Washington University in St. Louis Washington University Open Scholarship

All Computer Science and Engineering Research

Computer Science and Engineering

Report Number: WUCS-95-10

1995-01-01

PAC Learing of One-Dimensional Patterns

Paul W. Goldberg, Sally A. Goldman, and Stephen D. Scott

Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We consider the problem of PAC-learning the concept class of geometric patterns where the target geometric pattern is a configuration of k points on the real line. Each instance is a configuration of n points on the real line, where it is labeled according to whether or not it visually resembles the target pattern. To capture the notion of visual resemblance we use the Hausdorff metric. Informally, two geometric patterns P and Q resemble each othe runder... **Read complete abstract on page 2**.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Goldberg, Paul W.; Goldman, Sally A.; and Scott, Stephen D., "PAC Learing of One-Dimensional Patterns" Report Number: WUCS-95-10 (1995). *All Computer Science and Engineering Research.* https://openscholarship.wustl.edu/cse_research/370

Department of Computer Science & Engineering - Washington University in St. Louis Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/ cse_research/370

PAC Learing of One-Dimensional Patterns

Paul W. Goldberg, Sally A. Goldman, and Stephen D. Scott

Complete Abstract:

Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We consider the problem of PAC-learning the concept class of geometric patterns where the target geometric pattern is a configuration of k points on the real line. Each instance is a configuration of n points on the real line, where it is labeled according to whether or not it visually resembles the target pattern. To capture the notion of visual resemblance we use the Hausdorff metric. Informally, two geometric patterns P and Q resemble each other runder the Hausdorff metric, if every point on one pattern is "close" to some point on the other pattern. We relate the concept class of geometric patterns to the landmark recognition problem and then present a polynomial-time algorithm that PAC-learns the class of one-dimensional geometric patterns. We also present some experimental results on how our algorithm performs.

PAC Learning of One-Dimensional Patterns

Paul W. Goldberg, Sally A. Goldman and Stephen D. Scott

WUCS-95-10

April 1995

Department of Computer Science Washington University Campus Box 1045 One Brookings Drive St. Louis MO 63130-4899

PAC Learning of One-Dimensional Patterns

PAUL W. GOLDBERG pwgoldb@cs.sandia.gov Sandia National Laboratories, MS 1110, P.O. Box 5800, Albuquerque, NM 87185-1110, U.S.A.

SALLY A. GOLDMAN Dept. of Computer Science, Washington University, St. Louis, MO 63130

STEPHEN D. SCOTT Dept. of Computer Science, Washington University, St. Louis, MO 63130 sds@cs.wustl.edu

sg@cs.wustl.edu

WUCS-95-10

Abstract. Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We consider the problem of PAC-learning the concept class of geometric patterns where the target geometric pattern is a configuration of k points on the real line. Each instance is a configuration of n points on the real line, where it is labeled according to whether or not it visually resembles the target pattern. To capture the notion of visual resemblance we use the Hausdorff metric. Informally, two geometric patterns P and Q resemble each other under the Hausdorff metric, if every point on one pattern is "close" to some point on the other pattern. We relate the concept class of geometric patterns to the landmark recognition problem and then present a polynomial-time algorithm that PAC-learns the class of one-dimensional geometric patterns. We also present some experimental results on how our algorithm performs.

Keywords: PAC learning, landmark recognition, robot navigation

1. Introduction

Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We consider the problem of PAC-learning the concept class of geometric patterns where the "target" geometric pattern is a configuration of k points on the real line. Each instance is a configuration of n points on the real line, where it is labeled according to whether or not it visually resembles the target pattern. To capture the notion of visual resemblance we use the *Hausdorff metric* (for example, see Gruber (1983)). Informally, two geometric patterns P and Q resemble each other under the Hausdorff metric, if every point on one pattern is "close" to some point on the other pattern.

As a motivation of this problem consider the problem of recognizing from a visual image from a robot's current location whether or not it is in the vicinity of a known landmark (where a landmark is a location that is visually different from other locations). Such an algorithm is needed for navigation where the navigation is performed by planning a path between known landmarks, tracking the landmarks as it goes. Because of inaccuracies in effectors and possibly errors in the robot's internal map, when the robot believes it is at landmark L, before heading to the next landmark it can check that it is really in the vicinity of L. Then adjustments

can be made if the robot is not at L by either re-homing to L and/or updating its map. We can apply our algorithm to learn geometric patterns to this problem by converting the visual image the robot has into a one-dimensional geometric pattern.

The main result of this paper is a polynomial-time algorithm that PAC-learns the class of one-dimensional geometric patterns. In addition to theoretical results we also provide the learning curves obtained by running our algorithm on simulated data.

An interesting feature of this problem is that the target concept is specified by a k-tuple of points on the real line, while the instances are specified by n-tuples of points on the real line where n is potentially much larger than k. Although there are some important distinctions, in some sense our work illustrates a concept class in a continuous domain in which a large fraction of each instance can be viewed as "irrelevant". As in previous work on learning with a large number of irrelevant attributes in the Boolean domain (e.g. Littlestone's work (1988)), our algorithm's sample complexity (the best dual to a mistake-bound) depends polynomially on k and $\lg n$.

