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ABSTRACT OF THE DISSERTATION

Applications of Nonlinear Optimization

by

Xie, Yao

Doctor of Philosophy in Mathematics,

Washington University in St. Louis, 2014.

Professor M Victor Wickerhauser, Chair

We apply an interior point algorithm to two nonlinear optimization problems and

achieve improved results. We also devise an approximate convex functional alternative

for use in one of the problems and estimate its accuracy.

The first problem is maximum variance unfolding in machine learning. The traditional

method to solve this problem is to convert it to a semi-definite optimization problem by

defining a kernel matrix. We obtain better unfolding and higher speeds with the interior

point algorithm on the original non-convex problem for data with less than 104 points.

The second problem is a multi-objective dose optimization for intensity modulated

radiotherapy, whose goals are to achieve high radiation dose on tumors while sparing

normal tissues. Due to tumor motions and patient set-up errors, a robust optimization

against motion uncertainties is required to deliver a clinically acceptable treatment plan.

The traditional method, to irradiate an enlargement of the tumor region, is very conser-

vative and leads to possibly high radiation dose on sensitive structures. We use a new

robust optimization model within the framework of goal programming that consists of
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multiple optimization steps based on prescription priorities. One metric is defined for

each structure of interest. A final robustness optimization step then minimizes the vari-

ance of all the goal metrics with respect to the motion probability space, and pushes the

mean values of these metrics toward a desired value as well. We show similar high dose

coverage on example tumors with reduced dose on sensitive structures.

One clinically important metric for a radiation dose distribution, that describes tu-

mor control probability or normal tissue complication probability, is Dx, the minimum

dose value on the hottest x% of a structure. It is not mathematically well-behaved,

which impedes its use in optimization. We approximate Dx with a linear function of two

generalized equivalent uniform dose metrics, also known as lp norms, requiring that the

approximation is concave so that its maximization becomes a convex problem. Results

with cross validation on a sampling of radiation therapy plans show that the error of this

approximation is less than 1 Gy for the most used range 80 to 95 of x values.
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1. Introduction to Nonlinear Optimization

A (mathematical) optimization problem is defined in the following way:

Given a function f : X → R from some set X to the real numbers, find x0 ∈ X

so that f(x0) ≤ f(x),∀x ∈ X (minimization). Maximization problems can be trivially

converted to minimization problems. In short, the problem is denoted by minx∈X f(x).

The argument x0 that gives minimum function value is denoted as x0 = argminx∈Xf .

The function f is called the objective function, and the set X is called the search space

of the optimization problem.

The search space X can be any set, but the ones we consider are subsets of Euclidean

space defined by some constraints. The optimization of interest can thus be described as:

minimize
x∈Rn

f(x), (1.1)

s.t. h(x) = 0, (1.2)

g(x) ≤ 0, (1.3)

where f : Rn → R, g : Rn → Rp, and h : Rn → Rm.

Linear and nonlinear optimization

The above optimization is a linear optimization if f, h, g are all linear. It is a non-

linear optimization if any of f, h, g is nonlinear. Linear optimization is relatively easy

to solve with very fast algorithms available such as Simplex algorithm, while nonlinear

optimization is harder to solve but has broader applications [1].

An optimization problem is convex if f is a convex function and the set X is a convex

set, or equivalently, when both f and g are convex functions and h is linear. A useful
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property of convex optimization is that any local optimal solution is also the global

optimal solution. In practice, it is preferred to formulate a convex optimization.

Multi-objective optimization

For real application problems, there are usually more than one objective function. A

multi-objective optimization is an optimization problem with multiple objectives, and is

defined as:

min (f1(x), f2(x), · · · , fk(x)) (1.4)

s.t. x ∈ X, (1.5)

where fi(x) : Rn → R, and X ⊂ Rn. Interesting problems are those optimization with

conflicting objective functions. A point x0 ∈ X is called a Pareto optimal solution if

there is no x ∈ X such that fi(x) ≤ fi(x0),∀i = 1, · · · , k and fi0(x) < fi0(x0), for some

i0. The set of all Pareto optimal solutions is called a Pareto surface.

Solving a multi-objective optimization is much harder than solving a single objective

optimization. If one problem has several objectives, it is hard (sometimes computationally

impossible) to find the whole Pareto surface and then choose the best one that respects

the priorities of the conflicting objective functions. If one chooses one solution from part

of the Pareto surface, there might be a solution that sacrifices a little on one objective but

gains a lot on another objective. Moreover, judging whether one solution is better than

the other may require introducing additional equations or even subjective evaluation.

Optimization solver

There are a variety of optimization solvers including both commercial and free solvers.

We adopt an solver named IPOPT (Interior Point Optimization) as it is open-sourced and

can solve both convex and non-convex problems with functions that are twice continuously

differentiable [2].
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2. Application in Machine Learning

Our first application is in machine learning.

Machine learning is a relatively new area in Computer Science with origins in the

1950s. As computer hardware advanced rapidly, machine learning has become a large

subfield of computer science and artificial intelligence, with applications in computer

vision, natural language processing, medical diagnosis, bioinformatics, computational

finance, etc. [3]. Tom M. Mitchell made the widely quoted definition of machine learning

as: “A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E” [4]. Optimization approaches play important roles in

this learning process due to their widespread applications and nice theoretical properties

[5, 6]. Together with statistics and machine learning, (nonlinear) optimization helps to

understand data, explain data, and make value from data.

2.1 Introduction to Maximum Variance Unfolding

Nowadays, practical problems often have high-dimensional data. For example, DNA

microarray technology can produce a large number of measurements at once. If a word-

frequency vector is used, the number of dimensions of text documents equals the size of

the vocabulary.
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Practical high-dimensional data are usually self-correlated and there is a need to

project the data to a low dimensional space to remove the correlation or to visualize

the data. For example, data collected from DNA microarray has spacial correlation, and

vocabulary are correlated due to the same letters.

Linear and nonlinear dimensionality reduction (NLDR) methods are developed to

project data from high-dimensional spaces to low-dimensional spaces. The well-known

linear dimensionality reduction algorithm, principal component analysis (PCA), uses an

orthogonal transformation to convert high dimensional data into linearly uncorrelated

principal components [7]. As a generalization of PCA, NLDR assumes that the data lies

close to an embedded nonlinear manifold within the high dimensional space. NLDR is

thus also called manifold learning or graph embedding.

NLDR is widely studied with lots of applications. Many algorithms have been designed

[8–14]. There are also various applications of NLDR. A straightforward application is in

robot design. A robot analyzes image data and learns a two dimensional manifold (posi-

tion and orientation). NLDR has applications in the generalization of robots: dynamical

systems [15]. Another application is about A* search, which is a computer algorithm that

is widely used in path finding and graph traversal in graph theory [16]. NLDR learns the

Euclidean embedding of a search space graph as a heuristic for A* search [17]. Better

heuristics greatly improve the speed of A* search [18].

Among many NLDR algorithms [8], maximum variance unfolding (MVU) utilizes a

property that when an embedded manifold is properly unfolded, the variance of the points

is maximized [12]. It also uses a technique for casting the non-convex optimization as

a semidefinite programming problem. For this reason, MVU is also called semidefinite

embedding.
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The major benefit of MVU is that it provides a heuristic that is both admissible

(distances are not over estimated) and consistent (distances satisfying the triangular

inequality), so that the embedding can be an A* heuristic.

MVU maximizes the variance of the embedding as follows:

maximize
x1,··· ,xn∈Rd

n∑
i=1

x2i (2.1)

s.t. ‖xi − xj‖ ≤ dij, (i, j) ∈ E, (2.2)

n∑
i=1

xi = 0, (2.3)

where xi ∈ Rd is a d dimensional vector. Equation 2.3 normalizes the points to make

them invariant under translation.

This problem is non-convex and Weinberger et al. intelligently used one technique to

convert it to a semidefinite programming problem [12]. They define kernels kij = xTi xj

and convert the optimization to be:

maximize
K

trace(K) (2.4)

s.t. kii − 2kij + kij ≤ d2ij, (i, j) ∈ E, (2.5)∑
i,j

kij = 0, (2.6)

K � 0, (2.7)

where K is the matrix consisting of kij, and K � 0 means K is a semidefinite matrix.

Fig. 2.1 is a visualization of maximum variance unfolding. The upper graph represents

a data set where some nodes are connected by edges. The output of MVU (lower figure)

captures the information about which nodes should be connected and unfolds the graph

by utilizing the freedom of unconnected points.
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Figure 2.1. Visualization of maximum variance unfolding. Fig. 1 of the
paper by Weinberger et al. [12].

Table 2.1 shows that MVU greatly improves A* search. This is extremely helpful in

applications that have repeated search tasks (e.g. GPS routing) with low powered devices

(e.g. smartphones).

However, MVU itself is very slow as it tries to solve a semidefinite problem. Actually,

it is among the least scalable manifold learning algorithms and cannot embed graphs with

more than 4000 points. This greatly reduces its usefulness for real applications. There

are refinements to MVU. The LandmarkMVU uses landmarks to increase speed with

6



game map 6-blocksworld

Differential heuristic 1 1

Eigenmap 0.32 0.88

Isomap 0.50 12.13

MVU 1.12 37.27

Table 2.1
Relative A* search speed up using four heuristics [18].

some cost to accuracy [19]. Maximum Variance Correction (MVC) decomposes MVU

into independent sub-problems and scales up MVU embedding greatly [18].

2.2 Improve MVU by IPOPT

Our idea is to use an interior point method solver for non-convex optimization

problems to solve MVU directly.

Consider the original problem formulation of MVU:

maximize
x1,··· ,xn∈Rd

n∑
i=1

x2i (2.8)

s.t. ‖xi − xj‖ ≤ dij, (i, j) ∈ E, (2.9)

n∑
i=1

xi = 0. (2.10)

This optimization problem is non-convex and thus hard to solve. As mentioned in

Sec. 2.1, the conventional MVU method converts this formulation to a semi-definite

programming problem and solves the problem using a semi-definite optimization solver.

But it also results in slow computation and inaccurate solution. The solution is inaccurate

7



because after running the optimization it is needed to derive the actual coordinates from

the kernels, i.e., solve kii = xTi xi for xi.

The nonlinear optimization solver IPOPT uses interior point methods to solve op-

timization problems. It works for convex problems and finds very good solutions for

non-convex problems as well. Instead of converting the MVU problem to a semi-definite

problem, we solve the problem directly with IPOPT.

To quantify the ‘unfolding’ quality, it is necessary to directly compare the objective

function values of solving MVU with IPOPT and other methods.

This method is tested on three well-known benchmark artificial intelligence problems:

‘swiss roll’ problem [12], N-Puzzle problem [20] and blocks world problem [21].

A ‘swiss roll’ data set has 8 dimensions, consisting of the three dimensions shown in

Fig. 2.2, plus five extra dimensions filled with low variance Gaussian noise.

