
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Spring 5-2018

Computation of Achievable Rate in Pattern Recognition System Computation of Achievable Rate in Pattern Recognition System

Yu Liu
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Liu, Yu, "Computation of Achievable Rate in Pattern Recognition System" (2018). McKelvey School of
Engineering Theses & Dissertations. 338.
https://openscholarship.wustl.edu/eng_etds/338

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/338?utm_source=openscholarship.wustl.edu%2Feng_etds%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

 WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

 Department of Electrical and System Engineering

Thesis Examination Committee:
Joseph O'Sullivan
Zachary Feinstein

Hiro Mukai

Computation of Achievable Rate in Pattern Recognition System

by

Yu Liu

A thesis presented to the School of Engineering
of Washington University in St. Louis in partial fulfillment of the

requirements for the degree of
Master of Science

May 2018

Saint Louis, Missouri

ii

Contents
List of Figures ... iv

Acknowledgments ... v

Abstract .. vii

Chapter 1 Introduction .. 1

1.1 Pattern Recognition .. 1

1.2 Achievable Rate Region ... 2

1.2.1 Achievable Rate in Information Theory ... 2

1.2.2 Information Statement in Pattern Recognition ... 4

1.2.3 Achievable Rate in Pattern Recognition ... 6

1.3 Binary Example ... 9

1.3 Notations ...11
1.4 Working in this thesis...12

Chapter 2 Blahut-Arimoto Method ... 13

2.1 Alternating Minimization Algorithm ...13

2.2 Blahut-Arimoto Algorithm of Channel Capacity ...14

2.2.1 Optimization problem and Algorithm .. 14

2.2.2 Implementation .. 16

2.2.3 Result for Binary Example .. 16

2.3 Rate-Distortion Algorithm ..18

2.3.1 Optimization problem and Algorithm .. 19

2.3.2 Implementation .. 20

2.3.3 Result for Binary Case ... 21
2.4 Conclusion ...22

Chapter 3 Algorithm for the Main Problem .. 24

3.1 Optimization Problem Description ...24

3.1.1 Simplify the optimization problem .. 25

3.1.2 Optimization problem statement ... 26

3.2 Algorithm by Combing Blahut’s Algorithm ...26

3.2.1 Use Similar Algorithm as Blahut-Arimoto’s ... 26

3.2.2 MATLAB implementation .. 28

3.2.3 Result and conclusion .. 28

3.3 Algorithm with Slow Convergence ..29

3.3.1 Slow convergence ... 29

3.3.2 Modified Algorithm ... 29

3.3.3 MATLAB implementation .. 32

3.3.4 Result .. 33

3.4 Conclusion ...35

Chapter 4 Algorithm for a Sub-Problem .. 37

iii

4.1 Optimization Problem Description ...37

4.1.1 Guesses for the achievable rate region .. 37

4.1.2 Alternative Optimization Statement .. 40

4.2 Related Optimization Algorithm ..40

4.3 Derive Algorithm ..41

4.4 MATLAB Implementation ...44

4.5 Result ..45

4.6 Further analysis ...47

Chapter 5 Conclusion .. 50

References.. 51

iv

List of Figures

Figure 1.1: Pattern Recognition System ... 2
Figure 1.2: Rate distortion encoder and decoder .. 2
Figure 1.3: Inner and outer bound plot by Numerical Method ... 10
Figure 2.1: Binary Channel Case ... 17
Figure 2.2: Channel Capacity Result for Binary Channel .. 18
Figure 2.3: Binary Channel for Rate-Distortion ... 21
Figure 2.4: MATLAB Result comparison .. 22
Figure 3.1: MATLAB result for algorithm in 3.3.3 .. 34
Figure 4.1: Mutual Information Plot .. 38
Figure 4.2: Guess about the shape of achievable rate region .. 39
Figure 4.3: The plot for Ry-Rc .. 46
Figure 4.4: 3D plot for Ry-Rc curve ... 47
Figure 4.5: Achievable rate region plot .. 48

v

Acknowledgments

First, I want to thank my research advisor, Dr. Joseph O’Sullivan, who provided me elaborate

instruction during each stage of my research. His patient advises always give me solution to my

problems and without his guidance, I could not have finished my research. It is his vigorous and

enthusiastic academic attitude that keep me working on this project. What he taught me and what he

showed me from his behavior will encourage me to continue working hard in academic field. I promise

I will devote myself into academic studies in the future and set being a researcher like him as my goal.

I would also like to say thanks to all the course instructors and advisors that give me various kinds of

help during the two years in Washington University. All of them gave me significant help using their

high-level teaching and research skills and keen to students. They are the people who impressed me

deeply during my whole academic period till now. I would thank the Dean for his contribution to our

department and the development for this thesis/dissertation template.

Finally, I appreciate many of the graduate students, my classmates and friends that give me support

for my research. Special thanks to the faculty within my department who reviewed this thesis.

Yu Liu

Washington University in St. Louis

May 2018

vi

Dedicated to my parents.

vii

ABSTRACT OF THE THESIS

Computation of Achievable Rate in Pattern Recognition System

by

Yu Liu

Master of Science in Electrical Engineering

Washington University in St. Louis, 2018

Research Advisor: Professor Joseph O'Sullivan

Pattern recognition is widely used in many areas. When analyzing a pattern recognition system, one of

the main problem to be considered is, how many bits do I need to express the raw source data and

memory data to ensure that the result of the pattern recognition be reliable. The data stored in the

system as well as the data received by the system must be compressed by some rate to summary the

raw data. The fundamental bound for this lies in the computation of the achievable rate of pattern

recognition. Before now, we have the definition and some approaches for this achievable rate region

from an information theory point of view, but these approaches can be applied only to some specific

cases. There’s need for a method to compute this region’s boundary and this method should be able

to be extended to any general case.

In this thesis, we present a new optimization algorithm associated with other algorithms in alternating

optimization problems. This new algorithm will compute a bound of the achievable rate region in

pattern recognition by solving the associated optimization problem. We show that this new algorithm

can solve the problem we have for computing the boundary of the achievable rate region and can be

extended to other areas.

1

Chapter 1

Introduction

Pattern recognition refers to inferring the state of an environment from incoming and previously

stored data [1]. However, in real-world, the volume of the stored data will exceed the capacity of the

system’s storage if the data is stored in raw. Thus, the data stored need to be compressed in a format

that only summarize the main property of the raw data. Then, there’s the tradeoff between the

compress rate and the reorganization reliable [1]. This tradeoff leads to the main problem discussed

in the thesis.

1.1 Pattern Recognition

The pattern recognition refers to the concept of finding the regularity of some input data and put

them into some category according to the regularity. This concept is a branch of the machine learning

and yet not the same. A simple example could be hand-writing recognition algorithm. Although this

concept is connected to the machine learning and mathematical algorithms running by computers,

this search for this can be tracked back to the 16th century when Johannes Kepler discovered the

planetary motion’s law. [5]. As human, we are functionally capable of doing this in our brains. We see

different situations every day and can automatically classify these situations into distinct categories. In

the machine learning area, we are trying to imitate this process using computer algorithms.

In this thesis, we will use the system diagram shown in Figure 1.1 as our pattern recognition system.

We will discuss the meaning of each component in later sections.

2

Figure 1.1 Pattern Recognition System

1.2 Achievable Rate Region

To discuss about the achievable rate region in pattern recognition system, we will first introduce the

definition of achievable rate in information theory. The definition for pattern recognition is similar

yet still have some difference.

1.2.1 Achievable Rate in Information Theory

To discuss the achievable rate in information theory, we first need to introduce serval definition related

to this part. In this section, we will talk about the encoder and decoder in communication system,

shown in Figure 1.2. The X̂n here is the estimation of Xn with X̂n ∈ �̂�. The R in the coding function

𝑓𝑛(𝑋𝑛) is the rate we discuss in this section.

Figure 1.2 Rate distortion encoder and decoder

3

This will lead to the definition of distortion function. Distortion function is used to measure the cost

of representing 𝑥 by �̂� . There are many kind of distortion functions, serving different kind of

communication channel. One common example of the distortion function is the Hamming distortion.

The Hamming distortion is given by [4]

 d(x, �̂�) = {
0 𝑖𝑓 𝑥 = �̂�
1 𝑖𝑓 𝑥 ≠ �̂�

 (1.1)

Definition The distortion between sequences 𝑥𝑛 and �̂�𝑛 is defined by [4]

 d(𝑥𝑛, �̂�𝑛) =
1

𝑛
∑ 𝑑(𝑥𝑖, �̂�𝑖)

𝑛

𝑖=1

 (1.2)

Though this is not the only way to describe the distortion between two series [4]. Then we can discuss

about the distortion code and distortion D associated with the distortion code.

