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ABSTRACT OF THE DISSERTATION 

 PROTEOMICS ASSISTED DISCOVERY OF NOVEL PROTEINS IN ASSEMBLY AND 

REGULATION OF PHOTOSYSTEM II 

by 

Kimberly M. Wegener 

Doctor of Philosophy in Biology and Biomedical Sciences 

(Plant Biology) 

Washington University in St. Louis, 2010 

Professor Himadri B. Pakrasi, Chairperson 

 

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse 

ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in 

nature, cyanobacteria utilize a host of stress responses to maintain photosynthesis under periodic 

changes in environmental conditions. Recent advances in proteomic study have enabled a 

systems-level analysis of cellular functions in many systems. Because proteins are directly 

responsible for cellular functions, measurements of protein abundances provide significant clues 

to the modulation of cellular functions during different environmental perturbations. A detailed 

knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary 

to gain fundamental insights into such stress responses. Toward this goal, we have performed a 

large-scale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. 

PCC 6803 under 33 different environmental conditions. Photosystem II (PSII) is a large 

membrane protein complex that performs the water oxidation reactions of the photosynthetic 

electron transport chain in cyanobacteria, algae, and plants. Subsequently, we also performed an 
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accurate mass tag (AMT) high-sensitivity proteomic analysis of PSII complexes purified from the 

cyanobacterium Synechocystis sp. PCC 6803. 

 Taken together, these proteomics studies revealed novel information into the function and 

assembly of Photosystem II. We identified six PSII associated proteins that are encoded by a 

single operon containing nine genes, slr0144 to slr0152. This operon encodes proteins that are 

not essential components of the PSII holocomplex but accumulate to high levels in precomplexes 

lacking any of the lumenal proteins PsbP, PsbQ, or PsbV. Genetic deletion of this operon shows 

that removal of these protein products does not alter photoautotrophic growth or PSII 

fluorescence properties. Nonetheless these proteins confer fitness under competition in high light 

intensities. However, the deletion mutation does result in decreased PSII-mediated oxygen 

evolution and an altered distribution of the S states of the catalytic Mn cluster.  PSII complexes 

isolated from Δslr0144 – slr0152 also show decreased photosynthetic capacity and altered 

polypeptide composition. These data demonstrate that the proteins encoded by the genes in this 

operon are necessary for optimal function of PSII and function as accessory proteins during 

assembly of the PSII complex.  Based on these results, we have named the products of the 

slr0144 – slr0152 operon Pap (photosystem II assembly proteins). Additionally, through this 

proteomics study, we identified the protein sll1390, which we have named Psb32. To investigate 

its function, we analyzed subcellular localization of Psb32 and the impact of genetic deletion of 

the psb32 gene on PSII. Psb32 is an integral membrane protein, primarily located in the thylakoid 

membranes. Although not required for cell viability, Psb32 protects cells from oxidative stress and 

additionally confers a selective fitness advantage in mixed culture experiments. Specifically, 

Psb32 protects PSII from photodamage and accelerates its repair. Thus, we propose that Psb32 

plays an important role in minimizing the effect of photoinhibition on PSII. Together, the proteins 

of the pap operon and Psb32 represent new components in PSII assembly and function. 
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Oxygenic Photosynthesis 

Oxygenic photosynthesis is a series of enzymatic reactions in which photons are 

converted to chemical energy in the thylakoid membranes of cyanobacteria and chloroplasts. This 

crucial series of reactions is catalyzed by four large enzyme complexes, utilizing photons to 

oxidize water into molecular oxygen, generating protons that are used for ATP generation, and 

electrons that move down the electron transport chain to ultimately reduce NADP (Fig. 1). 

Photosystem II (PSII) is the first enzyme complex of the pathway and with the excitation of light 

can transfer electrons to plastoquinone (PQ), concomittaly producing molecular oxygen and 

releasing protons into the lumenal space. The mobile carrier PQ then transfers the electrons to 

cytochrome b6f (cyt b6f), releasing additional protons into the lumen. From there the electrons 

move to the soluble copper protein plastocyanin (PC). PSI utilized light energy to transfer the 

electrons from PC to ferredoxin (Frd) to reduce NADP. The proton gradient in the internal lumenal 

space then produces ATP via ATP synthase. 

 

Structure and Function of Photosystem II 

PSII is a multi-subunit membrane protein complex containing 20 protein subunits and 56 

cofactors (Fig. 2A). Light energy is captured by chlorophylls and initiates electron transfer from 

water through a series of redox active cofactors to plastoquinones in the membrane. The catalytic 

center of the oxygen evolving machinery is an inorganic Mn4-Ca1-Clx cluster coordinated by 

several ligands of the core integral membrane proteins of PSII and protected by the extrinsic 

proteins associated with the lumenal side of the complex. Recent crystal structures of 

cyanobacterial PSII complexes have increased our understanding of the structure and 

mechanism of this enzyme (Zouni et al., 2001; Kamiya and Shen, 2003; Ferreira et al., 2004; Loll 

et al., 2005), but this static picture is incomplete. PSII is a dynamic enzyme with a complex 
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biogenesis pathway and an intricate cycle of damage and repair under physiological conditions 

(Baena-Gonzalez and Aro, 2002). 

 Despite the large number of components, PSII can be divided into two functional domains 

(1) the electron transfer domain, comprised of the integral membrane helices and cofactors and 

(2) the oxygen evolving complex (OEC), located on the lumenal face of the complex including the 

loop regions of several membrane proteins and the extrinsic proteins. The catalytic center of the 

OEC is a tetranuclear manganese cluster that together with calcium and chloride ions 

sequentially removes four electrons from two water molecules to form molecular oxygen. All of 

the crystal structures of cyanobacterial PSII show that the ligands to this catalytic center are 

provided by the intrinsic protein components (Kamiya and Shen, 2003; Ferreira et al., 2004; Loll 

et al., 2005). This is in agreement with previous biochemical and genetic studies in a number of 

different organisms that have shown the extrinsic proteins are not necessary for oxygen evolution 

activity. However, the extrinsic proteins are required to enhance oxygen evolution activity and 

serve important roles in vivo including forming a protective barrier around the manganese cluster 

and concentrating the essential Ca2+ and Cl- ions within the OEC (Seidler, 1996). 

While the core membrane protein components of PSII are generally conserved in 

sequence and spatial arrangement among different organisms, there is considerable 

heterogeneity regarding the extrinsic proteins of the OEC. In most organisms, three to four 

extrinsic proteins are associated with the lumenal side of PSII, but only one protein, PsbO, is 

present in all oxygenic photosynthetic organisms. The other extrinsic proteins are PsbP, PsbQ, 

PsbR, PsbU, PsbV, and Psb27, which associate with PSII in various combinations depending on 

the organism. 
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PSII Biogenesis and Repair Cycle 

 The PSII biogenesis pathway involves an ordered accumulation of PSII subunits and 

integration of cofactors (Fig. 3). Based on labeling studies in higher plants and studies of 

complexes in cyanobacteria, the following order of assembly has been proposed for PSII (Aro et 

al., 2005; Rokka et al., 2005; Keren et al., 2005). At the periplasmic membrane, the D2 and 

cytochrome b559 subunits associate to form a pre-complex into which the precursor form of the D1 

protein (pD1) is inserted. The pD1 protein contains a C-terminal extension, which is processed by 

the CtpA protease to yield the mature form of the D1 protein. The CP47 protein associates with 

the D1-D2-b559 subcomplex, followed by the CP43 protein. This precomplex is then translocated 

to the thylakoid membrane. A number of other low molecular weight membrane proteins are also 

integrated into the complex. Next, the Mn cluster and extrinsic proteins bind to the lumenal side of 

the complex.  Finally, these PSII monomers associate to form dimers (>700 kDa) (Kern et al., 

2005). In addition to the protein subunits visualized in the structural models of PSII, we have 

shown that a number of other proteins associate with cyanobacterial PSII complexes purified 

using a histidine-tagged version of the membrane protein CP47 (Kashino et al., 2002). While 

some of these novel PSII-associated proteins are stoichiometric components of the fully 

assembled PSII complex such as PsbQ (Thornton et al., 2004; Roose et al., 2007), others, such 

as the Psb27 protein, are predicted to transiently associate with PSII complexes during 

biogenesis or repair (Roose and Pakrasi, 2004; Nowaczyk et al., 2006; Mamedov et al., 2007).  

The association of cofactors with the functional complex is less defined. The mechanism 

of integration for some of these cofactors has been well documented, as is the case for the Mn4-

Ca1-Clx cluster. It is known that after the incorporation of the CP43 protein, all of the ligands for 

the Mn4Ca1Clx cluster are present within the complex and presumably integration of this catalytic 

center occurs. However, the integration of other cofactors, including the insertion of chlorophyll 

into the chlorophyll containing proteins D1, D2, CP47, and CP43, remains a mystery. However, 

because free chlorophyll is highly damaging in the presence of light, it has been theorized that 
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there must be chlorophyll chaperone proteins that safely sequester chlorophyll until it is inserted 

into the chlorophyll containing proteins D1, D2, cytb559, CP43, and CP47. These chlorophyll 

chaperones must be present in both the plasma membrane and thylakoid membrane systems, as 

some of the chlorophyll containing proteins of PSII are translated and inserted at each cellular 

location (Keren et al., 2005). 

  

Photodamage and Damage by Reactive Oxygen Species to PSII 

Although light is required for photosynthetic reactions, it is also damaging to the 

photosynthetic reaction centers. In particular PSII is highly susceptible to light damage, termed 

photodamage (Powles, 1984; Prásil et al., 1992; Aro et al., 1993; Andersson and Aro, 2001). 

Photodamage is repaired by de novo protein synthesis, allowing PSII function to return to normal 

(Prásil et al., 1992; Aro et al., 1993; Andersson and Aro, 2001). This damage and repair cycle 

allows photosynthesis to function at certain light intensities. While photodamage occurs 

constantly, it increases proportionally with light intensity (Park et al., 1995; Tyystjärvi and Aro, 

1996; Anderson and Chow, 2002; Nishiyama et al., 2004). When the rates of damage exceed the 

rates of repair, PSII is no longer functional, a process termed photoinhibition. 

In addition to light, reactive oxygen species (ROS) can also cause damage to PSII. ROS 

can be produced as a byproduct of the light reactions of photosynthesis. Reduction of oxygen by 

photosystem I, the acceptor side of photosynthesis, can lead to the generation of superoxide 

radicals (O2
-), which can convert to hydrogen peroxide (H2O2) and hydroxyl radicals (.OH) (Asada, 

2003). On the donor side, transfer of excitation energy from chlorophyll to oxygen can result in 

the production of singlet oxygen (1O2) (Knox and Dodge, 1985; Asada, 2003). Cells have many 

strategies for dealing with ROS, including antioxidants, like α-tocopherol and β-carotene, and 

ROS scavenging enzymes, such as superoxide dismutase (Asada, 2003; Havaux et al., 2005). 
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However, like photodamage and repair, this cycle of ROS damage and repair can also be 

stressed by increased light intensity so that damage accumulates (Asada, 2003). 

 

Photosystem II Turnover 

As a result of its normal function, the PSII enzyme undergoes frequent turnover, due 

mainly to irreversible damage to the D1 protein (Andersson and Aro, 2001; Aro et al., 2005). The 

damaged D1 protein must be detected, proteolytically removed and replaced with a newly 

synthesized copy, a process that requires at least partial disassembly of the complex (Fig. 3). The 

removal of the D1 protein is suspected to require partial disassembly of the complex by requiring 

the dissociation of the lumenal proteins and the catalytic Mn cluster. Specifically, the Mn atoms of 

the oxygen evolving center and the extrinsic proteins must be released from the damaged 

complex, and then re-bound to newly assembled PSII centers to restore oxygen evolving activity. 

Because many of these cofactors would be toxic in large quantities if left free in the cell, it is likely 

there are chaperone proteins to sequester these cofactors before complex assembly and during 

complex repair and degradation. Such a group of proteins, SCPs (Small CAB-like Proteins) have 

recently been reported as a mechanism to sequester chlorophylls from damaged PSII complexes 

until they are recycled into new complexes (Vavilin and Vermaas, 2007). Because the half life of 

chlorophyll is much greater than that of the proteins into which it is inserted, the chlorophyll is 

then recycled into new proteins (Vavilin and Vermaas, 2007). Thus in addition to the major 

components, many proteins associate with PSII throughout its lifecycle.  

Study of partially assembled complexes has revealed that PSII biogenesis and repair 

requires a host of accessory proteins. One well studied example of these assembly proteins 

include CtpA, a protease which must process the D1 protein before PSII can be assembled 

(Roose and Pakrasi, 2004). Another accessory protein, PratA, has recently been identified as 

required for preD1 processing, at the plasma membrane (Klinkert et al., 2004). Other accessory 
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proteins identified through proteomic study of PSII (Kashino et al., 2002; Wegener et al., 2008) 

include Psb27, which was subsequently shown to aid in assembly of the catalytic manganese 

cluster (Nowaczyk et al., 2006; Roose and Pakrasi, 2008) and Psb29, which provides PSII 

tolerance to high light intensities (Wang, 2004; Keren et al., 2005).  

PSII complexes are in a constant state of flux within the cell. While cells maintain a large 

pool of fully assembled and functional PSII complexes via an efficient repair mechanism, sub-

populations of partially assembled PSII complexes also exist. Thus at any one time, 

photosynthetic organisms contain a mixed population of PSII complexes, including: 

subassembled complexes, missing stoichiometric protein components and containing extraneous 

assembly proteins; fully assembled, functioning complexes; and damaged complexes, missing 

stoichiometric protein components and containing extraneous repair proteins. These categories of 

complexes have different levels of activity and thus the activity of an organism's at any given time 

is an average of all PSII complexes present. Thus complexes isolated using histidine tagging on 

CP47, which is inserted into PSII precomplexes early in assembly, represent an average of all the 

populations of PSII in vivo. Reciprocal purifications utilizing histidine tags on other PSII proteins 

can be used to isolated specific populations of PSII complexes. For instance, complexes isolated 

utilizing a histidine tag on PsbQ identified a subpopulation of PSII that is more highly active and 

contains more of the stoichiometric proteins and cofactors that complexes isolated utilizing 

histidine tag on CP47, indicating that complexes containing PsbQ are the final form of assembled 

functional PSII (Roose et al., 2007). In contrast, complexes isolated utilizing a histidine tag on 

Psb27 contain a fully assembled core but are lacking the manganese cluster and the lumenal 

proteins and have no PSII mediated oxygen evolution activity, suggesting that these complexes 

are an assembly intermediate (Roose 2008). Complexes isolated utilizing a histidine tag on PsbP 

contain the D2, CP47, and PsbO proteins, representing another assembly intermediate (Roose, 

Wegener, and Pakrasi, unpublished data). These diverse PSII complexes are diagrammed in 

Figure 4.  

 

7



Advances in Proteomics 

While transcriptomics has traditionally been used to capture a static picture of a system’s 

state as a whole, recent advances in proteomics have allowed researchers a second mode to 

assay organisms at the global levels. Recent advances in high throughput proteomic technology 

and informatics tools have allowed high-confidence quantitative and qualitative proteome 

determination of several model organisms such as E. coli, Saccharomyces cerevisiae, Drosophila 

melanogaster, and Caenorhabditis elegans (Tonella et al., 2001; Mawuenyega et al., 2002; 

Brunner et al., 2007; Schmidt et al., 2007). These results have enabled a systems-level analysis 

of cellular functions, which can then be analyzed by traditional genetic and biochemical 

methodology. Like all techniques, though proteomics does have inherent biases (particularly due 

to the abundance and sequence properties of individual proteins), it allows for a discovery-based 

approach revealing broad protein abundance observations for any organism with a sequenced 

genome. 

 

This Work 

 While the stoichiometric components of PSII have been well characterized, much about 

the assembly and repair cycles remain unknown. Without precise and controlled assembly and 

repair, damaged complexes would accumulate in photosynthetic organisms, preventing 

photosynthesis. The goal of this work was to discover novel PSII proteins and elucidate their roles 

on cellular physiology and photosynthesis. Taking advantage of modern proteomics technology, 

this work focuses on 1) global proteomic changes under sub-optimal photosynthetic conditions, 2) 

the polypeptide composition of functional and subassembled PSII complexes, and 3) the role of 

several PSII assembly/repair proteins on cellular physiology and photosynthesis.  

Cyanobacteria are considered to be the progenitor of the modern chloroplast and indeed 

PSII is remarkably conserved throughout photosynthetic organisms. The unicellular 
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cyanobacteria Synechocystis sp. PCC 6803 (hereafter Synechocystis) has long been a model 

organism for photosynthetic research. It’s fully sequenced genome (Kaneko et al., 1996), small 

gene families, natural DNA competence, and efficient double homologous recombination make it 

an attractive genetic system. Additionally, Synechocystis can be grown photoheterotrophically 

with glucose, allowing for study of otherwise lethal photosynthetic mutations (Pakrasi, 1995). 

Highly active PSII complexes can be easily isolated utilizing a histidine tag on the large integral 

membrane protein CP47 (Kashino et al., 2002). Lastly, biochemical assays to probe PSII activity 

and assembly have been previously established. Taken together, the combination of genetic and 

biochemical tools for Synechocystis make it an ideal system for this study. 

Chapter 2 describes experiments designed to better understand the protein composition 

of Synechocystis as a whole under conditions that are not optimal for photosynthesis. High 

throughput analysis of total cellular extracts allowed us to make qualitative determinations of 

protein expression from 33 environmental conditions and quantitative determinations of protein 

levels from 12 of those conditions. Notably, our analysis revealed that a common stress response 

under various environmental perturbations, irrespective of amplitude and duration, is the 

activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. 

In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources 

of carbon and nitrogen, respectively. This study provides the most comprehensive functional and 

quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress 

response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen. 

 The protein library established by the experiments detailed in Chapter 2 allowed for an in 

depth analysis of the protein components of isolated PSII. In Chapter 3, we again utilized high 

throughput proteomics to analyze and quantify protein levels in highly active, fully assembled 

complexes to those missing the lumenal PSII proteins psbV, psbP, or ΔpsbQ. We identified over 

200 proteins associated with isolated PSII complexes, a substantial number more than the 

highest previous determination of 32 (Kashino et al., 2002). This analysis identified six PSII 
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associated proteins that increased in abundance in the mutant complexes and that are encoded 

by a single operon containing nine genes, slr0144 to slr0152. This operon encodes proteins that 

are not essential components of the PSII holocomplex but accumulate to high levels in 

precomplexes lacking any of the lumenal proteins PsbP, PsbQ, or PsbV. Genetic deletion of this 

operon shows that removal of these protein products does not alter photoautotrophic growth or 

PSII fluorescence properties. However, the deletion mutation does result in decreased PSII-

mediated oxygen evolution and an altered distribution of the S states of the catalytic Mn cluster.  

PSII complexes isolated from Δsllr0144 – slr0152 also show decreased photosynthetic capacity 

and altered polypeptide composition. These data demonstrate that the proteins encoded by the 

genes in this operon are necessary for optimal function of PSII and function as accessory 

proteins during assembly of the PSII complex.  Based on these results, we have named the 

products of the slr0144 – slr0152 operon  

Pap (photosystem II assembly proteins).  

Also identified in the isolated PSII complexes, as well as found in a previous proteomic 

study of PSII (Kashino et al., 2002), was Sll1390 (hereafter referred to as Psb32). To date, only 

one homolog of Psb32, TLP18.3 (At1g54780) in Arabidopsis thaliana has been investigated 

(Sirpio et al., 2007). While plants lacking TLP18.3 showed no significant phenotypes under 

normal growth conditions, these mutants did display increased susceptibility to photoinhibition 

and altered growth under fluctuating light. The authors found that this was due to decreased 

efficiency of repair of PSII due to decreased D1 turnover and decreased complex dimerization 

(Sirpio et al., 2007). In Chapter 4, we analyzed subcellular localization of Psb32 and the impact of 

genetic deletion of the psb32 gene on PSII. Here we show that Psb32 is an integral membrane 

protein, primarily located in the thylakoid membranes. Although not required for cell viability, 

Psb32 protects cells from oxidative stress and additionally confers a selective fitness advantage 

in mixed culture experiments. Specifically, Psb32 protects PSII from photodamage and 
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accelerates its repair. Thus, we propose that Psb32 plays an important role in minimizing the 

effect of photoinhibition on PSII. 

Psb32 function is further analyzed in Chapter 5, utilizing strains that contain a histidine-

tagged version of the Psb32 protein (HisPsb32) or Psb32 overexpressed to high levels. We found 

that both these strains behave physiologically like WT. However, isolation of chlorophyll 

containing complexes from HisPsb32 revealed that these complexes have remarkably reduced 

levels of oxygen evolution activity and manganese. Conversely, the overexpression of Psb32 also 

results in decreased oxygen evolution in PSII parameters of complexes isolated using a histidine 

tag on CP47. 

 Chapter 6 summarizes the key findings of this research and the latest model of PSII 

assembly and repair in cyanobacteria. The implications of my findings with respect to our current 

view of the structure of PSII and the functions of other potential PSII assembly factors are 

discussed. Additionally, the effect of environmental stress on PSII structure and function will be 

discussed. 
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Figure 1. The Reactions of Oxygenic Photosynthesis. The
membrane protein complexes and associated enzymes of the
electron transfer chain; Photosystem II (PSII), Cytochrome b6f
complex (Cyt b6f), Photosystem I (PSI), ATP synthase, plastocyanin
(PC), and ferredoxin (Fd). Details of the electron transfer reaction is
described in the text.
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Figure 2. PSII Structure. Current structural model of cyanobacterial
PSII at 3.0Å-resolution showing a dimer viewed along the membrane
plane with one monomer displaying the protein subunits in ribbon form
and the other monomer displaying the associated cofactors (PDB ID
2AXT)
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Figure 3. Schematic model of PSII biogenesis and repair in 
cyanobacteria. The top half of the cycle represents steps in the 
synthesis half of the pathway resulting in fully assembled complexes on 
the far left, and the bottom half of the cycle shows the disassembly of 
the complex and removal of the damaged D1 protein.
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GLOBAL PROTEOMICS REVEAL AN ATYPICAL STRATEGY FOR CARBON/NITROGEN 

ASSIMILATION BY A CYANOBACTERIUM UNDER DIVERSE ENVIRONMENTAL 

PERTURBATIONS 

 

 

This chapter was adapted from: 

 

Wegener KM*, Singh AK*, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, 

Camp II DG, Smith RD, and Pakrasi HB Global proteomics reveal an atypical strategy for 

carbon/nitrogen assimilation by a cyanobacterium under diverse perturbations. Mol Cell Proteom. 

Under Review 

*- Equal Contribution 

 

© the American Society for Biochemistry and Molecular Biology. 

21



SUMMARY 

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse 

ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in 

nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in 

environmental conditions. A detailed knowledge of the composition of, as well as the dynamic 

changes in, the proteome is necessary to gain fundamental insights into such stress responses. 

Toward this goal, we have performed a large-scale proteomic analysis of the widely studied 

model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. 

The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 2,369 

proteins, a coverage of 65% of the predicted proteome. Quantitative determination of protein 

abundances has led to the identification of 1,221 differentially regulated proteins. Notably, our 

analysis revealed that a common stress response under various environmental perturbations, 

irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of 

carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to 

produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study 

provides the most comprehensive functional and quantitative analysis of the Synechocystis 

proteome to date, and shows that a significant stress response of cyanobacteria involves an 

uncommon mode of acquisition of carbon and nitrogen. 
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INTRODUCTION 

Most organisms experience daily changes in environmental conditions in their natural habitats. 

Typically, they tightly coordinate growth with cellular energy levels to survive unfavorable 

conditions. Photosynthetic organisms, whose energy requirements for cellular metabolism are 

derived from sunlight, offer attractive model systems to understand the impact of environmental 

perturbations on organismal physiology. This is particularly true for cyanobacteria, oxygenic 

photosynthetic prokaryotes of ancient lineage. During their evolution, cyanobacteria have 

survived large changes in environmental conditions (Kasting, 2004). Additionally, they can readily 

adapt their cellular metabolism to daily changes in light quality and quantity. Integration of nutrient 

specific pathways with photosynthetic processes is a key survival mechanism employed by 

cyanobacteria under changing environmental conditions (Tsinoremas et al., 1991; Lindahl and 

Florencio, 2003; Singh et al., 2008). Such adaptation strategies allow cyanobacteria to balance 

the supply of electrons from photosynthetic processes with the demands of cellular metabolism, 

and prevent the generation of damaging reactive oxygen species by excess reducing power. 

Assimilation of carbon and nitrogen in photosynthetic organisms is one of the main sinks 

for the reducing power produced by the light reactions of photosynthesis. Accordingly, 

cyanobacteria have developed intricate mechanisms to control and coordinate several pathways 

involved in the acquisition of carbon and nitrogen. For example, PII, a regulatory protein, has 

been suggested to balance the acquisition of the two nutrients by sensing the carbon/nitrogen 

ratio (Forchhammer, 2004). Thioredoxins have also been shown to link the activity of the 

photosynthetic electron transport chain with carbon and nitrogen assimilation (Lindahl and 

Florencio, 2003). Despite the active participation of these proteins, cyanobacteria can assimilate 

carbon and nitrogen at disparate levels exceeding cellular demands. Excess carbon and nitrogen 

are stored in the forms of glycogen and cyanophycin granules, respectively, and are 

subsequently utilized under limiting conditions. Synechocystis sp. PCC 6803 (hereafter 
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Synechocystis), a model cyanobacterium, utilizes the oxidative pentose phosphate and glycolytic 

pathways to obtain carbon from glycogen granules (Yang et al., 2002). However, the pathway for 

utilization of cyanophycin is not well understood. Cyanophycin is a polymer of aspartic acid and 

arginine, which must be further catabolized to meet the nitrogen requirement for cellular 

metabolism. There are at least five known pathways for the catabolism of arginine in prokaryotes. 

Among them, a pathway utilizing arginase and the urea cycle has been shown to be active in 

Synechocystis (Quintero et al., 2000).  

Our understanding of gene regulation linked to the assimilation of carbon and nitrogen, 

as well as broader cellular adaptation mechanisms under different environmental conditions, have 

significantly benefited from global transcriptional analysis of Synechocystis (Singh et al., 2010). 

Generally, it has been observed that such perturbations lead to downregulation of genes involved 

in light absorption and photosystems, as well as in carbon fixation and nitrogen assimilation. 

However, many of the studies have reported a complex regulation of genes involved in carbon 

and nitrogen assimilation. For example, upon preferential illumination of photosystem II, genes 

involved in nitrogen assimilation using nitrate (NO3
-) as a substrate respond negatively, whereas 

those involved in utilization of either ammonia (NH3), urea or arginine as substrate respond 

positively (Singh et al., 2009). Despite these transcriptomic studies, the impact of transcript 

regulation on protein levels remains poorly understood, in part due to several previous studies 

showing poor correlation between transcriptomic and proteomic datasets (Ideker et al., 2001; 

Corbin et al., 2003). Because proteins are directly responsible for cellular functions, 

measurements of protein abundances are expected to provide significant clues to the modulation 

of cellular functions during different environmental perturbations. Several proteomic studies under 

diverse environmental conditions have been undertaken in Synechocystis (Sazuka and Ohara, 

1997; Sazuka et al., 1999; Fulda et al., 2000; Sergeyenko and Los, 2000; Wang et al., 2000; 

Huang et al., 2002; Simon et al., 2002; Herranen et al., 2004; Huang et al., 2004; Gan et al., 

2005; Srivastava et al., 2005; Fulda et al., 2006; Huang et al., 2006; Kurian et al., 2006; Kurian et 
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al., 2006; Perez-Perez et al., 2006; Gan et al., 2007; Mata-Cabana et al., 2007; Pisareva et al., 

2007). However, such studies have not yielded a comprehensive understanding of cellular 

adaptations, either due to low proteome coverage or due to the limited information on the 

changes in protein abundance.  

Recent advances in high throughput proteomic technology and informatics tools have 

allowed high-confidence quantitative and qualitative proteome determination of several model 

organisms such as E. coli, yeast, Drosophila, and C. elegans (Tonella et al., 2001; Mawuenyega 

et al., 2002; Brunner et al., 2007; Schmidt et al., 2007). These results have enabled a systems-

level analysis of cellular functions. Recently, we have used such improved proteomic tools to 

examine the proteome of a cyanobacterium Cyanothece sp. ATCC 51142, resulting in a coverage 

of ~68% (Stöckel et al., submitted to Molecular and Cellular Proteomics, Manuscript number 

MO:00173-MCP). In the current study, we have used LC-MS/MS to analyze the proteome of 

Synechocystis across 33 different environmental conditions. Our efforts have led to a 65% 

proteome coverage, resulting in the most complete functional and quantitative description of the 

proteome of Synechocystis, to date. Our analyses of differentially regulated proteins show that 

Synechocystis activates alternate pathways for the acquisition of carbon and nitrogen under 

diverse environmental conditions. 
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MATERIALS AND METHODS 

 

Culture conditions 

Synechocystis cultures were grown to a density of 2x108 cells/mL as described (Wegener et al., 

2008). Cells were harvested by centrifugation at 6000 x g for 5 min at 22oC and washed twice 

with 100 mM TES, pH 8.0. The washed cells were inoculated into complete BG11 medium and 

sampled after 0, 4, 6, 8, and 16 days. For growth under nutrient deplete conditions, washed cells 

were grown in BG11 depleted of either NO3
- (nitrogen depletion), sulfate (sulfur depletion) or 

phosphate (phosphorus depletion), and sampled after 6 days. For iron depletion, cells were 

incubated twice in 20 mM MES, 10 mM EDTA, pH 5.0 for 10 min, then inoculated in BG11 

depleted of iron, and sampled after 6 days. Also, after 6 days, starved cultures were 

supplemented with 17.65 mM NO3
-, 32 μM NH4

+, 301 μM sulfate, 175 μM phosphate, or 30 μM 

iron as appropriate, and sampled after 4 and 24 h. For salt stress, 0.5 M NaCl was added to cells 

grown in complete BG11 and sampled after 0.5, 6, and 24 h. Cells were also collected after 3 and 

6 days growth in the presence of 5 mM glucose and 10 μM 3-(3’, 4’-dichlorophenyl)-1,1-

dimethylurea (DCMU). For high CO2 treatment, cells grown in 3% CO2 were sampled after 1 and 

25 h, transferred back to air level (0.3%) CO2, and sampled after 2 h. Lastly, cells were subjected 

to heat (38°C) or cold (22°C) shock and sampled after 1, 4, and 24 h. 