This paper is organized as follows. In the next section we describe how algorithms for the problem we address could be applied to the landmark recognition problem described above. Then in Section 3 we review the PAC learning model and some techniques from learning theory that we apply. In Section 4 we formally define the concept class of one-dimensional geometric patterns. Our main result appears in Section 5, where we describe our algorithm to PAC-learn the class of one-dimensional geometric patterns. Finally, we conclude in Section 7.

2. The Landmark Recognition Problem

In this section we explore one motivation for this work. Consider a robot designed to navigate through a large-scaled environment¹. Suppose that we have selected a set of key "landmarks" of which the robot has prior knowledge. It is crucial that the robot be able to recognize whether or not it is in the vicinity of a given landmark from a visual image taken from the robot's current location. We shall refer to this problem as the *landmark matching problem*. In his doctoral thesis, Pinette (1993) says that "any general navigation algorithm must be able to match landmarks by their appearance." Namely, when performing navigation a robot plans a path by moving between known landmarks, tracking landmarks as it goes. Because of inaccuracies in effectors and errors in the robot's internal map, when the robot believes it has reached landmark L, before heading to the next landmark it can check that it is really in the vicinity of L. Then adjustments can be made if the robot is not at L by either re-homing to L and/or updating its map.

It is also crucial that the landmark matching algorithm can be performed in realtime. To reduce the processing time required by the landmark matching algorithm, some are proposing the use of imaging systems that generate a one-dimensional array of light intensities taken at eye-level (see eg. Hong et al. (1992), Levitt and Lawton (1990), Pinette (1993), Suzuki and Arimoto (1988)). We now briefly de-

scribe one such imaging system (Hong et al. (1992) and Pinnette (1993)). In their robot a spherical mirror is mounted above an upward-pointing camera on a robot thus enabling it to instantaneously obtain a 360° view of the world. See Figure 1 for a picture of such a robot. The view of the world obtained by this imaging system and the processing performed are shown in Figure 2. All points along the eye-levelview of the robot (shown by the horizon line in Figure 1) project into a circle in the robot's 360° view. Figure 2 shows the panoramic view that results by scanning the 360° view (beginning at due north) in a circle around the robot's horizon line. The panoramic view is sampled along the horizontal line midway between the top and the bottom to produce a one-dimensional array of light intensities (or *signature*) as shown in Figure 2.

Most work on designing landmark matching algorithms uses a pattern matching approach by trying to match the current signature to the signature taken at land-

Figure 2. Stages of image processing. (This figure comes directly from Pinnette's (1993) thesis.)

mark position L. If one's goal is to determine if the robot is standing exactly at position L, then the pattern matching approach can easily be implemented to work well. However, in reality, the matching algorithm must determine if the robot is in the vicinity of L (i.e. in a circle centered around L). Because the visual image may change significantly as small movements around L are made, the pattern matching approach encounters difficulties.

Rather than using a pattern matching approach to match the light intensity array from the current location with the light intensity array of the landmark, we instead propose using a learning algorithm to construct a good hypothesis for performing landmark recognition. We obtain the instances by converting the array of light intensities into one-dimensional geometric patterns by placing points where there are significant changes in light intensity. The target pattern could be constructed as follows: whenever there is an object at eye-level that would cause the light intensity received by the robot to change, a set of points are placed evenly spaced at distance two from each other along the image of the object. Thus if there is an object in view from the location of the landmark, then even though a relatively small number of points are placed in the "target pattern" the "example pattern" may have significantly many more points placed in this region. It is from this occurrence that we motivate looking at the situation in which the example complexity may be significantly larger than the target complexity (and thus leads to a notion that has similarities to the notion of irrelevant attributes in the Boolean domain). Then by applying our algorithm, giving it a set of positive examples (i.e. patterns obtained from locations in the vicinity of the landmark) and a set of negative examples (i.e. patterns obtained from locations not in the vicinity of the landmark), we can construct a hypothesis that can accurately predict whether or not the robot is near the given landmark.

3. Background

In this paper we work within the PAC (probably approximately correct) model of computational learning, as introduced by Valiant (1984,85). Details of the model may be found in such textbooks as Kearns and Vazarani (1994), Natarajan (1991), or Anthony and Biggs (1992). We now review the basic definitions and results used here.

3.1. The PAC Learning Model

In the PAC model, examples of a concept are made available to the learner according to an unknown probability distribution \mathcal{D} , and the goal of a learning algorithm is to classify with high accuracy any further (unclassified) instances generated according to the same distribution \mathcal{D} .

