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Abstract. Developing the ability to recognize a landmark from a visual image of a robot’s
current location is a fundamental problem in robotics. We consider the problem of PAC-learning
the concept class of geometric patterns where the target geometric pattern is a configuration of
k points on the real line. Each instance is a configuration of n points on the real line, where it
is labeled according to whether or not it visually resembles the target pattern. To capture the
notion of visual resemblance we use the Hausdorff metric. Informally, two geometric patterns P
and @ resemble each other under the Hausdorfl metric, if every point on one pattern is “close”
to some point on the other pattern. We relate the concept class of geometric patterns to the
landmark recognition problem and ther present a polynomial-time algorithm that PAC-learns the
class of one-dimensional geometric patterns. We also present some experimental results on how

our algorithmn performs.

Keywords: PAC learning, lanidmark recognition, robot navigation

1. Introduction

Developing the ability to recognize a landmark from a visual image of a robot’s
current location is a fundamental problem in robotics. We consider the problem of
PAC-learning the concept class of geometric patterns where the “target” geometric
patiern is a configuration of k£ points on the real line. Each instance is a configura-
tion of n points on the real line, where it is labeled according to whether or not it
visually resembles the target pattern. To capture the notion of visual resemblance
we use the Hausdorff metric (for example, see Gruber (1983)). Informally, two ge-
ometric patterns P and ) resemble each other under the Hausdorfl metric, if every
point on one patiern is “close” to some point on the other pattern.

As a motivation of this problem consider the problem of recognizing from a visual
image from a robot’s current location whether or not it is in the vicinity of a known
landmark (where a landmark is a location that is visually different from other
locations). Such an algorithm is needed for navigation where the navigation is
performed by planning a path between known landmarks, tracking the landmarks
as it goes. Because of inaccuracies in effectors and possibly errors in the robot’s
internal map, when the robot believes it is at landmark L, before heading to the
next landmark it can check that it is really in the vicinity of L. Then adjustments
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can be made if the robot is not at L by either re-homing to L and/or updating its
map. We can apply our algorithm to learn geometric patterns to this problem by
converting the visual image the robot has into a one-dimensional geometric pattern.

The main result of this paper is a polynomial-time algorithm that PAC-learns the
class of one-dimensional geometric patterns. In addition to theoretical results we
also provide the learning curves obtained by running our algorithm on simulated
data.

An interesting feature of this problem is that the target concept is specified by
a k-tuple of points on the real line, while the instances are specified by n-tuples of
points on the real line where n is potentially much larger than k. Although there
are some important distinctions, in some sense our work illustrates a concept class
in a continuous domain in which a large fraction of each instance can be viewed
as “irrelevant”. As in previous work on learning with a large number of irrelevant
attributes in the Boolean domain (e.g. Littlestone’s work (1988)), our algorithm’s
sample complexity (the best dual to a mistake-bound) depends polynomially on k
and Ign.

This paper is organized as follows. In the next section we describe how algo-
rithms for the problem we address could be applied to the landmark recognition
problem described above. Then in Section 3 we review the PAC learning model
and some techniques from learning theory that we apply. In Section 4 we formally
define the concept class of one-dimensional geometric patterns. Qur main result
appears in Section 5, where we describe our algorithm to PAC-learn the class of
one-dimensional geometric patterns. Finally, we conclude in Section 7.

2. The Landmark Recognition Problem

In this section we explore one motivation for this work. Consider a robot designed
to navigate through a large-scaled environment!. Suppose that we have selected
a set of key “landmarks” of which the robot has prior knowledge. It is crucial
that the robot be able to recognize whether or not it is in the vicinity of a given
landmark from a visual image taken from the robot’s current location. We shail
refer to this problem as the lendmark matching problem. In his doctoral thesis,
Pinette (1993) says that “any general navigation algorithm must be able to match
landmarks by their appearance.” Namely, when performing navigation a robot
plans a path by moving between known landmarks, tracking landmarks as it goes.
Because of inaccuracies in effectors and errors in the robot’s internal map, when
the robot believes it has reached landmark L, before heading to the next landmark
it can check that it is really in the vicinity of L. Then adjustments can be made if
the robot is not at L by either re-homing to L and/or updating its map.