 

Sample preparation 

Cells were harvested by centrifugation at 6000 x g for 5 min at 4oC. Membrane and soluble 

fractions from total cell extracts were prepared as described (35) with minor modifications. The 

lysis buffer lacked any detergent and cells were broken by using 6 cycles of 1 min break, 1 min 

rest on ice. The cell lysates were fractionated by centrifugation at 150,000 x g at 4°C for 20 min. 

The supernatant comprising soluble fractions were transferred to separate tubes. The pellet 

comprising membrane fractions was washed with 100 mM ammonium bicarbonate buffer (pH 8.0) 
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and centrifuged again at 150,000 x g at 4°C for 20 min. The protein concentrations of soluble and 

membrane fractions were determined by BCA assay (Pierce, Rockford, IL). Soluble fractions 

were denatured and reduced using 8 M Urea and 5 mM DTT (Sigma-Aldrich, St. Louis, MO) at 

37˚C for 60 min. Membrane fractions were treated identically, except for the addition of 1% 

CHAPS for 45 min prior to digestion.  All samples were then diluted with 5 volumes of 25 mM 

ammonium bicarbonate prior to tryptic digestion using sequencing-grade modified porcine trypsin 

(Promega, Madison, WI) at a 1:50 (w/w) trypsin-to-protein ratio for 5 h at 37˚C. The digestions 

were stopped by boiling for 5 minutes followed by cooling on ice. Samples were separated using 

strong cation exchange chromatography (SCX) with a PolySulfoethyl A, 200 mm x 2.1 mm, 5 μM, 

300-Å column and a 10 mm x 2.1 mm guard column (PolyLC, Inc., Columbia, MD) at a flow rate 

of 0.2 mL/min. The SCX peptide fractionation was carried out as previously described (Wegener 

et al., 2008).  The peptides were resuspended in 900 µL of mobile phase A, and separated on an 

Agilent 1100 HPLC system (Agilent, Palo Alto, CA) equipped with a quaternary pump, degasser, 

diode array detector, Peltier-cooled autosampler and fraction collector (both set at 4 ºC). A total of 

25 fractions were collected for each sample. 

 

Reversed phase LC separation and MS/MS analysis of peptides.  

The LC separation and MS/MS analysis have been extensively reported (Shen Y and Veenstra 

TD, 2001) with the coupling of a constant pressure (5,000 psi) reversed phase capillary liquid 

chromatography system (150 µm i.d. × 360 µm o.d. × 65 cm capillary; Polymicro Technologies 

Inc., Phoenix, AZ). Analyses performed utilized both Finnigan LCQ and LTQ ion trap mass 

spectrometers (ThermoFinnigan, San Jose, CA) using an electrospray ionization source 

manufactured in-house.  Each unfractionated and SCX fraction was analyzed via capillary LC-

MS/MS.  
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LC-MS/MS data analysis   

ExtractMSn (version 4.0) and SEQUEST (Version v.27, Rev 12, Thermo Fisher Scientific, 

Waltham MA) (Eng, et al., 1994) analysis software was used to match the MS/MS fragmentation 

spectra to sequences from the 2004 Cyanobase (http://genome.kazusa.or.jp/cyanobase) 

annotation of Synechocystis (3,663 total entries, no enzyme search, ±3 Da tolerance for parent 

MS peak). Search was performed using default parameters with no-enzyme rules within a +/- 1.5 

Da parent mass window, +/- 0.5 fragment mass window, average parent mass, and monoisotopic 

fragment mass. The criteria selected for filtering for both LCQ and LTQ data followed methods 

based upon a reverse database false positive model, which provides a target of 95% confidence 

in peptide identifications (Qian et al., 2005). Specific filter criteria for this study to achieve this 

level of confidence includes DelCN ≥0.1 coupled with Xcorr of ≥1.6 for full tryptic charge state +1, 

≥2.4 for charge state +2, and ≥3.2 for charge state +3. For partial tryptic, Xcorr ≥4.3 for charge 

state +2 and ≥4.7 for charge state +3. An additional 8 proteins and 180 peptides were included 

from wild type spectra MSMS_01 - MSMS_06 (NCBI GEO accession GSE9577) (Wegener et al., 

2008). 

 

Data Processing and Analysis 

Peptides matching multiple proteins were assigned to each of the matching proteins. Protein 

spectral counts were calculated by summing numbers of observed peptides for each protein in all 

fractions. For sample replicates, all combinations of soluble and membrane replicate pairings 

were summed, and the average and standard deviation of these combinations were used for the 

final values. Differentially expressed proteins were identified using three criteria: [(i) 

mean1/mean2 ≥ 1.5, (ii) mean1 − mean2 > 1, and (iii) (mean1 − 2stddev1) − (mean2 + 2stddev2) 

> 0] where mean1 and stddev1 are the values of largest mean of the treatment or control. 

Proteins were categorized as up- or down-regulated, based on whether peptide abundances were 

higher or lower in the treated sample compared to the control sample. Transmembrane helices 
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were predicted with TMHMM (Krogh et al., 2001). SignalP (Emanuelsson et al., 2007) was used 

to predict cleavage sites for signal peptides using the Gram-negative bacteria setting. TMHMM 

predicted helices shorter than 15 amino acids and those overlapping with signal peptides were 

discarded. Proteins were considered to be membrane proteins if at least one transmembrane 

helix was predicted. Peptide hydrophobicities were calculated by summing the hydrophobicities of 

the amino acid sequences using the Kyte and Doolittle scale. Peptide hydrophobicity, length, and 

mass histograms were generated for the subset of observed fully tryptic peptides of ≥ 5 amino 

acids in length and ≥ 500 Da and compared to ideal tryptic digests of the observed proteins, using 

the same constraints. 
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RESULTS 

 

Determination of the composition of Synechocystis proteome 

To obtain a comprehensive proteomic description of Synechocystis, we collected 

samples from cells grown under 33 different environmental conditions. These included time series 

studies of Synechocystis growth under nutrient-limiting conditions followed by recovery under 

nutrient-sufficient conditions. The kinetics of pigment loss, a typical observable phenotype 

associated with nutrient starvation in cyanobacteria, were quite variable between nutritional 

conditions (Fig. 1), possibly due to the ability of cyanobacteria to store some, but not all, nutrients 

in the form of inclusion bodies that can be utilized during starvation. Therefore, we used a 

strategy that involved prolonged starvation for nitrate, phosphate, sulfate, or iron for 6 days 

followed by recovery with the addition of the limiting nutrient. This “starve and recovery strategy” 

resulted in a uniform recovery response. We also exposed cells to excess sodium chloride (2 M), 

CO2 (3%) with a recovery under ambient air, glucose (5 mM), as well as low (20oC) and high 

(38oC) temperatures. 

We utilized a sensitive LC-MS/MS peptide-based “bottom-up” approach to maximize the 

proteome coverage of Synechocystis (Page et al., 2004). Figure 2 describes various steps 

involved in the identification of proteins under multiple environmental conditions. Total cell 

extracts were prepared from Synechocystis cells grown under the 33 environmental conditions. 

To increase the coverage of membrane proteins, total cellular extracts were separated into 

membrane and soluble fractions by centrifugation prior to tryptic digestion. The resulting peptide 

mixtures were then subjected to LC-MS/MS to generate datasets for each sample, which were 

analyzed using SEQUEST (37). These spectra identifications were then used to determine 

spectral counts for each peptide. The counts from the membrane and soluble datasets were then 

combined for each condition and the technical replicates were averaged. Lastly, the peptides 
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were mapped back to their corresponding proteins and the final compiled dataset was then 

analyzed statistically. 

We identified a total of 22,318 unique tryptic peptides with a confidence criterion of 95% 

(supplemental Tables 1 and 2). A small subset, 441, was identified by single peptide observation 

(supplemental Table 3). These observed peptides correspond to 2,369 proteins of the predicted 

3,663 for the Synechocystis genome, a coverage of 65% (supplemental Table 4). Synechocystis 

contains seven endogenous plasmids in addition to 1 circular chromosome (Kaneko et al., 2003). 

Most of the proteins encoded by the predicted genes in plasmids are of unknown function. For 

example, the combined hypothetical and unknown genes comprise ~45% of the predicted 

chromosomal genes. In contrast, the endogenous plasmids pSYSA, pSYSX, pSYSM, and 

pSYSG contain ~87, 79, 73, and 62% unknown and hypothetical genes. Analysis of the proteome 

obtained in the present study shows that the coverage was highest for the circular chromosome 

(69%) (Fig. 3A). This is expected because a large number of predicted genes in the chromosome 

are known to code for functional proteins. However, we could also identify 24 to 44% proteins 

encoded by genes on the plasmids (Fig. 3A). This result suggests that these plasmid proteins are 

active in the physiology of Synechocystis. 

Of the 69% protein coverage for the chromosome, the majority of detected proteins 

belonged to 14 known functional categories (Fig. 3B). Importantly, the observed proteins were 

uniformly distributed among different functional categories (Fig. 3B). We have identified more 

than 90% proteins involved in amino acid biosynthesis; energy metabolism; purines, pyrimidines, 

nucleosides, and nucleotides; and translation processes. Similarly, more than 75% proteins 

involved in cell envelope; cellular processes; central intermediary metabolism; photosynthesis; 

transcription; and transport have been identified. As expected, the lowest proteins coverage was 

obtained for unknown (48%), hypothetical (59%), and other (56%) categories. 

Several proteomic studies have been previously undertaken in Synechocystis (Sazuka 

and Ohara, 1997; Sazuka et al., 1999; Fulda et al., 2000; Sergeyenko and Los, 2000; Wang et 
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al., 2000; Huang et al., 2002; Simon et al., 2002; Herranen et al., 2004; Huang et al., 2004; Gan 

et al., 2005; Srivastava et al., 2005; Fulda et al., 2006; Huang et al., 2006; Kurian et al., 2006; 

Kurian et al., 2006; Perez-Perez et al., 2006; Gan et al., 2007; Mata-Cabana et al., 2007; 

Pisareva et al., 2007). These studies have resulted in a combined observation of 1,099 proteins 

(supplemental Table 5). A comparative analysis of these previously identified proteins with those 

identified in the present study shows that 1,010 proteins were commonly identified (Fig. 3C). 

Eighty-nine previously identified proteins were not observed in our study whereas 1,359 proteins 

were uniquely observed in the present study. A large number of these proteins (758) are currently 

annotated as either hypothetical or unknown in Cyanobase (Nakamura et al., 1998). Thus, our 

results have provided direct proof of the functional role of over one half of hypothetical and 

unknown proteins in Synechocystis. 

 Cyanobacteria contain a greater number of membrane proteins compared to 

heterotrophic bacteria. This is due to the presence of an internal thylakoid membrane system, 

where the light reactions of photosynthesis occur. Therefore, a special emphasis in the current 

study was given towards identification of the Synechocystis proteome that is not biased towards 

any of the known factors. Analysis of the proteome data observed in this study shows that it 

consisted of 67% and 55% of predicted soluble and membrane proteins, respectively (inset, Fig. 

4A). Importantly, increasing numbers of trans-membrane helices had little impact on the 

identification of membrane proteins (Fig. 4A). Identification of a large number of membrane 

proteins in our study is due to the initial separation of membrane fractions from soluble fractions 

as well as the use of an optimized solubilization buffers. An examination of the hydrophobicity of 

the observed peptides showed a similar distribution to that of the predicted tryptic peptides from 

the genome (Fig. 4B). However, analysis of a subgroup of membrane proteins showed that most 

of the identified peptides were from the cytosolic loop regions of the proteins. A study of the 

peptides identified showed that the masses of peptides observed also followed a similar 

distribution to that predicted, except in the case of the peptides less than 2000 Da, which were 
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underidentified (Fig. 4C). Other bias analysis determined that detection of the observed peptides 

was somewhat decreased for the shortest category (5-10 amino acids) (Fig. 4D). However, the 

observation of peptides was independent of pI, as shown by the similarity of the distribution of 

identified and predicted peptides (Fig. 4E). Taken together, theses bias analyses show that 

overall, there was very little technical bias in peptide observation. 

 

Quantitative analysis of protein response to various perturbations  

 We re-examined 12 environmental conditions for quantitative determination of protein 

abundance (Table 1). A total of 1,221 differentially regulated proteins were identified 

(supplemental Tables 6 and 7). The number of differentially regulated proteins in each condition 

varied from a low of 267 (cold shock) to a high of 553 (nitrogen depletion) proteins (Table 1). A 

majority of differentially regulated proteins (56  - 76%) in most conditions, with the exception of 

cold shock and nitrogen depletion, were upregulated. Under cold stress and nitrogen depletion, 

approximately 62% and 86% of the differentially regulated proteins, respectively, were 

downregulated. However, addition of either nitrate or ammonia to the nitrogen-depleted cells had 

significant effects on the expression patterns of proteins. Under these conditions, the number of 

upregulated proteins increased from 77 to 231 (with nitrate repletion) and 257 (with ammonia 

repletion). At the same time, the number of downregulated proteins decreased from 476 to 150 

(with nitrate repletion) and 141 (with ammonia repletion). The number of up- and down-regulated 

proteins during recovery in the presence of either nitrate or ammonia was similar to those of other 

nutrients. A small number of proteins were differentially expressed in a stress-specific manner 

(Table 1). Most of these proteins have no known functions. 

 Examination of cellular processes based on differential regulation of their associated 

proteins showed that the responses varied widely between conditions and, surprisingly, were not 

correlated with observed physiological responses (Fig. 5). For example, depletion of iron, 

phosphate, sulfate and nitrogen was accompanied by significant chlorosis and slow growth. 
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However, we observed that most processes were downregulated significantly only under nitrogen 

depletion and, to some extent, under iron depletion. In fact, in most other conditions, we noticed 

that majority of proteins in cellular processes were upregulated. This is even true for ribosomal 

proteins, whose expression has been typically linked with the growth of an organism. Though the 

number of differentially regulated ribosomal proteins varied depending on conditions, we found 

that ribosomal proteins were downregulated under nitrogen, phosphate, and iron depletion, and 

upregulated under sulfate depletion and heat shock. As expected, the majority of ribosomal 

proteins were upregulated during all recovery stages. A large number of proteins with unknown 

functions (~ 40%) showed significant differential regulation. Several of these proteins showed 

stress specific regulation, providing evidence of their crucial roles in cellular adaptation (Fig. 5). 

 Proteins involved in amino acid biosynthesis, glucose metabolism, TCA cycle, and 

cytochrome b6f complex showed strong upregulation in majority of environmental conditions. In 

general, enzymes known to catalyze key reactions in any given pathway were differentially 

regulated. For example, glycogen phosphorylase, which catalyzes the release of glucose from 

glycogen, was strongly upregulated in all studied conditions. We also found that fructose-

bisphosphate aldolase, which catalyzes the formation of glyceraldehyde 3-phosphate and 

dihydroxyacetone phosphate from fructose 1,6-bisphosphate, and pyruvate dehydrogenase, 

which converts pyruvate into acetyl-CoA, were strongly upregulated in all conditions. Similarly, 

key proteins involved in the biosynthesis of amino acids belonging to aromatic, aspartic acid, 

branched chain, serine and glutamate families were strongly differentially regulated. For example, 

chorismate synthase was strongly upregulated in most environmental conditions. Chorismate is a 

key intermediate involved in the biosynthesis of phenylalanine, tyrosine and tryptophan. Similarly, 

diaminopimelate decarboxylase that catalyzes the synthesis of lysine, and acetolactate synthase 

that catalyzes the first step in the biosynthesis of leucine, isoleucine and valine were strongly 

upregulated under most environmental conditions. In contrast, most photosynthesis related 

proteins, including phycobiliproteins, did not show significant changes in their abundance. 
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Similarly, very few proteins involved in pigment biosynthesis showed differential regulation. 

However, proteins with other critical functions were differentially regulated. For example, heme 

oxygenase, involved in the multi-step monooxygenase reaction to produce biliverdin IXα and CO 

from protoheme, was downregulated during nutrient depletion conditions.  

 

Analysis of Photosystem II proteins 

 Of the cannonical PSII proteins (Kashino et al., 2002), we identified 23 proteins in our 

study, which were distributed between the 33 environmental conditions (supplemental Table 4). 

As a whole, all detected PSII proteins were differentially less abundant under nitrate and sulfur 

depletion conditions (supplemental Tables 6 and 7). This agrees with previous data showing that 

these two conditions have detrimental effects on photosynthetic capacity. However, in all 

conditions where it was possible to determine differential ratios, the manganese stabilizing 

protein, PsbO (Sll0427), was increased in abundance as compared to levels found in BG11 

(supplemental Tables 6 and 7). 

 

Concordance between transcriptomic and proteomic datasets  

 The global scale of proteome coverage and protein expression profiles obtained in this 

study enabled the first large-scale comparison of gene expression at the RNA and protein levels 

in Synechocystis. The differentially regulated proteins identified under cold shock, phosphate, 

sulfate, nitrogen, and iron depletions were compared with the differentially regulated transcripts 

identified during the respective DNA microarray studies (Suzuki et al., 2001; Singh et al., 2003; 

Suzuki et al., 2004; Osanai et al., 2006; Zhang et al., 2008). To allow for a uniform comparison, 

all five transcriptomic datasets were reanalyzed. We used a fold change of 1.5 to identify 

differentially regulated genes from these datasets. Concordance analysis showed that the 

expression changes between these two studies were quite low. However, we note that while the 
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comparisons were done between datasets generated under similar conditions, there are 

differences in some of the growth and sampling regimes between our proteomic experiments and 

the previously published microarray studies. Agreement between the two studies was lowest for 

sulfate depletion and highest for nitrogen depletion (Table 2). However, analysis of correlated and 

anti-correlated genes revealed some interesting results. Stress-specific genes showed similar 

expression patterns in both transcriptomic and proteomic studies. For example, expression of 

nutrient specific transporters showed strong concordance. The relatively higher concordance 

seen under nitrogen depletion was due to similar expression patterns of ribosomal and 

photosynthesis genes. On the other hand, expression patterns of photosynthetic genes were anti-

correlated under iron depletion with downregulation of transcript levels and upregulation of protein 

levels.  

Alternate pathway for assimilation of nitrogen and carbon under various perturbations  

Several proteins involved in nitrogen assimilation showed significant differential 

regulation. Generally, proteins involved in the transport of nitrate were downregulated in cells 

grown under nutrient depletion, cold and heat shock. Repletion of nutrients to starved cells led to 

the upregulation of these transporter proteins. Interestingly, recovery of nitrogen-depleted cells in 

the presence of ammonia did not lead to the upregulation of nitrate transport proteins. To 

compensate for reduced nitrate uptake, cells upregulate proteins involved in transport and 

utilization of urea and arginine. UrtE (Sll0374) and UrtD (Sll0764), which are involved in transport 

of urea, were strongly upregulated under most environmental conditions. Our data also showed 

that urease which converts urea into CO2 and ammonia was upregulated by 4-fold under most 

conditions. Similarly, BgtB (Sll1270), and to some extent BgtA (Slr1735), the periplasmic and 

ATP-binding components of an arginine transporter, were upregulated under most conditions. We 

also determined that cyanophycinase, involved in the breakdown of cyanophycin into arginine 

and aspartic acid, was somewhat upregulated under a number of conditions. These results 

suggest that a common response in Synechocystis under different perturbations is to reduce the 
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uptake of nitrate and increase the uptake of alternate nitrogen sources.  

Arginine and aspartic acid must be further catabolized to acquire nitrogen for cellular 

metabolism. In Synechocystis, an arginine catabolic pathway has been described which 

combines the arginase pathway and urea cycle (Quintero et al., 2000). All proteins in this 

pathway were detected in our study. However, none of them showed significant differential levels, 

suggesting that this pathway is not the preferred route for arginine catabolism under these 

perturbations. Further analysis suggested that arginine is preferentially broken down into 

agmantine via arginine decarboxylase. In particular, arginine decarboxylase (Slr1312 and 

Slr0662), the first committed enzymes in this pathway, were upregulated 1.5 to 3 fold as 

compared to control conditions (Fig. 6, supplemental Table 8). Agmantine can subsequently be 

catabolized into putrescine via the putative agmantinase (Sll1077) or arginase (Sll0228). These 

two proteins were not observed in the control cells; however, peptides corresponding to these 

proteins were detected under various environmental conditions, providing support for the 

involvement of this alternative pathway during various perturbations (supplemental Table 4). 

Putrescine is known to play a critical role in DNA, RNA and protein synthesis, as well as in cell 

proliferation and differentiation. Furthermore, putrescine serves as a source for carbon and 

nitrogen in E. coli and Pseudomonas (Kurihara et al., 2005; Chou et al., 2008), where it is 

converted to succinate. Examination of proteins involved in putrescine degradation suggested 

that this pathway is also active in Synechocystis (Fig. 6, supplemental Table 8). Slr1022 shows 

strong similarity to the proteins (YgjG and SpuC) involved in degradation of putrescine into 

aminobutyrate in E. coli and Pseudomonas (Kurihara et al., 2005; Chou et al., 2008). Further 

evidence that succinate is produced from arginine came from the strong upregulation of succinate 

dehydrogenase and malate dehydrogenase (Fig. 6, supplemental Table 8). Thus conversion of 

arginine into succinate not only allows generation of TCA cycle intermediates but in the process 

releases glutamate, ammonia and CO2. Ammonia is assimilated into glutamate, whereas CO2 is 

fixed by ribulose 1,5-bisphosphate carboxylase oxygenase. Indeed, we found that transporters of 
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free inorganic carbon were not differentially regulated. However, several carbon concentrating 

mechanism proteins, required for concentrating intracellular carbon, showed significant 

upregulation. 
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DISCUSSION 

Here, we report the most comprehensive functional and quantitative analysis of the 

Synechocystis proteome to date. The resulting proteome consists of 2,369 unique proteins (65% 

of the predicted proteins), 1,221 of which have been identified as differentially regulated under 12 

different environmental conditions. Several bias analyses show that proteins identified in this 

study are representative of the entire proteome. Importantly, functional category based analysis 

shows that the observed proteins were uniformly distributed. Identification of 758 proteins of 

unknown function, of which 326 were differentially regulated, provides direct evidence of their 

roles in Synechocystis physiology. Taken together, this study has revealed the global proteomic 

makeup of Synechocystis and has facilitated a systems-level analysis of cellular response under 

different environmental conditions. 

Analysis of 1,221 differentially regulated proteins shows that Synechocystis utilizes few 

stress-specific proteins to optimize cellular functions under perturbations (Table 1). Many of these 

proteins have no known function. In contrast, a large number of proteins associated with 

housekeeping functions were commonly differentially regulated. For example, key proteins 

involved in the biosynthesis of all amino acid families were strongly upregulated. These results 

suggest that despite the prolonged starvation for essential nutrients, cells continue to maintain a 

metabolically active state by seeking either the limiting nutrients, or alternate nutrients for growth. 

Typically, transporters involved in the acquisition of iron, sulfate and phosphate were upregulated. 

While sulfate transporters were specifically upregulated under sulfate depletion, expression of 

iron transporters was also upregulated under phosphate depletion and vice versa. In contrast, 

nitrate transporters were downregulated under nitrogen depletion. In fact, they were also 

downregulated under other environmental conditions. Previous studies using DNA microarrays 

have also shown strong downregulation of nitrate transporters under various environmental 

conditions (Singh et al., 2008; Singh et al., 2009). It has been suggested that changes in 

environmental conditions lead to reduced transport of nitrate while simultaneously activating the 
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pathway involved in the transport of alternate nitrogen substrates including ammonia, urea and 

arginine. A similar mechanism under changing nutrient conditions is apparent from the analysis of 

proteomic datasets. Our data shows that the preferred substrates for nitrogen acquisition are urea 

and arginine. 

The most striking cellular strategy revealed from the analysis of differentially regulated 

proteins is the way in which the cells acquire carbon and nitrogen under different perturbations. 

Our results suggest that any change in conditions, irrespective of their amplitudes or durations, 

immediately leads to the activation of alternate pathways towards the acquisition of carbon and 

nitrogen. Although the majority of perturbations had little impact on levels of proteins involved in 

photosynthesis, they affected the efficiency of photosynthetic light reactions, resulting in a lower 

production of energy. It should be mentioned that most photosynthetic proteins were identified as 

strongly downregulated under nitrogen depletion and therefore, the lack of differential regulation 

was not because of our inability to detect peptides. The assimilation of carbon and nitrogen is an 

energy intensive process, requiring significant amounts of ATP, NADPH and reduced ferredoxin. 

Therefore, decreased energy production leads to the activation of alternate carbon and nitrogen 

assimilation pathways. Our data strongly suggest that under the different environmental 

perturbations, urea and arginine are the preferred substrates for both carbon and nitrogen. Cells 

also actively seek internal/external carbon sources, as is apparent from the upregulation of 

proteins involved in glycolysis and glucose transport. Arginine is preferentially catabolized via 

putrescine using the pathway recently characterized in E. coli and Pseudomonas (Kurihara et al., 

2005; Chou et al., 2008). Activation of this pathway allows cells to obtain both carbon in the form 

of succinate, and CO2 and nitrogen in the form of glutamate and ammonia. Aspartic acid, which 

can be generated from cyanophycin, can serve two purposes. It can be utilized for the synthesis 

of methionine, lysine and threonine. Additionally, it can be combined with 2-oxoglutarate to 

produce glutamine, which can then be combined with ammonia to produce glutamate. This result 

also indirectly suggests that arginine is not directly converted to glutamate using the previously 
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identified pathway (Quintero et al., 2000). The utility of this arrangement is that 2-oxoglutarate 

generated by glycolysis is channeled towards the production of glutamate. 

In conclusion, the proteome analysis presented in this study has provided a unique and 

comprehensive catalogue of the proteomic makeup of Synechocystis under various 

environmental conditions. We believe that the knowledge of the functional information of when 

and how proteins with known as well as unknown functions are expressed is going to be a strong 

basis for future experimental studies. Analysis of dynamic changes in the proteome has provided 

insights into cellular adaptations under various environmental perturbations. Our results showed 

that a key cellular adaptation leads to the activation of alternate pathways for the acquisition of 

carbon and nitrogen, which are the two major sinks for reducing powers generated by the 

photosynthetic light reactions in cyanobacteria.   
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Table 1. Numbers of differentially regulated proteins under 12
environmental conditions.
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Table 2. Concordance between transcriptomic and proteomic
studies in Synechocystis.
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Fig. 1. Physiological characteristics of
Synechocystis cultures used for proteomic
analysis. Synechocystis cells were grown under
various environmental conditions as described in
the Experimental Procedures. At specific time
points, 3 ml cultures were transferred to cuvettes
and photographed.
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Fig. 2. Experimental Design. A flow chart
describing various steps involved in the
identification of Synechocystis proteome. Each
step has been described in detail in the
Experimental Procedures.
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Fig. 3. Proteome Coverage. (A) Distribution of observed proteins among the different
DNA elements. The numbers in parentheses indicate the observed proteins out of the
total predicted proteins. (B) Distribution of the observed proteins in various functional
categories. The numbers in parentheses indicate the observed proteins (bold font) out of
the total predicted proteins. (C) Comparative analysis of proteins identified in this study
(blue circle) with previously published proteomic studies (red circle) as a fraction of the
predicted proteome (grey circle).
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A

B

D

E

C Fig. 4. Proteome Bias Analysis. Black
and white bars indicate the numbers of
predicted and observed proteins,
respectively. (A) Detection of membrane
proteins as a function of transmembrane
helices. Inset shows the number of soluble
and membrane proteins detected in the
present study. (B) Detection of peptides of
varying hydrophobicities versus the
predicted peptides. (C) Detection of
peptides of varying masses versus the
predicted peptides. (D) Detection of
peptides of varying lengths versus the
predicted peptides. (E) Detection of
peptides of varying pIs versus the
predicted peptides.
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Fig. 5. Differential Regulation of Proteins under Different
Perturbations. 1,221 differentially regulated proteins were
grouped in functional categories and a heat map was generated
using Spotfire 7.0. Color bar indicates protein fold change in
experimental conditions as compared to levels in complete
BG11.
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Fig. 6. Global Stress Response under Different
Perturbations. Numbers denote the enzymes required for various
reactions, colors indicate either increased (red) or decreased (green)
protein abundances under stress conditions compared to those in the
BG11 control sample. Black color indicates that proteins are not
observed in BG11 control sample. Numbers correspond to the following
enzymes: 1=cyanophycinase, 2 & 3=arginine decarboxylase,
4=agatinase, 5=arginase, 6 & 7=4-Aminobutryaldehyde dehydrogenase,
8-10=4-Aminobutyrate transaminase, 11=aldehyde dehydrogenase,
12=adenylosuccinate lyase, 13=L-argininosuccinate lyase, 14=L-
aspartic acid oxidase, 15=aspartic acid aminotransferase, 16=succinyl-
CoA synthetase, 17=succinate dehydrogenase, 18=malate
dehydrogenase, 19=Glu synthase, 20=urease, 21=Glu-NH3 ligase, 22=
ribulose 1,5-bisphosphate carboxylase oxygenase, 23=carbon
concentrating mechanism proteins. Abundance values for these proteins
are provided in Dataset S6.
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Chapter 3 

 

HIGH SENSITIVITY PROTEOMICS ASSISTED DISCOVERY OF A NOVEL OPERON 

INVOLVED IN THE ASSEMBLY OF PHOTOSYSTEM II, A MEMBRANE PROTEIN COMPLEX 
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SUMMARY 

 

Photosystem II (PSII) is a large membrane protein complex that performs the water oxidation 

reactions of the photosynthetic electron transport chain in cyanobacteria, algae, and plants. The 

unusual redox reactions in PSII often lead to damage, degradation and reassembly of this 

molecular machine. To identify novel assembly factors for PSII, an accurate mass tag (AMT) 

high-sensitivity proteomic analysis of PSII complexes purified from the cyanobacterium 

Synechocystis sp. PCC 6803 was performed. This analysis identified six PSII associated proteins 

that are encoded by a single operon containing nine genes, slr0144 to slr0152. This operon 

encodes proteins that are not essential components of the PSII holocomplex but accumulate to 

high levels in precomplexes lacking any of the lumenal proteins PsbP, PsbQ, or PsbV. The 

operon contains genes with putative binding domains for Chl and bilin, suggesting these proteins 

may function as a reservoir for cofactors needed during the PSII lifecycle. Genetic deletion of this 

operon shows that removal of these protein products does not alter photoautotrophic growth or 

PSII fluorescence properties. Nonetheless these proteins confer fitness under competition in high 

light intensities. However, the deletion mutation does result in decreased PSII-mediated oxygen 

evolution and an altered distribution of the S states of the catalytic Mn cluster.  PSII complexes 

isolated from Δsllr0144 – slr0152 also show decreased photosynthetic capacity and altered 

polypeptide composition. These data demonstrate that the proteins encoded by the genes in this 

operon are necessary for optimal function of PSII and function as accessory proteins during 

assembly of the PSII complex.  Based on these results, we have named the products of the 

slr0144 – slr0152 operon  

Pap (photosystem II assembly proteins).  
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INTRODUCTION 

 

 Photosystem II (PSII) is the multi-component enzyme complex in cyanobacteria, algae 

and plants that catalyzes the light-driven oxidation of water to molecular oxygen. The active 

complex is a dimer consisting of 2 identical monomers with more than 20 proteins, identified 

through genetic, biochemical, and structural studies. In addition to its protein components, PSII 

also has a large number of cofactors including chlorophylls (Chls), pheophytins, plastoquinones, 

Mn atoms, calcium, chloride, non-heme iron, and heme groups (Ferreira et al., 2004; Loll et al., 

2005). Removal of these subunits or cofactors can slow or even completely halt water oxidation.  

