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This dissertation investigates the physics underlying the propagation of ultrasonic waves

in cancellous bone. Although quantitative ultrasound has the potential to evaluate bone

quality even better than the current gold standard X-ray based modality, its clinical utility

has been hampered by the incomplete understanding of the mechanisms governing the inter-

action between ultrasound and bone. Therefore, studies that extend the understanding of

the fundamental physics of the relationship between ultrasound and trabecular bone tissue

may result in improved clinical capabilities.

Ultrasonic measurements were carried out on excised human calcaneal specimens in order

to study the effects of overlapping fast and slow compressional mode waves on the ultrasonic

parameters of attenuation and velocity. Conventional analysis methods were applied to

received sample signals that appeared to contain only a single wave mode. The same signals

were also analyzed using a Bayesian parameter estimation technique that showed that the

signals, which appeared to be only a single wave, could be separated into fast and slow wave

components. Results demonstrated that analyzing the data under the assumption that only

a single wave mode is present, instead of two interfering waves, yielded a phase velocity that

lay between the fast and slow wave velocities and a broadband ultrasound attenuation that

was much larger than the ultrasound attenuations of the individual fast and slow waves.
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The fast and slow wave ultrasonic parameters were found to correlate with microstructural

parameters, including porosity, determined by microCT measurements.

Simulations of fast and slow wave propagation in cancellous bone were carried out to

demonstrate the plausibility of a proposed explanation for an anticipated sample-thickness

dependence of the apparent attenuation in bovine bone. The results showed that an appar-

ent sample-thickness dependence could arise if the fast and slow waves are not separated

sufficiently and if frequency-domain analysis is not performed on broadband data.

The sample-thickness dependence of the ultrasonic parameters was explored further using

experimental data acquired on an equine cancellous bone specimen that was systematically

shortened. The thickness of the sample varied the degree to which the fast and slow waves

overlapped, permitting the use of conventional analysis methods for sufficiently long sample

lengths. Bayesian parameter estimation was performed successfully on data from all sample

lengths. The ultrasonic parameters obtained by both conventional and Bayesian analysis

methods were found unexpectedly to display small, systematic variations with sample thick-

ness.

A very thorough and systematic series of studies were carried out on one-mode Lexan

phantoms to investigate the potential cause of the observed sample-thickness dependence.

These studies ruled out a series of potential contributors to the sample-thickness dependence,

but yielded no clear cause. Although the clinical implications of the small but systematic

sample-thickness dependence may be negligible, these studies may provide additional insights

into the propagation of ultrasonic waves in cancellous bone and how to maximize the quality

of information obtained.
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Chapter 1

Introduction

1.1 Background and Motivation

The broad theme of this dissertation is to further investigate the physics underlying the

interactions of ultrasound with cancellous (trabecular) bone tissue. Ultrasound is a particu-

larly useful modality for characterizing tissue because the wave propagation characteristics

can be related to both the material and the structural properties of the medium being interro-

gated. Therefore, knowledge of the ultrasonic physics within cancellous bone may provide an

improved understanding of the microstructure and composition of trabecular bone thereby

leading to an improved ability to detect, diagnose, and monitor the effects of pharmacological

intervention on diseases such as osteoporosis.

Osteoporosis is characterized by a decrease in bone quality due to structural deterioration

and a decrease in bone mass, leading to an increased risk of fragility-related fractures (Laugier

and Haiat, 2011; WHO, 2004; NIH, 2001). The current gold standard technique for measur-

ing bone mineral density and diagnosing osteoporosis is dual energy X-ray absorptiometry
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(DXA). Quantitative ultrasound (often referred to as QUS) is an alternative technique for

evaluating bone quality. Although quantitative ultrasound has many advantages over X-ray

based devices, including portability and modest costs, quantitative ultrasound has only been

able to equal the fracture prediction capability of DXA rather than surpassing it, as would

be anticipated because ultrasound is sensitive to structure as well as bone mineral density

which DXA is not (Krieg et al., 2008). The use of quantitative ultrasound in clinical settings

has been hampered, in part, by the structural complexity of bone and its role in the inter-

pretation of QUS data. The mechanisms of how ultrasound interacts with bone are still not

well understood. In order to interpret the results of ultrasound measurements, it is helpful to

understand the propagation of fast and slow wave compressional modes (which are discussed

in Chapter 2) and their propagation paths and characteristics (Laugier and Haiat, 2011).

1.2 Overview of the Dissertation

This dissertation is arranged such that each chapter represents a relatively self-contained

study or series of studies. However, later chapters use methods or build upon results discussed

in earlier chapters.

Chapter 2 provides background on bone, specifically cancellous bone, and the pathophysi-

ology of osteoporosis. A brief overview of the current state of quantitative (bone) ultrasound

is discussed, as well as some of the complications that arise due to the multi-mode wave

propagation that may occur in trabecular bone.

Chapter 3 presents a description of the methods used to analyze the trabecular bone
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data presented in this thesis. The analysis method used depends on the experimental ar-

rangement as well as on the specific properties of the sample itself. This chapter discusses

both conventional and Bayesian analysis methods, highlighting similarities and differences

between the two methods.

The application of both conventional and Bayesian analysis methods to data acquired

from excised human heel data are presented in Chapter 4. The results determined by the

two analysis methods are compared in order to investigate the effects of overlapping fast and

slow waves on the determination of ultrasonic parameters, such as the phase velocity and

the frequency dependence of the attenuation coefficient.

The next three chapters address the unanticipated sample-thickness dependences ob-

served in specific ultrasonic parameters. Chapter 5 uses simulated data to investigate the

effects of both overlapping fast and slow wave modes and the choice of method of analysis

on measurements of the apparent attenuation as a function of sample thickness.

An study analogous to that presented in Chapter 5 is discussed in Chapter 6 using exper-

imental data acquired on an equine bone specimen that was systematically shortened. The

unexpected sample-thickness dependence observed in the ultrasonic parameters determined

by both conventional and Bayesian analysis methods in Chapter 6 are explored further in a

series of systematic studies using one-mode Lexan phantoms in Chapter 7.

A brief summary and concluding remarks are given in Chapter 8.
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Chapter 2

Background

2.1 Preface

This Chapter presents an overview of bone structure and physiology as well as the mo-

tivation behind the studies presented in this thesis.

2.2 Bone Structure and Physiology

Bone is a highly specialized form of connective tissue that provides not only the shape

of the body, but also provides mechanical support, protection of organs and bone marrow,

and metabolic pathways related with mineral homeostasis (Laugier and Haiat, 2011). Bone

is a composite material consisting of an organic and an inorganic or mineral phase. Table

2.1 details the components of bone by percent weight.

There are two primary types of bone tissue: cortical (compact) bone and cancellous
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2.2 Bone Structure and Physiology

Table 2.1: The composition of bone by weight.

Bone Tissue Composition (% weight)

70% 22-25% 5-8%

Inorganic/mineral: Organic: Water

95% crystalline 98% Type I collagen

hydroxyapatite

(trabecular) bone, as shown in Figure 2.1. The adult human skeleton is comprised of ∼80%

(by mass) cortical bone and ∼20% trabecular bone (Clarke, 2008). Cortical bone is a dense

material with typical porosities of up to 15% (Laugier and Haiat, 2011). This type of

bone composes the outer shell of all bones. Due to the low porosity of cortical bone, it

can be approximated to be a homogenous, isotropic solid for clinically relevant ultrasound

frequencies ( 0.2 - 1.0 MHz). In contrast, cancellous bone is a highly porous material and

is found in the interiors of certain bones such as the hip, spine, wrist, heel, and the end of

long bones. The three-dimensional structure of cancellous bone is made of connected rods

and/or plates, called trabeculae, interspersed with bone marrow. Trabeculae can range from

approximately 50 - 400 µm thick and are typically spaced 700 - 2000 µm apart (Thomsen

et al., 2002; Ulrich et al., 1999; Njeh et al., 1999). The porosity of human cancellous bone

can range from 60% to over 95% (Hodgskinson et al., 1996; Lee et al., 2003; Wear, 2005).

The structure of the trabeculae in cancellous bone depends on the magnitude and direction

of the loads applied to it (Whitehouse and Dyson, 1974). For example, if the stress pattern is

complicated, then the trabecular network will also likely be complicated and asymmetrical.

Whereas in bones where the loading is predominantly uniaxial, the trabeculae will arrange
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2.2 Bone Structure and Physiology

Figure 2.1: Top picture: bones of the foot. The calcaneus (heel) is circled. Left bottom: A
sagittal cross section of an ex vivo human calcaneus harvested from a cadaver donor. A thin
layer of cortical bone and some residual soft tissue surround interior cancellous (trabecular)
bone. (Photo by Christian C. Anderson, used with permission). Right bottom: a three
dimensional image of trabecular bone from a human calcaneus specimen reconstructed from
microCT measurements. (Photo by Amber Groopman).

in a more column-like structure (Njeh et al., 1999).

Bone evolves continuously over time due to a process called bone remodeling, in which

mature bone tissue is replaced by new bone tissue. Remodeling occurs primarily in the adult

skeleton to maintain bone mass and mineral homeostasis, repair microcracks and fractures,

and adapt to changes in mechanical loading (Wolff’s law) (Wolff, 1986). Activation of bone

remodeling depends not only on mechanical stimuli but also on several hormonal stimuli,
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2.3 Osteoporosis

such as estrogen and parathyroid hormones, and growth factors (Manolagas and Jilka, 1995;

Parfitt, 1984). Specialized bone cells, called osteoclasts, breakdown and resorb the bone

matrix at the targeted site. Subsequently, another bone cell known as osteoblasts secrete

collagen and proteins into the cleft by resorption. Eventually, this collagen matrix will nucle-

ate and fully mineralize into new bone. The link between bone resorption (osteoclasts) and

bone formation (osteoblasts) is referred to as coupling (Njeh et al., 1999). In normal adult

bone, the coupling is ”perfect” in that bone formation only occurs where bone resorption

has already occurred. Both cortical and trabecular bone undergo the remodeling process,

although trabecular bone has an eight times higher rate of turnover than that of cortical

bone (Njeh et al., 1999; Manolagas and Jilka, 1995). This is because bone turnover is a

surface event, and trabecular bone has a much greater surface area than cortical bone.

2.3 Osteoporosis

If osteoclast and osteoblast activity become uncoupled in remodeling leading to more bone

resorption than formation, the result will be a net loss of bone mass and strength. Cortical

bone loss occurs mostly at the endosteal surface, leading to the expansion of the marrow

space and thinner cortical thickness. For the more rapidly remodeled trabecular bone, bone

loss results in thinner trabeculae and the disconnection of the trabecular network. As this

negative imbalance continues over the aging process, bone quality decreases due to structural

deterioration and a decrease in bone mass, leading to an increased risk of fragility-related

fractures (Laugier and Haiat, 2011). These conditions characterize the disease known as
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osteoporosis (WHO, 2004; NIH, 2001).

2.3.1 Prevalence

According to the National Osteoporosis Foundation, approximately 54 million Americans

over 50 years of age have osteoporosis or osteopenia (low bone mass), with over 12 million

having osteoporosis. Of these, approximately eighty percent are women. The clinical end-

point of osteoporosis is a fracture, usually occurring in the wrist, spine, and hip. It was

estimated that at least 90% of all hip and spine fractures among elderly white women were

attributed to osteoporosis. Hip fractures are the most serious result of osteoporosis and are

associated with high degrees of morbidity and mortality. Approximately 20-24% of patients

that suffer hip fractures die within the following year due to related complications, and a

large percentage of survivors require some kind of living assistance (Leibson et al., 2002;

Cooper et al., 1993). Due to the increasing elderly population, the number of people with

osteoporosis, and thus the number of osteoporotic-related fractures is expected to increase

dramatically, causing a strain on the healthcare system and the economy. In 2008, the med-

ical cost of osteoporosis and related fractures in the United States was estimated at $22

billion (Blume and Curtis, 2011).

2.3.2 Diagnosis

Since there is no current clinical technique that accurately assesses bone quality, the

diagnosis of osteoporosis depends on measurements of bone mass, specifically areal bone

mineral density (BMD) at the hip or lumbar spine (Gluer et al., 1996; Kanis, 2002). The
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current gold standard technique for measuring BMD is dual energy X-ray absorptiometry

(DXA), which uses two X-ray beams with different energy peaks in order to differentiate soft

tissue from calcified bone. DXA directly measures the bone mineral content (BMC) of the

specific site (based on the attenuation of the X-rays), and the bone mineral density (BMD)

is derived from dividing the BMC by the area measured. Therefore, the size of the bone

can affect the apparent density (Kanis, 2002). Although dual X-ray absorptiometry can be

performed on the entire skeleton and on peripheral sites such as the forearms and heels, the

gold standard for diagnosis of osteoporosis is BMD measurements of the hip, since it has the

highest predictive value for hip fracture (Marshall et al., 1996).

Skeletal mass and density remain relatively constant until approximately 50 years of age

(Bonjour and Rizzoli, 1996). The density of bone mineral content in young adults is approx-

imately a normal Gaussian, as illustrated in Figure 2.2. Because of this distribution, the

bone density values in subjects can be expressed in terms of standard deviations (SD) from

a mean reference population. This number, in units of standard deviations from the mean of

a healthy reference population, is defined as a T-score. In 1994, the World Health Organiza-

tion (WHO) proposed four general diagnostic categories based on hip BMD measurements

(T-scores) as assessed by DXA. Normal is classified as a hip BMD greater than one standard

deviation below the mean of the young adult female population (T-score ≥ -1), low bone

mass (osteopenia) is defined as a hip BMD greater than one standard deviation but less than

2.5 standard deviations below the mean (-2.5 < T-score < -1), and osteoporosis is defined as

a hip BMD 2.5 or more standard deviations below the young adult mean (T-score ≤ -2.5)

(Kanis, 2002). Severe or established osteoporosis is classified as osteoporosis along with one
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2.3 Osteoporosis

Figure 2.2: Diagnostic criteria for bone quality based on bone mineral density (BMD)
proposed by the World Health Organization (WHO). The normal distribution of bone mineral
density is based on the values for young (30 years old) adult white females. A value of BMD
between 1 and 2.5 standard deviations below the mean BMD is classified as low bone mass,
which is also referred to as osteopenia. A BMD more than 2.5 standard deviations below
the mean is defined as osteoporosis.
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or more fragility fractures. Since the WHO classification is based on a reference population

of young, healthy, white women, misdiagnoses may occur when applying these definitions to

men or other ethic groups.

In addition to BMD measurements, clinical risk factors are useful in predicting fracture

risk and determining the appropriate treatment. There is a tool known as FRAK R© (Fracture

Risk Assessment Tool) that can be used to calculate the individual 10-year risk of fracture

(Kanis et al., 2008). It considers factors such as age, sex, height, and weight along with

clinical risk factors including previous fragility fractures, premature menopause, family his-

tory, smoking, excessive alcohol intake, arthritis, and other causes of secondary osteoporosis

(Laugier and Haiat, 2011; Kanis, 2002).

2.4 Quantitative Ultrasound

An alternative technique for evaluating bone quality is quantitative ultrasound, which

is often referred to as QUS. The first clinical application of ultrasound to bone was in the

late 1950s for monitoring fracture healing at the tibia (Siegel et al., 1958). The use of QUS

methods in the field of osteoporosis was introduced after a study published in 1984 demon-

strated that the slope of the frequency-dependent attenuation at the calcaneus (heel) could

discriminate osteoporotic from non-osteoporotic subjects (Langton et al., 1984). Currently,

there are a variety of different devices and techniques that have been developed to assess

bone quality in vivo by measuring the ultrasonic parameters of cancellous or cortical bone at

sites such as the calcaneus (Langton et al., 1984), finger phalanges (Fredfeldt, 1986), radius
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(Hans et al., 1999), tibia (Foldes et al., 1995), and proximal femur (Barkmann et al., 2008b).

The main clinical application of QUS is fracture risk prediction for osteoporosis; however,

other bone-related application, such as monitoring fracture healing, may also benefit from

QUS measurements (Laugier and Haiat, 2011). Another potential application of QUS would

be for monitoring the effectiveness of pharmacological interventions designed to inhibit or

reverse bone loss.

Current QUS devices can be classified into two groups based on the type of interro-

gation employed: transverse transmission and axial transmission. Transverse transmission

techniques are more common than axial transmission methods and is the configuration con-

sidered throughout this thesis. In the transverse transmission method, two transducers (a

transmitter and a receiver) are placed on opposite sides of the site of interest. Typically,

these sites are located at the peripheries of the skeleton such as the finger phalanges, the

radius (forearm), and, preferentially, the calcaneus (heel). These sites are often used in

transverse QUS methods due to their relatively flat surfaces, which aids in coupling and the

transmission of the ultrasonic wave through the bone, and the relatively small amount of

overlying soft tissue.

The most common clinical QUS devices utilizing transverse transmission are heel bone

sonometers, which typically use planar or focused broadband transducers with a center

frequency of 0.5 MHz. An image of such a device, the General Electric (GE) Achilles

Insight R©, is shown in Figure 2.3. The Achilles Insight R© has two fixed transducers: the

transmitter is a large, single element transducer that emits a broadband plane wave and

the receiver is a 590 element 2D array that permits active focusing. The transducers are
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Figure 2.3: Left: An image of the General Electric Achilles Insight R© used for heel quan-
titative ultrasound. The subject’s foot (either right or left) is placed between the two trans-
ducer housings. Ultrasonic signals are propagated through the calcaneus (heel) bone in the
mediolateral direction as illustrated on the right. The patient’s information (age, sex, height,
weight, etc.) can be input using the LCD touchscreen. The screen also displays an image
of the heel bone to ensure correct positioning and displays the results at the end of testing.
Photograph of the GE Achilles Insight R© by Christian Anderson (used with permission).

encased in temperature-regulated, water-filled membranes that permit better coupling to the

patient’s skin/heel.

The ultrasound parameters of interest for transverse transmission sonometers are atten-

uation and velocity, and are obtained using the substitution technique. In the substitution

technique, the signal transmitted through the bone of interest is compared to a signal trans-

mitted through a reference medium of known attenuation and speed. For example, the GE

Achilles Insight R© uses a stored reference signal that has traveled through water, maintained

at body temperature, a distance corresponding to the transducer separation. In principle,

the velocity can be measured using two approaches. The first assumes that the speed is

frequency-independent and uses time-of-flight measurements. An issue with this approach is
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that various techniques can be used to determine time-of-flight (TOF), such as first arrival

point, the first zero-crossing point, or a fixed threshold on the rising front of the received

signal (Laugier and Haiat, 2011), leading to inconsistent velocity results among investigators

(Nicholson et al., 1996; Wear, 2000). In reality, both attenuation and velocity are frequency-

dependent, resulting in the inconsistencies described above when measurements are made in

the time-domain as opposed to the frequency-domain (Haiat et al., 2006). The second ap-

proach is measuring the frequency-dependent phase velocity. This method eliminates some

of the issues present with the time-of-flight velocity, but does require more computation

time. Phase velocity measurements will be explained in more detail in Chapter 3. For both

methods of determining the velocity, the thickness of the skeletal site must also be known. In

some cases, it is simply assumed to be a constant thickness. For the GE Achilles Insight R©,

the heel thickness is assumed to be 40 mm, which may be an underestimate or overestimate

of the actual heel thickness, depending on the subject.

Attenuation is usually reported as the slope of a linear fit to the frequency-dependent

signal loss, and is referred to as ”Broadband Ultrasound Attenuation” (BUA) (Langton

et al., 1984; Langton and Njeh, 2008; Wear, 2008). In some instances, BUA is normalized by

the bone thickness and is reported as the ”normalized Broadband Ultrasound Attenuation

(nBUA). Determination of ultrasonic attenuation will be discussed in Chapter 3. Clinical

bone sonometers, including the GE Achilles Insight R©, combine the velocity and BUA mea-

surements into a single index to reflect bone quality. However, there is no standardization

for this index among manufacturers (Bonnick, 2004).

In contrast to transverse ultrasound transmission, which is predominantly done on can-
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cellous bone sites, axial transmission techniques are performed almost exclusively on cortical

bone sites, such as the forearm and tibia. For axial transmission, a transmitter and receiver

are aligned along the bone axis to generate and measure guided waves that propagate in

the cortical layer of long bones (Laugier and Haiat, 2011). One complication with axial

transmission techniques is that the received signals often contain multiple dispersive wave

modes making signal analysis challenging. The parameter of interest in current clinical axial

transmission devices is the velocity of the first arriving signal (FAS). The FAS velocity was

shown, numerically and experimentally, to increase with increasing cortical thickness as long

as the cortical thickness was smaller than the wavelength of the compression bulk wave inside

the bone (Laugier and Haiat, 2011). Thus, the FAS velocity provides an indirect measure of

bone strength.

2.4.1 Comparison to DEXA

A limitation of current QUS is that their access is mostly restricted to peripheral sites such

as the heel or wrist. In contrast, the X-ray based technology permits measurements at the

sites most prone to osteoporotic fracture (hip and spine), allowing for a better assessment of

potential fracture risk at those sites. Due to the complexity of the anatomy and the presence

of (more) soft tissue, ultrasonic measurements at locations such as the proximal femur (hip)

and spine are quite challenging. In recent years, progress has been made to adapt transverse

techniques, similar to those of the heel devices, to perform measurements directly at the hip

(Barkmann et al., 2008a, 2010).

Another roadblock preventing widespread clinical use of quantitative ultrasound is the
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lack of standardization among manufacturers. QUS devices from various manufacturers may

have differences in hardware, transducer design, analysis regions, signal processing, modality

of transmission (axial or transverse) and coupling agents (Laugier and Haiat, 2011). Due

to these differences, there may be significant differences in the measured QUS parameters

(BUA and SOS) among the commercial devices. As a consequence, results are not directly

comparable between different QUS systems (Cepollaro et al., 2005).

In spite of this, QUS devices may offer advantages over the current gold standard X-ray

based devices including the absence of ionizing radiation, portability, and a more modest

cost. Additionally, in principle, ultrasound modalities should provide more information

about bone quality than DXA because ultrasound wave characteristics are related to both

material and structural properties of the propagation medium. In the linear propagation

regime, the velocity of an acoustic wave in a medium is directly related the elasticity and

density of that medium by

v =

√
Me

ρe
(2.1)

where v is the velocity, Me is an effective elastic modulus, and ρe is an effective mass density

(Shutilov, 1988). The definitions of Me and ρe depend on the wave type (bulk compres-

sion, bulk shear, guided waves, etc.) and the medium type (liquid, isotropic homogenous

solid, anisotropic homogenous solid, etc.). Despite its potential, QUS has only been able to

equal the fracture prediction capability of DXA instead of surpassing it (Krieg et al., 2008).

The present research is designed to achieve a better understanding of the physics underly-

ing ultrasonic wave propagation in bone with the goal of obtaining additional information

on material and structural properties beyond that provided by bone mineral density, thus
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improving the evaluation of bone quality and fracture risk.

2.5 Fast and slow waves in bone

The presence of two compressional waves propagating in bone, known as fast and slow

waves, were first observed in cortical bone by Lakes et al. (1983). It was more than 10

years later that Hosokawa and Otani experimentally observed fast and slow waves in bovine

cancellous bone (Hosokawa and Otani, 1997). Since then, many other investigators have

observed these two wave modes in bovine (Mizuno et al., 2010, 2008; Cardoso et al., 2003;

Lee et al., 2003; Lakes et al., 1983; Hosokawa and Otani, 1998), in equine (Fujita et al., 2013),

and in human (Mizuno et al., 2009; Sebaa et al., 2006; Nicholson et al., 1998) cancellous bone

specimens from various anatomical sites. The complicated, anisotropic, and porous structure

of cancellous bone is what seems to give rise to the fast and slow wave modes. From one

point of view, the fast wave appears to be associated more with propagation through the

hard trabeculae whereas the slow wave appears to be associated more with propagation

through the pore spaces. This point of view is supported by studies that observed that the

fast wave amplitude increases and the slow wave amplitude decreases with increasing bone

volume fraction (Hosokawa and Otani, 1997) and that replacing the fluid filling the pores

with marrow, water, or alcohol primarily changes the measured slow wave velocity (Pakula

et al., 2009).

The degree of anisotropy and the direction of insonification are factors that influence

whether both fast and slow wave modes will be observed in the time domain. Hosokawa
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and Otani (1998) found that if the cancellous bone was insonified along (or parallel to) the

main trabecular orientation, then separated fast and slow waves would be observed in the

received signal, as shown in Figure 2.4. However, as the insonification angle became more

perpendicular to the predominant trabecular orientation, the two wave modes became more

overlapped, ultimately appearing to merge into a single wave. These results were expanded

further by Nicholson et al. (1998) who measured the ultrasonic waveforms propagating

through human vertebral cancellous bone in three orthogonal directions. In this study, fast

and slow waves were only observed in one of the three insonification directions, the one

that corresponded to the direction with the highest degree of trabecular orientation. In the

other two directions, where the trabecular orientation was not as strong, only one wave was

apparent. Other factors that influence the degree to which the fast and slow waves overlap

include the porosity of the specimen and the ultrasonic path length (Lee and Choi, 2007;

Haiat et al., 2008).

2.5.1 Theoretical Models

Several theoretical models have attempted to explain the presence and propagation of fast

and slow waves in cancellous bone. The most extensively applied model is Biot theory. The

original theory from Biot was introduced in 1956 and modeled wave propagation for fluid-

saturated porous rocks (Biot, 1956a,b). The theory is derived by considering the separate

motion of the solid elastic frame and the interspersed fluid caused by the ultrasonic wave

(Haire and Langton, 1999). Biot theory predicts the existence of two longitudinal waves,

which Biot referred to as ”waves of the first kind” (now called fast waves) and ”waves of
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Figure 2.4: Left: Ultrasonic insonification parallel to (or along) the predominant trabecular
alignment. Right: Insonification perpendicular to the predominant trabecular alignment.
From (Hosokawa and Otani, 1998).

the second kind” (now called slow waves). The fast wave in Biot theory represents the fluid

and solid moving in-phase, and the slow wave represents the fluid and solid moving out-of-

phase. Biot theory was first applied to cancellous bone by McKelvie and Palmer (1991),

and has been used extensively since then to predict the velocities of the fast and slow waves

as functions of bone porosity (Wear et al., 2005; Williams, 1992; Sebaa et al., 2006; Pakula

et al., 2008; Fellah et al., 2008). Although the theoretical predictions for the speeds of the

fast and slow waves were found to agree quite well with experimental results, Biot theory

predictions for the attenuation were found to deviate significantly from the experimentally

measured attenuations. This discrepancy may be due to the fact that Biot’s model only

considers absorption loss due to viscous friction at the interfaces between the solid and fluid,

and does not account for other sources of energy loss such as scattering, diffraction, or phase

cancellation at the receiving transducer (Laugier and Haiat, 2011). One difficulty in the

application of Biot theory to cancellous bone is the large number of physical parameters
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that must be measured or estimated. For cancellous bone, many of the parameters required

are unknown and can only be estimated. Examples include the Young’s modulus of the solid,

the bulk modulus of the fluid, Poisson’s ratio for the solid, the fluid viscosity, and tortuosity.

Schenberg introduced a stratified model, which is composed of periodically alternating

solid (trabecular) and fluid layers, that also predicts the existence of fast and slow waves

(Schoenberg, 1984). Although this model is easier to implement than Biot theory and can

provide insight into the angle-dependency between the trabecular orientation and insoni-

fication angle of the fast and slow wave speeds, it is a highly idealized model that cannot

provide a complete understanding of the interaction between ultrasound and the complicated

trabecular structures of cancellous bone.

2.5.2 Complications arising from two wave modes

The potential presence of two waves in the acquired bone signal can cause complications,

especially when analyzing the data and subsequently, interpreting the results. Under certain

circumstances, the transit times of the fast and slow waves are sufficiently different that they

are separated in the time-domain data. In these cases, windowing can be applied to the data,

and the phase velocities and attenuations of the individual wave modes can be measured.

Although this approach is relatively straightforward in laboratory settings, clinical bone

sonometers may not provide this option (Anderson et al., 2011). In many situations, the

transit times of the fast and slow waves are too similar, causing them to overlapping in the

acquired signal. The degree to which the fast and slow waves overlap depends on the factors

described above, and can vary significantly from sample to sample or even at different sites
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within the same sample due to the heterogeneity of trabecular bone (Anderson et al., 2011).

If the two wave modes overlap in time, the windowing process becomes difficult because the

waves cannot be separated cleanly from each other. Therefore, the ultrasonic properties of

the individual fast and slow waves cannot be determined. For some experimental conditions

and arrangements, such as perpendicular insonification of the calcaneus, the two waves may

overlap to such a degree that it appears as if one wave were propagated. In those cases, the

acquired data may be processed assuming only one wave is present, potentially leading to

artifacts in the results.

One such artifact of analyzing cancellous bone data comprised of multiple overlapping

wave modes under the assumption that only one wave mode is present is negative dispersion

(Anderson et al., 2008; Marutyan et al., 2006). Numerous studies of cancellous bone reported

finding phase velocities that decreased with increasing frequency (Droin et al., 1998; Haiat

et al., 2006; Wear, 2005, 2007; Pakula et al., 2009). This negative dispersion is considered

to be anomalous because it conflicts with the causality-imposed Kramers-Kronig relations.

For linear ultrasonic wave propagation, the Kramers-Kronig relations connect the real and

imaginary parts of the system response. In this context, the real part, which is related to the

phase velocity, can be obtained from knowledge of the imaginary part, which is related to the

attenuation coefficient (O’Donnell et al., 1981; Mobley et al., 2005; Waters et al., 2003, 2005;

Waters and Hoffmeister, 2005). For the frequencies used in clinical bone sonometers, the

attenuation coefficient of cancellous bone rises approximately linearly with frequency; this

is why the slope of attenuation (BUA) can be used as a clinically relevant parameter. The

approximate form of the Kramers-Kronig relations valid for media with linearly increasing
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attenuation coefficients predicts that the phase velocity should increase logarithmically with

frequency - that is, have positive dispersion. An example of the discrepancy between the

Kramers-Kronig prediction and the experimental results for phase velocity is illustrated in

Figure 2.5.

Simulations have shown that when two waves with phase velocities and attenuations

similar to those exhibited in cancellous bone interfere with one another, negative dispersion

can occur even though the apparent attenuation coefficient remains approximately linear

with frequency (Anderson et al., 2011). The mixed-mode signal can exhibit anomalous

dispersion even though the individual wave modes that comprise it each exhibit positive

dispersion, in accordance with the Kramers-Kronig relations.

Since overlapping fast and slow waves may cause artifacts in phase velocity measurements

of cancellous bone, it is reasonable to assume that they might also cause artifacts in the

attenuation measurements. The effects of overlapping wave modes on measurements of the

attenuation coefficient of human calcaneal bone are explored in Chapter 4.

If the interference of fast and slow waves are responsible for artifacts such as negative

dispersion, then methods for separating the individual waves from acquired data containing

overlapped fast and slow waves may prove useful. Such methods may improve the assessment

of bone quality and fracture risk by permitting the individual fast and slow waves to be

analyzed in place of or in addition to the analysis of the composite wave. It is possible that

the ultrasonic properties of the fast wave alone or the slow wave alone may correlate more

strongly to microstructural properties of trabecular bone than the ultrasonic properties of

the entire received signal. One such method for recovering the properties of the separated
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Figure 2.5: Panel A: The nearly linear attenuation coefficient of an excised human cal-
caneus specimen. Panel B: The measured phase velocity (black circles) displays anomalous
negative dispersion, which is in disagreement with the positive dispersion predicted by the
Kramers-Kronig relations (gray curve). Reprinted with permission from (Anderson, 2010).
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fast and slow waves makes use of Bayesian probability theory, which will be discussed in

Chapter 3.

2.6 Summary

Quantitative ultrasound techniques and devices have been gradually introduced into clin-

ical practice, although this has mainly occurred in countries outside the United States where

DXA systems are less widely available. The use of quantitative ultrasound in clinical settings

has been hampered, in large part, by the structural complexity of bone and its role in the

interpretation of QUS data. The mechanisms of how ultrasound interacts with bone are

still not well understood. In order to interpret the results of ultrasound measurements, it

is first necessary to understand the propagation of ultrasound through bone with identifi-

cation of the different (fast and slow) wave modes and their exact propagation paths and

characteristics (Laugier and Haiat, 2011).

