Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-95-11

1995-01-01

Reliable FIFO Load Balancing over Multiple FIFO Channels

Hari Adieseshu, Gurudatta M. Parulkar, and George Varghese

Link striping algorithms are often used to overcome transmission bottlenecks in computer
networks. However, traidtional striping algorithms suffer from two major disadvantages. They
provide inadequate load sharing in the presence of variable length packets, and may result in
non-FIFO delivery of data. We describe a new family of link striping algorithms that solve both
problems. Our scheme applies to packets at any layer (physical, data, link, network, and
transport) that work over multiple FIFO channels. We deal with variable sized packets by
showing how a class of fair queueing algorithms can be converted into load sharing algorithms.
Our transformation... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Adieseshu, Hari; Parulkar, Gurudatta M.; and Varghese, George, "Reliable FIFO Load Balancing over
Multiple FIFO Channels" Report Number: WUCS-95-11 (1995). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/371

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/371?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/371

Reliable FIFO Load Balancing over Multiple FIFO Channels

Hari Adieseshu, Gurudatta M. Parulkar, and George Varghese

Complete Abstract:

Link striping algorithms are often used to overcome transmission bottlenecks in computer networks.
However, traidtional striping algorithms suffer from two major disadvantages. They provide inadequate
load sharing in the presence of variable length packets, and may result in non-FIFO delivery of data. We
describe a new family of link striping algorithms that solve both problems. Our scheme applies to packets
at any layer (physical, data, link, network, and transport) that work over multiple FIFO channels. We deal
with variable sized packets by showing how a class of fair queueing algorithms can be converted into
load sharing algorithms. Our transformation results in practical load sharing protocols, and also shows a
theoretical connection between two seemingly different problem areas. We deal with the FIFO
requirement for two separate cases. If a header (with a sequence number) can be added to each packet,
we show how to speed up packet processing by letting the receiver simulate the sender algorithm. If no
header can be added (e.g., ATM cells), we show how to provide quasi-FIFO delivery. Quasi-FIFO is FIFO
except during occasional periods of loss of synchronization between the sender and the receiver. We
argue that quasi-FIFO should be adequate for most applications. To deal with loss of synchronization
between the sender and receiver, we present simple recovery protocols. We provide performance analysis,
experimental results, and proofs of our assertions.

https://openscholarship.wustl.edu/cse_research/371?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/371?utm_source=openscholarship.wustl.edu%2Fcse_research%2F371&utm_medium=PDF&utm_campaign=PDFCoverPages

Reliable FIFO Load Balancing over
Multiple FIFO Channels

Hari Adiseshu, Gurudatta M. Parulkar and George Varghese

WwWUCSs-95-11

May 3, 1995

Department of Computer Science
Campus Box 1045

Washington University

One Brookings Drive

St. Louis, MO 63130-4899

Abstract

Link striping algorithms are often used to overcome transmission boitlenecks in computer networks. However,
traditional striping algorithms suffer from two major disadvantages. They provide inadequate load sharing in
the presence of variable length packets, and may result in non-FIFO delivery of data. We describe a new family
of link striping algorithms that solve both problems. Our scheme applies to packets at any layer (physical, data
link, network, and transport) that work over muliiple FIFO chanmels.

We deal with variable sized packets by showing how a class of fair queueing algorithms can be converted inio
load sharing algorithms. Our ransformation results in practical load sharing protocols, and also shows a theo-
retical connection between two seemingly different problem areas. We deal with the FIFO requirement for two
separate cases. If a header (with a sequence number) can be added to each packet, we show how to speed up
packet processing by letting the receiver simulate the sender algorithm. If no header can be added (e.g., ATM
cells), we show how to provide quasi-FIFQ delivery. Quasi-FIFO is FIFO except during cccasional periods of
loss of synchronization between the sender and the receiver. We argue that quasi-FIFO should be adequate for
most applications. To deal with loss of synchronization between the sender and receiver, we present simple
recovery protocols. We provide performance analysis, experimental resulis, and proofs of our assertions.

Reliabie FIFO Load Balancing over Multiple FIFO Channels 1

1. Introduction

Parallel architectures are attractive for two reasons. First, they are essential when scalar architectures with the
required performance are simply unavailable, Second, even if scalar solutions with the required performance
are available, parallel solutions may offer better price-performance and better scalability, The first reason is
the motivation for highly parallel supercomputers such as the Connection Machine; the second reason is the
motivation for replacing expensive, high performance disks with arrays of inexpensive disks. Parallel solu-
tions, however, often have a cost for synchronization (e.g., the need to keep multiprocessor caches coherent)
and fault-1olerance {e.g., the need for redundant disks in disk arrays).

Similar considerations apply to computer networks because of transmission and processing bottlenecks.
For example, consider a supercomputer (e.g., a CRAY) that can easily saturate existing Local Area Networks
{LANS). If more performance is required between two CRAY's than can be provided by a single LAN, systems
builders often resort to “striping” data across multiple adaptors and multiple LANs between the two computers.
A second example is a wide-area network connecting campuses that are internally wired with 100 Mbps FDDI
L.ANs. If the only available wide area links are 1.5 Mbps T1 lines, then many network designers resort to
multiple T1 connections between campuses. In these examples, the parallel solution of using several slow
speed channels is the only solution available to the designer, However, in the second example it may also be
that a higher speed SONET link is available between campuses, but the cost is prohibitive. In that case, the
parallel solution may be favored because it has a better price-performance ratio.

For these and other reasons, channel striping (also known as load sharing, or inverse multiplexing) has
frequently been considered in compuier networks, This trend is likely to continue because bandwidth con-
tinues to be less expensive in LAN environments than in WAN environments, and the processing power of
workstations continues to grow faster than the speed of reasonably priced LANs.

However, just as in other parallel solutions, there are some basic synchronization and fault-tolerance issues
that are inherent to channel striping algorithms. For example, if a FIFQ (First-In-First-Out) stream of packets
is striped across multiple channels, the packets may be physically received out of order at the receiver because
of different delays (often called skews) on the different channels. In many applications (e.g., ATM) the receiver
must reconstruct the sequence of packets sent by the sender from the parallel packet streams arriving on the
channels. This adds a basic synchrenization cost. Clearly, the channel striping algorithm must also be resilient

to common faults such as occasional bit errors and link crashes.

As we will see in the next section, earlier solutions to the synchronization and fault-tolerance problems

were either expensive or were dependent on assumptions! that made them infeasible in certain important ap-

1such as the ability to add sequencing information to packets sent over channels

Reliable FIFO Load Balancing over Multiple FIFO Channels 2

plication domains. This paper, on the other hand, describes a new family of channel striping algorithms that
are both general and efficient. Our algorithms are based on a combination of two (we believe) novel ideas:
Jair load sharing and logical FIFO reception.

To allow our algorithms to be employed in as wide a context as possible, we use a broad definition of a
channel. For the rest of this paper, we define a channel to refer to a logical FIFO path which can exist at either
the physical, data link, network, or transport tayer. We use packers to refer to the atomic units of exchange
between two entities communicating across a channel. The generic channel striping configuration is depicted
in Figure 1.

Source Node S Destination node D
Chanuel 1

>

Channel 2 ‘[H]]I]\

Reassembly
Algorithm

(Dual of Fair : { Fair
Queuein Channel N Queuei
Algorithm Algorithm

HHEE

Figure 1: Channel striping configuration

The simplest example of a channel at the data link layer is a point-to-point fiber link that connects two
high speed devices, where the two devices could be workstations, switches, routers, or bridges. A somewhat
less obvious example of a Data Link channel is a LAN like an Ethernet or a Token Ring; although these LANs
are multiaccess LANs and do not guarantee FIFO delivery across sources, they do guarantee FIFO delivery
between a given source and a given destination. Thus a high speed workstation may stripe packets across
several cheap Ethernet adaptors that are each connected to a separate Ethernet.