 The assembly of this crucial complex is an intricate process. The steps of protein 

assembly into the complex are ordered and well regulated (Rokka et al., 2005). D2, cytochrome 

b559 and PsbI bind to form a receptor complex into which the D1 precursor protein (pD1) is 

inserted (Muller and Eichacker, 1999; Zhang and Aro, 2002). The CP47 protein then joins the 

precomplex, followed by the low molecular weight proteins PsbH, PsbM and PsbT. The C-

terminal extension of pD1 is then processed by the lumenal protease CtpA into the mature D1 

protein (Zhang and Aro, 2002). Next, the CP43 and PsbK proteins associate.  At this point, the 

soluble lumenal extrinsic proteins (PsbO, PsbP, PsbQ, PsbU and PsbV) can also bind to the 

complex. These lumenal proteins are not essential for photosynthesis but are located in close 

proximity to the site of water oxidation, enhance oxygen evolution, and have roles in protecting 

the catalytic Mn cluster from damage (Seidler, 1996; Thornton et al., 2004). The presence of 

some of these proteins can be viewed as an indicator of the functional state of the complex, as 

PsbQ is solely associated with dimerized complexes that are fully assembled and highly active 

(Roose et al., 2007). Finally, the monomeric complex dimerizes. Figure 1 shows a simplified 

schematic of PSII assembly in cyanobacteria. 

 The steps involved in the association of cofactors with the functional complex are less 

defined. The mechanism of integration of some of these cofactors has been well documented, as 

is the case for the Mn cluster. It is known that after the incorporation of the CP43 protein, all of 
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the ligands for the Mn4Ca1Clx cluster are present within the complex and presumably integration 

of this catalytic center occurs. However the integration of other cofactors, including the insertion 

of Chl into the Chl containing proteins D1, D2, CP47, and CP43, remains undefined. 

 In addition to the initial assembly of the subunit proteins and cofactors into this large 

membrane complex, PSII is frequently damaged in the course of its natural function (Keren et al., 

2005). The D1 protein becomes irreversibly damaged and the lumenal proteins and the catalytic 

Mn cluster must be dissociated so that the damaged D1 protein can be removed and a new copy 

inserted into the complex (Andersson and Aro, 2001). Because many of the PSII cofactors would 

be highly detrimental in large quantities if free in the cell, it is likely there are chaperone proteins, 

which sequester these cofactors before assembly and during the repair and degradation of the 

PSII complex. As an example, Small CAB-like Proteins (SCPs) have recently been proposed to 

sequester Chls from damaged PSII complexes until they are recycled into new complexes 

(Vavilin and Vermaas, 2007). It is likely that intermediaries may also hold other cofactors of the 

complex during complex repair. Thus, in addition to the complexity of its composition, PSII also 

has an intricate lifecycle of repair and degradation. Therefore beside the stoichiometric 

components of the holocomplex necessary for enzyme activity, other accessory proteins must 

associate with PSII throughout its lifecycle to repair the protein components and recycle 

cofactors.  

 Although high-resolution crystal structures are available for cyanobacterial PSII (Ferreira 

et al., 2004; Loll et al., 2005), not all of the biochemically identified proteins and cofactors have 

been visualized in the current structures. Indeed the most comprehensive of these structures only 

displays 20 proteins and 77 cofactors per monomer (Loll et al., 2005). Previous analysis in 

Synechocystis sp. PCC 6803 utilizing the strain HT3, which contains a hexahistidine tag on the 

core membrane protein CP47 (Bricker et al., 1998), has identified 31 polypeptides associated 

with active PSII complexes using denaturing electrophoretic separation followed by MALDI mass 

spectrometry (MS) and N-terminal amino acid sequencing (Kashino et al., 2002). This analysis 

revealed that there were non-characterized PSII associated proteins that represent non-
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stoichiometric proteins that transiently associate with the complex as well as stoichiometric 

complex members not part of the crystallized complex.  

 In this study, we undertook a global proteomics analysis of isolated PSII complexes, 

comparing protein profiles of HT3 to those of ΔpsbV HT3, ΔpsbP HT3, and ΔpsbQ HT3 in 

Synechocystis 6803. These mutants contain PSII complexes that have been arrested at the 

currently understood end point of assembly (see Fig. 1). The sensitivity of these techniques 

allowed for identification of not only the stoichiometric components of active PSII complexes, but 

also for the identification of proteins transiently associated with PSII throughout its lifecycle, such 

as assembly, repair, or degradation partners. From the results, we identified an operon of 

unknown function that contains binding domains for photosynthetic cofactors. This operon is 

syntenically conserved among cyanobacteria. Deletion of the operon shows that although it is not 

required for photoautotrophy, it does stabilize photosynthetic capacity, in whole cells and in 

isolated complexes, indicating a function in PSII-mediated activity. We have named the products 

of this operon Photosystem II assembly proteins (pap).  
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MATERIALS AND METHODS 

 

Growth Conditions  

All chemicals used for media and other experiments are from Sigma (St. Louis, MO) unless 

otherwise noted. Synechocystis cultures were grown at 30°C under 20 μmol photons m-2 s-1 white 

fluorescent light in TES buffered BG11 medium (Allen, 1968). Stock cultures were maintained on 

solid medium (BG11 supplemented with 1.5% (w/v) agar), and used to inoculate liquid cultures for 

each experiment. When needed for mutants, growth medium was supplemented with 10 μg/mL 

spectinomycin, 2 μg/mL gentamycin, and 10 μg/mL chloramphenicol (Cm). To create a putative 

mass tag (PMT) library, cultures were grown in complete BG11 as well as in media deplete of 

nitrogen, phosphorous, sulfur, or iron; media containing sodium chloride, 3-(3,4-dichlorophenyl)-

1,1-dimethylurea (DCMU), or carbon dioxide; or cultures were subjected to heat or cold shock. 

Experiments utilizing low and high light were conducted at 10 and 100 μmol photons m-2 s-1, 

respectively. 

 

PSII Preparation  

PSII was isolated from HT3, ΔpsbV HT3, ΔpsbQ HT3, and ΔpsbP HT3 strains as described 

previously (Kashino et al., 2002). HT3 indicates the 6-His tagged CP47 used to affinity purify the 

complex (Bricker et al., 1998). The final eluate from a Ni-NTA Agarose (Qiagen, Inc., Valencia, 

CA) column was suspended in 50 mM MES-NaOH pH 6.0, 10 mM CaCl2, 25% glycerol with 

0.04% dodecyl maltoside. PSII was isolated from HT47GM (Roose, 2008) and ∆slr0144–slr0152 

HT47GM strains as described (Roose et al., 2007). 

  

Spectrophotometric Assays 

Cell growth was monitored by measuring light scattering at 730nm on a μQuant microplate 

spectrophotometer (Bio-Tek Instruments, Inc., Toronto, Canada). Chl concentrations were 
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determined by methanol extraction and absorbance at 652 and 665 nm in a DW2000 

spectrophotometer (SLM-Aminco, Urbana, IL) (Porra et al., 1989). 

  

AMT Peptide Identification 

To create the AMT library, cellular samples were digested with sequencing grade modified trypsin 

(Promega, Madison, WI), using a ratio of 1:100 (wt/wt) protease to protein sample for 4 h at 37 

°C. Digests were desalted using Supelco Superclean SCX tubes (St. Louis, MO) and the pH of 

each digestion was adjusted to 3.5 using formic acid. The SCX resin was conditioned with 

acetonitrile followed by 1M sodium formate. The column was washed with 25% acetonitrile in 500 

mM ammonium acetate, pH 8.5 and re-equilibrated with 5% acetonitrile in 10 mM ammonium 

formate, pH 3.5. Peptide mixtures were loaded onto the resin and washed with 5% acetonitrile in 

10 mM ammonium formate, pH 3.5. Peptides were eluted with 25% acetonitrile in 500 mM 

ammonium acetate, pH 8.5, followed by 100% acetonitrile. Eluted peptides were concentrated via 

Speedvac (ThermoSavant, San Jose, CA) to protein concentrations of 1.0 mg/mL, as determined 

by BCA assay (Pierce, Rockford, IL). 

 Peptides were putatively identified using a capillary liquid chromatography (LC) system, a 

pair of model 100mL 100DM syringe pumps (Teledyne-Isco, Lincoln, NE), a series D controller 

(Teledyne-Isco, Lincoln, NE) and an in-house manufactured mixer, capillary column selector, and 

sample loop. Separations were achieved with a 5000 psi reversed-phase in-house packed 

capillary (150 μm i.d., 360 μm o.d., 60 cm long; Polymicro Technologies, Phoenix, AZ) by using 

an exponential gradient of 2 mobile-phase solvents consisting of 0.2% acetic acid and 0.05% 

trifluroacetic acid (TFA) in water and 0.1% TFA in 90% acetonitrile. Flow through the capillary 

HPLC column was ≈1.8 μL/min when equilibrated to 100% mobile-phase 0.2% acetic acid and 

0.05% TFA. 

 For each sample, 10 μg was infused into a LCQ conventional ion trap MS 

(ThermoFinnigan, San Jose, CA) operating in a data dependent MS/MS mode over a 400 to 2000 
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m/Z range. For each cycle, the 3 most abundant ions from MC analysis were selected for MS/MS 

analysis by using a collision energy setting of 45%. Dynamic exclusion was used to discriminate 

against previously analyzed ions. The collision induced dissociation spectra from the conventional 

ion trap mass spectrophotometer were analyzed using SEQUEST (Eng, 1994) and the genome 

sequence of Synechocystis 6803 (Nakamura et al., 1998). PMT identifications were made based 

on a SEQUEST cross correlation (Xcorr) score ≥ 2.0, regardless of charge or mass. 

 Using the same LC conditions, 5 μg of sample analyzed in the ion trap was then analyzed 

in duplicate or triplicate by FTICR-MS. The FTICR mass spectrometers use ESI interfaced with 

an electrodynamic ion funnel assembly coupled to a radio frequency quadropole for collisional ion 

focusing and highly efficient ion accumulation and transport to a cylindrical FTICR for cell analysis 

(Harkewicz et al., 2002).  

 The resultant FTICR data was processed using the PRISM Data Analysis system, 

software tools developed in-house. First the MS data was de-isotoped, giving the monoisotopic 

mass, charge, and intensity of the major peaks in each mass spectrum. Then the data was 

examined in a 2D fashion to find groups of mass spectral peaks that were observed in sequential 

spectra. Each group, known as a unique mass class (UMC), has a median mass, central 

normalized elution time (NET), and abundance estimate, computed by summing the intensities of 

the MS peaks that compromise the UMC. The identity of each UMC was determined by 

comparing the mass and NET of each UMC with the mass and NET’s of the 4423 PMT’s in the 

Synechocystis 6803 AMT database (generated using the peptides observed from 23 LC/MS/MS). 

Search tolerances were ± 6 ppm for the mass and ±5% of the total run time for the elution time.  

 

PSII Proteomics 

PSII preparations of approximately 1 mg protein were analyzed at Pacific Northwest National 

Laboratory (PNNL) for protein identification. The PSII samples were denatured by addition of 

equal volumes of 7 M urea, 2 M thiourea, and 1% CHAPS in 50 mM ammonium bicarbonate, pH 

7.8 and then reduced with DTT to a final concentration of 5mM. CaCl2 was added to a final 
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concentration of 1 mM. Samples were digested and analyzed utilizing the LC/MS process as 

described for AMT peptide identification above. 

 The peak matching process gives a list of peptide matches and observed abundance 

estimates for each of the samples. Since the samples were run in replicate (2-3 per sample), an 

average peptide abundance and corresponding standard deviation was computed for each 

peptide across the replicates. An abundance estimate for each of the identified open reading 

frames (ORFs) was computed by averaging the peptide abundance estimates for the ORF, using 

only those peptides whose intensities were ≥33% of the most abundant peptide for the given 

ORF. Over 200 top hits for peptides found in each of the PSII preparations were scanned for fold 

changes across the samples.  

 

Statistical Analysis of Peptide Identification Data 

A threshold of 0.18 units was applied to the peptide abundance data to discard all measurements 

below the chosen noise threshold. Replicate data for each peptide were averaged, and the 

average abundances used to calculate log2 (mutant / wild type) ratios for each peptide. Peptides 

that were not present in at least two replicates for both wild type and mutant were discarded. The 

remaining peptides were then used to calculate average log2 ratios for their respective proteins. 

Standard errors were calculated for the replicates. The results of this proteomics study have been 

deposited with NCBI under the accession number GSE9577. 

  

Protein Visualization 

SDS-PAGE was performed as described previously (Kashino Y, 2007), using a gel with 18-24% 

acrylamide gradient and 6 M urea. After transfer to 0.22 μm nitrocellulose, PsbO and PsbQ were 

detected by using specific antiserum against each protein, and both were reacted with goat-anti-

rabbit horseradish peroxidase conjugated antiserum (Pierce Biotech, Rockford, IL) developed in 

West Pico (Pierce Biotech, Rockford, IL) for 5 min. PsbV was visualized by reacting its cofactor 

with SuperSignal West Pico Substrate (Pierce Biotech, Rockford, IL). Blots were visualized in a 
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Fujifilm LAS-1000plus imager (Fujifilm, Stamford, CT) for 1 to 5 min. Digital images were 

quantified using ImageJ software (Abramoff et al., 2004). Determinations of antibody linearity 

across proteins concentrations were done as previously described (Thornton et al., 2004). 

 

RT-PCR 

Total RNA was isolated from Synechocystis 6803 using Triazol reagent (GIBCO-BRL, Grand 

Island, NY) and purified using RNA Clean-Up Kit (Zymo Research, Orange, CA). Single cDNA 

strands were synthesized (Ogawa et al., 2002) using SuperscriptII (Invitrogen, Carlsbad, CA). 

Four primers were used in separate reactions to create cDNA to different overlapping sections of 

the operon (5’GGCATGCCAGTGTTGATGAE-3’, 5’-AACAGGGGTTTTAATTTCCCG-3’, 5’-

GGTAA CACCATGGCCACCT-3’, 5’-TCCTAGGGTCAT CATTTCTGC-3’). A primer for RNAseP 

(5’-ACCAAATTCCTCAAAGCG-3’) provided a positive control. The cDNA was then treated with 

RNaseH (Invitrogen, Orange, CA) for 30 mins at 37°C and amplified by PCR to create four 

overlapping products. PCR primers used were 5’GGCATGCCAGTGTTGATGAT-3’, 5’-TGAGC 

AAACAGTAACTTCCCC-3’, 5’-AACAGGGGTT TTAATTTCCCG-3’, 5’-GTTGGGAAGCCCAAA 

AGC, 5’-GGTAACACCATGGCCACCT-3’, 5’-TGCACTGATTAGCGTTTTG-3’, 5’-TCCTAGG 

GTCATCATTTCTGC-3’, and 5’-CTGCCAAGCC AAACTGATTT-3’ to amplify slr0144 – slr0152 

operon and 5’-ACCAAATTCCTCAAAGCG-3’ and 5’-CAAACTTGCTGGGTAAC-3’ to amplify 

RNaseP. 

  

slr0144 – slr0152 Deletion Construction 

The predicted ORFs of slr0144, slr0145, slr0146, slr0147, slr0148, slr0149, slr0150, slr0151, and 

slr0152 were replaced by a Cm resistance gene. The 430 bps upstream of the slr0144 ORF (PCR 

amplified using primers 5’-ACGTACGAGCTCACAAAGTTG GCCGGTCACTCC-3’ and 5’-

CATGGTCATAGCTGTTTCAACGGGCAAATGCTCTGAAA-3’) and 460 bps downstream of the 

slr0152 ORF (PCR amplified using primers 5’-ACGTACGCATGCAT 

TTCTGGCTAGTCATGGTGG-3’ and 5’- GGCATGCCAGTGTTGATGAT-3’) were cloned into 
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flanking positions of the Cm resistance gene in a pUC18 derivative. The construct was 

transformed into Synechocystis 6803 and segregation of the mutation confirmed by PCR. 

Knockout construction and segregation of mutant shown in Fig 7. To generate the Δslr0144-

slr0152 HT47GM mutant, the Δslr0144-slr0152 mutation was introduced into the HT47GM strain, 

which contains a hexahistidine tag on the CP47 protein (Roose, 2008). 

 

Fluorescence Measurements  

Kautsky fluorescence induction and QA- reoxidation were measured at room temperature using a 

FL100 flash kinetic fluorometer (Photon Systems, Instruments, Brno, Czech Republic) with 

FluorWin software (version 3.6.3.3). The Chl concentration for each sample was adjusted to 5 µg 

of Chl/ml as measured on a DW2000 spectrophotometer (SLM-Aminco, Urbana, IL). The samples 

were dark-adapted for 3 min prior to measuring.  

 

Steady State Oxygen Evolution 

A Clarke-type electrode was used to determine the rate of photosynthetic oxygen evolution 

(Mannan and Pakrasi, 1993). Oxygen evolution was measured for whole cells at a concentration 

of 5 μg Chl/mL in the presence of 0.5 mM 2.6-dichloro-p-benzoquinone (Eastman-Kodak, 

Rochester, NY) and 1 mM K3FeCN6. Light intensity was adjusted by use of neutral density filters. 

Oxygen evolution for isolated PSII complexes was measured at 3 μg Chl/mL in 50 mM MES-

NaOH (pH 6.0)/20 mM CaCl2/0.5 M sucrose (Roose et al., 2007). 

 

Flash Yield Oxygen Evolution and Calculation of S-state distribution 

Flash yield oxygen evolution was measured on a bare platinum electrode (Artisan Scientific Co., 

Urbana, IL). Cells were incubated in the dark for 2 mins prior to electrode polarization at 0.65V for 

10 s and a series of 16 flashes were applied. Data points were collected at intervals of 10 μs 

during the flash train. This data was then analyzed utilizing the in-house software program 
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Oxygen Revolution and peak data for each sample were fit to a four-step homogenous model of 

Mn cluster S-state cycling (Meunier, 1993). Model-fitting calculations were done using MathCad 

software (MathSoft Engineering and Education, Inc., Cambridge, MA). 

 

Mixed Culture Experiments 

The mixed culture experiments were performed essentially as described (Ivleva et al., 2000). WT 

and Δslr0144 – slr0152 were grown in a 50 ml liquid culture of BG11 until mid-exponential phase. 

Mixed cultures containing an equal number of WT and Δslr0144 – slr0152 cells were started at 

OD730nm of 0.05 and grown under low (10 μmol photons m-2 s-1), medium (30 μmol photons m-2 s-

1) or high (100 μmol photons m-2 s-1) light. A sample was taken for DNA extraction every 72 h and 

the culture was diluted back to OD730nm of 0.05. Each mixed culture was sub-cultured five times. 

PCR was used to analyze the slr0144 – slr0152 locus in each isolated DNA sample. PCR 

products were separated on 1% agarose gels, visualised using the Kodak 1D Image Analysis 

software (Rochester, NY), and quantified using ImageJ software (Abramoff et al., 2004). 

 

Mn Measurements 

Concentrations of Mn were measured on an AA600 atomic absorption spectrophotometer 

(PerkinElmer Life Sciences, Wellesley, MA). PSII samples were diluted to 5 μg Chl/mL in 

deionized water before analysis. The Mn:PSII ratio was calculated based on 41 molecules of 

Chl/PSII (Kashino et al., 2002).
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RESULTS 

  

Identification of over 200 PSII associated proteins with differential abundance in lumenal protein 

mutants.  

To look for assembly intermediates, we compared the protein composition of HT3 PSII 

and PSII isolated from the lumenal protein mutants ΔpsbV HT3, ΔpsbQ HT3, and ΔpsbP HT3 

(Bricker et al., 1998; Kashino et al., 2002; Thornton et al., 2004; Roose et al., 2007). The 

complexes were analyzed using LC/MS and the component peptides identified using the AMT 

library described in Chapter 2. This more sensitive global proteomic technique revealed over 200 

proteins differentially expressed in the lumenal protein mutants as compared to the wild type HT3 

(Sup Table 1). These additional proteins may represent factors that are not part of stable, mature 

complexes, but are associated transiently at some point during the PSII lifecycle, such as 

assembly, repair, and degradation partners. 

 Of those identified, 15 were proteins previously identified as PSII associated proteins 

(D1, D2, CP43, CP47, PsbE, PsbF, PsbH, PsbL, PsbO, PsbV, PsbU, PsbQ, Psb27, Psb28, and 

Psb29). To confirm the validity of this proteomic analysis, we compared levels of PSII 

stoichiometric components as determined by this proteomics analysis and by established 

immunological methods. Previous studies have shown that loss of any of the lumenal proteins 

results in a destabilization of the entire lumenal face of PSII and correlates with reduced levels of 

the other lumenal proteins (Roose and Pakrasi, 2004; Inoue-Kashino et al., 2005; Kashino et al., 

2006; Roose et al., 2007). Levels of PsbO, PsbQ, and PsbV in the strains HT3, ΔpsbV HT3, 

ΔpsbQ HT3, and ΔpsbP HT3 were analyzed by comparative immunoblotting experiments. These 

experiments demonstrated the decrease of additional lumenal proteins in the mutants as 

compared to the HT3 strain. The band intensities were calculated using ImageJ (Abramoff et al., 

2004). 
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 Comparison of the ratios of PsbO, PsbQ, and PsbV levels in the strains HT3, ΔpsbV HT3, 

ΔpsbQ HT3, and ΔpsbP HT3 observed from the AMT analysis to ratios determined using 

immunological assays showed that the data from both detection methods closely corresponded, 

confirming the AMT methodology for quantification of protein abundances (Fig. 2). The linearity of 

band intensities across protein concentrations was confirmed using known amounts of these 

proteins expressed in E. coli (Fig. 3). 

 Previously, the interactions of the extrinsic proteins have been analyzed by the genetic 

deletion or affinity tagging of individual PSII subunit and analyzing the corresponding changes in 

the polypeptide profiles of the complex. In contrast, this high throughput approach provides a 

comprehensive data set to analyze PSII interactions. For instance, analysis of PsbQ using affinity 

tagging has shown that PsbQ is found solely in fully assembled complexes (Roose et al., 2007). 

Correspondingly, levels of PsbQ in complexes from ΔpsbV HT3, and ΔpsbP HT3 mutants are 

decreased (Fig. 4). Similarly, mutant analysis of Psb27 has shown that this protein associates 

with PSII pre-complexes which do not contain the lumenal proteins PsbO, PsbU, PsbV, and PsbQ 

and are not capable of oxygen evolution activity (Roose and Pakrasi, 2004; Nowaczyk et al., 

2006; Mamedov et al., 2007; Roose and Pakrasi, 2008) and that functional complexes containing 

PsbQ do not contain Psb27 (Roose et al., 2007). Thus it is not surprising that levels of Psb27 

increase in the ΔpsbV HT3, ΔpsbQ HT3, and ΔpsbP HT3 PSII complexes (Fig. 4). Additionally, 

levels of PsbV have been shown to decrease in the absence of psbQ (Kashino et al., 2006), 

which corresponds to decreased levels of PsbV seen in all mutants in this study (Fig. 4). Psb28 

and Psb29 are conserved among a variety of photosynthetic organisms and although they have 

been shown to display PSII association and function (Keren et al., 2005; Thornton et al., 2005; 

Kashino et al., 2007), their functions have not been elucidated. Thus it is intriguing that Psb28 

increases significantly in abundance in all three mutants and Psb29 increases markedly in ΔpsbQ 

HT3 and ΔpsbP HT3 and decreases in ΔpsbV HT3. 
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 Of the 200 proteins initially identified, 50 were proteins of unknown function whose levels 

were altered significantly in the mutants as compared to HT3 (Sup Table 1). While a concomitant 

loss of additional proteins with the deletion of PsbP, PsbQ, and PsbV is well documented (Ifuku et 

al., 2005; Inoue-Kashino et al., 2005; Kashino et al., 2006; Roose et al., 2007), the large group of 

proteins that increased in abundance as a result of these deletions is intriguing. This group of 

proteins may represent assembly and degradation factors associated with the lifecycle-arrested 

complexes. 

 

Proteins in a single genic cluster have increased abundance in ΔpsbV HT3, ΔpsbQ HT3, and 

ΔpsbP HT3 PSII complexes. 

Analysis of the proteins that increased the most in the mutant PSII complexes revealed 4 

proteins, Slr0146, Slr0147, Slr0149, and Slr0151, which were up to 12.5 times more abundant in 

the mutant PSII complexes. A closer look at the context of these proteins revealed that their 

ORFs are located within the same genic context in the Synechocystis genome (Fig. 5A).  

 Previously published microarray experiments describe this gene cluster, slr0144 - 

slr0152, as one of the most highly coordinated in Synechocystis and reveal that transcripts are 

downregulated in cells experiencing oxidative stress due to low iron or treatment with hydrogen 

peroxide (Singh et al., 2004). Additionally, expression of these genes is downregulated in mutants 

lacking photosystem I (PSI) or PSI and phycobilisome proteins (Singh et al., 2004). This suggests 

that the coordinated increase in protein levels observed in this study is not a general stress 

response and is specific to PSII function. RT-PCR experiments confirmed that the ORFs slr0144 

– slr0152 are located on a single transcript and thus are in an operon (data not shown).  

 It is important to note that Slr0144 and Slr0145 were also observed in the isolated PSII 

samples in several replicates, but because different peptides were observed in the HT3 and 

ΔpsbV HT3, ΔpsbQ HT3, and ΔpsbP HT3 PSII samples, we were not able to quantify those 

peptides in subsequent replicates. Thus, out of the nine ORF operon, only the products of 3 
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genes, slr0148, slr0150, and slr0152, were not observed to be associated with PSII. Slr0148, 

Slr0150, and Slr0152 are not included in the AMT database and thus nothing can be noted from 

their absence in this study. The Slr0144, Slr0145, Slr0146, Slr0147, Slr0149, and Slr0151 

proteins are present at low levels in the HT3 complexes, as indicated by the low ion counts for the 

corresponding peptides (Sup Table 1). This agrees with the findings of Singh et al (2004) that the 

genes of the slr0144 – slr0152 cluster are transcribed at low levels. Intriguingly, these proteins 

are found only in a small set of cyanobacteria. However, in the species in which they are found, 

the genes of the slr0144 – slr0152 operon exhibit synteny, suggesting that the operon 

organization is important for its function (Fig. 5B). 

  

The operon contains binding domains for cofactors important in photosynthesis.  

Although the function of these proteins is unknown, their sequences provide interesting 

insights into possible roles in photosynthesis. All 9 proteins are predicted to be located in the 

cytoplasm (Juncker et al., 2003; Bendtsen et al., 2004). Many of these proteins contain binding 

motifs for cofactors involved in photosynthesis, as well as regulatory elements (Fig. 6). Slr0144 

and Slr0147 both contain a 4-vinyl reductase (V4R) domain (Singh et al., 2004; Quevillon et al., 

2005). This domain is predicted to be a small-molecule-binding domain (SMBD) and a protein 

containing this domain has been shown to be involved in Chl biosynthesis in Rhodobacter 

capsulatus (Anantharaman et al., 2001). These two proteins contain the only 2 V4R domains 

found in Synechocystis 6803. Slr0148 and Slr0150 are putative ferredoxins and contain motifs for 

2Fe-2S iron-sulfur clusters, cofactors that mediate electron transfer and are found in the 

cytochrome b6f complex and the PSI associated terminal ferredoxin (Singh et al., 2004; Quevillon 

et al., 2005). Additionally Slr0146 and Slr0149 have domains for the binding of bilins, a cofactor of 

the phycobilisome, the light harvesting system of cyanobacteria (Quevillon et al., 2005). Slr0151 

contains a TPR (tetratricopeptide repeats) domain, hypothesized to be involved in protein-protein 

interactions, suggesting that these proteins may complex with each other or with as yet 

unidentified partners (Singh et al., 2004; Quevillon et al., 2005). Slr0152, also named PknD, 
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encodes a Ser/Thr kinase, which may function as a regulatory element for the operon (Singh et 

al., 2004; Quevillon et al., 2005).  