The use of multi-element receiving transducers may provide an improved approach for

evaluating the interaction mechanisms between ultrasound and bone. Although some clinical

bone sonometers have receiver arrays, many devices, especially those in developing countries,

are limited to the use of a single element receiving transducer. The higher cost of fabrication

and the need for substantially increased processing capabilities limit the use of systems with

receiving transducer arrays. As a consequence, this dissertation explores approaches for

maximizing the quality of information that can be obtained from data acquired with single

element receiving transducers.
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Chapter 3

Methods of Conventional and

Bayesian Analysis

3.1 Preface

This chapter details the various analysis methods used in this thesis to determine the

ultrasonic properties of cancellous bone. First, we present an overview of how certain ul-

trasonic properties, such as the phase velocity and attenuation coefficient, are determined

through conventional analysis techniques. In order to deal with the complicated waves some-

times observed in trabecular bone, a Bayesian probability method was employed to extract

the fundamental ultrasonic properties of the fast and slow waves. The chapter concludes

with a discussion of potential complications that can arise as a result of specific features of

the experimental apparatus and detailed characteristics of the propagation and detection of

diffracting ultrasonic waves.
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3.2 Background

3.2 Background

In many cancellous bone studies with ultrasound, the analysis method used assumes

only a single wave is present in the received through-sample signal, or if multiple waves are

present, that these waves can be completely separated by time gating. This conventional

analysis method is performed in the frequency domain and permits the determination of

intrinsic ultrasonic properties of the sample, such as the phase velocity and the attenuation

coefficient. Due to the unique structure of trabecular bone, conventional analysis methods

applied to cancellous bone data may lead to misleading results for the ultrasonic properties.

A Bayesian probability algorithm presented in Section 3.4 may permit the true intrinsic

ultrasonic properties of cancellous bone specimens to be determined.

A number of ultrasonic properties are of interest for characterizing a material (like bone)

ultrasonically. The phase velocity is one such parameter. If the propagating medium has

a phase velocity that varies with frequency, which is the case with most biological tissues,

then that medium is said to be dispersive. As indicated in Chapter 2, cancellous bone has

been shown to display both positive and negative dispersion.

Another intrinsic ultrasonic property of interest is the attenuation coefficient. The atten-

uation coefficient is a frequency-dependent measure of the loss in signal amplitude occurring

in a sample as a function of distance traveled. The attenuation coefficient of a medium is

useful in determining the range of frequencies that can be used to interrogate that medium

because ultrasonic signals typically attenuate more rapidly at higher frequencies as well as

with increasing sample thickness. In most studies of trabecular bone, the frequencies typ-
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ically employed range from 500 kHz to 1 MHz, although some studies present results at

frequencies as high as 10 MHz (Hoffmeister et al., 2008; Hoffmeister, 2011). Attenuation

properties offer a way to study the structure of a material. Some studies have investigated

the anisotropy of the attenuation coefficient and slope of the attenuation coefficient in sam-

ples of trabecular bone. These parameters were found to be significantly larger along the

trabecular axis than perpendicular to that axis (Glüer et al., 1993; Wear, 2000a). Similar re-

sults were found in studies of the fiber structure of hearts (Gibson et al., 2009; Baldwin et al.,

2006). More accurate measurements of the attenuation properties of bone, perhaps using

the Bayesian formalism, may provide additional insight and information about the structure

of trabecular bone and may improve diagnostic capabilities of clinical bone sonometers.

3.3 Conventional Data Analysis

3.3.1 Broadband Phase Spectroscopy

The formalism used in this thesis was originally developed by Sachse and Pao (1978) and

was adapted by Rebecca Trousil, a Laboratory for Ultrasonics alumnus, in her Ph.D. thesis

(Trousil, 2002). All of the broadband phase velocity measurements discussed in this thesis

were made using the through-transmission method, so the formalism of phase spectroscopy

discussed will be based on this approach.

Figure 3.1 shows the two measurements needed for the phase spectroscopy method in the

case of a through-transmission experiment. The general complex frequency response at the
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3.3 Conventional Data Analysis

Figure 3.1: Experimental set-up for a through-transmission experiment that measures the
frequency dependence of the phase velocity. The top panel depicts the reference signal in
which the ultrasonic pulse travels a distance L through water only before being detected.
The bottom panel shows the sample signal which travels the same path as the reference
except that a sample of thickness d is inserted between the transducers.
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receiving transducer can be expressed as,

Ũ(x, ω) = ℵ(ω)ei[k(ω)x+iα(ω)x+ζ(ω)] (3.1)

where ℵ(ω) is the frequency dependent amplitude, k(ω) is the wavenumber, α(ω) is the

amplitude attenuation coefficient, x is the propagation distance, and ζ is an arbitrary phase

factor (Trousil, 2002). The reference trace corresponds to a signal that has traveled a distance

L in the host or reference medium, usually water. The complex frequency response of the

reference signal at the receiving transducer can be written as

Ũref (x = L, ω) =
[
ℵ(ω)e−αref (ω)L

]
· ei(kref (ω)L+ζ(ω))

=
∣∣∣Ũref (x = L, ω)

∣∣∣ · eiφref (ω) (3.2)

where
∣∣∣Ũref ∣∣∣ is the magnitude of the complex frequency response and φref (ω) is the phase

of the complex frequency response of the reference measurement.

The through-sample signal corresponds to a pulse that has traveled the same path as the

reference except that a portion of the path has been replaced with a sample of thickness d.

The complex frequency response of the sample measurement at the receiving transducer can

be written as

Ũsamp(x = L, ω) =
[
(T ph→sT

p
s→h)ℵ(ω)e−αref (ω)(L−d)−αs(ω)d

]
· ei(kref (ω)(L−d)+ks(ω)d+ζ(ω))

=
∣∣∣Ũsamp(x = L, ω)

∣∣∣ · eiφsamp(ω)

(3.3)

where
∣∣∣Ũsamp∣∣∣ is the magnitude of the complex frequency response and φsamp(ω) is the phase

of the complex frequency response of the sample measurement (Trousil, 2002). The pressure

amplitude transmission coefficients, T ph→s and T ps→h in Equation 3.3 account for the partial
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transmission of the incident wave at the boundary between the host medium and the sample

(h→ s) and at the boundary between the sample and host medium (s→ h).

The phase velocity can be determined from the phase difference between the reference and

the sample measurement. The phase difference can be obtained by subtracting Equation 3.2

from Equation 3.3 to obtain

∆φ(ω) = φsamp(ω)− φref (ω) = ωd

(
1

vs(ω)
− 1

vh

)
(3.4)

By rearranging the terms in Equation 3.4, an expression for the phase velocity in the sample

can be obtained

vs(ω) = vh

(
ωd

ωd+ vh∆φ(ω)

)
(3.5)

In all the experiments discussed in this thesis, the host medium was water. The phase

velocity of the water was calculated using a fifth degree polynomial developed by Marczak

that depends on the water temperature (Marczak, 1997). In order to calculate the phase

velocity in Equation 3.5, the phase difference, ∆φ(ω), must be determined.

Determining the Experimental Phase Difference

For both the reference measurement and the sample measurement, phase is being accu-

mulated from the instant the transmitting transducer is excited to when the received signal

is detected. This phenomena of accumulating phase in the frequency domain as the signal

propagates in time can be described by the Fourier Shift Theorem

F [f(t− a)] = e−iaωF̃ (ω) (3.6)
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where a is the shift in the time domain, F is the Fourier transform, and F̃ (ω) is the Fourier

transform of f(t) (Bracewell, 2000). However, the amount of phase accumulated is different

between the water measurement and the sample measurement due to replacing a portion of

the water path with a sample of thickness d. The accumulated phase at a specific frequency

per distance traveled can be calculated by the wavenumber defined as

k(ω) =
ω

v(ω)
(3.7)

where ω is the angular frequency and v(ω) is the phase velocity. For example, if we consider

an experiment with a host medium of water with a phase velocity of 1480 m/s and a plastic

sample with a velocity of 2200 m/s at 1 MHz, the corresponding wavenumbers would be

kref (1MHz) = 4,243 rad/m and ksamp(1MHz) = 2,855 rad/m, respectively. This calculation

indicates that the phase accumulates more slowly in the medium with the higher phase

velocity, in this example, the plastic sample. Since the difference in the accumulated phase

between the reference signal and the sample signal depends upon the difference in their

phase velocities, the phase difference can be used to calculate the phase velocity of the

experimentally measured sample.

The total experimental phase associated with the reference signal and the through-sample

signal can be expressed as

φref (ω) = (φrefshift(ω) + 2πm) + ωτ refdelay + ωτ refshift (3.8)

φsamp(ω) = (φsampshift(ω) + 2πn) + ωτ sampdelay + ωτ sampshift (3.9)

where φshift is the phase of the shifted (or symmetrized) spectrum, 2πm and 2πn are ambi-

guities in the shifted reference and sample phase spectra, τdelay is the b-delay time, and τshift

38



3.3 Conventional Data Analysis

is the amount of time the signal is shifted. The formalism used here originated with Trousil

(2002) and was modified by Benjamin Johnson (2012). The phase difference in Equation 3.4

can be re-written in terms of Equation 3.8 and Equation 3.9 so that

∆φ(ω) = φsamp(ω)− φref (ω)

=
[(
φsampshift(ω)− φrefshift(ω)

)
+ 2π(m− n)

]
+ ω

(
τ sampdelay − τ

ref
delay

)
+ ω

(
τ sampshift − τ

ref
shift

)
(3.10)

where the quantity (m − n) is known as the phase sheet offset. A description of each

component in Equation 3.10 is detailed in the following paragraphs.

The terms τ sampdelay and τ refdelay refer to the trigger delay (b-delay) which informs the oscil-

loscope to start digitizing the rf signals after some time has elapsed relative to the time of

excitation of the transmitting transducer. This permits the signal of interest to be centered

on the oscilloscope window and viewed over an expanded time interval. However, the total

phase associated with an rf signal must take into account the phase accumulated up to the

b-delay time and the phase accumulated within the digitized window.

The phase spectrum associated with an rf signal, termed φshift is obtained from the

argument of the Fourier transform of the rf trace,

φshift(ω) = tan−1

Im
[
Ũ(ω)

]
Re
[
Ũ(ω)

]
 (3.11)

The phase calculated in Equation 3.11 is restricted on the interval [−π,+π]. This restriction

causes the phase spectrum to wrap at its ±π boundaries, resulting in a phase that rapidly

changes with frequency as shown in Figure 3.2. Since this function is a four quadrant inverse

tangent, the resulting phase spectrum is ambiguous to integer multiples of 2π, which requires
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Figure 3.2: The effects of shifting the radiofrequency (rf) trace. The top panel shows that
if a signal is not shifted (or symmetrized) the phase rapidly changes over the bandwidth. In
the bottom panel, the same signal has been shifted using the peak positive criterion, allowing
the phase to change more gradually over the bandwidth.

the inclusion of the phase sheet offset in Equation 3.10.

In order to allow the phase spectrum to vary more slowly with frequency, the rf signal

is shifted or symmetrized prior to calculating its phase spectrum. This symmetrization

reduces the amount of phase wrapping that occurs by distributing the energy in the pulse

evenly about the ends of the digitized recording. There are numerous methods for shifting

or symmetrizing an rf signal. The approach used in this thesis is to shift the peak positive

voltage to the start of the digitized record, wrapping earlier points to the end of the trace.

This approach is illustrated in the bottom row of Figure 3.2 along with the corresponding
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Figure 3.3: The effects on the phase velocity results by using different phase sheet offsets
(m-n). The correct phase sheet is (m-n) = 0, which produces the least amount of dispersion.
By changing the phase sheet offset by one integer the phase velocity as a function of frequency
changes quite dramatically.

phase spectrum. The figure demonstrates the significant change in the phase spectra that

occur due to shifting the rf signals. The term τshift in Equation 3.10 is the amount of

time the rf signals were shifted when performing the symmetrization process. The last term

needed to determine the phase difference is the phase sheet offset or the (m−n) term. In the

majority of experiments performed in this Laboratory, the value for (m−n) is often 0 or ±1.

This is true for samples that exhibit modest dispersion over the experimental bandwidth.

For studies of cancellous bone, the phase sheet offset may be larger (m − n = ±2) since

dispersions might be greater. The effects of changing the phase sheet offset by one integer

are usually quite significant, as illustrated in Figure 3.3.
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Two approaches that can be employed to resolve the phase sheet ambiguity are performing

narrowband phase velocity measurements or using the Kramers-Kronig relations (Trousil

et al., 2001). For most of the studies in this thesis, the Kramers-Kronig relation method was

used to determine the correct phase sheet offset. However, as discussed in Chapter 2, the

presence of overlapping fast and slow waves in cancellous bone can cause the phase velocity

to display apparent negative dispersion.

Kramers-Kronig Relations

The Kramers-Kronig relations were used to determine the correct phase sheet offset for

the broadband phase velocity measurements performed on plastic samples in Chapter 7 and

on some bone specimens in Chapters 4 and 6. The Kramers-Kronig relations also provided

a check on the experimentally measured dispersion based on the connection between the

dispersion and the attenuation coefficient in a material. If the attenuation coefficient of a

material is known or measured, the dispersion of the phase velocity can be predicted. In me-

dia exhibiting linear-with-frequency attenuation coefficients, the predicted dispersion can be

obtained from the nearly local Kramers-Kronig relations with one subtraction (Trousil, 2002;

Waters et al., 2003, 2005). If a sample has an attenuation coefficient that follows a frequency

power law with an exponent greater than 1, then two or more subtractions are necessary to

obtain the correct Kramers-Kronig relations (Trousil, 2002; Waters et al., 2000). The plastic

samples investigated in this thesis (Chapter 7) all exhibit linear-with-frequency attenuation

coefficients; therefore the nearly-local Kramers-Kronig relations with one subtraction were

used. The frequencies (500 kHz and 1 MHz) used in the bone studies presented in this
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thesis have been shown both in experiment (Chaffai et al., 2000; Jenson et al., 2006) and

in simulation (Bossy et al., 2005) to produce linear-with-frequency attenuation coefficients.

For frequencies greater than approximately 1.2 MHz, the attenuation coefficient might be

better characterized using a power law fit with the exponent greater than 1.

For media with a linear attenuation coefficient of the form

α(ω) = α(ωc) +
β

2π
(ω − ωc) (3.12)

where β is the slope of the amplitude attenuation coefficient and ωc is the angular frequency

at the center of the bandwidth, the nearly-local Kramers-Kronig relations with one sub-

traction were employed to predict the dispersion and to verify the phase sheet offset. The

predicted dispersion for the nearly-local Kramers-Kronig relations with one subtraction is

approximately given by

1

v(ω)
− 1

v(ω0)
= − 2

π

β

2π
ln (ω/ω0) (3.13)

where v(ω) is the phase velocity as a function of frequency and ω0 is some frequency in the

usable bandwidth, generally the center frequency. If the dispersion in the phase velocity is

small, then Equation 3.13 can be expanded to first order in the dispersion such that

v(ω)− v(ω0) ≈
[v(ω0)]

2 β

π2
ln (ω/ω0) (3.14)

The Kramers-Kronig relations do not predict absolute values for the dispersion, just relative

differences in the phase velocity. In order to compare the Kramers-Kronig prediction to

experimental phase velocity measurements, the phase spectroscopy derived phase velocity at

band center was used to set the absolute value of the Kramers-Kronig prediction dispersion
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Figure 3.4: The phase velocity as determined by phase spectroscopy of the plastic Lexan
along with the dispersion prediction by the nearly-local Kramers-Kronig relations with one
subtraction.

(ω0 = 2πfc). An example of Kramers-Kronig dispersion prediction along with the phase

velocity measured using phase spectroscopy (phase sheet offset = 0) for a sample of Lexan,

with an average slope of attenuation β = 4.6 dB/cm/MHz and v(ω0) = 2238 m/s, is shown

in Figure 3.4.

3.3.2 Determination of the Attenuation Coefficient

The attenuation properties of a medium can be determined using the same through-

transmission measurements acquired for the phase velocity, shown in Figure 3.1. The

frequency-dependent attenuation coefficient is determined using the log-spectral subtrac-

tion method (Trousil, 2002; Ophir et al., 1984), which compares the signal traveling through
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a sample to the signal traveling only through water. The reference (water-only) power spec-

trum, |Ṽref (f)|2, received by the transducer is given by

∣∣∣Ṽref (f)
∣∣∣2 =

∣∣∣Ẽ0(f)
∣∣∣2 · [e−αhost(f)·L

]2
(3.15)

where |Ẽ0(f)|2 represents the frequency-dependent responses of both transducers and the

electronics, αhost(f) is the amplitude attenuation coefficient of the reference medium (water

for all studies in this thesis), and L is the distance between the two transducers (Trousil,

2002).

When the sample, of thickness d, is inserted into the path (Figure 3.1), the received

power becomes

∣∣∣Ṽsamp(f)
∣∣∣2 =

∣∣∣Ẽ0(f)
∣∣∣2 · [e−αhost(f)·(L−d)

]2 · [e−αsamp(f)·d
]2 · T Ih→s · T Is→h (3.16)

where αsamp(f) is the amplitude attenuation coefficient of the sample, T Ih→s is the intensity

transmission coefficient at the boundary between the host medium and the sample, and

T Is→h is the intensity transmission coefficient at the interface between the sample and the

host medium. Each of the intensity transmission coefficients in Equation 3.16 has the form

T I1→2 =
4
∣∣∣Z̃1 · Z̃2

∣∣∣∣∣∣Z̃1 + Z̃2

∣∣∣2 (3.17)

where Z̃1 and Z̃2 are the complex acoustic impedances of the two media (water and sample).

In much of our Laboratories’ previous work in soft tissues and solids, and in the majority of

this thesis, the complex acoustic impedance was approximated as a real quantity

Z̃ =
ρω

k − iα
≈ ρv ·

[
1 +

(
iα

k

)
+

(
iα

k

)2

+ ...

]
≈ ρv (3.18)
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where ρ is the mass density of the medium and v is the phase velocity. This approximation

can only be implemented when the attenuation coefficient, α, is small compared to the

propagating portion of the complex wave number, k.

In principle, the system dependent effects, described by |Ẽ0(f)|2, can be eliminated by

dividing the reference power spectrum by the sample power spectrum yielding

|Ṽref (f)|2

|Ṽsamp(f)|2
=
e2d(αsamp(f)−αhost(f))

T Ih→s · T Is→h
. (3.19)

At the frequencies used in this thesis, the attenuation coefficient of the sample, αsamp(f), is

several orders of magnitude larger than the attenuation coefficient of the host medium (wa-

ter), αhost(f). The attenuation coefficient in water is on the order of 10−4 Np/cm at 1 MHz

(Trousil, 2002; Markham, 1951), whereas the attenuation coefficients of the bone specimens

studied in this thesis ranged, on average, from 0.6 to 4.4 Np/cm at 1 MHz. Therefore, for

the attenuation measurements presented in this thesis, the attenuation coefficient of water

was considered to be negligible and Equation 3.19 could be rewritten as

|Ṽref (f)|2

|Ṽsamp(f)|2
=

e2dαsamp(f)

T Ih→s · T Is→h
. (3.20)

Equation 3.20 gives the measured signal loss, whereas experimentally, the attenuation co-

efficient is often expressed logarithmically in units of decibels [dB]. Equation 3.20 can be

converted from base-e to base-10 logarithm using the standard logarithm rule

ln a = ln 10 · log a (3.21)

to give

10 log
(
|Ṽref (f)|2

)
− 10 log

(
|Ṽsamp(f)|2

)
=

20

ln 10
· [αsamp(f) · d]− 10 log[T Ih→s ·T Is→h]. (3.22)
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The natural units of the attenuation coefficient are Np/cm. The factor of 20/ ln 10 is a

conversion factor between Nepers (base-e) and decibels (base-10) and has the approximate

value of 8.686 dB/Np. Equation 3.22 illustrates why the approach to calculating the signal

loss is often called ”log spectral subtraction”, since the two terms on the left side are the

reference and through-sample power spectra, respectively. Equation 3.22 can be solved for

the parameter of interest, αsamp(f), in units of dB/cm

αsamp(f) =
1

d

[
10 log

(
|Ṽref (f)|2

)
− 10 log

(
|Ṽsamp(f)|2

)
+ 10 log(T Ih→s · T Is→h)

]
. (3.23)

The attenuation coefficient of the sample, αsamp(f), in Equation 3.23 can be determined

by following the steps illustrated in Figure 3.5. The first step is to calculate the water-path

only (reference) power spectrum and the through-sample power spectrum from the acquired

reference and sample radiofrequency (rf) signals (top panel of Figure 3.5). Log spectral

subtraction of these two power spectra generates the frequency-dependent signal loss shown

in the second panel of Figure 3.5. The signal loss contains not only the loss incurred within

the sample but also the loss incurred at the interfaces. To obtain the attenuation coefficient,

which is the bulk loss per unit length, the insertion loss must be subtracted from the signal

loss (panel 3 of Figure 3.5) and the result divided by the sample length, d (panel 4). The

frequency-independent insertion losses (panel 3) can be determined two ways. The first

method is using the intensity transmission coefficients, defined in Equation 3.17, and shown

as the final term in Equation 3.23. This method requires knowledge of the sample’s density

and velocity in order to calculate the acoustic impedance of the sample (Equation 3.18).

An alternative method for determining the insertion losses is to find the zero-frequency

47



3.3 Conventional Data Analysis

Figure 3.5: The steps needed to determine the attenuation coefficient of the sample. The
first step is to calculate the power spectra of the reference and sample traces. The signal
loss is obtained by the difference between the sample and reference power spectra. Next the
insertion losses, or the losses at the boundaries, must be subtracted from the signal loss.
The attenuation coefficient is obtained by then dividing the result of the previous step by
the sample thickness.
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intercept of a least-squares fit to the signal loss versus frequency plot. The vertical offset

(at zero frequency) of the signal loss should, in principle, be the total interface loss. Thus,

after compensation for these losses, the resulting attenuation coefficient should be zero at

zero frequency. With experimental data, this technique does not usually produce reasonable

insertion loss values. It has often been observed that the signal loss intercept is a negative

value, implying that energy was gained. This can be seen in Figure 3.6 which displays the

insertion loss for Lexan predicted by the transmission coefficients (red line) and the insertion

loss determined using the zero-frequency intercept of the signal loss versus frequency plot.

Diffraction and phase cancellation at the face of the receiving transducer, topics which are

discussed later in this chapter, may be possible explanations of why the intercept of the

signal loss does not provide a reasonable estimate of the insertion losses. The physics of

how the ultrasound beam interacts with the sample at very low frequencies (approaching

zero) is difficult to assess. The assumption that the signal loss is approximately linear with

frequency may break down as the frequency being used approaches zero (and the wavelength

increases).

In studies of cancellous bone, the presence of two waves that often overlap in time, makes

determination of the insertion losses using the above methods very difficult or impossible.

Typically, the insertion losses are considered to be negligible in comparison to the bulk losses

occurring in the bone (McKelvie and Palmer, 1991; Strelitzki and Evans, 1998). Therefore,

in the majority of bone studies, the attenuation reported is actually the signal loss or the

normalized (by the sample length) signal loss and not the fully compensated attenuation

coefficient (Equation 3.23).
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Figure 3.6: The insertion losses of Lexan determined using two methods: (1) the intercept
of a least-squares fit to the signal loss vs. frequency curve (gray dashed line) and (2) calcu-
lation of the transmission coefficients in the last term of Equation 3.23. The solid black line
is the experimentally acquired 2.25 MHz Lexan data. The right panel is a zoomed in portion
of the left panel and shows that the intercept of the signal loss curve produces a negative
insertion loss.

Another parameter of interest to characterize the lossy properties of a sample is the slope

of the attenuation, β. In most studies of soft tissue (Goss et al., 1978; Mimbs et al., 1980;

Mottley and Miller, 1990; Gibson et al., 2009), the attenuation coefficient rises approximately

linearly with frequency

αsamp(f) = βf. (3.24)

The slope of the attenuation, β, is considered to be a more robust parameter than the atten-

uation coefficient because it is less susceptible to potential errors such as those arising from

diffraction. The attenuation coefficient in hard tissue, such as bone, is approximately linear

only over a more limited range of frequencies than in the case of soft tissue. The attenuation

coefficients of bone are typically linear over frequencies ranging from approximately 0.3 MHz

to 1.3 MHz (Strelitzki and Evans, 1996; Chaffai et al., 2000; Jenson et al., 2006; Waters and
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Hoffmeister, 2005; Barkmann et al., 2008; Wear, 2008). The slope of attenuation (β) gener-

ally reported is the slope of a linear fit to the frequency-dependent signal loss (in contrast to

the attenuation coefficient) and is referred to as the ”Broadband Ultrasound Attenuation”

(BUA) or, if normalized by the sample thickness, the ”normalized Broadband Ultrasound

Attenuation” (nBUA) (Petley et al., 1995; Langton and Hodgskinson, 1997; Langton and

Njeh, 2008).

3.4 Bayesian Probability Data Analysis

3.4.1 Background

The conventional methods of data analysis detailed in Section 3.3 are useful for data that

contain only one wave mode or contain multiple signals that can be separated completely

using time gates. For some through-transmission studies on cancellous bone, the fast and

slow waves are separated and clearly distinct in the time-domain, thus permitting the use of

conventional analysis methods. However, in certain circumstances, the two waves overlap,

sometimes significantly, in the time-domain causing difficulties in resolving the individual fast

and slow waves (Hosokawa and Otani, 1998; Padilla and Laugier, 2000; Marutyan et al., 2006;

Haiat et al., 2008; Anderson et al., 2008). If conventional analysis methods are applied to

data containing multiple interfering wave modes, the resulting apparent ultrasonic properties

may differ substantially from the ultrasonic properties of the individual fast and slow waves

(Marutyan et al., 2006; Anderson et al., 2008), as shown in Figure 3.7, which illustrates the

results of processing simulated data. Our Laboratory has shown that the observed anomalous
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negative dispersion reported by many laboratories (Strelitzki and Evans, 1996; Droin et al.,

1998; Wear, 2000b; Waters and Hoffmeister, 2005; Anderson et al., 2008; Marutyan et al.,

2006; Pakula et al., 2009) may result from analyzing interfering fast and slow waves as if

only one wave were present (Marutyan et al., 2006; Anderson et al., 2008). Therefore, it

appears that an alternative method of analysis needs to be applied to overlapping fast and

slow wave data in order to determine the true ultrasonic properties of the bone.

One solution would be to solve the inverse problem: recover the individual properties

of the fast and slow waves from acquired mixed-mode data. Our Laboratory proposed a

technique that implements Bayesian probability theory to provide estimates of the ultrasonic

properties of individual fast and slow waves (Marutyan et al., 2007a,b; Anderson et al., 2010).

Subsequently, several other approaches have been investigated to address the inverse problem

in studies of cancellous bone (Sebaa et al., 2008; Dencks et al., 2008; Dencks and Schmitz,

2013; Wear, 2010b,a, 2013). The following sections describe the wave propagation model

used in the calculations as well as how the Bayesian algorithm calculates estimates of the

ultrasonic parameters.

3.4.2 Two-mode wave propagation model

Figure 3.8 illustrates the division of an incoming ultrasonic wave into fast wave and slow

wave components resulting from propagation through a bone specimen of thickness d. In

the frequency domain, propagation through cancellous bone can be modeled as

Output(f) = Input(f)[Hfast(f) +Hslow(f)] + n (3.25)
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Figure 3.7: Effects of performing conventional one-mode analysis on a simulated mixed-
mode signal. The top two rows show individual waves and their respective phase velocities
and attenuation coefficients. The bottom row shows the mixed-mode signal resulting from
adding signal 1 and signal 2 along with the phase velocity and attenuation coefficient obtained
from conventional (one-mode) analysis. Both the phase velocity and attenuation coefficient
results of the mixed-mode signal display artifacts caused by the interference of the two waves.
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Figure 3.8: The two-mode wave propagation model used in the Bayesian probability theory
analysis. The incident (input) wave is divided into a fast wave and a slow wave in the bone
specimen. The output (mixed-mode) wave is the sum of the fast and slow waves.

where Output(f) and Input(f) are the complex Fourier spectra of the model waveform

and the transmitted ultrasonic signal, respectively, and n is an additive noise term. For

experimentally acquired data, a reference water-path-only signal was used as a source for

Input(f). The transfer functions, Hfast(f) and Hslow(f), in Equation 3.25 for the fast and

slow waves are given by

Hfast(f) = Afast exp(−βfastfd) exp

(
ı2πfd

cfast(f)

)
(3.26)

Hslow(f) = Aslow exp(−βslowfd) exp

(
ı2πfd

cslow(f)

)
(3.27)

where Afast and Aslow are the frequency-independent amplitudes of the two waves, βfast and

βslow are the slopes of attenuation, d is the sample thickness, and cfast(f) and cslow(f) are the
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phase velocities for the fast and slow waves. The parameters, Afast and Aslow, are constrained

to lie between 0 and 1, indicating that the amplitude of the fast and slow waves must be

less than or equal to the amplitude of the reference (water-path-only) signal. In order to

satisfy the causality-induced Kramers-Kronig relations, the phase velocities are related to

the attenuation coefficients by

cfast(f) = cfast(f0) + [cfast(f0)]
2βfast
π2

ln

(
f

f0

)
(3.28)

cslow(f) = cslow(f0) + [cslow(f0)]
2βslow
π2

ln

(
f

f0

)
(3.29)

where f0 is a reference frequency within the experimental bandwidth, typically the nominal

center frequency of the transducer. Based on Equations 3.28 and 3.29, the fast and slow

wave phase velocities are required to increase logarithmically with frequency, thus exhibiting

positive dispersion.

In Equations 4.2 - 3.29, βfast and βslow are written in natural units of Nepers per length

per frequency [e.g. Np/cm/MHz]. Since nBUA is more commonly reported in units of

decibels per length per frequency [dB/cm/MHz], nBUA values reported in the remainder of

this thesis will be in units of dB/cm/MHz.

3.4.3 Bayesian parameter estimation

The Bayesian-based approach used in this thesis parallels closely to methods previously

developed and tested by members of this Laboratory (Anderson et al., 2010; Anderson, 2010;

Marutyan et al., 2007a,b). All of that work was inspired by the creative contributions of
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Figure 3.9: Schematic illustrating the use of the Bayesian algorithm.
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Bretthorst and Jaynes (Jaynes and Bretthorst, 2003; Bretthorst, 2005).

As illustrated in Figure 3.9, Bayesian probability theory can be used to give the most

probable estimates for the six propagation parameters (Afast, Aslow, βfast, βslow, cfast, cslow)

in the model above. These terms can be represented by a vector Θ = {Afast, βfast, cfast(f0),

Aslow, βslow, cslow(f0)}. The joint posterior probability for all the parameters, Θ, given the

experimental data and any prior information is obtained by applying Bayes’ Theorem

P (Θ|D, I) =
P (D|Θ, I)P (Θ|I)

P (D, I)
(3.30)

where D is the acquired experimental data, such as the reference and sample signals, and I

is the relevant background information, such as the propagation model. The term P (D|Θ, I)

is known as the likelihood, or the direct probability for the data given the parameters (Θ)

and prior information (I). P (Θ|I) is the joint prior probability for the parameters given only

background information. The term in the denominator of Equation 3.30 is considered to be

a normalization factor.

In the work presented in this thesis, the likelihood function (P (D|Θ, I)) was assigned

using a Gaussian prior probability to represent what is known about the noise (Anderson,

2010). The dependence on the standard deviation of this Gaussian was removed using

marginalization with a Jeffreys prior (Jeffreys, 1961). The joint prior probability, P (Θ|I),

can be factored into the product of the prior probabilities of each individual parameter using

the product rule (Cox, 1946) of probability theory

P (Θ|I) = P (Afast|I)·P (βfast|I)·P (cfast(f0)|I)·P (Aslow|I)·P (βslow|I)·P (cslow(f0)|I). (3.31)

The factorization in Equation 3.31 assumes that the parameters are logically independent -
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that is, each prior probability depends only on the parameter of interest. For instance, it

is assumed that what is known about βfast does not depend on cslow. The individual prior

probabilities for the six parameters were assigned using bounded Gaussian distributions

described by 4 parameters: mean, standard deviation, upper bound and lower bound. The

priors are chosen to be general enough such that the results of the parameter estimation are

not dependent on the specific values used. The mean is chosen to be the midpoint between

the upper and lower bounds, and the standard deviation is chosen to one half of the difference

between the upper and lower bounds.