N-puzzle is a sliding puzzle that consists of N randomly ordered tiles with one tile

missing. An action is to slide a tile to the empty space. The task is to find the shortest

action sequence from a pre-defined tile order to a goal tile order.

As stated by Jones et al., the definition of block world problem is as follows: “The

objects in the problem domain include a finite number of cubical blocks, and a table large

enough to hold all of them. Each block is on a single other object (either another block

or the table). For each block b, either b is clear or else there is a unique block a sitting

on b. There is one kind of action: move a single clear block, either from another block

onto the table, or from an object onto another clear block. As a result of moving b from

c onto d, b is sitting on d instead of c, c is clear (unless it is the table), and d is not clear

(unless it is the table). A problem in this domain is specified by giving two sets of ground

atoms, one specifying an initial state of the world, and the other specifying necessary and
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sufficient conditions for a state to be a goal state. A solution to this problem is a plan

(i.e., a sequence of move actions) capable of transforming the initial state into a state

satisfying the goal conditions [21].”

Our algorithm is evaluated for ‘swiss rolls’ with 500 and 2,000 points, 6-blockworld

(6 blocks, 4,051 states/points, 21,300 edges), 7-blockworld (7 blocks, 37,633 states/points,

235,074 edges), 7-puzzle (20,160 states/points, 50,400 edges) and 8-puzzle (181,440 states/points,

483,840 edges).

2.3 Results

We first test on the simple ‘swissroll’ to visualize the model performance. A ‘swiss

roll’ is simulated and it is assumed that each point is connected to its nearest 3 neighbors.

In other words, if we assume the xj is one of the 3 nearest neighbors of xi, dij is set as

the distance of xj and xi in the ‘swiss roll’. The objective is to unfold the ‘swiss roll’.

Fig. 2.2 shows the simulated ‘swiss roll’ with 500 points. Fig. 2.3 presents the solution

of coordinates after running the optimization, where the ‘swiss roll’ is unfolded.

Fig. 2.4 and Fig. 2.5 show the results with more points and thicker ‘swiss roll’ along

y-axis. We can see a similar pattern that the ‘swiss roll’ has been unfolded.

Table 2.2 compares running MVU with IPOPT and with other methods. Running

MVU with IPOPT gives the highest variance value (illustrated by the bold font). When

the problem size is not very large (graph with less than 50, 000 edges), the optimization

is very fast.
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Figure 2.2. Simulated ‘swiss roll’ with 500 points.

2.4 Discussion and Conclusion

Because MVU problems are non-convex, traditional methods transform MVU prob-

lems to semi-definite problems by defining a kernel matrix. This makes the optimization

process slow and the solution inaccurate. Instead of transforming the problem, we solve

the original problem formulation directly by using an interior point solver IPOPT. The

results show that running MVU with IPOPT is more accurate and fast when the graph
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Figure 2.3. Unfolding of the simulated ‘swiss roll’ with 500 points.

is not too big (at most 50,000 edges). To scale up this method, it is possible to apply

MVC to this method. As MVC breaks the original problem into an equivalent system

of sub-problems, MVU with IPOPT should be adopted to solve these sub-problems fast

and accurately.
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Figure 2.4. Simulated ‘swiss roll’ with 2000 points.
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Figure 2.5. Unfolding of the simulated ‘swiss roll’ with 2000 points.
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6-blockworld 7-puzzle 7-blockworld 8-puzzle

Time Var Time Var Time Var Time Var

gl-MVU 1m 0.138 1m 6.66 8m 1.20 15m 17.79

MVC-10(gl-mvu) 3m 0.27 18m 9.82 14m 2.27 3h 45.75

MVC(gl-mvu) 5m 0.30 26m 9.86 33m 2.95 7h 49.06

MVU(IPOPT) 4m 0.34 26m 10.12 2d 5h 3.91 n/a n/a

Table 2.2
Comparison of embedding time and variance for different data sets.
MVC-10 means running MVC with 10 iterations and MVC means
running MVC until convergence. Variance has unit 105.
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3. Applications in Radiation Therapy

The main contributions of the dissertation are the applications of nonlinear optimization

to radiation therapy.

3.1 Introduction to Radiation Therapy

Radiation therapy, or radiotherapy, is the therapy using ionizing radiation to kill

or control malignant cells, as part of cancer treatment, while sparing healthy tissues.

Ionizing radiation works by damaging DNA of cancerous tissue leading to cellular death.

The external beam radiation therapy (EBRT or XRT) is one division of radiation

therapy on which this dissertation focuses. By its name, the external beam radiation

therapy places radiation sources outside the body. Other divisions include brachytherapy,

which places radiation sources inside the body, and systemic radioisotope therapy, which

gives systemic radioisotopes to patients by infusion or oral ingestion.

3-dimensional conformal radiation therapy (3DCRT), one type of EBRT occurring

after the invention of CT, shapes each radiation beam to fit the profile of the tumor from

a beam’s eye view using a multi-leaf collimator and uses multiple beams to achieve high

dose on tumor. It makes full use of the ability to delineate tumors and normal organs in

3-D using CT and planning software.

Proposed by Brahme and colleagues in the mid 1980s [22], Intensity Modulated Ra-

diation Therapy (IMRT), the next generation of 3DCRT, is an advanced high-precision

radiation therapy. IMRT not only shapes the beam, but also modulates dose intensity
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distribution of the beam. The beam is divided into small grids, each of which is called a

beamlet, and IMRT modulates the intensity of each beam. 3DCRT can deliver high dose

for a tumor with a convex shape, while IMRT can deal with convex and concave shaped

tumors with high precision.

Generally, the IMRT radiation therapy process consists of the following steps: a

patient receives a CT (computed tomography) scan, resulting in tomographic images of

the patient’s body. Given these images, physicians delineate the tumor and organs of

interest and prescribe the dose protocol for the tumor and every normal organ. Medical

physicists then choose radiation beam directions and run an IMRT optimization to get

a beam profile that meets the protocol. Then patients receive radiation treatment for

about seven weeks. A standard dose of 2 Gray (Gy, joules of energy deposited per kg) is

radiated to the patient per fraction [23–25].

Refer to [26] for the history of radiotherapy.

3.1.1 Intensity Modulated Radiation Therapy Optimization

An important and unsolved problem in radiation therapy is how to simultaneously

achieve the difficult needs of radiotherapy treatment planning, that is, to solve a multi-

objective nonlinear optimization problem. This ‘planning problem’ has been the focus of

a huge amount of research since IMRT was originally proposed by Brahme and colleagues

[22] in the mid-1980s. Investigators realized that they could reformulate the treatment

planning problem into the form of a computer optimization problem. This resulted in the

‘IMRT revolution’ [27]. Today, IMRT is by far the most common type of external beam

radiotherapy delivered in the U.S. Typically, the mathematical planning problem would

state that a certain function needs to be minimized by controlling the detailed shapes of
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the incident radiation beams. Theoretically, if one knew how to predict tumor control

probability, along with the probability of potential treatment side-effects, as a function

of the shape and intensity of the dose distribution, then the optimization algorithm could

simply pick out the ‘best’ treatment plan [28–30].

Before diving into the mathematical formula of IMRT optimization, it is better to

discuss some basic properties of IMRT optimization.

IMRT optimization is a multi-objective optimization problem. There are multiple

goals to make a good treatment plan. The major goal is to achieve high uniform dose on

tumors to control or kill these cells. The next goal is to spare some normal but sensitive

organ such as the brainstem for head and neck cases, or the rectum for prostate cases.

Without sparing dose and keeping the functionality of these sensitive structures, it is

often useless to control the tumor. Then, there are organs that can withstand relatively

higher dose, but they still prefer radiation dose as low as possible. There are yet more

clinical objectives and almost all these goals contradict with each other.

IMRT optimization is a nonlinear optimization problem. There are certain functions

or metrics that physicians care about, which have also been proven to be highly correlated

with organ functionality or tumor control. Most of these functions are not linear. Dose

homogeneity is preferred on tumors and the usual best function to describe it is the mean

square error. Another function Dx, essentially an order statistic, is the minimum dose

of the hottest x% of one organ. The value of D95 for the tumor is widely used to assess

one treatment plan. Dx has no analytic form and is approximated by some nonlinear

functions in order to be used in optimization.

IMRT is a large scale optimization problem. Each beam is divided into roughly 103

beamlets (0.25cm x 0.5cm) and there are about 7 beams. Organs are divided into small
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units (called voxels) of size about 0.2 cm × 0.2 cm × 0.3 cm (CT thickness). For each

treatment plan, there are then voxels of order 106 and beamlets of order 104. In other

words, there are 104 variables and 106 constraints if all voxels are included. Considering

the non-linearity of IMRT, this is a very large scale optimization problem.

The mathematical formulation of IMRT is based on the so-called influence matrix,

a matrix whose element in row i and column j stores the dose received by voxel i from

beamlet j with unit dose. It is a sparse matrix of order 106 × 104. Ahead of IMRT op-

timization, the influence matrix is computed based on CT information for each patient.

Given a beamlet intensity solution (or beam profile), the dose distribution within the pa-

tient is just the product of the influence matrix and the beam profile. By setting objective

functions and constraints on this dose distribution, IMRT can be easily formulated as a

multi-objective nonlinear optimization problem.

The IMRT formulation is as follows: Suppose there are k structures of interest for

one cancer case, denoted by S1, S2, · · · , Sk. Each structure of interest has its function or

metric f1, f2, · · · , fk that represents its functionality (normal organ) or its tumor control

(tumor). Denote the influence matrix by A and the beam profile by w. Then the IMRT

formulation is a multi-objective optimization:

min (f1(S1), f2(S2), · · · , fk(Sk)) (3.1)

s.t. 0 ≤ w ≤ w, (3.2)

Aw ≤ d, (3.3)

where w and d are upper bounds of beamlet intensity and voxel dose. There might

be more functions for each organ and more constraints besides the two in the above

formulation.
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It is worthwhile to mention and define some of the popular functions that characterize

structures. Some of these are very simple functions, such as minimum dose, maximum

dose, or mean dose. Table 3.1 is a typical table of objective values of these functions [31].

Structure Min Dose Max Dose Mean Dose Median Dose Std Dev

Rect wall 582.8 cGy 7352.8 cGy 3935.5 cGy 3544.5 cGy 2062.8 cGy

Blad wall 100.1 cGy 7536.1 cGy 3046.0 cGy 824.4 cGy 3204.1 cGy

PTV 6084.1 cGy 7570.8 cGy 7342.1 cGy 7355.8 cGy 84.5 cGy

Bladder I 123.9 cGy 7540.6 cGy 2733.9 cGy 850.7 cGy 2984.0 cGy

OUTER 1 0.0 cGy 7570.8 cGy 418.0 cGy 27.1 cGy 1085.7 cGy

Table 3.1
A table of function values that a physician shows for one treatment case [31].