  

Deletion of slr0144 - slr0152 does not alter photoautotrophic growth.  

To investigate the role of the slr0144 - slr0152 operon in PSII function, the entire coding 

region of the operon was deleted and replaced with a Cm resistance gene (Fig. 7). Deletion of the 

operon did not alter photosynthetic growth (Fig. 8A).  Depletion of CaCl2 from the culture media 

did not affect the rate of photoautotrophic growth, as seen in other PSII extrinsic mutants (Table 

1). Growth of the mutant in high (100 µmol photons m-2 s-1) or low (20 µmol photons m-2 s-1) light 

conditions also showed no difference from wild type (Table 1). 

  

The ∆slr0144 - slr0152 mutant displays normal fluorescence kinetics.  

Fluorescence measurements with the deletion mutant did not exhibit any defects in PSII 

electron transfer. Measurements of fluorescence induction (Kautsky effect) show no differences 

among values for Fo, Fm, and Fv (data not shown). Similarly, measurements of QA- reoxidation 

using the herbicide DCMU also showed no differences in these fluorescence parameters. This 

indicates that electron flow through the core of PSII is largely unaffected by the deletion of 

slr0144 – slr0152. 

  

The ∆slr0144 – slr0152 mutant displays altered water oxidation.  

Careful analysis revealed that the Δslr0144 – slr0152 mutant has impaired oxygen 

evolution activity (Fig. 8B). The mutant produces only ~80% as much oxygen as wild type, 

indicating an impairment of PSII complexes upon deletion of the slr0144 – slr0152 operon. 

Further analysis of oxygen evolution by measuring flash oxygen yield showed a four period 

oscillation similar to wild type but with decreased yield in the ∆slr0144 – slr0152 mutant (Fig. 8C). 

Quantification of this data revealed that prior to illumination, ∆slr0144 – slr0152 shows no 

significant change in the percentage of centers at the S0 state, but has a decreased percentage 
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of reaction centers in the S1 state and increased percentages of centers in the S2 and S3 states. A 

similar increase in S2 stabilization is seen in the ΔpsbV mutants (Shen et al., 1998) (Fig 8D). 

Based on this data, we have named the products of the slr0144 – slr0152 operon Photosystem II 

assembly proteins (Pap). 

 

Slr0144 – Slr0152 confers fitness to Synechocystis 

 To further analyze and understand the cellular role of slr0144 – slr0152, we investigated 

its role in organismal fitness. We conducted a mixed culture experiment in which equal numbers 

of WT and Δslr0144 – slr0152 cells were incubated together in a single flask, forcing the two 

strains to compete for available nutrients. The flasks were subcultured every 3 d and samples 

were collected for PCR analysis to detect the amount of each strain present. This experimental 

setup has previously been described in detail (Ivleva et al., 2000). 

While both strains showed similar ratios under low (10 μmol photons m-2 s-1) or moderate 

(30 μmol photons m-2 s-1) light intensities, there was an increase of the ratio of WT to Δslr0144 – 

slr0152 under high light (100 μmol photons m-2 s-1) intensities. After the fifth subculture timepoint 

(5), the PCR band corresponding to Δslr0144 – slr0152 is no longer detectable (Fig. 9). Thus 

Δslr0144 – slr0152 confers a fitness advantage under high light. 

 

Isolated Δslr0144 – slr0152 PSII complexes have reduced activity and altered composition 

 To determine the role of slr0144 – slr0152 in PSII assembly and function, PSII complexes 

were isolated and analyzed from the mutant using the strain Δslr0144 – slr0152 HT47GM via a 

histidine tag on the core PSII protein CP47. Analysis of protein profiles by SDS-PAGE normalized 

by Chl concentrations showed that there were significant changes in protein levels in Δslr0144 – 

slr0152 HT47GM, particularly an increase in the low molecular weight proteins Sll1390, Psb27, 

PsbE, PsbV, and PsbQ (Fig 10A). However, if the isolated complexes were loaded by equal 

protein concentrations, most of the protein levels appeared unaltered in Δslr0144 – slr0152 
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HT47GM as compared to HT47GM, with the exception of an increase in Sll1390 and PsbV (Fig 

10A). Analysis of Chl concentrations per amount of protein present (determined by BCA assays) 

in the isolated complexes revealed that Δslr0144 – slr0152 HT47GM complexes contain 70% of 

the Chl of WT complexes (Table 2). Western blots for the CP47 and D1 proteins confirmed that 

the levels of these proteins are unchanged when isolated PSII complexes are loaded on the basis 

of protein, but when complexes are loaded on an equal Chl basis, there is a significant decrease 

in the amount in the multi-Chl containing protein CP47 as compared to the D1 protein, which only 

contains 2 Chl molecules (Fig. 10B). However there is no significant difference of the Chl 

concentration per cell between WT and Δslr0144 – slr0152 (Table 2), suggesting that Chl 

biosynthesis itself is largely unaffected by the removal of these genes. This indicates that the loss 

of the slr0144 – slr0152 proteins has a dramatic affect on Chl integration in PSII. It is also 

possible that there is a decrease in Chl integration in PSI complexes.  

 Analysis of Mn content of the isolated complexes using atomic absorption spectroscopy 

showed that there was no difference in Mn content when compared on a per mg protein basis 

(Table 3). This indicates that the catalytic Mn clusters are assembled in the mutant complex. 

However, isolated Δ slr0144 – slr0152 HT47GM PSII complexes have only 30% activity 

compared to HT47GM complexes, regardless of how the samples are loaded (Table 4). Thus 

Slr0144 – Slr0152 function to stabilize oxygen evolution independent of manganese cluster 

formation. 
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DISCUSSION 

 

Identification of novel PSII-associated proteins.  

Using a sensitive proteomic approach to investigate the composition of PSII, we identified 

over 200 proteins associated with the complex, 169 more proteins than had been identified using 

more conventional methods. Additionally, the small number of PSI and PSI-associated proteins 

that were identified in the proteomics study (5% of the total identified proteins) suggest that the 

PSII samples were relatively pure and that the majority of the proteins identified are indeed PSII 

associated. These additional proteins may represent factors that are transiently associated with 

PSII and play roles in complex assembly, repair, or degradation. In the past, it has proven difficult 

to identify these proteins due to the relatively short periods of association in comparison to stable 

mature, active PSII complexes. This type of proteomics analysis is a valuable tool in investigating 

proteins involved in the complex assembly of PSII.  

  

Identification of a novel operon involved in PSII activity.  

Using established histochemical methods, we were able to confirm that this proteomic 

approach is an accurate method to establish quantitative protein profiles in isolated PSII 

complexes. Of the 50 PSII associated proteins identified with unknown functions, four of the 

proteins that were increased in abundance in the PSII mutants were located in a single genic 

region. These proteins are encoded in a 9-gene operon known to be highly coordinated 

transcriptionally and at least six operon products co-purify with PSII complexes. Additionally, the 

slr0144 – slr0152 operon contains domains for binding the cofactors Chl, 2Fe-2S iron sulfur 

centers, and bilin, which are all components of the electron transport chain.  

 The conservation of synteny of the operon, along with the diversity of the cyanobacterial 

species (mesophiles, thermophiles, and nitrogen fixers) in which the genes of the slr0144 – 

slr0152 operon has been observed suggests that these genes play an important role in cellular 

processes. Thus it is intriguing that only two of the genes, slr0150 and slr0152, are conserved in 
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higher photosynthetic organisms (Altschul et al., 1997), suggesting that the mode of this action is 

specific to cyanobacteria.  

 It has long been known that genes in bacterial operons undergo coordinated 

transcriptional regulation. However, it is unclear whether those transcripts then undergo 

coordinated translation and assembly into a complex, though there are examples such as the 

ribosomal operons. Because the Slr0144, Slr0145, Slr0146, Slr0147, Slr0149, and Slr0151 

proteins co-purified with PSII complexes under stringent conditions, it appears that not only is 

transcription of this operon tightly regulated, as shown by Singh et al. (2004), but also that the 

transcripts undergo coordinated translation and bind to the same complex. 

  

Role of Paps in PSII assembly and function.  

Because there is no change in photoautotrophic growth of the ∆slr0144 – slr0152 mutant 

in any of the conditions tested, this suggests that the role of slr0144 – slr0152 is non-essential 

and primarily involved in increasing photosynthetic efficiency. Additionally, the lack of altered 

fluorescence kinetics suggests that the core complex of PSII is fully assembled in ∆slr0144 – 

slr0152. Thus it is intriguing that in high light, Sll0144 – Slr0152 provide a competitive fitness 

advantage. However, the decrease in PSII activity suggests that with the loss of the Paps there 

are a decreased number of fully assembled PSII complexes. Alternatively this decreased PSII 

activity could also be due to complexes, which are fully assembled but are somehow impaired for 

photochemistry. 

 The ∆slr0144 – slr0152 mutation demonstrates a case of cross talk between the lumenal 

and cytosolic proteins of PSII.  It is intriguing that deletion of the lumenal proteins PsbP, PsbQ, 

and PsbV lead to an increase in abundance in the cytosolic Pap proteins (Supplemental Table 1) 

and conversely, the deletion of the Pap proteins results in increased levels in PsbV, Sll1390, and 

Psb27 (Fig. 10A), which all contain targeting sequences for the lumen. The increase of these 

proteins in non-fully assembled PSII complexes suggest that the Pap proteins function in 

assembly of complexes and are aggregating on these sub-assembled complexes or are 
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functioning in degrading the non-fully functional complexes. Additionally, the decrease in oxygen 

evolution activity and the altered S state distribution in the ∆slr0144 – slr0152 mutant are 

phenotypes traditionally associated with mutation in the lumenal PsbO, PsbU, PsbV, PsbQ, and 

PsbP proteins (Shen et al., 1998; Thornton et al., 2004; Kashino et al., 2006), suggesting that the 

lumenal side of the complex is unstable in the absence of the Pap proteins. This suggests that 

there is feedback across the membrane plane of PSII that increases Pap protein levels when the 

lumenal surface is non-fully assembled and that the Pap proteins are necessary to fully assemble 

the lumenal side of PSII. 

 PSII has an intricate lifecycle and the rudimentary steps of assembly have been 

elucidated. However the assembly of the proteins and cofactors are not yet fully understood. The 

discovery of Paps may aid our understanding how the non-protein cofactors are inserted or 

recycled into new and repaired complexes. It is possible that the PSII defects seen in this study 

indicate that Slr0144 and Slr0147 function to sequester Chl molecules to prevent damage to the 

cell prior to initial complex assembly and during repair, similar to the SCP proteins (Vavilin and 

Vermaas, 2007). Future work demonstrating that the cofactor binding sites of the Pap proteins 

are functional and that they are able to transfer cofactors could provide exciting insight into how 

these cofactors are assembled into the complex. Additionally, Pap proteins shed new light on the 

crosstalk that must occur between the cytosolic and lumenal compartments of the cyanobacterial 

cell. A model of Pap-containing PSII complexes is shown in Figure 11. 

 In addition, future work will need to focus on whether Paps are key to PSII assembly or if 

they aid in assembly of other complexes in the electron transport chain. Because the operon 

contains binding domains for 2Fe-2S clusters and bilin, cofactors of cytochrome b6f complex, 

ferredoxins, and the phycobilisome, in addition to domains for Chl binding which is integral to both 

PSI and PSII function, Pap must serve as a cofactor repository for the entire photosynthetic 

chain. Preliminary data suggests that the deletion of slr0144 – slr0152 does not affect the 

abundance or connectivity of PSI or the phycobilisome, perhaps because these systems are less 
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sensitive to the affects of the removal of pap on than PSII. However, it is clear from this study that 

these proteins play an important role in PSII.  
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Strain Condition
∆OD730nm/        

24 h
Relative 

Rate

WT Med Light 0.163±0.015 100%

∆slr014–
slr0152 Med Light 0.176±0.050 107%

WT High light 0.192±0.090 118%

∆slr014–
slr0152 High light 0.166±0.028 102%

WT Low light 0.122±0.055 75%

∆slr014–
slr0152 Low light 0.117±0.008 72%

WT -CaCl2 0.014±0.003 9%

∆slr014–
slr0152 -CaCl2 0.024±0.009 15%

Table 1. Rates of Photoautotrophic Growth for ∆slr0144 -
slr0152 and WT. Relative rates are based on ∆OD730nm/24 hours
for WT at med light. Standard deviation is given for n=3.
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Sample Type
Chl

(ug/mL)/ 
OD730nm

[protein] 
(ug/mL)

[chl]
(ug/mL)

[chl] /   
[protein]

HT47GM Whole 
Cells

20.95 ±
0.21 - - -

HT47GM PSII - 3511 14 0.0039

∆slr0144 –
slr0152 

HT47GM

Whole 
Cells

20.81 ±
0.18 - - -

∆slr0144 –
slr0152 

HT47GM
PSII - 3223 9 0.0028

Table 2. Analysis of isolated PSII complexes. Protein measurements
determined by BCA assay of 25uL purified PSII. Measurements for
chlorophyll and cell number (OD730nm) were determined
spectrophotometrically. Standard deviation is given for n=3.
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Sample Mn (ug/L) Mol Mn per g chl Mol Mn per g protein

HT47GM 29.7 3.14E-6 1.57E-5

∆slr0144 – slr0152 
HT47GM 42.7 1.55E-4 1.71E-5

Table 3. Manganese levels/chlorophyll and proteins levels. Mn
content per PSII sample, measured by atomic absorption spectra
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Sample O2 evolution (umol O2/mg 
chl/hr)

O2 evolution (umol O2/mg 
protein/hr)

HT47GM 862.3 ± 35 216

∆slr0144-slr0152
HT47GM 254.3 ± 39 90

Table 4. Oxygen evolution rates of isolated complexes. Oxygen
evolution was measured on a Clark-type electrode in the presence of 1
mM potassium ferricyanide and 0.5 mM DCBQ at 8250 μmol photons
m-2 s-1 white light. Standard deviation is given for n=3.
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Fig. 1. Schematic of PSII assembly. The pre-D1 protein (pD1) is
inserted into the pre-complex containing D2. CtpA processes pD1
and CP47 joins the complex. The last core protein CP43 is then
assembled. The lumenal proteins PsbP, PsbQ, PsbO, PsbV, and
PsbU then bind, forming the functional PSII complex.
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Protein Mutant Relative Amounts (Mutant/HT3)
Proteomics Immunoblot

PsbO ĘpsbP  HT3 1.12 0.91
ĘpsbQ  HT3 1.00 0.69
ĘpsbV HT3 0.61 0.61

PsbQ ĘpsbP  HT3 0.68 0.71
ĘpsbQ  HT3 n.d. n.d.
ĘpsbV HT3 0.35 0.43

PsbV ĘpsbP  HT3 0.82 0.68
ĘpsbQ  HT3 0.72 0.56
ĘpsbV HT3 n.d. n.d.

C

HT3 ΔpsbP 
HT3

ΔpsbQ 
HT3

ΔpsbV 
HT3

PsbO

PsbQ

PsbV

B

A

∆psbP
HT3

∆psbQ
HT3

∆psbV
HT3

HT3

Fig. 2. Comparison of
protein quantification
determined by
proteomic and
immunoblot analysis.
(A) Levels of PsbO
(white bars), PsbV (black
bars), and PsbQ (hashed
bars) as determined by
proteomics analysis. (B)
Western blot analysis of
PsbO, PsbQ, and PsbV.
(C) Comparison of PsbO,
PsbQ, and PsbV levels as
determined from
proteomic and from
immunoblot analysis, as
quantified by ImageJ
software. n.d – not
detected.
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Fig 3. Linearity of PsbO, PsbQ, and PsbV over a range of
concentrations. The linear range of PsbO, PsbQ, and PsbV detection in
isolated PSII complexes was determined by comparative immunoblotting.
The signal intensity for each antigen band (determined using ImageJ) was
plotted against the chlorophyll concentration of HT3 PSII loaded. Each
line was generated as a standard linear curve fit.
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Fig. 4. Levels of PSII extrinsic proteins in ΔpsbP HT3, ΔpsbQ
HT3, and ΔpsbV HT3. Levels are determined as the log2 ratio of
ion counts for the corresponding protein in ΔpsbP HT3 (white
bars), ΔpsbQ HT3 (black bars), and ΔpsbV HT3 (hashed bars)
PSII as compared to HT3 PSII. Error bars indicated standard
error.
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slr0144 slr0145 slr0146 slr0147 slr0149 slr0150 slr0151 slr0152slr0148

Synechocystis 6803

T. elongatus BP-1

Cyanothece 51142

Synechoccocus JA-3-3-Ab

Synechoccocus JA-2-3-B’a (2-13)

C. watsonii WH8501

tlr2298 tlr2299 tlr2300 tlr2301 tll0854 tlr1236 tlr2303 tlr2304tlr2302
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0831 0832 0833 0834 2749 x x x1946

1835 1836 1837 1838 0627 x x x0815

x x x 4334 4336 4337 4339 28594335

Fig. 5. The slr0144 – slr0152 operon in Synechocystis 6803 and other
cyanobacteria. (A) Organization of the slr0144 – slr0152 operon in
Synechocystis 6803. Arrows in black indicate ORFs whose products
were observed to be differentially expressed in PSII complexes isolated
from various mutant strains. (B) Synteny of the slr0144 – slr0152
operon in various cyanobacteria. / indicates genes are not clustered
together. X indicates that there is no ortholog in the genome. The
numbers correspond to the gene designation or contig number in
various cyanobacteria. Data used for this analysis are from the
EMBL/GenBank data libraries with accession numbers: Synechocystis
6803 [BA000022, AP004310, AP004311, AP004312, AP006585]; T.
elongatus BP-1 [BA000039]; Cyanothece sp. ATCC 51142
[NC010547].
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Fig. 6. The predicted domains of Slr0144 – Slr0152 proteins.
slr0144 and slr0147 contain V4R domains that are predicted to bind
chlorophyll. slr0146 and slr0149 contain putative bilin binding domains.
slr0148 and slr0150 contain putative 2Fe-2S cluster binding domains.
Additionally, slr0151 contains two TPR domains and slr0152 contains a
putative protein kinase domain.
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Fig. 7. Construction of ∆slr0144 – slr0152 mutant. The slr0144 –
slr0152 locus in (A) WT and in (B) Δslr0144 – slr0152 mutant in
which the operon is replaced by a chloramphenicol resistance gene.
Genes of the slr0144 – slr0152 operon are indicated in black. (C) PCR
of the slr0144 – slr0152 locus in WT (1) and Δslr0144 – slr0152 (2)
cells.
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Fig. 8. Growth and activity of ∆slr0144 – slr0152 mutant strain.
(A) Photoautotrophic growth of ∆slr0144 – slr0152 (dashed line) and
WT (solid line) in BG11 medium. Error bars represent the standard
deviation of the mean (n=3). (B) Oxygen evolution of ∆slr0144 –
slr0152 (dashed line) and WT (solid line) in BG11 medium. Error bars
represent the standard deviation of the mean (n=3) (C) Flash induced
oxygen evolution of ∆slr0144 – slr0152 (dashed line) and WT (solid
line). Error bars represent the standard deviation of the mean (n=4). (D)
Quantification of S-state distribution from flash oxygen evolution of the
slr0144 – slr0152 mutant (indicated by white bars) and WT (black
bars). Error bars represent the standard deviation of the mean (n=4).
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1.6 kb
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∆slr0144   
–slr0152
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Fig. 9. Competition of WT and ∆slr0144–slr0152 grown under low
(10 μmol photons m-2 s-1), medium (30 μmol photons m-2 s-1) or high
(100 μmol photons m-2 s-1) light. At each time point, genomic DNA
was isolated and PCR conducted to determine the relative abundance of
each strain. A representative gel is shown.
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Fig. 10. Protein composition of isolated HT47GM and ∆slr0144–
slr0152 HT47GM PSII complexes. (A) SDS-PAGE protein profiles of
PSII complexes loaded on an equal chlorophyll or protein basis. (B)
Immunoblots of CP47 and D1 proteins in isolated complexes loaded by
equal chlorophyll or protein levels. ImageJ used for quantification.
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Fig. 11. Model of Pap-containing PSII. (A) Diagram of PSII
complexes isolated using a histidine tag on CP47 (B) Diagram of Pap-
containing PSII complexes.
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SUMMARY 

  

Photosystem II (PSII), a membrane protein, catalyzes photochemical oxidation of water to 

molecular oxygen. This enzyme complex consists of approximately 20 stoichiometric protein 

components. However, due to the highly energetic reactions it catalyzes as part of its normal 

activity, PSII is continuously damaged and repaired. With advances in protein detection 

technologies, an increasing number of sub-stoichiometric PSII proteins have been identified, 

many of which aid in the biogenesis and assembly of this protein complex. Psb32 (Sll1390) has 

previously been identified as a protein associated with highly active purified PSII preparations 

from the cyanobacterium Synechocystis sp. PCC 6803. To investigate its function, we analyzed 

subcellular localization of Psb32 and the impact of genetic deletion of the psb32 gene on PSII. 

Here we show that Psb32 is an integral membrane protein, primarily located in the thylakoid 

membranes. Although not required for cell viability, Psb32 protects cells from oxidative stress and 

additionally confers a selective fitness advantage in mixed culture experiments. Specifically, 

Psb32 protects PSII from photodamage and accelerates its repair. Thus, we propose that Psb32 

plays an important role in minimizing the effect of photoinhibition on PSII.  
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INTRODUCTION 

 

 Oxygenic photosynthesis is a series of enzymatic reactions in which photons are 

converted to chemical energy in cyanobacteria and chloroplasts. Photosystem II (PSII) is the first 

enzyme complex of the pathway, oxidizing water into molecular oxygen, generating protons that 

are used for ATP generation, and electrons which move down the electron transport chain to 

ultimately reduce NADP.  This reaction and many of the core proteins of PSII evolved in 

cyanobacteria and thus are conserved in the chloroplasts of higher photosynthetic organisms. 

Crystallographic studies of cyanobacterial PSII show that the complex contains at least 

20 proteins and 70 cofactors, including chlorophylls, carotenoids, and manganese (Loll et al., 

2005). However, in vivo, at any one time, organisms contain a mixed population of PSII 

complexes. Traditionally, studies have relied on isolation of PSII using a histidine tag on the large 

core protein CP47. Because insertion of CP47 is an early step in biogenesis, these isolations 

actually contain a complex mixture of fully assembled active PSII complexes, damaged 

complexes with reduced activity, and partially assembled complexes containing accessory 

proteins. SDS-PAGE separation of traditional purifications of active PSII, followed by mass 

spectrometry and N-terminal sequencing revealed that even highly active purified PSII may have 

as many as 31 polypeptides associated (Kashino et al., 2002). Recently, high throughput liquid 

chromatography tandem mass spectrometry analysis of active PSII complexes from 

Synechocystis sp. PCC 6803 (hereafter Synechocystis) without initial PAGE separation identified 

over 200 proteins (Wegener et al., 2008). Closer analysis of some of these non-stoichiometric 

proteins shows that they are indeed associated with sub populations of complexes and are not 

contaminants. In particular, cyanobacterial PsbP is associated with 5% of all PSII complexes 

(Thornton et al., 2004). 

Study of these partially assembled complexes has revealed that PSII biogenesis and 

repair requires a host of accessory proteins. Some well studied examples of these assembly 

proteins include CtpA, a protease which must process the D1 protein before PSII can be 
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assembled (Roose and Pakrasi, 2004). Other accessory proteins identified through proteomic 

study of PSII (Kashino et al., 2002; Wegener et al., 2008) include Psb27, which was subsequently 

shown to aid in assembly of the catalytic manganese cluster (Nowaczyk et al., 2006; Roose and 

Pakrasi, 2008) and Psb29, which provides PSII tolerance to high light intensities (Wang, 2004; 

Keren et al., 2005). 

This assembly process is crucial to photosynthesis, because although light is required for 

photosynthetic reactions, it is also damaging to the photosynthetic reaction centers. In particular 

PSII is highly susceptible to light damage, termed photodamage (Powles, 1984; Prásil et al., 

1992; Aro et al., 1993; Andersson and Aro, 2001). Photodamage is repaired by de novo protein 

synthesis, allowing PSII function returns to normal (Prásil et al., 1992; Aro et al., 1993; Andersson 

and Aro, 2001). This damage and repair cycle allows photosynthesis to function at certain light 

intensities. While photodamage occurs constantly, it increases proportionally with light intensity 

(Park et al., 1995; Tyystjärvi and Aro, 1996; Anderson and Chow, 2002; Nishiyama et al., 2004). 

When the rates of damage exceed the rates of repair, PSII is no longer functional, a process 

termed photoinhibition. 

In addition to light, reactive oxygen species (ROS) can also cause damage to PSII. ROS 

can be produced as a byproduct of the light reactions of photosynthesis. Reduction of oxygen by 

photosystem I, the acceptor side of photosynthesis, can lead to the generation of superoxide 

radicals (O2
-), which can convert to hydrogen peroxide (H2O2) and hydroxyl radicals (.OH) (Asada, 

2003). On the donor side, transfer of excitation energy from chlorophyll to oxygen can result in 

the production of singlet oxygen (1O2) (Knox and Dodge, 1985; Asada, 2003). Cells have many 

strategies for dealing with ROS, including antioxidants, like α-tocopherol and β-carotene, and 

ROS scavenging enzymes, such as superoxide dismutase (Asada, 2003; Havaux et al., 2005). 

However, like photodamage and repair, this cycle of ROS damage and repair can also be 

stressed by increased light intensity so that damage accumulates (Asada, 2003). 

To maintain photosynthesis, the PSII enzyme undergoes frequent turnover, due mainly to 

irreversible damage of the D1 protein (Andersson and Aro, 2001; Aro et al., 2005). The damaged 
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D1 protein must be detected, proteolytically removed and replaced with a newly synthesized 

copy, a process that requires at least partial disassembly of the complex. The removal of the D1 

protein is suspected to require partial disassembly of the complex by requiring the dissociation of 

the lumenal proteins and the catalytic manganese cluster. Specifically, the manganese atoms of 

the oxygen evolving center and the extrinsic proteins must be released from the damaged 

complex, and then re-bound to newly assembled PSII centers to restore activity (Roose and 

Pakrasi, 2004). 

Another sub-stoichiometric protein, Sll1390, which we have named Psb32, was also 

identified through PSII proteomic studies (Kashino et al., 2002; Wegener et al., 2008). In isolated 

PSII complexes lacking either of the lumenal proteins PsbQ or PsbP, levels of Psb32 were 

increased 1.24 and 1.19 fold respectively as compared to WT PSII complexes (Wegener et al., 

2008). However in isolated complexes lacking the lumenal protein PsbV, Psb32 levels were 

decreased to 0.57 of the levels found in WT complexes (Wegener et al., 2008). Recent large-

scale proteomics studies of Synechocystis under various nutrient stresses showed that Psb32 

was present under all conditions tested (14 peptides identified, 53.8% coverage), with the 

exception of the early stages of recovery with ammonia after nitrogen starvation (Wegener, KM, 

Singh, AK, Jacobs, JM, Elvitigala, T, Welsh, EA, Keren, N, Gritsenko, MA, Ghosh, BK, Camp II, 

DG, Smith, RD, and Pakrasi, HB, Mol Cel Proteomics, under review). Indeed the quantitative 

subset of these experiments showed that Psb32 levels were severely decreased in sulfur and 

nitrogen starvation, as were all other PSII proteins observed (Wegener et al., 2010, under 

review). 

To date, only one homolog of Psb32, TLP18.3 (At1g54780) in Arabidopsis thaliana has 

been investigated (Sirpio et al., 2007). TLP18.3 was identified by proteomic study of 2D 

SDS/PADE of thylakoid-associated polysome nascent chain complexes, the site of translation in 

the chloroplast for many of the nuclear encoded photosynthetic proteins. While plants lacking 

TLP18.3 showed no significant phenotypes under normal growth conditions, these mutants did 
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display increased susceptibility to photoinhibition and altered growth under fluctuating light. The 

authors found that this was due to decreased efficiency of repair of PSII due to decreased D1 

turnover and decreased complex dimerization (Sirpio et al., 2007). 

In this work, we show that Psb32 is located in the primarily thylakoid membranes and is 

an integral membrane protein. While not necessary for cell viability, Psb32 provides protection 

from oxidative stress. The presence of Psb32 confers fitness in mixed culture experiments. 

Additionally Psb32 protects cells from photodamage and accelerates PSII repair. Taken together, 

these data suggest that Psb32 associates with PSII during the assembly process and facilitates 

repair of damaged complexes. 
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MATERIALS AND METHODS 

 

Bioinformatics Analyses 

Signal peptides, TMHs, and domains were predicted using LipoP, SignalP, TMHMM, and InterPro 

Scan (Krogh et al., 2001; Juncker et al., 2003; Bendtsen et al., 2004; Quevillon et al., 2005). The 

phylogenic tree was generated by blasting the Psb32 (Sll1390) amino acid sequence from 

CyanoBase (Nakamura et al., 1998) against all non redundant genomes in NCBI GenBank 

(Benson et al., 2008). All free-living organisms above the cutoff of 1e-4 were used. Sequences 

were aligned and generated into a tree in MAFTT v6.0 (Katoh et al., 2002). The tree was refined 

using Fig Tree v1.3.1 (available at http://tree.bio.ed.ac.uk/software). 

