore Low-Energy Electromagnetic Mod-

els physics list. I used the published NuSTAR background spectrum to add back-

ground noise to our calculations [97]. Photons with energies between 14 keV and

75 keV were generated according to the Crab spectrum as measured with the Swift

Burst Alert Telescope (BAT) telescope [86], as shown in Equ. 3.3. Photons with

energies between 2 and 14 keV were generated according to the Crab spectrum from

the XMM-Newton observations of the Crab [98], as shown in Equ. 4.1. The spectrum

is almost the same as Equ. 3.3.

dN

dE
= 9.59

(
E

1keV

)−2.108

ph cm−2s−1keV −1 (4.1)

The simulations assume a 18 cm long LiH scatterer with 1 cm diameter, sur-

rounded by a 20 cm long CZT detector assembly (40 CZT detectors, each made of

2 × 20 × 20 mm3 CZT crystals). Every CZT ring covers the whole 360◦ azimuthal

scattering range. A 18 cm long LiH stick turns out to be the best choice for the

scatterer.
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Figure 4.3. MDPs of 11 bright X-ray sources (black holes binaries, blazars
and AGNs) in the function of time. The analysis is based on the 2-12 keV
data, assuming a NuSTAR-type mirror. With an observation time above
100 ksec, the MDPs of all these 11 sources are well below 5.0%.

4.4 Performance sensitivity based on Monte Carlo simulations

4.4.1 Detection sensitivity of target sources

I estimated the sensitivity of the broadband X-Calibur like polarimeter based on

the Monte Carlo studies making use of the energy dependent effective area of the

NuSTAR-type mirror assembly averaged over all detector rings and estimating the

background level based on the simulations results carried through for NuSTAR [97].

As shown in Equ. 3.2, the MDP is inversely proportional to the square root of time.
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Figure 4.4. Comparison of detection rates achieved in different CZT Rings
in different energy ranges and different sources. Ring #2 sees most pho-
tons.

I calculated the sensitivities of 11 typical sources (black holes binaries, blazars and

AGNs) as the function of time ( see Figure 4.3). I assumed the time averaged 2-12

keV fluxes measured with the RXTE All Sky Monitor (ASM). With an observation

time above 100 ksec, the MDPs of all these 11 sources are well below 5.0%.

4.4.2 Performance of the 10 CZT detector rings

In the following, I number the detector rings from 1 at the front end to 10 at the

rear end of the assembly (Figure 4.2). Figure 4.4 shows the detection rates for all 10
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Figure 4.5. Comparison of detection MDPs achieved in different CZT
Rings in different energy range and sources. Ring #2 performs best in all
cases.
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Figure 4.6. MDPs with the best performing rings in different energy
ranges and different sources. For bright source like Crab, the lowest MDP
is achieved when performed with all the 10 rings. For a week source like
10 mCrab, the best MDP is achieved with the combination of about 5
rings: ring #2, #3, #4, #5 and #1.
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rings in different energy ranges for different sources. Owing to the geometry of the

LiH/CZT detector configuration, ring #2 sees most events in all cases as it detects

forward, backward, and sideward scattered photons. From ring #3 to ring #10, fewer

and fewer events are detected, as most of the events are scattered near the front end

of the scintillator. Ring #1 sees a substantial number of events, but less than ring

#5, because it can only detect backscattered photons. Figure 4.5 shows the MDPs

achieved with the different rings in different energy ranges for different sources. Ring

#2 achieves the lowest MDP for all cases. For 10 mCrab source, ring #2 achieves the

lowest MDP, followed by ring #3, #4, #5, #1, #6, #7, #8, #9 and #10. Figure

4.6 shows the MDPs with the best performing rings of different energy ranges and

different sources. For bright source like Crab, the lowest MDP is achieved with all

the 10 rings. For a weak source like 10 mCrab, the best MDP is achieved with the

combination of 5 rings: ring #2, #3, #4, #5, and #1, as shown in Figure 4.6. With

more rings, the background contribution becomes important which deteriorates the

MDP. Taking all factors into account, we may use the top 5 best performing rings for

our final design.