Atthe network layer, a channel is an end-to-end pipe that guarantees FIFO delivery across the network. An
important example of such a “network” channel is a virtual circuit provided by an X.25 or an ATM network.
For example, it may well be true that in the wide area context, lower bandwidth ATM virtual circuits have
better price-performance. This would make end-10-end striping across wide area ATM networks atiractive.,
Such striping could either be done at the packet or at the cell layer; we will argue later that packet striping
across ATM virtual circuits has some attractive properties. Even in datagram networks, it may be possible
to construct “network” channels. For example, we could use strict IP source routing to set up multiple paths
between two IP endpoints, and use routers that process packets in FIFO order. While the latter example is
somewhat contrived, it does illustrate the generality of our setting.

Finally, since most transport protocols like TCP provide a stream service, it is possible to think of a channel

Reliable FIFO Load Balancing over Multiple FIFO Channels 3

as a transport connection. For example, if a network adaptor card implements the protocol stack up to the
transport layer, then a fast CPU may achieve a higher throughput by sending data across multiple adaptors.

‘We will return to a more detailed discussion of these applications in the last section. For now, we note that
the most important application of our techniques appear to be at the data link layer and at the network layer

across virtual circuits.
1.1. Model

Figure 1 illustrates the model used to describe our algorithms. There are N channels between the source node
S and the destination node D. For simplicity, we consider the traffic in only one direction. Exactly the same
analysis and algorithms apply for the reverse direction. Node S implements the striping algorithm to stripe its
outgoing traffic across the N channels, and node D implements the reassembly algorithm to combine the traffic
from the N channels into a single stream. Since the most interesting metric of a channel striping algorithm
is throughput, we will often assume, for the purpose of analysis, that the source S is fully loaded — ie., it
always has packets to transmit. However, our algorithms are general enough to work for any traffic pattern
offered to the source.

Let the bandwidth of the i** channel be denoted by B;. We will sometimes distinguish between the rated
bandwidth of a channel and the actual bandwidth of a channel. For example, a network channel may exhibit
considerable disparity between rated and actual bandwidths, Unless otherwise stated, B; refers to the rated
bandwidth of the i» channel. All channels are assumed to be FIFO. Channels can be subject to packet loss
and corruption. Note that some channels such as reliable data link (e.g., HDLC links) or transport (e.g., TCP
connections) can be considered to be lossless. However, our algorithms are robust enough to deal with chan-
nels that lose packets. Channels that occasionally deviate from FIFO delivery can be handled by our model,
as such lapses in FIFO delivery can be modeled by burst errors. Finally, we allow for the fact that the end-to-
end latency across each channel is potentially different and can vary on a packet to packet basis. Note that
it is important to take variable latency into account in order to model network channels. This also rules out
simple solutions to the reordering problem based on skew compensation, if the skew cannot be bounded or
characterized.

1.2. Properties of a Channel Striping Scheme
We list desirable properties of a channel siriping scheme:

o Fair Load sharing with variable sized packets: Data should be striped across the channels (which
may have differing capacities) such that the bits transmitted across each channel is proportional to the

Reliable FIFO Load Balancing over Multiple FIFO Channels 4

capacity of the channel. The load sharing property should hold even when the packets are of variable
size.

o FIFQ delivery of data: The channel striping scheme should ideally provide FIFO delivery of data at
the remote end. For example, if we stripe packets between a pair of bridges, FIFO delivery is important
because many LAN protocols will work poorly if data is delivered out of order. While reordering pack-
ets is not catastrophic in datagram networks, current protocol implementations and optimizations make
FIFO delivery a desirable feature. Some transport protocols do not buffer out of order packets, while
other protocols implement optimizations (¢.g., TCP header prediction logic [Jac90]) which work best
when packets are delivered in sequence. Also, while FIFO delivery is important for optimal protocol
performance in datagram networks, it is an explicit requirement for ATM networks.

+ Ability to work over many types of channels: The striping algorithms should ideally apply to a wide
variety of channel implementations. For instance, the algorithms should work over channels that have
dynamically varying skews. Such skews can be caused by varying path lengths, the presence of multi-
plexing equipment?, and queuing and processing delays. The algorithms should also work over lossy
channels with varying bandwidths.

o Ability to work over existing channels: In many striping problems, the channels are obtained from
existing equipment and cannot be modified. In such cases, the systems designer does not have the free-
dom to modify the link hardware or packet formats. As described earlier, the striping algorithms should
apply to channels at all layers.

s Robustness: The striping scheme must be robust enough to recover from bit and burst errors, and packet
losses caused by lossy channels. It must also be able to handle channels failures by effectively ignoring
channels that are performing poorly, and automatically adding in channels that recover after a failure.

e Efficiency: The striping scheme should be simple enough not to impose any significant computational
or hardware overhead. Since cusrent protocol processing is highly streamlined and takes only a few
hundred instructions or less, a channel striping algorithm should take an order of magnitude less com-
plexity to execute—preferably in the order of a few tens of instructions or less. Alternatively, it should
be amenable to a simple hardware implementation, if implemented at the data link or physical tayers.

1.3. Existing Channel Striping Algorithms

The simplest scheme for channel striping is round-robin striping — the source sends packets in round robin or-

der on the channels. This scheme, though simple, provides for neither load sharing with variable sized packets,

?For example, SONET links

Reliable FIFO Load Balancing over Muitiple FIFO Channels 5

nor FIFO delivery without packet modification (10 add sequencing information). Consider a simple scenario
in which the sender communicates with the receiver over two channels and the senders queue contains big and
small packets in alternation, Itisclear that all the big packets will be sent over one link, and the small ones over
the other, so the fair load sharing property does not hold. Also, since the channels may have varying delays
for reasons explained previously, the physical arrival of packets at the receiver may differ from their logical
ordering. Without sequencing information in the packets, FIFO order cannot be guaranteed in the presence of
dynamically varying skews

While simple round robin may not guarantee FIFQO delivery, we can augment it by adding a header con-
taining a sequence number to every packet. We obtain FIFQ delivery by using this header at the receiver to
resequence the incoming packets. This violates two of our goals. The most important violation is the require-
ment to work over existing channels which may not allow the addition of such sequencing information since
the packet sizes and headers are already fixed. For example, in ATM networks, where the cell size is fixed
at 53 bytes, it appears difficult to add extra headers to cells (e.g., to stripe between two switches) and yet use
existing equipment. Even channels that allow variable sized packets, (e.g., Ethernets) typically have a restric-
tion on the maximurmn packet size (e.g., 1500 for Ethernet). Thus we cannot add an extra header if the packets
that the source wishes to send are already maximum sized packets. Finally, even if it were possible to add a
sequence number, the sender and receiver processes have to incur overhead for buffer manipulation (to add
and delete sequence numbers) and for sequence number bookkeeping (especially at the receiver).

Both the variable packet size problem and the FIFO problem can be solved if the channel striping algo-
rithm can modify the equipment (typically hardware) at the endpoints of a channel. For instance, bit or byte
interleaving is often done at the hardware level using devices known as inverse multiplexers, Inverse multi-
plexers which operate on 56 kbps and 64kbps circuit switched channels are commercially available. Recently,
an industry consortium, called BONDING [Dun94][Fre94][Gro92] was formed and it has issued standards for
a frame structure and procedures for establishing a wideband communications channel by combining multiple
switched 56 and 64-kbps channels through the use of an inverse multiplexer.