It is also crucial that the landmark matching algorithm can be performed in real-
time. To reduce the processing time required by the landmark matching algorithm,
some are proposing the use of immaging systems that generate a one-dimensional
array of light intensities taken at eye-level (see eg. Hong et al. (1992), Levitt and
Lawton (1990), Pinette (1993), Suzuki and Arimoto (1988)). We now briefly de-
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Figure 1.
The imaging system on the robot, {This figure comes directly from Pinnette’s {1993) thesis.}

scribe one such imaging system (Hong et al. (1992) and Pinnette (1993)). In their
robot a spherical mirror is mounted above an upward-pointing camera on a robot
thus enabling it to instantaneously obtain a 360° view of the world. See Figure 1 for
a picture of such a robot. The view of the world obtained by this imaging system
and the processing performed are shown in Figure 2. All points along the eye-level-
view of the robot (shown by the horizon line in Figure 1} project into a circle in the
robot’s 36(° view. Figure 2 shows the panoramic view that results by scanning the
360° view (beginning at due north) in a circle around the robot’s horizon line. The
panoramic view is sampled along the horizontal line midway between the top and
the bottom to produce a one-dimensional array of light intensities (or signature) as
shown in Figure 2.

Most work on designing landmark matching algorithms uses a pattern matching
approach by trying to match the current signature to the signature taken at land-
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Figure 2.
Stages of image processing. (This figure comes directly from Pinnette’s (1993) thesis.}
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mark position L. If one’s goal is to determine if the robot is standing exactly at
position L, then the pattern matching approach can easily be implemented to work
well. However, in reality, the matching algorithm must determine if the robot is in
the vicinity of L (i.e. in a circle centered around L). Because the visual image may
change significantly as small movements around L are made, the pattern matching
approach encounters difficulties.

Rather than using a pattern matching approach to match the light intensity array
from the current location with the light intensity array of the landmark, we instead
propose using a learning algorithm to construct a good hypothesis for performing
landmark recognition. We obtain the instances by converting the array of light
intensities into one-dimensional geometric patterns by placing points where there
are significant changes in light intensity. The target pattern could be constructed
as follows: whenever there is an object at eye-level that would cause the light
intensity received by the robot to change, a set of points are placed evenly spaced
at distance two from each other along the image of the object. Thus if there is an
object in view from the location of the landmark, then even though a relatively small
number of points are placed in the “target pattern” the “example pattern” may have
significantly many more points placed in this region. It is from this occurrence that
we motivate looking at the situation in which the example complexity may be
significantly larger than the target complexity (and thus leads to a notion that has
similarities fo the notion of irrelevant attributes in the Boolean domain). Then by
applying our algorithm, giving it a set of positive examples (i.e. patterns obtained
from locations in the vicinity of the landmark) and a set of negative examples
(i.e. patterns obtained from locations not in the vicinity of the landmark), we can
construct a hypothesis that can accurately predict whether or not the robot is near
the giver landmark.

3. Background

In this paper we work within the PAC (probably approximately correct) model of
computational learning, as introduced by Valiant (1984,85). Details of the model
may be found in such textbooks as Kearns and Vazarani (1994), Natarajan (1991),
or Anthony and Biggs (1992). We now review the basic definitions and results used
here.

3.1. The PAC Learning Model

In the PAC model, examples of a concept are made available to the learner according
to an unknown probability distribution D, and the goal of a learning algorithm is to
classify with high accuracy any further (unclassified) instances generated according
to the same distribution D.