Besides these simple functions, there is a category of functions that are widely used in

clinics, called dose volume metrics. Dose volume metrics consist mainly of two functions

Dx and Vd. Given a structure and a dose distribution on the structure, Dx is the minimum

dose value of the hottest x% volume of the organ. It is the x% order statistic of the dose

distribution. Vd is the inverse function of Dx, i.e., if d = Dx then x% = Vd. In other

words, Vd is the fraction of volume that receives at least dose d.

Dose volume metrics are widely used for plan assessment. As in Table 3.2, V47 ≤ 53%

on rectum, V47 ≤ 53% on bladder, and D50 ≤ 50 on small bowel are required for this

prostate case [31]. Although dose volume metrics are important for assessing treatment

plans, they are very hard to incorporate into the nonlinear optimization problem as they

have no analytic form. In practice, physicians run the optimization multiple times and
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improve these dose volume metrics by changing certain optimization parameters based

on their training and experience.

Structures Metrics Maximum Values

Rectal Wall V47Gy 53% of total volume

Rectal Wall Max Point Dose 103.5%

Bladder Wall V47Gy 53% of total volume

Bladder Wall Max Point Dose 103.5%

Femoral Heads Max Point Dose 68 Gy

Large Bowel Max Point Dose 60 Gy

Small Bowel D5 50 Gy

Small Bowel Max Point Dose 53 Gy

Table 3.2
Normal tissue criteria for one type of
prostate case [31].

The plot of the function x% = Vd with d as the variable is called a dose volume

histogram (DVH). Each DVH then represents one dose distribution without ordering

voxels. Fig. 3.1 shows a typical DVH. Each line represents a dose distribution of a

structure, which starts from the top left point (V0 = 100%), and then gradually decreases

to 0 (Vmax = 0%). It is then the goal of IMRT optimization to push target line(s) to top

right (uniform dose) and lines of normal structures to the lower left (low dose to protect

normal structures).
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Figure 3.1. The dose volume histogram (DVH) of a prostate case.

3.1.2 Pre-emptive Goal Programming

As IMRT was introduced, the standard method of IMRT treatment planning involved

minimizing a function that is the sum of terms representing constraints on normal struc-

tures or the tumor [32]. Although alternatives were proposed that involved estimating

the probability of treatment outcomes, it was widely recognized that the data needed for

building such models of normal tissue complication probability (NTCP) or tumor control

probability (TCP) was not available [33]. For this reason, simple dosimetric surrogates

are commonly used to drive radiotherapy treatment planning. For example, the surrogate
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for tumor target volume dose quality was often just a quadratic sum of the target voxel

doses. Doses to the surrounding tissues could be controlled by parameterizing the dose-

volume histogram [34], but it was realized that this led to mathematically complicated

formulations (‘non-convex formulations’ [35, 36]). When different tissues are taken into

account, this is typically done by variably weighting terms in a linear sum [32]. Other

parameters that are required from the user include estimates of DVH goals, such as ‘lung

volume above 20 Gy less than 20%, [37]’ that are typically incorporated as weighted

quadratic penalty terms into the objective function if the goal is not met.

Soon after the introduction of IMRT, researchers recognized that the quality of the

optimization plans was very sensitive to the required weighting coefficients [38]. Thus, the

standard IMRT planning method, which seemingly held the promise of simplified ‘inverse

planning’, is commonly agreed to require even more trial and error user manipulation and

planner time than 3-D conformal radiotherapy planning [32]. The typical user experience

is that commercially available linear-formulation planning is a massively time-consuming

process where the planner never really knows when to quit, and the physician never

really knows for sure that more work will not result in a better plan. The current

situation with standard planning techniques is summarized well by Peter Voet (Erasmus

University) in the introduction to his recent PhD thesis on the topic of goal programming

for IMRT (further discussed below):“With this procedure there is no guarantee that,

even after many hours of planning workload, an alternative approach in steering the

treatment planning system (TPS) software would not have resulted in a significantly

improved treatment plan.” On top of this, well-known (substantial) variations in the

skills, experience, and drive of planners for generation of high quality treatment plans

and the quality of the interaction of the treating clinicians with the planners may seriously
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impact plan quality for individual patients. Another frequent threat for generation of high

quality plans in current clinical practice is lack of planning time [39].

Furthermore, as the science of outcomes modeling matures and predictive models

become more accurate, it will become more critical to account for the clinical priority

of different toxicity or disease control endpoints, as represented through dose-volume

surrogates (e.g., normal tissue complication probability and tumor control probability

modeling).

The standard linear formulation fails on the criteria stated by Fraass [40] as “could

I at least have confidence that all the easy improvements have been made?” The pre-

emptive goal programming method was proposed to address this problem at a jointly

sponsored NCI/NSF workshop, in 2002, devoted to “Operations Research Applications in

Radiotherapy (ORART)” [41,42]. Fig. 3.2, from the online proceedings of that meeting,

clearly distinguishes the basis of the current proposal compared to the linear formulation.

As described in an article titled “The Physical Basis and Future of Radiotherapy,”

Bortfeld and Jeraj write that [43] “there is typically more than one normal organ involved

and trade-offs between dosing the various normal organs have to be made as well. The

standard way to find the most suitable trade-offs for an individual patient is by trial and

error. A more scientific approach uses concepts of multi-objective optimization and in

particular the concept of Pareto optimality.” They reference Jee et al. [44] and Wilkins

et al. [45], as well as other work on navigating the Pareto frontier that will be discussed

below.

Subsequent to the ORART meeting, several groups developed and published full 3-D

goal programming planning methods, all in 2007, including Washington University [45],
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Figure 3.2. Basic description of the prioritized prescription optimiza-
tion framework, from the online proceedings of the NCI/NSF sponsored
ORART workshop [41].

University of Michigan [44], and Erasmus University [46]. These different flavors of goal

programming applied to IMRT differ in some important details.

The Erasmus University approach, named ‘iCycle,’ has been the subject of several

publications and improvements [46–49]. ‘Goal levels’ at each priority level are commonly

included. If the optimizer reaches a goal level, then it stops trying to improve on that

plan characteristic. However, this can leave metrics short of their potential levels (pos-

sibly producing Pareto inefficient solutions). Hence, in a second cycle, the algorithm

seeks further improvements in dosimetric goals, past goal levels, in priority order. iCy-

cle incorporates beam selection as well as fluence optimization. A recent publication
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showed that, for a given patient cohort, iCycle produced plans in 31 of 32 cases that were

preferable by clinicians, compared to those generated with the clinical commercial system

(Monaco) [48]. A separate study showed that superior automated treatment plans could

be generated for prostate VMAT delivery as well [49].

Actual deliverable plans are generated with iCycle in a two-step approach. iCycle

generates an optimal plan based on the priority prescription list. The list of objective

DVH parameter results are then used as inputs into the Monaco treatment planning

system (inserted by hand or automatically with template scripting), which produces

the final, deliverable machine instructions. In all cases, they found that this two-step

method did not significantly degrade dose solution quality. The Erasmus team continues

to develop iCycle, which was the subject of an ESTRO meeting session in 2014. iCycle

is currently used clinically at Erasmus University for head and neck, prostate, cervical,

and liver SBRT patients [39].

In contrast, Washington University, Memorial-Sloan Kettering Cancer Center and

the University of Michigan have pursued a pre-emptive goal programming approach (also

sometimes called lexicographic programming). The general advantage of pre-emptive goal

programming is that “It can be the ideal choice when such a priority scheme exists in the

mind of the decision maker. It can also be used to avoid unwanted direct comparisons

between sensitive criteria [50].” Priority schemes are often implicit, but can be made

explicit in radiotherapy, as shown for prostate [51].

The University of Michigan team implemented a pre-emptive goal programming (lex-

icographic programming) method using large-scale constrained nonlinear programming

[44]. Their implementation provides fluence maps that are then converted into deliver-

able leaf sequences. This was integrated into their in-house planning system, providing a
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clinically-usable tool. In follow-up publications, they have shown that they can integrate

beam smoothing directly into the algorithm to produce plans with fewer delivery segments

without degrading dose characteristics [52]. The incorporation of beam smoothing was

also demonstrated by Wilkens et al. [45]. They also showed in detail how a prioritized

solution for pancreatic cancer patients, based on using gEUD (generalized equivalent

uniform dose) functions as objectives, was an excellent approach for a pancreatic radio-

therapy dose escalation trial, consistently showing that significant dose escalation (up

to 90 Gy) should be possible [53]. More recently, they also investigated the important

problem of sensitivity analysis [54]. As they state: “If a minor sacrifice in high-priority

criteria could yield meaningful benefits with respect to lower-priority criteria, the pure

lexicographic optimization approach would not recognize or identify this opportunity.”

Although the method presented was interesting, due to the increased computational time

and limitations of the algorithm (it only inter-compares single objectives from nearby

priority levels; simplifications to a linear model were necessary to gain enough compu-

tational efficiency), there is motivation to approach this issue in a different way, further

discussed below, by closely characterizing the solution point.

3.2 Prioritized Prescription Optimization

Given the success of ‘iCycle’ [48, 49], the similar approach of pre-emptive goal pro-

gramming is adopted due to its advantages [50]. This section presents the pre-emptive

goal proposed by Wilkens et al. and Clark et al. [45,51], which is also named prioritized

prescription optimization (PPO).

As in pre-emptive goal programming, PPO makes use of priorities of a physician’s

prescription in optimization. Usually targets have the highest priority. Dosimetric (or
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radiobiological) indices that are more important regarding the severity or impact of the

side-effect are given a higher priority. After determining the objective metrics for different

structures and corresponding constraints, a 4-step optimization model is formed to reflect

prescribed priorities.

Step I

A sum of objective metrics for all target volumes, denoted by F I , is minimized. The

vector w represents beamlet intensities and is called the beam profile; T is the set of target

volumes; RI is the set of sensitive structures that have the highest priority (rectum for

the prostate case, for example); Dpre
i is the prescribed dose for the i’th target; Vi is the

set of all voxels for the i’th target; |Vi| represents the number of voxels in target i; Dj(w)

is the dose received by voxel j given w; and N is the number of beamlets. Dmax
i is the

product of beam weight upper bound ratio and the dose that, if given uniformly to each

beamlet, would ensure that every voxel of the target volume gets at least Dpre
i dose.