In the BONDING scherne, the packets coming in to the inverse multiplexer at the sending end are split into
fixed size chunks, or frames, which are then transmitted in round robin order across the multiple channels. At
the receiver, the longest delay path is chosen as a reference, and appropriate delays are added to the data from
other paths to allow interleaving of frames at the receiver in the same order as transmitted. Each frame is also
numbered using sequence numbers, and this is used for resynchronization in case of loss of synchronization
at the receiver. While this scheme provides load balancing with variable sized packets and FIFO delivery, it
violates two of our goals. It requires special equipment to be inserted at the channel endpoints, which can
be expensive and even infeasible for existing channels. Secondly, the sequence number scheme potentially

Reliable FIFQ Load Balancing over Multiple FIFO Channels 6

requires extra complexity at both the sending and the receiving endpoints.®

The BONDING scheme also relies on a frame structure which requires synchronized frame timings be-
tween sender and receiver. A synchronized frame structure is helpful because it allows the sender to put data
in predetermined positions with the frames on each channel; the receiver can then pick data from received
frames based on this predetermined order. Errors in synchronization only affect a single frame. This solution
is implicitly used, for instance, in [HS94]. However, such schemes essentially rely on robust frame synchro-
nization between sender and receiver that is provided by the physical layer. Once again such robust frame
synchronization is simply unavailable on a number of interesting channels.

Finally, Druschel et. al. [DP94] describes an actual example of cell striping over ATM channels. A single
packet is sent as a number of “minipackets” on each channel and a parallel reassembly of the packets is done
at the receiver. However, this requires modifying the packet? and the designers report that this scheme was
difficult to implement with the existing processor on the network adaptor. The paper also discusses two other
possible striping schemes. One scheme involves adding sequence numbers to the AAL headers of each cell,
This was ruled out for adding significant complexity to the reassembly code. In the other scheme, if the skew
on all channels can be made identical (skew compensation), then the receiver can remove packets in the same
order as the sender. The schemes described by Druschel et. al. rely on assumptions on channel properties (e.g.,
no dynamic skew variation) or on modifications to packet formats.

Table 1 summarizes the features of the various solutions to channel striping. The last two rows describe

our solution, which is explained in the following sections.

2. Overview of Solution Components and Plan of the Paper

Our goals require that any viable solution for channel siriping should achieve load sharing with variable sized
packets, and ensure FIFQ delivery in the face of dynamically varying channel skews.

To provide load sharing in the presence of varying length packets, we propose the use of fair load sharing
algorithms, We show such fair load sharing algorithms can be automatically derived by transforming a class
of fair queuing algorithms, Fair guening refers to multiplexing packets from several queues onto a single line
in afair way; the problem has been well studied in an independent context. In Section 3, we develop a criterion
for this transformation, and provide two instances of fair load sharing algorithms. Our algorithms are simple
enough to provide efficient implementations in either hardware or software.

3However, we have been unable 10 determine the reassembly algorithm used by the BONDING inverse multiplexers; thus our first
objection is the major reason for looking for schemes other than BONDING,
“more precisely, it requires adding an additional framing bit in each minipacket

Reliable FIFO Load Balancing over Multiple FIFO Channels

Scheme FIFO delivery Variable length | Generality Efficiency
packets
Round-Robin, no | May be non-FIFO | Bad load sharing | At all levels Simple
header (based on receiver | for variable sized
implementation) | packets
Round-Robin with | Guaranieed FIFO | Bad load sharing | Works only if we can add | Resequencing
header for variable | headers pack-
packets ets from different
links is complex
"BONDING Guaranteed FIFO | Goodload sharing | Works only if we can mod- | Needs resequenc-
ify the packet format over | ing logic
a channel. Requires syn-
chronized frame structure
over all channels
Fair Queuing | Guaranteed FIFO | Goodload sharing | Works only over channels | Simple
algorithm with header where we can add headers
Fair Queuing | Quasi-FIFO Good load sharing | Works over all channels Simple
algorithm, no header

Table 1: Features of different channel striping solutions

In Section 4, we deal with the FIFO delivery problem. We provide two solutions, both of which are com-
patible with our fair load sharing solutions described in Section 3. Qur main idea is the notion of logical
reception, in which we separate physical reception from logical reception by a per-channel buffer, and then
have the receiver simulate the sender algorithm in order to remove packets from channel buffers.

In the case where an extra header can be added to each packet, and sequence numbers introduced, we show
how the receiver processing can be simplified by simulating the sender’s fair queuing algorithm, We believe,
however, that the most important application of this technique is the case where an extra header cannot be
added. In this case, we show how to achieve what we call quasi-FIFO delivery at the receiver, without any
modification of the transmitted packets, by employing the logical reception idea.

We define quasi-FIFO delivery as FIFO delivery except during periods of loss of synchronization between
the sender and the receiver. The sender and the receiver are said to be synchronized when the receiver algo-
rithm picks up packets in the same sequence as the sender transmits them, thus maintaining FIFO delivery.
However, undetected loss of packets between the sender node and the receiver node may cause the receiver
algorithms to deliver packets out of order. Thus we show in Section 4.3 how to detect and recover from such
loss of synchronization in a timely manner. We also argue in Section 4.2 that quasi-FIFO delivery is adequate
for many applications,® even for ATM applications, where loss of FIFO at any time is ostensibly forbidden by

the standards.
5Some readers may wish to tum to this subsection immediately since quasi-FIFO seems distasteful at first glance

Reliable FIFQ Load Balancing over Multiple FIFO Channels 8

Finally, in Section 5, we present experimental verification of the load sharing and FIFO delivery properties
of our channel striping schemes, and analyze their performance implications.

3. Solving the Variable Packet Size Problem by Transforming Fair Queu-
ing Algorithms

In this section, we describe how to solve the variable packet size problem by transforming fair queuing algo-
rithms into load sharing algorithms.

‘We use the term fair quening to refer to a generic class of algorithms that are used to share a single channel
among multiple quenes (rather than to one of the most celebrated members of this class, the DKS fair queuing
algorithm [DKS89]). Henceforth we will refer to such algorithms as FQ algorithms. In FQ, we try to partition
the traffic on a single output channel equitably from a set of input queues which feed that channel. In load
sharing, on the other hand, we seek (o partition the traffic arriving on a single input queue equitably among a
set of output channels, The phrasing reveals that the two problems are complementary in some intuitive sense.
We wish 1o make this relationship precise.

Queue 1
{300]c] [150(b] |550(a]

Output Channel
9)—» [400[£] [300[c] [150[v] {400]e] [200]d] [550[a} —

Fair Queuein
Algorithm

Queue 2
|400{¢] |400[e] [200]d]

Figure 2: Example of fair queuing
Channel 1
o [300[c| [150(b] [550]a] —>

Channel 2
= [a00]] [00]e] 200]a] —>

Input Queue
[400[f] [300]c] {150[b] [400]¢] [200]d] [550[a] —>

Load Sharing
Algorithm

Figure 3: Example of load sharing

Figures 2 and 3 help in making this relationship clearer. In Figure 2, an arbitrary FQ algorithm is used to
feed an outgoing channel from two queues. In the figure, each packet is marked with its size (in bytes) and a
unique identifier, which ranges from a to f. The FQ algorithn transmits the packets in a particular sequence
as shown in the output. Notice that the bandwidth of the channel is partitioned roughly equally among the
channels (they have the same fair share of 500 bytes). Now, consider the operation of the FQ algorithm in a
time reversed manner, with the direction of the arrows reversed. We would then obtain the situation shown in

Figure 3.