4.5 Summary

In this chapter I described avenues for extending the energy coverage of the X-

Calibur polarimeter towards lower energies. Rayleigh scattering is the dominant

scattering process at 2-6 keV while Compton scattering dominates at 6-75 keV energy

range. I performed detailed Monte Carlo simulations to study the performance of such
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an experiment. LiH is used as the scatterer for the higher efficiency and a shorter

required length. The broadband polarimeter is made of 10 rings of CZT detectors

(40 detector units altogether) and 18 cm long LiH scattering stick with a diameter

of 1 cm. I analyzed the performance of the 10 CZT rings in different energy ranges

and sources and Ring #2 outperforms in all cases. For bright source like Crab, the

lowest MDP is achieved with all the 10 rings. For a weak source like 10 mCrab, the

best MDP is achieved with the combination of the top 5 best performing rings.
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5. Scientific potential of blazar observations with a

high-sensitivity polarimeter

5.1 Blazar science investigations

Blazars are excellent source targets for X-ray polarimetry experiments as the emis-

sion is non-thermal, and the emission processes (synchrotron emission and inverse

Compton emission) can lead to high polarization fractions.

The blazars are classified based on their Spectral Energy Distributions (SEDs).

HSP, ISP and LSP are used to denote BL Lac subclasses: high synchrotron peaked

( νSpeak > 1015Hz) blazars, intermediate synchrotron peaked (1014Hz < νSpeak <

1015Hz) blazars, and low synchrotron peaked (νSpeak < 1014Hz) blazars [105]. FSRQ

is used to denote Flat Spectrum Radio Quasars [105].

X-ray polarimetry measurements can be used to study the synchrotron X-ray

emission from AGN jets [105]. Polarization swings of the optical synchrotron emission

of HSP blazars were reported and studied by Marscher et al. [103] and Abdo et al.

[104]. The polarization swings were associated with γ-ray flares. The authors argue

that the polarization swings are evidence for a helical magnetic field threading the

jet. The helical field is thought to accelerate the jet medium via magnetic stresses

and play a key role in collimating the jet. The X-rays (and γ-rays) are hypothesized

71



to come from a stationary (particle accelerating) shock through which the helical

magnetic field moves. The synchrotron emission reflects the changing orientation of

the magnetic field in the particle acceleration region. As the higher energy X-ray

emitting electrons cool faster than lower energy optically emitting electrons, X-rays

probe smaller and more uniform emission regions [105]. We thus expect that we

see cleaner signatures in X-rays, i.e. higher polarization degrees and more frequent

polarization swings. Therefore, X-ray polarimetry measurements of blazars can be

used to verify the helical magnetic field structure and to understand the formation,

acceleration, and collimation of jets [105].

Inverse Compton emission is an essential radiation mechanism to blazars. For

Compton Emission, if the photons from synchrotron emission act as the seed photons

in inverse Compton scattering process, it is called Synchrotron Self-Compton Emission

(SSC), while it is called External Compton Emission (EC) if the seed photons are from

external radiation fields outside of the jet. The polarization properties of the X-rays

emission from SSC origin are similar to those of optical synchrotron emission [36,105–

107], while the X-ray polarization fraction is lower than that of optical emission if the

X-rays are emitted from EC origin. Therefore, the X-ray polarimetry measurement

of blazars is potential to distinguish a SSC from an EC origin of the inverse Compton

emission [14,105,107].

In hadronic models of the X-ray to γ-ray HSP emission, the X-rays can origi-

nate as synchrotron emission from ultra high energy cosmic rays [38, 108, 109]. This

model can explain very high polarization degrees (∼70%) if the jet magnetic fields are
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uniform and oriented perpendicular to the line of sight (including relativistic aberra-

tion effects). Very high polarization degrees would thus favor hadronic over leptonic

models.

5.2 Source samples

In this chapter I discuss whether a first-generation X-ray polarimetry mission

like a space borne version of X-Calibur or the GEMS and XIPE missions will have

sufficiently good sensitivity to address the science questions introduced. These three

missions achieve very similar 2-12 keV sensitivities. For this chapter, I assume that

they achieve a MDP of 0.7% for a 1.2 × 103 ksec observation of a 10 mCrab source,

and that the MDP scales inversely proportional to the integration time. We used two

data samples to address this question: (i) the 2 keV-12 keV light curves from the All

Sky Monitor (ASM) of the Rossi X-ray Timing Explorer (RXTE) mission [110], and

(ii) the 15 keV-50 keV light curves from the Burst Alert Telescope (BAT) [111] of the

Swift X-ray observatory [112,113].

The RXTE ASM data set was acquired between January 1996 and January 2012.

The analyzed RXTE data was kindly provided to us by Dr. Remillard. The BAT

observations were taken between February 2005 and March 2013. The analyzed BAT

data were kindly provided to us by Dr. H. Krimm and a description of the data

analysis methods can be found in [113].