Step I minimizes the deviation between dose on targets and prescribed dose. The

variables ti’s are added to ensure maximize minimum dose values for each target. A

voxel based upper bound is set for each sensitive structure involved in this step. The

solution of step I is denoted by wI and similar notations are used for later steps.
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The optimization formulation is:

minimize F I(w) =
∑
i∈T

Gi(w) + t2i , (3.4)

where Gi(w) = |Vi|−1
∑
j∈Vi

[Dj(w)−Dpre
i ]2, ∀i ∈ T, (3.5)

s.t. Dpre
i −Dj(w) ≤ ti, ∀i ∈ T, j ∈ Vi, (3.6)

0.05Dpre
i ≤ ti, ∀i ∈ T, (3.7)

Dj(w) ≤ Dmax
i , ∀i ∈ RI , j ∈ Vi, (3.8)

0 ≤ wk ≤ wmax, ∀k ∈ {1, . . . , N}. (3.9)

Equation 3.6 requires dose deficit on target versus prescription dose to be less than a

parameter ti. This deficit is minimized (maximizing the minimum dose) by setting ti in

Equation 3.4, but not minimized too hard by giving ti a lower bound as in Equation 3.7.

Equation 3.8 sets dose upper bounds for all structures in the set RI , which consists of

the most critical structure and other structures that have hard constraints on maximum

dose.

Step II

In the second step, the sum of means of the hottest 1−α percent (defined as MOHα)

on each sensitive structure in a set RII is minimized. For each structure i ∈ RII , multiple

α’s can be set and they form a set Ai. The variables pji, yi, zji are intermediate variables.

Together with related constraints, they help to minimize the MOHα’s. In particular, if

yαi
i = D1−αi

where Dx is the minimum dose value of the hottest x percent, and if pαi
ji is

replaced by max(0, Dj(w)−yαi
i ) to cancel these intermediate variables, then the objective

function is exactly MOHα. The variable s is called quadratic PTV dose slip, which is

used to relax the constraint and enlarge the optimization search space. The objective

metric for Step I is treated as a constraint with this relaxation, which is also the basic
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idea of pre-emptive goal programming. One more constraint is set to give a voxel based

bound both from below and from above for the targets. They are denoted and defined

as Dmin
i = minj∈Vi Dj(w

I) and Dmax
i = maxj∈Vi Dj(w

I).

The optimization formulation for Step II is:

minimize F II(w) =
∑
i∈RII

∑
αi∈Ai

H(w, αi), (3.10)

where H(w, αi) = yαi
i +

1

(1− αi)|Vi|
∑
j∈Vi

pαi
ji , (3.11)

s.t. Dj(w)− zji = 0, ∀i ∈ RII , j ∈ Vi, (3.12)

pαi
ji ≥ 0, ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.13)

pαi
ji − zji + yαi

i ≥ 0, ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.14)

Dj(w) ≤ Dmax
i , ∀i ∈ RI , j ∈ Vi, (3.15)

Gi(w) ≤ (1 + s)Gi(w
I), ∀i ∈ T, (3.16)

Dmin
i ≤ Dj(w) ≤ Dmax

i , ∀i ∈ T, j ∈ Vi, (3.17)

0 ≤ wk ≤ wmax, ∀k ∈ {1, . . . , N}. (3.18)

Equation 3.12, 3.13, 3.14, and 3.10 together achieve the MOHα minimization. All

these new added constraints are linear, resulting in a preferable convex optimization.

However, this step has greatly increased the number of variables and constraints.

Equation 3.16 uses the slip value to preserve the target dose coverage while minimizing

F II .

Step III

In the third step, the sum of mean doses, denoted by 〈D(w)〉i for structure i, for

all normal structures in a set RIII is minimized. Objective metric for Step I is further
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relaxed by a slip value (1 + s)2, while the objective metric for step II is bounded above

by its value given in the Step II solution.

The optimization formulation for Step III is:

minimize F III(w) =
∑
i∈RIII

〈D(w)〉i, (3.19)

where 〈D(w)〉i =
1

|Vi|
∑
j∈Vi

Dj(w), ∀i ∈ RIII , (3.20)

s.t. Dj(w) ≤ Dmax
i , ∀i ∈ RI , j ∈ Vi, (3.21)

Gi(w) ≤ (1 + s)2Gi(w
I), ∀i ∈ T, (3.22)

Dmin
i ≤ Dj(w) ≤ Dmax

i , ∀i ∈ T, j ∈ Vi, (3.23)

yαi
i +

1

(1− αi)|Vi|
∑
j∈Vi

pαi
ji ≤ H(wII , αi), ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.24)

Dj(w)− zji = 0, ∀i ∈ RII , j ∈ Vi, (3.25)

pαi
ji ≥ 0, ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.26)

pαi
ji − zji + yαi

i ≥ 0, ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.27)

0 ≤ wk ≤ wmax, ∀k ∈ {1, . . . , N}. (3.28)

The square term in Equation 3.22 further increases the slip value for the target and

is empirically chosen. This part has to be improved so dose distribution on the tumor is

more definitely controlled.

Equation 3.24 requires that Step III keeps the same dose quality on structures in RII .

One could also introduce another slip value for these high priority structures but this

model does not.

Step IV

In the fourth step the square sum of beamlet intensity is minimized. This is helpful

in both smoothing beam profile and avoiding hot spots outside structures. The objective
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metric for Step I is further relaxed with slip value (1 + s)3. Another slip value s2 called

minimum PTV dose slip is adopted to lower the minimum dose values on targets. The

mean values on all sensitive structures are bounded by their values given in the Step III

solution.

The optimization formulation for step IV is:

minimize F IV (w) =
N∑
k=1

w2
k (3.29)

s.t. Dj(w) ≤ Dmax
i , ∀i ∈ RI , j ∈ Vi, (3.30)

Gi(w) ≤ (1 + s)3Gi(w
I), ∀i ∈ T, (3.31)

Dmin
i (1− s2) ≤ Dj(w) ≤ Dmax

i , ∀i ∈ T, j ∈ Vi, (3.32)

〈D(w)〉i ≤ 〈D(wIII〉i, ∀i ∈ RIII , (3.33)

yαi
i +

1

(1− αi)|Vi|
∑
j∈Vi

pαi
ji ≤ Hi(w

II), ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.34)

Dj(w)− zji = 0, ∀i ∈ RII , j ∈ Vi, (3.35)

pαi
ji ≥ 0, ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.36)

pαi
ji − zji + yαi

i ≥ 0, ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.37)

0 ≤ wk ≤ wmax, ∀k ∈ {1, . . . , N}. (3.38)

Equation 3.29 decreases the beam profile variance as it penalizes high beamlet inten-

sity by its square term. For this reason, the beam profile becomes more smooth, as does

the dose distribution of the patient body.

Dose distribution on target is further sacrificed by the third power (1+s)3 in Equation

3.31. Again, this is empirically chosen and needs to be more definite.

In sum, at each step an objective function of certain priority is optimized while search-

ing around the solution of the previous step (if any) satisfying some empirically chosen
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constraints. Table 3.3 is a summary of structures and objective functions that are in-

cluded in the PPO model for a prostate case.

Structures Objectives

Step I Targets Deviation from prescription

Step II Rectum MOHα

Step III Bladder, Left/Right Femur Sum of mean dose

Step IV All structures Square sum of beam intensities

Table 3.3
Structures and objectives that are used for each step of the prioritized
prescription optimization model.

One important remark about prioritized prescription optimization is that the opti-

mization search space is in the domain rather than the range of the objective function.

Say f1 has been optimized with optimal solution x1, a slip s1 has been chosen for f1 and

we want to optimize f2. Then the search space is {x : f1(x) ≤ (1 + s1)f1(x1)}. This is

a convex set containing x1 but could have irregular shape based on f1, given that f1 is a

convex function. In prioritized prescription optimization, this means that after optimiz-

ing the target, the next step has plenty of room to improve for structures in RI , and so

on.

3.3 Robust Optimization for Treatment Planning

3.3.1 Introduction

Radiotherapy treatment planning for intensity modulated radiotherapy is challenging

due to the massive problem size as well as the complexity of the clinical problem, which
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is inherently about trade-offs between different dose-volume variables that are known to

impact the probability of disease control or morbidity. Current computer approaches are

typically time consuming, difficult to drive towards clinical objectives, do not produce

optimal results, and do not explicitly account for the expected treatment geometry vari-

ability. Importantly, it is difficult or impossible to enforce priorities between dose-volume

objectives related to very different endpoints. Trying to balance dose-volume characteris-

tics with current methods is typically time-consuming with highly variable results. These

limitations in treatment planning algorithms are also a roadblock to the introduction

of adaptive radiotherapy approaches, where the automated, reliable production of high-

quality treatment plans is needed to match changes in patient anatomy or the disease

response.

Also of high significance is the need to account for underlying geometrical uncertain-

ties, as further discussed below. This should be done in at least two ways: (1) the plan

should be such that expected patient motions are unlikely to ruin the underlying dose

distribution actually delivered (robust planning), and (2) the plan should have a good av-

erage performance across expected geometrical variations (probabilistic planning). These

two technology goals represent a great deal of recent research effort. The problem is

further complicated by the fact that planning results need to account for geometrical

uncertainty, and should retain their high quality under residual motion uncertainties

[55–59]. Thus, innovations in radiotherapy course management depend critically on the

ability to automatically generate high-quality treatment plans at multiple points during

a treatment course [60–62].

All radiotherapy delivery methods have some residual geometric uncertainties due

to differences between the simulated image or images (e.g., 4-D breathing computed
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tomography scans) used to do treatment planning. If the variations are small shifts in

setup between many fractions, then the impact can be reflected primarily as a dosimetric

blurring [63].

However, of much more concern are the cases when treatment shifts result in an

average treatment position that is significantly different than the planned position. This

can be due to a systematic shift between simulation imaging and all treatments, or because

that particular patient experienced ‘bad’ random shifts enough to negatively impact the

delivered dose distribution.

It is therefore a key goal of current treatment planning research to produce plans that

are robust with respect to non-rare geometry changes. A useful definition of robustness

has been introduced by Alber [64], whom we paraphrase: A robust plan is one for which

key dosimetric indices of the actual dose delivered are statistically very likely to be within

an acceptable range.

A class of geometric changes we do not consider in detail here are those cases where

the patient geometry is likely to show a non-random ’drift’ over the course of treatment,

due, for example, to tumor volume regression, weight loss, or the like. Nonetheless, the

method described is general, and could potentially address this class of changes as well.

The current standard way to address geometric uncertainty during delivery is to cre-

ate a margin around the imaged clinical target volume (CTV), resulting in a planning

target volume (PTV). For organs at risk, the relevant motion margin has been called

a planning risk volume (PRV) [37, 65]. Doses on PTVs and PRVs are then optimized.

The PTV approach has been criticized elsewhere as being a very poor trade-off between

disease control and toxicity: in effect, it over-ensures adequate target volume irradiation

and ignores the ever-present problem of normal tissue toxicity. A much more attractive
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approach is to balance a very small degradation in target volume dosimetric indices for

a significant reduction in the risk of toxicity, as represented by normal tissue dosimetric

indices [66].