Definition A (2nR, n)-rate distortion code contains an encoding function 𝑓𝑛 and a decoding function

𝑔𝑛, which are defined by

𝑓𝑛: 𝒳𝑛 → {1,2, … , 2𝑛𝑅}

𝑔𝑛: {1,2, … , 2𝑛𝑅} → �̂�𝑛

 (1.3)

The distortion associated with the code is defined as

 D = Ed(𝑋𝑛, 𝑔𝑛(𝑓𝑛(𝑋n))) (1.4)

4

Definition A rate distortion pair (R, D) is said to be achievable if there exists a sequence of (2𝑛𝑅 , 𝑛)-

rate distortion code (𝑓𝑛, 𝑔𝑛) with lim
𝑛→∞

Ed(𝑋𝑛, 𝑔𝑛(𝑓𝑛(𝑋n))). [4]

In other words, the achievable rate is the rate we can use to code our source with the probability of

error in decoding goes to zero when n goes to infinity. We can see there is similarities in the definition

of the rate in the rate-distortion theory and in our pattern recognition. Thus, by instinct we can

describe the achievable rate in pattern recognition as the rate that can describe our source data and

stored data with the recognition result to be reliable. However, we need more accurate definition for

the achievable rate, with a specific information statement of the pattern recognition.

1.2.2 Information Statement in Pattern Recognition

There are serval important definition and notations in our later discussion in the achievable rate region

in pattern recognition. There are more to discuss in this part, most of the work are done by Professor

Joseph A. O’Sullivan in his paper in 2008 [1] but we will only introduce the definition and conclusion

in this and the following section. The rate pair we discuss in this thesis is the pair (Rx, Ry, Rc), which

refer to the memory data compression rate, the sensory data compression rate and the pattern rate,

respectively. The system we use to discuss these definitions is Figure 1.2.

I. Pattern rate

The number of patterns that must be stored in the system is Mc. Apparently, this number cannot

exceed the capacity of the system it serves. Take human’s eyes as an example, we can recognize 256

different colors and have about 2 × 1016 retinal photoreceptors. We denote the state of each

photoreceptor as X = {X1, X1, … , Xn}, each 𝑋1 is take from the alphabet 𝓧, n is the number of

photoreceptors. Thus, our upper bound for Mc is |𝓧|𝐧 = 2562×1016
. This is a fairly large number

and clearly not the way we store our patterns. There are two reasons why we don’t need to store this

large number of patterns in our head, first, there’s a strong structure in the pattern data, i.e., large

percentage of the 2562×1016
 are not actually patterns that we recognize or even have in nature. Second,

as described before, our pattern recognition is originally used for survival in nature. Most of the pattern

5

we saw may be irrelevant and thus be ignored by our brain. The patterns that are related to our survival

is the patterns we store in our brain. For these two reasons, the actual Mc for us, and for most pattern

recognition systems, is |𝒳|nRc
′
, where Rc

′ is the pattern rate, 𝑅𝑐
′ ∈ (0,1). We can express 𝑅𝑐

′ in binary

units, 𝑅𝑐 = 𝑅𝑐
′ log2 |𝒳|.

II. Sensory data rate

Taking human as an example as we do in previous part, the sensory data rate refers to the rate we

compress our data from retinas when we saw a pattern. As stated before, we are limited to display

only the compressed data. In the sensory data compress part, our maximum is described as My =

2nRy ≪ |𝒴|n, where Y is the retinal data and the Ry is our sensory data rate.

In our diagram for the pattern recognition (Figure 1.2), the sensory data compression is the part from

Y to J, where J = φ(Y).

The sensory data compression also plays as a constrain for the pattern rate. We cannot have the

sensory data set smaller than what we stored, i.e., My ≫ Mc, thus we have this constrain for pattern

rate: Rc ≪ Ry.

III. Memory data compression rate

As described in the previous sections, the memory data stored must be a compressed summarize of

the raw data. From Figure 1.2, the T(w) = (X(w), w), w = {1,2, … , Mc} = ℳc, is considered as a

“template” for each pattern and X(w) = (X1(w), … , Xn(w)).

The information memorized is considered as a class, M(w), is the output of the encoder f. In other

words, M(𝑤) = f(T(𝑤)), w is the memorized class label. The compressed rate of the memory data

can then be described by the number of the index, 𝑀𝑥, as 𝑅𝑥 =
1

𝑛
log 𝑀𝑥 .

The memory data compression rate also plays a role in the constrain for the pattern rate. The number

of pattern stored cannot exceed the number of the index, i.e., 𝑀𝑥 ≫ 𝑀𝑐 and thus, 𝑅𝑐 ≪ 𝑅𝑥.

6

1.2.3 Achievable Rate in Pattern Recognition

With the introduction of the three rates described the pattern recognition system, wo can now consider

the achievable rate region. First, we will introduce the notations used in the section. The definitions

we use in this section is cited from [1].

Definition Environment for the pattern recognition system is defined as:

 ℇ = {ℳ𝑐 , 𝒳, 𝒴, 𝑝(𝑥), 𝑝(𝑦|𝑥), 𝑝(𝑤), 𝒞𝑥, Φ} (1.5)

This environment is used for later discussion on our achievable rate region.

Definition Pattern recognition code (𝑀𝑐, 𝑀𝑥, 𝑀𝑦, 𝑛) is contains:

ℳ𝑐 = {1, … , 𝑀𝑐}, ℳ𝑥 = {1, … , 𝑀𝑥}, ℳ𝑦 = {1, … , 𝑀𝑦}

𝑓: 𝒳𝑛 × ℳ𝑐 → ℳ𝑥 × ℳ𝑐 , 𝑓(𝑡(𝑤)) = 𝑓(𝑥, 𝑤) = (𝑖, 𝑤) ≜ 𝑚(𝑤)

φ: 𝒴𝑛 → ℳ𝑦 , 𝜑(𝑦) = 𝑗

g: ℳ𝑦 × (ℳ𝑥)𝑀𝑐 → ℳ𝑐 , 𝑔(𝑗, 𝒞𝑢) = �̂�

(1.6)

Where 𝒞u is the output of applying f to 𝒞x.

Definition The probability of an error for a code (f, φ, g) in ℇ is defined as:

 Pe
n(w) = Pr (Ŵ ≠ w|W = w) (1.7)

Definition A rate R = (Rx, Ry, Rc) is said to be achievable if for any ε > 0 and for n sufficiently

large, we have a (Mc, Mx, My, n) code (f, g, φ) with rates

7

𝑅𝑐
′ =

1

𝑛
log 𝑀𝑐

𝑅𝑥
′ =

1

𝑛
log 𝑀𝑥

𝑅𝑦
′ =

1

𝑛
log 𝑀𝑦

(1.8)

Such that 𝑅𝑐
′ > 𝑅𝑐 , 𝑅𝑥

′ < 𝑅𝑥, 𝑅𝑦
′ < 𝑅𝑦, and 𝑃𝑒

𝑛 < 𝜀.

Then, we can formulate the formula for the achievable rate pair (𝑅𝑥, 𝑅𝑦, 𝑅𝑐) . In Professor

O’Sullivan’s paper [1], he used two auxiliary random variables, U and V to define the achievable rate

region.

First, consider the set of rates with the two auxiliary random variables:

ℛ𝑈𝑉 = {𝑅: 𝑅𝑥 ≥ 𝐼(𝑈; 𝑋)

 𝑅𝑦 ≥ 𝐼(𝑉; 𝑌)

 𝑅𝑐 ≤ 𝑅𝑥 + 𝑅𝑦 − 𝐼(𝑋𝑌; 𝑈𝑉)}

(1.9)

And the two sets of random variables pairs:

𝒫𝑖𝑛 = {𝑈𝑉: 𝑈 − 𝑋 − 𝑌,

 𝑋 − 𝑌 − V,

 𝑈 − (𝑋, 𝑌) − 𝑉}

(1.10)

𝒫out = {UV: U − X − Y,

 X − Y − V}

(1.11)

8

Next, we consider the two set:

ℛin = {R: R ∈ ℛUV for some UV ∈ 𝒫in}

ℛout = {R: R ∈ ℛUV for some UV ∈ 𝒫out}

(1.12)

Denote the convex hull of ℛ𝑖𝑛 as ℛ𝑖𝑛
̅̅ ̅̅ ̅.

Then, we introduce the main result in Professor O’Sullivan’s paper [1] about the boundary of the

achievable rate region:

Theorem 1 (inner bound)

 ℛ𝑖𝑛 ⊆ ℛ (1.13)

In other words, every rate R = (Rx, Ry, Rc) ∈ ℛin is achievable.

Theorem 2 (better inner bound)

 ℛin
̅̅ ̅̅ ̅ ⊆ ℛ (1.14)

In other words, every rate R = (Rx, Ry, Rc) ∈ ℛin
̅̅ ̅̅ ̅ is achievable.

Theorem 3 (outer bound)

 ℛout ⊇ ℛ (1.15)

In other words, every rate R = (𝑅𝑥, 𝑅𝑦, 𝑅𝑐) ∉ ℛ𝑜𝑢𝑡 is not achievable.

There is a theorem on the bound of cardinality.

9

There are multiple ways to express the inner and outer bound by shuffling the mutual information

and mathematical calculating. Here we will introduce one of the transforms which will be used in our

later computation and deriving the algorithm.