In order to determine the most probable value (posterior probability) for each parameter,

a procedure called marginalization is applied to the joint posterior probability so that the

dependence on the other five parameters is removed. For example, the marginalized posterior

probability for Afast is computed as

P (Afast|D, I) =

∫ ∫ ∫ ∫ ∫
P (Θ|D, I)dβfastdcfast(f0)dAslowdβslowdcslow(f0). (3.32)

The posterior probabilities for the other parameters can be obtained in a similar way by

marginalizing over all the parameters except the one of interest.

Equation 3.32 represents a complicated five-dimensional integral that must be repeated

six times, once for each parameter in the model. These multi-dimensional integrals are

difficult or impossible to evaluate analytically. Therefore, a Markov chain Monte Carlo

simulation with simulated annealing was employed to determine an approximate solution.

A Markov chain is a discrete stochastic process in which samples are drawn from a state

space, and the current state (i) depends only on the previous state (i− 1). In the Bayesian
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algorithm, a Markov chain is initialized at an arbitrary location in the parameter space set

by the prior probability densities. The chain eventually converges to the desired posterior

probability density (Anderson, 2010).

The steps within a Markov chain are determined using the Metropolis-Hastings algorithm

(Metropolis and Ulam, 1949; Metropolis et al., 1953; Hastings, 1970). This algorithm works

by proposing a move within a certain region from the current location. The move to the new

location is accepted if the probability at the new location is higher than the probability at

the current location. However, even if the proposed location has a smaller probability than

the current location, the move is still accepted with probability prob(newlocation)
prob(oldlocation)

(Anderson,

2010). Therefore, some downhill moves are allowed, although small downhill moves are more

favorable than large downhill moves.

To help prevent Markov chains from becoming trapped on a local maxima, simulated

annealing can be introduced to the Bayesian algorithm (Kirkpatrick et al., 1983). This allows

the chains to explore a series of intermediate probability densities for a sufficient number

of Metropolis-Hastings steps. An advantage of simulated annealing is that it can be easily

parallelized, thus allowing for multiple independent Markov chains to be run simultaneously

and in parallel (Anderson, 2010). The use of multiple Markov chains provides another

safeguard against local minimum because low-probability chains can be ”killed” and replaced

by higher-probability chains.

Further details on Bayesian probability theory are given by Jaynes and Bretthorst (2003),

Sivia and Skilling (2006), Bretthorst (2005), and the doctoral thesis of Christian Anderson

(2010).
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3.5 Comparison of conventional and Bayesian methods

of analysis

Conventional and Bayesian methods were discussed above as possible techniques to an-

alyze data from cancellous bone. Although the two methods evaluate similar parameters,

there are fundamental differences between the two methods that require consideration. Con-

ventional analysis is carried out entirely in the frequency-domain, whereas the Bayesian

analysis does the comparison of the model-generated wave and the experimental wave in the

time-domain.

Both conventional and Bayesian analysis methods measure the phase velocity of the

sample. Conventional methods, using phase spectroscopy, give the phase velocity over the

entire usable bandwidth. In contrast, the Bayesian estimation technique gives the phase

velocity at a specific frequency, f0, which is usually chosen to be the center frequency of

the usable bandwidth. The phase velocity at other frequencies can be determined using the

Kramers-Kronig relations (Equations 3.28- 3.29), which can be applied separately for both

the fast and slow waves.

Similarly, both methods of analysis give values of β. As discussed above, β is properly

defined as the slope of the attenuation coefficient plotted as a function of frequency, which has

had the insertion losses removed. However, in most studies of bone, the reported β or nBUA

value is actually the slope of the signal loss, which still includes the loss at the boundaries. In

spite of this, if the insertion losses are frequency-independent, the slopes of the attenuation

coefficient and signal loss are equal. Insertion losses are dependent on the relative acoustic
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impedances at the boundary. As indicated in Equation 3.18, impedances (and consequently

insertion losses) can be frequency dependent, but are approximately independent of frequency

if the ratio of α/k is sufficiently small. Because the Bayesian method performs the comparison

of the model-generated wave and the experimental wave in the time-domain, the estimated

values for βfast and βslow may be influenced by the estimation of theAfast orAslow parameters,

since they also contribute to the overall loss of the signal.

Perhaps the most challenging parameters to interpret in the Bayesian method are the

fast and slow wave amplitudes, Afast and Aslow. It is assumed that these parameters account

for the frequency-independent (and distance-independent) losses, in contrast to the term

exp(−βfd) which accounts for the frequency and distance-dependent losses. In the case of

a one-mode signal, the A parameter should be equivalent to the (two surface) transmission

losses and therefore can be compared to the insertion losses calculated with conventional

methods using Equation 3.17. However, in the case of two-mode propagation, these ampli-

tude terms contain information about the distribution of the incident energy into the two

wave modes in addition to information about the insertion losses. The fact that both the

insertion losses and the distribution of energy occur at the same location - the boundary

- adds to the complexity of the problem (Hoffman et al., 2012). When an incident pulse

hits the boundary between the water and the specimen, there will be three resulting waves.

The reflected wave contains information corresponding to the insertion losses. There will

also be two transmitted waves, a fast wave with amplitude Afast and a slow wave with am-

plitude Aslow. Since some of the incident waves energy is lost to the reflected wave, it is

difficult to determine a simple relationship between Afast and Aslow or even to interpret the
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individual values of Afast and Aslow (Hoffman et al., 2012). It is also possible that Afast

and Aslow also include contributions from diffraction and phase cancellation at the receiving

transducer (Anderson et al., 2010). Since diffraction and phase cancellation are dependent

on frequency, the assumption that Afast and Aslow are frequency-independent might prove

inaccurate. Given all of these complicating factors, it is difficult to predict the expected

values of Afast and Aslow in two-mode systems.

3.6 Other potential complicating factors

In addition to the difficulties caused by two overlapping wave modes, there are other

complicating factors that are not addressed in the conventional analysis method and are

not directly accounted for in the propagation model used in the Bayesian analysis method.

Perhaps the two largest potential factors are diffraction and phase cancellation at the face

of a piezoelectric receiving transducer (Bauer et al., 2008, 2009). Both of these effects

could introduce systematic errors, which could then influence the estimates of the ultrasonic

parameters, especially those involved in the signal loss (Afast, Aslow , βfast, βslow) (Anderson,

2010). The sample thickness dependence observed in bone data (Chapter 6) and in plastic

phantom data (Chapter 7) presented in this thesis may be, in part, due to one or both

of these effects. The Bayesian analysis method may be more sensitive to diffraction and

phase cancellation effects than the conventional method. The Bayesian method performs

the comparison of the model-generated wave and the experimental wave in the time-domain,

in contrast to the case for conventional analysis which processes the data in the frequency
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domain. In the Bayesian approach, the estimated values for βfast and βslow may be influenced

by the estimation of the Afast or Aslow parameters, whereas in the conventional approach

the value of β is not influenced by the determination of the insertion losses. The effects of

diffraction on both conventional and Bayesian results will be discussed further in Chapter 7.
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Chapter 4

Effects of Interfering Fast and

Slow Waves on the Ultrasonic

Properties of Human Calcaneal Bone

4.1 Preface

This Chapter details the methods and results of ultrasonic measurements made on human

calcaneal (heel) bone specimens. Phase velocity and apparent attenuation properties of

the bone specimens obtained from assuming one wave mode are compared to those results

obtained from a Bayesian two wave mode technique. Micro-computed tomography was also

performed on the samples to assess microstructural information. It was investigated whether

the Bayesian-derived ultrasonic parameters correlate with the clinically-relevant microCT

parameters. These results are presented in the peer-reviewed journal article, “Cancellous

bone fast and slow waves obtained with Bayesian probability theory correlate with porosity
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from computed tomography” by Joseph J. Hoffman, Amber M. (Nelson) Groopman, Mark

R. Holland, and James G. Miller and published in The Journal of the Acoustical Society

of America, Vol. 132, No. 3, pp. 1830-37 and in the conference proceeding, ”Single mode

analysis appears to overestimate the attenuation of human calcaneal bone based on Bayesian-

derived fast and slow wave mode analysis” by Amber M. (Nelson) Groopman, Joseph J.

Hoffman, Mark R. Holland, and James G. Miller for the 2012 IEEE Ultrasonics Symposium,

pp. 1015-18.

4.2 Introduction

It is well known that cancellous bone can support the propagation of two compressional

wave modes, referred to as the fast wave and the slow wave. Depending on the experimental

situation, these two wave modes can overlap substantially in the time-domain. Analysis

of this interfering two-mode signal can lead to misleading results of the bone’s ultrasonic

properties (Marutyan et al., 2006; Anderson et al., 2008; Bauer et al., 2008). To ensure

that the true ultrasonic properties of the cancellous bone are determined, the fast and slow

waves should be separated and analyzed individually. We have previously demonstrated

an approach utilizing Bayesian probability theory that is capable of isolating the fast and

slow waves, even in cases of extreme overlap and interference (Marutyan et al., 2007). This

Bayesian technique has proven successful at separating the two wave modes in experimental

data from both plastic phantoms (Anderson et al., 2010) and from cancellous bone (Nelson

et al., 2011).
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One significant determinant of fast and slow wave separation or overlap in the time do-

main is the angle of ultrasonic insonification. Previous studies have shown that for parallel

insonification or insonification along the primary direction of the trabeculae there are often

distinct fast and slow waves (Hosokawa and Otani, 1997, 1998). This means that these

waves can be separated using time gates and conventional methods of analysis. However, for

perpendicular insonification there often appears to be only one wave present in the received

time domain signal. Clinical bone sonometry systems applied to the heel involve propa-

gation perpendicular to the predominant trabecular orientation and these systems measure

quantitative ultrasound parameters assuming one wave.

There were three objectives for this study. The first objective was to isolate and identify

fast and slow waves in the case of perpendicular insonification of the calcaneus (heel bone).

The second objective was to compare directly the results of one-mode analysis and two-mode

(Bayesian) analysis. This comparison was designed to quantify the effects arising from the

presence of, and potential interference of, two waves on ultrasonic measurements of phase

velocity and broadband ultrasound attenuation. The third objective was to compare the

Bayesian-derived fast and slow wave ultrasonic properties to anatomical data acquired by

microCT (Hoffman et al., 2012).
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4.3 Methods

4.3.1 Calcaneal sample preparation

Eight human calcaneal samples obtained from cadavers were prepared by sawing off the

cortical edges resulting in approximately rectangular specimens of only trabecular bone.

India ink was used to mark the medial face of the samples. The dimensions of the samples

were measured using digital calipers at five locations in each dimension. The thicknesses of

the samples, in the medial-lateral direction, ranged from 8.09 mm to 15.45 mm and are listed

in Table 4.1. The samples were defatted by soaking them for approximately 48 hours in a 1:1

solution of ethyl alcohol and acetone and then rinsing with a water jet (Ding et al., 1997).

The samples were then dried in a vacuum desiccator. The process of defatting resulted in

a loss of approximately 20-50% of the initial mass. Apparent mass densities of the defatted

specimens were determined by dividing the mass of the sample by the mean volume and can

be found in Table 4.1.

4.3.2 MicroCT measurements

Three-dimensional trabecular bone microstructure was measured by micro-computed to-

mography (SCANCO Medical vivaCT 40, Wayne, PA). The volume-of-interest (VOI) used

for the microstructural analysis included approximately 95% of the total sample volume.

The system was configured to have a spatial resolution of 17.5 µm in all three dimensions. A

grayscale threshold was chosen to be used for all of the scans. The threshold determines what

is categorized as bone (white) and what is categorized as not bone (black). If the threshold
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Table 4.1: Physical characteristics of the human calcaneal samples. The thickness mea-
surements listed are for the medial-lateral direction and are the mean plus or minus one
standard deviation of five measurements. The apparent mass density was calculated from
the mass and the mean volume. The bone volume fraction (BV/TV) was determined by
microCT measurements.

Sample Thickness (mm) Apparent Density (g/cm3) BV/TV

B-1 11.52 ± 0.18 0.22 0.086

B-2 11.74 ± 0.22 0.50 0.171

B-3 11.36 ± 0.26 0.49 0.213

B-4 8.09 ± 0.52 0.47 0.198

B-5 15.45 ± 0.55 0.35 0.162

B-6 12.68 ± 0.15 0.48 0.165

B-7 12.44 ± 0.81 0.14 0.059

B-8 11.52 ± 0.40 0.24 0.116

is set too low, bone structures may appear much thicker than in the original, unsegmented

image. However, if the threshold is set too high, some bone structure might be missed or

thinned compared to the unsegmented image. Figure 4.1 shows the region of interest (ROI)

used for segmentation and the effects of thresholding on the eight calcaneal samples. From

these segmented and thresholded images, automated distance transformation algorithms

were used to calculate the following parameters: bone volume fraction (BV/TV), trabecular

number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), structural model

index (SMI), and the connective density (Conn. D). Table 4.2 gives brief descriptions of

these structural parameters.

73



4.3 Methods

Figure 4.1: MicroCT images of the eight human calcaneal samples studied. The first
column shows the first slice in the volume of interest (VOI). The second column shows the
last slice in the VOI. The third column shows the last slice in the VOI after the threshold
has been applied (white = bone, black = not bone). The green boxes represent the region
of interest segmented for the measurements of bone histomorphometry in each slice.
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Table 4.2: Definitions and descriptions of the trabecular bone microstructural parameters
obtained from microCT.

4.3.3 Ultrasonic measurements

Data were acquired in a water tank at room temperature (T = 21.1± 0.1 C) using a

matched pair of 1.125 inch diameter, 1.5 inch focal length, broadband transducers (Pana-

metrics v391, Waltham, MA) nominally centered at 500 kHz in a through-transmission

arrangement. The two transducers were separated by approximately 76 mm (3 inches) or

twice the focal length. One hour prior to ultrasonic testing, the samples were degassed un-

derwater in a desiccator to remove any air trapped inside the samples. Since the specimens

were small and not all the same size, custom sample holders were constructed from high

density styrofoam as shown in Figure 4.2. The calcaneal samples were placed on a motion

controller located halfway between the transducers and were insonified with the ultrasonic

beam in the mediolateral direction, which is the same orientation used in clinical heel bone

sonometers. The excitation signal was a 500 kHz center frequency, single-cycle sine wave
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Figure 4.2: Sample holder consisting of a custom-cut piece of high density styrofoam
fit into a Delrin frame. The Delrin frame was attached to a computer-controlled motion
controller. Photograph by Amber Groopman.

burst with a peak-to-peak amplitude of 400 mV from a pulse/function generator (HP 8116A,

Palo Alto, CA). Before being sent to the transmit transducer, the signal was amplified by a

50 dB gain radiofrequency (rf) power amplifier (ENI 240L, Rochester, NY). Received signals

were first low-pass filtered (1.6 MHz) then amplified by a preamplifier (Panametrics 5676,

Waltham, MA) before being digitized using an 8-bit Tektronix oscilloscope (TDS 5052B,

Beaverton, OR). The time-domain traces were digitized at a rate of 50 MS/s (20ns/pt) and

temporally averaged 128 times. Radiofrequency data were collected at 9 individual sites in

the middle of each sample, as shown in Figure 4.3. These sites covered an 8 mm by 8 mm grid

with 4 mm spacing between data sites. The 4 mm spacing was chosen to correspond to the

theoretical 6 dB down beam width, which ensures that the sites are spatially independent.

The radiofrequency data acquired from the calcaneal samples along with reference (water

path only) time-domain traces were used as inputs into a Bayesian probability algorithm
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Figure 4.3: Bone specimen with raster scan locations. The spacing between sites was
approximately 4 mm. Photograph by Amber Groopman.

that estimated the ultrasonic parameters of the separated fast and slow waves.

4.3.4 Bayesian parameter estimation

In this study, Bayesian probability theory was implemented to estimate a total of six

ultrasonic parameters: three for the fast wave (Afast, βfast, cfast(f)) and three for the slow

wave (Aslow, βslow, cslow(f)). These six parameters come from a model that represents the

received sample signal as the sum of a fast wave and a slow wave. The details of the ultrasonic

wave propagation model can be found in Chapter 3.

In the frequency domain, ultrasonic data through cancellous bone can be modeled as

Output(f) = Input(f)[Hfast(f) +Hslow(f)] (4.1)

where Input(f) and Output(f) are the complex Fourier spectra of the transmitted signal

and the received sample signal, respectively. In this study, a reference water path only signal

was used for Input(f). Hfast(f) and Hslow(f) are the transfer functions for the fast and slow
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Table 4.3: Prior probability distributions for each model parameter. The means and
standard deviations define Gaussian distributions that are bounded by the minimum and
maximum values.

Afast Aslow βfast βslow cfast(500 kHz) cslow(500 kHz)

(dB/cm/MHz) (m/s)

Minimum 0 0 0 0 1500 1300

Mean 0.5 0.5 21.7 21.7 1750 1500

Maximum 1.0 1.0 43.3 43.3 2000 1700

Std. Dev. 0.5 0.5 21.7 21.7 250 200

waves. The transfer function for the fast wave is given by

Hfast(f) = Afastexp(−βfastfd)exp

(
ı2πfd

cfast(f)

)
(4.2)

where Afast is a frequency-independent loss term, βfast is the slope of attenuation for the

fast wave, d is the sample thickness, and cfast(f) is the phase velocity for the fast wave. The

transfer function for the slow wave, Hslow(f), has the same form as Eq. 4.2; the subscript Afast

is replace with Aslow. In order to satisfy the causality-induced Kramers-Kronig relations, the

phase velocities were required to increase logarithmically with frequency, thus exhibiting

positive dispersion.

For the Bayesian parameter estimation, the prior probabilities for each of the six parame-

ters were assigned to be bounded Gaussian distributions as shown in Table 4.3. The posterior

probability density functions for each of the parameters are five dimensional integrals. They

were approximated using a Markov chain Monte Carlo simulation with simulated annealing.
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4.3.5 Data Analysis

The same method of data analysis was applied to both the unseparated sample wave,

which likely consists of interfering fast and slow waves, and the Bayesian-separated fast wave

and slow wave.

Phase velocities were calculated using a phase spectroscopy technique, which determines

the phase velocity in a sample by comparing the phases of the Fourier transforms of a refer-

ence and a through-sample signal (Trousil, 2002). The frequency dependent phase velocity

of the sample was obtained from

cs(f) = cw

[
2πfd

2πfd+ cw∆φ(f)

]
(4.3)

where cw is the speed of sound in water and φ(f) is the difference in phase between the sample

and reference spectra. The phase velocities of the unseparated sample wave (csamp(f)), the

individual fast wave (cfast(f)), and the individual slow wave (cslow(f)) were determined for

all 72 sites (9 sites per sample) studied.

The attenuation coefficient, in units of dB/cm, was determined by performing a log-

spectral subtraction technique of the form,

α(f) =

10 log

(∣∣∣Ṽw(f)
∣∣∣2)− 10 log

(∣∣∣Ṽs(f)
∣∣∣2)+ 10 log

[
T Ih→s · T Is→h

]
d

(4.4)

where
∣∣∣Ṽw(f)

∣∣∣2 and
∣∣∣Ṽs(f)

∣∣∣2 are the power spectra of the reference and through-sample

signals, and T Ih→s and T Is→h are the intensity transmission coefficients for the front wall and

back wall boundaries, respectively (Trousil, 2002). The insertion losses at the boundaries

between the water and sample (i.e., the third term in Equation 4.4) were neglected since the
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Figure 4.4: Top panel: The acquired sample radiofrequency data (solid black line) along
with the model generated with the parameters estimated by the Bayesian algorithm (dashed
orange line). Bottom panel: The individual fast wave (red line) and slow wave (blue line)
that comprise the model waveform shown in the top panel.

estimated interface losses for the samples in this study were less than 0.5 dB, which agrees

with the values found in the literature (McKelvie and Palmer, 1991; Strelitzki and Evans,

1998). The normalized slope of attenuation or broadband ultrasound attenuation (nBUA)

was determined by performing a linear fit of the attenuation coefficient over the bandwidth

from 350 to 630 kHz (the -6 dB bandwidth).

80



4.4 Results

4.4 Results

For all the sites interrogated, the Bayesian two-mode algorithm converged on a set of

parameters that produced a model wave that was similar to the acquired signal traveling

through the specimen. Radiofrequency (rf) data acquired from one representative site is

shown in the top panel of Figure 4.4. The model constructed from the parameters estimated

using the Bayesian probability technique is overlaid for comparison. To quantify the quality

of agreement between the model and the data, the coefficient of variation(CV) of the root-

mean-square-deviation (RMSD) was calculated for each spatial site and was defined as

CV (RMSD) =
RMSD

xdata
=

√∑i=n
i=1 (xdata,i−xmodel,i)2

n

xdata
(4.5)

where xdata is the mean of the observed data and n is the number of data points. The

CV (RMSD) was calculated for the data over a 22 µs window. For the eight samples,

the CV (RMSD) ranged from 5.1% to 14.2% with an average value of 8.9%. These values

indicate satisfactory agreement between the data and models. The separated fast wave and

slow wave modes that make up the model waveform are displayed in the bottom panel of

Figure 4.4. As seen in this figure, the fast and slow waves overlapped substantially, with an

approximate 90 degree phase shift between the two waves. A similar trend was seen in the

signals from the other bone specimens.

4.4.1 Phase velocity

Phase velocity analysis applied to the unseparated sample wave revealed that 40 out of 72

total sites displayed negative dispersion as shown in Figure 4.5. In each of the eight samples,
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Figure 4.5: Left: The phase velocity and dispersion of the 72 sites investigated (9 sites
per sample). The black circles represent sites with positive dispersion and the green circles
represent sites displaying negative dispersion. Right: The number (out of 9 possible) sites
in each sample that displayed negative dispersion using single mode analysis.

at least one of the nine sites interrogated displayed negative dispersion. This appearance of

negative dispersion, which is in conflict with the causality-imposed Kramers-Kronig relations,

may indicate that there are two waves present in the received sample signal, as reported in

previous studies from our laboratory (Anderson et al., 2010). The average magnitude of

dispersion ranged from -77 m/s/MHz to +29 m/s/MHz. There was no apparent correlation

between the bone volume fraction of the sample and the sample’s average magnitude of

dispersion. The mean phase velocity at 500 kHz over all eight samples was 1565 ± 52 m/s

(mean ± SD) for the unseparated sample waves.

Phase velocity analysis of the separated fast and slow waves showed that these waves

exhibited positive dispersion, as required by the model. Figure 4.6 shows an example of the

frequency dependence of the phase velocity obtained from two-mode analysis. The fast and

slow wave phase velocity results for all 72 sites are shown in Figure 4.7. The mean phase
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Figure 4.6: The fast and slow wave phase velocities (N=9 sites) as a function of frequency
for bone sample B-4. The red lines represent the fast wave and the blue lines represent the
slow wave. Both fast and slow wave phase velocities display positive dispersion as required
by the model.

velocities at 500 kHz over all eight samples were 1645 ± 68 m/s and 1523 ± 40 m/s for the

fast and slow waves, respectively. Figure 4.8 shows the phase velocity at 500 kHz averaged

over nine sites for the sample wave, the individual fast wave, and the individual slow wave for

all eight specimens. The phase velocity obtained from the one-mode analysis of the sample

wave always lay between the fast and slow wave phase velocities estimated by the two-mode

Bayesian algorithm.
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Figure 4.7: The fast and slow wave phase velocities for all sites (N=72). The red circles
represent the fast wave and the blue circles represent the slow wave.

Figure 4.8: The average (± SD) phase velocity at 500 kHz over nine central sites of the
fast wave (red squares), slow wave (blue squares), and the unseparated sample wave (black
squares).
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Figure 4.9: The one mode attenuation coefficient as a function of frequency for bone sample
B-4. The black lines are the attenuation coefficients at each spatial site and the orange line is
the average ± one SD. For all 9 sites, the attenuation coefficients were approximately linear
with frequency.

4.4.2 Broadband ultrasound attenuation (nBUA)

At all 72 sites interrogated, the attenuation coefficient of the unseparated sample wave

increased approximately linearly over the bandwidth. Figure 4.9 shows the attenuation co-

efficients at each of the nine sites interrogated from sample B-4, as well as the average atten-

uation coefficient. The average attenuation coefficients as a function of frequency obtained

from the one mode analysis are displayed in Figure 4.10 for all eight samples. The slope of

the attenuation coefficient, also known as the normalized broadband ultrasound attenuation

(nBUA), was determined by a least squares fit over the usable bandwidth. The mean nBUA

over all eight samples for the unseparated sample waves was 19.3 ± 8.2 dB/cm/MHz.
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Figure 4.10: The average (N=9) attenuation coefficients obtained from one mode analysis
for each of the eight bone samples.

The attenuation coefficient curves for both the fast and slow waves were also linear with

frequency. As illustrated in Figure 4.11, the attenuation coefficients of the fast and slow waves

had similar values. This was not necessarily expected because the fast wave attenuation is

often larger than the slow wave attenuation. However, the samples investigated in this study

had high porosities and therefore relatively less hard tissue to attenuate the signal. The

propagation direction (along the predominant trabecular axis) might also be playing a role

in why the attenuation coefficients of the fast and slow waves have comparable values.

The fast and slow wave normalized broadband ultrasound attenuations (nBUA) for all

72 sites are shown in Figure 4.12. This figure illustrates the substantial heterogeneity of

the bone samples; there is a large variation in nBUA values from site to site within a single

sample.The mean nBUA over all eight samples for the fast and slow waves were 5.6 ± 4.0
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Figure 4.11: The fast and slow wave attenuation coefficients (N=9 sites) as functions of
frequency for bone sample B-4. The red lines represent the fast wave and the blue lines
represent the slow wave. Both fast and slow wave attenuation coefficients were linear with
frequency and displayed similar values.

dB/cm/MHz and 4.1± 3.0 dB/cm/MHz, respectively. For some samples, specifically samples

B-1 and B-8, the slopes of attenuation for the fast and slow waves were approximately zero.

A possible explanation for these very small nBUA values is that both of these samples have

high porosities (91% and 88% respectively) thus the losses in the sample are small. An

alternative explanation is that there is truly only one wave present. Figure 4.13 compares

the average normalized slope of attenuation for the fast and slow waves to the average slope

of attenuation for the unseparated sample wave. The nBUA obtained from the one-mode

analysis of the sample wave was consistently larger than the nBUAs from either the fast

waves or slow waves.
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Figure 4.12: The nBUA values for the fast and slow waves at all 72 sites. The red circles
represent the fast wave and the blue circles represent the slow wave.

Figure 4.13: The average normalized slope of attenuation over nine central sites of the
fast wave (red squares), slow wave (blue squares), and the unseparated sample wave (black
squares).
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Table 4.4: Pearson’s correlation coefficients between the Bayesian parameters and the bone
sample’s structural parameters. Porosity is defined as (1-BV/TV). Negative values imply an
inverse relationship.

Bayesian Parameter Porosity Tb.Sp Tb.N Conn. D SMI

cfast -0.85 -0.70 0.70 0.52 -0.87

cslow -0.93 -0.80 0.79 0.61 -0.90

βfast -0.80 -0.93 0.93 0.73 -0.64

βslow -0.72 -0.86 0.85 0.61 -0.61

Afast -0.54 -0.71 0.66 0.57 -0.40

Aslow 0.66 0.41 -0.39 -0.36 0.70

4.4.3 Correlation with structural parameters

The mean ± SD porosity of the eight samples was 0.85 ± 0.05. Table 4.4 shows the

Pearson’s correlation coefficients between the estimated Bayesian parameters and the mi-

croarchitectural parameters determined by microCT. Figure 4.14 shows the correlation plots

of the six Bayesian parameters with the porosity determined by microCT. The structural

model index (SMI) values, which can range from 0 for parallel plate architecture to 3 for

cylindrical rod architecture, had a mean of 1.43, suggesting that the bone samples had al-

most equal amounts of plate-like and rod-like structures. The best predictor of the fast and

slow wave speeds was porosity or (1-BV/TV). The best predictors of the slopes of attenu-

ation(nBUA) for the fast and slow waves were trabecular spacing (Tb.Sp) and trabecular

number (Tb.N). Trabecular spacing and trabecular number were highly correlated with R2

= 0.99, thus the Pearson’s correlation coefficients for these two parameters with the Bayesian
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Figure 4.14: The Bayesian-derived parameters plotted against sample porosity. The top
plots show the three fast wave parameters and the bottom plots show the three slow wave
parameters. Porosity was determined by microCT. Each value shown is the mean of nine
independent sites plus or minus one standard deviation.

parameters would be expected to be almost identical. The best predictor for the ratio of

Afast to Aslow, which may provide a good measure of how the incident energy is divided

between the two modes, was trabecular spacing (Tb.Sp).

4.5 Discussion

Regarding the comparison of one mode versus two mode analyses, the results of this

study showed two significant features: a phase velocity for the single mode that lay between

the fast and slow wave velocities and a broadband ultrasound attenuation for the single
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mode that was much greater than the broadband ultrasound attenuation values associated

with either the fast or slow waves. This suggests that the phase velocity from the one mode

analysis is a mixture of the fast and slow wave velocities. To explore this hypothesis, the

one mode phase velocity was taken to be a weighted sum of the fast and slow wave phase

velocities,

csamp = A ∗ cfast +B ∗ cslow. (4.6)

The coefficients, A and B, in Equation 4.6 were determined by a linear best fit to a plot of

csamp/cfast vs. cslow/cfast. From this linear fit, it was determined that A = 0.25 and B = 0.75.

Thus, on average, the phase velocity of the unseparated signal contains approximately 75%

of the slow wave velocity and 25% of the fast wave velocity. Figure 4.15 shows the predicted

one mode phase velocity using Equation 4.6 and the one mode phase velocity determined by

phase spectroscopy.

The overestimation of the nBUA value for the single mode appeared to be due to the

significant interference of the fast and slow waves in the time-domain. The interference be-

tween these two wave modes was unintentionally being perceived as true signal loss occurring

within the bulk of the sample. Additionally, the conventional one mode analysis did not take

into account insertion losses (the losses at the boundaries of the sample). Therefore, all of

the loss must be accounted for in the slope of attenuation (nBUA) term. In contrast, the

Bayesian parameters, Afast and Aslow, included the losses at the boundaries as well as how the

initial wave energy was divided between the two waves propagating in the sample. However,

as stated earlier in Section 4.3.5, the insertion losses estimated for the specimens studied in

this chapter were negligible in comparison to the losses occurring within the samples.
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Figure 4.15: The average phase velocity using one mode (phase-spectroscopy) analysis
(black squares) and the predicted one mode phase velocity (gray asterisks) using the weighted
sum of fast and slow wave velocities found in Eq. 4.6.

The dependences of the Bayesian ultrasonic parameters (cfast, cslow, βfast, βslow, Afast/Aslow)

on the microarchitectural parameters were consistent with those previously reported (Chaffai

et al., 2002; Nicholson et al., 2001; Wear et al., 2012). The correlation coefficients between

βfast and porosity (r = -0.80) and βslow and porosity (r = -0.72) were slightly lower than those

reported for single-mode nBUA versus BV/TV by Nicholson et al. (2001), 0.86, Chaffaiet

al. (2002), 0.88, and Wear et al. (2012), 0.85. However, the correlation coefficients for cfast

and porosity (r = -0.85) and cslow and porosity (r = -0.93) were similar to those reported

for single-mode phase velocity versus BV/TV by Nicholson et al. (2001), 0.86, Chaffaiet al.

(2002), 0.90, and Wear et al. (2012), 0.81. Differences in the correlation coefficients between

the present study and previous studies may arise as a result of the fact that these previous

studies were using the phase velocity and the slope of attenuation (nBUA) from an assumed
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Figure 4.16: The phase velocities and normalized slopes of attenuation (nBUA) obtained
from one mode analysis plotted versus porosity. Porosity was determined by microCT. Each
point is the mean plus or minus one standard deviation of nine spatial sites.

single wave, whereas in the current study the analysis was performed assuming two waves

are present. In order to investigate if the two-mode Bayesian parameters provided improved

correlations to clinically meaningful structural parameters, the results of the one mode anal-

ysis were plotted as functions of porosity as shown in Figure 4.16. The phase velocity and

nBUA results obtained from one mode analysis both correlated well with porosity (R =

0.93) and actually correlated better than any one of the Bayesian parameters. Although

this was unexpected, it may not be entirely surprising. With the assumptions that only a

single wave is present, the resulting values for the speed and the nBUA are presumably some

combination of the individual fast and slow wave speeds and nBUAs, respectively. This may

imply that the one mode results contain more information than any one Bayesian parameter.