Moreover, when an inhomogeneous dose is planned or prescribed, as is common, for

example, in hypofractionated, stereotactic radiotherapy [67, 68], then the PTV enlarge-

ment no longer applies. We also note that the dosimetric indices that have been correlated

to outcome have, in almost all cases, not included a PRV margin. So the QUANTEC

guidelines [66], for example, cannot be applied in the case of PRV planning [69].

We address robustness within the framework of prioritized prescription optimization

(also called lexicographic optimization) [70]. The advantages of prioritized optimization

have been published in detailed studies previously. A modification of the method has

been developed by the Erasmus group [71]. Generally, the method uses sequential large-

scale constrained optimization methods to generate high-quality plans that are Pareto

optimal while also reflecting clinical priorities in the form of a prioritized list of planning

indices to be minimized. These prioritized goals are optimized in turn. After each step,

the optimal value is turned into a constraint. A minor but important detail is that

some ‘slip’ or ‘relaxation’ is added to the problem after each iteration, to increase the

feasibility space for lower priority goals. The Erasmus approach also includes a goal

for each index: if the goal is reached then optimization is terminated. In addition to

the advantages of automation, Pareto optimality, and clinical relevance, the prioritized

prescription framework is attractive as a platform for robust planning because it allows

the planner to add goals that are optimized without destroying desirable qualities of the

previously generated plan: those indices, as computed on the simulation image(s), are

included as constraints.
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Several approaches to incorporate motion uncertainties into the IMRT optimization

planning process have been proposed, that can be broadly classified into three categories:

The first category (‘shift robustness’) assumes that the position of any CTV or organ

at risk (OR) forms a discrete distribution. Each position where the CTV/OR is found is a

possible position with certain probability (i.e., a coverage probability). Then the objective

metric is averaged over this discrete probability space to form the expectation value of the

metric used for planning. Most approaches belong to this category [59,69,72–75]. Due to

the small number of ‘real’ positions (usually, shifted CT scans) that are known prior to

treatment, the expected metric itself has a significant uncertainty. A technique to extend

this by interpolating between patient specific data and population-based knowledge on

organ motion by Bayesian inference was proposed [76]. Besides the expected value of the

metric, the variance of the metric should also be considered [76,77].

The second category (‘voxel-based robustness’) also assumes that the dose value re-

ceived by each voxel is an independent random variable due to motion uncertainties. The

dose distribution on each voxel is controlled within the optimization process, and thus the

dose distributions on different structures are controlled [58, 76–78]. A serious limitation

of methods in this category is the huge increase in problem size and hence in time (hours)

for it is voxel based, although Olafsson et al. proposed a sequential linear programming

algorithm to decrease computation time. [57]. A second limitation is that voxel doses are

highly correlated, rather than uncorrelated. Both the first and second class of algorithms

requires knowledge of motion probability distributions prior to treatment.

The third category (‘metric-based robustness’) was proposed by Sobotta et al. in

2010 [64], with the assumption that, in the sense of optimization, the robustness of a

treatment plan against motion uncertainties is characterized by the robustness of indi-
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vidual objective metrics (as we noted above). They showed that controlling the shape of

metric distribution outperforms controlling distributions based on voxel values, because

this approach allows for an intervoxel dose trade-off whereas the voxel-based robustness

approach does not.

Our solution builds on and extends the third category. We propose a new planning

algorithm methodology, called ORATOR, short for Outcome-driven, Robust, Automated,

Treatment plan Optimizer for intensity modulated Radiotherapy. This method adds a

new robustness step to the prioritized prescription optimization. After using prioritized

optimization to achieve a high quality treatment plan, a new step is added to minimize

a function of the mean and variance of objective metrics by allowing relaxation to the

treatment plan for static structures. Besides using different data and models, including

more complex objectives and constraints, our work is different from Sobotta et al.’s work

in several fundamental ways:

1) It is embedded as a last step in a prioritized prescription/lexicographic framework,

ensuring minimal impact on other important plan characteristics.

2) Although their model works for any metric, and the resulting Chebyshev inequality

was used to give an error bound, and the metric becomes normally behaved when the

number of fractions increases, their optimization model still assumes that the metric

has a normal distribution. It seems likely that this assumption is commonly violated

because, for example, anterior-posterior shifts may make much more of an impact on rectal

toxicity than shifts in the opposite direction. This assymmetry is exacerbated because the

operating point of normal tissue complication probabilities is usually in the low, relatively

quadratic, part of the corresponding response curve. We make no assumption on metric

distribution but only use two computed values: the mean and variance of the metric
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averaged over the simulated treatment courses. A limitation of our method is that we

assume uncertainty distribution parameters.

3) Sobotta et al. maximize the probability of a metric in a fixed interval, which

essentially controls the mean value of the metric within a range, without a preference for

the direction of improvement. In contrast, we directly try to improve metric mean values

during our robustness step.

4) Also, we include the metric variance explicitly.

3.3.2 Methods and Materials

Robustness in Optimization

In the sense of optimization, robustness means robustness of objective metrics [64] for

they are the functions that are being optimized.

For each structure, one objective metric is usually used in IMRT optimization. It can

be either a physical or a biological metric. When motion uncertainties are involved, this

metric becomes a random variable with a probability distribution with respect to the

motion uncertainties. When multiple metrics are needed, they form a joint probability

distribution.

We define the goal value for an objective metric to be the desired metric value that

the perfect treatment plan can achieve or a physician is satisfied with. For example, if the

metric for structure Brain is the mean dose, then the goal value can be 0 Gy or any dose

satisfying a physician. The lower the dose, the fewer possible complications happen to

that structure. Goal values are usually specified (e.g. mean, Dx, MOHx, etc), but if not,

they can be set as the metric value from the solution of the prior step of optimization.
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There are two parts to an objective metric being robust. First, robustness means sta-

ble outcomes. So the variance of the metric distribution under motion uncertainty needs

be small. Second, the metric distribution needs to be close to the goal value. Controlling

only the variance cannot guarantee robustness around a desired metric value. Robust

solutions should satisfy both conditions.

Objective Metric for Robustness

Say Y is an objective metric for a structure that is used in an IMRT optimization and

Y goal is its goal value. Y becomes a random variable due to motion uncertainties. Then

both the absolute different |E(Y )−Y goal| and the variance Var(Y ) need be small, where

E(Y ) and Var(Y ) are the expected value and variance of Y , respectively.

If there are in total I structures, each of which has objective metric Yi, then the

objective function for the robustness optimization step is

I∑
i=1

λi

[
(E(Yi)− Y goal

i )2 + Var(Yi)
]
, (3.39)

where λi’s are weights for different structures.

There are a few comments on Equation (3.39):

i) The first term has a square so as to have the same units as the second term.

ii) Equation (3.39) can be simplified easily as
∑I

i=1 λi

[
E(Y 2

i )− 2 · E(Yi) · Y goal
i

]
after

expansion and dropping an unnecessary constant.

iii) When implementing the above simplified objective metric, motion sampling is

needed to estimate both E(Yi) and E(Y 2
i ), before the robustness optimization step. We

choose unbiased estimates 1
M

∑M
m=1(Y

m
i ) and 1

M

∑M
m=1(Y

m
i )2 for M sampled motions.

iv) Weights can be added to emphasize mean or variance.
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Robustness slips

Our goal is to fine-tune the solution obtained by an existing prioritized model in

the final robust step. There is a natural trade-off between preserving the high solution

quality of the existing prioritized model, and pursuing robustness in the final robust step.

When structures have relatively stable positions, we tend to be more conservative on

preserving the existing solution. When structures have large position variations, we then

want more robustness. We define a robustness slip, denoted by sr, in the final robust

step, to characterize this natural trade-off.

Specifically, robustness slip is used in inequalities related to Equations (3.29, 3.31,

3.33, 3.34), as follows:

Gi(w) ≤ (1 + sr)(1 + s)4Gi(w
I), (3.40)

〈D(w)〉i ≤ (1 + sr)〈D(wIII〉i, (3.41)

yαi
i +

1

(1− αi)|Vi|
∑
j∈Vi

pαi
ji ≤ (1 + sr)Hi(w

II), (3.42)

F IV (w) ≤ (1 + sr) · F IV (wIV ). (3.43)

Step I-IV optimize targets, sensitive structures with high priority, other sensitive

structures, and beam profile smoothness respectively. Gi(w
I), Hi(w

II), 〈D(wIII)〉, and

F IV (wIV ) are the best objective function values for these 4 steps. A multiplier (1 + sr)

is added to characterize the deviation from these function values in the function range

space. When sr is close to 0, conservative solutions close to the existing solution are

pursued, but when sr is large, solutions more robust to motion uncertainties are pursued.

Step V (robustness step)

Define V m
i as the voxel index set for the m’th motion of structure i, and define
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Gm
i (w) =

1

|V m
i |

∑
j∈Vm

i

[Amj wj −D
pre
i ]2,

Hm(w, αi) =yαi
i +

1

1− αi

∑
j∈Vm

i

pαi
ji
,

〈D(w)〉mi =
1

|V m
i |

∑
j∈Vm

i

Dj(w),

which are just intermediate variables for rigorous notation.

Then the optimization formulation for Step V is

41



minimize F V (w) =
I∑
i=1

λiE(Y 2)− 2E(Y )Y goal
i , (3.44)

where E(Y 2) =
1

M

M∑
m=1

(Y m
i )2, (3.45)

and E(Y ) =
1

M

M∑
m=1

Y m
i , (3.46)

s.t. Y m
i = Gm

i (w) ∀i ∈ T,m = 1, . . . ,M, (3.47)

Y m
i =

∑
αi∈Ai

Hm(w, αi), ∀i ∈ RII ,m = 1, . . . ,M, (3.48)

Y m
i = 〈D(w)〉mi , ∀i ∈ RIII ,m = 1, . . . ,M, (3.49)

Dj(w) ≤ Dmax
i , ∀i ∈ RI , j ∈ Vi, (3.50)

Gi(w) ≤ (1 + sr)(1 + s)3Gi(w
I), ∀i ∈ T, (3.51)

Dmin
i (1− s2) ≤ Dj(w) ≤ Dmax

i , ∀i ∈ T, j ∈ Vi, (3.52)

H(w, αi) ≤ (1 + sr)H(wII , αi), ∀i ∈ RII , αi ∈ Ai, (3.53)

Dj(w)− zji = 0, ∀i ∈ RII , j ∈ Vi, (3.54)

pαi
ji ≥ 0, ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.55)

pαi
ji − zji + yαi

i ≥ 0, ∀i ∈ RII , αi ∈ Ai, j ∈ Vi, (3.56)

〈D(w)〉i ≤ (1 + sr) · 〈D(wIII〉i, ∀i ∈ RIII , (3.57)

F IV (w) ≤ (1 + sr) · F IV (wIV ), (3.58)

0 ≤ wk ≤ wmax, ∀k = 1, . . . , N. (3.59)

Table 3.4 is a summary of the new 5-step model.

