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The primary auditory cortex (A1) in mammals is one of the first areas in the neocortex that 

receives auditory related spiking activity from the thalamus. Because the neocortex is 

implicated in regulating high-level brain phenomena, such as attention and perception, it is 

therefore important in regards to these high-level behaviors to understand how sounds are 

represented and transformed by neuronal circuits in this area. The topographic organization 

of neuronal responses to auditory features in A1 provides evidence for potential mechanisms 

and functional roles of this neural circuitry. This dissertation presents results from models of 

topographic organization supporting the notion that if the topographic organization of 

frequency responses, termed tonotopy or cochleotopy, is aligned along the longest 

anatomical line segment in A1, as supported by some physiological studies, then it is unlikely 

that any other topography is mapped monotonically along the orthogonal axis. Thresholds 

of neuronal responses to sound intensity level represent a particular feature that may have a 

local, highly periodic topography and that is vital to the sensitivity of the auditory system. 

The neuronal representation of sound level in A1, particularly as it relates to encoding 
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accuracy, contains a distribution of neurons with varying amounts of inhibition at high 

sound levels. Neurons with large amounts of this high-level inhibition are described as 

nonmonotonic or level-tuned. This dissertation presents evidence from single neuron 

recordings in A1 that neurons exhibiting greater high-level inhibition also exhibit lower 

neuronal thresholds and that lower thresholds in these nonmonotonic neurons are preserved 

even when much of the neuronal population is adapted for accurately encoding more intense 

sounds. Evidence presented in this dissertation also suggests that nonmonotonic neurons 

have transient responses to time-varying (dynamic) level stimuli that adapt more quickly in 

response to low-level sounds than those of monotonic neurons. Together these results imply 

that under static, steady-state-dynamic and transient-dynamic sound level conditions, 

nonmonotonic neurons are specialized encoders of less intense sounds that allow the 

auditory system to maintain sensitivity under a variety of environmental conditions. 
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Chapter 1 
 
General Introduction 
 

Systems neuroscience is a facet of brain science that involves the study of how complex 

circuits of interconnected neurons in different brain areas work together to create 

observable behaviors. This endeavor incorporates neural physiology and anatomy over a 

range of spatial and temporal scales: from single neurons to circuits of neurons to brain 

areas and over timescales from milliseconds to years. Much of this research has been 

focused on the neocortex of mammalian species. At a high level, brain function can be 

seen as a transformation of inputs coming from the epithelium of sensory organs into 

signals which control muscles, or motor outputs. One predominant hypothesis is that 

information is transmitted in the brain via action potentials fired by single neurons, and 

that much of this information is encoded in the rate of these action potentials over 

short time periods (on the order of tens of milliseconds). Sensory neuroscience, a subset 

of systems neuroscience, aims to understand how physical aspects of sensory inputs are 

encoded via action potentials in single neurons and in populations of neurons. Spiking 

activity that is measured from single neurons recorded separately or simultaneously and 

that can be initiated with sensory stimuli is often called a neuronal response. 

 

 



 
 

   
 

2

Auditory neuroscience is concerned in particular with how aspects of sound are 

transduced into action potentials initially by the cochlea of the inner ear, then how these 

signals from the cochlea are transformed in order to process auditory signals and finally 

how these transformed inputs are able to produce complex behaviors based on cues in 

an auditory scene. One general approach to understanding how circuits represent and 

transform these physical characteristics of sound is to use a single metal electrode, 

placed into brain tissue, to record spiking activity in a single neuron and then correlate 

the spiking rate with physical characteristics of the sound presented while this activity is 

occurring. This approach provides insight into how sounds are represented and 

transformed by single neurons. In general (when referring to multiple sensory systems) 

these are referred to as sensory representation and transformation. Averaging over a 

population of recorded neurons in turn can provide evidence for how these tasks are 

performed by neuronal circuits. The way that neurons and groups of neurons represent 

a particular property is referred to as neural encoding. In contrast, how postsynaptic 

neurons can use these encodings to infer the values of the property being encoded is 

referred to as neural decoding. 

 

There is evidence from anatomical studies of sensory cortices suggesting that the 

majority of cortical interconnectivity is intrinsic to the cortical area (Creutzfeldt, 1977; 

Lee & Winer, 2008b). Therefore, the way that single neurons in a particular circuit and 

within a given cortical area are organized spatially, not only anatomically, but 

physiologically (i.e. how neuronal responses are organized spatially) also provides 
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evidence for what transformations are computed by these circuits and for the 

mechanisms of these transformations. If neuronal responses are organized spatially in a 

non-random manner, then the resulting map is called a topographic organization. 