The instance domain X is the set of all possible objects (instances) that may be
made available as data to a learner. A concept class C is a collection of subsets of X/,
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and examples input to the learner are classified according to membership of a target
concept C € C. (C is known to the learner, C' is to be learned.) We say that an
example X € C is a positive ezample and an example X & C is a negative ezample.
PAC learning requires a learner to obtain, with high probability, a hypothesis H C X
whose classification of a randomly drawn member of X agrees with C' with high
probability. We associate two parameters ¢ (accuracy) and § (confidence) with the
learning problem, where ¢ is an upper bound on the probability that the hypothesis
disagrees with the target concept on a randomly chosen instance, and § is an upper
bound on the probability that the algorithm fails to achieve the error bound e,

As originally formulated, PAC learnability also required the hypothesis to be a
member of C. Pitt and Valiant (1988) show that under the assumption NP # RP,
a prerequisite for PAC learnability in this sense is the ability to solve the consistent
hypothesis problem, which is the deterministic problem of finding a concept which is
consistent with a given sample (that is, containing the positive but not the negative
examples of the sample). This implies that if the consistent hypothesis problem is
NP-hard for a given concept class {as happens for the concept classes considered
here), then the learning problem is hard.

The more general form of learning that we use here is commonly called predic-
tion. The goal is to find any polynomial-time algorithm that classifies instances
accurately in the PAC sense. Thus the algorithm need not define a set that is
the same as some concept. The idea of prediction in the PAC model originated in
the paper of Haussler, Littlestone and Warmuth (1988), and is discussed in Pitt
and Warmuth (1990). It may be formulated as: given a sample from X classified
according to target concept C, find a polynomial-time algorithm A that classifies el-
ements of A with high probability of agreement with C'. This notion of learnability
achieves the practical goal of being able to classify unlabeled examples efficiently.

3.2. The VC-dimension and Occam Algorithms

The paper of Blumer et al. (1989} identifies a combinatorial parameter of a class
of hypotheses called the Vapnik-Chervonenkis (VC) dimension, which originated in
the paper of Vapnik and Chervonenkis (1971), that gives bounds how large a sample
size is required in order to have enough information for accurate generalization.
(We call this quantity the semple complezity of a learning problem; note that given
a sufficiently large sample there is still the computational problem of finding a
consistent hypothesis.)

Definstion. Blumer et al. (1989) The VC dimension of concept class C (which we
denote VCD(C) is the size of a largest set S C X such that any subset of S is of
the form SN C, for some C € C, or co if such sets can be arbitrarily large.

As an example, consider the concept class C of axis-parallel rectangles in [R? where
points lying on or inside the target rectangle are positive, and points lying outside
the target rectangle are negative. First, it is easily seen that there are four points,
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namely any four points in which no three are collinear, that can be shattered. Thus
VCD(C) > 4. We now argue that no set of five points can be shattered. Since
the bounding rectangle defined by the five points will contain at least one of these
points, say p, they cannot be shattered since it is not possible for p to be classified
as positive while also classifying the others as negative. Thus VCD(C) = 4.

The results of Blumer et al. give a sufficient condition for a prediction algo-
rithm to generalize successfully from example data, in terms of the VC dimension.
Namely, they showed that any concept C' € C consistent with a sample of size
max (21og 2, 8 ]og 12) will have error at most ¢ with probability at least 1 — &.
Furthermore, Ehrenfeucht et al. £1989) prove that any concept class ¢ of VC di-
mension d must use (1 log 1 7+ ) examples in the worst case.

One drawback with the above a.pproach is that the hypothesis must be drawn from
C. However, for the problem we study the computational problem of finding such a
hypothesis from the class is NP-complete. In fact, the size of the hypothesis output
by our algorithm depends on the size of the sample. In particular the representation
complexity of a hypothesis is sublinear in the sample size and polynomial in the
parameters n and k. Blumer at al. (1987,89) show that this achievéement of data
compression is sufficient to guarantee polynomial learnability. Let 'Hf'm be the
hypothesis space used by algorithm A for a target complexity of s and sample size
m, More formally, we say that algorithm A is an QOccam Algorithm for concept
class C if there exists a polynomial p(s) and a constant e, 0 < & < 1, such that for
all s,m > 1, the VC dimension of H{l,,, is at most p(s)m®.