Reliable FIFO Load Balancing over Multiple FIFO Channels 9

In a rough sense, load sharing algorithms are ‘time reversals’ of fair queuing algorithms [SV94). We sim-
ply run a FQ algorithm as the load sharing algorithm at the sender! The reversal lies in reversing the direction
of flow of packets— where the FQ algorithm transmits packets from one of the many queues on to the sin-
gle channel, the load sharing algorithm transmits packets from the single queue to one of the many channels,
However, as we shall soon see, only a subset of fair queuing algorithms can be used as load sharing algorithms
with the FIFO delivery property.

3.1. Oblivious and Non Oblivious Fair Queuning Algorithms

Consider a node running a FQ algorithm to feed a channel from multiple queues, Within each queue, packets
are transmitted in FIFO order. Assume all queues are backlogged, i.e., have packets to send. The fair queuing
problem lies in selecting the queue from which the next transmitted packet should originate. This decision
can depend not only on the previously transmitted packets, but also on other parameters, like the size of the
packets in the head of each queue, the current queue sizes, and so on. For instance, the DKS algorithm depends
on the packets at the head of each queue in order to simulate bit-by-bit round robin.

In the backlogged case, if a FQ algorithm depends only on the previous packets sent to choose the cur-
rent queue to serve, then we call the algorithm an oblivious FQ (OFQ) algorithm. All other FQ algorithms
are called non-oblivious algorithms. Thus the DKS algorithm is non-oblivious while ordinary round robin is

oblivious.

Why do we restrict ourselves to backlogged FQ behavior? In the non-backlogged case, most FQ algo-
rithms maintain a list of active flows as part of their state. This allows them to skip over empty queues. How-
ever, this mechanism also makes almost all FQ algorithms non-oblivious. Thus for our transformation we
restrict ourselves to the backlogged behavior of a FQ protocol. Notice that any FQ algorithm must handle the
backlogged traffic case. Intuitively, in load sharing there is no phenomenon cerresponding (o empty queues
in fair quening; this anomaly is avoided by considering only the backlogged case.

In the backlogged case, OFQ algorithms can be formally characterized by repeated applications of two
functions in succession. One function f(s) selects a queue, given the current state s of the sender. This is
illustrated on the left in Figure 4. After the packet at the head of the selected queue is transmitted, another
function g is invoked to update the sender state to be equal to g(s, p) where p is the packet that was just sent.
For example, in ordinary round robin the state s is the pointer to the current queue to be serviced; the function
J(s) is the identity function: i.e., f(s) = s; finally, the function g(s, p) merely increments the pointer to the

next queue.

In OFQ algorithms, the current state of the algorithm is essentially encoded in the packets already sent,
since OFQ algorithms do not depend on the packets currently queued in order to select the next queue to be

Reliable FIFO Load Balancing over Multiple FIFO Channels 10

serviced. Also, for OFQ algorithms, the function g to update the state depends only on the previous state and
the currently transmitted packet.

The conversion of OFQ algorithms to load sharing algorithms, and related theorems can be intuitively
described as we show in the next section,

3.2. Use of OFQ Algorithms for Load Sharing at the Sender

The transformation from fair queuing to fair load sharing is illustrated in Figure 4. We start on the left with
an OFQ algorithm and end up with a fair load sharing algorithm on the right.

The OFQ algorithm is characterized by an initial state so and the two functions f and g. To obtain the
fair load sharing algorithm we start the load sharing algorithm in state sq. If p is the latest packet received
on the high speed channel (see the right of Figure 4), the load sharing algorithm sends packet p to low speed
line f(s). Thus while the fair sharing algorithm uses f(s} to pull packets from input queues, the load sharing
algorithm uses f(s) to push packets to output channels. In both cases, the sender then updates its state by
applying the function g to the current state and the packet that was just transmitted. Notice that there is no
requirement for the load sharing algorithm to work only in the backlogged case; if the queue of packets from
the input high speed channel is empty, the load sharing algorithm does not modify its state further until the

next packet arrives.

|
to channel f (s

from queue f(s

T] — J

® o e > e o @
LT [T] —
OBLIVIOUS FAIR QUEUEING FAIR LOAD SHARING

Figure 4: Consider a backlogged execution of a fair queuing algorithm. If the algorithm is oblivious we first apply a function
£{s)to select a queue. We transmit the packet p at the head of the selected queue and then update the state using a function
2(#, p). We can obtain a fair load sharing algorithm by using the same function £ to pick a channel to transmit the next packet
on, and update the state using the same function g.

3.3. Evaluating the Transformation: Throughput Fairness

What good is this transformation? It produces useful load sharing algorithms with similar fairness properties
(in terms of throughput) to that of the fair queuing algorithms used as inputs to the transformation. To make
this precise we need to define the notion of throughput faimess for both deterministic and probabilistic fair

Reliable FIFO Load Balancing over Multiple FIFO Channels 11

queuing schemes. Since we are talking about throughput fairness it makes sense to define this quantity in the
case when all input queues are backlogged.

Consider a fair queuing scheme with several input queues, where in the start state each queue contains a
sequence of packets with arbitrary packet lengths. Define a backlogged execution of the fair quening scheme
to be an execution in which no input queue is ever empty during the execution. Notice that there are an infinite
number of possible backlogged executions corresponding to the different ways packets (and especially packet
lengths) can be assigned to queues in the start state, Notice also that in a backlogged execution we can assume,
without loss of generality, that all packets that are serviced arrive in the start state.

An execution will produce as output a finite or infinite sequence of packets taken from each input queue,
The bits allocated to a queue 7 in an execution E is the sum of the lengths of all packets from queue i that are

serviced in execution E.

We say that a deterministic fair queuing scheme is fair if over all backlogged executions E, the difference
in the bits allocated to any two queues differs by at most a constant (for instance, the difference cannot grow
with the length of an execution.) We say that a randomized fair queuning scheme is fair if over all backlogged
executions F, the expected number of bits allocated to any two queues is identical.

We can make analogous definitions for load sharing algorithms. A backlogged execution now begins with
an arbitrary sequence of packets on the high speed channel. The bits allocated to a channel ¢ in an execution
E is the sum of the lengths of all packets that are sent to channel 1 in execution E. The faimess definitions for
load sharing and fair queuing are then identical except with the word “channel” replacing the word “queue”.

Note that any execution of a load sharing algorithm can be modeled as a backlogged execution as long as
the load sharing algorithm is oblivious and therefore makes striping decisions based only on the packets seen
so far. Thus, at least for the load sharing algorithms considered in this paper, there is no loss of generality in

considering only backlogged executions,

3.4. The Transformation Theorem

We now show that a load sharing protocol that is obtained by transforming an OFQ algorithm (as shown above)
has the same fairness properties as the original OFQ algorithm.

THEOREM 3.1, Consider an OFQ algorithm A and a fair load sharing algorithm B that is produced by the
transformation described above. Then if A is fair, so is B.

Reliable FIFQO Load Balancing over Multiple FIFO Channels 12

Proof; (Idea) Notice that the theorem applies to both randomized and deterministic OFQ algorithms. The
main idea behind the proof is simple and is best illustrated by Figure 1. We use the initial state s, and the
functions f and g of A and define B as we described earlier. Now consider any execution E of the resulting
load sharing protocol B (for example, the execution shown in Figure 3). From execution £ we generate a
corresponding execution E' (for example, the execution shown in Figure 2) of the original OFQ algorithm A.