𝑅′
𝑈𝑉 = {𝑅: 𝑅𝑥 ≥ 𝐼(𝑈; 𝑋)

𝑅𝑦 ≥ 𝐼(𝑉; 𝑌)

𝑅𝑐 ≤ 𝐼(𝑈; 𝑉) − 𝐼(𝑈; 𝑉|𝑋𝑌)}

(1.16)

ℛ𝑖𝑛
′ = {𝑅: 𝑅 ∈ 𝑅′

𝑈𝑉 for some 𝑈𝑉 ∈ 𝒫𝑖𝑛}

ℛ𝑜𝑢𝑡
′ = {𝑅: 𝑅 ∈ 𝑅′

𝑈𝑉 for some 𝑈𝑉 ∈ 𝒫𝑜𝑢𝑡}

(1.17)

The ℛ𝑖𝑛
′ and ℛ𝑜𝑢𝑡

′ here is equivalent to the ℛ𝑖𝑛 and ℛ𝑜𝑢𝑡 in (1.10) and (1.12).

1.3 Binary Example

In this section we introduce the binary example for achievable rate region. This example was given in

Professor O’Sullivan’s paper [1].

In the binary case we consider the following situation:

𝒳 = {0,1}

P(x = 0) = P(x = 1) = 0.5

Y = X⨁W, W~Bonuli(p), p = 0.2

(1.18)

There are two approaches for getting the achievable rate region [1]. Both are not computational results

so that they cannot be extended to other cases, but the binary case is a good case to study and test our

10

algorithm in later sections. In fact, through this thesis we will use this binary case to test all of our

algorithms.

Approach 1 Numerical Result.

The method involved the Monte Carlo method. We take a vast number of random probability

distributions 𝑝(𝑢𝑣|𝑥𝑦) , compute the associated 𝐼(U; X), I(V; Y) and I(UV; XY). Then, for each pair

(rx, ry), we find the maximum 𝑟𝑥 + 𝑟𝑦 − 𝐼(𝑈𝑉; 𝑋𝑌). The maximum value is considered as our 𝑟𝑐.

The result is the estimate surface of the achievable rate region.

In O’Sullivan’s paper [1], the plot for the inner bound and outer bound is shown in Figure 1.3.

Figure 1.3 Inner and outer bound plot by Numerical Method [1]

Approach 2 Formulas approach.

This approach starts with a guess for the achievable rate region’s surface and then prove the

correctness. For simplicity, we only introduce the result for this approach.

The surface for the inner and outer bound is given by

 𝑟𝑖𝑛(𝑟𝑥, 𝑟𝑦) = 𝑠(𝑟𝑥, 𝑟𝑦) (1.19)

11

𝑟𝑜𝑢𝑡(𝑟𝑥, 𝑟𝑦) = 𝑠∗(𝑟𝑥 , 𝑟𝑦)

Where

𝑠(𝑟𝑥, 𝑟𝑦) = 1 − ℎ(𝑞𝑥 ∗ 𝑞 ∗ 𝑞𝑦)

𝑠∗(𝑟𝑥 , 𝑟𝑦) = sup𝜃(𝑠(𝑟𝑥1, 𝑟𝑦1) + (1 − 𝜃)(𝑠(𝑟𝑥2, 𝑟𝑦2)

𝑞𝑥 = ℎ−1(1 − 𝑟𝑥)

𝑞𝑦 = ℎ−1(1 − 𝑟𝑦)

h(x) = −x log(𝑥) − (1 − 𝑥) log(1 − 𝑥)

x ∗ y = x(1 − y) + y(1 − x)

(1.20)

These two approaches can only be applied on certain situations. Theoretically, the first approach can

be applied on other situations, but it would take infinite time to run if the alphabet is large enough.

The second one does not suit for other cases. Thus, these approaches are not what we desire for the

computation of achievable rate region. We would want an algorithm with more applicable situations.

1.3 Notations

In this thesis, we use I(X; Y) to denote the mutual information between X and Y, where X and Y

denote the variables. We use the “U-X-Y” to denote a Markov chain formed by U, X and Y, where

𝑝(𝑢, 𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑢|𝑥)𝑝(𝑦|𝑥).

12

1.4 Working in this thesis

The computation of the boundary of achievable rate region takes an important part in many areas.

From previous sections, it is clear that there’s a lack of a method to compute the boundary of this

achievable rate region using the formula from section 1.2.3. The method we use in section 1.3 is

neither effective nor universal. There’s a need for an algorithm to compute the boundary which can

be extended to use in both pattern recognition and other area such as multi-user communication

system.

In later sections, we will discuss the way we try to derive a new method from Blahut-Arimoto’s

algorithm for channel capacity and rate-distortion function, as well as other algorithms for

optimization problems in information theory. We will use the binary case shown in section 1.3 as an

example for our algorithm and test its accuracy.

13

Chapter 2

Blahut-Arimoto Method

The Blahut and Arimoto’s algorithm for computing channel capacity and rate-distortion function are

both introduced in 1972. Both algorithms can be described as alternating minimization algorithms,

which will be discussed in the chapter.

The Blahut-Arimoto algorithm provides basic algorithm for doing alternating minimization, which

will be used in later optimization algorithm.

This chapter will briefly introduce the Blahut-Arimoto algorithm and its MATLAB implementation.

2.1 Alternating Minimization Algorithm

Alternating minimization algorithm, introduced by Csiszar and G. Tusnady in 1984, deals with the

optimization problem with multiple variables and is used vastly in many areas [6]. When solving an

optimization problem with two variables, minimize with both variables simultaneously is usually not

easy. Thus, there’s need for an alternate algorithm. The basic idea of alternating minimization

algorithm is to take turn minimizing over one variable with another variable fixed.

The minimization problem can be described as this:

 min
(P,Q)∈𝒫×𝒬

D(P, Q) (2.1)

Then for any arbitrary initial point Q0 ∈ 𝒬, for n ≥ 1, iteratively compute

𝑃𝑛 ∈ arg min
𝑃∈𝒫

𝐷(𝑃, 𝑄𝑛−1)

𝑄𝑛 ∈ arg min
𝑄∈𝒬

𝐷(𝑃𝑛, 𝑄)

(2.2)

14

This algorithm solves a sequence of minimization problems instead of the original one. If this

algorithm converges, the converged value is the optimal solution of the original problem. [6]

The alternating maximization algorithm works as the same. This algorithm is important in the

computation of channel capacity and rate-distortion function since there are more than one variable

in the optimization problems in these two areas.

2.2 Blahut-Arimoto Algorithm of Channel Capacity

Blahut’s algorithm for channel capacity involves the minimization of I-divergence in the previous

section. This section will talk about the algorithm and its MATLAB implementation.

The Blahut’s algorithm for the maximization problem plays a key role in later algorithm and the

MATLAB code for this part can be used in later implementation. This algorithm provides a way for

the alternating maximization algorithm

2.2.1 Optimization problem and Algorithm

In this section, we consider the same probability model as shown in previous section.

Capacity of a channel can be expressed as

C = max
x

I(X; Y)

= max
p∈πn

I(p, Q)

= max
p∈πn

max
P∈𝒫△

∑ ∑ pjQk|j log
Pj|k

pj
kj

= max
p∈πn

max
P∈𝒫△

[∑ ∑ pjQk|j log
Pj|k

pj
kj

− ∑ ∑ qkPj|k

kj

]

(2.3)

This optimization problem leads to the Blahut algorithm for channel capacity.

15

Blahut-Arimoto algorithm:

• Choose initial guess for p0 ∈ 𝜋𝑛, 𝑝𝑗
0 > 0 for all j, set n=0;

• Update P

 𝑃𝑗|𝑘
𝑛 =

𝑝𝑗
𝑛𝑄𝑘|𝑗

∑ 𝑝𝑗
𝑛𝑄𝑘|𝑗𝑗

 (2.4)

• Update p

 𝑝𝑗
𝑛+1 =

ex p(∑ 𝑄𝑘|𝑗 log 𝑃𝑗|𝑘
𝑛

𝑘)

∑ ex p(∑ 𝑄𝑘|𝑗 log 𝑃𝑗|𝑘
𝑛

𝑘)𝑗

 (2.5)

• If converges, stop; otherwise, set n=n+1, repeat. [3]

16

2.2.2 Implementation

The main part of the MATLAB code for the implementation of this algorithm is shown below. The

function takes in q as its input and computes the P and p by the algorithm above. Then compute the

channel capacity by computing the mutual information between X and Y.

2.2.3 Result for Binary Example

Take the basic binary channel for an example, the channel is shown in Figure 2.2. Suppose X is the

input and Y is the output of this channel.

for iter = 1:MaxIter

 for j = 1:n

 P(:,j) = p(j)*Q(:,j);

 P(:,j) = P(:,j)/sum(P(:,j));

 end

 for j = 1:n

 p1(j) = exp(Q(:,j)'*(log_2(P(:,j))));

 end

p1 = p1/sum(p1);

 if norm(p1 - p) < error_tolerance

 break

 else

 p = p1;

 end

end

17

Figure 2.1 Binary Channel Case

In the binary case, the cross over probability is p, then the conditional probability is:

P(Y = 0|X = 0) = P(Y = 1|X = 1) = 1 − 𝑝

P(Y = 1|X = 0) = P(Y = 0|X = 1) = 𝑝

The formula for the binary channel capacity is:

 C = 1 − h(𝑝) (2.6)

where h(𝑝) = −𝑝log𝑝 − (1 − 𝑝)lo g(1 − 𝑝). [4]

The backward matrix for this channel Qk|j is (
1 − p p

p 1 − p
), as shown in section 2.2. Use this

backward matrix for the algorithm’s input and for varying p, we can have the channel capacity plot

for the binary channel. The left plot in Figure 2.3 shows the result of the Blahut’s algorithm for

channel capacity. The right plot in Figure 2.3 shows the computational result of binary channel’s

capacity using formula (2.6).