Motion Simulation

Motion simulation is needed to estimate Equation (3.39), so as to incorporate it into

the optimization formulation.
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Structures Objectives

Step I Targets Deviation from prescription

Step II Rectum MOHα

Step III Bladder, Left/Right Femur Sum of mean dose

Step IV All structures Square sum of beam intensities

Step V All stuctures
Expected squared deviation from

ideal objectives plus variance

Table 3.4
Structures and objectives that are used for 5-step ORATOR model.

We make a few assumptions on the motion simulation. 1) Only one CT scan position

is available which is the average positions of structures. When more CT scans are avail-

able, other assumptions can be changed accordingly. 2) The positions due to systematic

and random errors are normally distributed. Σ is the standard deviation of systematic

uncertainties, and σi’s are the standard deviations of random uncertainties. 3) All struc-

tures move rigidly and move together (for one patient) when restricting to systematic

uncertainties but independently when restricting to random uncertainties. 4) PTV is the

1-cm enlargement of CTV. PRV is the 1-cm enlargement of OR.

Fig. 3.3 illustrates the CTV, CTV motions and PTV given the above assumptions.

Similar figure exists for OR, OR motions and PRV.

For beam profile optimization and dose distribution verification, different motion sim-

ulation methods can be used depending on the number of fractions. Due to the limit of

computer memory size, the product of the number of systematic motions and random

motions needs be less than 300-600 for a computer with 16 GB memory, depending on
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Figure 3.3. Illustration for motion simulation.

the tumor size and voxel size. When there is a large number of fractions (around 30),

the convolution method [79] is used to smear the beamlet intensities and hence the in-

fluence matrix, by convolving the static dose calculation with a Gaussian distribution.

Then more than 100 systematic motions may be sampled. On the other hand, when the

number of fractions is relatively small (e.g. around 5) for come treatment cases, the same

number of random motions are sampled. Fewer systematic motions (30 or 50) may be

simulated so as to be computationally tractable. There are number of systematic motions

× number of random motions motions in total.

As for the dose verification, we use 100 systematic motions each with 30 fractions.

Then 30 dose metrics are computed for each systematic motion and are summed together

as one dose metric. These 100 metrics are illustrated later in Fig. 3.4 and Fig. 3.5.

Experimental Details

Data and software:
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The data set we have used consists of 10 anonymized prostate treatment cases. Each

dataset has 256× 256 voxels with size 0.2344× 0.2344 cm or 0.1954× 0.1954 cm and 0.3

cm thickness in the transverse plane.

Data preparation and motion simulation are realized by the software CERR [80]. The

solver for our convex nonlinear optimization is Interior Point OPTimizer (IPOPT) [2]

with HSL Mathematical Software Library [81], a powerful solver that is able to efficiently

deal with general differentiable objective functions or constraints and can even solve non-

convex problems very fast. Since we have a large size problem, MA86 of HSL was used

as the linear solver and was compiled in a way that it can run in parallel.

The connection between MATLAB and IPOPT we have used is IPOPT’s MATLAB

interface, which requires that we write functions for objectives, gradients, Jacobians,

Jacobian structures (logical matrix to represent the nonzero elements of Jacobians), Hes-

sians, and Hessian structures (defined similar to Jacobian structures). These function

evaluations are also implemented in a way that they run in parallel.

Parameter selection:

In Table 3.5, we list all parameters that were used for implementing the ORATOR

model. All parameters for the first 4 steps are the same as the the original paper [51].

Notice that some of the variables have multiple values for the purpose of comparison.

Techniques for speed-up:

A serious problem along with robust IMRT optimization is the long running time. As

the number of motions increases, the time that is needed increases rapidly for nonlinear

optimization if using a poor implementation. Our initial implementation spent hours on
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Mean of the hottest α% 84%

Beam weight upper bound radio 1.5

Quadratic PTV dose slip s 0.5

Minimum PTV dose slip s2 1.5%

Robustness slip sr 0-1.2

Number of motions 10, 20, 30, 60, 100, 300, 600

Number of fractions 1 (convolution), 10, 30, 60

Standard deviation for systematic errors Σ 3 mm

Standard deviation for random errors σ 3 mm

Table 3.5
Parameters for the implementation of ORATOR.

one run. We found a few useful techniques that greatly helped us speed up the opti-

mization process. After utilizing these techniques, ORATOR takes less than 6 minutes.

Detailed time comparison may be seen in Section 3.3.3.

1) Choosing a good linear parallel solver and implementing function evaluations in paral-

lel.

When the optimization formulation has a large number of constraints, the choice of lin-

ear solver mostly determines the speed of IPOPT, for the most time-consuming step is the

linear factorization. We choose MA86 of HSL as our linear solver for two reasons. First,

it is designed for large problem size and our problem is nonlinear with 106 constraints.

Second, it is designed for multi-core, which utilizes the power of parallel computation.

Another time-consuming part for IPOPT is the function evaluation. We parallelized our

46



function evaluation computation. For comparison, running IPOPT+MA86 with paral-

lel implementation for function evaluation is about 20 times faster than using MUMPS,

MA27, or other similar linear solvers.

2) Pre-store influence matrices.

Due to the large size of the influence matrix, it is slow to repeatedly read the influence

matrix when computing dose distributions. This is especially slow if there are multiple

motions as each motion requires a visit to the influence matrix. Instead, we pre-store

influence matrices for all involved structures and their motions. This increases memory

usage but makes calculations related to dose distribution much faster.

3) Solution of one step is set as the initial value of the next step.

Usually, for a nonlinear optimization problem, it is very hard for the solver to find

a feasible initial value. In our experiments, it takes IPOPT a lot of iterations (around

40 for each step in our model) just to find a feasible solution. Sometimes, IPOPT even

failed to find any feasible solution after 100 iterations.

Multi-step optimization has an advantage to avoid this trouble, that is, the solution

of one step is a perfect initial value for the next step. This is because the search space

of the next step is always a set around the solution of current step in the domain. For

example, the quadratic PTV slip term makes the solution of Step I trivially satisfy the

new added constraint in Step II.

A special case is Step I, which has no prior step. But it usually converges around 40

steps because of the simple formulation.
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This technique saved us more than half the iterations and thus gave 2 times speed

up. Furthermore, after using this technique, each step converges in less than 50 iterations.

4) Utilize the special properties of linear and quadratic functions to quickly evaluate Hes-

sians.

IPOPT asks users to evaluate objective functions, gradients, Jacobians, and Hessians,

among which computing Hessians could be the most time-consuming one when there are

nonlinear and non-quadratic objective functions or constraints.

In Step I, the Hessian is simply a constant matrix. So we need only compute it once.

From Step II to Step IV, the objective functions are linear (Step II and III) or

quadratic (Step IV) and one of the constraints is quadratic for each step. So the Hessian

is a linear function of Lagrange multipliers with constant coefficient matrices. These con-

stant coefficient matrices were computed only once and were stored and called at each

iteration.

In Step V, if Y m
i ’s are not set as individual variables, then the Hessian matrix is

neither a constant nor a linear function of multipliers with constant coefficient matrices.

However, after setting them as variables, the Hessian matrix of the formulation is a linear

function of multipliers with constant coefficient matrices that we could pre-store and call

at each iteration.

This technique gives about 1.1 times speed-up for Hessian computation for each step

from Step I to Step IV, and 100 times speed-up for Step V when 100×1 motion simulation

is used.

Notice that this technique only works for linear and quadratic functions. If biological

metrics such as EUD or TCP are chosen as metrics of structures, then the Hessian
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matrices need to be re-calculated every time step and some other technique needs be

used.

3.3.3 Results

The base model is the PPO model with CTV and ORs (no enlargement). We denote

this base model simply by CTV. The proposed model adds a robustness step onto CTV.

We denote this model by Robust. The PPO model with PTV and PRVs (enlargement of

CTV and ORs) is another model we use for comparison, denoted by PTV.

Motion simulation is an important factor of the proposed model and may have an

effect on the beam profile solution. We thus compare different motion simulations first.

As in Fig. 3.4 and Fig. 3.5, solutions with different numbers of systematic motions

and numbers of random motions are compared. As the number of systematic motions

increases from 10 to 600 while fixing the product of it and the number of random motions

as 600, final beam profiles are similar without significant difference. Here 600x1 means

systematic motions + convolution for random errors. Using convolution, as the number of

systematic motions decreases from 600 to 100, the beam profiles are also not significant

different. Therefore, we claim that different motion simulations are not significantly

different for this case. We will use 100x1, that is, 100 systematic motions + convolution,

for its relatively small size from which fast speed results.

As one could tell, the structure weights λi’s in Equation (3.39) have some impact,

though modest, on resulting plans. A higher weight on one structure effectively increases

the relative robustness of that structure, when there are conflicts with other structures.

Box-plot and Scan Comparison

We first assume that the robustness weight is 100 for CTV and 1 for other structures.
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Figure 3.4. Comparison of different motion simulations evaluating with
30 fractions. The robustness slip is 0.2. In the x-axis, m × n means
m systematic motions × n random motions. One exception is n = 1
means dose convolution for random errors. The solution generated given
different motions simulations is evaluated with 100 systematic motions
each with 30 fractions. The testing case is case 8.
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Figure 3.5. Comparison of different motion simulations evaluating with
hypo-fractions. The robustness slip is 0.2. In the x-axis, m× n means m
systematic motions × n random motions. The solutions generated given
different motions simulations are evaluated with 100 systematic motions
each with 5 fractions, different with 30 fractions for Fig. 3.4. The testing
case is also case 8.
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Robust step is designed to be a fine-tune step to keep the high solution quality of CTV

model while improving its robustness against motion uncertainties in the added final fifth

optimization step. As in Fig. 3.7, the high quality solution of CTV model becomes worse

(2 Gy downgrade for D95 on target) when motion uncertainties are incorporated. After

adding the fifth robustness step, the solution quality improves, depending on how large

the robustness slip is. As the robustness slip becomes larger, the metric on target becomes

larger and its variance becomes smaller. Meanwhile, the metrics on sensitive structures

that have overlaps with the target (rectum and bladder for this case) become worse (see

Fig. 3.8 for structure positions), as expected.

Fig. 3.6 tells us this robustness weight combination weights too much on CTV as

the most sensitive structure rectum receives very high dose. Rectum is another very

important organ which needs to have robust dose. In Fig. 3.7, we assume that the

robustness weight is 100 for CTV, 50 for rectum and 1 for other structures. As the

robustness slip increases, CTV metric is not significantly different with that in Fig. 3.6.

Meanwhile, the rectum metric decreases significantly. As the robustness slip increases,

MOH84 decreases.