THEOREM 1 Blumer et al. (1989) Let A be a learning algoriihm for concept class C
that has hypothesis space H2 . If the VC dimension of H2, . is al most p(s)(lg m)*
Jor some polynomial p(s) > > 2 and £>1, then Aisa PAC Iearnmg algorithm for C

using sample size

= max [ 4102 27006) (), 8@+ 9 p(s) |
m_max( lg - A ( p; ) .

4. The Class of One-Dimensional Geometric Patterns

For the concept class considered here, the instance space X,; consists of all config-
urations of n points on the real line?. A concept is the set of all configurations
(from A, within unit distance® under the Hausdorff metric of some “ideal” con-
figuration of k points. The Hausdorff distance between configurations P and @,
denoted H{P, ), is:

masc{sup { a0 000,00} sup { it £, 00}

PEFP

where d is the Euclidean distance between p and q.
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-— 2 -
target  f—e—7} t—e-tFo—1
X1 » *+o—eo—wo—o—  PpOsitive
X —o—e s/ +—o-o—e—— Negative
X3 —eeo—e = Seee negative

Figure 3.

This figure illustrates an example concept from C3 7. The top line shows the target pattern.
Around each target point we show an interval that covers all points within unit distance from
that point. Every positive example must have every point within one of the above intervals and
no interval can be empty (e.g. see X; above). For an example to be negative, there must be a
point in it that is not within unit distance of any target point (e.g. see X above) and/or there
are no points in the example near some target point {e.g. see Xa above).

Let P be any configuration of points on the real line. Then we define the concept
Cp that corresponds to P by Cp = {X € &, | H(P, X) < 1}. Figure 3 illustrates
an example of such a concept. Thus one can view each concept as a sphere of unit
radius in a metric space where P defines the center of the sphere. For any X € %,
such that X' € Cp, we say that X is a positive ezample of Cp. Likewise, if X ¢ Cbp,
we say that X is a negative ezample of Cp. Furthermore, all configurations of
points that resemble the given configuration P are contained within this sphere.
Finally, the concept class Cy , that we study is defined as follows: Cx, = {Cp |
P is a configuration of at most & points on the real line}.

As discussed in Section 1, n may be significantly greater than k. For example,
the learner may be asked to predict if a configuration of 100 points is contained
within a sphere defined by 3 points. This consideration is, in some sense, analogous
to the notion of irrelevant attributes studied in the Boolean domain. Namely, given
any positive (respectively, negative) example from X,,, there exists a subset of k of
the n points in that example such that the configuration of these k points is also a
positive (respectively, negative) example. However, observe that unlike the Boolean
domain, there is no fixed set of points of an instance that are “relevant”. Thus if
an arbitrary point is removed from an instance it can no longer be determined if
that instance was positive or negative before the point was removed.
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At first glance, there may appear to be some similarities between Ci , and the
class of the union of at most & intervals over the real line. However, the class of
one-dimensional geometric patterns is really quite different (and significantly more
complex) than the class of unions of intervals on the real line, One major difference
is that for the union of intervals, each instance is a single point on the real line,
whereas for Ci n each instance is a set of n points on the real line. Thus the notion
of being able to independently vary the concept complexity and instance complexity
does not exist for the class of unions of intervals, Furthermore, observe that for
Ck,n each instance (configuration of n points} is an element of a metric space, which
has a measure of distance defined between any pair of instances. However, with
the class of unions of intervals there is no notion of a distance between instances.
Finally, for the class of unions of intervals, an instance is a positive example simply
when the single point provided is contained within one of the & intervals. For C n
an instance is positive if and only if it satisfies the following two conditions.

1. Each of the n points in the instance are contained within one of the k, width 2
intervals defined by the k target points.

2. There is at least one of the n points in the instance contained within the width
2 interval defined by each of the k target points.

Thus, the class of unions of intervals differs very much in character from Cg ».