 

Bacterial Strains and Culture Conditions 

Synechocystis sp. PCC 6803 was grown at 30 °C with 30 μmol photons m-2 s-1 of white light in 

BG11 media (Allen, 1984). The mutant Δpsb32 was supplemented with 10ug/mL Cm. Growth 

was monitored using OD730nm on a μQuant Biotek plate reader (Bio-Tek Instruments, Winooski, 

VT). For H2O2 growth experiments, cells were incubated with 0, 0.5, 1, or 1.5 mM H2O2 under 30 

μmol photons m-2 s-1 of white light. For rose bengal growth experiments, cells were incubated with 

7.5 μM rose bengal and 200 μmol photons m-2 s-1 white light. For methyl viologen growth 

experiments, cells were incubated with 0, 0.5, 1, or 1.5 μM methyl viologen under 30 μmol 

photons m-2 s-1 white light. 

 

Antibody Generation and Immunological Detections 

To generate the polyclonal Psb32 antibody, the psb32 gene was cloned, without the signal and 

C-terminal transmembrane sequences, into the pET41b expression system (Novagen, San 

Diego, CA) using primers anti 1390F and anti 1390R (Table I). Antibodies against the purified 

protein were raised in rabbits (Cocalico Biologicals, Reamstown, CA). The polyclonal PsbV 
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antibody was raised in rabbits against the internal surface exposed peptide N-

CGLADLAGAEPRRDN-C (Sigma Genosys, The Woodlands, TX). All other antibodies used in this 

work have been previously described (Zak et al., 2001). Membrane fractions were separated 

using SDS-PAGE (20% acrylamide, 6M urea), blotted to nitrocellulose, and incubated with 

antisera. Chemiluminescent signals were developed with Immobilon HRP reagent (Millipore, 

Billerica, MA) and visualized with a Fujifilm LAS-1000 plus imager (Fujifilm, Stamford, CT).  

 

Psb32 Localization 

Membranes were isolated as previously described (Norling et al., 1998). Plasma membranes and 

thylakoid membranes were separated with a two-phase dextran PEG polymer system (Keren et 

al., 2005). Total membranes (100 μg chlorophyll/ml) were treated with Triton X-114 to disrupt 

weak protein membrane associations (Bricker and Sherman, 1984). 

 

Mutant Strain Generation 

The Δpsb32 mutant was generated by PCR amplification of a 5’ section of psb32 using primers 

1390F upstream and 1390R upstream and of a 3’ section of psb32 using primers 1390F 

downstream and 1390R downstream (see Table I for primer sequences). The fragments were 

cloned into puc118 where they flanked a chloramphenicol resistance cassette.  

 

RT-PCR 

To assay expression of psb32 and the downstream gene sll1866 in the Δpsb32 mutant, we 

preformed RT-PCR as described previously (Wegener et al., 2008) with the following 

modifications. Random hexamer primers (Invitrogen, Carlsbad, CA) were used to generate cDNA 

with Superscript II reverse transcriptase (Invitrogen). Primers used for PCR of cDNA can be 

found in Table I. 
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Mixed Culture Experiments 

The mixed culture experiments were performed essentially as described (Ivleva et al., 2000). WT 

and Δpsb32 were grown in a 50 ml liquid culture of BG11 until mid-exponential phase. Mixed 

cultures containing an equal number of WT and Δpsb32 cells were started at OD730nm of 0.05 and 

grown under 5 (LL), 45 (GL) or 150 (HL) μmol photons m-2 s-1. A sample was taken for DNA 

extraction every 72 h and the culture was diluted back to OD730nm of 0.05. Each mixed culture was 

sub-cultured five times. PCR was used to analyze the psb32 locus in each isolated DNA sample. 

PCR products were separated on 1% agarose gels, visualized using the Kodak 1D Image 

Analysis software (Rochester, NY), and quantified using ImageJ software (Abramoff et al., 2004). 

 

Photoinhibition and recovery 

Three d old cultures of WT and Δpsb32 (3 μg/mL chlorophyll) were incubated at 30°C for 1 h at 

20 μmol μmol photons m-2 s-1 red and blue LED light (Photon System Incorporated, Czech 

Republic) and bubbled with air. To induce photoinhibition, 20 μg/ml of the protein synthesis 

inhibitor lincomycin (Sigma; St. Louis, MO) was added to prevent de novo synthesis of proteins 

and the light intensity was subsequently increased to 200 μmol photons m-2 s-1 red and blue LED 

light (equivalent to ~1000 μmol photons m-2 s-1 white incandescent light). Variable fluorescence 

yield (Fv/Fm) was measured every 30 min (FL200; Photon System Incorporated, Czech 

Republic). After 1 h incubation with lincomycin, the cultures were spun at 6,000 rpm 3 min and 

washed twice with BG11. Subsequently cultures were re-suspended in a prewash volume of 

warmed BG11 and incubated at 20 μmol photons m-2 s-1 red and blue LED light for the rest of the 

experiment. 
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RESULTS 

 

Gene Structure and Conservation of Psb32 

 Bioinformatics predictions suggest that Psb32 contains an N-terminal signal peptide for 

thylakoid membrane localization (Juncker et al., 2003; Bendtsen et al., 2004). This signal peptide 

is predicted to be cleaved between residues 46-47 by Signal Peptidase I (Juncker et al., 2003), 

suggesting that Psb32 is transported by the Sec pathway, crossing the membrane unfolded 

(reviewed in Natale et al., 2008). There is also a predicted C-terminal transmembrane helix 

(TMH), indicating that Psb32 is an integral membrane protein (Krogh et al., 2001). Lastly, Psb32 

also contains a domain of unknown function (DUF477), which though uncharacterized, is found in 

both prokaryotes and eukaryotes (Quevillon et al., 2005). The basic structure of psb32 is shown 

in Fig. 1A. 

Ancestral relatives of modern cyanobacteria were the progenitors of the chloroplast found 

in plants and algae (Goksoyr, 1967) and many PSII subunits are conserved throughout 

cyanobacteria, algae, and plants (Hankamer et al., 2001). As previously published, similarity of 

the amino acid sequences showed that Psb32 is conserved in all classes of oxygenic 

photosynthetic organisms (Roose et al., 2007). Taking advantage of the increased number of 

photosynthetic genomes available, we analyzed similarity among Psb32 homologs (Fig. 1B).  

Psb32 is restricted oxygenic photosynthetic organism with thylakoid membranes, with the 

exception of several of the cyanobacterial Prochlorococcus species that have undergone severe 

genome reduction. We found that the majority of cyanobacterial homologs clustered together, 

with the exception of the chlorophyll-d containing Acaryochloris marina. Similarly, plant and green 

algal homologs also clustered. 

 

Psb32 is localized in the thylakoid membrane 

To determine the subcellular localization of Psb32, we isolated total cellular membranes 

from wild type (WT) Synechocystis and separated thylakoid membranes (TM) and plasma 
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membranes (PM) by polyethylene glycol (PEG) dextran two-phase partitioning (Fig. 2A). Psb32 

localized to both membrane systems but was enriched in the TM. The core PSII protein CP47 

localized to the TM (Keren et al., 2005) and the sodium dependent bicarbonate transporter 

protein SbtA localized to the PM as expected, demonstrating that there was no contamination 

between the fractions.  

 To further pinpoint the nature of Psb32’s membrane association, total cellular 

membranes were treated with Triton X-114 to allow for separation of soluble and aqueous 

proteins. After Triton X-114 treatment, Psb32 remained associated with the membrane, 

suggesting its predicted single transmembrane helix is anchoring it. The intrinsic PSII protein D2 

also remains associated with membrane, while the peripheral membrane PSII protein PsbV is 

released into the soluble fraction, as previously reported (Bricker and Sherman, 1984) (Fig 2B). 

 

Genetic deletion of psb32 results in increased sensitivity to oxidative stress 

 To further investigate the role of psb32, we created a deletion mutant by replacing the 

middle portion of the gene with a chloramphenicol (Cm) resistance gene (Fig. 3A). We confirmed 

that this mutation was integrated into all copies of the Synechocystis genome by PCR of the locus 

(Fig. 3B). Additionally we established via RT-PCR that there is no psb32 transcript made but that 

expression of the closest locus sll1866 is unaffected by the insertion in psb32 (Fig 3C). 

 Deletion of psb32 did not significantly affect pigment levels, fluorescence, photosynthetic 

parameters or growth rates (data not shown). However, in the presence of hydrogen peroxide, 

the loss of psb32 greatly impaired growth (Fig. 4A). Additionally, in the presence of the photo 

oxidizer rose bengal under 200 μmol photons m-2 s-1, growth was impaired in the Δpsb32 mutant 

(Fig. 4B). Interestingly, Δpsb32 did not exhibit decreased growth in the presence of methyl 

viologen (data not shown). Taken together, these data suggest that psb32 protects cells from 

oxidative stress. 
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Psb32 confers fitness to Synechocystis 

 To further analyze and understand the cellular role of psb32, we investigated its role in 

organismal fitness. We conducted a mixed culture experiment in which equal numbers of WT and 

Δpsb32 cells were incubated together in a single flask, forcing the two strains to compete for 

available nutrients. The flasks were subcultured every 3 d and samples were collected for PCR 

analysis to detect the amount of each strain present. This experimental setup has previously 

been described in detail (Ivleva et al., 2000). 

While both strains showed similar ratios under low (5 μmol photons m-2 s-1) or moderate 

(45 μmol photons m-2 s-1) light intensities, there was an increase of the ratio of WT to Δpsb32 

under high light (150 μmol photons m-2 s-1) intensities. After the fifth subculture timepoint (t5), the 

PCR band corresponding to Δpsb32 is no longer detectable (Fig 5A). Quantization of multiple 

biological replicates showed that this increase in WT signal and decrease in Δpsb32 signal is 

quantifiable and repeatable (Fig 5B). 

 

Psb32 protects against photoinhibition 

To narrow the range of possible functions for Psb32, we investigated the extent of D1 

damage under high light and subsequent recovery. To do this, we incubated WT and Δpsb32 

under high light (~200 μmol photons m-2 s-1 red and blue light) to damage the D1 protein in the 

presence of the protein synthesis inhibitor lincomycin to halt de novo protein synthesis. After a 

period of 1 h, the cells were washed to remove the lincomycin and returned to low light to 

facilitate PSII recovery. Measurements of variable fluorescence (Fv/Fm) showed that in the 

presence of lincomycin (0 to 60 min), both WT and Δpsb32 strains exhibit decreased 

fluorescence as D1 is degraded (Fig. 6A). However, Δpsb32 exhibits accelerated photoinhibition, 

suggesting that psb32 protects the D1 protein, as has been previously shown for the Psb27 

protein (Roose and Pakrasi, 2008). After removal of the lincomycin, WT cells recover to 94% of 

their initial variable fluorescence levels after 2 h. However, Δpsb32 displays slowed recovery, 
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only achieving 86% of its initial variable fluorescence levels (Fig. 6B). This suggests that in the 

absence of Psb32, as in the absence of Psb27, PSII is not repaired as efficiently (Roose and 

Pakrasi, 2008).  
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DISCUSSION 

 

Psb32 protects PSII from ROS and photodamage 

 Growth in photosynthetic organisms is a balancing act between the processes of 

photodamage and repair. When the rate of damage exceeds the rate of repair, organisms 

experience photoinhibition. Our data shows that the presence of H2O2 and rose bengal greatly 

reduces or abolishes growth in the Δpsb32 mutant (Fig 4A and B). Interestingly, previous studies 

have shown that ROS have dramatic effects on the ability of PSII to repair itself after 

photodamage. Hydroxyl radicals from H2O2 added to culture media promote photoinhibition by 

slowing PSII repair (Nishiyama et al., 2001). Additionally, singlet oxygen produced by the 

combination of rose bengal and high light has also been shown to slow repair of PSII without 

affecting the rate of photodamage (Nishiyama et al., 2004). In both singlet oxygen and hydroxyl 

radical damage, it was found that the reason for the impeded repair was the arrest of translation 

elongation of the psbA gene, which encodes the D1 protein (Nishiyama et al., 2001; Nishiyama et 

al., 2004). Thus it could be that the effects we see of ROS on the growth rates of Δpsb32 are 

actually a reflection of the decreased rate of PSII repair of the damage caused by the ROS. That 

is further supported by our photoinhibition experiments in which Δpsb32 exhibits a decreased rate 

of recovery after damage (Fig 6B). This slowed recovery is further exacerbated by the increased 

rate of photodamage that the Δpsb32 mutant displays (Fig. 6A). 

 However, Δpsb32 does not exhibit any defect in the presence of methyl viologen (data 

not shown). While the superoxide radical produced by the addition of methyl viologen can by 

converted to H2O2 and thus produce hydroxyl radicals, the primary mode of action of superoxide 

radicals is distinctly different from singlet oxygen and hydroxyl radicals. While damage to PSII 

occurs on the donor side in the presence of singlet oxygen and hydroxyl radicals, damage due to 

superoxide occurs on the acceptor side (Knox and Dodge, 1985; Asada, 2003). The reaction of 

Δpsb32 to damage on the donor side but not the acceptor side is further evidence that Psb32 

functions to aid in assembly of PSII, which coincides with the lumenal localization of the protein 
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(Fig 2A and B). This slowed repair, in addition to the observed accelerated rate of photodamage, 

could explain why the presence of Psb32 confers a selective advantage to fitness during 

competition under high light (Fig 5), when ROS damage and light induced photoinhibition are at 

their highest.  

 

Conserved role of Psb32 among phototrophs 

Because psb32 is conserved among the majority of thylakoid containing photosynthetic 

organisms, it is interesting to consider its role among this class of organisms. To date, the only 

other study of a Psb32 homolog was conducted in Arabidopsis (Sirpio et al., 2007). In both 

Arabidopsis and Synechocystis, neither protein affects viability or pigment accumulation. In 

Synechocystis, we found that Psb32 protects PSII from photodamage and aids in the efficient 

repair. This is in agreement with data observed for the Arabidopsis homolog, TPL18.3 (Sirpio et 

al., 2007). The possible role of Psb32 as a PSII assembly nicely explains the decreased 

efficiency of PSII repair in both Synechocystis and Arabidopsis. Nevertheless there are 

differences in the subcellular localizations of the two proteins. While location of the TLP18.3 was 

only investigated in isolated thylakoid membranes, it was observed in both grana and stroma 

thylakoids (Sirpio et al., 2007). However, we found that Psb32 localizes to both the thylakoid and 

periplasmic membranes, suggesting that Psb32 might be associated with pre-PSII complexes 

which are assembled at the periplasmic membrane before they are translocated to the thylakoid 

membrane for completion (Keren et al., 2005).  
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CONCLUSIONS 

 

It had previously been shown that the Psb32 co-purified with cyanobacterial PSII complexes. In 

this work, we generated a genetic mutant and a specific antibody to fully elucidate the function of 

this gene. We found that Psb32 is predominantly present in the thylakoid membranes, where it is 

an integral membrane protein. Additionally we found that while Psb32 is not required for survival 

in complete media, it does provide an advantage under PSII-specific oxidative stressors hydrogen 

peroxide and rose bengal and under competition. This is possibly due to the increased tendency 

of cells without psb32 to be both more quickly photodamaged and slower to repair damage. 

Taken together, this data suggests that Psb32 aids in repair or assembly of PSII. 
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Table I. Primers used for the cloning of the Δpsb32 mutant, antibody
generation and RT-PCR.

Name Sequence

1390F upstream 5’-ACGAAGCTTAATAGCCGTTGTTCCGCTCA-3’

1390R upstream 5-TCATGGATCCTTGATTGCTCTGGCTGGCTT-3’

1390F 

downstream

5’-TCATGGATCCGCGGAA GAAACCGACGATA-

3’

1390R 

downstream

5’-GCAGGAATTCTGCACGG 
CAGTACCAAAGTT-3’

Anti 1390F 5’-GCTCGAGCATATGTCCCCTTATG 

ACCTGCCAATTTTGTC-3' 

Anti 1390R 5’-ATGATTAGTATTCTCGAGGGTGG 

CACTGGTATCGTCGG-3´

RT-PCR 1390F 5’-TGGTGCTAGATACCCTCACCAAGCA-3’ 

RT-PCR 1390R 5’-GGGTTTCCCGCAGTAAACTATCCA-3’ 

RT PCR 1866F 5’-ATATTGCCGAAACTTTCCCTGCCG-3’ 

RT PCR 1866R 5’-CCCTTGGCGCAGAATTTGGAAGAT-3’ 

RT PCR 
RNAseP F 

5’-CAAACTTGCTGGGTAAC-3’ 

RT PCR 

RNAseP R

5’-ACCAAATTCCTCAAGCG-3’
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Psb32
(250 aa)

DUF477
(69-193)

Signal peptide
(1-47)

TMH
(222-245)

B

A

Figure 1. Organization and conservation of Psb32. A, psb32 contains
an N-terminal signal peptide for transit, an internal DUF477 domain,
and a C-terminal TMH. B, Phylogenic tree of Psb32 homologs. Star
indicates Psb32 in Synechocystis 6803. Colors indicate taxonomy: blue -
cyanobacteria; green - eukaryotic plants; brown - green algae; red - red
algae
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A TM PM

Psb32

CP47

SbtA

B
Psb32

D2

PsbV

Membrane Soluble

Figure 2. Subcellular localization of
Psb32. A, Total cellular membranes were
isolated and then separated by
PEG/dextran two phase partitioning to
isolate TM and PM. B, Total cellular
membranes were treated with to 1% Triton
X-114 to release loosely associated
proteins from the membrane.
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B

1776bp

1177bp

A

psb32sll1866 ssl2717

WT

Δpsb32 CmR

sll1866 ssl2717
1kb

psb32 sll1866 RNaseP

C

Figure 3. Genetic deletion of psb32. A, Deletion scheme in which
psb32 is disrupted by a Cm resistance cassette. B, PCR confirming
segregation of Δpsb32 mutation. C, RT-PCR to evaluate expression of
psb32, the downstream gene sll1866, and the control RNaseP in
Δpsb32.
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A

B

Δpsb32
WT

Δpsb32
WT

Figure 4. Growth under various oxidative stresses. Open shapes
indicate WT, black shapes indicate Δpsb32. A, Growth of WT and
Δpsb32 in the presence of 1.5mM H2O2. B, Growth of WT and
Δpsb32 in the presence of 7.5 μM rose bengal and 200 μmol
photons m-2 s-1 white light. Error bars indicate standard deviation,
n=3.

7.5 μM rose bengal
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A

B WT
Δpsb32

Figure 5 Competition of WT and ∆psb32 under low light (LL),
growth light (GL) and high light (HL). A, At each time point,
genomic DNA was isolated and PCR conducted to determine the
relative abundance of each strain. A representative gel is shown. B,
Quantitation of the PCR band intensity of the HL grown samples.
Error bars indicate standard deviation, n=3.
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WT
Δpsb32

WT
Δpsb32

A

B

Figure 6. Δpsb32 displays increased photoinhibition and decreased
recovery. Open shapes indicate WT, black shapes indicate Δpsb32. A,
Cells were incubated in the presence of lincomycin and high light for
60 min. Fv/Fm was measured every 30 min. B, Cells were washed and
allowed to recover in BG11 under low light. Fv/Fm was measured
every 30 min. Error bars indicate standard deviation, n=3.
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Chapter 5 

 

Psb32 is Associated with Inactive PSII Complexes 
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SUMMARY 

PSII catalyzes the conversion of light energy into molecular oxygen and produces the 

reducing power for carbon fixation, one of Earth’s most important biochemical reactions. Psb32 

(Sll1390) has been previously identified as co-purifying with PSII complexes that have been 

isolated using a histidine tag on the core PSII protein CP47. In this study, we characterized 

complexes containing Psb32 after purification via a C-terminal His tag. These HisPsb32 

complexes have altered PSII fluorescence properties, reduced oxygen evolution activity, and 

decreased manganese content, suggesting that they are not fully functional complexes. To further 

clarify its function, we over expressed Psb32 to determine the effect of excess protein on cellular 

physiology and PSII composition and function. Excess Psb32 severely retarded growth in the 

absence of CaCl2 and also significantly reduced oxygen evolution activity in isolated PSII 

complexes. Taken together, these data suggest that Psb32 is a true component of PSII and 

associates with partially assembled complexes to aid in their completion.
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INTRODUCTION 

 PSII is a multi-component enzyme complex in cyanobacteria, algae and plants that 

catalyzes the light-driven oxidation of water to molecular oxygen. The active complex is a dimer 

consisting of 2 identical monomers with more than 20 proteins, identified through genetic, 

biochemical, and structural studies. In addition to its protein components, PSII also has a large 

number of cofactors including chlorophylls, pheophytins, plastoquinones, Mn atoms, calcium, 

chloride, non-heme iron, and heme groups (Ferreira et al., 2004; Loll et al., 2005). Removal of 

these subunits or cofactors can slow or even completely halt water oxidation.  Recent proteomic 

studies have identified a significantly larger number of proteins that purify with the active PSII 

complex and may aid in the assembly or function (Kashino et al., 2002; Wegener et al., 2008). 

 Due to the high energetics of the reactions it catalyzes, PSII is frequently damaged and 

repaired as part of its normal function (Powles, 1984; Prásil et al., 1992; Aro et al., 1993; 

Andersson and Aro, 2001). Thus at any one time, an organism contains a mixed population of 

complexes in various states of assembly which may include multiple accessory proteins not found 

in the final active complex. Traditionally, studies have relied on isolation of PSII using a histidine 

tag on the large core protein CP47. This protein is inserted into pre-PSII complexes very early in 

assembly, and thus these preparations, while highly active, are also heterogeneous. 

 Psb32 (Sll1390) has been previously identified as co-purifying with PSII complexes that 

have been isolated using a histidine tag on the core PSII protein CP47 (Kashino et al., 2002; 

Wegener et al., 2008). This protein is conserved throughout most oxygenic photosynthetic 

organisms containing thylakoid membranes. It has also been shown to affect D1 turnover in both 

Synechocystis (Chapter 4) and Arabidopsis thaliana (Sirpio et al., 2007). However there has been 

little direct evidence that Psb32 is a bona fide PSII protein. To answer this question, we isolated 

and characterized Psb32 containing complexes from Synechocystis utilizing a C-terminal His tag 

on Psb32. Additionally, we over expressed Psb32 under the control of the strong psbA2 promoter 
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to investigate the effects over accumulation of this protein has on cellular physiology as well as 

function and composition of isolated PSII complexes. We found that over expressed Psb32 

greatly reduced growth in the absence of CaCl2 and also reduced oxygen evolution activity in 

isolated PSII complexes. Isolated HisPsb32 complexes displayed altered PSII fluorescence 

properties, diminished oxygen evolution activity, and reduced manganese content, suggesting 

that they are not fully functional complexes. Taken together, these data suggest that Psb32 is a 

true component of PSII and associates with partially assembled complexes to aid in their 

completion. 
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MATERIALS AND METHODS 

Bacterial Strains and Culture Conditions 

Synechocystis sp. PCC 6803 was grown at 30 °C with 30 μmol photons m-2 s-1 of white 

light in BG11 media (Allen, 1984). Stock cultures were maintained on solid medium (BG11 

supplemented with 1.5% (w/v) agar), and used to inoculate liquid cultures for each experiment. 

The mutants HisPsb32 and Psb32OE were supplemented with 10 ug/mL chloramphenicol. 

HT47GM strains were maintained with 5 ug/mL gentamicin. Experiments utilizing low and high 

light were conducted at 10 and 100 μmol photons m-2 s-1, respectively. For H2O2 growth 

experiments, cells were incubated with 0, 0.5, 1, or 1.5 mM H2O2 under 30 μmol photons m-2 s-1 of 

white light. 

 

Mutant Strain Generation 

 To create a histidine tagged version of the Psb32 protein, the C-terminus of the psb32 

gene was modified by adding a leucine, glycine and histidine before a stop codon. Nucleotides 

1821491-1820892 of the Synechocystis genome (http://bacteria.kazusa.or.jp) (Kaneko T et al., 

1996) were amplified via PCR and cloning into the pET41b vector in front of the His-tag. From 

there the fragment was amplified including the HIS tag and cloned into pUC118. The E.coli 

construct comprising of the modified psb32 sequence, a chloramphenicol resistance marker 

directly behind the stop codon and a 600 bp long downstream sequence (nucleotides 1820888-

820138) was transformed into WT Synechocystis 6803 via double homologues recombination. 1

  To create the Psb32OE strain, the full length Psb32 protein was cloned into the 

pCTP2031v vector, which contains a chloramphenicol resistance gene, the psbA2 promoter, and 

targeting sequences for homologous recombination into the slr2031-2032 locus in Synechocystis 
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(Satoh et al., 2001; Muramatsu et al., 2009). To create the Psb32OE HT47GM strain, the 

Psb32OE construct was introduced into the HT47GM background (Roose, 2008). 

 

PSII Preparation  

PSII was isolated from HT47GM, HisPsb32, and Psb32OE Ht47GM strains as described 

previously (Kashino et al., 2002). HT47GM indicates the 6-His tagged CP47 used to affinity purify 

the complex (Roose, 2008). The final eluate from a Ni-NTA Agarose (Qiagen, Inc., Valencia, CA) 

column was suspended in 50 mM MES-NaOH pH 6.0, 10 mM CaCl2, 25% glycerol with 0.04% 

dodecyl maltoside. In isolations from the HT47GM and Psb32OE HT47GM strains, flow through 

and eluate were evaluated at 436nm to detect chlorophyll absorbance and for HisPsb32 flow 

through and eluate were evaluated at 280nm to monitor protein absorbance. 

 

Spectrophotometric Assays 

Cell growth was monitored by measuring light scattering at 730nm on a μQuant 

microplate spectrophotometer (Bio-Tek Instruments, Inc., Toronto, Canada). Chlorophyll 

concentrations were determined by methanol extraction and absorbance at 652 and 665 nm in a 

DW2000 spectrophotometer (SLM-Aminco, Urbana, IL) (Porra et al., 1989). Protein 

concentrations were measured by absorbance at 280 nm using a NanoDrop1000 (NanoDrop, 

Wilmington, DE) (Desjardins et al., 2009). 

 

Protein Visualization 

SDS-PAGE was performed as described previously (Kashino et al., 2002), using a gel 

with 18-24% acrylamide gradient and 6 M urea. After transfer to 0.22 μm nitrocellulose, Psb32 
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and D1 were detected by using specific antiserum (described in Chapters 3 and 4), and reacted 

with goat-anti-rabbit horseradish peroxidase conjugated antiserum (Pierce Biotech, Rockford, IL) 

developed in West Pico (Pierce Biotech, Rockford, IL) for 5 min. Blots were visualized in a Fujifilm 

LAS-1000plus imager (Fujifilm, Stamford, CT) for 1 to 5 min. Digital images were quantified using 

ImageJ software (Abramoff et al., 2004). 

 

Steady State Oxygen Evolution 

 A Clarke-type electrode was used to determine the rate of photosynthetic oxygen 

evolution (Mannan and Pakrasi, 1993). Oxygen evolution was measured for whole cells at a 

concentration of 5 μg Chl/mL in the presence of 0.5 mM 2.6-dichloro-p-benzoquinone (Eastman-

Kodak, Rochester, NY) and 1 mM K3FeCN6. Light intensity was adjusted by use of neutral density 

filters. Oxygen evolution for isolated PSII complexes was measured at 3 μg chlorophyll/mL in 50 

mM MES-NaOH (pH 6.0), 20 mM CaCl2, 0.5 M sucrose (Roose et al., 2007). 

 

Fluorescence Measurements  

 PSII samples were diluted in buffer containing 50 mM MES (2- (N-Morpholino) 

ethanesulfonic acid, monohydrate)-NaOH, pH 6.0, 5 mM CaCl2, 10 mM MgCl2, 25% glycerol, 

0.04% dodecylmaltoside and fluorescence emission spectra at 77 K were measured on a 

Fluoromax-2 fluorometer with excitation at 440 nm (Jobin Yvon, Cedex, France) (Kashino et al., 

2002). Fluorescence emission spectra were normalized by (F-F660)/(F683-F660). 

 

Mn Measurements 

 Concentrations of Mn were measured on an AA600 atomic absorption spectrophotometer 

(PerkinElmer Life Sciences, Wellesley, MA). PSII samples were diluted to 5 μg Chl/mL in 
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deionized water before analysis. The Mn:PSII ratio was calculated based on 41 molecules of 

Chl/PSII (Kashino et al., 2002). 
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RESULTS 

Generation of HisPsb32 and Psb32OE strains 

 To better understand the function of Psb32, we generated new Psb32 mutant lines. The 

HisPsb32 strain contains a C-terminal hexahistidine tag followed by a chloramphenicol resistance 

gene in the native psb32 locus. The Psb32OE strain contains the wild type copy of psb32 under 

the control of the strong psbA2 promoter followed by a chloramphenicol resistance gene, inserted 

into the slr2031-slr2032 locus. These strains are diagrammed in Figure 1. Immunological assay 

utilizing the antibody against Psb32 shows that the HisPsb32 line has a slightly larger version of 

the Psb32 as compared to WT and that the Psb32OE strain has significantly more Psb32 

expressed than WT (Figure 2). 

 

Effects of HisPsb32 and Psb32OE on photoautotrophic growth 

 In complete BG11 under low, moderate or high light intensities, neither HisPsb32 nor 

Psb32OE displays altered growth (Figure 3A-C). Similarly, growth under moderate light in the 

presence of the hydrogen peroxide is not affected in either HisPsb32 or Psb32OE (Figure 3E). 

However, when Psb32OE was grown in the absence of CaCl2, its growth was severely inhibited 

as compared to WT, ΔPsb32, and HisPsb32 (Figure 3D). This suggests that the over 

accumulation of Psb32 is impeding photosynthesis in the absence of CaCl2. 

 Measurements of absorbance showed that neither HisPsb32 nor Psb32OE have altered 

pigment distribution (Figure 4). Additionally, measurements of whole cell oxygen evolution 

showed that HisPsb32 and Psb32OE display rates similar to that of WT and ΔPsb32 across 

various light intensities (Table 1). 
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Isolated Complexes from HisPsb32 and Psb32OE HT47GM 

 To better define the role of Psb32 in PSII function, we isolated complexes from utilizing 

the his tag on Psb32 in the HisPsb32 strain and the his tag on the core protein CP47 in the 

Psb32OE HT47GM mutant. Solubilized membranes from the Psb32 mutant strains, as well as the 

control HT47GM, were applied to a Ni2+ affinity column and eluted with excess histidine. 