However, it may be possible to combine the Bayesian parameters in such a way to improve

the correlations with the structural parameters, such as porosity.
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To justify the assumption of a two-mode model, a comparison was carried out to deter-

mine if the two-mode model fit the experimental data better than the one-mode model. For

this portion of the study, a Bayesian one-mode model was applied to the data using three pa-

rameters (Aone, βone, cone) instead of the six parameters (cfast, cslow, βfast, βslow, Afast, Aslow)

in the two-mode model. For all 72 sites investigated, the two-mode model produced a smaller

coefficient of variation (CV) of the root-mean-square-deviation (RMSD) than the one-mode

Bayesian model. This result might be expected because the number of adjustable parameters

was changed from 6 to 3.

The results from the one-mode Bayesian analysis were compared to the results obtained

from conventional (one-mode) analysis. The phase velocity, cone, obtained from the one-

mode Bayesian algorithm agreed well with the velocities obtained from the conventional

one-mode analysis (R2 = 1.0), with an average percent difference of 0.18 ± 0.11 m/s. The

nBUA values, βone, obtained from the one-mode Bayesian technique also correlated well (R2

= 0.93) with the nBUA values determined from the conventional one-mode analysis, however

the actual values differed. The nBUA values obtained from the one-mode Bayesian technique

were consistently smaller than those obtained from conventional one-mode analysis. The

mean difference in β between the two methods, ∆β, was 7.3 ± 3.1 dB/cm/MHz for all

72 sites. Figure 4.17 shows the average differences in β between the conventional one-mode

analysis and the Bayesian one-mode analysis. As shown in the right panel of Figure 4.17, the

differences between the nBUA values obtained with the two methods of one-mode analysis

(Bayesian and conventional) were quite large for lower bone porosities and then decreased as

porosity increased. This trend with porosity held true even when Aone was set to equal one
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Figure 4.17: Left: The average (N = 9) ± one standard deviation nBUA values obtained
from the one-mode conventional analysis (black squares) and from the one-mode Bayesian
analysis (gray diamonds) as a function of sample porosity. Right:The mean difference in β,
∆β, between conventional one-mode analysis and Bayesian one-mode analysis (shown in the
left panel) plotted versus sample porosity.

in the Bayesian one-mode model, which was more consistent with conventional one-mode

analysis where the insertion losses were considered negligible. The discrepancy between

conventional and Bayesian nBUA values also occur in other studies presented later in this

thesis (Chapters 6 and 7).

To investigate the reproducibility of the two-mode Bayesian algorithm, all 72 sites were

run through the algorithm five times using the same priors as shown in Table 4.3. In order

to quantify the reproducibility, the relative standard deviation (RSD) given by

RSD(%) =
θ

x̄
× 100 (4.7)

was calculated for each spatial site. Table 4.5 gives the mean RSD (N = 9) of each Bayesian

parameter for all eight samples. For four out of the six Bayesian parameters (Afast, Aslow,

cfast, and cslow), the RSD was less than 2.5% for all the samples, which suggests that the

Bayesian algorithm is robust and reproducible. However, for some of the samples, βfast and
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Table 4.5: The mean (over 9 sites) relative standard deviation (RSD) ± SD of the six
Bayesian parameters for the eight calcaneal samples studied. The RSD was calculated after
running all 72 sites through the Bayesian algorithm five times.

βslow had RSD values greater than 20%. This high degree of variation was associated with

values of β very close to zero.

4.6 Conclusions

The results of this study show that fast and slow waves identified by the Bayesian method

have properties that correlate with microstructural parameters, such as porosity. Results

also show that the Bayesian technique can separate the fast and slow waves even in cases

of significant temporal overlap. In light of potential artifacts caused by interfering fast and

slow waves, analyses performed on segregated fast and slow waves might represent a useful

step toward deriving additional diagnostically useful information from bone sonometry.
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Chapter 5

Simulation of the Effects of

Overlapping Fast and Slow Waves on

the Apparent Attenuation of

Cancellous Bone

5.1 Preface

This chapter is based on the peer-reviewed journal article ”Determining attenuation

properties of interfering fast and slow ultrasonic waves in cancellous bone” by Amber M.

(Nelson) Groopman, Joseph J. Hoffman, Christian C. Anderson, Mark R. Holland, Yoshiki

Nagatani, Katsunori Mizuno, Mami Matsukawa, and James G. Miller and published in The

Journal of the Acoustical Society of America, Vol. 130, No. 4, pp. 2233-40.
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5.2 Abstract

Previous studies have shown that interference between fast waves and slow waves can

lead to observed negative dispersion in cancellous bone. In this study, the effects of over-

lapping fast and slow waves on measurements of the apparent attenuation as a function of

propagation distance are investigated along with methods of analysis used to determine the

attenuation properties. Two methods are applied to simulated data that were generated

based on experimentally acquired signals taken from a bovine specimen. The first method

uses a time-domain approach that was dictated by constraints imposed by the partial overlap

of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction

technique on the separated fast and slow waves. Applying the time-domain analysis to the

broadband data yields apparent attenuation behavior that appears to be larger in the early

stages of propagation and decreases as the wave travels deeper. In contrast, performing

frequency-domain analysis on the separated fast waves and slow waves results in attenuation

coefficients that are independent of propagation distance. Results suggest that features aris-

ing from the analysis of overlapping two-mode data may represent an alternate explanation

for the previously reported apparent dependence on propagation distance of the attenuation

coefficient of cancellous bone.

5.3 Introduction

Although dual-energy X-ray absorptiometry (DXA) is the current gold standard for di-

agnosing osteoporosis, quantitative ultrasound represents an approach for evaluating the
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quality of cancellous bone that has the potential for determining the likelihood of osteoporo-

sis (Hans and Krieg, 2008; Laugier, 2008; Frost et al., 2001). In Japan, ultrasonic screening

for osteoporosis is recommended by the government and is included in the publicly funded

annual health check. Cancellous bone is a porous material consisting of a matrix of solid

trabeculae filled with soft bone marrow. The heterogenous structure of cancellous bone can

result in the propagation of complicated ultrasonic waveforms that obfuscate measurements

and make the interpretation of results difficult.

Cancellous bone is known to support the propagation of two compressional wave modes,

often referred to as fast waves and slow waves (Hosokawa, 2010; Hosokawa and Otani, 1998,

1997; Mizuno et al., 2009; Haiat et al., 2008; Cardoso et al., 2003; Padilla and Laugier,

2000). In some experimental situations, the two waves are separated in the time-domain

data, whereas in other circumstances the two waves substantially overlap and may appear

as only a single wave. The degree to which the fast waves and slow waves overlap depends

on a number of factors including porosity, structural anisotropy, ultrasonic path length, and

the angle of insonification relative to the predominant trabecular orientation (Hosokawa and

Otani, 1998; Haiat et al., 2008; Mizuno et al., 2008; Lee and Choi, 2007).

When the fast waves and slow waves are clearly distinct and separated in time in the

radiofrequency data, each mode can be analyzed individually to obtain intrinsic ultrasonic

properties such as the attenuation coefficient and phase velocity. However, under circum-

stances in which there is overlap between the two wave modes, conventional analysis methods

may suggest potentially misleading material properties. Previous studies have demonstrated

that interfering fast wave and slow wave modes can account for the apparent negative dis-
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persion sometimes observed in measurements of cancellous bone (Anderson et al., 2011;

Marutyan et al., 2006b; Anderson et al., 2008; Marutyan et al., 2006a; Bauer et al., 2008).

This apparent negative dispersion arises when conventional phase spectroscopy analysis of

two overlapping waves is performed as if only one wave were present. Sometimes the presence

of an additional wave is not apparent in the RF signal.

One objective of the current study was to examine the effects of interfering fast and

slow waves on the determination of the attenuation properties of cancellous bone. A second

objective was to investigate the influence of the choice of methods employed to extract the

attenuation properties.

5.4 Methods

In this study, two methods for determining the attenuation properties as a function of

propagation distance were applied to the same simulated data to permit a comparison of the

relative advantages and disadvantages of the two methods of analysis. The two methods of

analysis include a previously reported time-domain technique (Nagatani et al., 2008) and a

frequency-domain technique performed on separated fast and slow waves. Details of these

methods of analysis are presented later in this section.

5.4.1 Generating simulated ultrasonic waves

The experimental observations that provided the basis for the simulated data employed in

this study were reported in a manuscript by Nagatani et al.(2008). In that study, through-
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transmission measurements were conducted on a 20 x 20 x 15 mm sample from a bovine

femoral head, which was immersed in degassed water. Planar PVDF transmitting and

receiving transducers were separated by 60 mm. The transmitter was excited by a single

cycle of a 1 MHz sinusoid. The direction of wave propagation was parallel to the predominant

bone axis. To investigate whether the fast wave attenuation properties were influenced by

the thickness of the sample and thus the propagation distance, in that earlier study the

specimen was gradually shortened from 15 mm to 6 mm in steps of 1 mm by removing bone

tissue from one end of the sample.

In the present work, signals presented in that previous study were employed in conjunc-

tion with a model that explicitly accounts for the presence of fast and slow wave modes

(Anderson et al., 2008, 2010). The ultrasonic propagation through bone was modeled as

Output(f) = Input(f)[Hfast(f) +Hslow(f)] (5.1)

where Output(f) and Input(f) are the complex Fourier spectra of the received mixed mode

waveform and the incident waveform, respectively, and Hfast(f) and Hslow(f) are the transfer

functions for the fast and slow waves. In this study, the input wave was taken as the reference

water-path only signal from the Nagatani et al. paper, which is shown in panel(a) of Figure

7 of that paper (Nagatani et al., 2008). The transfer functions for the individual fast and
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slow waves are given by

Hfast(f) = Afastexp(−βfastfd)exp

(
ı2πfd

cfast(f)

)
(5.2a)

Hslow(f) = Aslowexp(−βslowfd)exp

(
ı2πfd

cslow(f)

)
(5.2b)

in which Afast and Aslow are frequency-independent signal loss parameters, βfast and βslow

are the slopes of attenuation for the fast and slow waves, d is the sample thickness, and

cfast(f) and cslow(f) are the phase velocities for the fast and slow waves. The phase ve-

locities of the fast and slow waves were required to satisfy the Kramers-Kronig relations

for media exhibiting linear-with-frequency attenuation coefficients (Waters and Hoffmeister,

2005; Bauer et al., 2007; O’Donnell et al., 1978, 1981; Waters et al., 2005, 2000), thus having

the following form

cfast(f) = cfast(f0) + [cfast(f0)]
2βfast
π2

ln

(
f

f0

)
(5.3a)

cslow(f) = cslow(f0) + [cslow(f0)]
2βslow
π2

ln

(
f

f0

)
(5.3b)

where f0 is a reference frequency taken from within the experimental bandwidth, usually at

or near midband. In our calculations, f0 was set at 1 MHz, which was the frequency of the

excitation pulse.

The parameters in Equations 5.2 - 5.3 (Afast, Aslow, βfast, βslow, cfast(f0), cslow(f0)) were

estimated using Bayesian probability theory applied to the reference water-only signal and

the sample signal traveling through 9 mm of bone from the Nagatani et al. paper(2008)
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Table 5.1: The values used for the six parameters in the propagation model. This set of
parameter values was used because it maximized the posterior probability of the model.

Parameters

Afast Aslow βfast βslow cfast(1 MHz) cslow(1 MHz)
(dB/cm/MHz) (m/s)

Bayesian 1.00 0.13 49.2 7.1 1933 1475estimate

(panels (a) and (b) from Figure 7, respectively). More detailed explanations of Bayesian pa-

rameter estimation can be found in Anderson et al.(2010), Bretthorst (2005), and Marutyan

et al.(2007). The values of the six parameters used in the propagation model above are

given in Table 5.1. Once these six parameters were known, the individual fast and slow

waves could be generated for each sample thickness d, which was varied from 6 mm to 15

mm in 1 mm increments.

5.4.2 Methods of analysis of attenuation properties

The two analysis methods discussed in this section were applied to the simulated data

generated using the propagation model above.

Time-domain analysis of unseparated wave

The method of analysis used in this section is described in the Nagatani et al. paper

(2008). Its use was suggested by the limitations imposed by the overlapping wave modes.

In this time-domain technique, the amplitudes of the first peak of the received signal, which

are assumed to correspond to the fast waves, are compared for a series of sample thicknesses.
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The apparent attenuation value, αtime, of the fast wave is defined by

αtime =
20 log

(
Vn
Vn+1

)
∆d

(5.4)

where Vn and Vn+1 are the amplitudes of the first arriving peaks in the received RF wave-

forms. The indices n and n + 1 correspond to successive sample thicknesses differing by

∆d = 1mm. This analysis method was employed to determine the apparent attenuation of

the fast waves, but not the slow waves. This choice was made because the amplitudes of

the slow waves were sometimes affected by interference from the fast waves, thus leading to

meaningless determination of the attenuation of the slow waves (Nagatani et al., 2008).

Frequency-domain analysis of separated fast waves and slow waves

The frequency-domain method of determining the attenuation coefficient of a sample

(dB/cm) is carried out by performing a log-spectral subtraction technique (Ophir et al.,

1984; Baldwin et al., 2006),

α(f) =

10 log

(∣∣∣Ṽn(f)
∣∣∣2)− 10 log

(∣∣∣Ṽn+1(f)
∣∣∣2)

∆d
(5.5)

where |Ṽn(f)| and |Ṽn+1(f)| are the magnitudes of the Fourier transforms of the received

signals when the sample has a thickness corresponding to length indices n and n+ 1, respec-

tively, and ∆d = 1mm. Typically, a through-sample power spectrum is subtracted from a

water-only reference power spectrum. In the present study, to apply this frequency-domain

analysis method in a fashion analogous to that used in the time-domain analysis method

described above, differences between spectra at thickness indices n and n+ 1 were analyzed.
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Determining the attenuation coefficient using the difference of two through-sample power

spectra eliminated the need for compensating for the insertion losses at the boundaries.

In this method, Equation 5.5 was applied to the isolated fast wave signal and the isolated

slow wave signal. This method of analysis is expected to yield the attenuation coefficient of

only the fast wave, free from artifacts caused by interference with the slow wave, and visa

versa. The attenuation coefficients corresponding to the fast wave and the slow wave will be

referred to as αfast(f) and αslow(f), respectively.

5.5 Results

5.5.1 Simulated ultrasonic waves

Simulated ultrasonic data were generated using the model in Equations 5.1-5.3 for sample

thicknesses ranging in 1 mm steps from 6 mm to 15 mm. Examples of the simulated sample

waveforms along with the input reference waveform from the Nagatani et al. paper (2008)

are shown in Figure 5.1. Fast and slow waves can be observed in all of the sample traces.

As the sample thickness and thus propagation distance were increased, the fast wave was

highly attenuated relative to the slow wave.

5.5.2 Time-domain analysis results of unseparated wave

The attenuation value αtime of the fast wave at specific propagation distances within the

sample was determined from the peak amplitudes of fast waves that had traversed different

sample thicknesses 6, 7, 8,...,15 mm. Figure 5.2 shows the attenuation αtime of the fast wave
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Figure 5.1: (a) Reference (water-path only) waveform. Simulated sample waveforms trav-
eling through (b) 6 mm, (c) 10 mm and (d) 15 mm of sample.
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Figure 5.2: The dependence of the attenuation, αtime, of the fast wave on propagation
distance using the time-domain analysis method.

as a function of propagation distance. Similar to the results reported in the Nagatani et al.

paper (2008), the results depicted in Figure 5.2 show that the attenuation of the fast wave

appears to be larger at the beginning of propagation and then gradually smaller as the wave

travels farther into the sample.

5.5.3 Frequency-domain analysis results of separated fast waves

and slow waves

The propagation model and Bayesian probability theory analysis used in this study per-

mitted the separation of the sample waveform into fast waves and slow waves. Representative

examples of the individual fast waves and slow waves obtained from sample waveforms that

have propagated through 6 mm, 10 mm, and 15 mm of sample are shown in Figure 5.3. The

fast waves, identified as those arriving earlier in time, have lower amplitudes than the slow

waves.
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Figure 5.3: The top panels show the sample waveform comprised of overlapping fast and
slow waves for sample thicknesses of 6 mm, 10 mm, and 15 mm, respectively. The middle
and bottom panels display the individual fast waves and individual slow waves, respectively,
for the three sample thicknesses.
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For this method of analysis, the individual fast waves and slow waves were used in the

log-spectral subtraction technique expressed in Equation 5.5. Separating the fast and slow

waves permits determination of the fast wave’s attenuation coefficient without introducing

interference artifacts from the slow wave. Similarly, the slow wave’s attenuation coefficient

can be determined free from interference effects introduced by the fast wave. Performing

the frequency domain analysis on the separated waveforms is essentially an inversion of

the process used to simulate them from the values produced by the Bayesian parameter

estimation. For this reason, it is guaranteed that this method will recover the attenuation

coefficients used to initially simulate the waves. Furthermore, these attenuation coefficients

cannot vary with distance. Figure 5.4 shows that, as required, the attenuation coefficient at

1 MHz of the fast wave, αfast(f =1 MHz), and the attenuation coefficient at 1 MHz of the

slow wave, αslow(f =1 MHz), as a function of sample thickness display no dependence on

the propagation distance, and that the numerical values of αfast(f =1 MHz) and αslow(f =1

MHz) are consistent with those used as input to the simulations. This result, though only a

consistency check on the method, stands in contrast to the time-domain analysis shown above

that seems to indicate a propagation distance dependence of the attenuation, despite the

fact that the analyzed signals were simulated to have a strictly constant-with-propagation-

distance attenuation coefficient.
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Figure 5.4: The attenuation coefficient of the separated fast wave, αfast(f), and slow wave,
αslow(f), at 1 MHz as a function of propagation distance.

5.6 Discussion

Cancellous bone can support the generation and propagation of two compressional wave

modes, fast waves and slow waves. Depending on factors, such as sample length and relative

velocities of the fast and slow waves, these two wave modes can overlap substantially and

therefore interfere in the time-domain signal. Analysis of these overlapping waveforms can

lead to unexpected conclusions. Conventional phase spectroscopy analysis performed on

mixed mode signals as if only one wave were present can yield apparent negative dispersion

(Marutyan et al., 2006a; Anderson et al., 2008; Bauer et al., 2008). Previous work has

demonstrated, however, that when decomposed, the fast wave and slow wave each exhibit

positive dispersion as required by the casuality-induced Kramers-Kronig relations (Anderson

et al., 2010; Marutyan et al., 2007). Negative dispersion has been measured not only in

trabecular bone (Haiat et al., 2006; Strelitzki and Evans, 1996; Wear, 2001, 2000; Droin
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et al., 1998) and cortical bone (Haiat et al., 2008) in vitro but also in trabecular bone-

mimicking phantoms (Lee and Choi, 2007; Wear, 2005). Several models have been proposed

that predict negative dispersion including multilayer models (Wear, 2001, 2007), multiple

scattering models (Haiat et al., 2008), and independent scattering models (Haiat and Naili,

2011). The objective of this study was to investigate the potential value of separating the

fast waves and slow waves for determining the attenuation properties of cancellous bone and

to compare the results of time-domain and frequency-domain methods for the analysis of

attenuation.

In this study, two methods of analysis were investigated using the same simulated cancel-

lous bone data. The time-domain analysis method applied to the mixed-mode signal yielded

a fast wave attenuation that started high at the beginning of propagation and then decreased

as the wave traveled farther into the sample. However, the waves had been simulated with

a strictly constant-with-propagation-distance attenuation coefficient. The frequency-domain

analysis method applied to the separated fast waves and slow waves that made up that

mixed-mode signal, recovered the attenuation coefficients of both wave modes and did not

introduce a dependence on the propagation distance. This finding demonstrates that appli-

cation of time-domain based analysis to determine the attenuation properties of mixed mode

waves can introduce an apparent dependence of the properties on propagation distance.

The ability to separate the fast and slow waves permits application of frequency-domain

methods. If the separation is performed and the resulting waves are analyzed in the frequency

domain, the known attenuation coefficients can be recovered. Figure 5.5 demonstrates that

performing either these steps in isolation can introduce an apparent dependence on propaga-
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Figure 5.5: The attenuation behavior as a function of sample thickness results when
applying, panel (a): the time-domain method to the unseparated fast wave, panel (b): log-
spectral subtraction to the entire sample wave, consisting of overlapping wave modes, panel
(c): the time-domain method to the individual fast wave and slow wave, and panel (d):
log-spectral subtraction to the separated fast wave and slow wave.

tion distance. As illustrated, frequency-domain analysis of the unseparated wave (Fig. 5.5,

panel (b)) and time-domain analysis of the separated waves (Fig. 5.5, panel (c)) both result

in variable-with-distance apparent attenuation.

When the time-domain method was applied to the individual separated fast waves and

slow waves, the attenuation of the fast wave, αfasttime, and the attenuation of the slow wave, αslowtime

, both showed a dependence on sample thickness (Fig. 5.5, panel (c)). This phenomenon

results from estimating the attenuation from the time-domain amplitude of a broadband

pulse. In the current system, a 1 MHz center-frequency, broadband pulse was used as the
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input signal. Typically, the attenuation coefficient for both fast and slow waves increases

with frequency in the range of interest. As a result, early in the propagation, the higher

frequency components of the broadband signal are reduced more rapidly than the lower

frequency signals, thus resulting in a signal exhibiting proportionally more of the lower

frequency components. These lower frequency components are attenuated less with distance

than the higher frequencies, resulting in a perceived attenuation coefficient that appears to

decrease with distance. (Because of the shift to lower frequency components, to permit a

better comparison with the time-domain analysis results, in Figure 5.5 the frequency-domain

attenuation coefficients for both the unseparated wave (panel (b)) and the separated fast and

slow waves (panel (d)) are shown for f =0.75 MHz rather than f =1 MHz. In panel (b)

the values of αsample (0.75 MHz) are negative below sample thicknesses of 0.8 cm due to

interference between the fast and slow waves.)

The frequency-domain analysis method properly accounts for the broadband nature of

the data; however, applying this method to the mixed-mode sample waveform still yields an

apparent attenuation coefficient that depends on the thickness of the sample (Fig. 5.5, panel

(b)). This effect, observed previously in bone mimicking phantoms (Bauer et al., 2008, 2007),

appears to be a result of interference between the fast and slow waves being perceived as

attenuation. Figure 5.6 shows the apparent attenuation coefficient of the combined wave for

three propagation distances, along with the known attenuation coefficients for the fast and

slow wave. Panel (a) shows that when the signals have propagated a short distance, there

is substantial interference between the two waves and a resulting anomalous attenuation

coefficient. By the time the signals propagate to 10 mm (panel (b)) and 15 mm (panel (c)),
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Figure 5.6: The attenuation coefficients determined using the frequency-domain technique
for the entire sample wave (solid line) and the separated fast and slow waves (dashed lines)
for three propagation distances: 6 mm (panel a), 10 mm (panel b), and 15 mm (panel c).

the fast wave has been attenuated more than the slow wave, so the attenuation coefficient

of the combined wave approaches the slow wave value. As illustrated in Figure 5.4, the

underlying attenuation coefficient of each mode can be obtained if separated fast waves and

slow waves are available.

The results presented above might provide insight into the interpretation of the recent

study by Nagatani et al.(2008). That previous work showed that the attenuation properties

of cancellous bone appear to vary substantially on the scale of millimeters. The current

work attempts to demonstrate that in a simulated sample with constant attenuation prop-

erties, apparent variation with sample thickness can be introduced by the analysis methods.

The nature and scale of the variation with depth reported by Nagatani et al. may not be

fully accounted for by the effects originating from use of time-domain analysis, but gaining

a complete understanding of this complicated system will likely require isolation of these

effects.

As described previously, the complicated trabecular structure of cancellous bone could

potentially be an alternative or additional cause for the previously reported apparent decrease

with distance of the attenuation coefficient (Nagatani et al., 2008). The substantially higher
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speed of sound within the trabeculae (approximately 3500 m/s) relative to the lower speed

of sound in the intervening marrow (approximately 1470 m/s) (Laugier, 1999) causes the

portions of the propagating signal that travel through the hard bone to advance much more

quickly than the signal that propagates primarily through the interstitial marrow. When

these faster signals have propagated only a short distance through the sample (relative to the

pertinent scales determined by the trabecular spacing and by the wavelength of the sound),

their phase fronts might be significantly misaligned. As a result, signals from a relatively

large (compared to the wavelength) phase sensitive receiving aperture (real or simulated)

would be subject to phase cancellation artifacts at its face (Busse and Miller, 1981a,b). This

phase cancellation represents irretrievable loss of information that would appear as apparent

attenuation. Similar examples of phase cancellation appearing as apparent attenuation in

bone have been reported previously (Petley et al., 1995; Langton and Subhan, 2001; Bauer

et al., 2007, 2008; Wear, 2007, 2008; Cheng et al., 2011).

In the context of this attenuation explanation, if the fast wave is permitted to propagate

farther into the sample, the phase front will tend towards realignment as the randomness

induced by the trabeculae averages out over this longer path (Nagatani et al., 2008). A phase

sensitive receiver placed at the end of such a longer propagation path will be subject to less

phase cancellation, and therefore less perceived attenuation. This phenomenon is described

more fully in Nagatani et al. (2008) and is demonstrated in Figure 10 of that paper.

This phenomenon potentially complicates the interpretation of signals propagated through

cancellous bone. However, because it is intrinsically linked to the size and spacing of tra-

beculae, this effect might ultimately be exploited to infer from apparent attenuation mea-
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surements the relevant length scales of the sample under investigation. Knowledge of these

length scales might then be used to estimate clinically useful parameters such as the porosity

and bone volume per total volume (BV/TV).

If the mixed-mode signal cannot be decomposed into its individual wave modes, then

both the time-domain method and the frequency-domain method might introduce an appar-

ent dependence on distance of the attenuation properties that is not representative of the

underlying structure. Therefore, the ability to separate the fast waves and slow waves is

of considerable importance. Bayesian probability theory is one method for determining the

individual properties of the interfering wave modes (Anderson et al., 2010; Marutyan et al.,

2007), but in principle any method that can isolate the two waves could be applied. Wear,

for example, recently demonstrated that the modified least squares Prony’s method was

also able to decompose a mixed-mode signal and yield accurate estimates of its ultrasonic

properties (Wear, 2010a,b).

The results of this study show that overlapping fast waves and slow waves can complicate

the determination of the attenuation properties of cancellous bone. Specifically, the subtleties

introduced by certain analysis methods applied to these temporally overlapped waves might

represent, in part, an alternative explanation for the previously observed dependence on

propagation distance of the attenuation properties of cancellous bone. Frequency domain

analysis performed on the separated fast and slow waves was shown to be the least susceptible

to such artifacts.
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Chapter 6

Study of Systematically Shortened

Equine Cancellous Bone

6.1 Introduction

The material presented in this chapter makes use of a powerful approach introduced by

Professor Mami Matsukawa and her co-investigators at Doshisha University in Kyoto, Japan.

The approach pioneered by Dr. Matsukawa consists of systematically shortening a carefully

prepared bone specimen, with ultrasonic data acquired at each sample length. Professor

Mami Matsukawa and her co-investigators prepared the bone specimen and acquired the

data used in this investigation.

The bone specimen investigated, which was of unusually high bone volume fraction

(BV/TV), was obtained from the radius of a horse. The relatively high bone volume fraction

resulted in a rather large separation between the fast wave and slow wave velocities. This,

in turn, permitted investigation with both conventional and Bayesian techniques for a wide
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Figure 6.1: The equine trabecular specimen was obtained from the distal end of the
left radius. The ultrasonic signal was propagated along the main bone axis, which is the
predominant trabecular orientation. Adapted from Fujita et al. (2013).

range of sample thicknesses.

6.2 Methods

6.2.1 Data acquisition

The following sample preparation and ultrasonic measurements were performed at Doshisha

University in Kyoto, Japan by Dr. Mami Matsukawa’s group. A rectangular cancellous bone

specimen, approximately 22.4 mm x 22.4 mm x 11.8 mm in size, was extracted from the left

radius of a 36 month old horse as shown in Figure 6.1. The sample was defatted using a

water pick. Micro-CT, with a spatial resolution of 41 µm, was performed on the sample to

obtain measurements of the bone volume fraction (BV/TV).

For the ultrasonic measurements, the sample was immersed in a room temperature tank

filled with degassed water. The sample itself was placed in an ”acoustic tube” as shown
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Figure 6.2: Through-transmission arrangement for the ultrasonic measurements. For each
sample thickness, the bone sample was placed in an acoustic tube approximately 75 mm
from the transmitting transducer. The two rectangular PVDF transducers were separated
by a distance of 100 mm. Figure adapted from Fujita et al. (2013).

Figure 6.3: Water-path-only reference signal with a center frequency of 1 MHz.
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Figure 6.4: Power spectrum of the reference signal shown in Figure 6.3. Left: The power
spectrum around 1 MHz, the center frequency of the transducer. Right: The same power
spectrum over a wider frequency range. As is evident from the figure, the reference trace
contained high levels of the harmonic frequencies.

in Figure 6.2. The walls of the acoustic tube were covered by polystyrene to prevent the

ultrasonic waves from reflecting off the acoustic tube. A pair of planar, wideband polyvinyli-

dene fluoride (PVDF) transducers, with an active area of 15 mm x 15 mm, were used to

investigate the sample. The transducers were separated by a distance of 100 mm, with the

front surface of the sample positioned at 75 mm from the transmitting transducer. The

transmitter was excited by a single cycle of a 1 MHz sinusoidal pulse with a peak-to-peak

amplitude of 5 V generated by a function generator and then amplified by 20 dB using a

power amplifier. Figure 6.3 shows the water-path-only reference signal and Figure 6.4 shows

the power spectrum of the reference signal. The received signal, after passing through the

sample, was first amplified by a 20 dB preamplifier and then digitized with an oscilloscope.

This process was repeated as the equine sample was shortened from 11.8 mm down to 0.5

mm in 0.5 mm increments, for a total of 24 data sets. At each step, the sample was ground
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down using a polishing machine.

The received signals that traveled through each of the sample thicknesses are shown in

Figure 6.5. Separated fast and slow waves are clearly evident at the larger sample thicknesses,

ranging from 11.8 mm to 6 mm. Samples thinner than approximately 6 mm produced a

sample signal that had either overlapping fast and slow waves or that appeared to be only

one wave. The effects of sample thickness on the presence of fast and slow waves are more

clearly observed in Figure 6.6, in which the slow wave was normalized to unit amplitude for

each trace.

6.2.2 Data analysis

Data analysis was carried out in the Laboratory for Ultrasonics at Washington University

in Saint Louis. Bayesian parameter estimation analysis and conventional analysis, both

described in more detail in Chapter 3, were applied to the data acquired at specific sample

lengths.

Bayesian parameter estimation analysis

The Bayesian probability method was performed on the 24 data sets acquired at sample

lengths ranging from 11.8 mm to 0.5 mm. The six fast and slow wave ultrasonic parameters,

Afast, Aslow, βfast, βslow, cfast(f0), cslow(f0), were estimated using the wave propagation model

detailed in Section 3.4.2. For the Bayesian parameter estimation, the prior probabilities for

each of the six parameters were assigned to be bounded Gaussian distributions as shown in

Table 6.1 and f0 was set to 1 MHz, the center frequency of the transmitted signal.
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Figure 6.5: Acquired experimental data on the equine sample at 24 different lengths. As
the sample thickness decreased, the originally separated fast and slow waves became more
overlapped until the received signal appeared to contain only a single wave.
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Figure 6.6: The received signals shown in Figure 6.5 with the maximum voltage normalized
to unity for each thickness. This normalization permitted the fast waves present in the longer
sample lengths to be visible. As the sample thickness decreased, the location of the fast wave
moved closer to the location of the slow wave. The slow wave also shifted to earlier times as
the sample thickness changed.
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Table 6.1: Prior probability distributions for each model parameter. The means and
standard deviations define Gaussian distributions that are bounded by the minimum and
maximum values.

Afast Aslow βfast βslow cfast(1 MHz) cslow(1 MHz)

(dB/cm/MHz) (m/s)

Minimum 0 0 0 0 1500 1300

Mean 0.5 0.5 25 25 2000 1500

Maximum 1.0 1.0 50 50 2500 1700

Std. Dev. 0.5 0.5 25 25 500 200

Conventional analysis

Conventional analysis was performed on the sample lengths that were sufficiently long as

to permit enough separation of the fast and slow waves so that time-domain gating could be

carried out effectively. A 90% Tukey window, shown in Figure 6.7, was used to time-gate the

received sample signals into individual fast and slow waves for sample thickness from 6.0 mm

to 11.8 mm, a total of 13 lengths. A Tukey window is a rectangular window with sinusoidal

tapering on either end. It is referred to as a 90% Tukey window because the central 90% of

the window is equal to unity.