Fig. 3.8 illustrates the exact dose distributions for one CT slice. The contoured struc-

tures are in their nominal positions. The center is CTV, with bladder and rectum above

and below it. Robust model achieves higher dose around the target than CTV model.

Also, Robust model yields less dose on bladder and rectum than PVT, whose figure shows

a large area of high dose on bladder and rectum because PTV overlaps a lot with them.

DVH Comparison
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Figure 3.6. Box-plot metric comparison for CTV, PTV, and Robust with
different robustness slip values. Every box-plot is plotted with metrics
from 100 motion samples (systematic motion) each of which is an average
of 30 fractions/random motions. The robustness weight is 100 for CTV,
and 1 for else. The data set being used is case 8.
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Figure 3.7. Box-plot metric comparison for CTV, PTV, and Robust with
different robustness slip values. Every box-plot is plotted with metrics
from 100 motion samples (systematic motion) each of which is an average
of 30 fractions/random motions. The robustness weight is 100 for CTV,
50 for rectum and bladder, and 1 for else. The data set being used is case
8.
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Figure 3.8. Dose scan comparison of one slice for CTV, PTV and Robust
optimization for case 8 with robustness slip 1.

To get a whole picture of the dose distributions, we compare these models using

DVHs. As in Fig. 3.9, compared to the CTV model, the Robust model generates higher

and more uniform dose distribution on the target but only slightly increases the doses

on sensitive structures. Compared to the PTV model, the Robust then generates very

similar dose distribution on the target, but with much less dose on sensitive structures.

Results for 10 prostate cases

To check how this model behaves for different cases, we list the metric comparison

of all 10 cases we tested in Fig. 3.10. Each metric is a random variable with respect

to the motion probability space. Its mean value and standard deviation value are thus

considered for comparison. Similar to the case above, Robust model achieves about 2%

higher target dose and about 50% less variance than CTV model, without increasing the

dose too much on sensitive structures. Although PTV has almost 0 variance as expected,

it sacrifices a lot on sensitive structures (e.g.: above 10 Gy higher for MOH84 on rectum

for some cases). Notice that the PTV model still has large variation for metrics of

sensitive structures because these metrics do not require uniform dose distribution like
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Figure 3.9. DVH comparison of CTV, PTV and Robust optimization with
robustness slip as 1 for case 8. Solid lines are mean DVHs of 100 motion
samples each with 30 fractions and dashed lines are +/- one standard
deviations.

the target metric, and the dose distribution has variation not matter how large the PRV

is.

Finally, we compare the time needed for each step. We mentioned that our initial

implementation took hours for one run of ORATOR. After utilizing the speed up tech-

niques introduced before, the whole optimization can be finished in less than 6 minutes,

as in Fig. 3.11. The final robustness step takes about 3 minutes. In Clark et al.’s work
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Figure 3.10. Metric comparison of CTV, Robust, and PTV optimization
for 10 prostate cases. Robustness slip is sr = 0.2. 100 systematic mo-
tions are used, as well as convolution method for random errors. Dose
verification uses 100 systematic motions each with 30 fractions.

[51], each step takes 5 minutes. As a comparison, we have improved the speed by about

8 times.

3.3.4 Discussion

Robustness to motion is created by the introduction of a final step in the pre-emptive

optimization list, using the objective function shown in Equation 3.39. This function is

averaged over a set of shifts. It pushes objective values towards their ideal goals (e.g., zero
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Figure 3.11. Average time comparison for 10 prostate cases that have
20853 voxels in average.

mean dose for sensitive organs), and at the same time reduces the variance of objective

values. This is different from the Sobotta et al. approach in that we directly use variance,

which we believe is a simpler and more reliable approach compared to their approach of

trying to limit the tails of objective function probability distributions [64].

Conventionally, a physician contours a PTV for a CTV and a PRV for an OR. Fig.

3.7 and Fig. 3.8 showed that this method can be too conservative toward the target and

hence yields high dose on some sensitive structures. This also confirms the intuition that

there is a trade-off between pursuing robustness and sparing dose on sensitive structures.

Notice that even though both PTV and PRV are used, PTV has a higher priority so the
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solution leans to higher quality on PTV and hence worse quality on PRV. Another way to

describe this trade-off is to view the structure metric as a random variable and to analyze

its variance. PTV and PRV reduce the variance of the metric to almost 0 since PTV

is designed to cover almost all the possible positions of CTV. But actually, sacrificing a

little on the variance could reduce the dose a lot on sensitive structures, as in Fig. 3.10.

Fig. 3.6 indicates how the proposed model handled this trade-off and quantified it

with the robustness slip. Besides quantifying the trade-off between achieving high dose

on target and low dose on sensitive structures, robustness slip also describes how robust

the existing model is. If the current model is already robust, then this robustness slip

could be set as a tiny positive number or even 0. If the current model is not robust,

then it can be set as a large number, like 1. This observation also suggests that it is

worthwhile to test the proposed method on some more robust model that uses a target

contour between CTV and PTV or even use PTV. But Robust keeps the target size as

small as possible compared to PTV, which might overlap with sensitive structures.

The results shown in Fig. 3.6 and Fig. 3.7 demonstrate that different robustness

weights resulted in different robustness priorities and hence different treatment plans.

These results show that the proposed Robust model yields more robust treatment plans

for a large family of robustness slip combinations. Different choices of robustness weights

allow physicians to get robust dose control on structures they think more important.

Automatically choosing robustness weights may be possible and will be the subject of

future research.

The results showed that a robustness slip parameter can balance preserving the exist-

ing high quality prioritized optimization solution against the pursuit of plan robustness.

Although the new added robust step enlarged the problem size and increased computa-
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tion time with the number of sampled shifts, several useful techniques were introduced

to speed-up the algorithm so that the average running time was less than 6 min., for all

prostate cases, using a commodity 4-core computer.

Fig. 3.11 compared the time usage of PTV and Robust. These two methods share the

same first 4 steps (except the CTV, PTV difference) but the latter has one more step. For

IPOPT, there are two main factors in time usage: IPOPT itself, and function evaluation

including evaluating objective, Jacobian and Hessian. The latter part is relatively fast for

the first 4 steps because they have very few nonlinear constraints. The fifth step spends

much more time on function evaluations because each motion of the target corresponds

to a nonlinear constraint and to sum up many large Hessian matrices is time-consuming.

IPOPT spends about twice as much time in the fifth step because of the increased problem

size. Although the fifth step takes almost as much time as the first 4 steps, it is still

less than 3 minutes and the whole optimization takes less than 6 minutes, despite the

complicated formulation. Furthermore, reported times are for a 4-CPU-core machine.

Since ORATOR was implemented in parallel, a machine with more cores may further

decreases run-time.

3.3.5 Conclusion

Preliminary results show that ORATOR is likely to prove innovative in several im-

portant respects; in particular, we expect that it will simultaneously: (1) produce high-

quality treatment plans in an automated fashion, not requiring planner input, (2) produce

plans that follow clinical prescription guidelines regarding dose-volume characteristics

(e.g., higher priority goals, such as a high minimum dose to the target volume, are pro-

tected when considering lower priority goals, such as lowering mean dose to sensitive
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structures), and (3) produce robust plans that do not degrade under expected variations

in tissue localization. All of this is done while providing Pareto optimal solutions, an im-

portant assurance that, for our hierarchical formulation, there are no other plans possible

that could improve a dosimetric/planning goal without requiring a trade-off in a higher

priority goal. In other words, with respect to the stated criteria, there are no better

plans.

Although promising, several important steps would be required to validate the clinical

use of ORATOR: (1) other sites would need to be tested, including sites with many more

objectives (e.g., head-and-neck planning), (2) direct comparisons with expert clinical

plans are needed, with comparable dosimetric calculation models.

We conclude that the proposed robustness formulation can be used to generate robust

treatment plans against geometrical uncertainties. Although further testing is needed,

the model has the potential to be clinically useful.

3.4 Dose Volume Metric Approximation

3.4.1 Introduction

Statistics or metrics that summarize the volume of the radiation dose to the target

tumor or normal tissue are of essential importance in IMRT treatment planning and have

been used extensively since the beginning of the 3D treatment planning era [82–84]. In

addition to being used to judge treatment plan quality [85, 86], metrics are also used to

analyze outcomes [87]. For target volumes, the most commonly used dose-volume metrics

are of the form Dx, which is defined as the minimum dose to x% of the volume receiving

the highest doses (i.e., the minimum dose to the ‘hottest’ x%). In particular, D95 and

D98 are in widespread use, but it is likely that other Dx values are being routinely used

61



as well. With the usual goal of exposing most of the target to high doses of radiation,

higher Dx values are more desirable. Nonetheless, the physical characteristics of radiation

delivery itself (involving Gaussian dose falloff due to lateral scattering and imperfect beam

penumbra), as well as the desire to avoid any nearby radiation-sensitive normal tissue

structures, means that some dose-falloff within the planning target volume (PTV) is

unavoidable and therefore, should be quantified.

Although Dx values are easy to understand and determine from dose-volume his-

tograms (DVHs), Dx values are difficult to manipulate in optimization problems for two

reasons: (1) Dx is essentially an order statistic [88] that requires a sorting operation

(performed when DVHs are formed, for example) and (2) Dx is not an analytic function,

as is the case in general for order statistics. Of course, this implies that Dx is not differ-

entiable (for example, with respect to fluence weights). Both of these points are obstacles

to the development of efficient optimization algorithms that usually depend on convexity

properties and differentiability as requirements for computational efficiency. IPOPT, for

example, requires twice continuous differentiability.

A more attractive metric for treatment planning is the generalized equivalent uniform

dose (gEUD) metric. Well-known in mathematics, the gEUD function was applied to

IMRT as early as 1992 [84], but the name was coined by Niemierko [89] in 1999. The

metric is defined as:

gEUD[a] = (
1

N

N∑
i=1

dai )
1
a ,

where N is the number of voxels in a given region of interest, di is the dose given to voxel

i, and a is a selected or fitted parameter. The mathematical form of the gEUD function
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has many uses outside radiotherapy and is known as the Hausdorff measure [90], the

lp-norm, and the generalized (or ‘weighted’) mean, by Abramowitz and Stegun [91].

Just as for Dx, gEUD is also a number between the minimum and maximum dose

to a given structure. When the parameter a goes to ∞, gEUD goes to the maximum

dose; or when a goes to −∞, gEUD goes to the minimum dose value. Unlike Dx,

gEUD is infinitely differentiable and hence, more amenable to be incorporated into IMRT

treatment planning, either as an objective function or as a constraint. Moreover, gEUD

itself has desirable convexity properties [92] that are not altered by including gEUD in

linear equations.

The hypothesis of this work is that we can substitute a linear combination of gEUD

terms as a reasonably accurate approximation for a given Dx value, thus making IMRT

plan optimization more computationally tractable.