Chlorophyll absorbance at 436 nm was monitored during the Psb32OE HT47GM and HT47GM 

isolations, while protein absorbance at 280 nm was monitored during HisPsb32 isolations. All 

three strains exhibited a single eluate peak. Representative chromatograms for isolations from 

HT47GM, Psb32OE HT47GM, and HisPsb32 are shown in Figure 5. The concentrated elution 

peaks were analyzed for characteristic PSII 77K fluorescence properties. HT47GM PSII 

complexes display the characteristic PSII fluorescence signature of peaks at 683 and 691 nm 

PSII, as do the Psb32OE HT47GM complexes (Figure 6).  However, while the HisPsb32 

isolations are clearly enriched for PSII (although residual PSI remains in all isolations, as 

evidenced by fluorescence at 720 nm), it contains 1 large peak that is shifted to 685 nm and a 

very small peak at 695nm (Figure 6). 

The polypeptide profiles of HT47GM, HisPsb32, and Psb32OE HT47GM were 

surprisingly similar (Figure 7). HisPsb32 contains comparable levels of CP47, PsbV, and PsbQ as 

HT47GM and Psb32OE HT47GM, but contains less CP43 and PsbO. Interestingly, HisPsb32 

contains remarkably less D1 protein (Figure 8). Interestingly, when maximal oxygen evolution 

activity was measured, complexes from HisPsb32 and Psb32OE HT47GM displayed significantly 

reduced rates as compared to HT47GM (9% and 27%, respectively) (Table 2). Thus it is not 

surprising that the ratios of protein to chlorophyll in isolated complexes from HisPsb32 are 

significantly higher than those found in complexes from HT47GM (66 vs 0.9, respectively), 

suggesting that the HisPsb32 complexes either have notably less chlorophyll or additional non-
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chlorophyll containing proteins not present in HT47GM PSII complexes (Table 3). In addition, 

measurements of the amount of manganese in the HisPsb32 complexes show that the HisPsb32 

complexes contain only 2.57 manganese per PSII complex, as opposed to the theoretical 4 

manganese per PSII and the 3.86 measured for HT47GM PSII complexes (Table 4). 
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DISCUSSION 

  Previous studies have shown that Psb32 co-purifies with PSII (Kashino et al., 2002; 

Wegener et al., 2008) and that the absence of PSb32 affects D1 turnover (Sirpio et al., 2007) 

(Chapter 4). The reciprocal purification of PSII complexes utilizing the HisPsb32 protein 

conducted in this work demonstrates that Psb32 is indeed a component of the complex. Although 

many high resolution structures exist for cyanobacterial PSII (Zouni et al., 2001; Ferreira et al., 

2004; Loll et al., 2005), due to the nature of X-crystallography, they cannot fully capture the 

dynamic changes that occur in the complex as part of the assembly, damage, and repair process. 

 Complexes containing Psb32 contain a similar polypeptide composition to those isolated 

via his tag on CP47. However the abundances of specific proteins, notably D1, PsbO and CP43, 

appear decreased in the HisPsb32 complexes (Figures 7 and 8). Moreover, the Psb32 containing 

complexes have increased protein to chlorophyll ratios (Table 3) and a decreased number of Mn 

per PSII (Table 4). Thus it is not surprising that these impaired complexes display such severely 

reduced rates of oxygen evolution (Table 2). Taken together, these data suggest that Psb32 

associates with non-fully assembled and thus non-fully functional, complexes. While Psb32 has 

been identified at low abundance in isolations from HT47GM, this is likely a reflection of the 

heterogeneity of complexes isolated using the CP47 tag, as has been previously shown (Lakshmi 

et al., 2002; Kashino et al., 2006). A model of Psb32 containing complexes is shown in Figure 9. 

Interestingly the overexpression Psb32 under the psbA2 promoter resulted in very few 

effects on whole cell physiology. For the majority of conditions, growth was unaffected by the 

increased amount of Psb32, with the notable exception of in the absence of CaCl2 (Figure 3). 

Calcium and chloride are crucial ions for photosynthesis. Mutants of the lumenal PSII proteins, 

PsbV, PsbO, PsbP, and PsbQ, have been shown to exhibit severe growth limitations in the 

absence of CaCl2 (Philbrick et al., 1991; Shen et al., 1998; Thornton et al., 2004). It is possible 

that the over accumulation of Psb32 is hindering photoautotrophic growth in the absence of CaCl2 
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by impeding access of the other lumenal proteins to their binding sites, reducing growth rates. 

While whole cell rates of oxygen evolution are unaffected by excess Psb32, the isolated 

complexes from Psb32OE HT47GM exhibit only 30% of the oxygen evolution activity of PSII 

complexes from HT47GM (Tables 1-2). This may be due to the decreased levels of the PsbO 

protein found in the Psb32OE HT47GM complexes (Figure 7). Further quantitative analysis of 

both the HisPsb32 and Psb32OE HT47GM complexes will allow final definitive statements about 

the role of Psb32 in PSII assembly and repair. 
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CONCLUSIONS 

The work presented in this Chapter shows that Psb32 not only co-purifies with PSII, but is 

indeed associated with the complex. Reciprocal purification utilizing a his tag on Psb32 

demonstrated that this protein is associated with complexes that exhibit significantly reduced 

oxygen evolution and decreased levels of manganese. This suggests that Psb32 is associated 

with a small percentage of intermediary PSII complexes in vivo. Overexpression of Psb32 led to 

growth sensitivity under CaCl2 depletion, perhaps because excess amounts of the Psb32 limited 

access of the other lumenal PSII proteins, which are crucial to growth in the absence of CaCl2. 

Furthermore overexpression of Psb32 resulted in decreased rates of oxygen evolution activity in 

isolated complexes. 
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Irradiance 
(μmol photon m-2 s-1)

Rate of Oxygen Evolution 
(μmol O2 mg chl-1 hr-1)

WT ΔPsb32 HisPsb32 Psb32OE

8250 622 ± 31 632 ± 22 599 ± 59 712 ± 53 

4300 561 ±30 620 ± 4 578 ± 82 691 ± 11

2525 563 ± 54 534 ± 66 628 ± 60 672 ± 1

1310 448 ± 25 479 ± 57 473 ± 40 528 ± 23

800 406 ± 4 423 ± 20 452 ± 77 423 ± 10

Table 1. Whole cell rates of oxygen evolution for Psb32 mutants.
Measurements were conducted in the presence of presence of the
electron acceptors 0.5 mM DCBQ and 1 mM potassium ferricyanide
on a Clark-type electrode. Standard deviation is given for n=3.
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Sample Rate of Oxygen Evolution (μmol O2
mg chl-1 hr-1)

Relative Rate to 
HT47GM

HT47GM 493 ± 26 -

HisPsb32 45 ± 20 9%

Psb32OE 
HT47GM

134 ± 26 27%

Table 2. Rates of oxygen evolution for isolated complexes from
Psb32 mutants. Measurements were conducted at 8250 μml photons
m-2 s-1 in the presence of presence of the electron acceptors 0.5 mM
DCBQ and 1 mM potassium ferricyanide on a Clark-type electrode.
Standard deviation is given for n=3.
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HT47GM HisPsb32

Chlorophyll (μg/mL) 1441 64

Protein (mg/mL) 1.3 4.25

Ratio (μg protein/μg 
chlorophyll) 0.9 66

Table 3. Ratios of protein and chlorophyll of isolated complexes.
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Sample Mn:PSII

HT47GM 3.86

HisPsb32 2.57

Table 4. Ratio of Mn per PSII as measured by atomic absorption
spectrometry.
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Psb32

∆Psb32

HisPsb32

Psb32OE

DUF477Signal peptide TMH

CmRSignal peptide TMH

DUF477Signal peptide TMH

CmR p:psbA1

CmR

DUF477

6XHis

Signal peptide TMH

Figure 1. Schematic of HisPsb32 and Psb32OE lines.
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α-Psb32

Figure 2. Levels of Psb32 in HisPsb32 and Psb32OE.
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A B

DC

E

Figure 3. Effects of Psb32 mutations
on growth under A) BG11, B) low
light, C) high light, D) in the absence
on CaCl2, and E) in the presence of
1mM H2O2. Error bars indicate
standard deviation for n=3.
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Figure 4. Whole cell absorbance spectra of WT, ΔPsb32,
HisPsb32, and Psb32OE.
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A

B

C

Figure 5. Representative chromatograms for isolations of His
tagged complexes from A) HT47GM B) His32 and C) HT47GM
Psb32OE. Blue lines represent readings at 436 nm for A and C and
280nm for B.
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Figure 6. 77K fluorescence of isolated his tagged complexes
from HT47GM, HisPsb32, and HT47GM Psb32OE. Samples
were excited at 440nm and fluorescence emission spectra were
normalized by (F-F660)/(F683-F660).
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116 kDa

54 kDa

194 kDa

97 kDa

37 kDa

30 kDa

20 kDa

7 kDa

D1

CP43
PsbO

PsbE

sll1390

CP47

PsbU

PsbV

PsbQ

Psb27

Figure 7. Polypeptide profile of isolated complexes
from HT47GM, HisPsb32, and HT47GM
Psb32OE. Samples were loaded at 3 μg/mL
chlorophyll per lane.
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α-D1

Figure 8. Levels of D1 in Psb32 containing PSII. Immunoblots of
D1 protein in isolated complexes loaded by equal protein.
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HisHis

Psb32Psb32

A B

Figure 9. Model of Psb32 containing PSII. (A) Diagram of PSII
complexes isolated using a histidine tag on CP47 (B) Diagram of
Psb32 containing PSII complexes.
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SUMMARY AND CONCLUSIONS OF THIS WORK 

 This work has contributed significant new findings as to the quantity and importance of 

accessory proteins involved in PSII assembly and repair. Utilizing high through put proteomics, 

we were able to define the Synechocystis proteome during various environmental stresses, when 

many of the cell’s protein complexes are being turned over to scavenge elements for survival. 

Use of the resulting proteomic library allowed for detailed study of the composition of PSII. We 

found over 200 proteins associated with the complex and were able to compare the protein 

abundance changes in complexes lacking the lumenal proteins PsbQ, PsbP, and PsbV. Of those 

novel PSII associated proteins identified, the proteins of Slr0144-Slr0152 (Pap) were required for 

optimal function and assembly of PSII. Additionally another novel Psb32 was also found to be 

required for proper PSII assembly.  

 

Environmental Effects of the Proteome 

 While we traditionally study Synechocystis under controlled light, temperature, and 

nutritional conditions, to subsist outside the laboratory, these organisms must continually adjust 

their physiology to environmental changes. During their evolution, cyanobacteria have survived 

large changes in environmental conditions (Kasting, 2004). They can readily adapt their cellular 

metabolism to daily changes in light quality and quantity. Integration of nutrient specific pathways 

with photosynthetic processes is a key survival mechanism employed by cyanobacteria under 

changing environmental conditions (Tsinoremas et al., 1991; Lindahl and Florencio, 2003; Singh 

et al., 2008). Such adaptation strategies allow cyanobacteria to balance the supply of electrons 

from photosynthetic processes with the demands of cellular metabolism, and prevent the 

generation of damaging reactive oxygen species by excess reducing power. 
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 Nitrogen and carbon metabolism are sinks for ATP and reducing power produced during 

photosynthesis. Protein complexes involved in the photosynthetic processes are in themselves a 

major metabolic store for iron, sulfur, nitrogen, and carbon. Thus, adjusting the proteins of PSII, 

the first enzyme of electron transport, is crucial to organismal survival. Of the canonical PSII 

proteins (Kashino et al., 2002), we identified 23 proteins in our study, which were distributed 

between the 33 environmental conditions (Chapter 2, Supplemental Table 4). Thus it is 

interesting that the identifications of PSII proteins from a particular nutrient starved condition do 

not drastically differ from those in the replete condition, even though the accompanying replete 

conditions display dramatically increased photosynthetic rates (Table 1). This indicates that fine-

tuning photosynthesis due to environmental conditions is not as simple as the presence or 

absence of particular proteins. Analysis of changes in protein abundances after stress as 

compared to level found in BG11 grown cells provides more insight. As a whole, all detected PSII 

proteins were differentially less abundant under nitrate and sulfur depletion conditions (Chapter 2, 

Supplemental Tables 6 and 7). This agrees with previous data showing that these two conditions 

have detrimental effects on photosynthetic capacity. However, in all conditions where it was 

possible to determine differential ratios, the manganese stabilizing protein, PsbO (Sll0427), was 

increased in abundance as compared to levels found in BG11. 

 

PSII Assembly 

 In the last ten years a small number of accessory proteins, including CtpA, (Roose and 

Pakrasi, 2004), PratA, (Klinkert B, 2004), Psb27, (Nowaczyk et al., 2006; Roose and Pakrasi, 

2008) and Psb29, (Wang, 2004; Keren et al., 2005) have been identified and characterized. The 

proteomic study of isolated complexes described in Chapter 3 identified 217 proteins that copurify 

with PSII (Chapter 3, Supplemental 1). Although a fraction of these may represent contamination 

or non-specific associations, this sheer number of proteins of the complex suggest that PSII 
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assembly requires many more additional players than is currently thought (see Chapter 1 and 

Chapter 1 Figure 2B for more details on current model of PSII assembly). These additional 

proteins may represent factors that are transiently associated with PSII and play roles in complex 

assembly, repair, or degradation. In the past, it has proven difficult to identify these proteins due 

to the relatively short periods of association in comparison to stable mature, active PSII 

complexes.  

 

Pap proteins 

Analysis of the proteins of the slr0144 – slr0152 operon showed that they aid in PSII-

mediated oxygen evolution and maintaining a normal distribution of the S states of the catalytic 

Mn cluster.  PSII complexes isolated from Δsllr0144 – slr0152 also show decreased 

photosynthetic capacity and altered polypeptide composition. These data demonstrate that the 

proteins encoded by the genes in this operon are necessary for optimal function of PSII and 

function as accessory proteins during assembly of the PSII complex in Synechocystis.  

The discovery of Paps may aid our understanding how non-protein cofactors are inserted 

or recycled into new and repaired complexes. It is possible that the PSII defects seen in Δsllr0144 

– slr0152 HT47GM indicate that Slr0144 and Slr0147 function to sequester chlorophyll molecules 

to prevent damage to the cell prior to initial complex assembly and during repair, similar to the 

SCP proteins (Vavilin and Vermaas, 2007). Future work demonstrating that the cofactor binding 

sites of the Pap proteins are functional and that they are able to transfer cofactors could provide 

exciting insight into how these cofactors are assembled into the complex.  

The ∆slr0144 – slr0152 mutation demonstrates a case of cross talk between the lumenal 

and cytosolic proteins of PSII.  It is intriguing that deletion of the lumenal proteins PsbP, PsbQ, 

and PsbV lead to an increase in abundance in the cytosolic Pap proteins (Chapter 3, 
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Supplemental Table 1) and conversely, the deletion of the Pap proteins results in increased levels 

in PsbV, Sll1390, and Psb27 (Chapter 2, Fig. 10A), which all contain targeting sequences for the 

lumen. The increase of these proteins in non-fully assembled PSII complexes suggest that the 

Pap proteins function in assembly of complexes and are aggregating on these sub-assembled 

complexes or are functioning in degrading the non-fully functional complexes. Additionally, the 

decrease in oxygen evolution activity and the altered S state distribution in the ∆slr0144 – slr0152 

mutant are phenotypes traditionally associated with mutation in the lumenal PsbO, PsbU, PsbV, 

PsbQ, and PsbP proteins (Shen et al., 1998; Thornton et al., 2004; Kashino et al., 2006), 

suggesting that the lumenal side of the complex is unstable in the absence of the Pap proteins. 

This suggests that there is feedback across the membrane plane of PSII that increases Pap 

protein levels when the lumenal surface is non-fully assembled and that the Pap proteins are 

necessary to fully assemble the lumenal side of PSII. 

 

Psb32 

Psb32 was identified has previously been identified as a protein associated with highly 

active purified PSII preparations from the cyanobacterium Synechocystis (Kashino et al., 2002) 

(Chapter 3). Psb32 plays a role in protecting cells from photodamage and ROS damage. This 

protective effect is perhaps due by facilitating the ability of PSII to repair itself after photodamage. 

ROS damage has been shown to slow PSII repair arresting of translation elongation of the psbA 

gene, which encodes the D1 protein (Nishiyama et al., 2001; Nishiyama et al., 2004). Thus it 

could be that the effects we see of ROS on the growth rates of Δpsb32 are actually a reflection of 

the decreased rate of PSII repair of the damage caused by the ROS. That is further supported by 

our photoinhibition experiments; in which Δpsb32 exhibits a decreased rate of recovery after 

damage and an increased rate of photodamage that the Δpsb32 mutant displays (Chapter 4, 

Figure 6). 
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 However, Psb32 only protects cells from damage on the donor side, not on the acceptor 

side. The reaction of Δpsb32 to damage on the donor side but not the acceptor side is further 

evidence that Psb32 functions to aid in assembly of PSII, which coincides with the lumenal 

localization of the protein (Chapter 4, Figure 2A and B). This slowed repair, in addition to the 

observed accelerated rate of photodamage, could explain why the presence of Psb32 confers a 

selective advantage to fitness during competition under high light (Chapter 4, Figure 5), when 

ROS damage and light induced photoinhibition are at their highest. The role of Psb32 in 

protecting PSII from photodamage and aiding in the efficient repair is conserved in its Arabidopsis 

homolog, TPL18.3 (Sirpio et al., 2007). The possible role of Psb32 as a PSII assembly nicely 

explains the decreased efficiency of PSII repair in both Synechocystis and Arabidopsis, 

suggesting that this role is conserved among oxygenic phototrophs. 

The experiments described in Chapter 5 demonstrate that Psb32 is a true component of 

PSII and associates with partially assembled complexes to aid in their completion. 

Characterization of HisPsb32 complexes revealed that Psb32 is associated with a subpopulation 

of PSII that have altered PSII fluorescence properties, reduced oxygen evolution activity, and 

decreased manganese content, suggesting that they are not fully functional complexes. 

Overexpression of Psb32 severely retarded growth in the absence of CaCl2 and also significantly 

reduced oxygen evolution activity in isolated PSII complexes. This growth defect is particularly 

interesting in that, mutants of other lumenal PSII proteins, PsbV, PsbO, PsbP, and PsbQ, exhibit 

severe growth limitations in the absence of CaCl2 (Philbrick et al., 1991; Shen et al., 1998; 

Thornton et al., 2004). The effect of excess Psb32 on growth in the absence of CaCl2 may be due 

to impeding access of the other lumenal proteins to their binding sites, reducing growth rates. In 

the absence of PsbP and PsbQ, levels of Psb32 increase respectively to 1.19 and 1.24 fold of 

levels in HT3 PSII complexes (Chapter 2, Supplemental Table 1), suggesting that in the absence 

of these lumenal proteins, Psb32 has a higher binding affinity to PSII. 
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Implications of this work 

 

PSII populations 

 Taken together, this work highlights the plasticity of PSII. Due to the constantly changing 

cellular conditions that accompany photosynthesis, PSII is continually being assembled, 

damaged, degraded, and repaired. While the majority of complexes are fully assembled and fully 

functional, at any given time a heterogeneous population of complexes exist in vivo, producing 

the average rates of PSII activity for a cell. Many of these populations are short lived and so 

difficult to identify using traditional biochemical purification of PSII via his tagged CP47 followed 

by SDS-PAGE separations. However, new approaches, such as reciprocal purification of 

alternately tagged proteins and highly sensitive proteomic analysis of complexes provide the tools 

necessary to isolate and characterize the alternate PSII complexes. These new techniques have 

enabled the identification of new PSII subassemblies in this work and can be further applied to 

gain a full understanding of the PSII assembly and repair cycle. 

 

PSII composition under alternate environmental conditions 

 Oxygenic photosynthetic organisms in general, and cyanobacteria in particular, inhabit 

almost every ecological niche on the planet, surviving in temperatures from 4°C to 75°C, under 

widely varying nutritional environs. In addition to the dynamics of PSII within cyanobacterial cells, 

the advent of the genomics era has revealed that there are significant differences in PSII protein 

composition between different types of cyanobacteria (Thornton et al., 2005; Roose et al., 2007). 

While this work has focused on the proteome changes that occur both globally, and specifically 

for PSII, in Synechocystis 6803, many other cyanobacteria face and adapt to other environmental 

challenges. This is not surprising given the wide range of environments these organisms inhabit: 
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surviving in both fresh and salt water, temperatures from 4°C to 75°C, with widely diverse 

nutritional availability. Some classes must also balance diverse and opposing metabolic 

processes, such as N2 fixation and oxygenic photosynthesis in the same cell. A phylogenetic tree 

of the cyanobacteria for which genome sequence data are available is shown in Figure 1. 

 The recently finished genomes of multiple species of Prochlorococcus have shed new 

light on the minimal set of genes needed for a free living oxygenic photosynthetic organism 

(Dufresne et al., 2005). Genome sequence for several species of Prochlorococcus, including 

MED4, show that the psbU, psbV and psbQ genes have been lost from these organisms. 

Absence of any of these genes in Synechocystis results in significantly reduced PSII activity and 

combinatorial mutants are unable to survive photoautotrophically (Summerfield et al., 2005). 

MED4 grows in deep ocean environments where the concentration of bioavailable iron is low 

(nM). Thus, dispensing with the gene product of psbV, an iron-containing monoheme c-type 

cytochrome, may confer a reasonable advantage for these organisms. Additionally, x-ray 

structure of PSII shows that PsbU is bound to PSII via PsbV (Fig. 1A). PsbQ genetically interacts 

with PsbV (Summerfield et al., 2005; Kashino et al., 2006).  Apparently, the PsbV/PsbU/PsbQ 

triad serves a function that is not essential for PSII function in the seawater environment. 

 However, our preliminary studies in Synechocystis on the effect of low iron on 

photoautotrophic growth have shown that PsbV, and to a lesser extent PsbU and PsbQ, are 

critical to growth in iron deplete conditions (Figure 2). Another obvious difference between 

seawater and fresh water environments is the high concentration of salt in the former.  Indeed, 

seawater contains as high as 2% (w/w) Cl- and 1.1% Na+ (http://www.seafriends.org.nz/oceano/ 

seawater.htm-salinity). BG11, the fresh water medium widely used to culture Synechocystis, in 

contrast, has nearly 1000-fold lower concentrations of Cl- (Rippka, 1988).  The ΔpsbV mutant 

cannot grow in Cl- depleted BG11 medium (Shen et al., 1998; Kobayashi et al., 2006). Also, we 

have shown the genetic deletion of psbU results in severely reduced growth in Cl- depleted 
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medium (Inoue-Kashino et al., 2005).  It seems that a crucial function of the PsbV/PsbU/ PsbQ 

triad is as a Cl- concentrator.  

 

Diurnal D1 regulation 
 
 While this work has examined the alternate PSII forms in Synechocystis 6803, the 

unicellular N2-fixing cyanobacterium Cyanothece ATCC 51142 faces a unique set of physiological 

challenges that affect its PSII composition. This organism exhibits striking diurnal rhythms in its 

metabolism required because the enzyme that fixes atmospheric N2, nitrogenase, is highly 

sensitive to O2, an obligatory product of the PSII reaction.  Because this is a unicellular organism, 

it uses time as a way of separating the peaks of photosynthesis from peaks of nitrogenase 

activity.  As such, it tightly regulates PSII activity throughout its diurnal cycle, ensuring peak PSII 

activity during the day and minimal activity at night. This interesting lifestyle makes Cyanothece 

an apt model system for studying PSII dynamics. Recently genomic, transcriptomic, and 

proteomic tools have been developed for the study of this organism (Stöckel J et al., 2008; Welsh 

EA et al., 2008). As shown in Figure 1, Synechocystis and Cyanothece are close relatives on an 

evolutionary time scale. 

In Cyanothece cells grown under a 12h light/12h dark cycle in a medium lacking any N2 

source, PSII activity peaks later in the light period (L6-L9), while nitrogenase activity exhibits a 

sharp peak of activity early in the dark phase (D3-D5) (Figure 3A). Concomitant with nitrogenase 

activity, cells lose their capacity for O2 evolution (Sherman et al., 1998; Meunier et al., 19998) 

(Meunier et al., 1998; Sherman et al., 1998). In contrast, in other cyanobacteria, such as 

Synechocystis, PSII complexes are quite stable in the dark and retain 90% of their activity after 6 

hours of dark incubation (Burnap et al., 1996). This indicates that Cyanothece cells actively shut 

down PSII O2-evolving activity in the dark and regenerate active PSII complexes in the ensuing 

light period. It is clear from recent structural studies (Ferreira et al., 2004; Loll et al., 2005) that 

165



PSII complexes must disassemble to some extent to eliminate O2-evolving activity, and then 

reassemble into active complexes.  

All cyanobacterial strains have multiple copies of the psbA gene (encoding the D1 

protein), and Cyanothece has four such genes (psbA1-4).  In diurnal microarray experiments, the 

majority of psbA gene copies (psbA1-3) peak at L9 (Stöckel J et al., 2008), correlating well with 

the peak in PSII-mediated O2 evolution activity (Colon-Lopez and Sherman, 1998; Sherman et 

al., 1998). However, the expression profile of psbA4 is shifted, peaking at time points D1 and 

again at D9 (Figure 3B). The protein D1 provides ligands to many critical cofactors such as 

manganese, chlorophyll, pheophytin and quinone in PSII. Interestingly, the translation product of 

psbA4 contains amino acid changes that have been shown by mutational analyses in other 

cyanobacteria to abolish O2-evolving activity (Debus, 2001). An alignment of the C-terminal 

residues of D1 proteins from Cyanothece and one copy from Synechocystis is shown in Figure 

4A. The residues shown in red indicate amino acid changes that eliminate O2-evolving activity 

and also affect the processing of the C-terminal extension of the precursor form of D1 (pD1) to its 

mature form (Taguchi et al., 1993; Debus, 2001). The residues shown in blue indicate additional 

amino acid changes observed in PsbA4 relative to the other PsbA proteins shown.  

Initial global proteomics analysis of Cyanothece identified a unique peptide 

corresponding to this alternate D1, which confirms that psbA4 is indeed translated into a protein, 

which we have designated D1† (Stöckel et al., submitted to Molecular and Cellular Proteomics, 

Manuscript number MO:00173-MCP). Based on the amino acid differences, the D1† protein is 

predicted to result in a loss of the catalytic Mn cluster (Figure 4A and B) and also likely retains its 

C-terminal extension (Taguchi et al., 1993; Debus, 2001). It is noteworthy that without the C-

terminal processing of pD1, PSII cannot catalyze O2 evolution (Anbudurai et al., 1994; Roose and 

Pakrasi, 2004).  Insertion of D1† in PSII during the dark period is consistent with previously 

published observations that O2-evolution capacity decreases and Mn clusters can not be 
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assembled into Cyanothece PSII complexes in the dark period (Meunier et al., 1998; Sherman et 

al., 1998).  

Genomic information available for a number of other unicellular, N2-fixing cyanobacteria 

(Crocosphaera watsonii, Synechococcus OS-A and Synechococcus OS-B’) (Kulikova et al., 

2004) supports this hypothesis as a general way of suppressing PSII O2-evolving capacity in the 

dark period (Figure 1). Each of these organisms contains a number of psbA genes encoding the 

normal D1 protein, but also has one copy analogous to the psbA4 gene in Cyanothece. Figure 4C 

shows protein alignments of representative D1 and D1† proteins from each strain. This suggests 

that inclusion of a non-functional D1† protein into PSII complexes may be a conserved mode of 

action among unicellular nitrogen fixers to prevent photosynthesis. 
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Future Directions 

A hallmark of PSII is the plasticity of its form and functions.  Genomic analysis of 

cyanobacterial species from diverse ecological niches has suggested that the composition of PSII 

undergoes significant changes in response to variations in nutritional and other environmental 

conditions. In view of the dynamic nature of this membrane protein complex, the current 

challenge is to elucidate the intricate pathway for the biogenesis and assembly of PSII that is 

responsible for one of the most thermodynamically unfavorable reactions in biology, the evolution 

of dioxygen from water.  

The amount of data generated through the high throughput studies described in Chapters 

2 and 3 certainly provide many avenues for further research. Of the 212 co-purifying PSII 

proteins, only Psb27, Psb29, Psb32, Sll1414, Slr0146, Slr0147, Slr0149, and Slr0151 have been 

investigated and confirmed to have PSII function. Many of the other co-purifying proteins have 

greater differential abundances in the ΔpsbV, ΔpsbP, and ΔpsbQ mutants than those currently 

characterized and so could provide great insight into PSII assembly. Recent studies have shown 

that the presence of the PsbQ protein is a marker for fully assembled complexes (Roose et al., 

2007). Thus it would be interesting to investigate proteins that show reduced abundance in the 

ΔpsbQ complexes, but not in the ΔpsbV and ΔpsbP PSII complexes, which represent an earlier 

stage of assembly. 

Though the isolated complexes from Δslr0144-slr0152 HT47GM and HisPsb32 have 

been analyzed for the presence and absence of major PSII protein after SDS-PAGE separation, it 

would be intriguing to subject these complexes to the same proteomic analysis conducted on 

complexes isolated from ΔpsbV, ΔpsbP, and ΔpsbQ described in Chapter 2. This would allow for 

through identification of all co-purifying proteins and efficient estimates of protein abundances of 

those proteins. 