5. A PAC-Learning Algorithm

We note that Goldberg (1992) has shown that it is NP-complete to find a sphere
in the given metric space (i.e. one-dimensional patterns of points on the line under
the Hausdorff metric) consistent with a given set of positive and negative examples
of an unknown sphere in the given metric space. In other words, given a set S of
examples labeled according to some one-dimensional geometric patiern of & points
it is NP-complete to find some one-dimensional geometric pattern (of any number
of points) that correctly classifies all examples in S. Thus, assuming NP # RP, it is
necessary to use a more expressive hypothesis space. To give even further evidence
that the class of one-dimensional patterns is significantly more complex than the
union of intervals on the real line, observe that the consistency problem for the
latter class is trivial to solve.

Our algorithm is motivated by the fact that while it is NP-complete to find
a sphere in this metric space consistent with given sets of positive and negative
examples, it is possible in polynomial time to find one that is consistent with all
positive and at least a fraction 2—(,;%-*_-1-) of the negative examples, where k is the
target concept complexity, the number of points in the configuration defining the
target concept. Hence we may build a hypothesis consisting of an intersection of
concepts obtained by a greedy set cover algorithm on the negative examples.

We now present our algorithm for learning Crn. Our algorithm is an Occam
algorithm. Define H; to be the intersection of at most 2(k + 1) lgm concepts from
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Ck,n where m is the sample size required. Then the algorithm draws a sufficiently
large sample of size m (polynomial in k,lgn,1/¢, and 1g1/6) and then outputs a
consistent hypothesis from Hg.1.

In order to apply Theorem 1 we need to upperbound the VC dimension of Hg41.
To achieve this goal we make use of recent results of Goldberg and Jerrum (1993),
which identify general situations where the VC dimension of a hierarchical concept
class is gnaranieed to be only polynomial in n and k, as required for PAC learning.

Note we are measuring the complexity of a configuration of points by the number
of points it contains, and the positions of the points is of no importance. This
is based on the assumption of unit cost for representing and operating on a real
number, used in the computational geometry and neural network literature, and
noted by Valiant (1991) to be typically appropriate for geometrical domains.

The difference between the unit cost model and discretized geometrical problems
is significant. Blumer et al. (1989) show that Euclidean n-spheres can be learned in
polynomial time under the logarithmic cost model (in which the cost of a real value
is the number of bits it occupies). The problem of finding a consistent hypothesis
in this class is equivalent to linear programming, and the complexity of this is a
major open problem in the unit cost model of real arithmetic. For a discussion of
this see Renegar (1992). The NP-completeness results noted above for our learning
problems hold also in the discretized case.

We use the following theorem of Goldberg and Jerrum (1993):

THEOREM 2 Goldberg and Jerrum (1993) Let {Cip : k,n € N} be a family of
concept classes where concepls in C n, and inslances are represented by k and n real
values, respeclively. Suppose that the membership test for any insience z in any
concept C' of Ci,n can be expressed as a boolean formula $p n, containing s = s(k,n)
distinct alomic predicates, each predicate being a polynomial inequalily over k +n
variables (representing C' and z) of degree at most d = d(k,n). Then VCD(Cp ) <
2k log(8eds).

CoROLLARY 1 Let Cyn be sets of points on the line under the Hausdorff metric.
Then VCD(Cr ) < 2k logBekn.

This follows from the fact that the Hausdorfl distance between a set of k points on
the line and a set of n points on the line depends on a set of kn degree 1 inequalities

in their coordinates,
Combined with a result from Blumer et al. (1989) we can upperbound the VC

dimension of our hypothesis class.

TuEOREM 3 Blumer et al. (1989) Lel C be a concept class with VC dimension d.
Then the class of intersections of s concepis in C has VC dimension < 2dslg(3s).

Combining Corollary 1 with Theorem 3, we get the following resuit.
COROLLARY 2 The VC Dimension of Hiy1 is upperbounded by:
VOD(Hiy1) S 8(k+ 1)*1g(8e(k + 1)n) lgmIg(6(k + 1) lgm)
< 24V6(k + 1)%/2 1g(8e(k + )n){lgm)*/2.
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Proof: To obtain the first inequality we apply Theorem 3 with s = 2(k+1)1gm and

d = 2(k+1)1g(8e(k+1)n). We then get the second inequality by using the inequality

lgz < 3+/= for £ > 1 (which in turn comes from* Inz < ¢(z/¢ — 1) for ¢ > 1).
a

We are now ready to present the main result of this paper:

THEOREM 4 LetC = Uk,nENCk,,, be the class of spheres under the Hausdorff mel-
ric, whose domain is configurations of up fo n poinis on the real line, and concepis
defined by configurations of up fo k poinis on the real line. Then Cy n is predictable
from positive and negative examples with a sample complezily of

5/2
m=0 (% ig% + B Ig(kn) ]f(k"') 1g*/? (m-—k lggkn))) ,

and time complezity of O(kmnlogm + mnlog(mn)).