The instance domain \mathcal{X} is the set of all possible objects (instances) that may be made available as data to a learner. A concept class \mathcal{C} is a collection of subsets of \mathcal{X} ,

and examples input to the learner are classified according to membership of a target concept $C \in C$. (C is known to the learner, C is to be learned.) We say that an example $X \in C$ is a positive example and an example $X \notin C$ is a negative example. PAC learning requires a learner to obtain, with high probability, a hypothesis $\mathcal{H} \subseteq \mathcal{X}$ whose classification of a randomly drawn member of \mathcal{X} agrees with C with high probability. We associate two parameters ϵ (accuracy) and δ (confidence) with the learning problem, where ϵ is an upper bound on the probability that the hypothesis disagrees with the target concept on a randomly chosen instance, and δ is an upper bound on the probability that the algorithm fails to achieve the error bound ϵ .

As originally formulated, PAC learnability also required the hypothesis to be a member of C. Pitt and Valiant (1988) show that under the assumption NP \neq RP, a prerequisite for PAC learnability in this sense is the ability to solve the *consistent hypothesis problem*, which is the deterministic problem of finding a concept which is consistent with a given sample (that is, containing the positive but not the negative examples of the sample). This implies that if the consistent hypothesis problem is NP-hard for a given concept class (as happens for the concept classes considered here), then the learning problem is hard.

The more general form of learning that we use here is commonly called *predic*tion. The goal is to find any polynomial-time algorithm that classifies instances accurately in the PAC sense. Thus the algorithm need not define a set that is the same as some concept. The idea of prediction in the PAC model originated in the paper of Haussler, Littlestone and Warmuth (1988), and is discussed in Pitt and Warmuth (1990). It may be formulated as: given a sample from \mathcal{X} classified according to target concept C, find a polynomial-time algorithm A that classifies elements of \mathcal{X} with high probability of agreement with C. This notion of learnability achieves the practical goal of being able to classify unlabeled examples efficiently.

3.2. The VC-dimension and Occam Algorithms

The paper of Blumer et al. (1989) identifies a combinatorial parameter of a class of hypotheses called the Vapnik-Chervonenkis (VC) dimension, which originated in the paper of Vapnik and Chervonenkis (1971), that gives bounds how large a sample size is required in order to have enough information for accurate generalization. (We call this quantity the sample complexity of a learning problem; note that given a sufficiently large sample there is still the computational problem of finding a consistent hypothesis.)

Definition. Blumer et al. (1989) The VC dimension of concept class \mathcal{C} (which we denote $VCD(\mathcal{C})$ is the size of a largest set $S \subseteq \mathcal{X}$ such that any subset of S is of the form $S \cap C$, for some $C \in \mathcal{C}$, or ∞ if such sets can be arbitrarily large.

As an example, consider the concept class C of axis-parallel rectangles in \mathbb{R}^2 where points lying on or inside the target rectangle are positive, and points lying outside the target rectangle are negative. First, it is easily seen that there are four points, namely any four points in which no three are collinear, that can be shattered. Thus $VCD(\mathcal{C}) \geq 4$. We now argue that no set of five points can be shattered. Since the bounding rectangle defined by the five points will contain at least one of these points, say p, they cannot be shattered since it is not possible for p to be classified as positive while also classifying the others as negative. Thus $VCD(\mathcal{C}) = 4$.

The results of Blumer et al. give a sufficient condition for a prediction algorithm to generalize successfully from example data, in terms of the VC dimension. Namely, they showed that any concept $C \in \mathcal{C}$ consistent with a sample of size $\max\left(\frac{4}{\epsilon}\log\frac{2}{\delta}, \frac{8d}{\epsilon}\log\frac{13}{\epsilon}\right)$ will have error at most ϵ with probability at least $1-\delta$. Furthermore, Ehrenfeucht et al. (1989) prove that any concept class \mathcal{C} of VC dimension d must use $\Omega\left(\frac{1}{\epsilon}\log\frac{1}{\delta}+\frac{d}{\epsilon}\right)$ examples in the worst case.

One drawback with the above approach is that the hypothesis must be drawn from \mathcal{C} . However, for the problem we study the computational problem of finding such a hypothesis from the class is NP-complete. In fact, the size of the hypothesis output by our algorithm depends on the size of the sample. In particular the representation complexity of a hypothesis is sublinear in the sample size and polynomial in the parameters n and k. Blumer at al. (1987,89) show that this achievement of data compression is sufficient to guarantee polynomial learnability. Let $\mathcal{H}_{s,m}^A$ be the hypothesis space used by algorithm A for a target complexity of s and sample size m. More formally, we say that algorithm A is an *Occam Algorithm* for concept class C if there exists a polynomial p(s) and a constant α , $0 \le \alpha < 1$, such that for all $s, m \ge 1$, the VC dimension of $\mathcal{H}_{s,m}^A$ is at most $p(s)m^{\alpha}$.