18

Figure 2.2 Channel Capacity Result for Binary Channel

The above Figure is the result comparison between the algorithm’s result and analytical result. In

these two plots, the upper left point (0,1) is the point where the crossover probability is 0, indicating

that in this case, the channel can transfer every input without any error, since the output is the same

with the input. At the down right corner, the channel’s capacity is 0 because the crossover

probability is 0.5, indicating that for any input, the output is random. In this case, the channel

cannot transfer any information.

The two curves above is exactly the same, indicating that the algorithm implementation is correct.

2.3 Rate-Distortion Algorithm

The Rate-Distortion algorithm was presented in Blahut’s 1972 paper [2]. This algorithm is an

alternating optimization algorithm for minimizing problems. This section will talk about the

algorithm and its MATLAB implementation.

The Blahut’s Rate-Distortion Algorithm provides a way for the alternating minimization algorithm.

Together with the Blahut’s algorithm for channel capacity, which provides a way for the alternating

maximization algorithm, we can derive an algorithm for the achievable rate region. The MATLAB

code for this algorithm also severs well in the later implementation.

19

2.3.1 Optimization problem and Algorithm

For this part, we assume that we have the probability distribution model. This algorithm was

presented in Blahut’s 1972 paper [2][3]. Let 𝜌𝑗𝑘 ≥ 0 be the distortion measure (similar to the

distortion function described in section 1.2.1). The rate-distortion function is described as

R(D) = min
𝑄∈𝑄𝐷

𝐼(𝑝, 𝑄)

= min
𝑄∈𝑄𝐷

min
𝑞∈𝜋𝑚

∑ ∑ 𝑝𝑗𝑄𝑘|𝑗 log
𝑄𝑘|𝑗

𝑞𝑘
𝑘𝑗

 (2.7)

Where 𝑄𝐷 refers to the set of probabilities that satisfies the distortion constrain. 𝑄𝐷 is defined as

 QD = {Q ∈ 𝒬∆: ∑ ∑ pjQk|j

kj

ρjk ≤ D} (2.8)

For deriving the algorithm of the minimization problem (2.7), we need to introduce the Lagrange

multiplier s since this is a constrained optimization problem. For each Lagrange multiplier s, there is

a corresponding distortion constrain Ds. Then for each specific multiplier s, the corresponding rate-

distortion function is

R(Ds) = min
Q∈QD

∑ ∑ pjQk|j log
Qk|j

∑ pj′Qk|j′j′
kj

−s(∑ ∑ pjQk|j

kj

ρjk − Ds)

= sDs + min
Q∈QD

min
q∈πm

∑ ∑ pjQk|j log
Qk|j

qkesρjk

kj

 (2.9)

20

Blahut’s algorithm for rate-distortion function

⚫ Initial guess for q: q0 ∈ πm, qk > 0 for all k, set n = 0

⚫ Update Q:

 Qk|j
n =

qk
nesρjk

∑ qk′
n e

sρjk′
k′

 (2.10)

⚫ Update q:

 qk
n+1 = ∑ Qk|j

n pj
j

 (2.11)

⚫ If q converges, stop; else, 𝐧 = 𝐧 + 𝟏, iterate.

2.3.2 Implementation

The MATLAB code for the Blahut’s algorithm for the rate-distortion function is shown below. After

solving for the optimal Q and q, we can compute the distortion by ∑ ∑ 𝑝𝑗𝑄𝑘|𝑗𝑘𝑗 𝜌𝑗𝑘 and the rate by

(2.9).

for iter=1:10000

 for j = 1:m

 Q(:,j) = q.* exp(s*d(j,:));

 Q(:,j) = Q(:,j)/sum(Q(:,j));

 end

 q1=sum(Q.*p);

 %check convergence

 if norm(q1-q)<error

 break;

 else

 q = q1;

 end

end

21

2.3.3 Result for Binary Case

For testing the accuracy of the MATLAB code, again we used the binary case in information theory

[4] to test the solution given by the code from 2.4.2. First, give the definition of rate-distortion function.

Theorem The rate distortion function for an i.i.d. source X with distribution 𝑝(𝑥) and the bounded

distortion function d(x, �̂�) is given by

 R(D) = min
𝑝(�̂�|𝑥):∑ 𝑝(𝑥)𝑝(�̂�|𝑥)𝑑(𝑥,�̂�)≤𝐷(𝑥,�̂�)

𝐼(𝑋; �̂�) (2.12)

Then we can introduce the binary case ant its rate distortion function.

Theorem The rate distortion function for a Bernoulli(p) source with Hamming distortion (1.1) is given

by

 R(D) = {
𝐻(𝑝) − 𝐻(𝐷), 0 ≤ 𝐷 ≤ min {𝑝, 1 − 𝑝}

0, 𝐷 > min {p, 1 − p}
 (2.13)

The channel’s scratch map is shown in Figure 2.4.

Figure 2.3 Binary Channel for Rate-Distortion

Take 𝑝 = 0.5, Hamming distortion function as our distortion function, we compare the result of the

Blahut’s algorithm implementation (section 2.4.3) and the formula (2.13). The result is shown in Figure

2.5. The right-hand plot is the outcome of the formula 2.13. It’s worth noticing that the Lagrange

multiplier s in this algorithm should take negative values since there is a minus before the constrain

part in (2.9).

22

From Figure 2.5, we can see that the outcome of the Blahut’s Algorithm and the formula in 2.13 is

the same.

In Figure 2.5, these two curves have similar shape with Figure 2.4, but the meaning of these curves

are different. In Figure 2.5, the upper left point (0,1) indicates the case where the estimation is the

same with the input. In this case, we only need one bit to represent the input to get errorless result.

On the down right corner, when the crossover probability is 0.5, we can never represent the input

with the probability of error arbitrarily small.

Figure 2.4 MATLAB result comparison

With these two algorithms in hand, we can now derive our first attempt algorithm for our pattern

recognition achievable rate.

2.4 Conclusion

In this section we introduced two alternating minimization algorithms in information theory. These

two algorithms are proven to be correct and have been proven to converge. The reason we are

introducing these two algorithms is that they are useful algorithms in computing maximization and

minimization problems in information theory. In our thesis we are dealing with probability

distributions and they have more constrains than normal random variables. As a result, we will need

23

these algorithms as examples for deriving our algorithm for computing the achievable rate region in

later sections.

24

Chapter 3

Algorithm for the Main Problem

With the Blahut-Arimoto algorithms for alternation minimization and maximization problem, we can

now focus on our target optimization problem. The target optimization problem includes

maximizations and minimization problems with multiple variables. By combing the two algorithms

above, we can derive the algorithms for the target optimization problem and implement it on

MATLAB to come to a result. The derivation of this algorithm includes the method mentioned in

Chapter 2.

The optimization problem discussed in this section is for the computation of the inner bound of the

achievable rate region.

3.1 Optimization Problem Description

As shown in Chapter 1, the target optimization problem is to find the pair (𝑅𝑥, 𝑅𝑦 , 𝑅𝑐) by the

following formulas (here we chose the first transform for simplicity)

𝑅𝑥 ≥ 𝐼(𝑈; 𝑋)

𝑅𝑦 ≥ 𝐼(𝑉; 𝑌)

𝑅𝑐 ≤ 𝐼(𝑈; 𝑉) − 𝐼(𝑈; 𝑉|𝑋, 𝑌)

 (3.1)

Which can be described as two maximization problems and one minimization problem. The

optimization problems for RX and RY are quite straightforward, but we need to modify the formula

for RC’s problems to make it easier to derive our algorithm.

25

3.1.1 Simplify the optimization problem

For simplicity, we modify the formula for RC.

𝑅𝑐 ≤ 𝐼(𝑈; 𝑉) − 𝐼(𝑈; 𝑉|𝑋, 𝑌)

= I(U; VX, Y; U) − I(X, Y; U|V)

= H(U) − H(U|X, Y) − I(X, Y; U, V)

= H(U) − H(U|X) − I(X, Y; U|V)

= I(U; X) + I(V; Y) − I(V; Y) − I(X, Y; U|V)

= I(U; X) + I(V; Y) − I(V; Y) − I(X, Y; U|V)

= I(U; X) + I(V; Y) − I(V; X, Y) − I(XY; U|V)

= I(U; X) + I(V; Y) − (XY; UV)

 (3.2)

Thus, the problem can be simplified as:

 min −𝐼(𝑋𝑌; 𝑈𝑉) (3.3)

Which is equivalent to:

min

𝑞(𝑢, 𝑣) ∑ ∑ ∑ ∑ 𝑝(𝑥, 𝑦)𝑝(𝑢, 𝑣|𝑥, 𝑦)𝑙𝑜𝑔
𝑃(𝑥|𝑢)

𝑝(𝑥)
𝑦𝑥𝑣𝑢

 (3.4)

This minimization problem can lead to the optimal 𝑞(𝑢, 𝑣) with constrains on 𝑅𝑥 and 𝑅𝑦 .