In this analysis, the individually windowed fast and slow waves were compared to a

reference signal obtained by recording a signal traveling only through water, as shown in

Figure 6.3. The phase velocities were determined using the phase spectroscopy methods

detailed in Section 3.3.1. In order to determine the attenuation coefficients of the fast and

slow waves as detailed in Section 3.3.2, the insertion losses for the fast and slow waves,

respectively, were taken into account. The insertion losses were estimated by determining
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Figure 6.7: Representative 90% Tukey windows used to separate the fast waves (red) and
the slow waves (blue). The specific windows plotted were for sample length d = 11.8 mm.
Window lengths varied depending on the degree of separation of the fast and slow waves and
the systematic variation in frequency of the fast and slow waves.

the zero-frequency intercepts of the signal loss versus frequency curves, as illustrated in

Figure 6.8. The fast and slow wave impedances are unknown. Therefore the intensity

transmission coefficients of the fast and slow waves can not be determined independently.

The average (± one standard deviation) insertion losses of the fast and slow waves for

sample thickness ranging from 6.0 mm to 11.8 mm are shown in Figure 6.9. The normalized

broadband ultrasound attenuations (nBUA) of the fast and slow waves were determined by

the slope of a linear fit of the attenuation coefficient over the bandwidth 0.58 - 1.25 MHz.

Estimation of apparent frequency

In Fujita et al. (2013), the apparent frequencies of the fast waves and slow waves at

each sample length were determined using time intervals of peaks and zero-crossings in

the time-domain signals. As discussed in Chapter 5, time domain analysis methods may be
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Figure 6.8: Average ± one standard deviation signal loss of the fast waves (red) and slow
waves (blue) over 13 sample lengths ranging from d = 6.0 mm to 11.8 mm. The gray lines
are the linear fits over the usable bandwidth. In principle, the zero - frequency intercepts of
the gray lines represent the insertion losses of the fast and slow waves.

Figure 6.9: The average (N = 13) ± one standard deviation insertion loss for the fast and
slow waves as determined by the zero-frequency intercepts of the signal loss curves, as shown
in Figure 6.8, for sample thicknesses from 6.0 mm to 11.8 mm.
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inappropriate for broadband ultrasonic wave propagation. In contrast, the Bayesian methods

recovered the individual fast and slow waves permitting the apparent frequencies of the fast

and slow waves to be determined using frequency-domain methods. The Bayesian-separated

fast and slow waves at each sample length were Fast Fourier Transformed so that the centroid

of the linear power spectrum of the fast and slow waves were used to determine the shifted

center frequencies. (The centroid or center-of-mass was employed rather than the maximum

value because the majority of the spectra were either asymmetric or contained multiple peaks

of similar amplitude.)

The experimental spectral shifts in frequency of the fast and slow waves where compared

to the spectral shifts predicted by Ophir and Jaeger (1982). When a wideband ultrasonic

pulse propagates through a lossy medium whose attenuation coefficient increases with in-

creasing frequency, the higher frequency components will be attenuated more than lower

frequency components. This results in a downshift in the center frequency of the received

power spectrum. In the case of a linear-with-frequency attenuation coefficient or f = 1

dependence, the spectral shift is given by

∆f = f0 − fc = 2βdσ2 (6.1)

where f0 is the center frequency of the reference signal, fc is the downshifted center frequency,

β is the slope of the attenuation coefficient (nBUA), d is the propagation distance, and σ2 is

the variance of the spectrum of the transmitted pulse. To determine a value for the variance,

σ2, Ophir and Jaeger (1982) state the relationship between the half amplitude bandwidth
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Figure 6.10: Fits to the reference power spectrum (black) of Gaussians with σ2 = 0.105
MHz2 (green) and σ2 = 0.08 MHz2 (blue).

and the variance of a Gaussian spectrum as

exp
[
− (f − f0)2

2σ2

]
= 1/2. (6.2)

Equation 6.2 can be solved for fl,h, the low and high frequencies for which the amplitude of

the spectrum is 1/2, resulting in

fl,h = f0 ± 1.18σ. (6.3)

The best Gaussian fit to the reference power spectrum yielded a variance of σ2 = 0.105 MHz2.

However, it was observed that the experimental spectral shifts of the fast and slow waves

were better fit by the predicted spectral shift when σ2 = 0.08 MHz2. The Gaussian curves

with σ2 = 0.105 MHz2 and with σ2 = 0.08 MHz2 along with the reference power spectrum

are shown in Figure 6.10. The predicted spectral shifts for the fast and slow waves, shown

in Figure 6.11, were determined using Equation 6.1 with σ2 = 0.08 MHz2, d the sample
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Figure 6.11: The downshifts in the center frequency of the fast and slow waves as deter-
mined by Equation 6.1.

thickness, and β the Bayesian-derived nBUA.

Estimation of segmental attenuation

Fujita et al. (2013) also reported the apparent attenuation of the fast and slow waves us-

ing a segmental approach identical to that employed by Nagatani et al., which was discussed

in Chapter 5. This segmental time-domain method for determining the apparent attenua-

tion uses the peak amplitudes of the fast and slow waves for successive sample thickness and

defines the attenuation as

αtime =
20 log

(
Vn
Vn+1

)
∆d

. (6.4)

where Vn and Vn+1 are the amplitudes of the peaks in the received RF waveforms. The

indices n and n+ 1 correspond to successive sample thicknesses differing by ∆d = 0.5 mm.

An analysis similar to that performed in Section 5.4.2, was carried out on the Bayesian-
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separated fast and slow waves obtained at each sample thickness. This analysis method is a

combination of the conventional analysis detailed above (because it occurs in the frequency-

domain) and the Fujita et al. (2013) time-domain attenuation analysis (because it compares

the loss at successive sample thicknesses). Equation 6.5 gives what will be referred to as the

segmental attenuation coefficient

αseg(f) =

10 log

(∣∣∣Ṽn(f)
∣∣∣2)− 10 log

(∣∣∣Ṽn+1(f)
∣∣∣2)

∆d
(6.5)

where |Ṽn(f)| and |Ṽn+1(f)| are the magnitudes of the Fourier transforms of the Bayesian

fast or slow waves when the sample has a thickness corresponding to length indices n and

n+ 1, respectively. For the initial analysis ∆d = 0.5 mm (in subsequent work, values of ∆d

were systematically increased). Figure 6.12 illustrates the difference between the conven-

tional (bulk) analysis, which uses a water-path-only signal as a reference, and the segmental

analysis, which uses a through-sample signal at a different sample thickness as a reference.

This segmental method has both advantages and disadvantages. The main advantage is

that the insertion losses do not need to be known because the sample signals at two dif-

ferent lengths should have approximately the same insertion losses and thus cancel. Other

advantages to the segmental attenuation approach include providing information about local

inhomogeneities and potentially being less susceptible to diffraction effects. Some disadvan-

tages include larger fractional errors from any uncertainties in the path lengths (∆d) as well

as very limited clinical utility .
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Figure 6.12: Left: The bulk attenuation method referred to as conventional analysis in
this thesis. In the bulk method the sample trace is compared to a water-path-only reference
trace. In this method, the resulting attenuation is the loss in the whole sample of thickness
d1 . Right: The segmental attenuation method, in which the signal at sample thickness d1

is compared to a signal at a sample thickness of d2 . In the segmental method, the resulting
attenuation is the loss in the sample thickness d1 -d2 .

6.3 Results

6.3.1 Results of Bayesian parameter estimation

In order to illustrate the results of Bayesian analysis, the experimental data and the

models constructed from Bayesian parameter estimation are shown in Figure 6.13 for four

selected sample thicknesses. For a sample thickness of 1.1 mm, only one wave was apparent.

For a thickness of 4.0 mm, the fast and slow waves were significantly overlapped. For a

sample thickness of 7.0 mm, the fast and slow waves were just barely separated. For a

thickness of 11.0 mm, the fast and slow waves were completely separated. The residuals,

the difference between the experimental trace and the model trace, are shown in the middle

panel of each subplot, and were scaled to be consistent with the overall amplitude of the
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experimental signal. Table 6.2 gives the coefficient of variation (CV) of the root-mean-

square-deviation (RMSD), given by Equation 4.5, for the Bayesian-constructed model and

the data. As is evident in Figure 6.13 and Table 6.2, the Bayesian algorithm provided a

better fit to the signals from the thicker samples than the signals obtained from the thinner

samples. However, even for the thinner samples, in which the fast and slow waves were

significantly overlapped, the Bayesian algorithm still produced model fits that were in good

agreement with the data.

The average results of the Bayesian probability analysis for the six model parameters over

sample thickness d = 3.5 mm to 11.8 mm are shown in Figures 6.14 - 6.16. Samples shorter

than d = 3.5 mm were not included in the averages. As will be seen in later analysis shown

in Figures 6.28, 6.30, and 6.34, there was significant variability in the Bayesian estimates of

the six model parameters for samples thinner than 3.5 mm.

Figure 6.14 displays the average fast and slow wave phase velocities at 1 MHz determined

by Bayesian parameter estimation over 18 sample thickness (d = 3.5 mm to 11.8 mm). The

average fast wave velocity, shown in Table 6.3, was 2409.7 ± 17.0 m/s which is consistent

with previously reported values. The average slow wave velocity was 1402.0 ± 2.7 m/s.

This velocity is lower than the velocity of the 1 MHz ultrasonic signal in water, which was

approximately 1489 m/s. The significant difference in velocity between the fast wave and

slow wave allowed the two waves to achieve separation in the time-domain even for relatively

small sample lengths. This is in contrast to the human heel study detailed in Chapter 4

where the fast and slow wave velocities differed by only 120 m/s on average for similar

sample thicknesses.
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Figure 6.13: Model results constructed using the parameters estimated from Bayesian
probability theory for four representative thicknesses of the equine sample. For each sample
thickness: the top panel shows the experimental data along with the model constructed from
the Bayesian estimates, the middle panel shows the residual or difference between the data
and model, and the bottom panel shows the individual fast and slow waves that make up
the model signal. In each panel, the vertical scale was adjusted to facilitate visualizing the
signals.
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Table 6.2: Goodness-of-fit of the Bayesian-derived model to the experimentally acquired
signals. The coefficient of variation (CV) of the root-mean-square-deviation (RMSD), shown
in Equation 5.5, was determined to quantify the fit of the model generated by the Bayesian
estimated parameters to the experimental data.

Sample thickness (mm) CV(RMSD) ( %)

11.8 12.7

11.3 17.9

11.0 18.8

10.4 17.6

10.0 16.1

9.5 19.0

9.0 18.0

8.5 22.4

8.0 19.4

7.5 17.4

7.0 21.5

6.5 18.4

6.0 20.6

5.4 22.0

4.9 22.5

4.4 22.6

4.0 24.6

3.5 26.7

3.0 29.1

2.4 37.6

2.0 43.9

1.5 57.9

1.1 54.3

0.5 32.4
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Figure 6.14: The average value ± one standard deviation over sample lengths d = 3.5 mm
to 11.8 mm (N = 18) of cfast and cslow as estimated by Bayesian methods. The error bars
are too small to be seen.

The average fast wave nBUA over 18 sample thicknesses (d = 3.5 mm to 11.8 mm) was

31.4 ± 1.4 dB/cm/MHz and the average slow wave nBUA was 11.5 ± 0.6 dB/cm/MHz, as

shown in Figure 6.15 and Table 6.3. It is typically reported that the fast wave has a larger

nBUA than the slow wave since it is thought that the fast wave travels mainly through the

bony trabeculae, which is more attenuating than the water or marrow filling the porous

areas.

The average model parameters Afast and Aslow over sample thicknesses d = 3.5 mm to

11.8 mm (N = 18) are shown in Figure 6.16. The mean values for Afast and Aslow, in

Table 6.3, were 0.36 ± 0.04 and 0.52 ± 0.10, respectively. A value of A = 1 means that the

total input signal is transmitted into and out of the sample with no reflection losses at either

boundary. If Afast and Aslow are purely insertion losses then these results imply that more
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Figure 6.15: The average values ± one standard deviation over sample lengths d = 3.5
mm to 11.8 mm (N = 18) of βfast and βslow as estimated by Bayesian methods. The error
bars for the slow wave nBUA are too small to be seen.

signal is transmitted through the boundaries for the slow waves than for the fast waves.

6.3.2 Results of conventional analysis

The phase velocities as a function of frequency for the windowed fast waves and slow waves

over sample lengths d = 6.0 mm to 11.8 mm (N=13) are shown in Figure 6.17. All of the

phase velocities exhibited positive dispersion, which implies a good separation of the waves

using time gates. If, when time gated, a signal contained parts of both fast and slow waves,

then the signal might have displayed negative dispersion when analyzed conventionally. The

average fast wave velocity, shown in Table 6.4, was 2412.2 ± 11.8 m/s and the average slow

wave velocity was 1404.8 ± 1.1 m/s. These average values for the fast and slow wave phase

velocities using conventional phase spectroscopy agreed well with those obtained using the
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Figure 6.16: The average value ± one standard deviation over sample lengths d = 3.5 mm
to 11.8 mm (N = 18) of Afast and Aslow as estimated by Bayesian methods.

Bayesian analysis method. The average difference in the phase velocity at 1 MHz between

conventional and Bayesian methods was 6.1 ± 3.8 m/s for the fast wave and 1.5 ± 0.9 m/s

for the slow wave.

The attenuation coefficients of the fast waves and slow waves for sample lengths from d =

6.0 mm to d = 11.8 mm are shown in Figure 6.19. All of the attenuation coefficients showed

approximately a linear dependence with frequency over the bandwidth, which is demarcated

by the vertical dashed lines in Figure 6.19. The average slopes of the attenuation coefficient

(nBUA) over that bandwidth are shown in Figure 6.20 for the fast and slow waves. The

average fast wave nBUA, shown in Table 6.4, was 37.7 ± 1.4 dB/cm/MHz and the average

slow wave nBUA was 11.8 ± 0.6 dB/cm/MHz. The average value for βslow using conventional

methods was in good agreement with that estimated by Bayesian methods, Table 6.3, whereas
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Figure 6.17: Phase velocities as a function of frequency for the fast waves (red) and the
slow waves (blue) as determined by conventional analysis methods for sample thicknesses d
= 6.0 mm to 11.8 mm (N = 13).

Figure 6.18: Average (± one standard deviation) phase velocities at 1 MHz of the fast
waves (left) and the slow waves (right) as determined by conventional analysis methods over
sample thicknesses d = 6.0 mm to 11.8 mm (N = 13). The error bars are too small to be
seen on this scale.
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Table 6.3: The mean and standard deviation of the parameters estimated using the
Bayesian algorithm for sample thicknesses from 3.5 mm to 11.8 mm (N = 18). The val-
ues for sample thicknesses under 3.5 mm were not included due to large variabilities and
uncertainties.

Bayesian parameters Mean value Standard deviation

cfast(m/s) 2409.7 17.0

cslow(m/s) 1402.0 2.7

βfast(dB/cm/MHz) 31.4 1.4

βslow(dB/cm/MHz) 11.5 0.6

Afast 0.36 0.04

Aslow 0.52 0.10

the average values for βfast agreed only moderately well.

The parameters Afast and Aslow for conventional analysis were obtained from the insertion

loss (IL) values determined by the zero-frequency intercepts of the signal loss. This conversion

assumes that the Bayesian Afast and Aslow parameters are primarily determined by the losses

at the boundaries between the sample and the reference medium,

IL[dB] = 20 log(A). (6.6)

The average conventional insertion losses for the fast wave, Afast, and slow wave, Aslow, are

shown in Figure 6.21 for sample lengths d = 6.0 mm to 11.8 mm (N=13). The average values

for Afast and Aslow were 0.65 ± 0.11 and 0.49 ± 0.05, respectively. The results of conventional

analysis for Afast and Aslow exhibited a trend opposite to that seen in the Bayesian estimates.

For the conventional analysis, Afast was larger than Aslow, implying that more of the inital

signal is transmitted through both boundaries for the fast wave than for the slow wave.
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Figure 6.19: Attenuation coefficients of the fast waves (red) and slow waves (blue) as
determined by conventional analysis. The vertical dashed lines show the low and high fre-
quencies of the bandwidth. The slopes of the linear fit between those dashed lines are the
nBUA values for the fast and slow waves.

6.3.3 Results of apparent frequency

The apparent frequency of the fast and slow waves as determined by the centroids of

the Bayesian-separated fast and slow waves are shown as a function of sample length in

Figure 6.22. The fast waves exhibited a rapid downshift in center frequency from the original

center frequency of f0 = 1 MHz with longer sample lengths. At the longest sample length

(d = 11.8 mm), the downshifted center frequency of the fast wave was 507 kHz, which is

approximately half the center frequency of the reference signal. The slow waves also displayed

a downshifted center frequency, although not as signficant as the fast wave. At the longest

sample thickness, the center frequency of the slow wave was approximately 814 kHz.
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Figure 6.20: Average (± one standard deviation) slopes of the attenuation coefficients
(nBUA) of the fast waves (left) and slow waves (right) as determined using conventional
analysis methods over sample thicknesses d = 6.0 mm to 11.8 mm (N = 13).

In Figure 6.23, the results of the (frequency-domain) centroid frequencies were compared

to both the (time-domain) apparent frequencies reported by Fujita et al. (2013) and the

predicted center frequencies, fc determined by Equation 6.1 along with the spectral shifts

shown in Figure 6.11. The downshifted center frequencies determined by the centroid agree

very well with the predicted frequencies calculated using Equation 6.1. There was even good

agreement between the two experimentally determined apparent frequencies, even though

one was done in the frequency-domain and one was done in the time-domain. This good

agreement may imply that for specific parameters, time-domain methods may produce rea-

sonably accurate estimates and could be beneficial in clinical settings where time constraints

prohibit more involved frequency-domain methods. It should also be noted that the results

from Fujita et al. (2013) may not be from the same sample as that studied in this chapter.
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Figure 6.21: Average values of Afast and Aslow determined using conventional methods
over sample thickness d = 6.0 mm to 11.8 mm (N = 13). Afast and Aslow were determined
using the insertion loss values shown in Figure 6.9.

6.3.4 Results of segmental attenuation

The segmental attenuation coefficients at 1 MHz of the fast and slow waves are shown

in Figure 6.24 and Figure 6.25, respectively, along with the time-domain attenuation results

reported in Fujita et al. (2013). For both the fast and slow waves, the segmental attenuation

varied dramatically with sample length position. These segmental attenuation coefficients

are the losses occurring within a piece of the sample that is only 0.5 mm thick. These

large variations in the segmental attenuation might be due to actual inhomogeneities in the

bone sample but may be artifacts caused by uncertainties in the sample lengths. Estimating

attenuation in very thin samples is also quite challenging. The average segmental attenuation

coefficient at 1 MHz for the fast wave was 28.8 ± 10.8 dB/cm for the frequency-domain

method (over N = 23 sample segments) and was 26.7 ± 11.0 dB/cm for the time-domain
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Table 6.4: The mean and standard deviation of the parameters determined using conven-
tional analysis methods for sample thicknesses from 6.0 mm to 11.8 mm.

Conventional parameters Mean value Standard deviation

cfast(1 MHz)(m/s) 2412.2 11.8

cslow(1 MHz)(m/s) 1404.8 1.1

βfast(dB/cm/MHz) 37.7 1.4

βslow(dB/cm/MHz) 11.8 0.6

Afast 0.65 0.11

Aslow 0.49 0.05

method (over N = 13 sample segments). The average segmental attenuation coefficient at

1 MHz for the slow wave was 19.0 ± 8.3 dB/cm for the frequency-domain method and was

28.8 ± 12.6 dB/cm for the time-domain method as shown in Figure 6.25.

The segmental attenuation coefficients were also determined for combinations of ∆d =

2 mm, 4 mm, 6 mm, 8 mm, 10 mm, and 11 mm. The ∆d = 11 mm segmental attenuation

coefficients compared the longest and the shortest sample lengths. Figure 6.26 shows the

segmental attenuation coefficient at 1 MHz for the combinations of ∆d values listed above.

For both the fast and slow waves, the segmental attenuation coefficients were more consistent

for larger values of ∆d. In spite of this, the average within any one ∆d produced a value

for the attenuation coefficient that was in good agreement with the segmental attenuation

coefficient averaged over all ∆ds. This was also true for the slope of the segmental attenuation

coefficient (segmental nBUA), shown in Figure 6.27.
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Figure 6.22: The shifting center frequencies of the fast and slow waves as a function of
sample length. The center frequencies were determined by calculating the centroid of the
Bayesian-separated fast and slow waves.

6.3.5 Trends with sample thickness

Results presented thus far indicate reasonable consistency among several methods of

data analysis, including substantial agreement between Bayesian-derived results and those

obtained over the more limited range for which conventional analysis can be applied. Even

though trabecular bone is not a homogenous material, it was anticipated that each of the six

model parameters (cfast, cslow, βfast, cslow, Afast, Afast) would be consistent over all sample

lengths, that is distance-independent. Furthermore, this trabecular bone specimen had a

relatively consistent bone volume fraction throughout the sample, as is shown in Table 6.5.

Results showed Bayesian methods permitted reliable measurements down to sample

lengths as small as 3.5 mm whereas conventional analysis methods could not be used for
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Figure 6.23: Comparison of the apparent frequencies of the fast waves and the slow waves
using three different methods. The squares show the shifting center frequencies of the two
waves using the (frequency-domain) centroid of the Bayesian-separated fast and slow waves.
The black triangles are results presented in Fujita et al. using time intervals. The gray stars
represent the predicted center frequency determined using Equation 6.1.

lengths less than 6.0 mm. However, even Bayesian methods produced somewhat variable

results for sample lengths less than 3.5 mm, as will be seen in Figures 6.28, 6.30, and 6.34.

Shorter sample lengths present obvious challenges. At shorter lengths there is less actual

sample being interrogated by the ultrasonic signal. It was shown in Chapter 4 that the

Bayesian algorithm was able to determine, with quite good reproducibility, estimates of the

six model parameters for almost completely overlapped fast and slow waves, so presumably

the Bayesian approach was not responsible for the observed variability at very short sample

lengths. Another potential explanation is the presence of higher frequency components in

the original water-only reference signal. As is evident in Figure 6.6, for the received signals

at sample thickness under d = 3.5 mm, these high frequency components are still prominent,

perhaps causing the Bayesian algorithm difficulty in fitting the data. Due to the variability
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Figure 6.24: Left: Segmental attenuation coefficients of the fast waves at each adjacent 0.5
mm step. The attenuation coefficients shown are for ∆d = 0.5 mm. The squares represent
the segmental attenuation coefficient using the frequency-domain method from Equation 6.5.
The triangles show the results from Fujita et al. (2013), which determined segmental atten-
uation coefficients using time-domain methods in Equation 6.4. Right: Average values of
the segmental attenuation coefficients of the fast waves for the time-domain method (open
triangle) and the frequency-domain method over all sample lengths (N = 23) (solid square)
and over similar lengths used in the time domain method (N = 13) (open square).
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Figure 6.25: Left: Segmental attenuation coefficients of the slow waves at each adjacent
0.5 mm step. The attenuation coefficients shown are for ∆d = 0.5 mm. The squares represent
the segmental attenuation coefficient using the frequency-domain method from Equation 6.5.
The triangles show the results from Fujita et al. (2013), which determined segmental atten-
uation coefficients using time-domain methods in Equation 6.4. Right: Average values of
the segmental attenuation coefficients of the slow waves for the time-domain method (open
triangle) and the frequency-domain method over all sample lengths (N = 23) (solid square)
and over similar lengths used in the time domain method (N = 13) (open square).

Figure 6.26: Segmental attenuation coefficients at 1 MHz of the fast waves (left) and slow
waves (right) for ∆d = 0.5 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, and 11 mm. The black
stars show the mean attenuation coefficient at 1 MHz for each value of ∆d. As the thickness,
∆d, of the segment increases, the estimate of the attenuation coefficient appears to improve.
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Figure 6.27: Segmental slopes of the attenuation coefficient (nBUA) of the fast waves
(left) and slow waves (right) for ∆d = 0.5 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, and 11
mm. The black stars show the mean nBUA for each value of ∆d. As the thickness, ∆d, of
the segment increases, the estimate of the nBUA appears to improve. Note the change in
scale for the slow wave nBUA.

in the results for sample lengths under 3.5 mm, only the results for sample lengths greater

than that were included in the results presented in Figures 6.14, 6.15, and 6.16.

In addition to the variability observed for sample thicknesses less than 3.5 mm, an unan-

ticipated systematic variation with sample length was also observed. Figure 6.28 displays the

fast and slow wave phase velocities at 1 MHz determined by Bayesian parameter estimation

for each sample thickness, from d = 0.5 mm to 11.8 mm. The fast wave velocities appeared

to show a systematic dependence on sample thickness. The fast wave velocities increased

slightly, changing by approximately 6.1 m/s/mm over sample lengths d = 3.5 mm to 11.8

mm. In contrast, the slow wave phase velocities exhibited a more constant behavior, increas-

ing by only 0.82 m/s/mm over the same range of sample lengths. The phase velocity results

as a function of sample thickness from d = 6.0 mm to 11.8 mm for both conventional analysis
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Table 6.5: Bone volume fraction (BV/TV) for various positions in the trabecular bone
specimen. Position 1- 3 mm was located at the distal end of the specimen, which is where
the ultrasonic signal entered. Position 9 - 11 mm was at the proximal end of the specimen,
from which the sample was shortened.

Position 1-3 mm 3-5 mm 5-7 mm 7-9 mm 9-11 mm

BV/TV 39.4% 38.9% 37.7% 37.5% 37.3%

and Bayesian analysis are shown in Figure 6.29. The fast wave phase velocities obtained by

conventional analysis also increased with sample length, and the slow wave phase velocities

also stayed relatively constant. Thus, the Bayesian method of analysis and conventional

method of analysis agree very well in both the values of the phase velocities and the small,

but systematic trends with sample length.

Figure 6.30 shows the results of Bayesian estimation for Afast and Aslow as a function

of all sample lengths (d = 0.5 mm to 11.8 mm). It is clear that Afast and Aslow both ex-

hibited systematic dependencies on sample thickness. In contrast to the phase velocities,

Aslow showed significantly more dependence on sample length than Afast. As discussed in

Section 3.5, in principle Afast and Aslow account for insertion losses and the distribution of

energy between the fast and slow wave modes. In view of the unexpected sample length

dependencies, Afast and Aslow might also be sensitive to potential diffraction (Xu and Kauf-

man, 1993; Kaufman et al., 1995) and phase cancellation effects (Bauer et al., 2008, 2009).

As a function of sample length, Afast increased by approximately 0.01 per mm of sample

while Aslow decreased by 0.04 per mm of sample. At d = 3.5 mm, Afast equaled 0.29 and
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Figure 6.28: Bayesian estimation of the fast wave (right) and slow wave (left) phase
velocities at 1 MHz as a function of sample thickness over all sample lengths, d = 0.5 mm
to 11.8 mm (N = 24).

at d = 11.8 mm, Afast equaled 0.39, corresponding to an absolute change of 2.57 dB. For

the slow wave, at d = 3.5 mm, Aslow equaled 0.71 and at d = 11.8 mm, Aslow equaled 0.46,

corresponding to an absolute change of 3.77 dB.

Values for Afast and Aslow using conventional analysis were determined from Equation 6.6

along with the insertion loss values at each sample length, which are shown in Figure 6.31.

Afast determined from conventional analysis showed a strong sample length dependence,

increasing by 0.05 per mm of sample. Aslow determined from conventional analysis also dis-

played a sample length dependence, although it was not as large as that in Afast, decreasing

by 0.02 per mm of sample. At d = 6.0 mm, Afast equaled 0.55 and at d = 11.8 mm, Afast

equaled 0.87, corresponding to an absolute change of 3.98 dB. For the slow wave, at d = 6.0

mm, Aslow equaled 0.54 and at d = 11.8 mm, Aslow equaled 0.45, corresponding to an absolute

change of 1.58 dB. Comparisons of the results for Afast and Aslow between conventional and
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Figure 6.29: Comparison of the phase velocities at 1 MHz obtained by conventional (phase-
spectroscopy) methods (squares) and by Bayesian probability methods (circles) for the fast
wave (left) and the slow wave (right) at sample thicknesses d = 6.0 mm to 11.8 mm (N =
13).

Bayesian analysis techniques are shown in Figure 6.32. Bayesian and conventional analysis

results of Aslow agreed remarkably well, with both methods displaying the fact that Aslow

has a systematic dependence with sample length. For Afast, the two methods did not agree

as well but did show the same trend with sample length. Conventional analysis produced

Afast values that were more strongly dependent on sample length than those estimated by

Bayesian methodology.

Another parameter of interest was the relative amplitude ratio of the fast and slow waves,

or Afast/Aslow. In Figure 6.33, the ratio of Afast to Aslow for both Bayesian and conventional

analysis is plotted against sample length for d = 6.0 mm to 11.8 mm. The dependence

on sample thickness was very evident for Afast/Aslow using either method of analysis. The

ratio Afast/Aslow determined by Bayesian methods increased by 0.07 per mm, whereas the
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Figure 6.30: Bayesian estimation of Afast and Aslow as a function of sample thickness,
ranging from d = 0.5 mm to 3.5 mm (N = 24).

conventionally-determined Afast/Aslow increased by 0.15 per mm.

Figure 6.34 shows the results of Bayesian estimation for βfast and βslow as a function

of sample length, for d = 0.5 mm to 11.8 mm. The normalized broadband ultrasound

attenuation (nBUA) for the fast and slow waves displayed some sample-length dependence,

even though these parameters were expected to be distance-independent. For sample lengths

from 3.5 mm to 11.8 mm, the fast wave nBUA values decreased by 0.42 dB/cm/MHz per

mm of sample whereas the slow wave nBUA values decreased by only 0.04 dB/cm/MHz per

mm of sample.

Figure 6.35 shows the comparison of the slopes of the attenuation coefficients (nBUA)

among three analysis methods: conventional, Bayesian, and segmental. The segmental slope

of attenuation shown in the figure was obtained by taking the average of the mean nBUA

values at each ∆d from Figure 6.27. The mean segmental nBUA agreed well with the
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Figure 6.31: Insertion losses for the fast and slow waves as determined by the zero-
frequency intercepts of the signal loss using conventional analysis methods, for sample thick-
nesses from 6.0 mm to 11.8 mm (N = 13).

Bayesian estimated nBUA for both fast and slow waves. This would be expected because

the segmental analysis was performed on the Bayesian-derived fast and slow waves. For

the slow wave, the conventional nBUA agreed with the Bayesian and segmental nBUA

values. Both conventional and Bayesian analyses produced slow wave nBUA values that

increased with increasing sample length. The opposite trend was observed for the fast wave

nBUA. Conventional and Bayesian analyses produced fast waves nBUA values that decreased

with increasing sample length, although the conventional values were on average 6.8 ± 1.2

dB/cm/MHz larger than the Bayesian values. The reason for this difference between the

Bayesian and conventional fast wave nBUA values is unclear. However, if the effects of both

the frequency-independent losses (Afast and Aslow) and the frequency-dependent losses (βfast
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Figure 6.32: Comparison of the Afast and Aslow obtained by conventional methods
(squares) and by Bayesian probability methods (circles) at sample lengths ranging from
d = 6.0 mm to 11.8 mm (N = 13).

Figure 6.33: The ratio of Afast to Aslow as a function of sample thickness (d = 6.0 mm to
11.8 mm) for both Bayesian (circles) and conventional (squares) analysis.
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Figure 6.34: Bayesian estimation of the fast wave (right) and slow wave (left) normalized
broadband ultrasound attenuation (nBUA) as a function of sample thickness.

and βslow) are taken into account by considering

A exp[−βf0d] (6.7)

for both the fast and slow waves, it appears that the two analysis methods are relatively

consistent with each other, as shown in Figure 6.36. In Equation 6.7 and for Figure 6.36, f0

was set to 1 MHz. Based on these results, it is apparent that there is a trade-off between the

A terms, where A = 1 means no loss, and the β terms when accounting for the total loss.

Although the βfast obtained conventionally was larger than that obtained with Bayesian

analysis, the conventionally-obtained Afast was also larger than the Bayesian-derived Afast,

thus producing an overall loss similar to that found with Bayesian methods.
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Figure 6.35: Comparison of βfast (right) and βslow (left) obtained by using three tech-
niques: (1) conventional method (squares), (2) Bayesian probability method (circles), and
(3) segmental (frequency-domain) method (solid dots) at sample thickness ranging from d
= 6.0 mm to 11.8 mm. The segmental fast and slow nBUA values shown here are the mean
(± one standard deviation) segmental nBUA over all values of ∆d as shown in Figure 6.27.