THEOREM 1 Blumer et al. (1989) Let A be a learning algorithm for concept class C that has hypothesis space $\mathcal{H}_{s,m}^{A}$. If the VC dimension of $\mathcal{H}_{s,m}^{A}$ is at most $p(s)(\lg m)^{\ell}$ for some polynomial $p(s) \geq 2$ and $\ell \geq 1$, then A is a PAC-learning algorithm for C using sample size

$$m = \max\left(\frac{4}{\epsilon} \lg \frac{2}{\delta}, \frac{2^{\ell+4}p(s)}{\epsilon} \left(\lg \frac{8(2\ell+2)^{\ell+1}p(s)}{\epsilon} \right)^{\ell+1} \right).$$

4. The Class of One-Dimensional Geometric Patterns

For the concept class considered here, the instance space \mathcal{X}_n consists of all configurations of n points on the real line². A concept is the set of all configurations ifrom \mathcal{X}_n within unit distance³ under the Hausdorff metric of some "ideal" configuration of k points. The Hausdorff distance between configurations P and Q, denoted H(P,Q), is:

$$\max\left\{\sup_{p\in P}\left\{\inf_{q\in Q}\left\{d(p,q)\right\}\right\},\sup_{q\in Q}\left\{\inf_{p\in P}\left\{d(p,q)\right\}\right\}\right\}$$

where d is the Euclidean distance between p and q.

Figure 3.

This figure illustrates an example concept from $C_{3,7}$. The top line shows the target pattern. Around each target point we show an interval that covers all points within unit distance from that point. Every positive example must have every point within one of the above intervals and no interval can be empty (e.g. see X_1 above). For an example to be negative, there must be a point in it that is not within unit distance of any target point (e.g. see X_2 above) and/or there are no points in the example near some target point (e.g. see X_3 above).

Let P be any configuration of points on the real line. Then we define the concept C_P that corresponds to P by $C_P = \{X \in \mathcal{X}_n \mid H(P, X) \leq 1\}$. Figure 3 illustrates an example of such a concept. Thus one can view each concept as a sphere of unit radius in a metric space where P defines the center of the sphere. For any $X \in \mathcal{X}_n$ such that $X \in C_P$, we say that X is a *positive example* of C_P . Likewise, if $X \notin C_P$, we say that X is a *negative example* of C_P . Furthermore, all configurations of points that resemble the given configuration P are contained within this sphere. Finally, the concept class $\mathcal{C}_{k,n}$ that we study is defined as follows: $\mathcal{C}_{k,n} = \{C_P \mid P \text{ is a configuration of at most k points on the real line}.$

As discussed in Section 1, n may be significantly greater than k. For example, the learner may be asked to predict if a configuration of 100 points is contained within a sphere defined by 3 points. This consideration is, in some sense, analogous to the notion of irrelevant attributes studied in the Boolean domain. Namely, given any positive (respectively, negative) example from \mathcal{X}_n , there exists a subset of k of the n points in that example such that the configuration of these k points is also a positive (respectively, negative) example. However, observe that unlike the Boolean domain, there is no fixed set of points of an instance that are "relevant". Thus if an arbitrary point is removed from an instance it can no longer be determined if that instance was positive or negative before the point was removed. At first glance, there may appear to be some similarities between $C_{k,n}$ and the class of the union of at most k intervals over the real line. However, the class of one-dimensional geometric patterns is really quite different (and significantly more complex) than the class of unions of intervals on the real line. One major difference is that for the union of intervals, each instance is a single point on the real line, whereas for $C_{k,n}$ each instance is a set of n points on the real line. Thus the notion of being able to independently vary the concept complexity and instance complexity does not exist for the class of unions of intervals. Furthermore, observe that for $C_{k,n}$ each instance defined between any pair of instances. However, with the class of unions of intervals there is no notion of a distance between instances. Finally, for the class of unions of intervals, an instance is a positive example simply when the single point provided is contained within one of the k intervals. For $C_{k,n}$ an instance is positive if and only if it satisfies the following two conditions.

- 1. Each of the n points in the instance are contained within one of the k, width 2 intervals defined by the k target points.
- 2. There is at least one of the n points in the instance contained within the width 2 interval defined by each of the k target points.

Thus, the class of unions of intervals differs very much in character from $C_{k,n}$.

5. A PAC-Learning Algorithm

We note that Goldberg (1992) has shown that it is NP-complete to find a sphere in the given metric space (i.e. one-dimensional patterns of points on the line under the Hausdorff metric) consistent with a given set of positive and negative examples of an unknown sphere in the given metric space. In other words, given a set S of examples labeled according to some one-dimensional geometric pattern of k points it is NP-complete to find some one-dimensional geometric pattern (of any number of points) that correctly classifies all examples in S. Thus, assuming NP \neq RP, it is necessary to use a more expressive hypothesis space. To give even further evidence that the class of one-dimensional patterns is significantly more complex than the union of intervals on the real line, observe that the consistency problem for the latter class is trivial to solve.

Our algorithm is motivated by the fact that while it is NP-complete to find a sphere in this metric space consistent with given sets of positive and negative examples, it is possible in polynomial time to find one that is consistent with all positive and at least a fraction $\frac{1}{2(k+1)}$ of the negative examples, where k is the target concept complexity, the number of points in the configuration defining the target concept. Hence we may build a hypothesis consisting of an intersection of concepts obtained by a greedy set cover algorithm on the negative examples.