Proof: To build the hypothesis we use a greedy set cover algorithm that is based
on the observation that it is possible, in polynomial time, to find a concept from
Ci41,n consistent with all the positive examples and a fraction ¢ = 5-(-,;1_—*_-1-5 of the
negative examples. Then the negative examples accounted for are removed and the
procedure is repeatedly applied until all negative examples have been eliminated.
The intersection of all concepts obtained by deing this is consistent with the sample,
and assuming that enough negatives are removed at each stage, it 18 an Occam
algorithm.

Let r denote the number of rounds until all negative examples have been covered.
Then it is easily seen that

"S1051—5;mSI°g1+:pm=1°gl+tp2'lng %lgm:?(k-{—l)lgm

where the last inequality follows from the fact that (14-¢)* > 1442 and thus letting
z = 1/¢p gives (1 + ©)'/¥ > 2. Finally, the hypothesis output is the intersection of
the r concepts obtained in this manner.

Thus by applying Theorem 1 with p(s) = 24vB(k + 1)%/21g(8e(k + 1)n) and
£ = 3/2 we get that any hypothesis from Hp, that is consistent with a sample of
size

€

4 2 1536+/3(k+1)%/21g(8e(k+1)n) 1572 (4800«/55(&:-{—1)5/2 lg(8e(k+1)n)

m.—..max(? lg 5 p

5/2
= 0 (g i (e

€

will have error at most ¢ with probability at least 1 — §.

What remains is to prove that in polynomial time we can find a concept H from
Ci+1,n that is consistent with all positive examples and at least a fraction 1/(2k+1)
of the uncovered negative examples. Recall that there are two ways for an example

)

(1)
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to be negative: either there is 2 point in the example that is not near® any target
point {e.g. X3 in Figure 1), or no points in the example are near some target point
(e.g. X3 in Figure 1). Let N be the set of negative examples that remain at the
start of a round. By a simple averaging argument it follows that one of the following
holds.

Case 1: At least |V|/2 of the negative examples have no points near some
target point. Thus, by an averaging argument, there is some width 2 interval
I containing at least one point from each of the positive examples that does
not contain points in at least %‘9 of the negative examples.

Case 2: At least |M|/2 of the negative examples have a point that is not
near a target point. Since the portions of the real line that are not near any
target point form at most k41 contiguous intervals, by an averaging argument,
there is some interval I containing points from at least ﬂlﬂﬁ distinct negative
examples and no points from the positive examples.

The procedure Find-I1 takes as input the set of postive examples P and uncov-
ered negative examples A" and searches for an interval I; of width 2 that contains
at least one point from each positive example and does not contain any point in
at least |A'|/(2k) of the negative examples. This interval can be found by placing
all mn points on one line and sliding a width 2 window over them while updating
records of which examples are represented in the current window. It is easily seen
that this can be done in O(mn) time. The procedure returns the first interval that
satisfies the condition (if one exists}, or otherwise returns failure.

Our algorithm first calls Find-I1. By the above argument we know that if Find-
I1 returns failure, then Case 2 must apply. In this situation, our algorithm then
uses procedure Find-I2 which takes as input P and A and returns an interval Iz
that contains points from at least E(li?-ilﬁ distinct negative examples and no points
from the positive examples. As with Find-Y1, Find-I2 runs in O(mn) time. Qur
complete algorithm is given in Figures 4 and 5.