6.4 Discussion and Conclusions

It was shown in Chapter 5 that frequency-domain analysis of broadband data provides an

effective method for the determination of the attenuation and phase velocity of trabecular

bone. However, in many experimental situations with cancellous bone, the conventional

(frequency-domain) analysis methods also cannot be employed due to the strong overlap of

fast and slow waves. In the study presented in this chapter, conventional analysis could

not be used for sample lengths under 6.0 mm. In contrast, Bayesian probability methods

were able to estimate the fast and slow waves ultrasonic parameters for all sample lengths.

For sample lengths that were sufficiently long as to permit both conventional and Bayesian

analysis, both techniques yielded comparable values.
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Figure 6.36: The prefactor of the received amplitude (at 1 MHz) of the fast waves (left) and
slow waves (right) as determined by conventional (squares) and Bayesian (circles) analysis
methods. The prefactor of received amplitude at 1 MHz is determined by Equation 6.7.

In a homogeneous medium, all six ultrasonic parameters (cfast, cslow, βfast, βslow, Afast,

Aslow) should be constant with sample thickness because they are intrinsic properties of the

material. Although some variation is to be expected because trabecular bone is hetero-

geneous, relatively small, systematic changes with sample length were observed. Possible

contributions for the systematic dependences on sample length include diffraction effects,

phase cancellation at the face of the finite aperture phase-sensitive receiving transducer, and

other experimental factors not included in the Bayesian analysis model.

Even though the ultrasonic parameters displayed a modest sample length dependence,

these variations are not likely to influence clinical applications. Compared to the site-to-

site variations in phase velocity and nBUA observed in the human heel measurements of

Chapter 4, the relatively small, systematic variation with sample thickness is not likely to

be clinically significant.
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Chapter 7

Exploring unexpected sample

thickness-dependence using plastic

phantoms

7.1 Preface

This chapter outlines the work completed in an attempt to explain the sample length

dependence of the ultrasonic parameters observed in measurements of equine bone presented

in Chapter 6.

7.2 Plastics

In order to determine the cause of the sample thickness-dependence observed in the

Bayesian and conventionally derived ultrasonic parameters from the equine bone sample,

similar measurements were taken on bone-mimicking plastic phantoms. The plastic phan-
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7.3 Initial plastic phantom studies

toms used in this chapter were all constructed from LexanTM, a material that has been

previously been measured in our Laboratory. Plastic phantoms were used in these stud-

ies rather than other materials or bone in order to simplify the propagation model and to

limit the number of variables to be determined. In homogeneous plastics, there is only one

longitudinal wave mode propagating and the properties of the material, such as velocity,

attenuation, and insertion losses, are known from previous studies.

In applying Bayesian probability theory, as described in Section 3.4, to the data acquired

from the plastic phantoms presented in this chapter, the wave propagation model used in

the Bayesian analysis was altered slightly to allow for only one wave to propagate. This was

accomplished by setting Afast = 0, thereby eliminating the fast wave. Therefore, the three

parameters that were estimated by the Bayesian algorithm for the plastic phantom studies

were Aslow, βslow, and cslow.

7.3 Initial plastic phantom studies

In response to the unexpected sample thickness dependence observed in the ultrasonic pa-

rameters determined with both conventional and Bayesian analysis methods, measurements

were carried out on three circular (3 inch diameter) LexanTM phantoms with thicknesses

of approximately 9.5 mm, 19 mm, and 38 mm. Each sample was approximately double

the thickness of the previous sample. This was expected to produce predicted bulk losses

that doubled for each doubling of thickness, but not affect the surfaces losses. The three

LexanTM phantoms were measured with a matched pair of 1 MHz nominal center frequency
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7.3 Initial plastic phantom studies

Figure 7.1: The average (N = 5) phase velocity using conventional phase spectroscopy
methods for the three LexanTM samples (d = 9.5 mm, 19 mm, and 38 mm). The error bars
represent plus or minus one standard deviation.
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7.3 Initial plastic phantom studies

Figure 7.2: The average (N = 5) attenuation coefficient using conventional analysis meth-
ods for the three LexanTM samples (d = 9.5 mm, 19 mm, and 38 mm). The error bars
represent plus or minus one standard deviation and are too small to be seen.

focused transducers (0.5 inch diameter, 4 inch focus) in a through-transmission arrangement.

Measurements were acquired at five spatial locations on each LexanTM phantom.

The data were analyzed using both conventional and Bayesian analysis methods as dis-

cussed in Chapter 3. The average phase velocities determined using conventional phase

spectroscopy were consistent among the three thicknesses of LexanTM, only differing by ap-

proximately 2 m/s for each doubling of sample thickness, as shown in Figure 7.1. Consistent

results for the average attenuation coefficients for the three LexanTM phantoms were also

observed, as seen in Figure 7.2.

Bayesian analysis generated model waveforms that fit the experimental data extremely

well. The average (of 5 spatial sites per sample) Bayesian estimates for phase velocity (c),
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7.3 Initial plastic phantom studies

Figure 7.3: Comparison of the average (N = 5) phase velocity (at 1 MHz) obtained
using conventional analysis (black squares) and Bayesian analysis (gray diamonds) for three
thicknesses of LexanTM. The error bars represent plus or minus one standard deviation.

slope of attenuation (β), and transmission coefficient-related term (A) are shown in Fig-

ures 7.3 - 7.5 as a function of sample thickness, along with the results determined using

conventional methods. The phase velocities at 1 MHz were approximately identical for con-

ventional and Bayesian analysis. This was in contrast with the results obtained for nBUA

and A. As shown in Figure 7.4, the slope of attenuation determined by the Bayesian algo-

rithm systematically decreased with increasing sample length, whereas the conventionally-

derived nBUA was slightly more constant among the sample lengths. A similar situation

was observed for the transmission coefficient-related A term (Figure 7.5). The predicted

transmission coefficient-related A term (conventional analysis) was determined using the
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Figure 7.4: Comparison of the average (N = 5) slope of attenuation (nBUA) obtained
using conventional analysis (black squares) and Bayesian analysis (gray diamonds) for three
thicknesses of LexanTM. The error bars represent plus or minus one standard deviation and
are too small to be seen.

impedance difference between water and LexanTM, and had an average value of 0.92, which

corresponded to total surface losses of 0.75 dB. The transmission coefficient-related terms de-

termined using Bayesian analysis systematically increased with increasing sample thickness.

For the thickest LexanTM phantom (d = 38 mm), the Bayesian transmission coefficient-

related A term was 1.0, which corresponds to no surface losses. This was surprising because

the Bayesian-derived nBUA was smallest for the thickest LexanTM phantom, implying there

was less total (surface + bulk) loss for the thickest LexanTM sample.
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Figure 7.5: Comparison of the average (N = 5) predicted transmission coefficient-related
terms (black squares) and the average Bayesian-estimated A terms (gray diamonds) for three
thicknesses of LexanTM. The error bars represent plus or minus one standard deviation and
are too small to be seen.

7.3.1 Checking dependences of the parameters in the Bayesian

model

We first wanted to verify was that the Bayesian algorithm was estimating the parameters

in a predictable manner, and also to check for any unexpected dependences of the parameters

on each other. All of the following tests were carried out using the data acquired on the

three LexanTM phantoms discussed above.
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Table 7.1: Results of the Bayesian algorithm when a sample signal from the 9.5 mm thick
LexanTM sample was artificially modified so that its amplitude was half and one quarter of
the original amplitude.

Amplitude A β

(dB/cm/MHz)

Original 0.95 4.66

0.5x 0.47 4.66

0.25x 0.24 4.67

Amplitude test

One sample trace from each of the three LexanTM samples was digitally modified to

produce a signal with half the original amplitude and another signal was produced with a

quarter of the original amplitude. These modified sample signals along with the unmodified

reference (water-path-only) signals were processed with the Bayesian algorithm. As expected,

the estimate for β did not change but the estimate for A changed proportionally to the change

in amplitude, as shown in Table 7.1 for the 9.5 mm LexanTM sample. The value of β was not

expected to change because an overall decrease in amplitude does not affect the frequency

components or shape of the signal.

Sample length test

One input to the Bayesian algorithm is the thickness of the samples being studied. In

this test, the sample thickness input into the Bayesian algorithm was varied (artificially) to

investigate how the parameters A and β were affected. We expected that the parameter A

should remain unchanged since it should not depend on sample thickness, but that β should
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Table 7.2: Results of the Bayesian algorithm on a signal from the 9.5 mm thick LexanTM

sample when the sample thickness input into the Bayesian algorithm was changed from the
original thickness d to 2*d and to 4*d. Neither the sample nor reference signals were modified
before being input into the Bayesian algorithm.

Sample thickness A β

(dB/cm/MHz)

Original d (9.5 mm) 0.95 4.66

2*d (19 mm) 0.95 2.33

4*d (38 mm) 0.95 1.16

change inverse proportionally to the change in sample thickness. One trace from each of the

three LexanTM samples was processed with the Bayesian algorithm with the input sample

thickness set to three different values: the original length d, 2*d, and 4*d. The results, as

shown for the 9.5 mm LexanTM sample in Table 7.2, were consistent with our predictions.

Additional Bayesian tests

Next we wanted to explore whether the Bayesian algorithm would correctly recover one

of the parameters if the remaining parameters were constrained to be the values determined

using conventional analysis, as listed in Table 7.3. For example, if the parameters A, β, and

c were all set to the conventional analysis results, could the Bayesian algorithm correctly

recover the sample thickness d? Since conventional and Bayesian analysis produced different

values for these three parameters, it was not necessarily expected that the Bayesian algorithm

would recover the correct sample thickness if the other parameters were set to the conven-

tional analysis values. Although d is not usually an adjustable parameter, the algorithm can

be modified easily to permit the sample thickness to be a searchable parameter. As shown in
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Table 7.3: Input values of the three parameters in the Bayesian algorithm for the tests listed
in Table 7.4. These values were determined by conventional analysis methods performed on
the data from the three LexanTM phantoms.

Table 7.4, the Bayesian algorithm was able to correctly estimate the sample thickness of the

three LexanTM phantoms. However, the model waveforms generated by these simulations

did not fit the experimental signals as well as those generated when allowing the Bayesian

algorithm to estimate all of the parameters. It was found that the residuals from the tests

constraining A, β, and c were 3 -10 times larger than the residuals from the tests allowing

A, β, and c to be adjustable. This may imply that the Bayesian algorithm does a better

job at fitting the rf data than conventional analysis. The other tests that were performed

are listed in Table 7.4 along with their respective results. Other tests were performed are as

listed in Table 7.4, with the outcomes summarized in the column labelled ”Result”.

7.3.2 Noise levels

Another concern was the effect of noise in the estimation of the parameters by the

Bayesian algorithm. The received signals are typically zero-padded prior to analysis to

increase the frequency resolution, but values of zero cause problems in the Bayesian code

(Kay and Marple, 1981). Therefore, a small amount of random noise is added to the refer-
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Table 7.4: The tests performed on the Bayesian algorithm using data from the three
LexanTM phantoms. For these tests, some of the parameters were set to be the value deter-
mined by conventional analysis (listed in Table 7.3) and investigating how that affected the
Bayesian estimate of the remaining parameter(s).

Table 7.5: Results of the Bayesian algorithm on a signal from the 9.5 mm thick LexanTM

sample with four different levels of added random noise.

Noise level A β c

(dB/cm/MHz) (m/s)

Initial 0.95 4.66 2200

25x 0.94 4.60 2200

50x 0.95 4.67 2200

100x 0.97 4.83 2200

ence and sample signals before they are processed by the Bayesian algorithm. The added

random noise eliminates these issues. In this study, added noise levels were varied from the

initial level to 100 times the initial level in steps of 25 (total of 4 noise levels). The initial

level of added random noise depended on the peak-to-peak amplitude of the sample signal.

This was done on one sample signal from each of the three LexanTM samples. The noise

level of the reference signal was left unchanged. Figure 7.6 shows a sample signal from the

9.5 mm LexanTM sample with the four levels of added random noise.

178



7.3 Initial plastic phantom studies

Figure 7.6: Sample signals from the 9.5 mm LexanTM sample with four different levels of
added random noise.
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Table 7.5 shows the results of the Bayesian algorithm for the 9.5 mm thick LexanTM

phantom. Overall the parameters are stable for all levels of random noise although this

begins to break down for the 100x the initial noise level. Similar results were observed for

the 19 mm and the 38 mm thick LexanTM samples. It is possible that if the signal-to-

noise ratio is low, that the Bayesian may have more difficulty determining estimates of the

Bayesian parameters. Anderson et al.(2010) found that as signal-to-noise ratio decreased,

the peaks of the marginal posterior probability distributions for each Bayesian parameter

do not change significantly, but the widths of these distributions do increase, indicating less

confidence in the parameter value.

7.3.3 Removing Kramers-Kronig requirement

In the propagation model used in the Bayesian algorithm, the fast and slow wave phase

velocities are forced to increase logarithmically with frequency by assuming that the nearly-

local form of the Kramers-Kronig relations are valid for the fast and slow waves. This form

of the Kramers-Kronig relations requires that the attenuation coefficient is linear with fre-

quency. To ensure that this restriction on the velocity was not causing the observed sample-

thickness dependence, the Kramers-Kronig requirement was removed from the Bayesian code.

This caused each frequency present in the signal to travel at the same velocity (the velocity

at the center frequency). One trace from each of the three LexanTM phantoms was run

through the Bayesian algorithm without the Kramers-Kronig requirement.

The Bayesian algorithm without the Kramers-Kronig requirement yielded slightly differ-

ent estimates for the parameters A and β than the original (with Kramers-Kronig) Bayesian
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Table 7.6: Results of the Bayesian algorithm with and without the Kramers-Kronig (KK)
requirement on one trace from each of the three LexanTM phantoms.

Sample thickness A β c (1 MHz)

(mm) (dB/cm/MHz) (m/s)

9.5 mm
with KK 0.95 4.66 2200

without KK 0.96 4.77 2201

19 mm
with KK 0.97 4.52 2202

without KK 0.99 4.64 2202

38 mm
with KK 1.00 4.47 2204

without KK 1.00 4.52 2202

algorithm, as shown in Table 7.6, but there was still an unexpected sample-thickness depen-

dence. In comparison to the Kramers-Kronig version of the Bayesian method, the non-KK

Bayesian method estimated slightly larger values of A, slightly larger values for β, and the

same values for speed. A comparison of the residuals showed that the inclusion of the

Kramers-Kronig requirement significantly improved the model fit to the experimental data

because it takes into account dispersion.

7.3.4 Explicitly defining A

The frequency independent terms Afast and Aslow in our original propagation model

account for transmission of the signal from the surrounding medium (which for laboratory-

based immersion studies would be water) into the cancellous bone and subsequently back

out of the bone into the surrounding medium. Presumably the initially one-mode signal

propagates as a two-mode compressional signal in the cancellous bone. In analogy with the

simpler problem of transmission at a boundary between media that each support only a single
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compressional mode, the assumption is that characteristic impedances provide an approach

that accounts for the fraction of the incoming pressure (or stress) and particle velocity (or

time rate of change of strain) transmitted from the host medium into the cancellous bone.

It was hypothesized that by explicitly specifying the functional forms of the transmission

coefficients at the entry and exit surfaces, additional information that might further charac-

terize bone structure could be obtained, as well as potentially reduce the sample thickness

dependence. As shown below, this extension of the propagation model leads directly to the

introduction of fast wave and slow wave effective mass densities, ρfast and ρslow.

Our original propagation model, discussed in Section 3.4.2, explicitly identifies the phase

velocities cfast and cslow, slopes of attenuation βfast and βslow, and the frequency independent

signal loss prefactors Afast and Aslow.

Output(f) = Input(f)

[
Afast exp(−βfastfd) exp

(
ı2πfd

cfast(f)

)
+ Aslow exp(−βslowfd) exp

(
ı2πfd

cslow(f)

)]
(7.1)

where Output(f) and Input(f) are the complex Fourier spectra of the received waveform

and the incident waveform, respectively, and d is the sample thickness.

This study attempted to enhance this model by accounting for transmission into and out

of water-immersed cancellous bone specimens, resulting in an explicit dependence of Afast

and Aslow on the complex impedances Zfast and Zslow:

Afast =

[
2Zref

Zref + Zfast

] [
2Zfast

Zfast + Zref

]
(7.2)
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and

Aslow =

[
2Zref

Zref + Zslow

] [
2Zslow

Zslow + Zref

]
(7.3)

where Zfast and Zslow are of the form

Zfast =
ρfastcfast

1 +
(
αfast

kfast

)2 [1 + i
αfast
kfast

]
(7.4)

and

Zslow =
ρslowcslow

1 +
(
αslow

kslow

)2 [1 + i
αslow
kslow

]
(7.5)

where α is the attenuation coefficient expressed in inverse distance units, k is the wave

number also in inverse distance, and ρfast and ρslow are the effective mass densities of the

fast wave and slow wave, respectively. In Equations 7.2 and 7.3 for Afast and Aslow, the

first term in the product represents the particle velocity transmission coefficient for the front

(water to bone) surface and the second term in the product represents the corresponding

quantity for the back (bone to water) surface.

As illustrated in Figure 7.7, although the transmission coefficients for pressure and for

particle velocity differ, the product of the front surface (water to bone) and back surface (bone

to water) transmission coefficients are identical whether one is considering either pressure or

particle velocity.

The newly updated Bayesian model, with the A terms rewritten as Equations 7.2 and 7.3,

was tested on the data acquired from the three thicknesses of LexanTM. This permitted us

to determine if the newly updated Bayesian algorithm estimated a different transmission

coefficient than that estimated using the Bayesian model with the A terms not explicitly

defined. Additionally, because the mass density of LexanTM can be measured experimentally,
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Figure 7.7: The total transmission coefficients, accounting for both the front and back
surfaces, for pressure and for particle velocity.

the mass density estimated by this updated propagation model should provide a check on

whether this redefinition of A is satisfactory.

It was determined for LexanTM (and for the heel bone samples in Chapter 4), that the

complex impedances given by Equations 7.4 and 7.5 could each be simplified to Z = ρc

since α/k was sufficiently small compared to one. In the case of LexanTM, where β = 5.4e-5

Np/m/Hz (4.7 dB/cm/MHz) and c = 2200 m/s:

α

k
=
βc

2π
= 0.019 (7.6)

For all five sites on each of the three LexanTM samples, the enhanced model yielded

results identical to those of the original model for phase velocity, slope of attenuation β, and

transmission coefficient-related term A. The estimated mass density ρ obtained from the

184



7.3 Initial plastic phantom studies

Table 7.7: The measured mass density and the Bayesian-estimated mass density of the
three LexanTM samples.

Sample thickness Measured mass density Bayesian estimated mass density

(mm) (kg/m3) (kg/m3)

9.5 mm 1217 1072 ± 2

19 mm 1216 949 ± 7

38 mm 1218 673 ± 1

enhanced model did not agree with the experimentally measured mass density of the LexanTM

samples, and displayed a significant sample-thickness dependence. It was determined that

the modified Bayesian model attempted to keep the same A term as the original model even

though it was redefined in terms of mass densities and speeds. Since the velocity, c, was also

essentially fixed, then the only other adjustable parameter was the density ρ, thus leading

to unrealistic density values. Another issue was that the resulting transmission coefficient-

related term (A) was not very sensitive to ρ. Figure 7.8 displays the transmission coefficient

A as a function of ρ determined using Equation 7.3 with cslow = 2200 m/s, cref = 1486 m/s,

and ρref = 1000 kg/m3. This graph illustrates two concerns:(1) there is not a unique ρ for a

given A value (2) for some regions, a large change in density ρ only leads to modest changes

in A. Therefore, if the modified Bayesian model attempts to achieve the same A value as

the original model, and the value is only a little off from the true transmission coefficient,

the Bayesian-estimated mass density may be a very poor estimate of the true mass density.

Since the density of the LexanTM samples were known (ρactual ≈ 1200 kg/m3), the data

were reprocessed using the modified Bayesian model with the mass density parameter limited

to values between 1000 - 2000 kg/m3 (in these units, water is 1000 kg/m3). For all of these
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Figure 7.8: Plot of the transmission coefficient-related term A as a function of mass density
ρ determined using Equation 7.3 with cslow = 2200 m/s, cref = 1486 m/s, and ρref = 1000
kg/m3. The inset is zoomed in around the actual density of LexanTM (ρ ≈ 1200 kg/m3).

runs, the modified Bayesian algorithm estimated the mass density to be 1000 kg/m3, the

minimum amount allowed.

7.3.5 Checking for nonlinearities

Another possible explanation for the observed sample-thickness dependence was the pres-

ence of nonlinear propagation effects. Water itself is a nonlinear medium, and in our ex-

periments there can be relatively long path lengths of water that the signal must travel

between the two transducers. In nonlinear propagation, energy at a frequency, f may be

”promoted” to the higher harmonics (2f , 3f , etc.) (Wallace, 2001). The effects of nonlinear

propagation can be difficult to measure since attenuation usually increases with frequency,
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Figure 7.9: Left: Results of the slope of attenuation using conventional analysis for varying
driving voltages (input attenuations) on the three LexanTM phantoms. Right: The results
of the slope of attenuation using Bayesian analysis for varying driving voltages. The ap-
proximately constant β with driving voltage suggest that there are no nonlinear propagation
effects.

thus the energy promoted to higher frequencies are ”killed off” in the sample and not seen

at the receiving transducer.

To determine if nonlinear propagation effects were occurring, the three LexanTM phan-

toms ( d = 9.5, 19, and 38 mm) were remeasured using the same experimental set-up but

systematically varying the driving voltage. The original driving voltage (to the transmit-

ter) was set to approximately 60 V. Click-stop attenuators, on the transmit side, were then

increased in steps of 6 dB from 0 until the signal fell into the noise for each of the three

LexanTM samples. The slope of attenuation, β, was determined with conventional analysis

and with Bayesian analysis.

Figure 7.9 shows the results for β as a function of driving voltage (input attenuation)

using both conventional and Bayesian analysis. The results suggested that there were no

effects from nonlinear propagation. If there had been nonlinearities, the value of β would have
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increased at low transmit attenuations (that is, high drive voltages). The slope of attenuation

estimated by the Bayesian algorithm started to decrease at transmit attenuations greater

than 36 dB, presumably due to low signal-to-noise ratios.

7.3.6 Introducing quadratic attenuation term

The original propagation model used in the Bayesian algorithm assumes that the atten-

uation within the sample is linear with frequency, α = βf . This assumption might be valid

only for specific samples and over specific frequency ranges. If the attenuation coefficient

has a slight curvature, then trying to fit it with a line may result in an overestimation or

underestimation of the true attenuation depending on the curvature. In order to account

for any not-linear-with-frequency dependence of the attenuation coefficient, the loss term in

the propagation model used in the Bayesian algorithm was modified to include a quadratic

attenuation term,

Ae−βfd → Ae−(βf+γf
2)d (7.7)

Although the modified attenuation term in Equation 7.7 does account for any curvature

present in the attenuation coefficient as a function of frequency, it is not the most realistic

form for experimental data which is only reliable over a certain (limited) bandwidth. It

also assumes knowledge of the attenuation at zero frequency, which is not valid for most

experiments. Therefore, it made more physical sense to expand the attenuation coefficient

around the center frequency, f0,

Ae−[α0+β(f−f0)+γ(f−f0)2]d (7.8)
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Table 7.8: Bayesian analysis results using the propagation model with the additional
quadratic attenuation term (Eq. 7.8) for the three LexanTM phantoms. The original Bayesian
estimates for A, β, and c are also shown for comparison.

Parameter Propagation Model 9.5 mm Lexan 19 mm Lexan 38 mm Lexan

A
Original 0.95 ± 0.00 0.97 ± 0.00 1.00 ± 0.00

Quadratic Attenuation 0.57 ± 0.00 0.36 ± 0.00 0.14 ± 0.00

β
Original 4.66 ± 0.00 4.52 ± 0.01 4.47 ± 0.00

(dB/cm/MHz) Quadratic Attenuation 4.66 ± 0.00 4.53 ± 0.01 4.52 ± 0.00

c (1 MHz)
Original 2200 ± 2 2202 ± 2 2204 ± 1

(m/s) Quadratic Attenuation 2200 ± 2 2202 ± 2 2204 ± 1

γ
Original - - -

(dB/cm/MHz2) Quadratic Attenuation 0.03 ± 0.01 0.15 ± 0.01 0.00 ± 0.00

where α0 = α(f0).

The modified propagation model with the expanded quadratic attenuation term in con-

junction with the Bayesian algorithm was applied to the data from the three LexanTM

phantoms (d = 9.5 mm, 19 mm, and 38 mm). With this version of the propagation model,

the adjustable parameters to be estimated by the Bayesian algorithm include the original

three parameters A, β, and c plus two additional parameters, α0 and γ.

The results of the Bayesian analysis with the additional quadratic attenuation term for

the three LexanTM phantoms are shown in Table 7.8. The Bayesian estimates for β and c

were very similar to those obtained with the original Bayesian algorithm (only linear-with-

frequency attenuation). However, the estimates for A varied significantly from the original

Bayesian algorithm. Additionally, the estimates for the parameter, α0, are not shown in

the Table because the Bayesian algorithm did not appear to be capable of sampling the

parameter space for it. The posterior probability distributions for α0 ended up being the

same as the prior probability distributions. It was determined that the Bayesian algorithm
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was combining the two frequency-independent losses in the propagation model into one

parameter, thus minimizing the number of adjustable parameters. Therefore, the A value

given by the propagation model with the quadratic attenuation term (Aquad) was actually

Aquad = Aoriginale
−α0d = Aoriginale

−βf0d. (7.9)

This can be verified by looking at the values for the 9.5 mm sample of LexanTM in Table 7.8

and using Equation 7.9.

Aquad = Aoriginale
−βf0d

= 0.95e−0.536Np/cmMHz∗1MHz∗0.95cm = 0.95 ∗ 0.60

= 0.57

(7.10)

Similar results were verified for the 19 mm and the 38 mm thick LexanTM samples. This

explained why the Bayesian algorithm appeared not to estimate a value for α0.

7.4 Systematic shortening of LexanTM sample

In order to study more thoroughly the sample-thickness dependence observed in the

equine sample discussed in Chapter 6, a LexanTM phantom of approximately the same di-

mensions as the equine specimen was measured while systematically decreasing the thickness

of the sample. A piece of LexanTM was machined to have a square face with dimensions of

22 mm x 22 mm and a starting thickness of 30 mm. These are similar (face) dimensions

to those of the equine specimen. Measurements were acquired using both 1 MHz and 2.25

MHz nominal center frequency transducers arranged in a through-transmission configuration
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Figure 7.10: Left: LexanTM sample with approximately the same (face) dimensions as the
equine sample studied in Chapter 6. This LexanTM phantom was gradually shortened from
30 mm down to 10.5 mm in increments of approximately 2 mm. Right: The experimental
configuration used on the LexanTM sample. Measurements were taken using both 1 MHz
and 2.25 MHz transducers although only the 2.25 MHz data is presented in this thesis.

as shown in Figure 7.10. The sample was attached to a motion-controller permitting the

sample to be moved in the y-z plane and permitting measurements at four spatial locations

for each sample thickness. The LexanTM phantom was gradually shortened from 30 mm

down to 10.5 mm in increments of approximately 2 mm (N = 11 sample thicknesses) using

a fly cutter. After each cut, the cut face was polished smooth using sandpaper and oil, and

the new thickness was measured using digital calipers. The LexanTM sample was shortened

only to 10 mm, in contrast to the 0.5 mm for the equine sample, due to the constraints of

the cutting system

For this study, only the results of the 2.25 MHz measurements will be presented. The

1 MHz data yielded not-linear-with-frequency attenuation coefficients and not smoothly

varying (with frequency) phase velocities. It was hypothesized that the beam width of

the 1 MHz transducers may have been large enough in comparison to the size of the face
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Figure 7.11: The average (N = 4) phase velocity at 2.25 MHz as a function of the 11
thicknesses of LexanTM using conventional analysis (black squares) and Bayesian analysis
(gray triangles). The error bars represent plus or minus one standard deviation.

of the sample that a portion of the beam may have gone around the sample, producing

the distortions observed. The theoretical beam diameter at -6 dB down for the 1 MHz

transducers used in the study was calculated to be approximately 12 mm. Although this

theoretical beam diameter is smaller than the sample face, the actual beam diameter is much

larger when the energies below -6 dB are considered.

The data acquired from each of the 11 sample thicknesses were analyzed using both

conventional and Bayesian analysis. The phase velocities and dispersions determined us-

ing conventional phase spectroscopy agreed well with the Kramers-Kronig predictions and

displayed no systematic sample thickness dependence (Figure 7.11). The phase velocities

estimated using the Bayesian algorithm were in very good agreement with the conventional
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Figure 7.12: Power spectra of the reference measurements (black line) and the sample
measurements (gray line) acquired for each of the 11 thicknesses of the LexanTM sample
using the 2.25 MHz transducers. For each sample thickness, four spatial locations on the
sample were measured.

results as shown in Figure 7.11.

The power spectra of the reference measurements and the sample measurements for

each of the 11 thicknesses are shown in Figure 7.12. This figure displays the systematic

increase in power of the sample signal as the sample is gradually shortened. The average

(over four spatial sites) attenuation coefficients, determined using conventional analysis, for

the 11 thicknesses of the LexanTM sample are shown in Figure 7.13. Based on this figure,

the attenuation coefficients for the various sample thicknesses are quite similar. However,

when the attenuation coefficients at the center frequency (2.25 MHz) were plotted as a

function of sample thickness, it was observed that the attenuation coefficients decreased

slightly but systematically as the sample thickness increased (Figure 7.14). This small but
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7.4 Systematic shortening of LexanTM sample

Figure 7.13: The average attenuation coefficients for each of the 11 thicknesses of LexanTM.
For each thickness of the plastic phantom, four spatial locations were measured. The error
bars on each of the 11 attenuation coefficients are too small to be seen.

systematic variation of the attenuation coefficient is unexpected and unexplained. Perhaps

it is a consequence of diffraction effects as will be discussed later in Section 7.8.

In contrast to the attenuation coefficient at 2.25 MHz, the slope of attenuation (nBUA)

obtained using conventional analysis displayed no sample thickness dependence as shown in

Figure 7.15. Over all 11 sample thicknesses, the average conventional nBUA was 4.51 ±

0.01 dB/cm/MHz. On the other hand, Bayesian analysis estimated the slope of attenuation

to be, on average, 4.40 ± 0.03 dB/cm/MHz. The Bayesian-estimated nBUA also displayed

a slight systematic sample-thickness dependence, as shown in Figure 7.15. The Bayesian

nBUA of 4.36 dB/cm/MHz at a sample thickness of 30 mm increased to 4.45 dB/cm/MHz

at a sample thickness of 10.5 mm.
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7.4 Systematic shortening of LexanTM sample

Figure 7.14: The average attenuation coefficients (N = 4) at 2.25 MHz for each of the 11
thicknesses of LexanTM. The error bars represent plus or minus one standard deviation and
are too small to be seen on most of the measurements.

A similar trend was observed for the transmission coefficient-related A terms. The pre-

dicted conventional transmission coefficients determined using the impedance difference be-

tween water and LexanTM were, as expected, to be constant as a function of sample thick-

ness (Figure 7.16). In contrast, the Bayesian-estimated A terms increased systematically

towards 1 (no loss at surfaces) as the sample thickness increased. This trend was even more

pronounced if the transmission coefficient-related terms were determined using the zero-

frequency intercept of the signal loss versus frequency graph. Using that approach, the A

terms increased linearly with sample thickness and even surpassed a value of one, which

implies energy is gained instead of lost at the surfaces.

In an effort to account for all the experimental variables that were present in the equine
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Figure 7.15: The average slope of attenuation (N = 4) as a function of the 11 thicknesses of
LexanTM using conventional analysis (black squares) and Bayesian analysis (gray triangles).
The error bars are too small to be seen on this scale.
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Figure 7.16: The average (N = 4) transmission coefficient-related terms as a function of
the 11 thicknesses of LexanTM using Bayesian analysis (gray triangles) and the signal loss
intercept (gray diamonds). The predicted values for A are represented by black squares. The
error bars represent plus or minus one standard deviation.
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7.4 Systematic shortening of LexanTM sample

bone study, a similar LexanTM phantom (with dimensions 22 mm x 22 mm x 30 mm)

was sent to Professor Mami Matsukawa’s laboratory in Japan. The LexanTM sample was

measured in the same acoustic tube apparatus as the equine specimen, thereby permitting

us to determine if the experimental set-up introduced any additional effects. The Matsukawa

laboratory performed measurements on the LexanTM sample at 0.7, 1, and 2 MHz for sample

thicknesses ranging from 20 mm down to 6 mm in approximately 2 mm increments (N = 8).