To construct E’ from E we consider the outputs of the load sharing algorithm in E to be the inputs for
E’. More precisely, we initialize queue { in E’ to contain the sequence of packets output for channel { in E.
We then show that if the OFQ algorithm A is run on this output, it produces the execution we call £, and the
output sequence in E’ is identical to the input sequence as E. Thus the input of E corresponds to the output
of E’, and vice versa. This correspondence can be formally be verified by an inductive proof.

Finally, we know that since A is fair, the output sequence in E’ contains approximately the same number
of bits from every queue. Thus since there is a 1-1 correspondence between outputs and inputs in E and E’,
we see that the output sequence in E assigns approximately the same number of bits to every output channel.

Since this is true for every execution E of B, B is also fair.

Note that the correspondence does not work in the reverse direction. It is hard to construct a load sharing

execution from an OFQ execution. However, what we have shown is sufficient for the proof. O

3.5. Surplus Round-Robin (SRR)

We now turn to two specific examples of the transformation theorem. Our first example is a transformation
of an oblivious fair quening algorithm that we call Surplus Round Robin (SRR). SRR is based on a modi-
fied version of DRR [SV94]. SRR is also identical to a FQ algorithm proposed by Van Jacobson and Sally
Floyd [Flo93].

In the SRR algorithm, each queue is assigned a quantum of service (measured in units of data), and is
associated with a counter called the Deficit Counter (DC"), which is initialized to 0. Queues are serviced in
a round robin manner. When a queue is picked for service, its DC is incremented by the quantum for that
queue. As long as the DC is positive, packets are sent from that queue, and the DC is decremented by the
size of the transmitted packet. Once the DC becomes non-posilive, the next queue in round robin order is
selected for service. Thus if a queue overdraws its account by some amount, it is penalized by this amount in
the next round. It can be proven that SRR is a deterministic and oblivious fair quening scheme, and is also

fair (in the sense defined above).

Transforming SRR into a load sharing algorithm, The corresponding load sharing algorithm works
as follows. Each channel is associated with a Deficit Counter (DC), and a quantum of service, (measured in

Reliable FIFO Load Balancing over Multiple FIFO Channels 13

units of data), proportional to the bandwidth of the channel. Initially, the DC of each channel is initialized to
0, and the first channel is selected for service, i.e. for transmitting packets, Each time a channel is selected, its
DC is incremented by the quantum for that channel. Packets are sent over the selected channel, and its DC
is decremented by the packet length, in bytes, till the DC becomes non-positive. The next channel is then
selected in a round-robin manner, and its quantum is added to its DC. Packets are sent over this channel till
its DC becomes non-positive, and then the next channel is selected, and so on.

We now describe a simple example of the operation of the SRR load sharing algorithm. Refer to Figure 3.
In the figure, we see packets labeled q, d, €, b, ¢, and f at the input queue to the load sharing algorithm. We
now explain how the SRR algorithm stripes packets across the two output channels,

Both Channel 1 and Channel 2 are associated with a quantum of 500 bytes. Initially, the Deficit Counters
of the two channels, DC'1 and DC?2 respectively, are initialized to 0. Channel 1 is first selected for service,
and its DC is incremented by the value of the quantum for the channel, which is 500 bytes. Since DC1 is
positive, the first packet in the queue, namely packet a, is sent on Channel 1. DC'1 is decremented by the size
of a, which is 550 bytes. DC1 therefore becomes -50, Since DC1 is now less than 0, we proceed to the next
channel, which is Channel 2. As it has been selected for service, DC?2 is incremented by its quantum, which
is 500 bytes. The next packet in the input queue, packet d, is sent on Channel 2, thereby decrementing DC'2
to 300 bytes, since d is of size 200 bytes. The positive value of DC2 permits the next packet, packet e, to be

also sent on this channel.

After sending packet e, DC?2 isreduced to -100. DC2 going negative causes the SRR algorithm to select
the next channel, which is Channe! 1, for service and to increment DC'1 by 500 bytes, thereby setting DC1 to
450 (It was previously -50). This value of DC1 allows us to send packets b and ¢ out on Channel 1, at which
point DC'1 is reduced to 0. This causes Channel 2 to be selected for service, thereby increasing DC2 by 500
bytes to 400. This suffices to put packet f out on Channel 2. Thus at the end of two rounds, both DC'1 and
DC?2 are 0, and packet a, b and ¢ are sent on Channel 1,and packet d, ¢, and f are sent on Channel 2.

The SRR load sharing protocol has a number of nice properties that should make it appropriate for practical
usage. It divides the bandwidth fairly among output channels even in the presence of variable length packets.,
It is also extremely simple to implement, requiring only a few more instructions than the normal amount of
processing needed to send a packet to an output channel. Note that is also possible to generalize SRR to handle
channels with different rated bandwidths by assigning larger quantum values to the higher bandwidth lines.
This corresponds to weighted fair queuing,

Reliable FIFO Load Balancing over Multiple FIFO Channels 14

3.6. Randomized Fair Queuing (RFQ)

Our second specific example of a transformation is based on a simple fair queuning algorithm that we call Ran-
domized Fair Queuing® OFQ algorithm,

This algorithm needs even less state than SRR; however, it provides probabilistic, rather than determin-
istic fair queuing. Briefly, the quene to be served is chosen by selecting a random queue index (this can be
implemented by a pseudorandom sequence). In general, to implement weighted fair quening, we can choose
Queue i with a probability of occurrence that is proportional to the weight associated with that of Queue i.

It is easy to show that when all queues are backlogged, this algorithm is fair in the probabilistic sense
defined above - i.e, the expected amount of data sent from any two queues is the same for any execution. This
assumes that the average packet size of each queue is the same. In case the average packet size is different ,
we have to assign weights to each queue inversely proportional 1o the average packet size for that queue. The
RFQ algorithim is also oblivious.

When we apply the transformation theorem to this fair quexing protocol, the resulting load sharing protocol
is particularly simple. Each Channel i is associated with a probability prob(i) corresponding to the bandwidth
B; of the channel, such that prob(i) = B;/ 3")_, Bj. A pseudorandom sequence, ranging from 1 to N (such
that the probability of occurrence of ¢ is the same as the probability associated with the Channel 4) is used to

select the channel over which the next packet is sent.

From a practical viewpoint it seems preferable to rely on SRR as it provides guaranteed load sharing. How-
ever, the randomized channel sharing protocol is slightly simpler to implement and may be preferable in some

cases.

4. Solving the FIFO Delivery using Logical Reception

This section describes techniques for ensuring FIFO delivery at the receiver. Recall that this is the second
major problem to be solved by a channel striping scheme. The techniques described in this section work in
conjunction with the load sharing algorithms presented in the previous section to provide a complete solution.

The main idea that we propose is what we call logical reception.

Logical reception is a combination of two separate ideas: buffering at the receiver to allow physical recep-
tion to distinguished from logical reception, and receiver simulation of the sender striping algorithm. Logical
reception can be explained very simply using Figure 1, Notice that there are per-channel buffers shown be-
tween the channel and the reassembly algorithm. Notice also that if we look at the picture at the destination

SRandomized Fair Queuing is not related 1o Stochastic Fair Quening [McK91], which refers to a class of algorithms that are proba-
bilistic variants of the DKS algorithm

Reliable FIFO Load Balancing over Multiple FIFO Channels 15

node, it is clear that the receiver is performing a fair queuing function. But we have already seen a nice connec-
tion between channel striping and fair queuing schemes. Thus the main idea is that the receiver can restore the
FIFO stream arriving to the source if it uses afair queuing algorithm that is derived from the channel striping
algorithm used at the source.