The ASM catalog contains 69 blazars. In Figure 5.1, I present the Minimum

Detectable Polarization (MDP, 99% confidence level) that a mission like X-Calibur,
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Figure 5.1. Expected MDPs distribution of the 69 blazars for a first-
generation polarimeter like X-Calibur, GEMS, or XIPE.

GEMS, or XIPE could achieve for these 69 sources, assuming (i) that the sources

emitted at a level equal to their time averaged 2-12 keV RXTE ASM fluxes, and

(ii) on-source integration times of between 1/2 week and 2 weeks. Assuming an

integration time of two weeks per source, the MDPs lie between 0.6% for Mrk 421,

the strongest source in the sample, and 4.5% for 3C 371, the weakest source in the

sample. Assuming an integration time of 1/2 week per source, the corresponding

MDPs are 1.2% and 8.8%, respectively.

Figure 5.2 shows the two-week MDPs for the different types of blazars, FSRQs,

LSPs, ISPs, and HSPs. Here BL Lac refers to the BL Lac type sources for which it
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Figure 5.2. MDPs for the different types of blazars, FSRQs, LSPs, ISPs,
and HSPs. Here BL Lac refers to the BL Lac type sources for which it is
not certain whether they are LSPs, ISPs, or HSPs.

is not certain whether they are LSPs, ISPs, or HSPs. As mentioned above, Mrk 421

is the brightest HSP and the two-week MDP is 0.6%. The brightest FSRQ/LSP is

PKS 1510-089 with a two-week MDP of 2.0% and the brightest ISP is 3C66A with a

two-week MDP of 3.2%. Figure 5.3 shows the correlation of the MDP and the redshift

of the source (for all the sources with archival redshifts). Overall, it is clear that the

polarization studies would be limited to nearby low-redshift blazars.

A polarimeter with a similar soft (<10 keV) and hard (>10 keV) sensitivity for a

Crab-like source (like X-Calibur) will thus detect more blazars in the soft band than

in the hard band. An X-Calibur-like mission could detect the 15-50 keV polarization
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of a 100 mCrab source with a MDP of 1.5%. With a two-week observation of the

brightest HSP Mrk 421, a MDP of 4.7% could be achieved in the energy band 15-50

keV.

5.3 Observation strategy

I compiled a straw-man observation program, assuming that a first generation

polarimeter like X-Calibur, GEMS, or XIPE could allocate up to about 3 months

of observation time for the study of blazars. The best candidate sources are X-ray

bright and exhibit a high polarization fraction at longer wavelengths. However, the

flux of a blazar changes on time scales from minutes to decades due to the flares with

a “red noise” power spectrum [105]. Therefore, the observation program should be

updated at the beginning of the mission and/or during the mission making use of the

flux information from ground and space-borne experiments [105].

Probing the role and structure of magnetic fields in AGN Jets requires observations

of bright HSPs with a synchrotron component reaching all the way to the X-ray energy

band [105]. Table 5.1 lists the brightest targets. The information of the redshift and

balzar type of each blazar in this thesis are from [118–122]. With the exception

of 1ES 0033+595 and 1ES 1101-232 for which I found no publication about the

optical polarization information, the sources exhibit readily detectable polarization

degrees of O(5%). Ideally, a first-generation polarimetry experiment should observe

a few targets very intensively to study the time variability of the energy spectra and

the polarization properties. Such observations could test the hypothesis of a helical
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Table 5.1
List of target sources to investigate the structure and role of magnetic
fields in AGN jets [105]. Column 4 gives the assumed 2-12 keV energy
flux levels in units of mCrab.

Object Class z FmCrab (2-12keV) Opt. pol [%]

MKN421 HSP 0.03002 13.9 0-13 [114,115]

MKN501 HSP 0.03366 5.1 2-4 [115]

1ES 1959+650 HSP 0.04700 4.1 5.7 [116]

1ES 0033+595 HSP 0.08600 3.2

PKS 2005-489 HSP 0.07100 3.0 3.0-11.12 [117]

PKS 2155-304 HSP 0.11600 2.6 3.0-11.86 [117]

PKS 1553+113 HSP 0.36000 2.3 3-7 [115]

1ES 1101-232 HSP 0.18600 2.3
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Table 5.2
List of target sources to investigate the identification of the X-ray to γ-
ray emission mechanism in FSRQs and LSPs [105]. Column 4 gives the
assumed 2-12 keV energy flux levels in units of mCrab.