The data was sent back to the Laboratory for Ultrasonics for analysis using both conventional

and Bayesian methods.

The data acquired from the laboratory of Professor Matsukawa were consistent, in some

ways, with the data taken in our Laboratory on a similar LexanTM sample. The data from

both laboratories had average attenuation coefficients that were consistent with each other, as

shown in Figure 7.17. However, some of the data from our Japanese collaborators displayed

large amounts of random variation with sample thickness that may have overshadowed any

potential systematic dependence on sample thickness. One example of such data is the phase

velocity at 2 MHz as a function of sample thickness. The phase velocities of the Matsukawa

-lab data varied from 2187 m/s to 2230 m/s for different thicknesses of the same sample.

In contrast, the phase velocities measured by our laboratory for a similar LexanTM sample

varied by less than 1 m/s over a wider range of the sample thicknesses.

7.4.1 Frequency filtering

As discussed in Chapter 3, conventional analysis methods are performed in the frequency

domain over a limited range of frequencies, typically the -6 dB or -10 dB down bandwidth.
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7.4 Systematic shortening of LexanTM sample

Figure 7.17: Comparison of the average attenuation coefficient of a systematically short-
ened LexanTM phantom measured by the laboratory of Mami Matsukawa (blue) and by our
laboratory (gray). Conventional analysis was performed by our laboratory on both sets of
data. The Matsukawa laboratory acquired data on the LexanTM sample at 0.7, 1, and 2
MHz. Our laboratory acquired data at 2.25 MHz. The error bars represent plus or minus
one standard deviation.

In contrast, the Bayesian algorithm determines the best model parameters by trying to

fit the time-domain signal. This time-domain signal may contain frequencies outside the

bandwidth used in the conventional analysis. It was hypothesized that by restricting the

frequencies present in the reference and sample signals input into the Bayesian algorithm to

those frequencies used in the conventional analysis, the Bayesian estimates for nBUA and

the transmission coefficients might be more constant as a function of sample thickness.

For this study, a Butterworth filter was chosen. An example of a low-pass Butterworth

filter of various orders (n) is illustrated in Figure 7.18 with a cutoff frequency of 4 MHz. At
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7.4 Systematic shortening of LexanTM sample

Figure 7.18: Illustration of a low-pass Butterworth filter with a cutoff frequency of 4 MHz
and and with an order ranging from n = 1 to n = 10.

the cutoff frequency, the filter attenuates the input power by half or 3 dB, which corresponds

to a 0.707 decrease in amplitude. The order, n, of the filter determines the amount of

additional attenuation for frequencies higher than the cutoff frequency. For a first order (n

= 1) Butterworth filter, the signal amplitude is reduced by half (or the power by 6 dB) every

time the frequency doubles (goes up one octave). For higher order filters, the power rolloff

is 6n dB per octave.

Bandpass Butterworth filters were applied to the data acquired on the systematically

shortened LexanTM samples measured by both our laboratory and by the Matsukawa lab-

oratory. The shortened LexanTM data set taken by Professor Matsukawa’s laboratory were

very useful for this study, due to the significant presence of higher frequency components in

the reference signals as shown in Figure 7.19. The power spectra of the reference signals from
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7.4 Systematic shortening of LexanTM sample

Figure 7.19: Reference (water-path only) radiofrequency signals acquired by Mami Mat-
sukawa’s laboratory for the three sets of transducers with center frequencies of approximately
0.7 MHz, 1 MHz, and 2 MHz. These signals showed evidence of higher frequency components.

Figure 7.20: The power spectra of the three reference signals shown in Figure 7.19 for the
shortened Lexa data acquired by Professor Mami Matsukawa’s laboratory using transducers
with center frequencies of 0.7 MHz, 1 MHz, and 2 MHz. For all three transducer sets, the
reference signal contained significant amounts of higher frequency components that were
only 10 to 15 decibels lower than the main frequency lobe.
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7.4 Systematic shortening of LexanTM sample

Table 7.9: Bandpass Butterworth filters applied to the data from the shortened LexanTM

sample measured in our laboratory.

Table 7.10: Bandpass Butterworth filters applied to the shortened LexanTM sample mea-
sured by the laboratory headed by Professor Mami Matsukawa.

the three frequencies (0.7 MHz, 1 MHz, and 2 MHz) used in the Matsukawa measurements,

shown in Figure 7.20, contain lobes of the higher harmonics that are only 10-15 decibels

down from the main lobe at the center frequency. Therefore, the application of bandpass

frequency filters to this data set should show more of an effect than filtering the data from

our laboratory.

The specifications of the bandpass Butterworth filters applied to the shortened LexanTM

data from our laboratory and from Professor Matsukawa’s laboratory are displayed in Ta-

bles 7.9 and 7.10, respectively. A representative example of the effects of applying a But-

terworth filter on a reference signal and power spectrum are shown in Figure 7.21 for the 2

MHz signal acquired by Professor Matsukawa’s laboratory. The filters were applied to both
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Figure 7.21: The effects of applying two different bandpass Butterworth filters to the 2
MHz reference signal and power spectrum acquired by Professory Matsukawa’s laboratory.
The original (unfiltered) signals and power spectra are shown in blue while the filtered rf
signals and power spectra are shown in red. The specifications of the two Butterworth filters
are listed in Table 7.10.

the reference and sample signals before they were input into the Bayesian algorithm.

For both data sets (our laboratory’s and Professor Matsukawa’s laboratory), frequency

filtering produced no change in the phase velocity estimations determined by Bayesian anal-

ysis. Frequency filtering produced a slight, but insignificant improvement in the Bayesian-

estimated nBUA (less sample thickness dependence) in our LexanTM data and in the 0.7

MHz and 1 MHz LexanTM data from our Japanese collaborators. There was no difference

between the filtered and unfiltered Bayesian estimated nBUA for the 2 MHz LexanTM data
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Figure 7.22: Comparison of the slopes of attenuation (nBUA) for a subset of the 0.7
MHz, 1 MHz, and 2 MHz data acquired by the Matsukawa laboratory using conventional
analysis (black circles), Bayesian analysis with the original (unfiltered) signals (blue squares),
Bayesian analysis after filtering with Butterworth filter 1 (red squares), and Bayesian analysis
after filtering with Butterworth filter 2 (maroon squares).

from the Matsukawa laboratory, as shown in Figure 7.22. Similar results were seen for the

Bayesian-estimated transmission coefficient-related terms A.

Based on these results, it does not appear that frequency filtering the signals input into

the Bayesian algorithm to those frequencies used in the conventional analysis significantly

reduces the sample thickness dependence observed in the shortened LexanTM data from

either laboratory.

7.4.2 Iteration of the Bayesian method

Another proposed idea, which was applied to the shortened LexanTM data taken by

our laboratory, was to iterate the Bayesian algorithm. The Bayesian model for one-mode

plastic data contained three parameters to be estimated: A, β, and c. The iteration process

consisted of first running the Bayesian algorithm with A = 1. By setting A to one, all the
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7.4 Systematic shortening of LexanTM sample

Table 7.11: Comparison of the Bayesian-estimated nBUA when A is allowed to vary and
when A is set to 1.

loss should be put into the β term, thus providing an upper limit for the slope of attenuation.

This first step also provided the estimate for the speed, c. The second step of the iteration

was to rerun the Bayesian algorithm with the speed parameter set to the value estimated in

step one, the upper limit of β to be that value given by step one, and allowing A to vary

between 0 and 1. For both step one and step two, the Bayesian algorithm is only estimating

two parameters since the other parameter is fixed at a constant value. This iteration of the

Bayesian method was applied to 6 of the 11 sample thicknesses from the shortened LexanTM

sample.

The results of β from step one of the iterated Bayesian method are displayed in Table 7.11.

As expected, when compared to the original Bayesian (A 6= 1) estimates for nBUA, the

results of β after step one are consistently larger since all of the loss must be accounted for

by this term. Step one of the iterated Bayesian method also produced β values that were

more sample thickness dependent than the original Bayesian method. This is likely caused

by the sample-thickness dependence of the A term being folded into the β term since A was

forced to be 1. The velocity estimated by step one of the Bayesian iteration was unchanged
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7.5 Position of sample within the ultrasonic field

Figure 7.23: Comparison of the original Bayesian (red squares) and the iterated Bayesian
(maroon circles) results for nBUA (left panel) and A (right panel) as a function of sample
thickness from measurements on the shortened LexanTM sample.

from the original Bayesian method.

For step two of the Bayesian iteration, the upper limit for β for all sample thicknesses

was set to 4.75 dB/cm/MHz, which was the largest value estimated by step one, and the

lower limit was set to 4.3 dB/cm/MHz. The velocity, c, was fixed at the value determined

by step one. The results of step two of the iterative Bayesian method for nBUA and A are

shown in Figure 7.23. There was no significant difference in the values estimated by the

original Bayesian method and the iterative Bayesian method for either nBUA or A, and no

reduction in the observed sample thickness dependence of these parameters.

7.5 Position of sample within the ultrasonic field

In most through-transmission studies, the transmitting and receiving transducers are

placed approximately twice the focal length apart, with the sample being studied placed

halfway between the two transducers such that the focus of the transmitting transducer is
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Figure 7.24: The experimental configuration for testing if the position of the sample within
the ultrasonic field effects the received signal. The same experiment was performed with 1
MHz and 2.25 MHz center frequency transducers using LexanTM samples with thicknesses
of 20 mm and 40 mm.
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located just inside the front surface of the sample. This transducer and sample arrangement

was thought to produce the best acquired signal and reduce potential diffraction-related

effects. Simulations done in our Laboratory by alum Kirk Wallace suggested that the position

of the sample does not affect the signal acquired by the receiving transducer. To examine

experimentally whether the location of the sample between the transmitting and receiving

transducer does matter, two LexanTM samples with thicknesses of approximately 20 mm and

40 mm were measured using both 1 MHz and 2.25 MHz focused transducers. For each set

of transducers, the transmitting and receiving transducers were separated by approximately

twice their reported focal length, which was 8 inches for the 1 MHz transducers and was 5

inches for the 2.25 MHz transducers. Data were acquired at six different distances from the

transmitting transducer as illustrated in Figure 7.24 for both thicknesses of LexanTM. For

the 1 MHz transducers, the samples were placed at 0.5, 1, 2, 3, 4, and 5 inches from the

transmitting transducer. For the 2.25 MHz transducers, data were acquired for when the

samples were positioned 0.5, 1, 1.5, 2, 2.5, and 3 inches from the transmitting transducers.

The results for the 1 MHz transducers are shown in Figures 7.25 and 7.26. Figure 7.25

shows the radiofrequency signals that have propagated through the 20 mm thick LexanTM

sample positioned at 0.5 inches, 2 inches, and 4 inches from the transmitting transducer. The

rf signals appeared not to change amplitude, shape, or arrival time. This was confirmed by

measuring the peak-to-peak amplitudes of the acquired signals at different sample positions.

Figure 7.26 shows the peak-to-peak amplitude of the signals traveling through both the

20 mm and 40 mm LexanTM samples using the 1 MHz transducers. The amplitude stays

exactly constant as a function of sample position in relation to the transmitting transducer
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Figure 7.25: Radiofrequency signals that have propagated through a 20 mm thick LexanTM

sample positioned at 0.5 inches (top panel), 2 inches (middle panel), and 4 inches (bottom
panel) from the transmitting transducer. This data was from the 1 MHz set of transducers.

Figure 7.26: Peak-to-peak voltages of the rf signals that have propagated through 20 mm
and 40 mm thick LexanTM samples positioned at six distances from the 1 MHz transmitting
transducer.
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Similar results were observed for the 2.25 MHz transducers. These results suggested that

the locations of the samples were not factors in the observed sample thickness variation.

7.6 Systematically varying the surface losses

In order to investigate the effects of varying the transmission (or insertion) losses without

affecting the attenuation coefficient, multiple samples of LexanTM were measured in the

arrangement shown in Figure 7.27 using a focused matched pair of transducers with a nominal

center frequency of 1 MHz. The number of samples placed between the aligned transducers

ranged from one sample (2 interfaces) up to 4 samples (8 total interfaces). The complete set

of sample combinations along with their respective total thicknesses and number of interfaces

is listed in Table 7.12. The thickness of each individual LexanTM sample was measured using

digital calipers. For all of these sample combinations, the attenuation coefficients and slopes

of attenuation (nBUA) should be the same since these parameters are intrinsic properties of

LexanTM. However, the insertion losses should vary based on the number of samples since

the number of water-sample interfaces varies.

The phase velocities of all 15 LexanTM sample combinations were determined using the

broadband phase spectroscopy methods discussed in Section 3.3. The phase velocities as a

function of frequency for all 15 sample combinations are shown in Figure 7.28. The average

phase velocity at 1 MHz of all the sample combinations (N = 15) was 2193 ± 1.0 m/s, which

are consistent with earlier measurements made by our Laboratory (Anderson et al., 2010;

Bauer et al., 2007). To further validate the measurements, a prediction of the dispersion was
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7.6 Systematically varying the surface losses

Figure 7.27: The experimental configuration for varying the surface losses or the Bayesian
A term. The number of LexanTM samples ranged from one sample (2 surfaces) between
the transducers up to four samples (8 surfaces). This experiment was expected to alter the
insertion losses or A term, but not to alter the attenuation coefficient or nBUA.

determined using the nearly local Kramers-Kronig relations with one subtraction (Waters

et al., 2003). The method for the Kramers-Kronig prediction is described in Section 3.3.1.

The experimentally measured phase velocity at 1 MHz, the nominal center frequency, was

used to set the absolute level of the predicted phase velocity. The Kramers-Kronig prediction

agreed well with the average broadband phase velocity as shown in Figure 7.29.

The signal loss as a function of frequency for the 15 LexanTM sample combinations is

shown in Figure 7.30. For a fixed number of samples (or number of interfaces), the signal

loss, at a given frequency, is larger for thicker samples, as expected. This is because signal

loss is explicitly dependent on the sample thickness. The magnitude of the signal loss is

also dependent on the number of interfaces that are present as the signal is propagated from

the transmitting transducer to the receiving transducer. The signal losses were reduced to

attenuation coefficients using the conventional analysis methods described in Section 3.3.2.

The predicted insertion losses, determined using the transmission coefficients defined in

Equation 3.17, are listed in Table 7.13 for the corresponding number of interfaces (2, 4, 6,
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7.6 Systematically varying the surface losses

Table 7.12: The combination of LexanTM samples used along with their respective effective
length and number of surfaces.

or 8). The mass density of these LexanTM samples were measured, using a mass scale and

volume measurements, to be approximately 1193 kg/m3. The attenuation coefficients as a

function of frequency are displayed in Figure 7.31 for the individual sample combinations

(N=15) as well as the average attenuation coefficient. All 15 combination of LexanTM samples

produced similar attenuation coefficients even though the number of interfaces varied from 2

surfaces up to 8 surfaces. This implies that the predicted insertion losses in Table 7.13 were
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Figure 7.28: The phase velocities as a function of frequency, determined by conventional
phase spectroscopy, for the 15 LexanTM sample combinations listed in Table 7.12.

reasonably accurate.

A comparison of the Bayesian-derived and conventionally-derived phase velocity at 1

MHz as a function of sample length are shown in Figure 7.32 for all 15 sample combinations.

The color of each data point represents the number of sample interfaces that the ultrasonic

wave propagated through for that particular data set. The phase velocities estimated by

the Bayesian algorithm agreed very well with the phase velocities determined using phase

spectroscopy. This implies that varying the number of interfaces does not affect phase

velocities measurements by either method of analysis.

The slope of the attenuation coefficient (nBUA) determined using conventional analysis

methods showed a slight dependence on sample length and no systematic dependence on the
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7.6 Systematically varying the surface losses

Figure 7.29: The average phase velocity of the 15 LexanTM sample combinations and the
Kramers-Kronig prediction for the dispersion. Error bars are plus or minus one standard
deviation.

number of interfaces, as seen in Figure 7.33. This result is consistent with the fact that nBUA

should only be dependent on the losses within the sample and not the losses occurring at the

interfaces. In contrast, the Bayesian-estimated nBUA displayed a significant dependence on

sample thickness, causing it to differ substantially from the conventional result, especially

for total sample thicknesses greater than 50 mm. For the thickest total sample length (d

∼ 100 mm), the Bayesian-determined nBUA was 0.65 dB/cm/MHz smaller than the nBUA

determined using conventional analysis methods.

Figure 7.34 shows the results, as a function of sample thickness, for A determined using

Bayesian probability theory compared to the predicted transmission coefficient-related term,
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Figure 7.30: Signal losses of the 15 LexanTM sample combinations as listed in Table 7.12.
The different shades of black, red, green, and blue represent different combinations (or total
thickness) of samples with 2, 4, 6, and 8 interfaces, respectively.
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7.6 Systematically varying the surface losses

Table 7.13: The predicted insertion losses and the predicted transmission coefficient-
related A terms for the number of total sample interfaces. A2, A4, A6, and A8 represent the
A term for 2, 4, 6, and 8 total interfaces, respectively.

as given in Table 7.13. Since the impedance difference between the water and the LexanTM

samples, which is determined using the phase velocity at the center frequency and the mass

density of the media, does not change with sample thickness, the predicted A terms are

also independent of the total sample thickness. In contrast, the Bayesian-estimated A terms

displayed a noticable dependence on sample thickness, although the trend changed with the

number of the interfaces present. For two interfaces (one sample), the Bayesian-estimated

transmission coefficient-related term increased linearly with sample thickness and had a

value higher than that predicted using conventional methods. This implies that for thicker

samples, less loss was attributed to the A term. This result was unexpected since the

corresponding nBUA values also decreased with increasing sample thickness (for one sample

present). Therefore, as the sample thickness increased, the net total loss (both insertion loss

and sample loss) decreased. A similar trend was seen for four surfaces (two samples), until

the sample thickness excessed 60 mm. For a total sample thickness less than 60 mm, the
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Figure 7.31: The attenuation coefficients of the 15 LexanTM sample combinations (black
lines) along with the average attenuation coefficient (gray line). Error bars represent plus or
minus one standard deviation.

Bayesian-estimated A term increased with sample thickness and was larger than the predicted

A term. When the total sample thickness exceeded 60 mm, the Bayesian transmission

coefficient-related A term started to decrease and grew closer in value to the predicted

value. For 6 surfaces (three samples), the Bayesian A term systematically decreased with

increasing sample thickness, starting off larger than the predicted value but then becoming

smaller than the predicted value. This trend continued with the data from 8 surfaces (four

samples), with the A term obtained with Bayesian analysis being significantly smaller than

that predicted.
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Figure 7.32: The phase velocities at 1 MHz as a function of total sample thickness using
both conventional phase spectroscopy (squares) and Bayesian analysis (crosses) for the 15
combinations of LexanTM samples listed in Table 7.12. The colors of the squares and crosses
represent the number of water-sample interfaces that are present for that data set.

The conventional method of determining the transmission coefficient-related term A, by

finding the zero-frequency intercept of the signal loss curve, was also applied to this data set

and the results are shown as a function of the number of interfaces in Figure 7.35. The A

terms based on the signal loss intercept displayed even more dependence on sample length

than the calculated and Bayesian-estimated A terms. Even more problematic was the fact

that the majority of the transmission coefficient-related terms determined using the signal

loss intercept had values greater than one, which implied that energy was gained instead of

lost at the surfaces. One possible explanation is diffraction, which will be discussed later in
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7.7 Constant thickness while varying surface losses

Figure 7.33: The slopes of attenuation (nBUA) as a function of total sample thickness
using both conventional analysis (squares) and Bayesian analysis (crosses) for the 15 com-
binations of LexanTM samples listed in Table 7.12. The colors of the squares and crosses
represent the number of water-sample interfaces that are present for that data set.

Section 7.8.

7.7 Constant thickness while varying surface losses

In order to explore further the potential effects caused by varying the surface losses (by

increasing the number of interfaces), the five combinations of LexanTM samples that had a

total sample length of approximately 100 mm were measured, as illustrated in Figure 7.36.

One configuration had two samples (4 interfaces), three configurations had three samples
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Figure 7.34: The transmission coefficient-related A terms as a function of total sample
thickness using Bayesian analysis (crosses) and calculated (squares) for the 15 combinations
of LexanTM samples listed in Table 7.12. The colors of the squares and crosses represent the
number of water-sample interfaces that are present for that data set.

(6 interfaces), and another configuration had four samples (8 interfaces) positioned between

the transmitting and receiving transducers. In this experiment, a matched pair of 0.5 inch

diameter, 4 inch focus transducers with a nominal center frequency of 1 MHz were used in

a through-transmission arrangement. As seen in Figure 7.37, the radiofrequency (rf) signals

acquired from the five sample configurations have similar shapes (and thus similar frequency

components), but have different amplitudes and arrive at different times. The peak-to-

peak amplitudes for the five LexanTM sample combinations are displayed in Figure 7.38,

and shows that as the number of water-sample interfaces increased, the signal amplitude

220



7.7 Constant thickness while varying surface losses

Figure 7.35: The transmission coefficient-related A terms as a function of total number of
interfaces using impedance differences (black squares), Bayesian analysis (gray crosses), and
the zero-frequency intercepts of the signal loss curve (red diamonds) for the 15 combinations
of LexanTM samples listed in Table 7.12.
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decreased systematically.

The data acquired for the five sample combinations were analyzed using both conventional

and Bayesian methods. A comparison of the phase velocity at 1 MHz determined using both

analysis methods is shown in Figure 7.39. For both conventional and Bayesian analysis, there

was a slight increase in the phase velocity as the number of interfaces increased, although

the change was only ∼ 1 m/s for each additional sample. The Bayesian and conventional

phase velocities differed in value by approximately 1 m/s for all five sample combinations.

Signal loss versus frequency plots for the five sample combinations determined using

conventional analysis are shown in Figure 7.40. As anticipated, the signal losses, at a given

frequency, increased with an increasing number of interfaces. The offset at 1 MHz between

four and six interfaces and six and eight interfaces was, on average, 0.86 dB. Based on

predicted insertion losses determined using the calculated transmission coefficients, this offset

was expected to be approximately 0.68 dB. Although the signal loss offsets were not identical

to the predicted values, the attenuation coefficients of the five sample combinations were very

similar, as shown in Figure 7.41. The attenuation coefficient at 1 MHz did slightly increase

with an increase in the number of interfaces, but the change was only 0.02 dB/cm.

The slope of the attenuation (nBUA) for both conventional and Bayesian analysis are

shown in Figure 7.42 for the five combinations of LexanTM samples. For both types of analy-

sis, the resulting nBUAs were approximately independent of the number of interfaces present,

which should be expected. However, the Bayesian-estimated nBUAs were, on average, 0.65

dB/cm/MHz smaller than the nBUAs determined using conventional methods. A similar

trend was observed for the transmission coefficient-related A terms shown in Figure 7.43. As
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Figure 7.36: The experimental and sample configurations used for varying the number of
interfaces while keeping the overall sample thickness approximately constant. In this exper-
iment, two samples (4 interfaces), three samples (6 surfaces), or four samples (8 surfaces)
were placed between two matched, focused 0.5 inch diameter transducers with a nominal
center frequency of 1 MHz. All five sample combinations yielded a total sample length of
approximately 100 mm.
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Figure 7.37: The radiofrequency (rf) traces acquired from going through two samples
(red), three samples (green), or four samples (blue) of LexanTM. As the number of samples
(and thus interfaces) increased, the rf traces shifted to the left in time and decreased in
peak-to-peak amplitude.

predicted, the transmission coefficient-related A term depended on the number of interfaces

present. However, the Bayesian estimated A was, on average, 0.16 smaller than the predicted

value. Based on the results for both nBUA and the A terms, the Bayesian algorithm is al-

locating more loss to insertion (that is, surface) losses and less loss to bulk (sample) losses

than the conventional analysis. When both types of losses (surface and bulk) are taken

into account using the expression A ∗ exp[−βfd], the conventional analysis has more overall

loss than that estimated by the Bayesian algorithm, as illustrated in Figure 7.44. In this

figure, the predicted time-domain sample traces for conventional and Bayesian analysis were

generated using the values of A, β, and c determined by the respective analysis method and

inserted into the propagation model discussed in Section 3.4. Based on these results, con-

ventional analysis appeared to overestimate the total loss producing large residuals, whereas
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Figure 7.38: The peak-to-peak amplitude of the radiofrequency signals that propagated
through the five LexanTM sample combinations that all had an approximate total sample
length of 100 mm, as shown in Figure 7.36. As the number of water-sample interfaces
increased, the signal amplitude decreased systematically.

the Bayesian method seemed to fit the experimentally acquired data quite accurately.

7.8 Effects of Diffraction

The formula for the attenuation coefficient given in Equation 3.23 makes two assumptions

about the ultrasonic field. The first is that the phase sensitive sum over the face of the

receiving transducer, which results in some phase cancellation, does not change between

measurements. The second is that the axial diffractive pattern remains unchanged between

measurements. If these assumptions are not valid, then the observed signal loss may have

contributions arising from these additional factors, thus producing an error in the attenuation
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Figure 7.39: Phase velocity at 1 MHz as a function of the number of interfaces of the five
LexanTM sample combinations that all had an approximate total sample length of 100 mm,
determined using conventional phase spectroscopy (squares) and Bayesian analysis (crosses).
The colors of the squares and crosses represent the number of interfaces present.

coefficient (Lloyd, 2010). As will be discussed, diffractive effects depend on the thickness

of the sample being insonified. Therefore, diffraction was a possible cause for the sample

thickness dependence observed in the equine bone study discussed in Chapter 6 and in the

plastic studies discussed earlier in this chapter. An experimental diffraction correction has

been published by Xu and Kaufman (1993). An independent derivation was carried out

by Christopher Lloyd, an alumnus of the Laboratory for Ultrasonics ((Lloyd, 2010)). The

formalism developed by Lloyd (2010) will be used in this section.

The near field distance (N) for a given continuous wave (single frequency) of a planar
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7.8 Effects of Diffraction

Figure 7.40: Signal losses of the five LexanTM sample combinations that all had an approxi-
mate total sample length of 100 mm, determined using conventional log-spectral subtraction.
At a given frequency, the signal loss increased with an increasing number of interfaces.
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7.8 Effects of Diffraction

Figure 7.41: Left: Attenuation coefficients versus frequency of the five LexanTM sample
combinations that all had an approximate total sample length of 100 mm. Right: The
attenuation coefficients at 1 MHz as a function of the number of interfaces.

transducer is given by

N =
a2

λ
∗

[
1−

(
λ

2a

)2
]

(7.11)

where a is the radius of the transmitting transducer and λ is the wavelength of the emitted

ultrasonic signal. The near field distance is the last and strongest of the maxima in the

ultrasonic field along the axial direction. For all of the transducers (0.5 inch to 1.125 inch

diameters) and frequencies (0.5 to 2.25 MHz) used in this thesis, the term λ/2a << 1 and

can be ignored. Therefore, the near field distance can be approximated by

N ≈ a2

λ
=
a2f

c
(7.12)

where c is the speed of sound of the material and f is the frequency of the signal. For a given

experimental measurement, the frequency and transducer radius are fixed, and therefore, by

Equation 7.12 the near field distance is inversely proportional to the sound speed.
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Figure 7.42: Slopes of attenuation (nBUA or β) as a function of the number of interfaces
of the five LexanTM sample combinations that all had an approximate total sample length of
100 mm, determined using conventional analysis (squares) and Bayesian analysis (crosses).
The colors of the squares and crosses represent the number of interfaces present.

Equation 7.12 can be rewritten as

N · c = constant = a2f (7.13)

The terms on the right do not change for a given experimental setup because the frequency

and aperture of the transmitting transducer remain fixed between measurements. The terms

on the left are related to each other in an inverse manner. An interpretation of Equation 7.8 is

that for a given fixed location in the diffractive field, the propagation distance to that specific

location in the diffractive field varies inversely with the speed of sound of the propagation

medium (Lloyd, 2010).

229



7.8 Effects of Diffraction

Figure 7.43: Transmission coefficient-related A terms as a function of the number of
interfaces of the five LexanTM sample combinations that all had an approximate total sample
length of 100 mm, determined using Bayesian analysis (crosses) or calculated (squares). The
colors of the squares and crosses represent the number of interfaces present.

The terms on the left side of Equation 7.8 can be rewritten as the product of the propa-

gation distance between the transmitting and receiving transducers, Lref , and the speed of

sound in the host medium, cref , for a reference measurement as illustrated in Figure 7.45.

This product, Lrefcref , is fixed. For the measurement of a sample with a speed csamp and

thickness d, the position of the receiving transducer, Lsamp can be found by

Lrefcref = constant = (Lsamp − d)cref + dcsamp (7.14)

Equation 7.14 can be rearranged to solve for the position of the receiving transducer when
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Figure 7.44: Predicted sample signals for conventional (purple) and Bayesian (orange)
methods using their respective values of A, β, and c in the propagation model discussed in
Section 3.4 for the sample combination with 4 interfaces (left) and 8 interfaces (right). The
black signal corresponds to the experimentally acquired trace. The bottom panel of each
graph shows the residual (or difference) of the experimental signal and the predicted signals.
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Figure 7.45: The experimental configuration for measuring the attenuation properties of
the LexanTM samples implementing the diffraction correction.
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the sample is inserted

Lsamp = Lref + d

(
1− csamp

cref

)
(7.15)

Equation 7.15 has three regimes depending on the ratio of the sample speed of sound to

the reference speed of sound. If the sample and the host medium have the same speeds of

sound, then the path lengths between the transmitting and receiving transducers (Lref and

Lsamp) are the same, regardless of the sample thickness. If the speed of sound in the sample

is less than that in the reference medium, the term in the parentheses is positive and Lsamp

is greater than Lref . If the speed of sound in the sample is greater than that in the reference

medium (as is true for all the studies in this thesis), the ratio of speeds is greater than one

and the term in parentheses is negative. Therefore, the total path length for the sample

measurement, Lsamp, must be shorter than the path length for the reference measurement,

Lref , by a factor proportional to the sample thickness. Experimentally, this means that the

receiving transducer must be moved closer to the transmitting transducer, by a distance of

∆L = Lsamp−Lref , when taking the sample measurement in order to be at the same location

in the diffractive field as in the reference measurement.

The effects of diffraction were studied using six samples of LexanTM with thicknesses listed

in Table 7.14. Measurements were taken using the same set of 1 MHz center frequency,

focused transducers used in earlier studies in this chapter. The experimental diffraction

corrections, given by Equation 7.15, were calculated using the measured phase velocities

at the center frequency for each thickness of LexanTM. Table 7.14 displays the diffraction

correction for each of the six LexanTM phantoms, with a negative sign indicating that the

receiving transducer must be moved closer to the transmitting transducer when acquiring
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7.8 Effects of Diffraction

Table 7.14: The mean thicknesses of the six LexanTM samples used in the study on
diffraction effects. The diffraction corrections were calculated using Equation 7.15. The
negative correction indicates that the receiving transducer must be moved closer to the
transmitting transducer for the sample measurements.

the sample measurement. For each of the six LexanTM samples, the three measurements

illustrated in Figure 7.45 were acquired. Two sample measurements were acquired for each

LexanTM phantom: one measurement when the transmitting and receiving transducers were

separated by the same propagation distance as the reference measurement, Lref , and another

measurement after the receiving transducer was moved by the diffraction-corrected distance

listed in Table 7.14.

The peak-to-peak amplitudes of the sample signals acquired at the reference measurement

transducer separation differed slightly from the amplitudes of the sample signals acquired at

the diffraction-corrected transducer separation, as shown in Figure 7.46. The amplitudes of

both the diffraction-corrected and the not diffraction-corrected sample signals displayed the

same trend with sample thickness, decreasing logarithmically with increasing sample thick-

ness, as expected. However, it was unexpected that the difference in peak-to-peak amplitude
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Figure 7.46: Peak-to-peak amplitude of the sample traces for the six LexanTM phantoms
for a typical (not diffraction corrected) measurement and one that has been corrected for
diffraction. (a) The peak-to-peak amplitudes shown on a log scale. (b) The same peak-to-
peak amplitudes displayed on a linear scale. (c) The difference in P-P amplitude between
the not diffraction corrected sample signal and the diffraction corrected sample signal.

between the diffraction-corrected and the not diffraction-corrected sample signals seemed to

decrease with increasing sample thickness. Since the diffraction correction is proportional to

the sample thickness, it was expected that the amplitudes of diffraction-corrected and the

not diffraction-corrected sample signals would diverge as the sample thickness increased.