An example will help clarify the main idea. Suppose in Figure 1 that the sender sends packets in round
robin order sending packet 1 on Channel 1, packet 2 on Channel 2, . . . and packet N on Channel N. Packet
N + 1 is sent on Channel 1 and so on. The receiver algorithm uses a similar round robin pointer that is ini-
tialized to Channel 1. This is the channel that the receiver next expects to get a packet on. The main idea is
that the receiver will not move on Channel ¢ + 1 until it is able to remove a packet from the head of the buffer
for Channel i. Thus suppose Channel 1 is much faster than the others and packets 1 and N + 1 arrive be-
fore the others at the receiver. The receiver will remove the first packet from the Channel 1 buffer. However,
the receiver will block waiting for a packet from Channel 2 and will not remove packet N + 1 until packet 2
arrives.

In general, if the sender striping algorithm is a transformed version of an oblivious fair quening (OFQ)
algorithm, then the receiver can simulate the sender algorithm, The receiver can run the OFQ algorithm, to
know the channel over which the next packet is to arrive from the sender. The receiver then blocks on that
channel, waiting for the next packet to arrive, while buffering packets that arrive on other channels. The simu-
lation of the sender algorithm, coupled with the buffering of packets on each channel and receiver blocking on
the expected channel, ensures logical FIFO reception, irrespective of the nature of the skew present between
the various channels. This can be stated as the following theorem:

THEOREM 4.1. Let B be the load striping algorithm derived by transforming an OFQ algorithm A. If B is
used as a channel striping algorithm at the sender and A is used as the fair queuing algorithm at the receiver,
and no packets are lost, then the sequence of packets output by the receiver is the same as the sequence of
packets input to the sender.

Of course, the synchronization between sender and receiver can be lost due to the loss of a single packet.
In the round-robin example shown above if packet 1 is lost, the receiver will deliver the packet sequence N +
1,2,3,...,N2N + 1, N + 2, N + 3,... and permanently reorder packets. Thus there is a need for the
sender to periodically resynchronize with the receiver. Such synchronization can be done quite easily as shown
in Section 4.3, Intuitively, if packets are lost infrequently and periodic synchronization is done in a timely
manner, logical reception will work well. We will discuss the performance implications of this scheme in

more detail later.

Given the fact that the receiver runs the same fair queuning algorithm to reassemble incoming packets, as

Reliable FIFO Load Balancing over Multiple FIFO Channels 16

the sender uses for channel striping, it is easy to appreciate why it is necessary for the fair queuing algorithm
10 be oblivious. For the receiver to simulate the sender, it is necessary for it to know the channel over which
the next packet is going to arrive. This decision has to be made based on the current state, which can encode
only the previous arrivals. By definition, this is the property of OFQ algorithms.

Note that buffering of packets often does not introduce any extra overhead because once the packets are
read in, they do not have 10 be copied for further processing— only pointers to the packets need be passed,
unless the packet has to be copied from one address space to another (e.g. from the adaptor card to the main
memory), in which case a copy is needed in any case.

We now consider two cases. The first is the case when sequence numbers can be added to packets. In
this case, logical reception may be a way of simplifying the packet reassembly algorithm while the sequence
numbers are only vsed as a backup to detect FIFO violation. The most important application of the logical re-
ception idea, however, is the case when sequence numbers cannot be added. In this case, we cannot guarantee
FIFO delivery during periods of resynchronization but have to settle for quasi-FIFO delivery. We argue why
we believe that quasi-FIFO delivery is adequate even for ATM applications in Section 4.2

Qur plan for the rest of this section is as follows, First, we describe the logical reception idea, ignoring the
need for synchronization, We start with the case when headers can be added, and then consider the case when
headers cannot be added. Finally, we describe our solutions to the synchronization problem in Section 4.3,

4.1, Logical Reception to Speed Up Packet Processing

As discussed earlier, if headers can be added to the transmitted packets, we can include a sequence number
with every packet, which can be used for resequencing at the receiver, A naive implementation at the receiver
might sort through the incoming packets to resequence them, incurring a sorting cost for each packet received.
Sorting would be particularly expensive if there were random delays and skews between different channels
leading to sorting amongst a large number of packets. Hardware implementations have been proposed which
can be used for reassembly of packets arriving on multiple links [McA93]. This scheme requires specialized
hardware (to sort out of order packets) and modified packet formats.

If we use logical reception we can (potentially) have a very simple reassembly scheme. Receiver simula-
tion of the sender will work with any amount of skew, with graceful degradation in the average delay experi-
enced by each packet. The sequence number inserted by the sender is now needed only for confirmation, since
in the normal state, when there is no packet loss, the receiver delivers packets in FIFO order. The sequence
numbers added by the sender to each packet serve to detect, and to provide sequencing of packets even if the
sender and receiver lose synchronization, thereby providing guaranteed FIFO reception.

Reliable FIFO Load Balancing over Multiple FIFO Channeis 17

4.2. Quasi-FIFO Reception at the Receiver

We observe that even if we dispense with the sequence numbers, the receiver can still provide FIFO delivery
of packets, provided there is no loss of packets. We refer to this mode of packet reception, in which the sender
does not send any explicit sequence numbers with each packet, as guasi-FIFO reception, as opposed to guar-
anteed FIFO reception. We argue that in cases where sequence numbers cannot be added to packets, or their
addition is expensive to implement, quasi-FIFO provides more than adequate performance.

Motivation for quasi-FIFO reception. Existing datagram networks, e.g. the Internet, do not guarantee
FIFO delivery of packets. In these networks, FIFQ delivery is a performance, not a correctness issue. These
networks do not have any problem with quasi-FIFO reception, except for performance degradation during
loss of FIFO reception. However, ATM networks mandate FIFO delivery of packets (cells). There are two
perceived drawbacks involved in the use of quasi-FIFO reception in ATM networks:

o Quasi-FIFO destroys correctness for ATM applications: In ATM networks, packets are encapsulated
in ATM Adaptation Layer (AAL) frames. We deal with applications that run above the commonly used
AALs (AAL3-4 and AALS). In these AALs, individual cells do not carry any error checking or CRC
for the data portion of the cell. In that case, reordering of cells is detected by the CRC, and is equivalent
10 a packet loss. ATM does not provide guaranteed cell delivery, so applications have to be able to deal
with packet loss in any case. Qut of order reception, therefore is similar to the occurrence of a burst

error with FIFO reception,

¢ Quasi-FIFO has bad performance implications: A preliminary look at quasi-FIFO seems to imply
that a single bit error can be magnified by a factor of N, where N is the number of cells received out
of order till synchronization is restored, as described in Section 4.3. However, this is not usually the
case, since loss of synchronization is caused by packet loss, not packet corruption, which is what re-
sults from bit errors. So a single bit error, or even a burst error, is unlikely to cause the receiver to lose
synchronization over a physical point to point channel, provided the physical channel hardware has the
capability of reporting cell errors.
Over alogical channel, which is composed of multiple physical channels linked through switches, unde-
tected cell loss can take place. However, as we describe later in this section, we can bound the value of
N (out of order cells) by sending periodic marker packets. For example, an IP packet of maximum size
sent over ATM [Lau94] would occupy more than 130 ATM cells. If we send periodic marker cells after
every 180 data cells, then during loss of synchronization, we would lose approximately the same num-
ber of cells as exist in an single maximum size IP packet. We note that even in the absence of striping,