Object Class z FmCrab (2-12keV) Opt. pol [%]

3C 273 FSRQ 0.15834 4.90168 1 [115]

PKS 1510-08 FSRQ 0.36000 2.57003 2-30 [123]

BL LAC LSP 0.06860 1.51308 2-23 [115]

PKS 0537-441 LSP 0.89400 1.50374 18.8 [124]

BL 0829+046 LSP 0.17368 1.39212 20.5 [124]

3C 279 FSRQ 0.53620 1.05525 2-43 [103,125]

3C 371 LSP 0.05100 1.01426 11.3 [126]

magnetic field in the blazar zone. The consistent detection of polarization swings in

a few sources would suffice to show that helical magnetic field plays the key role in

launching and accelerating AGN jets. HSP observation could furthermore be used to

study the correlation of the X-ray spectral index and the polarization fraction which

constrains the magnetic field configuration in blazar jets.

To investigate the identification of the X-ray to γ-Ray emission mechanism in

LSPs [105], it requires the observation of bright FSRQs/LSPs. Table 5.2 lists the

prime candidates. Some of the sources exhibit very high degrees of optical polariza-

tion reaching several 10%. The observation of sources like 3C 273 and PKS 1510-08

could be used to distinguish between the hadronic origin (polarization fractions ex-

ceeding 50%), SSC origin (polarization fractions between 10% and 50%) and EC

origin (polarization fractions below 10%). The detection of a single source with a >

50% polarization fraction would argue for the hadronic model. However, observations
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Figure 5.4. Redshift distribution of the selected fifteen target sources.

of many more sources are needed to establish the other two hypotheses as all three

hypotheses can predict the detection of low polarization fractions; low polarization

degrees are possible in all three models for certain geometries (i.e. when the observer

looks right down the jet magnetic field lines).

A straw-man observation program is shown in Table 5.3. The blazars of this

sample are moderately distant and have redshifts between 0.03002 and 0.894 (see

Figure 5.4).

The HSP Mrk 421 is a prime target with a suggested observation time of two

weeks. Tosti et al. reported that the polarization degrees of Mrk421 is between 3%

and 16% in the optical range [114]. The polarization fraction is expected to be higher
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Table 5.3
Proposed observation program. The total observation time is 14.5 weeks.
Column 5 gives the time averaged 2-12 keV energy flux levels, F1 [mCrab].
Column 7 gives the assumed 2-12 keV energy flux levels, F2 [mCrab], of
the target of opportunity (ToO) program.

Object Class z Time [week] F1 MDP [%] F2 MDP [%]

Mkn421 HSP 0.03002 2 13.9497 0.6 56.1151 0.3

Mkn501 HSP 0.03366 1/2 5.05943 2.4 11.2529 1.4

1ES 1959+650 HSP 0.04700 1/2 4.09526 2.8 4.20502 2.7

1ES 0033+595 HSP 0.08600 1/2 3.19162 3.4 5.82951 2.1

PKS 2005-489 0.07100 1/2 2.97384 3.6 9.25563 1.5

PKS 2155-304 HSP 0.11600 1/2 2.63126 4.0 6.27717 2.0

PKS 1553+113 0.36000 1/2 2.31111 4.4 6.27286 2.0

1ES 1101-232 HSP 0.18600 1/2 2.25156 4.5 4.05012 2.8

3C 273 FSRQ 0.15834 1 4.90168 1.7 7.72664 1.2

PKS 1510-08 FSRQ 0.36000 1 2.57003 2.9 3.9211 2.0

BL LAC LSP 0.06860 1 1.51308 4.5 4.96279 1.7

PKS 0537-441 LSP 0.89400 1 1.50374 4.5 5.55727 1.6

BL 0829+046 LSP 0.17368 1 1.39212 4.8 6.31172 1.4

3C 279 FSRQ 0.53620 2 1.05525 4.4 2.36234 2.2

3C 371 LSP 0.05100 2 1.01426 4.5 2.63513 2.0
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at higher energies [114]. With two-week observation of Mrk 421 the MDP can reach

0.6%. From the other fourteen source candidates in Table 5.3, six of them are HSPs,

four of them are LSPs and three of them are FSRQs. These sources are the brightest

HSPs, LSPs and FSRQs from 2 keV to 10 keV of the RXTE ASM. We envision two

observation programs. First, we plan to observe all the candidate sources listed in

Table 5.3 without any trigger requirement. We are also considering an alert-driven

Target of Opportunity (ToO) program. I estimated the MDPs each source can reach

for these two programs. I adapted the exposure time to achieve a <5% MDP for all

target sources.