26

3.1.2 Optimization problem statement

After simplifying the formula for RC, we have a minimization problem for finding the optimal 𝑞(𝑢, 𝑣)

with some constrains on 𝑅𝑥 and 𝑅𝑦. The constrains are on the mutual information between U and X,

and V and Y. From Blahut-Arimoto’s algorithm for the rate-distortion, we can write the constrains

into the (3.4) using Lagrange multipliers for the constrains. The optimization problem can be write as:

𝑚𝑖𝑛
𝑞(𝑢, 𝑣) ∑ ∑ ∑ ∑ 𝑝(𝑥, 𝑦)𝑝(𝑢, 𝑣|𝑥, 𝑦)𝑙𝑜𝑔

𝑃(𝑥|𝑢)

𝑝(𝑥)
𝑦𝑥𝑣𝑢

−𝜆𝑥 [𝑚𝑎𝑥
𝑝(𝑥|𝑢)

∑ ∑ 𝑝(𝑥)𝑝(𝑢|𝑥) 𝑙𝑜𝑔
𝑃(𝑥|𝑢)

𝑝(𝑥)
𝑢𝑥

]

−𝜆𝑦 [𝑚𝑎𝑥
𝑝(𝑦|𝑣)

∑ ∑ 𝑝(𝑦)𝑝(𝑣|𝑦) 𝑙𝑜𝑔
𝑃(𝑦|𝑣)

𝑝(𝑦)
𝑣𝑦

]

 (3.5)

3.2 Algorithm by Combing Blahut’s Algorithm

In this section, we derive an algorithm solely from (3.5). The algorithm came mostly from the Blahut-

Arimoto’s algorithms and will be proven to be not suitable for our problem. An alternate way of

finding the algorithm for our problem will be discussed.

3.2.1 Use Similar Algorithm as Blahut-Arimoto’s

For deriving the algorithm for (3.1.5), we can use part of the Blahut-Arimoto’s algorithm. Notice that

the maximum part is similar to the channel capacity part in Blahut’s algorithm and the minimum part

is similar to the rate-distortion part. The difference here is that in our optimization problem, although

we are also calculating for the achievable rate, we do not have a distortion function for this problem.

However, we can still use the fundamental idea of Blahut’s rate-distortion algorithm.

27

Algorithm for computing the achievable rate:

⚫ Initial guess for 𝑝(0)(𝑢|𝑥), 𝑝(0)(𝑣|𝑦), set k=0

⚫ Update 𝑞(𝑢, 𝑣)

 q(k)(u, v) = ∑ ∑ p(x, y)p(k)(u|x)p(k)(v|y)

yx

 (3.6)

⚫ Update 𝑝(𝑥|𝑢), 𝑝(𝑦|𝑣)

𝑝(𝑘)(𝑥|𝑢) =
𝑝(𝑘)(𝑢|𝑥)𝑝(𝑥)

∑ 𝑝(𝑘)(𝑢|𝑥′)𝑝(𝑥′)𝑥′

𝑝(𝑘)(𝑦|𝑣) =
𝑝(𝑘)(𝑣|𝑦)𝑝(𝑦)

∑ 𝑝(𝑘)(𝑣|𝑦′)𝑝(𝑦′)𝑦′

 (3.7)

⚫ Update 𝑝(𝑢|𝑥), 𝑝(𝑣|𝑦)

𝑝(𝑘+1)(𝑢|𝑥) =
𝑞(𝑢)𝑒𝜆𝑥𝑑𝑥

(𝑘)
(𝑢,𝑥)

∑ 𝑞(𝑢′)𝑒𝜆𝑥𝑑𝑥
(𝑘)

(𝑢′,𝑥)
𝑢′

𝑝(𝑘+1)(𝑣|𝑦) =
𝑞(𝑣)𝑒𝜆𝑦𝑑𝑦

(𝑘)
(𝑣,𝑦)

∑ 𝑞(𝑣′)𝑒𝜆𝑦𝑑𝑦
(𝑘)

(𝑣′,𝑦)
𝑣′

 (3.8)

In this algorithm, we chose 𝑑𝑥(𝑢, 𝑥) = log
p(k)(x|u)

p(x)
, 𝑑𝑦(𝑣, 𝑦) = log

p(k)(y|v)

p(y)
.

⚫ If 𝑝(𝑢|𝑥), 𝑝(𝑣|𝑦) both converge, stop; else, set k = k + 1, iterate.

28

In this algorithm, the 𝑝(𝑘+1)(𝑢|𝑥) step will take the same formula as in (2.10), with 𝑑𝑥(𝑢, 𝑥) and

𝑑𝑦(𝑣, 𝑦) defined as in the algorithm. Here we chose to use 𝑑𝑥(𝑢, 𝑥) and 𝑑𝑦(𝑣, 𝑦) in our algorithm

for simplicity and can help transform from the Blahut’s algorithm to ours.

3.2.2 MATLAB implementation

The MATLAB codes for this algorithm is shown above. This function takes the joint probability of

X and Y as input and calculates the rates by (3.1) and (3.2).

For simplicity, we only show the (3.8) part of this algorithm, other step of this algorithm is similar to

the Blahut’s algorithm.

3.2.3 Result and conclusion

For testing the result of this algorithm, we chose the binary case as shown in Chapter 1, with 𝑝(𝑥) =

[0.5,0.5], 𝑌 = 𝑋⨁𝑊, 𝑊~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝑝 = 0.2. The alphabet of U and V are both same with X

and Y, respectively. i.e., |𝒰| = |𝒳|, |𝒱| = |𝒴| . Chose Lagrange multipliers 𝜆𝑥 and 𝜆𝑦 varies from -5

to 0. Again, the Lagrange multipliers here should take negative values for there is a minus before the

constrain in (3.5).

Unfortunately, this code doesn’t return any feasible solution to our problem. The converge speed of

this algorithm exceed acceptance and the probability distribution with shoot to infinity within serval

steps of iteration. This result is clearly unwanted and thus there’s need for an alternative algorithm for

this computation. Since the problem of this algorithm is the fast convergence, the next step for our

algorithm is to find a way to slow down the convergence.

P_ux_1=Q_u'.*(exp(Lx*Dx));

for i = 1:sx

 P_ux_1(:,i)=P_ux_1(:,i)/sum(P_ux_1(:,i));

end

 %--

P_vy_2=Q_v'.*(exp(Ly*Dy));

for j = 1:sy

 P_vy_2(:,i)=P_vy_2(:,i)/sum(P_vy_2(:,i));

end

29

3.3 Algorithm with Slow Convergence

In the previous section, we have shown that simply combing the Blahut’s algorithm will bring us

nowhere near our solution. Thus, there’s need for a modified algorithm. The algorithm we will talk

about in this section is derived from a new function with an additional part serving as the slow

convergence part. In this section, we will briefly introduce our idea of how to slow down the

convergence, then introduce the modified algorithm with its MATLAB implementation and result.

3.3.1 Slow convergence

There are multiple ways to do the slow convergence part [7]. In here, we chose to add a relative entropy

into (3.5).

Definition The relative entropy between two probability mass functions 𝑝(𝑥) and 𝑞(𝑥) is defined as

 𝐷(𝑝||𝑞) = ∑ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑥∈𝒳

 (3.9)

Relative entropy is zero if and only if 𝑝 = 𝑞. In our algorithm, we will use this property to slow our

algorithm.

3.3.2 Modified Algorithm

After adding the slow convergence part, the optimization problem becomes:

𝑚𝑖𝑛
𝑞(𝑢, 𝑣)

∑ ∑ ∑ ∑ 𝑝(𝑥, 𝑦)𝑝(𝑢, 𝑣|𝑥, 𝑦)𝑙𝑜𝑔
𝑃(𝑥|𝑢)

𝑝(𝑥)
𝑦𝑥𝑣𝑢

−𝜆𝑥[𝑚𝑎𝑥
𝑝(𝑥|𝑢)

∑ ∑ 𝑝(𝑥)𝑝(𝑢|𝑥) 𝑙𝑜𝑔
𝑃(𝑥|𝑢)

𝑝(𝑥)
𝑢𝑥

]

 (3.10)

30

−𝜆𝑦[𝑚𝑎𝑥
𝑝(𝑦|𝑣)

∑ ∑ 𝑝(𝑦)𝑝(𝑣|𝑦) 𝑙𝑜𝑔
𝑃(𝑦|𝑣)

𝑝(𝑦)
𝑣𝑦

+𝜈𝑥 ∑ 𝑝(𝑥)𝑝(𝑢|𝑥)𝑙𝑜𝑔
𝑝(𝑢𝑙𝑥)

𝜋(𝑢|𝑥)
𝑥,𝑢

+𝜈𝑦 ∑ 𝑝(𝑦)𝑝(𝑣|𝑦)𝑙𝑜𝑔
𝑝(𝑣𝑙𝑦)

𝜋(𝑣|𝑦)
𝑦,𝑣

+𝑠𝑜𝑚𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

In (3.3.2), the ∑ p(x)p(u|x)log
p(ulx)

π(u|x)x,u part is the relative entropy between 𝑝(𝑢|𝑥) and 𝜋(𝑢|𝑥).

This part is for the slow convergence. As shown in 3.3.1, this part goes zero if and only if 𝑝(𝑢|𝑥) and

𝜋(𝑢|𝑥) are equal. For the algorithm, if we take 𝜋(𝑢|𝑥) = 𝑝(𝑘)(𝑢𝑙𝑥), then for each step in the

algorithm, 𝑝(𝑘+1)(𝑢|𝑥) will be as close as possible to 𝑝(𝑘)(𝑢|𝑥), which will slow down our algorithm.