We now present our algorithm for learning $C_{k,n}$. Our algorithm is an Occam algorithm. Define \mathcal{H}_k to be the intersection of at most $2(k+1) \lg m$ concepts from

 $C_{k,n}$ where *m* is the sample size required. Then the algorithm draws a sufficiently large sample of size *m* (polynomial in $k, \lg n, 1/\epsilon$, and $\lg 1/\delta$) and then outputs a consistent hypothesis from \mathcal{H}_{k+1} .

In order to apply Theorem 1 we need to upperbound the VC dimension of \mathcal{H}_{k+1} . To achieve this goal we make use of recent results of Goldberg and Jerrum (1993), which identify general situations where the VC dimension of a hierarchical concept class is guaranteed to be only polynomial in n and k, as required for PAC learning.

Note we are measuring the complexity of a configuration of points by the number of points it contains, and the positions of the points is of no importance. This is based on the assumption of unit cost for representing and operating on a real number, used in the computational geometry and neural network literature, and noted by Valiant (1991) to be typically appropriate for geometrical domains.

The difference between the unit cost model and discretized geometrical problems is significant. Blumer et al. (1989) show that Euclidean *n*-spheres can be learned in polynomial time under the logarithmic cost model (in which the cost of a real value is the number of bits it occupies). The problem of finding a consistent hypothesis in this class is equivalent to linear programming, and the complexity of this is a major open problem in the unit cost model of real arithmetic. For a discussion of this see Renegar (1992). The NP-completeness results noted above for our learning problems hold also in the discretized case.

We use the following theorem of Goldberg and Jerrum (1993):

THEOREM 2 Goldberg and Jerrum (1993) Let $\{C_{k,n} : k, n \in \mathbb{N}\}$ be a family of concept classes where concepts in $C_{k,n}$ and instances are represented by k and n real values, respectively. Suppose that the membership test for any instance x in any concept C of $C_{k,n}$ can be expressed as a boolean formula $\Phi_{k,n}$ containing s = s(k,n) distinct atomic predicates, each predicate being a polynomial inequality over k + n variables (representing C and x) of degree at most d = d(k, n). Then $VCD(C_{k,n}) \leq 2k \log(8eds)$.

COROLLARY 1 Let $C_{k,n}$ be sets of points on the line under the Hausdorff metric. Then $VCD(C_{k,n}) \leq 2k \log 8ekn$.

This follows from the fact that the Hausdorff distance between a set of k points on the line and a set of n points on the line depends on a set of kn degree 1 inequalities in their coordinates.

Combined with a result from Blumer et al. (1989) we can upperbound the VC dimension of our hypothesis class.

THEOREM 3 Blumer et al. (1989) Let C be a concept class with VC dimension d. Then the class of intersections of s concepts in C has VC dimension $\leq 2ds \lg(3s)$.

Combining Corollary 1 with Theorem 3, we get the following result.

COROLLARY 2 The VC Dimension of \mathcal{H}_{k+1} is upperbounded by:

$$\begin{aligned} \text{VCD}(\mathcal{H}_{k+1}) &\leq 8(k+1)^2 \lg(8e(k+1)n) \lg m \lg(6(k+1)\lg m) \\ &\leq 24\sqrt{6}(k+1)^{5/2} \lg(8e(k+1)n)(\lg m)^{3/2}. \end{aligned}$$

PAC LEARNING OF ONE-DIMENSIONAL PATTERNS

Proof: To obtain the first inequality we apply Theorem 3 with $s = 2(k+1) \lg m$ and $d = 2(k+1) \lg(8e(k+1)n)$. We then get the second inequality by using the inequality $\lg x < 3\sqrt{x}$ for x > 1 (which in turn comes from⁴ $\ln x < c(x^{1/c} - 1)$ for $c \ge 1$).

We are now ready to present the main result of this paper:

THEOREM 4 Let $C = \bigcup_{k,n \in \mathbb{N}} C_{k,n}$ be the class of spheres under the Hausdorff metric, whose domain is configurations of up to n points on the real line, and concepts defined by configurations of up to k points on the real line. Then $C_{k,n}$ is predictable from positive and negative examples with a sample complexity of

$$m = O\left(\frac{1}{\epsilon} \lg \frac{1}{\delta} + \frac{k^{5/2} \lg(kn)}{\epsilon} \lg^{5/2} \left(\frac{k \lg(kn)}{\epsilon}\right)\right),$$

and time complexity of $O(kmn\log m + mn\log(mn))$.

Proof: To build the hypothesis we use a greedy set cover algorithm that is based on the observation that it is possible, in polynomial time, to find a concept from $C_{k+1,n}$ consistent with all the positive examples and a fraction $\varphi = \frac{1}{2(k+1)}$ of the negative examples. Then the negative examples accounted for are removed and the procedure is repeatedly applied until all negative examples have been eliminated. The intersection of all concepts obtained by doing this is consistent with the sample, and assuming that enough negatives are removed at each stage, it is an Occam algorithm.