5.4 Summary

I described the scientific potential of blazars observations with a first generation X-

ray polarimeter mission like X-Calibur, GEMS and XIPE. I discussed a proposed ob-

servation program including observations strategy, sources of interest, recommended

accompanying multiwavelength observations, and the observations results. Fifteen

sources were selected as target candicates for the science investigations based on the

analysis of the daily flux values of all monitored sources by the RXTE All-Sky Mon-

itor (2-12 keV) and Swift BAT 70-month hard X-ray survey (15-50 keV). They are

six brightest HSPs, four LSPs and three FSRQs.

I compiled a straw-man observation program, assuming that a first generation

polarimeter like X-Calibur, GEMS, or XIPE could allocate up to about three months

of observation time for the study of blazars. With two-week observation of Mrk 421
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the MDP can reach 0.6% while it reaches 4.5% for 3C 371, the weakest source in

the sample. I adapted the exposure time to achieve a <5.0% MDP for all the fifteen

target sources.

83



84



6. Summary

My thesis focuses on the optimization of the balloon borne X-Calibur scattering

polarimeter, to be used in the focal plane of the balloon borne InFOCµS grazing

incidence X-ray telescope. The balloon borne version of X-Calibur combines a low-Z

scatterer with a CZT detector assembly to measure the polarization of 20-75 keV

X-rays, making use of the fact that polarized photons scatter preferentially perpen-

dicular to the electric field orientation.

X-Calibur achieves a high detection efficiency with a high modulation factor of

µ ∼ 0.5. The lower-Z scattering sticks (e.g. Be, LiH and Li) perform better than

higher-Z scattering sticks (e.g. scintillator), especially at <20 keV energies. As the

atmosphere absorbs most of the <20 keV X-rays, we decided to use a scintillator stick

for the first balloon flight. The trigger information from the scintillator will allow us

to perform additional tests of our simulation model. Additional CZT detectors at

the front and rear ends give only a marginal improvement of the detection efficiency.

On a balloon borne mission, upward secondary gamma rays dominate the non-vetoed

background rate. The simulations predict a non-vetoed background rate of 9.8 ×

10−7cm−2s−1keV −1 (with a >2 keV energy deposition in the scintillator stick and a

20-75 keV energy deposition in a CZT detector) and 2.0× 10−5cm−2s−1keV −1 (a 20-

75 keV energy deposition in a CZT detector with no scintillator trigger requirement).
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I derived excellent Minimum Detectable Polarization degrees (MDP, 99% confidence

level) of the Crab Nebula: 3.4% for a 1-day balloon flight from Fort Sumner with

5.6 hrs ON-source observation; 2% for a 3-day balloon flight from Alice Springs with

16.8 hrs ON-source observation; 0.7% for a 3-week balloon flight from McMurdo with

117.6 hrs ON-source observation.

I studied the possibility of extending the sensitivity of a scattering polarimeter

into the soft X-ray regime by using a lower-Z LiH scatterer. Rayleigh scattering is the

dominant scattering process at 2-6 keV, while Compton scattering dominates at 6-75

keV energy range. I performed detailed Monte Carlo studies to study the sensitivity

of such an experiment.

The broadband polarimeter is made of 10 rings of four CZT detectors each (32

detector units altogether) and 18 cm long LiH scattering stick with a diameter of 1

cm. The LiH is used as scatterer to replace the scintillator for higher efficiency and

shorter required length. I analyzed the performance of the 10 CZT rings of different

energy range and sources and Ring #2 outperforms in all cases. For bright sources

like the Crab, the lowest MDP is achieved with all the 10 rings. For a weak source

around 10 mCrab, the best MDP is achieved with the combination of the top 5 best

performing rings.

Lastly, I described the scientific potential of blazar observations with a first gen-

eration X-ray polarimeter mission like X-Calibur, GEMS and XIPE. I present a pro-

posed observation program including observations strategy, sources of interest, rec-

ommended accompanying multiwavelength observations, and the observations results.
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Fifteen sources were selected as target candidates for the science investigations based

on the analysis of the daily flux values of all monitored sources by the RXTE All-Sky

Monitor (2-12 keV) and Swift BAT 70-month hard X-ray survey (15-50 keV). They

are six brightest HSPs, four LSPs and three FSRQs.

I compiled a straw-man observation program, assuming that a first generation

polarimeter like X-Calibur, GEMS, or XIPE could allocate up to about three months

of observation time for the study of blazars. With two-week observation of Mrk 421

the MDP can reach 0.6% while it reaches 4.5% for 3C 371, the weakest source in

the sample. I adapted the exposure time to achieve a <5.0% MDP for all the fifteen

target sources.
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