Both sets of data (diffraction corrected and not diffraction corrected) on the six LexanTM

phantoms were analyzed with conventional and Bayesian methods. The phase velocities,

as determined by conventional phase spectroscopy, are shown in Figure 7.47. The phase

velocity at 1 MHz was consistent over the six samples measured and were consistent with

the phase velocity measurements taken in Sections 7.6 - 7.7 on combinations of the same

LexanTM samples.

The attenuation coefficients for the six LexanTM phantoms determined using conven-

tional analysis methods are displayed in Figure 7.48 for both the diffraction-corrected and

not diffraction-correction measurements. The attenuation coefficients from the not diffrac-

235



7.8 Effects of Diffraction

Figure 7.47: The phase velocities as a function of frequency, determined using conventional
phase spectroscopy, for the six thicknesses of LexanTM listed in Table 7.14. The average phase
velocity (± one standard deviation) is also displayed.

tion corrected measurements on the six LexanTM samples agreed remarkable well. This

seemed to imply that diffraction effects were not significant. If the effects of diffraction were

large enough and were not adequately compensated for, it was expected that the attenuation

coefficients would show more disparities. This figure shows that the diffraction-corrected at-

tenuation coefficient was smaller than the attenuation coefficient that was not diffraction

corrected. This was consistent with the amplitude data shown in Figure 7.46, since the

diffraction-corrected sample signals always had a larger peak-to-peak amplitude than the

not diffraction corrected signals. An unexpected result was that the differences between

the diffraction-corrected attenuation coefficients at 1 MHz and the not diffraction corrected

attenuation coefficients were approximately constant with sample thickness, as listed in Ta-
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Figure 7.48: The attenuation coefficients plotted as a function of frequency, determined
using conventional analysis methods, for the six thicknesses of LexanTM listed in Table 7.14.
The black lines represent the measurements that were not diffraction corrected and the gray
lines represent the measurements that were diffraction corrected.
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Table 7.15: The attenuation coefficient at 1 MHz for the six LexanTM phantoms for a typ-
ical (not diffraction corrected) measurement and one that has been corrected for diffraction.
The difference between the attenuation coefficient at 1 MHz for the not diffraction cor-
rected measurement and the attenuation coefficient at 1 MHz for the diffraction corrected
measurement is displayed in the last column.

ble 7.15. Since the diffraction correction is proportional to sample thickness, it was again

expected that the difference between the attenuation coefficients would increase with in-

creasing sample thickness.

The slopes of attenuation (nBUA) determined using conventional analysis for both diffraction-

corrected and not diffraction corrected measurements are listed in Table 7.16 for the six

thicknesses of LexanTM. The differences between the diffraction-corrected nBUAs and the

nBUAs that were not diffraction corrected were negligible. If only the amplitudes (and not

the shapes) of the signals are different between diffraction-corrected and not diffraction cor-

rected measurements, then the slopes of the attenuation coefficient would remain unchanged.

Based on the results shown in Tables 7.15 and 7.16 it appeared that diffraction was not having
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Table 7.16: The slope of the attenuation coefficient (nBUA) for the six LexanTM phantoms
for a typical (not diffraction corrected) measurement and one that has been corrected for
diffraction. The difference between the nBUA for the not diffraction corrected measurement
and the nBUA for the diffraction corrected measurement is displayed in the last column.

a significant effect, or at least was not displaying the expected sample thickness dependence.

Figure 7.49 shows the comparison between the phase velocity at 1 MHz determined using

conventional phase spectroscopy and the phase velocity estimated by the Bayesian algorithm

for the six thicknesses of LexanTM. As has consistently been the case, the Bayesian and con-

ventional phase velocity results were almost identical and were approximately independent

of sample thickness.

The results of nBUA as a function of sample thickness are shown in Figure 7.50. As dis-

cussed above, conventional analysis applied to both diffraction-corrected and not diffraction-

corrected measurements yielded similar slopes of attenuation. The conventional nBUA dis-

played some sample thickness dependence for the shorter sample lengths (i.e. 10 mm sample).

However, this may be due to other experimental effects such as sample alignment and not an
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Figure 7.49: Comparison of the phase velocity at 1 MHz as a function of sample thick-
ness determined using conventional analysis methods (black squares) and Bayesian analysis
methods (gray diamonds).

effect of diffraction. In contrast, Bayesian analysis of the diffraction-corrected measurements

and the not diffraction-corrected measurements yielded estimates of nBUA that systemat-

ically decreased with increasing sample thickness. The diffraction-corrected measurements

analyzed by the Bayesian algorithm estimated values of β as low as 4.48 dB/cm/MHz for

the thickest LexanTM sample (d = 60 mm).

The results for the transmission coefficient-related term A as a function of sample thick-

ness are shown in Figure 7.51. The predicted A term, determined using the impedance dif-

ference between water and LexanTM with the experimentally-determined velocity and mass

density, was approximately independent of sample thickness as expected. Bayesian analysis
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Figure 7.50: Comparison of the slope of the attenuation coefficient (nBUA) as a function
of sample thickness determined using conventional and Bayesian analysis methods on both
measurements not corrected for diffraction and for measurements corrected for diffraction.

of the not diffraction-corrected measurements yielded values of A that were always greater

than the predicted value of 0.92, and that increased with sample thickness until reaching

the maximum value of A = 1 by sample thickness d = 40 mm and remaining at that value

for thicker samples of LexanTM. Similar results were observed for Bayesian analysis of the

diffraction-corrected measurements. However, in that case, the estimate of A reached the

maximum value of 1 by sample thickness d = 20 mm, and remained at that value for all

thicker samples. These results, in conjunction with the results of β in Figure 7.50, implied

that as sample thickness increased the Bayesian algorithm estimated less total (surface plus

bulk) loss, and put the majority of the loss in the β term (since A = 1 for most thicknesses).

The Bayesian estimates of the diffraction-corrected measurements are lower (less lossy) than
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the estimates of the not diffraction-corrected measurements because of the amplitude differ-

ences in the sample signals discussed above.

The transmission coefficient-related A terms obtained from the zero-frequency intercept

of the signal loss versus frequency plot were also determined and are plotted in Figure 7.51.

Both the diffraction-corrected and not diffraction-corrected A terms using the signal loss

intercept showed significant sample thickness dependence, even more than either Bayesian

estimate. Both diffraction-corrected and not diffraction-corrected A terms had values much

greater than one, implying that energy was gained. Similar results for theA terms determined

by signal loss intercept were observed in Sections 7.4 and 7.6.

Since the values of β and A determined using Bayesian analysis were significantly differ-

ent from those determined using conventional analysis, especially for thicker samples, model

waveforms were generated using both sets of parameters to investigate how well the mod-

els fit the experimental data. This was done for both the diffraction-corrected and the not

diffraction-corrected measurements on the 60 mm thick LexanTM phantom. The 60 mm

LexanTM sample was chosen because the discrepancies between the Bayesian and conven-

tional results were the largest among the sample thicknesses measured. The values of A, β,

and c, shown in Figures 7.49 - 7.51, were put into the wave propagation model along with

the reference (water-path-only) signal and forward propagated to generate a model sample

signal. Two model waveforms were generated using the same conventional results for β and c

but different values for A. One model waveform used the predicted value of A = 0.92, while

the other model waveform used the A value determined by the zero-frequency intercept of

the signal loss versus frequency plot.
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Figure 7.51: Comparison of the transmission coefficient-related term (A) as a function of
sample thickness for the six thicknesses of LexanTM. The predicted A was determined using
the impedance difference between water and LexanTM with the experimentally-determined
velocity and mass density. Bayesian analysis methods were applied to measurements not
corrected for diffraction and to measurements corrected for diffraction. The conventional
results were determined by the zero-frequency intercept of the signal loss versus frequency
curve.
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Figure 7.52 shows the comparison of the three model fits (two conventional and one

Bayesian) to the experimental data that did not correct for diffraction from the 60 mm

LexanTM sample. These results imply that using the conventional parameter results with

the predicted A term generates a model waveform that has more loss than the experimental

signal. The conventional model waveform using the A term determined from the signal

loss versus frequency intercept fit the experimental signal very well, although an A value

greater than one does not make physical sense. It seems that having a A greater than one is

counteracting the loss from β, thus producing a better fit. The model waveform generated

using the Bayesian estimated parameters fit the experimental data very well, even though

all the loss was placed into the β term (since A = 1) and the estimate of β was smaller than

the β determined by conventional analysis methods.

Similar results were observed for the diffraction-corrected measurements on the 60 mm

LexanTM phantom and are displayed in Figure 7.53. In this case, the predicted transmis-

sion coefficient-related term A along with the conventional results for β and c generated a

model waveform that did an even worse job of fitting the experimental data than the not

diffraction-corrected case discussed in the previous paragraph. Similar to the results shown

in Figure 7.52, the Bayesian-generated model fit the experimental waveform the best.
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Figure 7.52: Comparison of model waveforms to the experimental data from the 60 mm
thick LexanTM phantom with no diffraction correction. (a) Model waveform generated using
the propagation model with the values determined by conventional analysis for A, β, and
c. In this panel, A is the predicted value of A = 0.92. (b) Model waveform generated with
the values determined by conventional analysis. In this panel, A is the value determined by
the zero-frequency intercept of the signal loss versus frequency plot. (c) Model waveform
generated using the values of A, β, and c estimated by the Bayesian algorithm.

Figure 7.53: Comparison of model waveforms to the experimental data from the 60 mm
thick LexanTM phantom that was diffraction corrected. (a) Model waveform generated using
the propagation model with the values determined by conventional analysis for A, β, and
c. In this panel, A is the predicted value of A = 0.92. (b) Model waveform generated with
the values determined by conventional analysis. In this panel, A is the value determined by
the zero-frequency intercept of the signal loss versus frequency plot. (c) Model waveform
generated using the values of A, β, and c estimated by the Bayesian algorithm.
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7.9 Effects of receiver location relative to the transmitting transducer

7.9 Effects of receiver location relative to the trans-

mitting transducer

Since the diffraction study discussed in the previous section did not reduce the observed

distance-dependence of the parameters A and β, a more thorough study was carried out

to investigate if the location of the receiving transducer, in relation to the transmitting

transducer, affected the ultrasonic parameters determined by either conventional or Bayesian

analysis. This study used the same pair of transducers and experimental set-up implemented

in the diffraction experiment. Both reference and sample measurements were acquired with

the receiver at specific axial locations. The receiving transducer was moved axially from

+40 mm to -40 mm in 10 mm steps, with 0 mm being the normal separation between the

transmitting and receiving transducer (typically twice the focal length of the transducer).

The 1 MHz transducers used in this study were typically separated by 8 inches (203 mm). The

axial translation of the receiving transducer from -40 mm (closer to transmitting transducer)

to +40 mm (further from transmitting transducer) corresponded to more than 1.5 inches in

either direction from the orignal transducer separation (0 mm). In order to prevent any

backlash effects, the receiving transducer which was attached to a computerized motion

controller was moved beyond the +40 mm location first and then only moved in one direction

during the data collection. The measurements presented in this section were made on a 40

mm thick LexanTM phantom.

The data collected in this study was analyzed two different ways. The data was first

analyzed using the reference and sample data acquired at the same axial location (or same
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distance from transmitting transducer). Comparing reference measurements to sample mea-

surements acquired at the same receiver position is the typical way to collect and analyze

ultrasonic data. This analysis technique should provide insight into if the axial location

of the receiver, in relation to the transmitting transducer, matters. It was already shown

earlier in this chapter that the position of the sample between the transmitting and receiving

transducer does not effect the results.

The second way the data was analyzed was to compare the reference data taken at the

normal transducer separation (∆L = 0 mm) to the sample data acquired when the receiving

transducer was moved to nine axial locations (∆L = -40 mm, -30 mm, -20 mm, -10 mm, 0

mm, +10 mm, +20 mm, +30 mm, +40 mm). This was an expansion of the diffraction study

discussed above. In the diffraction study, the diffraction correction for the 40 mm thick

LexanTM phantom was approximately -19 mm (receiver moved closer to transmitter). In

this study, one of the acquired axial positions was ∆L = -20 mm, which was approximately

the diffraction-corrected distance, in addition to eight other sample receiver locations.

Analysis of reference and sample data from same axial locations

Reference and sample measurements on the 40 mm thick LexanTM sample were acquired

at nine axial locations and were analyzed using both conventional and Bayesian analysis.

Figure 7.54 shows the peak-to-peak amplitudes of the reference and sample signals as a

function of receiver location. Both the reference and sample signals displayed a systematic

(approximately linear) decrease in P-P amplitude as the receiver was moved away from the

transmitting transducer. This systematic dependence was unexpected since the effects of
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Figure 7.54: The peak-to-peak amplitude of the reference (water-path-only) signal and the
sample signal as a function of distance from the transmitting transducer for measurements
made on the 40 mm thick LexanTM phantom. ∆L = 0 mm corresponds to the receiving
transducer located at twice the focal length (8 inches) from the transmitting transducer.
The third panel shows the difference in peak-to-peak voltage of the reference and sample
signals as a function of axial location.

diffraction and phase cancellation both within the field and at the face of the receiving

transducer are not necessarily linear with axial location. The peak-to-peak amplitude of

the reference signal changed more rapidly than the P-P amplitude of the sample signal.

The amplitude of the reference signal decreased by approximately 0.5 mV per millimeter of

axial translation, while the amplitude of the sample signal decreased by only 0.05 mV per

millimeter of axial translation. Although the amplitudes of the reference and sample signals

do suggest that the position of the receiver may matter, these results cannot be used to

infer the effects of receiver position on the attenuation properties, such as β, since amplitude

measurements assume a narrowband signal, not a broadband signal like the one that was

used in this study.

Signal loss measurements were determined by log-spectral subtraction for the nine axial

locations. The predicted insertion (surface) losses were calculated to be approximately 0.68

dB. This was the total loss at both front and back surfaces. Thus, it was expected (by
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Figure 7.55: The predicted and actual zero-frequency intercepts of the signal loss as a func-
tion of the axial location of the receiving transducer. Reference and sample measurements
were analyzed for the same axial location.

theory) that the zero-frequency intercept of the signal loss versus frequency plots should

be approximately 0.68 dB. However, the actual zero-frequency intercepts of the signal loss

curves were all negative values and decreased with increasing transducer separation, as shown

in Figure 7.55. As will be seen later in Figure 7.58, these negative signal loss intercepts

correspond to transmission coefficient-related terms that are greater than one, implying

that energy was gained, not lost at the surfaces. Although this result did not follow the

predictions, it was consistent with the results of the other LexanTM studies in this chapter.

The attenuation coefficient, determined using conventional analysis methods, of the 40

mm LexanTM phantom at the nine axial locations are shown in Figure 7.56. They appeared

to be consistent with each other even though the receiving transducer was moved over a range

of 3 inches. However, when the data was examined on a finer scale, it was discovered that the
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Figure 7.56: Left panel: Attenuation coefficient as a function of frequency for the 40
mm LexanTM phantom for data acquired at 9 axial locations. Right panel: The attenuation
coefficient at 1 MHz as a function of the axial location of the receiving transducer. Reference
and sample measurements were analyzed for the same axial location.

attenuation coefficient at 1 MHz decreased slightly as the receiving transducer was moved

farther away from the transmitting transducer. However, the change in the attenuation

coefficient when moving the receiving transducer from -40 mm to +40 mm was only 0.06

dB/cm. This result was consistent with, but not fully explained by, the decrease of the signal

loss intercept with axial location.

The slopes of the attenuation coefficient (nBUA) as functions of the axial location of

the receiving transducer for the 40 mm LexanTM phantom are shown in Figure 7.57 and

Table 7.17 for both conventional and Bayesian analysis. Consistent with other studies in

this thesis, the β estimated by the Bayesian algorithm was smaller than the β determined

using conventional analysis for all axial locations. The slope of attenuation determined using

conventional methods increased slightly as the receiving transducer was moved farther away

from the transmitting transducer, whereas the nBUA estimated by the Bayesian algorithm

250



7.9 Effects of receiver location relative to the transmitting transducer

Figure 7.57: The slope of the attenuation coefficient (nBUA) determined using conven-
tional and Bayesian analysis methods as a function of the axial location of the receiving
transducer. Reference and sample measurements were analyzed at the same axial location.

decreased with increased transducer separation.

The results for the transmission coefficient-related terms (A) are shown in Figure 7.58 as a

function of the axial location of the receiving transducer. The predicted value was calculated

to be approximately 0.92 and constant over all transducer positions. Similar to the results

in the other LexanTM studies presented in this chapter, the results of the Bayesian algorithm

estimated the A term to be a value of one for all transducer positions except for ∆L = -40

mm. This implied that all the loss was attributed to bulk loss (β) and none attributed to

surface losses. Using the zero-frequency intercept of the signal loss plot to determine the A

term yielded values that were greater than one for all locations and increased with increasing

separation between the transducers.
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Table 7.17: The slopes of the attenuation coefficient (nBUA) for the 40 mm thick LexanTM

phantom for nine axial locations of the receiving transducer determined using conventional
and Bayesian analysis methods. Reference and sample measurements were analyzed at the
same axial location.

Axial location (∆L) Conventional β Bayesian β

(mm) (dB/cm/MHz) (dB/cm/MHz)

-40 mm 4.87 4.77

-30 mm 4.88 4.79

-20 mm 4.88 4.78

-10 mm 4.89 4.78

0 mm 4.89 4.77

+10 mm 4.89 4.76

+20 mm 4.90 4.75

+30 mm 4.91 4.74

+40 mm 4.93 4.74

The results of this study implied that the location of the receiving transducer relative to

the transmitting transducer had small, mostly negligible effects on the ultrasonic parameters

determined using either conventional or Bayesian analysis. It may be possible that the small

effects seen in this study were caused by diffraction, which were not taken into account.

Analysis of reference and sample data from different axial locations

For this study, the sample signals acquired when the receiving transducer was moved to

nine axial locations in the ultrasonic field were compared to the reference signal acquired

at the typical transducer separation (twice the focal length or ∆L = 0 mm). For receiver

position ∆L = 0 mm, the sample and reference signal were analyzed for the same transducer

separation, which is the typical analysis method. For receiver position ∆L = -20 mm, the
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Figure 7.58: The transmission coefficient-related A term determined using conventional
and Bayesian analysis methods as a function of the axial location of the receiving trans-
ducer. The predicted value of A is also displayed. Reference and sample measurements were
analyzed at the same axial location.

sample signal acquired at ∆L = -20 mm was compared to the reference signal at ∆L = 0 mm,

which is the diffraction-corrected analysis for the 40 mm thick LexanTM phantom. It was

hoped that this study would shed light on the diffraction-correction used in Section 7.8 and

perhaps identify a diffraction correction that produced results that agreed with predicted

values.

Figure 7.59 shows the zero-frequency intercept of the signal loss versus frequency plot

as a function of the axial location of the receiving transducer. As before, the predicted

signal loss intercept was calculated to be approximately 0.68 dB and independent of receiver

location. The actual signal loss intercept was dependent significantly on receiver position,

increasing linearly with increasing transducer separation. Based on these results, it appeared
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Figure 7.59: The predicted and actual zero-frequency intercepts of the signal loss as a
function of the axial location of the receiving transducer. Sample measurements at the nine
axial locations of the receiving transducer were compared to the reference measurement at
the typical transducer separation (∆L = 0 mm).

that moving the receiving transducer to ∆L = +30 mm yielded a signal loss intercept that

was close to the predicted value.

The attenuation coefficients for the 40 mm thick LexanTM phantom when sample data

was acquired at nine axial locations is shown in Figure 7.60. All the attenuation coefficients

plotted as a function of frequency appeared to have the same slope but had a vertical offset

from each other. This effect can be seen more clearly in the right panel of Figure 7.60,

which displays the attenuation coefficient at 1 MHz as a function of the axial position of the

receiving transducer. As was expected, the attenuation coefficient at 1 MHz for ∆L = 0 mm

agreed with the non-diffraction-corrected attenuation coefficient presented in Section 7.8,

while the attenuation coefficient at 1 MHz for ∆L = -20 mm agreed with the diffraction-
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Figure 7.60: Left panel: Attenuation coefficient as a function of frequency for the 40 mm
LexanTM phantom for data acquired at 9 axial locations. Right panel: The attenuation
coefficient at 1 MHz as a function of the axial location of the receiving transducer. Sample
measurements at the nine axial locations of the receiving transducer were compared to the
reference measurement at the typical transducer separation (∆L = 0 mm).

corrected attenuation coefficient for the 40 mm thick LexanTM sample. The attenuation

coefficient at 1 MHz consistently increased by approximately 0.1 dB/cm for every 10 mm

the receiving transducer was moved away from the transmitting transducer.

The slopes of the attenuation coefficient (nBUA) as a function of the axial location of

the receiving transducer for the 40 mm LexanTM phantom are shown in Figure 7.61 and

Table 7.18 for both conventional and Bayesian analysis. The slopes of attenuation deter-

mined using conventional methods were consistent with the nBUA values determined in

the previous section with the sample and reference data analyzed at the same axial loca-

tion. This suggested that conventionally-determined β may be relatively less susceptible to

diffraction-related effects even though the attenuation coefficient is influenced. This was in

contrast to the nBUA estimated by the Bayesian algorithm which increased linearly from

4.34 dB/cm/MHz to 4.77 dB/cm/MHz when the receiving transducer was moved from ∆L
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7.9 Effects of receiver location relative to the transmitting transducer

Figure 7.61: The slope of the attenuation coefficient (nBUA) determined using conven-
tional and Bayesian analysis methods as a function of the axial location of the receiving
transducer. Sample measurements at the nine axial locations of the receiving transducer
were compared to the reference measurement at the typical transducer separation (∆L = 0
mm).

= -40 mm to ∆L = 0 mm, and then remained at a relatively constant value for all other

axial locations.

An opposite trend was observed for the Bayesian-estimated A term shown in Figure 7.62

as a function of axial location of the receiving transducer. For axial locations ∆L = -40

mm through ∆L = 0 mm, the Bayesian algorithm estimated the value of A to be equal

to one, and for axial locations greater than ∆L = 0 mm, the estimated A term decreased

linearly. The transmission coefficient-related term determined using the signal loss intercept

decreased linearly across all axial locations. The values of A determined by the Bayesian

algorithm and the signal loss intercept agreed with those found in Section 7.8 for the 40 mm
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Table 7.18: The slopes of the attenuation coefficient (nBUA) for the 40 mm thick LexanTM

phantom for nine axial locations of the receiving transducer determined using conventional
and Bayesian analysis methods. Sample measurements at the nine axial locations of the
receiving transducer were compared to the reference measurement at the typical transducer
separation (∆L = 0 mm).

Axial location (∆L) Conventional β Bayesian β

(mm) (dB/cm/MHz) (dB/cm/MHz)

-40 mm 4.89 4.34

-30 mm 4.89 4.44

-20 mm 4.89 4.56

-10 mm 4.89 4.67

0 mm 4.89 4.77

+10 mm 4.89 4.79

+20 mm 4.90 4.80

+30 mm 4.91 4.80

+40 mm 4.92 4.81

thick LexanTM sample. Based on these results, it appeared that the A term determined by

both the Bayesian algorithm and the signal loss intercept agreed the best with the predicted

value for ∆L = +30 mm, and agreed quite poorly for ∆L = -20 mm, which was the value

predicted by the diffraction correction in Equation 7.15.

7.10 Discussion

The sample-thickness dependence of the ultrasonic parameters observed in studies pre-

sented in this thesis on both equine cancellous bone, which permits two longitudinal wave

modes, and on LexanTM phantoms, which permits only one longitudinal wave mode, is per-

plexing and still currently unexplained. This unexpected phenomenon is not limited to our
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7.10 Discussion

Figure 7.62: The transmission coefficient-related term A determined using conventional
and Bayesian analysis methods as a function of the axial location of the receiving transducer.
The predicted values ofA are also displayed. Sample measurements at the nine axial locations
of the receiving transducer were compared to the reference measurement at the typical
transducer separation (∆L = 0 mm).

data and the Bayesian technique. Keith Wear, a former post doc in the Laboratory for

Ultrasonics and current researcher at the FDA, recently reported similar sample thickness

dependences with data acquired from bovine cancellous bone and analyzed with a modified

least-squares Prony’s method, which decomposes the received signal into its fast and slow

wave components in a fashion that is analogous to that of the Bayesian method (Wear et al.,

2014).

The variation with sample thickness may be the result of several different effects working

in combination, thus making it difficult to determine the exact causes. One potential series

of experiments that may provide additional insights into the observed sample-thickness de-

pendence would be to remeasure the samples studied in this chapter using a two-dimensional
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7.11 Summary and conclusions

array of point-like receivers (hydrophones). The data collected could then be processed us-

ing phase-insensitive analysis methods to determine if phase cancellation at the face of the

phase sensitive receiving transducer is contributing to the sample-thickness effects seen in

this thesis. Such a data set would permit the use of well-known focusing techniques (in-

cluding simple time-of-flight focusing and correlation focusing) that might yield additional

insights.

7.11 Summary and conclusions

A series of systematic studies were performed on LexanTM phantoms to explore the possi-

ble explanations for the sample-thickness dependence of the ultrasonic parameters observed

in the measurements of equine bone presented in the previous chapter.

Initial measurements were acquired on three LexanTM phantoms with approximate thick-

nesses of 10, 20, and 40 mm. These data were used to perform consistency checks of the

Bayesian algorithm and the propagation model, and to investigate the influence of noise lev-

els. The frequency-independent loss term A in the propagation model used in the Bayesian

model was explicitly defined in terms of the amplitude transmission coefficients along with

inclusion of the explicit complex acoustic impedances that account for loss. However, this

change to the propagation model did not produce any significant changes in the Bayesian

estimate of A or any of the other parameters. Another study determined that nonlinear

propagation effects were not present in these experiments.

Measurements were also carried out on a systematically shortened LexanTM phantom
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7.11 Summary and conclusions

with dimensions similar to those of the equine specimen. The results of Bayesian and con-

ventional analysis on this data set were consistent with those results from the initial LexanTM

measurements. The phase velocity results estimated by the Bayesian algorithm were in excel-

lent agreement with the phase velocities determined by conventional analysis. Additionally,

neither analysis method produced phase velocities that were sample-thickness dependent.

However, the Bayesian-estimated nBUA was consistently smaller than the conventionally-

determined nBUA and also displayed a modest, systematic dependence with sample thick-

ness. A similar trend was seen for the transmission coefficient-related A term. While the

predicted A term was independent of sample thickness, the Bayesian-estimated A increased

systematically with thickness and was always larger than the predicted value. However, the

conventionally-determined A, found by the zero-frequency intercept of the signal loss, had

even larger values which for larger sample thickness even surpassed the value of one. Band-

pass Butterworth filters were applied to this data set to limit the range of frequency present

in the signals used as input into the Bayesian algorithm to those frequencies used in con-

ventional analysis. The application of frequency filters produced a slight, but insignificant

reduction in the sample thickness dependence of the Bayesian-estimated nBUA and A term.

The location of the sample between the transmitting and receiving transducers was de-

termined to have no effect. The effects of the position of the receiving transducer, relative

to the transmitting transducer, was also studied. Analysis of the reference and sample

measurements acquired at the same axial location yielded nBUA and A values that were

modestly dependent on the axial location of the receiving transducer. This implies that

the receiver location may cause an effect (presumably due to alterations in the ultrasonic
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field as it propagates) but the magnitude of that effect may be negligible depending on the

lossiness of the sample being studied. The effects of diffraction were also described and

studied using six thicknesses of LexanTM, ranging from approximately 10 mm up to 60 mm.

The predicted diffraction correction did not reduce the sample-thickness dependence and

actually increased the dependence observed in the Bayesian-estimated nBUA and A term.

There was no change observed in the nBUA determined by conventional methods for the

diffraction-corrected data.

Additional studies were carried out to vary systematically the surface losses. The was

done to further explore the issue of surface losses versus volume (that is, bulk) losses. The

results found for nBUA were consistent with those results from the other LexanTM studies.

While the nBUA determined using conventional analysis was approximately constant with

sample thickness, the Bayesian-estimated nBUA decreased systematically with increasing

sample thickness. This trend was observed for each number of surfaces. A more complicated

dependence with sample thickness and number of surfaces was observed for the Bayesian-

estimated A term.

In all of the studies carried out in this chapter, the model waveform generated using

the parameters estimated by the Bayesian algorithm fit the experimental sample waveform

better than the waveform generated using the parameters determined by either conventional

analysis or predictions.

The studies and results presented in this chapter provide insight into the potential con-

tributors of the observed sample thickness dependence. Although none of the studied tests

corrected this unexpected behavior, some of the possible causes were eliminated.
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Chapter 8

Summary and concluding remarks

This dissertation detailed simulated and experimental studies that investigated the physics

underlying the interaction between cancellous bone and ultrasound. A central theme was

the comparison between the results determined by conventional analysis methods and the re-

sults estimated by a Bayesian probability theory analysis method. An additional, unexpected

need emerged to investigate the sample-thickness dependence of the ultrasonic parameters

obtained by either method of analysis.

Chapter 2 provided background information related to bone physiology, as well as the use

of quantitative ultrasound to diagnose and monitor osteoporosis. The potential presence of

two longitudinal wave modes (fast and slow waves) propagating in bone was also discussed

along with the complications that may arise from overlapping waves.

Chapter 3 described the methods of analysis that were used in later chapters of this

thesis. An overview of how ultrasonic parameters of interest are determined by conventional

analysis methods were presented. A brief introduction to Bayesian probability theory was

given along with an explanation of how Bayesian methods in conjunction with a two-mode
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wave propagation model can be used to provide estimates of the ultrasonic parameters for

fast and slow waves.

Studies carried out on human calcaneal bone specimens were the focus of Chapter 4.

Conventional and Bayesian analysis methods were applied to data acquired on eight hu-

man heel bone samples with insonification in the medial-lateral (perpendicular) direction.

Although the received sample signals all appeared to be comprised of a single wave mode,

the Bayesian algorithm was able to successfully separate the received trace into its fast and

slow wave components. The results showed that the phase velocity for the single (unsep-

arated) wave mode lay between the fast and slow wave velocities, and that the nBUA for

the single mode was much greater than the nBUA associated with either the fast or slow

waves. This implied that performing conventional analysis on a wave that is comprised of

two overlapping waves modes may overestimate the true signal loss. Results also showed

that the Bayesian-estimated parameters for the fast and slow waves correlated moderately

well with microstructural parameters determined by microCT measurements.

Chapter 5 investigated the effects of overlapping fast and slow waves on measurements

of the attenuation as a function of sample thickness along with the method of analysis em-

ployed in determining the attenuation properties. Two methods of analysis were applied to

simulated data for a range of sample thicknesses. Applying time-domain analysis to broad-

band data yielded apparent attenuations that were sample length dependent. In contrast,

performing frequency-domain analysis on separated (by the Bayesian algorithm) fast and

slow waves resulted in attenuation coefficients that were independent of sample length.

In Chapter 6, conventional analysis and Bayesian parameter estimation were applied to
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ultrasonic data acquired on a cancellous bone specimen extracted from an equine radius. The

sample was systematically shortened in 0.5 mm increments from approximately 12 mm down

to 0.5 mm, with measurements taken at each sample length. Conventional analysis methods

were performed on the sample lengths that were sufficiently long as to permit separation of

the fast and slow waves in the time-domain. Bayesian analysis was performed on data from

all sample lengths. Over the same sample lengths, the average Bayesian and conventional

results for phase velocity and nBUA agreed quite well. However, it was found (unexpectedly)

that the parameters obtained by both conventional and Bayesian analysis displayed small,

systematic variations with sample length.

The unexpected sample thickness dependence of the ultrasonic parameters observed in

Chapter 6 was investigated more thoroughly using one-mode Lexan phantoms in Chapter 7.

A series of systematic studies were performed to eliminate or confirm the cause or causes of

the observed sample thickness dependence. Although no clear cause was found, the results

among the various studies performed on Lexan were very consistent and provided some

insights into the potential contributors of the observed sample thickness dependence. In

spite of these unexplained observations, the studies in this thesis represent a potentially

useful advance in the understanding of the physics of the interaction between cancellous

bone tissue and ultrasound.
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