Let r denote the number of rounds until all negative examples have been covered. Then it is easily seen that

$$r \le \log_{\frac{1}{1-\varphi}} m \le \log_{1+\varphi} m = \log_{1+\varphi} 2 \cdot \lg m \le \frac{1}{\varphi} \lg m = 2(k+1) \lg m$$

where the last inequality follows from the fact that $(1+\varphi)^x \ge 1+\varphi x$ and thus letting $x = 1/\varphi$ gives $(1+\varphi)^{1/\varphi} \ge 2$. Finally, the hypothesis output is the intersection of the r concepts obtained in this manner.

Thus by applying Theorem 1 with $p(s) = 24\sqrt{6}(k+1)^{5/2} \lg(8e(k+1)n)$ and $\ell = 3/2$ we get that any hypothesis from \mathcal{H}_{k_1} that is consistent with a sample of size

$$m = \max\left(\frac{4}{\epsilon} \lg \frac{2}{\delta}, \frac{1536\sqrt{3}(k+1)^{5/2} \lg(8e(k+1)n)}{\epsilon} \lg^{5/2} \left(\frac{4800\sqrt{30}(k+1)^{5/2} \lg(8e(k+1)n)}{\epsilon}\right)\right)$$
$$= O\left(\frac{1}{\epsilon} \lg \frac{1}{\delta} + \frac{k^{5/2} \lg(kn)}{\epsilon} \lg^{5/2} \left(\frac{k \lg n}{\epsilon}\right)\right) \tag{1}$$

will have error at most ϵ with probability at least $1 - \delta$.

What remains is to prove that in polynomial time we can find a concept H from $C_{k+1,n}$ that is consistent with all positive examples and at least a fraction 1/(2k+1) of the uncovered negative examples. Recall that there are two ways for an example

to be negative: either there is a point in the example that is not near⁵ any target point (e.g. X_2 in Figure 1), or no points in the example are near some target point (e.g. X_3 in Figure 1). Let \mathcal{N} be the set of negative examples that remain at the start of a round. By a simple averaging argument it follows that one of the following holds.

Case 1: At least $|\mathcal{N}|/2$ of the negative examples have no points near some target point. Thus, by an averaging argument, there is some width 2 interval I_1 containing at least one point from each of the positive examples that does not contain points in at least $\frac{|\mathcal{N}|}{2k}$ of the negative examples.

Case 2: At least $|\mathcal{N}|/2$ of the negative examples have a point that is not near a target point. Since the portions of the real line that are not near any target point form at most k+1 contiguous intervals, by an averaging argument, there is some interval I_2 containing points from at least $\frac{|\mathcal{N}|}{2(k+1)}$ distinct negative examples and no points from the positive examples.

The procedure **Find-I1** takes as input the set of postive examples \mathcal{P} and uncovered negative examples \mathcal{N} and searches for an interval I_1 of width 2 that contains at least one point from each positive example and does not contain any point in at least $|\mathcal{N}|/(2k)$ of the negative examples. This interval can be found by placing all mn points on one line and sliding a width 2 window over them while updating records of which examples are represented in the current window. It is easily seen that this can be done in O(mn) time. The procedure returns the first interval that satisfies the condition (if one exists), or otherwise returns failure.

Our algorithm first calls Find-I1. By the above argument we know that if Find-I1 returns failure, then Case 2 must apply. In this situation, our algorithm then uses procedure Find-I2 which takes as input \mathcal{P} and \mathcal{N} and returns an interval I_2 that contains points from at least $\frac{|\mathcal{N}|}{2(k+1)}$ distinct negative examples and no points from the positive examples. As with Find-I1, Find-I2 runs in O(mn) time. Our complete algorithm is given in Figures 4 and 5.

We now argue that H_+ is a pattern of at most k points that is consistent with all examples in \mathcal{P} . First note that k points defining the target concept must be in I since each example in \mathcal{P} must have a point near each target point. Then by a simple inductive argument, it can be shown that for all *i* the *i*th leftmost points in the hypothesis cover all points from the examples of \mathcal{P} that are within unit distance of the first *i* points of the target concept.

We have already argued that either **Find-I1** or **Find-I2** will succeed. If **Find-I1** succeeds then since the pattern P added to \mathcal{H} has at most one point added to H_+ , and thus $P \in \mathcal{C}_{k+1,n}$ as desired. Also it is easily seen that P is consistent with the $|\mathcal{M}|$ negative examples that have no point in the returned interval I_1 .

In Find-I2, $R = \{x \mid x \in H_+ \cap [r_{min}, r_{max}]\}$ is the set of points of H_+ that are also in I_2 , i.e. the points that must be removed from P to make it consistent with the negative examples with points in I_2 . If Find-I2 succeeds and $R = \emptyset$ then certainly $P \in C_{k+1,n}$ and the required number of negative examples are covered.

Figure 4. Algorithm to PAC learn a one-dimensional pattern.

Figure 5. Algorithm to preprocess the examples to find a pattern that is consistent with all positive examples. Note that any pattern consistent with the points in P must be a subset of I.