Reliable FIFQ Load Balancing over Multiple FIFO Channels 18

the loss of a single cell on an ATM connection would cause the entire packet 10 be lost. The packet loss
of striping over logical channels therefore is not significantly more than that of an unstriped connection,
and is more than made up by the increased bandwidth obtained,

For quasi-FIFO reception to be of practical significance, we need to restore synchronization between the
sender and the receiver in case of loss of synchronization, else the receiver will continue to deliver packets
out of order indefinitely. The restoration of synchronization is needed for guaranteed FIFO reception to work
efficiently also. The next section discusses protocols for the detection of and recovery from this loss of syn-
chronizaticn,

4.3. Synchronization in the Face of Errors

The techniques described below utilize special marker packets, which the receiver can distinguish from the
normal data packets. We assume that when either the sender or the receiver goes down and comes up, it reini-
tializes the channel, thus restoring synchronization. So the error cases that we have to deal with are channel
errors which cause packet loss, and hardware/software errors at either the sender or receiver. Note that send-
ing marker packets does not require modifications to be made to the data packets, which was listed as one one
of the desirable properties of a striping scheme in section 1.

Detecting packet errors by sending packet counts. A simple way for the receiver to know whether it
is in synchronization with the sender is for the sender to periodically send over each channel a marker packet
containing the count of the number of packets it has sent over that particular channel. The receiver compares
the marker value to its locally maintaired value. Incase the two values match on all channels, then the receiver
can assume that it is in synchronization till that point. This of course depends on the markers following the
data packets in FIFQ order, which is ensured by FIFO channels.

This technique, though simple to implement, is not fully self stabilizing, i.e., it cannot recover from ar-
bitrary errors including link errors and hardware errors that corrupt registers. To see why, consider a simple
scenario in which round robin striping is done with equal sized packets across two channels. Assume the
sender transmits the first packet over the first channel. If due to some local hardware error, the receiver starts
reception at the second channel, it would pick the incoming packets out of sequence, and this would not be
detected by this technique, since the packet counts carried by the marker packets on both channels would be
the same as the locally maintained values at the receiver,

Use of Snapshots for Synchronization. A technique for synchronization detection which is self stabi-
lizing is for the the sender to embed its current state in the marker packets which it periodically sends. This

Reliable FIFO Load Balancing over Multiple FIFO Channels 19

provides a snapshot of the system, which can be proven to be self stabilizing {CL85). For example, if SRR is
used for channel striping, the state would include the current value of the Deficit Counters, and the channel

currently selected for service.

Synchronization recovery. The previous techniques only ensure error detection, but not error recovery,
To ensure error recovery, it is necessary for the sender and the receiver to resynchronize by reinitializing,
This can be done by the receiver sending a reinitialize-request packet 1o the sender upon detecting loss of
synchronization, which in turn causes the sender to send a reinitialize-confirm packet to the receiver on all
channels, following which the sender and the receiver reinitialize, and are back in synchronization.

The scheme described above adds a round trip delay to synchronization recovery, which is clearly unde-
sirable over channels with high latencies. An alternate scheme, currently being worked out for the SRR based
striping scheme, involves using the information contained in the marker packets to restore synchronization at
the receiver, without the use of explicit reinitialization message exchange between the receiver and the sender.
This scheme introduces ghost packets in the receiver input queues to compensate for missing data packets.
The receiver reassembly algorithm treats the ghost packets just as regular data packets, with the difference
that the ghost packets are not delivered to the output queue - they serve purely 1o restore synchronization at
the receiver. This scheme has been verified experimentally, and work is in progress to formally prove that the
scheme restores synchronization at the receiver.

5. Implementation and Performance Issues

The proposed channel striping schemes were implemented above the transport layer to verify their load sharing
and FIFO delivery properties. The implementation utilized three components;

o Channels: The FIFO channels were provided by TCP connections between the sender and receiver
programs running on two different workstations across an Ethemnet network. To simulate a channel of
a given capacity, the connections were throttled, by permitting the sender program to send only a given
number of bytes per unit time on each connection. All channels had equal bandwidths.

¢ Striping algorithms: For the channel striping algorithms, the SRR and RFQ algorithms presented in

section 3 were implemented at the sender and receiver.

¢ Packet generation at the sender: The packet stream at the sender was modeled as a continuous stream
of packets of uniformly distributed sizes.

Reiiable FIFO Load Balancing over Multiple FIFO Channels 20

The sender program incorporated the packet generator, the load sharing version of the OFQ algorithm,
and the sending end of the TCP connections. The receiver program incorporated the other end of the TCP
connections, and the OFQ algorithm for packet resequencing. The only complexity in the programs was in
the receiver code to reassemble complete packets from the byte stream arriving at the receiver, as the socket
based TCP connections did not preserve packet boundaries. The actual OFQ algorithms took only a few lines
of code to implement. Two sets of sender and receiver programs were created, one for the SRR, and other for
the RFQ algorithm. The implementation verified that packets were transmitted on all channels at the same
data rate by the sender algorithm. The implementation also verified that the receiver algorithm restored the
FIFO delivery order.

Figure 5 shows the performance of the SRR and RFQ algorithms, when applied to striping in the config-
uration described above. The figure shows the variation in throughput for different channel capacities. As
can be seen, the striping algorithm provides scalable throughput as the number of channels increases. The de-
crease in throughput with increasing channel rates is due to the saturation of the processing capacity at either
workstation.

180000 v v v v r T 100000

Figure 5: Performance of SRR and RFQ algorithms

5.1. Performance Model

We present performance analysis for channel striping schemes based on fair queuing algorithms. We assume
full channel loading in the cases discussed below.

Cost of Load Sharing using OFQ Algorithms. The amount of data sent through each channel by the
channel striping algorithm is proportional to the rated bandwidth(BW) of the channel. We assume that the

Reliable FIFO Load Balancing over Multiple FIFO Channels 21

sender cannot transmit at a rate greater than the actual BW of the channel. In such a case, if the actual BW
were (o vary below the rated BW, the actual throughput at the sender would not only be less than that of the
aggregate of the rated BWs, but also less than the aggregate of the actual BWs. This somewhat surprising
result is due to the nature of the load sharing operation of the channel striping algorithm. The slowest channel
effectively constrains the rate of transmission over all other channels, since the sender blocks on this channet
to transmit data.

If the rated BW of Channel i is B, a¢c4,i» and the actual BW of each channel is B, ;, then the amount
of data sent over Channel i is proportional t0 B, 4¢.4,i, while the maximum rate at which it is can be sent over
Channel ¢ is By . Let the ratio Bacs i/ Brateq,i» measured over all channels, be minimum for Channel j.
Thenitcan be shown that the maximum aggregate rate at which data is sent by the sender is (Bace,j/ Brated,j) Z?‘;l Brated;is
which is less than zf‘; 1 Baet i-

The above analysis indicates that it is important to assign a value to the rated BW of the channel close to
the actual BW,

Buffering Requirements. If one of the channels has higher delay than the other channels, then we have
to buffer the data from the other channels while we wait to receive packets from this channel, in order for the
proper working of the fair quening algorithm. This increases the delay of all delivered packets.

If there are NV channels, all operating at the same speed, and one channel is slower than the others by T
secs, which corresponds to 8 bytes of data, then we have an extra (N — 1)8 bytes of buffering introduced at

the receiver.