3.4.2 Methods and Materials

Input dose-volume histogram

Our analyzed dataset includes 498 de-identified head-and-neck treatment plans taken

from a single institution. A sample of the DVHs for clinical target volumes (CTVs) is

given in Fig. 3.12. As shown, treatment to different CTVs was not uniform. However,

our main goal is to estimate Dx reasonably well with a concave function to use in IMRT

optimization. A few DVHs had unusually low prescribed doses, around 40 Gy, and these

were removed from the analysis. All other DVHs have prescribed doses between 50 Gy

to 80 Gy. In addition, in order to focus on reasonably good-quality treatments, we

filtered results to only include values of D95 that were greater than 95% of the prescribed

dose, resulting in 432 DVHs. As noted below, this means that the formula may be less
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Figure 3.12. Sample of head-and-neck DVHs used to derive the relation-
ship between gEUD and Dx. The full dataset includes 498 DVHs, but
here we only show a sample, taking, at most, one DVH randomly from
each 2-Gy bin in D95 dose.

accurate for poor-quality dose distributions but in such cases, high accuracy is less crucial.

A sample of the resulting DVHs used for fitting is given in Fig. 3.13.

Fitting functions

We fitted the concave gEUD function to Dx values using either one- or two-gEUD

functions, as follows:

Single-gEUD model:

Dx = c1 × gEUD[a] + c0.

64



Figure 3.13. Sample of DVHs from 432 of the original 498 head-and-neck
treatment plans with prescribed doses between 50 Gy and 80 Gy and D95

values greater than 90% of the prescribed dose. Again, here we show, at
most, one DVH randomly from each 2-Gy bin in D95 dose.

Using this equation, we fitted the parameters a, c0, and c1, to minimize the root-

mean-square error (RMSE) in the predicted Dx value. Two-gEUD model:

Dx = c2 × gEUD[a2] + c1 × gEUD[a1] + c0.

In the two-gEUD model, we fitted a1 and a2, as well as c0,c1,c2.

For both models, the MATLAB routine LSQLIN was used as the solver [93]. For each

fit, we randomly divided the data between a training set (70%) and a testing set (30%).

Values of x from 80 to 99 were considered. In order to avoid some non-concave solutions,

we found it useful to limit the absolute magnitude of coefficients to less than 20.
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3.4.3 Results

The single-gEUD model

Results for the single-gEUD model are given in Fig. 3.14.

Figure 3.14. Fitting error for D95, estimated using the single gEUD model.

The best fit occurs near a gEUD parameter a = −0.35. The error plot suggests that

negative gEUD ‘a’ values with large magnitudes do not produce good fits, while positive

or small-magnitude negative ‘a’ values generate good fits with average errors that are less

than 2 Gy. The parameters for best fit are given in Table 3.6.

The two-gEUD model
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Figure 3.15. Best-fit errors for the two-gEUD model. Some points with
error greater than 3 Gy are truncated.

For the fit with D95 alone, relatively high errors (>9 Gy) were produced when the best

fit consisted of a combination of two negative gEUD ‘a’ parameters. The best results,

with errors less than 1 Gy, resulted from combinations of two positive ‘a’ values. This

is consistent with the finding that a single-gEUD model with either positive or slightly

negative ‘a’ values resulted in better fits than large negative values (see Table 3.6 for the

best fit results). The best two-gEUD fits are summarized in Fig. 3.15.

Similar patterns for fits obtained with the single- and two-gEUD models were observed

when we cross-validated the fitting procedure using randomly chosen training datasets as
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discussed below in this section.

Best-fitted equation Training

error (Gy)

Testing er-

ror (Gy)

Single-gEUD model D95 = 0.97 · gEUD[−0.3]− 3.49 1.65 1.88

Two-gEUD model D95 = 16.25 · gEUD[0.45]− 15.3 ·

gEUD[1.75]− 0.69

0.91 0.97

Table 3.6
Cross-validation of the best-fit equation, root mean square (RMS)
training error, and testing error of one random run for both models.

Prediction error analysis

To test the robustness of the prediction method, we repeated the entire fitting process

for data randomly divided into a 70% training set and a 30% testing set. This was

repeated 5 times, and the average prediction performance was tabulated in Table 3.7.

Scatter plots (Fig. 3.16 and Fig. 3.17) show the fitted distributions for both the training

and testing set.

When Dx = D95, both single- and two-gEUD models can generate very good fits with

a mean-square error that is less than 2 Gy. By comparison, the two-gEUD model adds

only one more gEUD parameter and one more coefficient but generates a better fit, with

significantly less RMSE (0.93 Gy), as shown by the Fig. 3.16.

Fit for variable dose cutoffs in Dx

For optimization, it may be useful to have a single equation valid for various dose

cutoffs in Dx, even if some price in accuracy is paid. In this fit, we let x in Dx vary from
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Mean (Gy) Std (Gy)

Single-gEUD model training 1.722 0.0327

Single-gEUD model testing 1.726 0.0764

Two-gEUD model training 0.936 0.0241

Two-gEUD model testing 0.932 0.0415

Table 3.7
RMS training and testing errors for cross-
validation runs. The mean and standard
deviations of the RMSE are given for 5
runs.

80 to 99, where the number 80 is chosen as likely lower limit of what is clinically useful.

We first compare how the fitting methods above behave for this range of x.

As shown by Fig. 3.18, when x increases from 80% to around 96%, the error goes up

slightly, but when x becomes greater than 96%, the error increases rapidly. Moreover,

when x is less than approximately 96%, the single-gEUD model generates an error less

than 2 Gy, and the two-gEUD model generates an error less than 1 Gy. Comparing

the two models, the two-gEUD model generates half the error that is generated by the

single-gEUD model, when x is less than 96%.

Lastly, we investigate whether we can produce a very simplified equation that still

yields a useful approximation across a wide range of x values.

First, we modify the two-gEUD model so that the best c2, c1, c0, a2, and a1 are

constants. The best-fit equation was found to be:

Dx = 3.18× gEUD[0.2]− 2.23× gEUD[6.2] + 0.3328. (3.60)

The RMSEs were much higher in Equation 3.60 than in the original two-gEUD model,

as shown in Fig. 3.19.
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Figure 3.16. The scatter plot of D95 vs. the best-fitted single-gEUD
model. Red circles are training points, whereas green circles are testing
points.

We then modify the two-gEUD model so that the best c2, c1 , c0, a2, and a1 for all x

are each a function of x. It was found that linear functions of x were adequate, so linear

regression is used to estimate these parameters. The best-fit equation was found to be:

Dx = (0.15x−9.66)×gEUD[0.45]+(−0.15x+11.08)×gEUD[−0.03x+10.57]+0.13x−10.75.

(3.61)

The RMSE curve for Equation 3.61 (Fig. 3.19) shows a performance that is much

closer to that of the two-gEUD model than that of the model with constant coefficients

and gEUD parameters in Equation 3.60.
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Figure 3.17. The scatter plot of D95 vs. the best-fitted equation of the
two-gEUD model. Red circles are training points, whereas green circles
are testing points. Note the reduced scatter, compared to the single-gEUD
model (Fig. 3.16).

3.4.4 Conclusion

These concave metrics fulfill an important need for computationally efficient IMRT

treatment planning objectives. Previously, the Dx objectives that were commonly used

introduced numerical difficulties due to a lack of convexity. As an important dose-volume

metric, Dx has another drawback: it is not analytic or differentiable and hence is difficult

to implement for IMRT optimization in a computationally efficient manner. We have

proposed to use a linear combination of gEUDs to estimate Dx. In particular, two models
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Figure 3.18. The plot of x in Dx vs. best RMSE for the single-gEUD
model (red line) and two-gEUD model (blue line). The models are re-
fitted for variable x values.

were proposed to represent D95, one involved a single gEUD and the other involved two

gEUDs. A more general equation that represented Dx accurately for a wide range of x

values (80% to about 96%) was also derived. Cross-validation showed that the RMSE for

the best fits was less than 2 Gy and typically less than 1 Gy.

Although these results establish that this type of approximation can be useful for

describing a cohort of DVHs, it is important to note that these fits are probably less

accurate for a different clinic using a different planning system and different directives

on a different patient cohort. It would be fairly straightforward to test the equations
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Figure 3.19. A plot of x in Dx vs. RMSE for the two-gEUD model (red
lines) and two-gEUD model (blue lines), with variable parameters, i.e.,
finding the best combination of gEUD parameters when varying x. The
green lines are for Equation 3.60, and the red lines are for the Equation
3.61. Solid lines are training/cross-validation errors, and dashed lines are
testing cohort errors. Notice the training and testing errors for Equation
3.60 coincide with each other almost everywhere. The figure shows that a
good approximation to Dx can be obtained with two gEUD terms between
80% and 96%.

for new DVHs, or even to re-fit the equations to new datasets. We have focused on Dx

values, rather than Vx values, because the statistics of Vx values tend to be noisier. Future

research will test fits for Vx values, in particular, for normal tissues. A second caveat is

that these results were derived for ‘good DVHs’. This means that the approximation is

likely to be worse for poor-quality DVHs. However, we do not believe this is a significant
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problem because the planning objective surrogate only needs to be highly accurate when

the plan approaches acceptability.

A given IMRT optimization problem might seek to control more than one point on

the DVH curve and therefore use the variable-x equation applied to more than one x

value. We have shown that non-convex Dx values can be well-approximated for a range

of x values using a two-gEUD model for a given cohort of DVHs. The resulting equation

can be used for IMRT optimization and has the advantages of simplicity, differentiability,

convexity, and generality for multiple x values.
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4. Conclusion

In this dissertation, nonlinear optimization is introduced and some of its applications

in machine learning and medical physics are described.

In Chapter 2, a problem called MVU (maximum variance unfolding) in machine learn-

ing is introduced as a non-convex nonlinear optimization, that is essentially to learn a

low dimensional manifold from a large dimensional space. Instead of converting the non-

convex nonlinear optimization to a semi-definite optimization, we directly solve it with

an interior point method and got more accurate results.

In Chapter 3, radiation therapy, IMRT in particular, is introduced as a multi-objective

nonlinear optimization as physicians make multiple contradicting goals for tumors and

other structures. There are mainly two problems that have been discussed. First, physi-

cians describe treatment plan quality by favoring certain metrics/functions, but not all

of these functions are nicely behaved. One of these metrics Dx, an order statistic, is

approximated by a nicely behaved (infinitely differentiable) function, which could po-

tentially be incorporated into IMRT optimization as a surrogate for Dx. Second, good

treatment plans have to be robust against motion uncertainties, which are either due to

device set-up error or patient movement. Based on the prioritized prescription optimiza-

tion algorithm, a new optimization model has been studied which includes a robustness

optimization step that improves the expected performance of existing treatment plans.
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