The function added to the back is some function which make this a probability.

To derive the algorithm from (3.3.2), instead of modifying algorithm from Blahut-Arimoto’s algorithm,

we need to take the derivative with respect to 𝑝(𝑢|𝑥) and 𝑝(𝑣|𝑦) respectively and derive the formula

that makes them optimal.

Take the derivative with respect to 𝑝(𝑢|𝑥) gives us

∑ ∑
𝑝(𝑥, 𝑦)

𝑝(𝑥)
𝑝(𝑣|𝑦)log

𝑝(𝑢|𝑥)

𝑞(𝑘)(𝑢|𝑣)
𝑣𝑦

− 𝜆𝑥

𝑝(𝑥)

𝑃(𝑥)
log 𝑝(𝑘)(𝑥|𝑢)

+𝜈𝑥

𝑝(𝑥)

𝑝(𝑥)
log

𝑝(𝑢|𝑥)

𝑝(𝑘)(𝑢|𝑥)
− 𝜇(𝑥) = 0

 (3.11)

Solve for 𝑝(𝑢|𝑥) will give us

31

p(𝑘+1)(𝑢|𝑥)

=
𝑒(∑ (∑ 𝑝(𝑦|𝑥)𝑝(𝑣|𝑦))𝑦 log 𝑞(𝑘)(𝑢|𝑣))𝑣 +𝜆𝑥 log 𝑝(𝑘)(𝑥|𝑢)+𝜈𝑥 log 𝑝(𝑘)(𝑢|𝑥))

𝑧(𝑘+1)(𝑥)

=
𝑒((𝜈𝑥+𝜆𝑥) log 𝑝(𝑘)(𝑢|𝑥)−𝜆𝑥𝑞(𝑘)(𝑢)+∑ (∑ 𝑝(𝑦|𝑥)𝑝(𝑣|𝑦))𝑦 log 𝑞(𝑘)(𝑢|𝑣))𝑣)

𝑧(𝑘+1)(𝑥)

 (3.12)

Where 𝒛(𝒌+𝟏)(𝒙) is some function that makes this a probability distribution. In our algorithm, we will

take the summation over the nominator with respect to 𝑢.

Then we can formulate our algorithm with (3.12), the update of 𝑝(𝑘)(𝑥|𝑢), 𝑝(𝑘)(𝑦|𝑣) will be the same

as before in (3.4).

Algorithm:

⚫ Initial guess for 𝑝(0)(𝑢|𝑥), 𝑝(0)(𝑣|𝑦), set k=0

⚫ Update 𝑞(𝑢, 𝑣)

 𝑞(𝑘)(𝑢, 𝑣) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑝(𝑘)(𝑢|𝑥)𝑝(𝑘)(𝑣|𝑦)

𝑦𝑥

 (3.13)

⚫ Update 𝑝(𝑥|𝑢), 𝑝(𝑦|𝑣)

𝑝(𝑘)(𝑥|𝑢) =
𝑝(𝑘)(𝑢|𝑥)𝑝(𝑥)

∑ 𝑝(𝑘)(𝑢|𝑥′)𝑝(𝑥′)𝑥′

𝑝(𝑘)(𝑦|𝑣) =
𝑝(𝑘)(𝑣|𝑦)𝑝(𝑦)

∑ 𝑝(𝑘)(𝑣|𝑦′)𝑝(𝑦′)𝑦′

 (3.14)

⚫ Update 𝑝(𝑢|𝑥), 𝑝(𝑣|𝑦)

32

𝑝(𝑘+1)(𝑢|𝑥)

=
𝑒((𝜈𝑥+𝜆𝑥) log 𝑝(𝑘)(𝑢|𝑥)−𝜆𝑥𝑞(𝑘)(𝑢)+∑ (∑ 𝑝(𝑦|𝑥)𝑝(𝑣|𝑦))𝑦 log 𝑞(𝑘)(𝑢|𝑣))𝑣)

∑ 𝑒((𝜈𝑥+𝜆𝑥) log 𝑝(𝑘)(𝑢′|𝑥)−𝜆𝑥𝑞(𝑘)(𝑢′)+∑ (∑ 𝑝(𝑦|𝑥)𝑝(𝑣|𝑦))𝑦 log 𝑞(𝑘)(𝑢′|𝑣))𝑣)
𝑢′

𝑝(𝑘+1)(𝑣|𝑦)

=
𝑒((𝜈𝑦+𝜆𝑦) log 𝑝(𝑘)(𝑣|𝑦)−𝜆𝑦𝑞(𝑘)(𝑣)+∑ (∑ 𝑝(𝑥|𝑦)𝑝(𝑢|𝑥))𝑥 log 𝑞(𝑘)(𝑣|𝑢))𝑢)

∑ 𝑒((𝜈𝑦+𝜆𝑦) log 𝑝(𝑘)(𝑣′|𝑦)−𝜆𝑦𝑞(𝑘)(𝑣′)+∑ (∑ 𝑝(𝑥|𝑦)𝑝(𝑢|𝑥))𝑥 log 𝑞(𝑘)(𝑣′|𝑢))𝑢)
𝑣′

 (3.15)

⚫ If 𝑝(𝑢|𝑥), 𝑝(𝑣|𝑦) both converge, stop; else, set 𝑘 = 𝑘 + 1, iterate.

We will then implement this algorithm and test the accuracy.

3.3.3 MATLAB implementation

The MATLAB codes for this algorithm is shown below. This function takes the joint probability of

X and Y as input and calculates the rates by (3.1) and (3.2). Again, in this part we only show the 𝑝(𝑢|𝑥)

and 𝑝(𝑣|𝑦) part for simplicity.

33

3.3.4 Result

The result for the code shown in 3.3.3 is shown in Figure 3.1.

For testing, we still chose to use the binary case for simplicity and easier comparison. We chose |𝒳| =

|𝒴| = {0,1}, 𝑝(𝑥 = 0) = 𝑝(𝑥 = 1) = 0.5, 𝑌 = 𝑋⨁𝑊 , where 𝑊~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝑝 = 0.2 . We

chose U and V as |𝓤| = |𝓥| = |𝓧| = |𝓨|. The Lagrange multipliers are chosen from -3 to 0 and the

multipliers for the slow convergence part are both 4. The multipliers for the slow convergence only

serve for slowing down the algorithm and do not influence the result, and thus there’s no need to vary

these two values.

The choice of the initial guess for 𝑝(𝑢|𝑥) and 𝑝(𝑦|𝑣) are randomly generated by MATLAB and

normalized to be probability distributions.

for i=1:sx

 for m=1:su

 P_ux_1(m,i) = exp((Vx + Lx) *

log_2(P_ux(m,i)) - Lx * log_2(Q_u(m)) +

sum(sum(P_yx(:,i).*(P_vy')) .* log_2(Q_uv(m,:))));

 end

 P_ux_1(:,i) = P_ux_1(:,i)/sum(P_ux_1(:,i));

 end

 %--

 for j=1:sy

 for n=1:sv

 P_vy_1(n,j) = exp((Vy + Ly) *

log_2(P_vy(n,j)) - Ly * log_2(Q_v(n)) +

sum(sum(P_xy(:,j).*(P_ux_1')) .* log_2(Q_vu(n,:))));

 end

 P_vy_1(:,j) = P_vy_1(:,j)/sum(P_vy_1(:,j));

 end

34

Figure 3.1 MATLAB result for algorithm in 3.3.3

We can see from the result that the solution this algorithm can find are merely some boundary points

which do not help us find the achievable rate region. We can decide the accuracy of these four corner

points by some analyze. In this part, we will use the point’s coordinate value to represent each point.

The pair (𝑥, 𝑦, 𝑧) represent (𝑅𝑥, 𝑅𝑦, 𝑅𝑐) respectively. We use (3.1) to analyze each point.

For point (0,0,0) This point represents the case where U is independent of X and V is independent of

Y. In this case, the mutual information between U and X, V and Y are both 0. Thus, the mutual

information between U and V is also zero.

For point (1,0,0) This point represents the case where U=X and V is independent of Y. Thus, by the

definition of mutual information, I(U; X) = 1. In other word, we only need one bit to represent X by

U. However, this point doesn’t serve well for our computation of the achievable rate region.

35

For point (0,1,0) This point is similar to the previous one except that in this case, V=Y and U is

independent of X.

For point (1,1,0.2781) This point is the only point with nonzero 𝑅𝑐. To decide the accuracy, we need

to figure out the meaning of the point and the analytical result for 𝑅𝑐 in this case. According to the

previous cases, this point represents the case where U=X and V=Y. Thus, we can have

I(U; V) = H(U) − H(U|V)

= H(X) − H(X|Y)

= h(𝑥) − h(𝑝)

 (3.16)

Where h(𝑝) = −𝑝log𝑝 − (1 − 𝑝)log (1 − 𝑝).

By computation, the value of (3.16) is exactly 0.2781, which proves the accuracy of this point.

From the analyze above, the result of this algorithm is proven to be accurate. However, these points

only represent limiting situations and we can’t derive an accurate achievable rate region by these points.

Aside from the boundary points, we also need to know the points between these four points.