Finally, note that by the definition of I, all points in R must be within unit distance of either r_{min} or r_{max} . Thus the selected $P \in C_{k+1,n}$ will be consistent with the $\frac{|N|}{2(k+1)}$ negative examples that have a point in $[r_{min}, r_{max}]$.

Thus our final hypothesis \mathcal{H} consists of an intersection of at most $2(k+1) \lg m$ concepts from $\mathcal{C}_{k+1,n}$. The correctness thus follows from that fact that m was selected to satisfy Theorem 1. For the stated time complexity we first assume that the mn points from the sample are sorted. The rest of the preprocessing takes O(mn) time. The main loop in Learn-1d-Pattern is executed $O(k \log m)$ times, with each execution taking O(mn) time. Thus the stated time complexity follows.

6. Simulation Results

To empirically evaluate the algorithm, we simulated it on uniformly distributed random test data. For each pair of values of k and n, we generated 3 random targets of k real points each on the real interval [1, 100]. Then a test set of 500 examples was randomly generated for each target. For each target we created 10 training sets, each with m examples, where m varied from 20 to 1000 in increments of 20. Each training example had a 0.5 probability of being negative, and if negative, it had a 0.5 probability of being Case 1. All negative examples were made as deceptive as possible by only allowing one point not near a target point (if Case

Simulation-Procedure

```
For each (k, n) pair:
 Generate 3 random targets C_i, i = 1, 2, 3 of k points each on [1, 100].
 Make a test set T_i, i = 1, 2, 3 of 500 examples for each target.
 For 20 \le m \le 1000 in increments of 20:
     For each target C_i:
         For 1 \le j \le 10 in increments of 1:
             Generate training set S_j with m random examples consistent with C_i:
                 Flip a fair coin.
                 If heads:
                      Generate a positive example by first randomly placing a point in each
                     target interval. The other n - k points are placed by randomly
                     selecting a target interval and then randomly placing the point in the
                     selected interval.
                 If tails:
                     Flip another fair coin.
                          If heads:
                              Generate an example that is negative because it does not
                              have a point near some target interval. Do this by first
                              randomly picking the target interval. Then randomly place
                              the n points near one of the remaining k-1 target points
                              (like above where first one of the k-1 intervals is picked and
                              then the point is randomly placed in the selected interval).
                         If tails:
                              Generate an example that is negative because it has a point
                              that is not near any target point. In this, one point is randomly
                             placed among all parts of the line not near any target interval
                             and the remaining n-1 points are randomly placed within the
                             k target intervals.
             Run Learn-1d-Pattern to create a hypothesis \mathcal{H}_j consistent with S_j.
             Evaluate T_i with \mathcal{H}_i and calculate the accuracy = the proportion of the
             examples consistent with C_i's evaluation of T_i.
        Average the accuracies for target C_i and this value of m.
Average the averages of the 3 targets and insert this (k, n) curve into the final plot.
```

Figure 6. Summary of the simulation procedure.

Figure 7. Hypothesis accuracy versus sample size for different values of n and k.

Figure 8. Hypothesis accuracy versus sample size for varying values of k.

1) or only allowing one target point not near any example points (if Case 2). For each training set, the algorithm generated a hypothesis which was evaluated with the corresponding test set to measure its accuracy. All 10 evaluations per target were averaged and then the results from the 3 targets were averaged. Figure 6 summarizes our simulation procedure.

The curves in Figures 7 and 8 are connected points separated by increments of 20, where each point is the average of 10.3 = 30 hypothesis generations and evaluations. No attempt was made to fit a smooth curve to the points, so sudden changes in slope merely indicate minor variations in accuracy. Figure 7 indicates how the accuracy of the hypothesis relates to the number of examples in the training set for different values of k and n. Even for values as high as k = 20 and n = 40, the hypothesis generated by the algorithm was almost 95% correct when trained on 1000 examples.

Figure 8 exhibits the relationship between the hypothesis accuracy and the number of examples in the training set as k varies but n remains constant at 50. In this case, varying k did not greatly impact accuracy. For k = 10, the hypothesis generated by the algorithm was almost 96% correct when trained on 1000 examples. For k = 30, the hypothesis generated by the algorithm was almost 93% correct when trained on 1000 examples.

7. Concluding Remarks

In this paper we have presented an algorithm to efficiently PAC learn the class of one-dimensional geometric patterns. As discussed in Section 2, we feel that this algorithm can provide a novel way in which to perform landmark recognition.

One interesting direction of further research is to consider the problem of learning two-dimensional geometric patterns. Goldberg (1992) has shown that while there is a considerable loss of efficiency in extending this technique from the one-dimensional to the two-dimensional case, the resulting algorithm is still polynomial-time. This loss is caused by the increased search space of regions which define appropriate local features which perform the function of eliminating a significant fraction of the negative examples. It can be shown that a suitable set of regions to search over is the set of regions bounded by up to two vertical lines passing through points occurring in the examples, and two unit circles centered at points occurring in the examples. Could improved algorithms for higher dimensions be obtained?