While reciprocal purification strategies will provide a great deal of information as to PSII 

sub-assemblies, these studies still provide static snapshots of PSII. Future work should focus on 

better understanding the dynamics of the changes occurring in PSII composition. While 
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radiolabelling studies of PSII have been conducted in plant chloroplasts (Aro et al., 2005), no 

such studies have been conducted in cyanobacteria. The simpler cyanobacterial system will allow 

for a clearer picture of PSI assembly. This could be done with simple pulse chase experiments in 

which Synechocystis cells are given a short pulse of 35S-methionine, and then quenched with 

unlabeled methionine (chase). At various time points following the pulse, membranes would be 

isolated. Thus, the PSII-associated proteins synthesized during the short pulse, like the frequently 

turned-over D1 protein, can then be followed through the biogenesis pathway. In order to 

determine the nature of the labeled PSII complexes during the chase period, Synechocystis 

membranes will be solubilized and fractionated by native gel electrophoresis. Those complexes 

that are labeled earlier in the chase period will represent early PSII assembly intermediates, and 

those labeled in subsequent time points will represent PSII complexes progressing through the 

assembly pathway. Once the labeling information is used to place various protein complexes in a 

temporal order, the protein components of each intermediate complex will be identified. To 

provide information on all of the protein components of each assembly intermediate, 2-

dimensional BN/SDS-PAGE will be used. Mass spectrometry can be used to identify proteins for 

which antibodies are not available. 
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Figure 1. Phylogenetic Tree of 28 Sequenced Cyanobacteria. The tree was

generated from the analysis of 435 sets of proteins, co-orthologous in all 28 of

the strains (E. A. Welsh, unpublished). Synechosystis 6803 is shown in green

and the relevant Prochlorocci are shown in blue.

Cyanothece ATCC 51142
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Figure 2. Growth of mutants missing genes for extrinsic PSII

proteins in iron deplete medium in Synechosystis 6803.
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A B

Figure 3. Cyanothece Diurnal Cycle. A) Diurnal timing of cellular

processes. separation of The numbers denote hours in the light (L) or

the dark (D) phase. B) Diurnal regulation of psbA transcripts in

Cyanothece.
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B

C

Figure 4. D1 variants in cyanobacteria. A) Alignments of the C-

terminal parts of D1 proteins in Cyanothece and Synechocystis. B) Mn

cluster ligands in the D1 and D1† proteins. C) Alignments of the C-

terminal parts of D1 and D1† (shaded) in Synechocystis and 4

unicellular N2-fixing cyanobacteria. The naturally occurring

‘mutations’ in the D1† proteins are shown in red
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SUMMARY 

 Years of genetic, biochemical, and structural work have provided a number of insights 

into the oxygen evolving complex (OEC) of Photosystem II (PSII) for a number of photosynthetic 

organisms. However questions still remain about the function and interactions among the various 

subunits that make up the OEC. After a brief introduction to the individual subunits Psb27, PsbP, 

PsbQ, PsbR, PsbU, and PsbV, a current picture of the OEC as a whole in cyanobacteria, red 

algae, green algae, and higher plants will be presented. Additionally the role that these proteins 

play in the dynamic life cycle of PSII will also be presented. 
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INTRODUCTION 

 

 Photosystem II (PSII) is the multi-component enzyme of cyanobacteria, algae and plants 

that catalyzes the light-driven oxidation of water to molecular oxygen. This protein complex 

consists of more than 20 subunits including both integral membrane and extrinsically associated 

proteins.  In addition to its protein components, PSII also has a large number of associated 

cofactors including chlorophylls, pheophytins, plastoquinones, manganese atoms, a non-heme 

iron, calcium, chloride, and two heme groups. Despite the large number of components, PSII can 

be divided into two functional domains (1) the electron transfer domain, comprised of the integral 

membrane helices and cofactors and (2) the oxygen evolving complex (OEC), located on the 

lumenal face of the complex including the loop regions of several membrane proteins and the 

extrinsic proteins.   

 The catalytic center of the OEC is a tetranuclear manganese cluster that together with 

calcium and chloride ions sequentially removes four electrons from two water molecules to form 

molecular oxygen. All of the crystal structures of cyanobacterial PSII show that the ligands to this 

catalytic center are provided by the intrinsic protein components (Kamiya and Shen, 2003; 

Ferreira et al., 2004; Loll et al., 2005). This is in agreement with previous biochemical and genetic 

studies in a number of different organisms that have shown the extrinsic proteins are not 

necessary for oxygen evolution activity. However, the extrinsic proteins are required to enhance 

oxygen evolution activity and serve important roles in vivo including forming a protective barrier 

around the manganese cluster and concentrating the essential Ca2+ and Cl- ions within the OEC 

(Seidler, 1996). 

While the core membrane protein components of PSII are generally conserved in 

sequence and spatial arrangement among different organisms, there is considerable 

heterogeneity regarding the extrinsic proteins of the OEC. In most organisms, three to four 

extrinsic proteins are associated with the lumenal side of PSII, but only one protein, PsbO (the 33 

kDa or Manganese Stabilizing Protein), is present in all oxygenic photosynthetic organisms. The 

183



other extrinsic proteins are PsbP (23, 24 kDa protein), PsbQ (16-18 kDa protein in plants, 20 kDa 

protein in red algae), PsbR (10 kDa protein), PsbU (12 kDa protein), PsbV (cytochrome c550) and 

Psb27 (11 kDa protein), which associate with PSII in various combinations depending on the 

organism. Note that for clarity the nomenclature used in this manuscript refers to the proteins by 

their four letter name and not by their apparent molecular weight. Table 1 shows the distribution 

of the different extrinsic proteins among the different types of photosynthetic organisms 

(cyanobacteria, red algae, green algae, and plants).  Recent reviews have addressed the 

evolutionary implications of sequence divergences and extrinsic protein distributions among the 

different organisms (Seidler, 1996; De Las Rivas et al., 2004; De Las Rivas and Roman, 2005; 

Enami et al., 2005). 

This review focuses on the functions of the variable protein components of the OEC 

(PsbP, PsbQ, PsbR, PsbU, PsbV, and Psb27) and how they interact in the different types of 

OECs. Each protein will be discussed individually followed by sections describing them 

collectively in the context of the different types of PSII OECs- cyanobacterial, red algal, green 

algal and plant. Because the PsbO protein will be addressed in a separate article in this issue, it 

will only be mentioned briefly in the context of the structures of the different types of OECs. 

Finally, the dynamic nature of PSII will be discussed as a number of these extrinsic proteins have 

been implicated in facilitating the assembly of this large membrane protein complex. 
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Individual Extrinsic Lumenal Subunits 

 

PsbP 

 The PsbP protein is also known as the 23 or 24 kDa extrinsic protein in plants.  While it 

was first determined to be a component of PSII in plants (reviewed in Seidler, 1996). homologs 

have been identified in the genomes across the entire spectrum of photosynthetic organisms from 

cyanobacteria to plants (Table 1). In fact, psbP can even be found in the primitive 

cyanobacterium Gloeobacter violaceus (referred to hereafter as Gloeobacter), which lacks 

thylakoids, suggesting an ancient role for this protein in PSII.  Genome analysis of Arabidopsis 

thaliana (referred to hereafter as Arabidopsis) yielded ten copies of the psbP gene, and 

remarkably, eight of these were found to be expressed proteins in the thylakoid lumen (Peltier et 

al., 2002). Thus, plants must require a variety of PsbP isoforms to fine tune photosynthetic 

activity. Although psbP genes can be identified in all of the different classes of oxyphototrophs, 

little is known about the function of the PsbP protein in cyanobacteria or red algae.  

 The majority of functional studies regarding PsbP have been performed in plants.  PsbP 

was first identified during release-reconstitution experiments in higher plants (Seidler, 1996). The 

PsbP and PsbQ proteins are removed by treatment with 1 M NaCl with a concomitant decrease in 

oxygen evolution activity due to the loss of Ca2+ and Cl- ions (Akerlund et al., 1982; Kuwabara 

and Murata, 1983). Addition of Ca2+and Cl- to the assay medium restores PSII activity without the 

addition of these proteins (Ghanotakis et al., 1984; Miyao and Murata, 1985).  Specifically, PsbP 

was found to modulate the Ca2+ requirement for PSII activity (Miyao and Murata, 1984). 

Therefore, PsbP has been hypothesized to act as a Ca2+ concentrator and prevent the release of 

Ca2+ during turnover of PSII. Another study has shown that the kinetics of Ca2+ binding are 

altered in the absence of the PsbP and PsbQ proteins (Adelroth et al., 1995). However, PsbP has 

also been implicated along with PsbQ to modulate the Cl- requirement as well. Structurally, the 

presence of PsbP protects the manganese cluster from attack by exogenous reductants 

(Ghanotakis et al., 1984).   
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 The first genetic studies on the in vivo role of PsbP was conducted in the green alga 

Chlamydomonas reinhardtii (referred to hereafter as Chlamydomonas) in which the FUD39 

mutant lacks the PsbP protein (de Vitry et al., 1989; Rova et al., 1994; Rova et al., 1996). While 

these cells accumulate wild type levels of PSII centers, high concentrations of Cl- were necessary 

to promote oxygen evolution activity. Subsequently, it was shown that there were significant 

defects in the light-driven assembly of the manganese cluster (termed photoactivation) in this 

mutant. This inefficient photoactivation process and decreased Cl- affinity resulted in a substantial 

amount of competing donor side damage. Together, these data highlight the role of PsbP and the 

Cl- ion in the functional assembly of the manganese cluster. 

 Advances in RNAi technology have greatly facilitated genetic analysis in plants, 

especially in cases where the gene of interest is present in multiple copies. RNAi allowed for the 

in vivo characterization of PsbP in Nicotiana tabacum (referred to hereafter as Nicotiana) which 

contains four psbP genes (Ifuku et al., 2005; Ishihara et al., 2005). The PsbP knock-down plants 

exhibited a lower variable fluorescence yield and oxygen evolution activity. Most PSII subunits did 

accumulate in these plants except for PsbQ, which has been shown to require PsbP for binding to 

PSII in plants. While the stability of the manganese cluster was also affected, it was rapidly 

reassembled in the light in contrast to the results seen in the Chlamydomonas mutant. Differential 

RNAi technology was used to dissect the importance of each of the different PsbP isoforms in 

Nicotiana (Ishihara et al., 2005). This study showed that all of the isoforms are required for 

optimal activity, but generally PSII activity was correlated with the total amount of PsbP protein. 

 Recently, the PsbP protein was identified in PSII preparations from the cyanobacterium 

Synechocystis (Thornton et al., 2004). Sequence comparison revealed a key difference between 

transport of the plant and cyanobacterial PsbP proteins. The plant PsbP protein is translocated to 

the thylakoid lumen via the twin arginine translocation (TAT) pathway (Mould and Robinson, 

1991; Robinson and Bolhuis, 2004) while cyanobacterial PsbP is predicted to be cleaved by 

signal peptidase II to yield an N-terminal lipid-modified cysteine (predicted by SignalP, (Bendtsen 

et al., 2004) and LipoP, (Juncker et al., 2003)). Currently, there is disagreement about the 
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abundance of the PsbP protein in the thylakoid membranes of cyanobacteria. Thornton et al 

(2004) determined the amount of PsbP to be approximately 3% of that of CP47 in the thylakoid 

membranes. Ishikawa et al (2005) determined the amount of PsbP in the thylakoid membranes to 

be equal to that of PsbO. 

 Mutational studies in cyanobacteria have yielded somewhat conflicting results as to the 

function of PsbP (Thornton et al., 2004; Ishikawa et al., 2005; Summerfield et al., 2005). Ishikawa 

et al (2005) confirmed cyanobacterial PsbP is indeed associated with PSII and that its translation 

is highly dependent on the presence of PSII intrinsic components, but they observed no 

detectable photosynthetic phenotype in a mutant lacking PsbP. In contrast, other groups did 

observe photoautotrophic growth defects and decreased oxygen evolution activity in medium 

lacking either Ca2+ or Cl- for ΔpsbP cells (Thornton et al., 2004; Summerfield et al., 2005). The 

ΔpsbP phenotype was not as severe as the phenotype of other cyanobacterial extrinsic protein 

mutants and differences in sample preparation or assay conditions could explain this phenotypic 

discrepancy.  Summerfield et al (2005a) also examined double deletion mutants of psbP in 

combination with each of the other cyanobacterial extrinsic proteins. In most cases, additional 

inactivation of psbP did not result in any exacerbated phenotype. However, an increase in 

doubling time was observed for the ΔpsbO:ΔpsbP mutant under Cl--limiting conditions. These 

results are consistent with the hypothesis that PsbP is only associated with a small population of 

PSII complexes.   

 The PsbP protein is not present in the current crystallographic models of cyanobacterial 

PSII (Kamiya and Shen, 2003; Ferreira et al., 2004; Loll et al., 2005).  Structural studies of plant 

PSII complexes do not have the resolution to provide detailed information on the structure of 

PsbP within the complex, but most likely the position of PsbP is not analogous to any of the other 

extrinsic subunits observed in the current cyanobacterial models (Nield and Barber, 2006). Many 

studies indicate that the mode of association of PsbP with PSII varies among different organisms. 

As described above for cyanobacteria, PsbP is predicted to contain an N-terminal lipid anchor, 

which confers some hydrophobic characteristics (Thornton et al., 2004). In plants, binding of the 
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PsbP protein requires PsbO and is hypothesized to be a largely electrostatic interaction (Seidler, 

1996). In contrast, PsbP from green algae has been shown to bind independently of the other 

extrinsic proteins (Suzuki et al., 2003). Refer to the sections for the organism-specific OECs for 

further discussion. 

Currently, a high resolution (1.6 Å) crystal structure of PsbP from Nicotiana is available 

(Ifuku et al., 2004). The core of PsbP is an anti-parallel β-sheet with α-helices on either side; 

however, electron densities of the N-terminal 15 residues and two loop regions were not resolved. 

This result may indicate possible stabilizing conformational changes in PsbP upon binding. 

Because the N-terminus of PsbP is critical for ion retention in PSII, no mechanism for its function 

could be proposed. The asymmetric surface charge distribution did give some clues about its 

association with the PSII complex; in that the basic surface is proposed to interact with PSII (Ifuku 

et al., 2004; De Las Rivas and Roman, 2005).   

Surprisingly, the structure of PsbP hints at a more exotic role for PsbP in plant PSII.  

PsbP is very similar to that of Mog1p, a regulatory protein for a Ran GTPase suggesting it may be 

a possible GTP/GDP-sensitive regulator (Ifuku et al., 2004; De Las Rivas and Roman, 2005). 

While biochemical studies have not previously demonstrated such a role for the PsbP protein, 

recent studies have shown that GTP/GDP metabolism in the chloroplast thylakoid lumen 

regulates the turnover of PSII components (Spetea et al., 1999; Spetea et al., 2000; Spetea et al., 

2004). Another study has also implicated the PsbP protein in the assembly of PSII, suggesting it 

plays a direct role in the light-induced assembly of the manganese cluster (Bondarava et al., 

2005). Refer to the section on “PSII Biogenesis and Turnover” for a discussion on possible roles 

for the extrinsic proteins in this process. 

 PsbP clearly plays a structural role in the plant OEC to sequester the Ca2+ and Cl- ions 

and protect the manganese cluster from exogenous reductants, but the exact position of PsbP 

within the complex and mechanism for this function remains unknown. The studies described 

above demonstrate that PsbP is essential for normal in vivo PSII activity. The presence of psbP 

genes in a number of photosynthetic organisms emphasizes the need for more functional 
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analyses of this protein in cyanobacteria and algae. Additionally, further analysis of PsbP in 

cyanobacteria is necessary to determine whether its function is conserved from cyanobacteria to 

plants or whether it has specialized functions in different organisms. More studies are necessary 

to elucidate the function of PsbP as a possible regulatory protein in PSII assembly and 

disassembly. 

 

PsbQ 

 Genes for psbQ have been identified in a number of different photosynthetic organisms 

(Table 1). However, there are some notable exceptions- Gloeobacter as well as the 

Prochlorococci strains. Arabidopsis contains multiple copies of psbQ genes, four of which have 

been identified as expressed proteins in the thylakoid lumen (Peltier et al., 2002; Schubert et al., 

2002). Because of the apparently random distribution of psbQ genes, it has been hypothesized 

that PsbQ is the protein most recently incorporated into the OEC (De Las Rivas and Barber, 

2004). 

 The first analyses of PsbQ were release-reconstitution studies in spinach, which indicate 

that PsbQ plays a role in modulating the ionic requirements for optimal oxygen evolution activity 

(Seidler, 1996). PsbQ is released along with PsbP upon treatment with 1 M NaCl resulting in a 

decrease in oxygen evolution activity, which can be restored by the addition of Ca2+ and Cl- ions 

(Akerlund et al., 1982; Kuwabara and Murata, 1983; Ghanotakis et al., 1984; Miyao and Murata, 

1985). While PsbP was shown to contribute mainly to the Ca2+ requirement, recent results 

implicate PsbQ in Ca2+ retention as well (Ifuku and Sato, 2002; Barra et al., 2005). PsbQ in 

concert with PsbP functions to lower the Cl- requirement for optimal activity (Akabori et al., 1984; 

Ghanotakis et al., 1984; Miyao and Murata, 1985). Along with the PsbO and PsbP proteins, PsbQ 

plays a structural role within the plant OEC to protect the manganese cluster from inactivation by 

reductants in the thylakoid lumen (Ghanotakis et al., 1984). 

 Recently, genetic studies in plants have investigated the role of the PsbQ protein in vivo. 

RNAi was used to knock-down PsbQ in Nicotiana (Ifuku et al., 2005). Although transgenic plants 
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exhibited strong, stable gene silencing, they did not display any observable phenotype under the 

conditions assayed. In another study, RNAi was used to examine PsbQ in Arabidopsis (Yi et al., 

2006). Under normal growth conditions the mutant plants were similar to wild type, akin to the 

results in Nicotiana, but detailed analysis of their photosynthetic machinery indicated the OEC 

was quite unstable. The mutant plants died after 3-4 weeks under low light conditions, indicating 

that PsbQ is essential for growth under these conditions. It is possible that in the absence of 

PsbQ the manganese cluster more readily dissociates from PSII, but cannot be reassembled into 

the complex efficiently enough to maintain the PSII activity required for survival in low light. 

The 20 kDa PSII extrinsic protein in red algae has recently been renamed PsbQ’ because 

it has low but significant homology to PsbQ from green algae (Ohta et al., 2003). This protein was 

originally identified in PSII preparations from Cyanidium caldarium and it is released from these 

complexes along with PsbO, PsbU and PsbV upon treatment with 1 M CaCl2 (Enami et al., 1995; 

Enami et al., 1998). While PsbQ’ can bind PSII independently, it alone does not enhance oxygen 

evolution activity. These results suggest that PsbQ’ is not directly involved in water oxidation in 

red algae, but it is important for the association of the PsbV and PsbU proteins (Enami et al., 

1998). Despite differences in red algal and plant OECs, in both cases PsbQ stabilizes the protein 

components of the OEC for optimal activity.   

 PsbQ in cyanobacteria was first identified during a proteomic analysis of PSII isolated 

purified using a histidine-tagged mutant of the CP47 protein (Kashino et al., 2002). It was not 

previously identified as an extrinsic component of cyanobacterial PSII because it was not 

removed by treatment with 1 M CaCl2 or 1 M Tris-HCl, pH 8.0 (Shen et al., 1992; Kashino et al., 

2002). Sequence analysis provided an explanation for the hydrophobic nature of cyanobacterial 

PsbQ; it is predicted to be cleaved by signal peptidase II to yield an N-terminal lipid-modified 

cysteine (predicted by SignalP, (Bendtsen et al., 2004) and LipoP, (Juncker et al., 2003)). Indeed, 

a recent study has confirmed the hydrophobic nature of PsbQ and showed that it is lumenally 

exposed (Kashino et al., 2006). This is in contrast to the plant PsbQ protein that was easily 
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removed by treatments with high salt. Therefore, PsbQ exhibits a highly variable mode of 

association with PSII complexes from the different classes of photosynthetic organisms.   

 Data suggests that PsbQ is a stoichiometric component of PSII in cyanobacteria 

(Thornton et al., 2004). Inactivation of the psbQ gene in cyanobacteria resulted in a mutant with 

photosynthetic defects under Ca2+- and Cl- -limiting conditions, which is consistent with the 

biochemical studies of plant PsbQ (Thornton et al., 2004; Summerfield et al., 2005). However, the 

phenotype observed for the ΔpsbQ mutant was less severe relative to that of other cyanobacterial 

extrinsic protein mutants like ΔpsbV or ΔpsbO (Thornton et al., 2004; Summerfield et al., 2005). 

Double mutants where psbQ was inactivated in combination with each of the other cyanobacterial 

extrinsic proteins showed exacerbated photosynthetic defects. In fact, the ΔpsbQ:ΔpsbV mutant 

could not grow photoautotrophically in nutrient replete medium and assembled low amounts of 

PSII centers (30% relative to wild type). Interestingly, photoautotrophic growth could be restored 

when cells were grown at pH 10.0 (vs. pH 7.5), but the mechanism behind this pH-sensitivity 

remains unknown (Summerfield et al., 2005). 

A more detailed analysis of the PSII complexes in the ΔpsbQ mutant showed a partial 

loss of the PsbV protein and destabilization of the OEC (Kashino et al., 2006).  This finding is 

consistent with previous results of the PsbQ’ protein from red algae described above. While much 

of the cyanobacterial ΔpsbQ phenotype could be explained by the loss of the PsbV protein, the 

results from the ΔpsbQ:ΔpsbV double mutant suggest a synergistic relationship between the 

cyanobacterial PsbQ and PsbV proteins or perhaps an additional role for PsbQ.   

 Currently, there is little structural information on the PsbQ protein within the PSII OEC. 

While it has been found in the genomes of the cyanobacterial strains used for PSII crystallization, 

it is not present in the current structural models and there is no unassigned electron density that 

could be attributed to PsbQ (Kamiya and Shen, 2003; Ferreira et al., 2004; Loll et al., 2005). 

Analysis of low resolution plant PSII structural reconstructions in comparison to the 

cyanobacterial models indicate that the position of the PsbQ protein does not correspond to that 

of any currently resolved cyanobacterial extrinsic proteins (Nield and Barber, 2006). Evidence for 
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an independent binding site for PsbQ supports the hypothesis that PSII complexes in some 

organisms contain PsbQ in addition to PsbO, PsbU, PsbV and even PsbP. 

 High resolution crystal structures of isolated spinach PsbQ are available and have shed 

new light on its association with PSII (Calderone et al., 2003; Balsera et al., 2005).  PsbQ can be 

divided into two structural domains; a C-terminal four helix bundle with an asymmetric charge 

distribution and a more flexible N-terminus. Structural features of the PsbQ N-terminal region 

include two short β-strands surrounding a large flexible loop region (residues 14-33) and a 

polyproline type II motif (Balsera et al., 2005), which may obtain a more rigid conformation upon 

binding PSII. Sequence comparison of the N-terminal region may explain the differences in 

binding characteristics of PsbQ among the different organisms (Balsera et al., 2005). For 

example, only plant PsbQ proteins contain the polyproline motif as well as a hydrophilic motif 

bordered by two conserved hydrophobic domains. While all PsbQ sequences analyzed contained 

the flexible loop region, the cyanobacterial PsbQ proteins lack the two short β-strands. In 

contrast, the C-terminus region is more conserved including a number of conserved positively 

charged residues which have been implicated as binding determinants for PsbQ in plants (Gao et 

al., 2005; Meades et al., 2005). Interestingly, the crystal structures of PsbQ show two bound Zn2+ 

atoms, where the coordinating residues of one atom are entirely conserved in the plant PsbQ 

proteins (Calderone et al., 2003; Balsera et al., 2005). While Zn2+ was specifically required for 

crystal growth, the biological significance of this result has yet to be determined. 

 The cumulative data on PsbQ indicate it is a key structural component of OECs from a 

number of different organisms, but many questions remain regarding its function and its mode of 

association with PSII. High resolution structures of PSII complexes containing PsbQ are 

necessary to provide insights into its role in the ionic requirement for oxygen evolution activity and 

its location relative to the other protein components of the OEC. Targeted mutagenesis of the N-

terminal structural elements of PsbQ together with reconstitution analysis will unravel the 

differences in binding requirements among various photosynthetic organisms.   
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PsbR 

 PsbR, also referred to the 10 kDa PSII polypeptide, still remains something of a mystery. 

Though it does contain a lumenal targeting sequence like the other OEC components, it is quite 

unusual in its gene structure. The other OEC proteins have a N-terminal chloroplast transit 

sequence that contains a hydrophobic loop, the cleavage of which is thought to be necessary for 

entry of the mature protein into the lumen. In contrast, PsbR contains much shorter precursor 

sequence and does not contain the N-terminal hydrophobic loop thought to be necessary for 

cleavage (Lautner et al., 1988; Webber et al., 1989). It does have a similar motif at the C-

terminus and it has been suggested that the shortened N-terminal sequence acts to target PsbR 

into the chloroplast and could be cleaved off in the stroma and that the C terminal region then 

acts as a noncleavable signal for lumen import (Webber et al., 1989). The final protein product is 

predicted to contain a C-terminal transmembrane span and a lumenally exposed 70 amino acid 

N-terminus. 

 Because PsbR is not present in cyanobacteria, the current structures available for PSII 

are not helpful in approximating a location for PsbR. Based on the presence of the leader 

sequence and experimental Tris washes, PsbR is predicted to be in the lumen (Ljungberg, 1984; 

Ljungberg et al., 1986). Moreover, shown associations of PsbR with CP47, PsbO, and PsbP 

support this localization (Ljungberg et al., 1984; Harper, 1998).  

 The function of PsbR remains unclear. Certainly PsbR is necessary for the optimization 

of electron transfer and water oxidation. PSII activity is impaired with the loss of PsbR function, as 

shown by multiple lines of evidence (Ljungberg et al., 1986; Stockhaus et al., 1990; Suorsa et al., 

2006). Additionally loss of PsbR results in diminished electron transfer from the plastoquinone 

pool, an increased PSII excitation pressure and a higher PSI:PSII ratio (Suorsa et al., 2006).  

 Interestingly, the lack of PsbR results in a post transcriptional reduction in PsbQ and 

PsbP, with nearly undetectable levels under low light conditions, perhaps suggesting the PsbR is 

important for PsbP docking (Suorsa et al., 2006). Also, the absence of PsbR and PsbP in ΔpsbJ 

mutant further suggests that these three low molecular weight proteins are interdependent for the 
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proper assembly of the PSII complex (Suorsa et al., 2006). See the sections “Plant OEC” and 

“Green Algal OEC” for further information on interactions between PsbR and the PsbQ and PsbP. 

 

PsbU 

 PsbU, originally identified in the cyanobacterium Phormidium laminosumis, is found in 

most cyanobacteria and red algae (Table 1) and was formerly referred to as the 12kDa and 9 kDa 

polypeptide in these organisms, respectively (Stewart, 1985). Cyanobacterial PsbU has a single 

N-terminal loop that forms a cleavable transit sequence while algal PsbU has a two-part transit 

sequence to allow transport across the chloroplast envelope and into the lumen (Shen et al., 

1997; Ohta et al., 1999).      

 The function of PsbU is generally assigned as enhancing the structural stability of PSII 

and shielding the manganese cluster. Indeed the removal of PsbU affects the lumenal side, the 

core, and the stromal side of PSII. The donor side of PSII is impaired in the absence of PsbU as 

has been shown by a variety of measures of photosynthetic efficiency. (Shen et al., 1997; Inoue-

Kashino et al., 2005; Balint et al., 2006). Additionally, the stability of the PSII core is affected; in 

the ΔpsbU mutant the core is more susceptible to photodamage, resulting in rapid degradation of 

D1 (Inoue-Kashino et al., 2005; Balint et al., 2006). Even the stromal surface of the PSII complex 

is affected by the loss of PsbU, as evidenced by the increased uncoupling of the light harvesting 

machinery, the phycobilisome, and PSII (Veerman et al., 2005). 

 Several specific ways that PsbU may be enhancing stability for PSII have been proposed. 

One of these is that PsbU specifically stabilizes the ion environment for oxygen evolution. This is 

supported by evidence of decreased growth of PsbU mutants in medium that lacks Ca2+ or Cl- 

(Shen et al., 1997) and a further decrease PSII activity without supplied Ca2+ and a further 

dramatic decrease without supplied Cl- (Ohta et al., 1999; Inoue-Kashino et al., 2005). It is also 

suspected that PsbU may contribute to the thermal stability of the OEC, as PsbU mutants in both 

thermophilic and mesophilic cyanobacteria do not have the ability to acclimate to higher 

temperatures and exogenously applied PsbU enhances thermostability (Nishiyama et al., 1997; 
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Nishiyama et al., 1999). Another possible role for PsbU is protection from reactive oxygen 

species, as PsbU mutants have enhanced mechanisms to detoxify exogenously applied H2O2 

(Balint et al., 2006). The interactions of PsbU with the rest of the PSII complex will be addressed 

further in the sections “Cyanobacterial OEC” and “Red Algal OEC”. 

 

PsbV 

 PsbV, also referred to as cytochrome c550, is found in cyanobacteria and red algae (Table 

1). Additionally, its homology to other c-type cytochromes makes it the only extrinsic protein with 

similarity to anoxygenic and non-photosynthetic bacteria proteins (Raymond and Blankenship, 

2004). Like the other lumenal proteins, it contains a lumenal localization signal that is similar to 

that of the transit sequence of PsbO and PsbU in cyanobacteria (Shen et al., 1995). Genome 

sequence of the red algae Cyanidioschyzon merolae shows that psbV (as well as psbO) are both 

nuclear-encoded but have rather different targeting signals with only 15% identity (Matsuzaki et 

al., 2004).  In both systems, the PsbV protein could be removed by treatment with high salt 

buffers resulting in a decrease of oxygen evolution activity (Enami et al., 1998; Shen et al., 1993). 

 The function of PsbV, like that of PsbU, is regarded as stabilizing PSII structure and 

electron transfer. The PsbV mutant has a severe growth phenotype. Under normal conditions 

growth of the PsbV mutant is severely retarded and the absence of Ca2+ or Cl- in the growth 

media eliminates the capacity for growth, suggesting that PsbV aids in maintaining the proper ion 

environment within the OEC (Shen and Inoue, 1993; Shen et al., 1995; Shen et al., 1998). The 

PsbV mutant specifically has defects in the catalytic cycle of water oxidation (Shen et al., 1998; 

Kimura et al., 2002). Additionally, the overall stability of the PSII is reduced in the PsbV mutant. 