We now argue that H, is a pattern of at most & points that is consistent with
all examples in P. First note that k points defining the target concept must be in
I since each example in P must have a point near each target point. Then by a
simple inductive argument, it can be shown that for all i the ith leftmost points in
the hypothesis cover all points from the examples of P that are within unit distance
of the first ¢ points of the target concept.

We have already argued that either Find-I1 or Find-I2 will succeed. If Find-I1
succeeds then since the pattern P added to H has at most one point added to H,
and thus P € Cp4q,, as desired. Also it is easily seen that P is consistent with the

% negative examples that have no point in the returned interval I;.

In Find-12, R = {z | = € H4 N {rmin, Pmaz]} is the set of points of Hy that
are also in Iy, i.e. the points that must be removed from P to make it consistent
with the negative examples with points in Iz. If Find-I2 succeeds and R = 0 then

certainly P € Cry1,n and the required number of negative examples are covered.
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Learn-1d-Pattern

Draw a sample 5 of size m > Where m is given in Equation 1
P « {x € 5| = is positive}

N —S\P

H, — Cover-Positives(P)

H—X

Repeat

I Find-I1(P, V) does not report failure
Let [r,r + 2] be the interval I; returned
P~ H+ J {T‘ + 1}
Else
[Pmin; Pmaz) — Find-I2(P, N)
R—{z |z € Hy N[rmin, Pmaz]} > R contains points of Hy in [rmin, Pmax)
IfR=0
P« H+
Else
PeH U {rmin =1, rmae + 1} \ {z | TE [rmin;rma:c]}
H—HnNP
N — N\ {zlo ¢ P}
Until N =@

Figure 4. Algorithm to PAC learn a one-dimensional pattern.
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Cover-Positives(P)

Let {X1,..., Xm,} be the examples in P Bmy = |[P|

S« {p|pisapointof X; 1<i<my}
S; « {p € R | some point in X; is within unit distance of p}

H+4——@

Repeat t> Greedily cover points in P using only points from [

r « rightmost point in I within unit distance of leftmost point in .5
H+ — H+ U {T‘}
S «— S\ {all elements within unit distance of r}

Until S =0

Return Hy

Figure 5. Algorithm to preprocess the examples to find a pattern that is consistent with aill
positive examples. Note that any pattern consistent with the points in P must be a subset of I.

Finally, note that by the definition of I, all points in R must be within unit distance
of either rmin Or rmas. Thus the selected P € Ciy1,n will be consistent with the
2—(% negative exarnples that have a point in [rmin, P'maz)-

Thus our final hypothesis H consists of an intersection of at most 2(k + 1)Igm
concepts from Cpy1n. The correctness thus follows from that fact that m was
selected to satisfy Theorem 1. For the stated time complexity we first assume that
the mn points from the sample are sorted. The rest of the preprocessing takes
O(mn) time. The main loop in Learn-1d-Pattern is executed O(klogm) times,

with each execution taking O(mn) time. Thus the stated time complexity follows.
a

6. Simulation Results

To empirically evaluate the algorithm, we simulated it on uniformly distributed
random test data. For each pair of values of &k and n, we generated 3 random targets
of k real points each on the real interval [1, 100]. Then a test set of 500 examples
was randomly generated for each target. For each target we created 10 fraining
sets, each with m examples, where m varied from 20 to 1000 in increments of 20.
Each training example had a 0.5 probability of being negative, and if negative,
it had a 0.5 probability of being Case 1. All negative examples were made as
deceptive as possible by only allowing one point not near a target point (if Case
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Simulation-Procedure