Another very important research direction, that must be addressed to apply this work to real-world problems, is extending our algorithm so that it still performs well when there is noise in the data. Goldberg and Goldman (1994) have presented an algorithm that works when there is one-sided random classification noise (where only the labels are wrong). However, it would be nice to extend this work to handle general random classification noise and even small amounts of other types of noise.

Finally, after we have extended our algorithm to tolerate the types of noise that we expect to see in real-world examples we intend to obtain performance curves using real-world data versus simulated data.

Acknowledgements

We thank Brian Pinette for allowing us to include his figures in our paper. We also thank Stephen Judd and Tom Hancock for several very useful discussion about the material in Section 3. Finally, we thank the COLT committee members for their comments.

Paul Goldberg carried out this research while visiting Washington University. He is currently supported by the U.S. Department of Energy under contract DE-AC04-76AL85000. Sally Goldman and Stephen Scott are supported in part by NSF National Young Investigator Grant CCR-9357707 with matching funds provided by Xerox Corporation, Palo Alto Research Center.

Notes

- 1. By a large-scaled environment we mean that not all landmarks are visible from all locations in the environment.
- 2. Note that throughout this abstract, the word "point" will refer to a single point on the real line, and we shall use the term "a configuration of points" when speaking of an instance.
- 3. All results presented here apply if unit distance is replaced by some fixed distance since we can just rescale.
- 4. The exponent of $\lg m$ can be reduced arbitrarily close to 1 by just increasing the value of c.
- 5. For ease of exposition, we say that an example point within unit distance from a given target point is near that target point.

References

- Anthony, M., & Biggs, N. (1992). Computational Learning Theory: an Introduction, Cambridge University Press, 1992.
- Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1987). Occam's Razor. Information Processing Letters 24 pp. 377-380.
- Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1989). Learnability and the Vapnik-Chervonenkis Dimension. Journal of the Association for Computing Machinery, 36 No. 4, pp. 929-965.
- Ehrenfeucht, A., Haussler, D., Kearns, M., & Valiant, L.G. (1989). A General Lower Bound on the Number of Examples Needed for Learning. Information and Computation 82, pp. 247-261.
- Goldberg, P., & Goldman, S. (1994). Learning one-dimensional geometric patterns under onesided random misclassification noise. Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory, pages 246-255. ACM Press, New York, NY.
- Goldberg, P. & Jerrum, M. (1993) Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers. *Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory*, pages 361-369. ACM Press, New York, NY.
- Goldberg, P. (1992). PAC-Learning Geometrical Figures. PhD thesis, Department of Computer Science, University of Edinburgh November 1992.
- Gruber, P.M. (1983). Approximation of convex bodies. In P.M. Gruber and P.M. Willis, editors, Convexity and its applications. Brikhauser Verlag, 1983.
- Haussler, D., Littlestone, N., & Warmuth, M.K. (1988). Predicting {0,1} functions on randomly drawn points. Proceedings of the 29th IEEE Symposium on Foundations of Computer Science, pp. 100-109.

Hong, J., Tan, X., Pinette, B., Weiss, R., & Riseman, E.M. (1992). Image-based homing. *IEEE Control Systems Magazine*, 12(1) pp. 38-45.

Kearns, M. & Vazirani, U. (1994). An Introduction to Computational Learning Theory. The MIT Press, Cambridge, MA.

Levitt, T.S. & Lawton, D.T. (1990). Qualitative navigation for mobile robots. Artificial Intelligence, 44(3): pp. 305-360.

Littlestone, N. (1988). Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2: pp. 285-318.

Natarajan, B.K. (1991). Machine Learning: A Theoretical Approach. Morgan Kaufman Publishers, Inc., ISBN 1-55860-148-1

Pinette, B. (1993). Image-Based Navigation Through Large-Scaled Environments. PhD thesis, University of Massachusetts, Amherst, November 1993.

Pitt, L. & Valiant, L. (1988). Computational limitations on learning from examples. J. ACM, 35:965-984.

Pitt, L. & Warmuth, M.K. (1990). Prediction preserving reducibility. J. of Comput. Syst. Sci., 41(3):430-467, December 1990. Special issue of the for the Third Annual Conference of Structure in Complexity Theory (Washington, DC., June 88).

Renegar, J. (1992). On the Computational Complexity and Geometry of the First-Order Theory of the Reals. Part 1 (of 3). Journal of Symbolic Computation 13, pp. 255-299.

Suzuki, H. & Arimoto, S. (1988). Visual control of autonomous mobile robot based on selforganizing model for pattern learning. Journal of Robotic Systems, 5(5): pp. 453-470.

Valiant, L.G. (1984). A Theory of the Learnable. Communications of the ACM, 27 No. 11, pp. 1134-1142.

Valiant, L.G. (1985). Learning Disjunctions of Conjunctions. Procs of the 9th International Joint Conference on AI, pp. 560-566.

Valiant, L.G. (1991). A View of Computational Learning Theory. NEC Research Symposium: Computation and Cognition (ed. C.W. Gear), SIAM, Philadelphia, 1991.

Vapnik, V.N., & Chervonenkis, A.Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16, No. 2 pp. 264-280.