Dark treatment as well as heat reduces photosynthetic capacity more dramatically in the PsbV 

mutant (Kimura et al., 2002). Like PsbU, PsbV has also been shown to enhance thermostability, 

as PsbV mutants have a decreased 50% inactivation temperature, slowed growth with increasing 

temperature, and the inability to acclimate to higher temperatures (Nishiyama et al., 1994). Thus 

PsbV functions in several capacities to protect and stabilize the OEC and the manganese cluster.  
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 The discovery of a second expressed copy of PsbV (~44% identity) in 

Thermosynechococcus elongatus (referred to hereafter as Thermosynechococcus) also raises 

questions as to the function of PsbV. PsbV2 exhibits similar spectral properties of a six-

coordinated, low-spin c-type cytochrome (Kerfeld et al., 2003). PsbV2 can functionally rescue a 

ΔpsbV mutant in Synechocystis with the exception of reduced growth in the absence of Ca2+ or 

Cl- (Katoh et al., 2001). The role of this second PsbV, found only in a small subset of 

cyanobacteria remains unclear. 

In addition to its typical role as a protein component of the OEC, PsbV is a particularly 

interesting cytochrome. It is a water-soluble c-type monoheme cytochrome, but has a much lower 

reduction potential (-240 mV vs +0 mV) (Pettigrew and Moore, 1987; Krogmann and Smith, 

1990). The general structure of the heme environment does not account for this difference, as 

electric paramagnetic resonance (EPR) and resonance Raman spectroscopy showed that the 

heme has a bishistidine ligation that is similar to other c cytochromes (Vrettos et al., 2001).  

 Three factors have been identified that partially explain the low potential. One of these is 

solvent exposure of the heme which generally reduces the potential of cytochromes (Tezcan et 

al., 1998). Roncel et al (2003) have shown that PsbV bound to PSII has a higher potential (-80 

mV), in agreement with studies by Vrettos et al (2001). Additionally, the presence of ionizable 

residues may effect the reduction potential. It has been shown that the potential of bound PsbV is 

pH independent, while the unbound form shows an increase of 58 mV per pH unit when the pH is 

under 9.0 (Roncel et al., 2003). This ionizable group must be in the vicinity of the heme and has 

been proposed to be either a tyrosine or asparigine residue (Roncel et al., 2003; Ishikita and 

Knapp, 2005). Lastly, the bishistidine heme ligation typically has a lower potential than the other 

two possible ligands, lysine or methionine. Alteration of PsbV the histidine ligands resulted in a 

small increase in potential without affecting PSII activity (Kirilovsky et al., 2004; Andrews et al., 

2005). Taken together these factors begin to explain, but cannot fully account for, the low 

reduction potential of PsbV. These studies highlight the important role of the unusual c-type 

cytochrome PsbV in cyanobacterial PSII, but its exact function is unclear. Mutations that increase 
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the reduction potential of PsbV do not exhibit PSII defects (Kirilovsky et al., 2004; Andrews et al., 

2005).  

 In light of the fact that the role of a cytochrome has not been shown to play a role in PSII 

in redox and given that plant and green algal OECs do not contain any cytochrome equivalents, it 

has been hypothesized that PsbV plays another, as-yet uncharacterized, role in cyanobacteria 

and red algae. It has been proposed that PsbV may be involved in anaerobic removal of electrons 

from carbohydrate reserves or fermentation for increased survival during long dark and anaerobic 

conditions (Krogmann and Smith, 1990; Krogmann, 1991). This is supported by experimental 

evidence form Shen and Inoue that PsbV, in the presence of dithionite, can accept electrons from 

ferredoxin II (Shen and Inoue, 1993). It has also been proposed that PsbV may accept electrons 

from ferredoxin during NADPH oxidation and in cyclic phosphorylation. 

 The structural models of cyanobacterial PSII have provided new information on the 

interactions of PsbV with the other proteins of the OEC.  See the “Cyanobacterial OEC” section 

for further discussion. The PsbV protein is also associated with PSII complexes in red algae, 

where it also plays a role in the ionic requirement for oxygen evolution activity (Enami et al., 

1998).  Less is known about the protein architecture of the red algal OEC, but studies suggest the 

binding properties of algal PsbV differs from that of cyanobacteria (Enami et al., 1998; Enami et 

al., 2003).  Refer to the “Red Algal OEC” section for further details. 

 

Psb27 

 The Psb27 subunit was first identified as part of a purified PSII preparation from 

Synechocystis 6803 using N-terminal sequencing (Ikeuchi et al., 1995). This 11 kDa protein was 

first named PsbZ; however, according to a new nomenclature was changed to Psb27 (Kashino et 

al., 2002). A distinctly different smaller protein is now referred to as PsbZ (Swiatek et al., 2001; 

Shi et al., 2004).   

 This small basic (pI= 9) protein is predicted by to be targeted to the thylakoid lumen in 

Synechocystis 6803 and cleaved by signal peptidase II to yield an N-terminal lipid modification 
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(predicted by SignalP, (Bendtsen et al., 2004) and LipoP, (Juncker et al., 2003)). Indeed, Psb27 

was not removed by washes (1 M CaCl2 or 1 M Tris-HCl, pH 8.0), which typically deplete 

cyanobacterial PSII of its extrinsic subunits (Kashino et al., 2002). One of the two Arabidopsis 

Psb27 homologs (At1g03600) was found in a proteomic analysis of the thylakoid lumen (Peltier 

et., 2002; Schubert et al., 2002). In those studies, Psb27 was predicted to be targeted to the 

thylakoid lumen via the TAT pathway suggesting a possible difference in its interaction with PSII 

in higher plants.   

 Homologs of psb27 are present in all oxygenic photosynthetic organisms except 

Gloeobacter, a primitive cyanobacterium that lacks a separate thylakoid membrane system 

(Table 1). However, Psb27 is not present in the recent cyanobacterial PSII crystal structures 

(Kamiya et al., 2003; Ferreira et al., 2004; Loll et al., 2005). While no mutants of this protein have 

been described, Psb27 is hypothesized to function in the PSII biogenesis because it was found to 

accumulate on mutant PSII complexes arrested early in the PSII assembly pathway (Roose and 

Pakrasi, 2004). Refer to the “PSII Biogenesis and Turnover” section for further discussion on 

Psb27. 
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OEC Systems in Different Organisms 

 

Cyanobacterial OEC 

 The cyanobacterial OEC (modeled off that of Synechocystis and Thermosynechococcus) 

contains 5 lumenal proteins: PsbO, PsbU, PsbV, PsbP, and PsbQ. In regards to PsbO, PsbV, 

and PsbU, it represents the best understood OEC, thanks to numerous release reconstitution 

experiments and crystal structures (Zouni et al., 2001; Kamiya and Shen, 2003; Ferreira et al., 

2004; Loll et al., 2005) . PsbP and PsbQ remain more ambiguous as they are not present in the 

crystal structures and their relatively recent discovery in cyanobacteria means there are fewer 

reconstitution experiments. Figure 1a represents a cartoon model of the current known structure 

of the cyanobacterial OEC. 

 The binding order of PsbO, PsbU, and PsbV has been well established. It has long been 

known that PsbO can rebind CaCl2 washed PSII in the absence of any other proteins. PsbV can 

bind to approximately 80% of levels before washing without PsbO or PsbU, but an increase of 

10% is seen with the addition of PsbO and another 10% in the presence of both PsbO and PsbU 

(Shen and Inoue, 1993). PsbU can not rebind at all without PsbO or PsbV. Binding of PsbU 

increases to 25% with the addition of PsbO, to 40% with the addition of PsbV, and to over 100% 

in the presence of both (Shen and Inoue, 1993). These results suggest that PsbO can bind the 

core monomer independently, PsbV can bind the core monomer independently but PsbO 

enhances binding, and PsbU cannot bind the core monomer independently and must interact with 

PsbO and PsbV to bind. 

 Recent crystal structures have provided specifics as to the binding of PsbU, PsbV, and 

PsbO. PsbO is a β-barrel consisting of 8 anti-parallel β-strands with a loop between strands 5 and 

6 that is involved with binding PsbO to PSII (De Las Rivas and Barber, 2004; Ferreira et al., 

2004). PsbO is positioned over the D1/CP47 side of the reaction center (Zouni et al., 2001). PsbO 

stabilizes the AB loop and C terminus of D1, the location of many of the ligands to the 

manganese cluster, and interacts with the large E loop of CP47 (Ferreira et al., 2004; Nield and 
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Barber, 2006). This is in agreement with experiments showing that deletions in the E loops of 

CP47 in concert with the deletion of PsbO that abolished photoautotrophic growth (Morgan et al., 

1998; Clarke and Eaton-Rye, 1999) and site directed mutagenesis studies which show a binding 

domain for PsbO at CP47 Arg384 and Arg385 (Putnam-Evans and Bricker, 1992; Putnam-Evans 

et al., 1996; Qian et al., 1997). 

 PsbV is mainly alpha helical with a two-stranded beta sheet near the N-terminus (Kerfeld 

et al., 2003). PsbV is located over the D1/CP43 side of the reaction center (Zouni et al., 2001). 

Deletions in the E loop of CP43 result in a loss of photoautrophic growth and PSII activity, 

suggesting that CP43 stabilizes the OEC (Kuhn and Vermaas, 1993). The specific mutation 

R305S in CP43 prevents strong association of PsbV with PSII, although the amount of PsbV is 

unaffected on a cellular basis (Bricker et al., 2002). 

 PsbU is composed of five or more short α-helices, with no homologous structure in the 

database (Kamiya and Shen, 2003). The crystal structures places PsbU between PsbO and PsbV 

with a majority of its contacts to these two proteins (Kamiya and Shen, 2003; Ferreira et al., 2004; 

Loll et al., 2005). This supports release reconstitution studies showing that PsbO is not required 

for PsbU binding but that PsbV is (Shen and Inoue, 1993; Shen et al., 1997; Eaton-Rye et al., 

2003). While there is a significant amount of distance between PsbU and the membrane, it 

interacts with PsbV, PsbO, CP47 and CP43 (Eaton-Rye, 2005). Combinatorial mutants of the 

CP47 E loop and ΔPsbU affect PSII stability, not growth, whereas the combination of the E loop 

and CP47 and ΔPsbV abolish photoautotrophic growth. In light of crystal structure data, the latter 

OEC mutant must be severely destabilized due to reduced binding of PsbU and loss of PsbV 

(Morgan et al., 1998; Clarke and Eaton-Rye, 1999). 

PsbP and PsbQ proteins have recently been identified as cyanobacterial PSII 

components (Kashino et al., 2002; Thornton et al., 2004). Their binding properties are 

significantly different from that of PsbP and PsbQ in other systems, in that, they are not easily 

removed by salt-washing treatments (Kashino et al., 2002). Cyanobacterial PsbP and PsbQ are 
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predicted to an N-terminal lipid-modified cysteine (see above discussion of PsbP and PsbQ). 

While the precise lipid moiety has not been identified, a recent study demonstrated that 

cyanobacterial PsbQ has hydrophobic characteristics, but is still highly exposed on the lumenal 

face of the thylakoid membrane (Kashino et al., 2002). 

 The PsbQ protein is hypothesized to be a stoichiometric component of PSII complexes in 

cyanobacteria, but there is some debate over the stoichiometry of PsbP (Thornton et al., 2004; 

Ishikawa et al., 2005). One recent study indicates that the absence of PsbQ destabilizes PsbV 

similar to observations in red algae, suggesting a location near PsbV (Enami et al., 1998; Kashino 

et al., 2006). Less is known about the possible location of PsbP.  Thornton et al (2004) have 

proposed that it is present in only 3% of cyanobacterial PSII centers, while Ishikawa et al (2005) 

argue that it is a stoichiometric subunit.  With the prediction of the N-terminal lipid anchor and no 

other constraints from reconstitution or genetic studies, the cyanobacterial PsbP protein could 

bind anywhere on the lumenal side of the complex in cyanobacteria.  

 Despite the wealth of experimental information available for the cyanobacterial OEC, 

there are still many unanswered questions. It remains unclear what the role of the PsbV 

cytochrome is, especially in light that none of the extrinsic proteins in the plant OEC are 

cytochromes. Additionally the low redox potential of PsbV also is intriguing. The crystal structures 

show that PsbV is bound to PSII in such a way that the heme edge is facing PsbO and 

periplasmic surface of PSII, making it likely that the heme edge has much lower solvent 

accessibility and thus that the reduction potential is even higher than has been reported for bound 

PsbV (-80 mV) (Roncel et al., 2003). Knowing the actual redox potential for PsbV would perhaps 

show that the low potential reported is an artifact of removal from the complex. Resolving the 

locations and stoichiometries of PsbP and PsbQ in cyanobacterial PSII will be a topic of intense 

future research. And although this portrayal of the cyanobacterial OEC was based on that of 

Synechocystis and Thermosyechococcus, there are other cyanobacterial species that contain 

variations on this theme. Most interesting are Gleobacter and certain Prochlorococci strains such 
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as MED4 and SS120. The genome sequences of these species do not contain PsbU or PsbV. 

This raises interesting questions as to the structures and efficacy of these unusual PSIIs.  

 

Red Algal OECs 

 Red algae have an OEC comprised of PsbO, PsbU, PsbV, and PsbQ’. Currently there 

are only low resolution electron microscopy models and a handful of release reconstitution and 

cross release reconstitution studies to illustrate the OEC structure in red algae. Figure 1b 

illustrates the current model of red algal OEC. 

 Electron microscopy and single particle analysis of the Porphyridium cruentun revealed 

that the PSII structure and location of PsbO, PsbV and PsbU in red algae is similar to the 

published crystal structures of cyanobacteria (Kimura et al., 2002; Kamiya and Shen, 2003; 

Bumba et al., 2004; Ferreira et al., 2004; Loll et al., 2005). PsbQ’ was not seen in this structure. 

However, there are likely differences in red algae OEC in comparison to the cyanobacterial OEC, 

as seen by differences in their binding patterns. As in cyanobacteria, PsbO can bind CaCl2 

washed PSII independently (Enami et al., 1998). PsbQ can also partially rebind independently, 

but the binding of PsbQ does not affect oxygen evolution activity (Enami et al., 1998). However, 

while PsbV can bind independently in cyanobacteria, in red algae PsbV, as well as PsbU, require 

the presence of all four of the extrinsic proteins (Enami et al., 1998). When cross release 

reconstitution experiments were done between red algae and cyanobacteria, red algal PsbV 

could independently bind to cyanobacterial PSII indicating that the binding of the extrinsic 

proteins is determined by the intrinsic proteins (Enami et al., 2003). These experiments also 

showed that all four extrinsic proteins are needed for full binding and recovery of activity (Enami 

et al., 1998). 

 Red algae are considered to represent a transitional state between cyanobacterial and 

photosynthetic eukaryotes. They have thylakoids more similar to those of cyanobacteria, rather 

than to the stacked thylakoids of green algae and higher plants. Thus it’s intriguing that red algae 

lack PsbP, as opposed to PsbU or PsbV that are not present in higher photosynthetic organisms. 
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A higher resolution structure of the red algal OEC would aid in understanding the similarities of 

the red algal OEC to that of cyanobacteria and higher plants. 

 

Green Algal OEC 

 The protein content of the green algal OEC is analogous to that of plants (PsbO, PsbP, 

PsbQ, and PsbR), but there are significant differences in the way these proteins interact with the 

PSII complex and each other. Currently there is only one low resolution structural study of the 

OEC from green algae, but clear differences between cyanobacterial and algal OECs can be 

seen (Nield et al., 2000). Many biochemical and genetic studies in Chlamydomonas have been 

useful in characterizing the interactions among the OEC proteins. Based on these studies, Figure 

1C shows a cartoon structure of the OEC in green algae. 

 Release-reconstitution studies of Chlamydomonas PSII complexes isolated using a 

histidine-tagged CP47 protein have shown a release of extrinsic proteins analogous to that of 

plants (Suzuki et al., 2003). Surprisingly, all three algal proteins can bind to PSII independently of 

each other (Suzuki et al., 2003) . Upon addition of PsbO, activity was only partially restored and 

activity was highly dependent on the addition of Ca2+ and Cl- ions similar to observations in 

spinach. However, the addition of PsbP alone or in combination with PsbQ also restored activity 

in contrast to previous observations for plant PSII. While the PsbQ protein was able to bind 

independently, it alone does not restore any level of oxygen evolution activity.   

 These findings are consistent with previous genetic studies of a Chlamydomonas mutant 

lacking the PsbO protein, which was shown to still bind the PsbP and PsbQ proteins (de Vitry et 

al., 1989). However, PsbQ could not associate with PSII complexes in a mutant lacking the PsbP 

protein (de Vitry et al., 1989). Therefore, while in vitro conditions indicate that it is possible for 

PsbQ to associate independently of the other extrinsic proteins, it is not significant in vivo. 

 Cross-reconstitution studies using plant and green algal components have provided new 

insights into the functional exchangeability of the extrinsic proteins (Suzuki et al., 2005). It was 

found that algal PsbP and PsbQ proteins could not bind independently to spinach PSII, and 
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spinach PsbP and PsbQ only bound to non-specifically sites on algal PSII.  These results suggest 

that the determinants for independent binding reside on the intrinsic PSII components. They also 

highlight that the majority of the PsbQ binding sites reside on the corresponding organisms PsbO 

and PsbP proteins.   

 The green algal OEC is quite similar to that of plants, but further structural studies will be 

useful in defining the details within the algal OEC that confer altered binding properties to its 

extrinsic proteins.   

 

Plant OEC 

 The protein components of the plant OEC include PsbO, PsbP, PsbQ and PsbR.  

Currently only low resolution electron microscopy structural models are available for plant PSII 

(Bumba and Vacha, 2003). Yet, together with detailed reconstitution studies and high resolution 

crystal structures of some of the individual subunits, a clearer picture of the OEC is emerging. 

Figure 1D is a cartoon version, which represents the current structural model of the plant OEC. 

In contrast to many of the other systems, the plant extrinsic proteins appear to have a 

strict binding order. While the PsbO protein can bind to PSII independently, PsbP requires the 

presence of the PsbO protein and PsbQ requires the presence of both PsbO and PsbP (Miyao 

and Murata, 1983, 1983). One recent study challenges this model, as treatment with HgCl2 could 

effectively remove the PsbO protein leaving the PsbP and PsbQ proteins intact (Yu et al., 2006). 

Higher resolution structures are necessary to determine the extent of the interactions of the PsbP 

and PsbQ proteins with the intrinsic components that could provide for independent binding of 

these subunits.   

The PsbP and PsbQ proteins can be removed by washing with 1 M NaCl suggesting a 

strong electrostatic component for their association with the complex. A number of studies have 

investigated the roles of certain types of residues using chemically modified proteins in 

reconstitution experiments. Negatively charged carboxylate groups on the PsbO have been 

shown to be necessary for the binding of PsbP (Bricker and Frankel, 2003). In agreement with 
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these results, it was found that positively charged groups on PsbP were essential for its 

association with PsbO, but negatively charged groups were not (Tohri et al., 2004). Positively 

charged groups on the PsbQ protein have also been shown to be critical for its association with 

PsbP (Gao et al., 2005; Meades et al., 2005). The structure of PsbP revealed an asymmetric 

surface charge distribution on the protein which can explain the chemical modification data (Ifuku 

et al., 2004).  The positive face of the protein is predicted to interact with the acidic PsbO surface, 

while the negative side of PsbP interacts with the PsbQ protein. Additionally, the N-termini are 

critical for binding.  

 Comparisons of the plant PSII data to the higher resolution models from cyanobacteria 

indicate that the location of the PsbO protein is similar between the two systems. On the other 

hand, the locations of the PsbU and PsbV proteins do not correspond to that of PsbP and PsbQ 

(Nield and Barber, 2006). The individual x-ray structures for PsbP and PsbQ were fit into the 

electron density observed for the plant PSII complex. According to this fit, the PsbP protein 

interacts with the PsbO subunit as well as the lumenal face of the CP43 protein, and PsbQ spans 

between the PsbO and PsbP proteins. While this type of analysis can stimulate new hypotheses 

regarding the structure of the OEC in plants, higher resolution structures with assignments for all 

of the extrinsic proteins are necessary to determine how each of these proteins contributes to the 

water oxidation reaction. 

 A number of studies have indicated significant conformational changes occur upon the 

binding of the extrinsic proteins.  Investigations of the extrinsic proteins individually have 

demonstrated they have highly flexible domains in solution, which are likely to be stabilized upon 

binding to the complex (Calderone et al., 2003; Ifuku et al., 2004; Balsera et al., 2005). The 

intrinsic core components of PSII also shift upon binding and release of the extrinsic proteins 

(Boekema et al., 2000). Specifically, removal of PsbP and PsbQ affect the peripheral antenna 

proteins and further removal of the PsbO protein also destabilizes the dimeric structure of PSII. 

These linked conformational changes may be significant for the assembly and disassembly of the 

PSII complex. 
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 Currently, little is known about the structure of the PsbR protein, as it is unaccounted for 

in the PSII complexes used for structural studies and there is no structure of the purified protein. 

The PsbR protein is considered an extrinsic subunit, but there is also evidence that the C-

terminus of the protein is hydrophobic. Biochemical analysis has indicated the PsbR protein is in 

close proximity to the PsbO, PsbP and CP47 proteins.  Genetic analyses also implicated a role 

for PsbR in the stable association of the PsbP and PsbQ proteins (Suorsa et al., 2006). 

Mutational studies have, in turn, shown that the intrinsic PsbJ subunit is necessary for the 

association of PsbR (Suorsa et al., 2006). Analysis of PSII assembly intermediates suggest that 

PsbR can bind independently of the other extrinsic subunits as it is found in CP43-less monomers 

which lack these proteins (Rokka et al., 2005). Additional mutational and biochemical studies 

should further elucidate the position of PsbR relative to the other plant OEC components. 

 A number of different techniques have contributed to our understanding of the structure 

of the plant OEC, and advances in plant genetic analysis and structural methods will be key tools 

for resolving certain details. Obviously, the interactions among the different extrinsic subunits and 

the PSII core need to be more explicitly defined. Also, plants have a number of different isoforms 

for each extrinsic protein and it is not clear why so many are necessary.   
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Photosystem II Biogenesis and Turnover 

 The complex architecture of PSII requires precise and regulated assembly to ensure the 

proper positioning of all the essential redox active cofactors. Studies have shown that the 

assembly pathway is clearly an ordered step-wise association of the PSII subunits. Furthermore, 

as a consequence of normal PSII activity, the core D1 protein is irreversibly damaged and must 

be replaced with a newly synthesized copy (Baena-Gonzalez and Aro, 2002; Aro et al., 2005). 

PSII biogenesis and turnover is a complex and frequent process, and the details of this cycle are 

the focus of intense PSII research. In this section, the roles of some of the extrinsic proteins in the 

dynamic life cycle will be discussed.   

 In addition to its role as a structural component of the plant OEC, PsbP may play a more 

direct role in the light-driven assembly of the manganese cluster (Bondarava et al., 2005). Upon 

release of the three extrinsic proteins components PsbP sequesters manganese ions (Bondarava 

et al., 2005). Furthermore, photoactivation assays showed that the manganese-containing PsbP 

protein specifically facilitated manganese cluster assembly and restoration of oxygen evolution 

activity. Note that these experiments were also conducted in the presence of PsbO as it is 

required for PsbP association with PSII.  While these results agree with previous characterization 

of the PsbP-deficient mutant in Chlamydomonas (Rova et al., 1996), no defects in photoactivation 

were observed in the Nicotiana PsbP-RNAi plants (Ifuku et al., 2005). However, photoactivation in 

the PsbP-RNAi plants was not extensively characterized and it is possible that the plants may 

show exacerbated defects under different growth conditions. 

   Little is known about the function of the Psb27 protein, but data suggest it may play a role 

in PSII assembly. While it is a component of cyanobacterial PSII complexes isolated using a 

histidine-tagged CP47 protein (Kashino et al., 2002), it was shown to be more abundant on PSII 

complexes in which the precursor D1 protein did not undergo the necessary C-terminal cleavage 

to yield the mature functional D1 protein (Roose and Pakrasi, 2004). This population of PSII 

complexes lacks the manganese cluster and the PsbO, PsbQ, PsbU, and PsbV extrinsic proteins 

(Roose and Pakrasi, 2004). These findings suggest that Psb27 associates with PSII complexes at 
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an early step in assembly and may exclude the binding of the other extrinsic proteins. It is not 

clear whether the Psb27 protein plays a role in the pD1-processing event or serves another 

function in the biogenesis pathway. It is likely that Psb27 only transiently associates with PSII 

during assembly, but is not part of the functional complex. Additional experiments are necessary 

to elucidate the function of this protein in vivo. 

 In addition to addressing the forward pathway of assembly, it is also necessary to 

consider the disassembly steps required for the removal of the damaged D1 protein. The current 

PSII structural models position the D1 protein in the center of the PSII core with numerous 

interactions with the manganese cluster and extrinsic proteins (Kamiya and Shen, 2003; Ferreira 

et al., 2004; Loll et al., 2005). Thus, the OEC must be disassembled to remove the damaged D1 

protein. Notably, the interaction of the extrinsic proteins with PSII is affected by the presence of 

the assembled manganese cluster (Kavelaki and Ghanotakis, 1991). Furthermore, the release of 

the extrinsic proteins results in significant changes in the intrinsic components and destabilizes 

the dimeric form of PSII (Boekema et al., 2000). Consequently, release of the manganese cluster 

would ensure an efficient disassembly of the entire OEC with additional effects on the core 

components. Interestingly, under normal conditions free extrinsic proteins in the thylakoid lumen 

are not targeted for degradation, which could facilitate reassembly.   

Experiments have identified a GTP requirement for the primary proteolytic cleavage of 

the damaged D1 protein (Spetea et al., 1999; Spetea et al., 2000). It has been reported that the 

primary cleavage event occurs in isolated PSII complexes, suggesting that perhaps a PSII 

subunit or co-purified protein is responsible (Salter et al., 1992; De Las Rivas et al., 1993). 

Subsequent reports have shown that the PsbO protein can bind GTP indicating this ubiquitous 

extrinsic protein may be involved in regulating D1 degradation (Spetea et al., 2004). The current 

models of PSII do not provide any additional evidence for this hypothesis.  Interestingly, recent 

analysis of the PsbP protein indicates it is structurally similar to Mog1p, a regulator of Ran-

GTPase in yeast (Ifuku et al., 2004). This result presents yet another possible role of the PsbP 
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protein in the PSII life cycle. More experiments are necessary to determine whether the PSII 

extrinsic proteins play a more active role in the turnover of the D1 protein. 
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CONCLUSION 

The unique reaction of water oxidation is similar among all photosynthetic organisms. Yet 

the protein complement of the OEC varies significantly. Future studies should focus on assigning 

function to the individual extrinsic proteins. Higher resolution structural work will allow us a 

complete picture of the various OECs as a whole. It’s important to keep in mind that a static 

structure cannot tell the entire story of PSII, as it is a dynamic complex undergoing constant 

assembly and degradation. Future studies should also be directed to gain an understanding of 

PSII as a dynamic structure. 
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Table 1. Photosystem II Extrinsic Proteins in Different Organisms
Complete names for the organisms included in the table are:
Gloeobacter violaceus, Synechocystis sp. PCC 6803,
Thermosynechococcus elongatus BP-1, Synechococcus sp. WH8102,
Anabaena sp. PCC 7120, Prochlorococcus marinus MED4,
Prochlorococcus marinus SS120, Prochlorococcus marinus MIT9313,
Cyanidioschyzon merolae, Trichodesmium erythaeum, Chlamydomonas
reinhardtii, and Arabidopsis thaliana. Gene name and/or BLAST
search analysis was used to identify the genes listed in the table in the
different organisms (performed July 2006). Yes, indicates the presence
of the gene confirmed by BLAST search, but the annotation is
incomplete. Asterisks indicate expressed isoforms in the thylakoid
lumen of Arabidopsis thaliana (Peltier et al., 2002; Schubert et al.,
2002). Locations for the databases used for this analysis are as
follows: Cyanobase (http://www.kazusa.or.jp/cyano/), DOE Joint
Genome Institute (http://genome.jgi-
psf.org/draft_microbes/trier/trier.home.html and http://genome.jgi-
psf.org/Chlre3/Chlre3.home.html), Cyanidioschyzon merolae Genome
Project (http://merolae.biol.s.u-tokyo.ac.jp/) and The Arabidopsis
Information Resource (http://www.arabidopsis.org/).
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Figure 1. Models for the OECs in Different Organisms
Based on the current structural, biochemical and genetic data discussed in
the manuscript, the structures of the OECs in cyanobacteria (A), red algae
(B), green algae (C), and plants (D) are modeled in cartoon form. The
intrinsic components D1, D2, CP43 and CP47 are labeled and the large
lumenal portions of CP43 and CP47 are shown as solid loops. The
manganese cluster is also represented by small dots on the lumenal side of
the D1 protein. The extrinsic proteins are labeled as O (PsbO), P (PsbP),
Q (PsbQ), R (PsbR), U, (PsbU) and V (PsbV). The cyanobacterial OEC
(A) shows the presence of five extrinsic proteins, but PsbP may not be a
stoichiometric component of these complexes. In the green algal (C) and
plant (D) OEC models, the PsbR protein is positioned behind the PsbP and
PsbQ proteins such that it is closer to the intrinsic PsbJ protein beyond the
CP43 and D2 proteins. These models are designed to aid the reader in
conceptualizing the relative locations of the indicated subunits among the
different organisms, but by no means replace the more detailed structural
analyses discussed in the manuscript. Refer to the text for more detailed
discussions about the individual proteins or organismal OECs.
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