For each (k,n) pair:
Generate 3 random targets C;, i = 1,2, 3 of k points each on [1, 100].
Make a test set T;, i = 1, 2,3 of 500 examples for each target.
For 20 < m < 1000 in increments of 20:
Tor each target C;:
For 1 € j < 10 in increments of 1:
Generate training set S; with m random examples consistent with C;:
Flip a fair coin.
If heads:
Generate a positive example by first randomly placing a point in each
target interval. The other n — k points are placed by randomly
selecting a target interval and then randomly placing the point in the
selected interval.
If tails;
Flip another fair coin.
If heads:
Generate an example that is negative because it does not
have a point near some target interval. Do this by first
randomly picking the target interval. Then randomly place
the n points near one of the remaining k — 1 target points
(like above where first one of the k — 1 intervals is picked and
then the point is randomly placed in the selected interval).
If tails:
Generate an example that is negative because it has a point
that is not near any target point. In this, one point is randomly
placed among all parts of the line not near any target interval
and the remaining n — 1 points are randomly placed within the
k target intervals.
Run Learn-1d-Pattern to create a hypothesis 7; consistent with 5;.
Evaluate T; with #; and calcuiate the accuracy = the proportion of the
examples consistent with C;’s evaluation of T},
Average the accuracies for target C; and this value of m.
Average the averages of the 3 targets and insert this (k, ») curve into the final plot.

Figure 6. Summary of the simulation procedure.
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Accuracy

i
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Figure 7. Hypothesis accuracy versus sample size for different values of » and k.
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Accuracy
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Figure 8. Hypothesis accuracy versus sample size for varying values of k.
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1) or only allowing one target point not near any example points (if Case 2). For
each training set, the algorithm generated a hypothesis which was evaluated with
the corresponding test set to measure its accuracy. All 10 evaluations per target
were averaged and then the results from the 3 targets were averaged. Figure 6
summarizes our simulation procedure.

The curves in Figures 7 and 8 are connected points separated by increments of 20,
where each point is the average of 10-3 = 30 hypothesis generations and evaluations.
No attempt was made to fit a smooth curve to the points, so sudden changes in
slope merely indicate minor variations in accuracy. Figure 7 indicates how the
accuracy of the hypothesis relates to the number of examples in the training set
for different values of £ and n. Even for values as high as k = 20 and n = 40, the
hypothesis generated by the algorithm was almost 95% correct when trained on
1000 examples.

Figure 8 exhibits the relationship between the hypothesis accuracy and the num-
ber of examples in the training set as k varies but n remains constant at 50. In this
case, varying & did not greatly impact accuracy. For k = 10, the hypothesis gener-
ated by the algorithm was almost 96% correct when trained on 1000 examples. For
k = 30, the hypothesis generated by the algorithm was almost 93% correct when
trained on 1000 examples.

7. Conciuding Remarks

In this paper we have presented an algorithm to efficiently PAC learn the class of
one-dimensional geometric patterns. As discussed in Section 2, we feel that this
algorithm can provide a novel way in which to perform landmark recognition.

One interesting direction of further research is to consider the problem of learning
two-dimensional geometric patterns. Goldberg (1992) has shown that while there is
a considerable loss of efliciency in extending this technique from the one-dimensional
to the two-dimensional case, the resulting algorithm is still polynomial-time. This
loss is caused by the increased search space of regions which define appropriate
local features which perform the function of eliminating a significant fraction of the
negative examples. It can be shown that a suitable set of regions to search over
is the set of regions bounded by up to two vertical lines passing through points
occurring in the examples, and two unit circles centered at points occurring in the
examples. Could improved algorithms for higher dimensions be obtained?

Another very important research direction, that must be addressed to apply this
work to real-world problems, is extending our algorithm so that it still performs
well when there is noise in the data. Goldberg and Goldman (1994) have presented
an algorithm that works when there is one-sided random classification noise (where
only the labels are wrong). However, it would be nice to extend this work to handle
general random classification noise and even small amounts of other types of noise.

Finally, after we have extended our algorithm to tolerate the types of noise that
we expect to see in real-world examples we intend to obtain performance curves
using real-world data versus simulated data.
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Notes

1. By alarge-scaled environment we mean that not all landmarks are visible from all locations in
the environment.

2. Note that throughout this abstract, the word “point” will refer to a single point on the real
line, and we shall use the term “a configuration of points” when speaking of an instance.

3. Al results presented here apply if unit distance is replaced by some fixed distance since we
can just rescale,

4. The exponent of lgm can be reduced arbitrarily close to 1 by just increasing the value of ¢c.

5. For ease of exposition, we say that an example point within unit distance from a given target
point is near that target point.
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