3.4 Conclusion

In this section, we present two algorithm attempts for computing the achievable rate region in pattern

recognition. The results of both algorithms are proven to be not suitable for solving this problem.

The first algorithm converges too fast and will not generate any feasible solutions. The second

algorithm is derived after adding a part for the slow convergence in the formula. However, the second

algorithm can only have solutions one some limiting situations and generate four solutions. To

compute the accurate achievable rate region we needed, we will need the points between these four

points. The challenge of computing the achievable rate region with two variables at the same time lies

in the first step of our algorithm, where we use the multiple of the two variables we are trying to

optimize over. We believe that the multiple part is the reason why we can only generate the corner

points.

36

In the next section, we will talk about a sub-problem of the original problem for the achievable rate

region. By solving the sub-problem, we can have more understanding of this problem.

37

Chapter 4

Algorithm for a Sub-Problem

From chapter 3 we can see that the formulation of our algorithm doesn’t go smoothly. The result of

our algorithm only converges to the corner points of our region. Although we have proven that the

result is correct, we still don’t have an algorithm that computes the bound of the achievable rate region.

We will need some other approaches for our computation.

In this chapter, we will discuss a sub-problem of our main problem discussed in the previous sections.

Then, by formulating the algorithm for the sub-problem, we will then discuss the accuracy of this new

algorithm and seek some method to apply the new algorithm to our main problem.

4.1 Optimization Problem Description

In this section, we will present the alternate optimization problem, which is a sub-problem of the main

problem discussed in chapter 3. This sub-problem will be easier to solve.

4.1.1 Guesses for the achievable rate region

Even though the result of the previous algorithm is not what we excepted, the result of it is still worth

studying.

From Figure 3.1, we have the four corner points for our boundary. Although these points can’t lead

us any closer to the achievable rate region, it still tells us something about this region.

One of those things is that, we can guess what the shape of this region by these vertices.

From Figure 3.1, we have the vertices of this region. Since the bound of this region, presented in (3.1)

in the previous chapter, is given by the mutual information.

Plot of mutual information For some variables X and Y, if we varies the probability distribution of X

and fixed the conditional probability between them, we have the plot of the mutual information

between X and Y shown in Figure 4.1.

38

Figure 4.1 Mutual Information Plot

Combined with the plot of mutual information, we can have a guess for the shape of the achievable

rate region shown in Figure 4.2. This figure is given by the convex hull of four curves. Figure 4.2 is

only a guess of the shape for the achievable rate region and is not necessarily the same with the real

shape of the region.

39

Figure 4.2 Guess about the shape of achievable rate region

Another observation about the result from 3.3.4 is, we can find some rules in the vertices. We can see

that the corner points happened when

 𝑝(𝑢|𝑥) = [
1 0
0 1

] (4.1)

In other words, the vertex only happens when the auxiliary variable(s) is(are) equal to the original

variable(s). With this observation, we can assume that the boundary line of the achievable rate region

must contain two curve representing U=X and V=Y respectively.

40

4.1.2 Alternative Optimization Statement

With the assumption we made in 4.1.1, we can then state the sub-problem of the original problem we

discussed in previous sections. This sub-problem will serve as an alternative optimization problem in

later discussions.

We suggest the following optimization problem:

max 𝐼(𝑉; 𝑋)

s. t. I(V; Y) ≤ 𝑅𝑦

U = X

X − Y − V

 (4.2)

Apparently, we will need to modify this to some optimization problem that can derive an algorithm

from.

The problem (4.2) is equivalent to

max
𝑝(𝑣|𝑦)

𝐼(𝑉; 𝑋) + 𝜆𝐼(𝑉; 𝑌)

s. t. X − Y − V

 (4.3)

The algorithm for this also involve some other algorithms. In later sections, we will introduce the

algorithm for solving similar problems and derive the algorithm for (4.3).

4.2 Related Optimization Algorithm

The algorithm introduced in this section is firstly presented in [some reference]. This algorithm solves

the optimization problem:

41

 max
𝑦(𝑣|𝑥)

max
𝑝(𝑦|𝑣)

∑ ∑ 𝑝(𝑣|𝑦)𝑝(𝑥, 𝑦) log
𝑝(𝑣|𝑥)𝑝(𝑦|𝑣)

𝑝(𝑣|𝑦)𝑝(𝑦)
𝑥𝑦

 (4.4)

Algorithm:

⚫ Initial guess for 𝑝(0)(𝑣|𝑥), k = 1

⚫ Update 𝑝(𝑦|𝑣)

 𝑝(𝑘)(𝑦|𝑣) =
∑ 𝑝(𝑣|𝑦)𝑝(𝑥, 𝑦)𝑥

∑ ∑ 𝑝(𝑣|𝑦′)𝑝(𝑥, 𝑦′)𝑥𝑦′
 (4.5)

⚫ Update 𝑝(𝑣|𝑥)

 𝑝(𝑘+1)(𝑣|𝑥) =
∑ 𝑝(𝑣|𝑦)𝑝(𝑥, 𝑦)𝑦

∑ ∑ 𝑝(𝑣′|𝑦)𝑝(𝑥, 𝑦)𝑦𝑣′
 (4.6)

⚫ If converges, stop; else, take k = k + 1, repeat.

4.3 Derive Algorithm

The algorithm shown in 4.2 is similar to our alternative optimization problem (4.2) without the

constrains on I(V; Y) ≤ 𝑅𝑦. We can write (4.3) into the form similar to (4.4) with this constrain on

I(V; Y), this will lead us to:

max
𝑝(𝑣|𝑦)

[max
𝑝(𝑣|𝑥)

max
𝑝(𝑦|𝑣)

∑ ∑ 𝑝(𝑣|𝑦)𝑝(𝑥, 𝑦) log
𝑝(𝑣|𝑥)𝑝(𝑦|𝑣)

𝑝(𝑣|𝑦)𝑝(𝑦)
𝑥𝑣,𝑦

+𝜆 max
𝑝(𝑦|𝑣)

∑ ∑ 𝑝(𝑣|𝑦)𝑝(𝑦) log
𝑝(𝑦|𝑣)

𝑝(𝑦)
𝑦𝑣

]

 (4.7)

42

In (4.7), we are maximizing over 𝑝(𝑦|𝑣) for twice. For simplicity, we merge these two maximizations

into one problem and yields:

max
𝑝(𝑣|𝑦)

max
𝑝(𝑦|𝑣)

[(max
𝑝(𝑣|𝑥)

∑ ∑ 𝑝(𝑣|𝑦)𝑝(𝑥, 𝑦) log
𝑝(𝑣|𝑥)𝑝(𝑦|𝑣)

𝑝(𝑣|𝑦)𝑝(𝑦)
𝑥𝑣,𝑦

)

+ 𝜆 ∑ ∑ 𝑝(𝑣|𝑦)𝑝(𝑦) log
𝑝(𝑦|𝑣)

𝑝(𝑦)
𝑦𝑣

]

 (4.8)

For this problem, we can assume that updating 𝑝(𝑣|𝑥) step is the same with (4.6), and what left for

us to solve is the updating 𝑝(𝑣|𝑦) and 𝑝(𝑦|𝑣). To solve what the 𝑝∗(𝑦|𝑣) should be, take the

derivative with respect to 𝑝(𝑦|𝑣) then solve for 𝑝∗(𝑦|𝑣). The derivate of (4.8) with respect to 𝑝(𝑦|𝑣)

is given by:

 ∑ 𝑝(𝑣|𝑦)𝑝(𝑥, 𝑦)
1

𝑝(𝑦|𝑣)
𝑥

+ 𝜆𝑝(𝑣|𝑦)𝑝(𝑦)
1

𝑝(𝑦|𝑣)
 (4.9)

We take the derivative to be some function that makes it zero.

1

𝑝(𝑦|𝑣)
[[𝑝(𝑣, 𝑦)](1 + 𝜆)] = 𝜈(𝑣) (4.10)

Then we can solve for the 𝑝∗(𝑦|𝑣).

 p(∗)(𝑦|𝑣) =
𝑝(∗)(𝑣|𝑦)𝑝(𝑦)

∑ 𝑝(∗)(𝑣|𝑦′)𝑝(𝑦′)𝑦′
 (4.11)

43

After solving for the 𝑝∗(𝑦|𝑣), we can know find the optimal solution for the 𝑝(𝑣|𝑦). We apply similar

method to solve this optimization problem: take the derivative and set it to zero. The derivative should

be like this:

∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑘)(𝑣|𝑥)𝑝(𝑘)(𝑦|𝑣)

𝑝(𝑣|𝑦)𝑝(𝑦)
𝑥

− ∑ 𝑝(𝑥, 𝑦) + 𝜆𝑝(𝑦) log
𝑝(𝑘)(𝑦|𝑣)

𝑝(𝑦)
+ 𝛾(𝑦) = 0

𝑥

(4.12)

In (4.), the 𝛾(𝑦) is some function that makes the solution a probability distribution. Set the derivative

to zero gives us:

p(𝑘+1)(𝑣|𝑦) = [
𝑝(𝑘)(𝑦|𝑣)

𝑝(𝑦)
]

1+𝜆

𝑒
[

1
𝑝(𝑦)

∑ 𝑝(𝑥,𝑦) log 𝑝(𝑘)(𝑣|𝑦)−1+𝛾(𝑦)𝑥]