Assume, in the general case, the channels are numbered from 0 to N — 1, in the order of decreasing de-
lay. Then, relative to the channel with the maximum delay (channel 0), let the skew in time for channels
1,2,...,N—1be T\, T3,..., Tn-_1, respectively. Let B; is the bandwidth of channel i, Then the total amount
of buffering required is 37 ;' B;T;, with B;T; amount of buffering required at channel ;.

All incoming packets are slowed T}y, extra by this buffering. In case it is possible to distinguish packets
belonging to different classes, it is possible 1o run two instances of the channel striping algorithm in parallel—
one utilizingonly the fast channels for time sensitive traffic, and another utilizing all channels for delay insensi-
tive traffic. We do note however, that application which need channel striping tend to be throughput intensive,
rather than delay intensive,

Cost of a Link Error. Whenever a packet is lost, there is the possibility of the receiver going out of
synchronization with the sender. In such a case, while succeeding packets are not lost, FIFO order is lost till
the synchronization detection and recovery algorithm runs. The synchronization detection algorithm depends

Reliable FIFQ Load Balancing over Multiple FIFO Channels 22

on the sender sending periodic marker packets on all channels. By adjusting the period of this algorithm, we
can bound the loss of FIFOness. For example, by ransmitting a marker packets after every N data packets,
we can ensure that loss of FIFO is restricted to a very small number of packets (around N/2 on the average,
depending on N). Also, in some cases, it might be possible for the receiver to detect packet loss even before
the arrival of the marker packets. For example, if the receiver is an ATM end node, since it reassembles the
incoming cells, it can conclude from sustained CRC errors that it is out of synchronization with the sender,
It must be noted, however, that a tradeoff exists between the frequency of marker packets and the overhead
involved in sending and processing these packets.

6. Conclusion

This paper describes a family of efficient channel striping algorithms that solve both the variable packet size
and the FIFO delivery problems for a fairly general class of channels. The channels can lose packets and have
dynamically varying skews. Thus our schemes can be applied not only at the physical layer, but also at higher
layers.

We solve the variable packet size problem by transforming a class of fair queuing algorithms called Obliv-
ious Fair Queuing (OFQ) algorithms into load sharing algorithms. We solve the FIFO problem by the idea of
logical reception, which combines the two ideas of receiver buffering and receiver simulation of the sender
algorithm. It is pleasing that in order for receiver simulation to work it is only necessary that the sender algo-
rithm be oblivious, which is guaranteed by our fair load sharing schemes. The requirement for obliviousness
arises for similar reasons in the two cases: in the fair queuing transformation it arises because channel striping
decisions cannot depend on packets that have not yet arrived; the same is true for receiver simulation, Logical
reception must alsc be augmented with periodic resynchronization to handle packet losses,

We believe the channel striping algorithm based on SRR, logical reception, and resynchronization {using
packet counts) is quite suitable for practical implementation, even in hardware. SRR requires only a few extra
instructions (to increment the deficit counter and do a comparison); the packet count synchronization protocol
is also simple since it only involves keeping a counter and sending a marker containing the counter, Of course,
if synchronization loss is detected, we have to reinitialize the system; however, that complexity is needed
anyway to handle the case when channels are added and removed. For simple channel striping algorithms
like round robin (which is appropriate for striping fixed size packets like cells), we are working on an even
simpler reinitialization scheme which involves the receiver skipping a channel n times whenever n packet

losses are detected,
We have also described {(and hopefully defended!} the notion of quasi-FIFO reception. Without the ad-

dition of sequencing information, the receiver can only provide quasi-FIFO delivery. We believe that quasi-

Reliable FIFQ Load Balancing over Multiple FIFO Channels 23

FIFO performance is adequate for most datagram applications and even for ATM, especially in cases where
adding a sequence number to each packet is either not possible, or is expensive to implement.

We believe that striping on physical links and striping across virtual circuits are the most important appli-
cations of our techniques. For an ATM virtual circuit, it appears feasible to implement markers using OAM
cells that are sent on the same Virtual Circuit that implements the channel. When striping end-to-end across
ATM circuits, it scems advisable to stripe at the packet layer. Striping cells across channels would mean that
AAL boundaries are unavailable within the ATM networks; however, these boundaries are needed in order to
implement early discard policies [RF94].

There are a number of detailed issues that we have not described for lack of space. In the paper so far,
we have assumed that the receiver buffers (required for logical reception) do not overflow. This is a good
assumption if we can bound the worst-case skew (note this does not rule out dynamically varying skews),
the channel bandwidths, and the receiver processing rates. In more general cases, it might be necessary to
implement a flow control scheme as part of the channe! striping scheme. A simple scheme would involve the
sending of Xon and Xoff messages. We have also not described dynamic algorithms for detecting channel
failures or reductions in effective channel bandwidth: these can easily be added and even used to dynamically
vary the load sharing weights assigned to channels. The actual synchronization required to change channels
or synchronization weights is similar to that needed for reinitialization. Regardless of these details, we hope
the simplicity and elegance of the schemes described in this paper will lead to a wider deployment of channel

striping schemes.

Acknowledgement

We acknowledge the help of Adam Costello of Washington University in discussions leading to the formula-
tion of the Randomized Fair Queuing algorithm.

References

[CL85] K.Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining Global States of a Distributed Sys-
tem. ACM Transactions on Computer Systems, pages 6375, February 1985.

[DKS89] A.Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm. In Proceedings
of the ACM SIGCOMM, pages 3-12, 1989,

{DP94] Peter Druschel and Larry L. Peterson. Experiences with a High-Speed Network Adaptor; A software Perspec-
tive. In Proceedings of the ACM SIGCOMM, 1994,

[Dun94] Jay Duncanson. Inverse Multiplexing. /EEE Communications Magazine, 32(4), April 1994.
[Flo93]) Sally Floyd. Notes on Guaranteed Service in Resource Management. Unpublished Note, 1993,

[Fre94] Paul H. Fredette. The Past, Present and Future of Inverse Multiplexing. /EEE Communications Magazine,
32(4), April 1994,

Reliable FIFO Load Balancing over Multiple FIFO Channels 24

[Gro92] Bandwidth ON Demand INteroperability Group. Interoperability Requirements for Nx56/64 kbit/s Calls,
September 1992.

[(H594) M.V. Hegde H. Saidi, P.S. Min. Non-blocking Multi-channe] Switching in ATM Networks. In Proceedings of
SUPERCOMIICC94, May 1994,

[Jac90] V. Jacobson. 4BSD Header Prediction. ACM Communication Review, April 1990,
[Lau94] M. Laubach. Classical IP and ARP over ATM, RFC1577, January 1994,
[McA93] A.T. McAuley. Parallel Assembly for Broadband Networks, 1993,

[McK91] Paul E. McKenney. Stochastic Fair Queueing. Internetworking: Reserch and Experience, pages 113-131,
1991.

[RF94]) Allyn Romanov and Sally Floyd. Dynamics of TCP Traffic over ATM Networks. In Proceedings of the ACM
SIGCOMM, pages 79-88, 1994,

[SV94]) M. Shreedhar and G. Varghese. Efficient Fair Queueing by Deficit Round Robin. Technical Report WU94-17,
Washington University, 1994.

	Reliable FIFO Load Balancing over Multiple FIFO Channels
	Recommended Citation
	Reliable FIFO Load Balancing over Multiple FIFO Channels

	tmp.1439928365.pdf.uQZMe