=
[
𝑝(𝑘)(𝑦|𝑣)

𝑝(𝑦)
]

1+𝜆

𝑒[∑ 𝑝(𝑥|𝑦) log 𝑝(𝑘)(𝑣|𝑥)𝑥]

∑ [
𝑝(𝑘)(𝑦|𝑣)

𝑝(𝑦)
]

1+𝜆

𝑒[∑ 𝑝(𝑥|𝑦) log 𝑝(𝑘)(𝑣|𝑥)𝑥]
𝑣′

(4.13)

We can simplify this to:

 𝑝(𝑘+1)(𝑣|𝑦) =
[𝑝(𝑘)(𝑦|𝑣)]

1+𝜆
𝑒[∑ 𝑝(𝑥|𝑦)𝑥 log 𝑝(𝑘)(𝑣|𝑥)]

∑ [𝑝(𝑘)(𝑦|𝑣)]1+𝜆𝑒[∑ 𝑝(𝑥|𝑦)𝑥 log 𝑝(𝑘)(𝑣|𝑥)]
𝑣′

 (4.14)

Then, we will have our algorithm for solving (4.3):

Algorithm for sub-problem:

⚫ Initial guess for 𝑝(0)(𝑣|𝑦), set k = 0

⚫ Update 𝑝(𝑣|𝑥)

44

 𝑝(𝑘)(𝑣|𝑥) =
∑ 𝑝(𝑣|𝑦)𝑝(𝑥, 𝑦)𝑦

∑ ∑ 𝑝(𝑣′|𝑦)𝑝(𝑥, 𝑦)𝑦𝑣′
 (4.15)

⚫ Update 𝑝(𝑦|𝑣)

 𝑝(𝑘)(𝑦|𝑣) =
𝑝(𝑘)(𝑣|𝑦)𝑝(𝑦)

∑ 𝑝(𝑘)(𝑣|𝑦′)𝑝(𝑦′)𝑦′
 (4.16)

⚫ Update 𝑝(𝑣|𝑦)

 𝑝(𝑘+1)(𝑣|𝑦) =
[𝑝(𝑘)(𝑦|𝑣)]

1+𝜆
𝑒[∑ 𝑝(𝑥|𝑦)𝑥 log 𝑝(𝑘)(𝑣|𝑥)]

∑ [𝑝(𝑘)(𝑦|𝑣′)]1+𝜆𝑒[∑ 𝑝(𝑥|𝑦)𝑥 log 𝑝(𝑘)(𝑣′|𝑥)]
𝑣′

 (4.17)

⚫ If converges, stop; else, set

4.4 MATLAB Implementation

The MATLAB code for algorithm above is shown below. This function will take the joint probability

distribution of X and Y and solve for the optimal 𝑝(𝑣|𝑦). Then compute the rate 𝑅𝑦 and 𝑅𝑐 by (3.1)

and (3.2). The Lagrange multiplier 𝝀 takes value from -1 to 1, as a result of the (1 + 𝜆) part in the

algorithm. In this problem, the 𝑅𝑥 will always take the value of 1 and thus we do not display the plot

with 𝑅𝑥. For simplicity, we only show the last two steps of this algorithm.

45

4.5 Result

To check the accuracy of our algorithm, we first test our algorithm with the following probability

distributions:

𝒳 = {0,1}

P(x = 0) = P(x = 1) = 0.5

Y = X⨁W, W~Bonuli(𝑝), 𝑝 = 0.2

(4.18)

We will use |𝒱| = 2 for our first test and in following sections.

The result of our algorithm is shown in Figure 4.3. The blue curve is the curve generated by our

algorithm, the red curve is the line between the minimum and the maximum of the blue curve.

for n = 1:sv

 for j = 1:sy

 P_yv(j,n) = sum(P_vy(n,j) .* P_x_y(:,j));

 end

 P_yv(:,n) = P_yv(:,n)/sum(P_yv(:,n));

 end

for j = 1:sy

 P_vy_1(:,j) = (P_yv(j,:)).^(1+L)' .*

exp(log_2(P_vx)*P_xy(:,j));

 P_vy_1(:,j) = P_vy_1(:,j)/sum(P_vy_1(:,j));

 end

46

Figure 4.3 The plot for Ry-Rc

The curve is plotted by points instead of line segments.

From Figure 4.3, we can see that the curve has similar trend with Figure 4.1, but not exactly the same.

The result shows a good start of our algorithm. In later sections, we will have some further

analyzations for this algorithm, and combine this curve with our previous algorithm to seek a way to

compute the achievable rate region.

47

4.6 Further analysis

With the result from 4.5, we formulate an algorithm that can calculate the upper bound for the

achievable rate with one auxiliary random variable fixed. We plot the curve in Figure 4.3 into a 3D

plot.

Figure 4.4 3D plot for Ry-Rc curve

Then, for every point on this curve, we should be able to generate a 𝑅𝑥 − 𝑅𝑐 curve with the auxiliary

variable V fixed. The algorithm we use to generate this curve is the same algorithm we have shown in

chapter 3. We use

48

𝑝(𝑘+1)(𝑢|𝑥)

=
𝑒((𝜈𝑥+𝜆𝑥) log 𝑝(𝑘)(𝑢|𝑥)−𝜆𝑥𝑞(𝑘)(𝑢)+∑ (∑ 𝑝(𝑦|𝑥)𝑝(𝑣|𝑦))𝑦 log 𝑞(𝑘)(𝑢|𝑣))𝑣)

∑ 𝑒((𝜈𝑥+𝜆𝑥) log 𝑝(𝑘)(𝑢′|𝑥)−𝜆𝑥𝑞(𝑘)(𝑢′)+∑ (∑ 𝑝(𝑦|𝑥)𝑝(𝑣|𝑦))𝑦 log 𝑞(𝑘)(𝑢′|𝑣))𝑣)
𝑢′

(4.19)

To compute this curve. The surface formulated by those curves is the achievable rate region we need

to compute in this thesis. The result is shown in Figure 4.5.

Figure 4.5 Achievable rate region plot

From the Figure 4.5 we can see that we have a surface with the down left part missing. This is

because of a poor choice of the starting point and the multiplier for the slow convergence part. To

generate a better shaped surface for the achievable rate region, we would suggest finding better

starting point and slow convergence multiplier combination. Also, this surface is only generated

from the 𝑅𝑦 − 𝑅𝑐 curve. By symmetric, we assume the 𝑅𝑥 − 𝑅𝑐 curve should be the same. For a

49

more accurate surface plot, we suggest using both curves and adopt similar method to generate the

achievable rate region.

50

Chapter 5

Conclusion

In this thesis, we introduced the pattern recognition system and its achievable rate region. We

introduced the formulas for the achievable rate and two approaches for getting the surface of the

region. Then, we introduced the Blahut-Arimoto’s algorithm for computing the channel capacity and

rate-distortion function. With these algorithms, we derived our first two algorithm attempts for

computing the achievable rate region. Although these two algorithms cannot generate out desirable

surface, upper corner points generated by the algorithm is proven to be correct.

Then, we considered a sub-problem of the original problem, namely, compute the 𝑅𝑦 with fixed

𝑝(𝑢|𝑥). The sub-problem is proven to be easier to solve. We derived an algorithm for solving the sub

problem and have a basic guess for the shape of the achievable rate region. Then we showed that we

could adopt some methods to generate the surface of the achievable rate region from the result of the

sub-problem.

The challenge for computing the achievable rate region as a whole optimization problem, as what we

presented in chapter 3, lies in the part where we need to multiply the two variables during the algorithm.

Since we are doing optimization over both variables, this might result in the algorithm only converge

to the corner point. For a complete algorithm, we would consider an algorithm that optimize over one

variable while fixed the other one with some optimal value.

For future research direction, we could consider finding better starting point and corresponding

multipliers to generate better surface of the achievable rate region.

51

References

 [1] Westover M B, O'Sullivan J A. Achievable rates for pattern recognition[J]. IEEE Transactions
on Information Theory, 2008, 54(1): 299-320.

 [2] Blahut R. Computation of channel capacity and rate-distortion functions[J]. IEEE transactions

on Information Theory, 1972, 18(4): 460-473.

 [3] O’Sullivan J A. Alternating minimization algorithms: from Blahut-Arimoto to expectation-

maximization[M]//Codes, Curves, and Signals. Springer, Boston, MA, 1998: 173-192.

 [4] Cover T M, Thomas J A. Elements of information theory[M]. John Wiley & Sons, 2012.

 [5] Nasrabadi N M. Pattern recognition and machine learning[J]. Journal of electronic imaging,

2007, 16(4): 049901.

 [6] Niesen U, Shah D, Wornell G. Adaptive alternating minimization algorithms[C]//Information

Theory, 2007. ISIT 2007. IEEE International Symposium on. IEEE, 2007: 1641-1645.

 [7] O’Sullivan J A. Iterative algorithms for maximum likelihood sequence detection[M]//Codes,
Graphs, and Systems. Springer, Boston, MA, 2002: 137-156.

 [8] Lecture Note from ESE 529, Advanced Topics in Information Theory, 2012,11,06.

	Computation of Achievable Rate in Pattern Recognition System
	Recommended Citation

	WASHINGTON UNIVERSITY