Because neocortex is organized in layers that contain neurons having similar response 

properties (Mountcastle, 1997), termed a columnar organization, only the two spatial 

dimensions of the cortical surface are usually considered as a part of these topographical 

maps. A given brain area may contain multiple maps corresponding to different features 

of the neuronal response (Blasdel & Salama, 1986; Tootell, Hamilton, Silverman, & 

Switkes, 1988; Tootell, Silverman, Hamilton, De Valois, & Switkes, 1988; Tootell, 

Silverman, Hamilton, Switkes, & De Valois, 1988; Tootell, Switkes, Silverman, & 

Hamilton, 1988). The existence of a unique topography has historically been used as 

one of the criteria for establishing the existence of a cortical area because it provides 

evidence that neuronal circuits in this area are using coherent sensory representations 

and are likely working together on a single set of transformations within a hierarchy of 

processing (Felleman & Van Essen, 1991; Van Essen, 1985). 

 

The primary auditory cortex (A1) in mammals is one of the first areas in the neocortex 

that receives auditory related spiking activity from the thalamus (Lee & Winer, 2008a; 

Winer, Diamond, & Raczkowski, 1977). Because the neocortex is implicated in 

regulating high-level brain phenomena, such as attention and perception, it is therefore 

important in regards to these high-level behaviors to understand how sounds are 

represented and transformed in this particular area. This dissertation describes the 
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results of testing hypotheses of topographic organization and of representation of 

sound intensity level, both in A1. As described above, topographic organization and 

representation of sound properties are both involved in understanding what types of 

transformations are accomplished by A1 circuits and in understanding the potential 

mechanisms of these transformations. Two very different approaches were taken 

towards testing these two general objectives: (1) A computational model was employed 

in the effort of testing hypotheses regarding A1 topographic organization (2) Single 

neurons were recorded in A1 and these data were analyzed in order to test the 

hypotheses regarding the representation of sound intensity level. The results of the first 

objective are presented and discussed in Chapter 3, and of the latter in Chapters 4 

through 6. A more detailed introduction of each topic is given separately before the 

results in each chapter. The methods for each chapter are presented in different 

subsections of Chapter 2. 
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Chapter 2 
 
Experimental Methods
 

A combination of two very different approaches was utilized to study auditory coding 

phenomena in Primary Auditory Cortex (A1): (1) A computational model was created to 

investigate how the neuronal circuits that are responsible for the representation and 

transformation of sound intensity level and of other features are organized 

topographically and (2) Single neurons were recorded in A1 of awake marmoset 

monkeys (Callithrix jacchus) in order to discern how these neurons represent and encode 

sound intensity level, particularly of the tone to which the neuron being recorded is the 

most sensitive. Methods for the first approach are presented in Section 2.1 and for the 

second approach in Sections 2.2 to 2.4. 
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2.1 A Computational Framework for 
Topographies of Cortical Areas 

 

2.1.1 Self-Organizing Feature Map 
 

The self-organizing feature map (SOFM) is a computational tool designed to project an 

N-dimensional observable feature vector onto a two-dimensional grid of spatially 

arrayed N-dimensional feature vectors, each of which is referred to as a “unit” 

(Kohonen, 1990). For the purposes of this study, the N features of the observable 

vector and the unit feature vectors are each meant to represent aspects of neuronal 

response properties that are hypothesized to be mapped topographically in a sensory 

cortical area. These neuronal features could include any receptive field parameter 

pertaining to a given sensory cortical area. The units of the SOFM grid are intended 

conceptually to represent cortical neurons or spatially clustered groups of similar 

neurons whose receptive fields are characterized by the elements of a particular unit 

feature vector. The SOFM algorithm is a dimensionality-reduction algorithm used to 

map the N feature dimensions of neuronal response parameter space onto the two 

physical dimensions of the cortical surface. The SOFM has been shown to produce: 

 
[unit feature] vectors that asymptotically settle to equilibrium values, generating 
a map which 1) represents most faithfully dimensions of feature space along 
which the standard deviation is largest; 2) tries to preserve continuity, such that 
(metrically) similar patterns are mapped onto neighboring points in the network 
layer; 3) reflects inhomogeneities in the probability density such that regions 
with high density are mapped onto larger domains of the network layer. (Ritter 
& Schulten, 1988) 
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SOFMs are created using a competitive learning algorithm applied over the entire unit 

grid, such that units compete with one another for representation of any particular 

feature vector in the N-dimensional feature space (Kohonen, 1990). At each time step t, 

the iterative algorithm presents to the unit grid an observable vector v having length N, 

each element of which has a value drawn randomly from one of the individual feature 

distributions. The algorithm then determines which of the unit feature vectors wr is 

closest to the current observable vector in terms of Euclidean distance: 

 
 ||}{||min rr

wvs −=  . (2.1) 
 

In this case r represents a two-dimensional vector of grid coordinates for arbitrary unit 

feature vectors corresponding to cortical surface locations, and s represents a two-

dimensional vector of grid coordinates for the unit feature vector closest to v. This 

vector ws is then moved closer to the observable vector v, along with neighboring units 

in the grid. This update is given by 

 
 )]()[,,()()()1( thttt rrr wvsrww −+=+ σε  , (2.2) 
 

where the wr vector refers to all the unit feature vectors in the grid. The direction of the 

update term on the right-hand side is determined by v and the magnitude is governed by 

a learning rate ε and a neighborhood function h. The learning rate limits the magnitude 

of map change that can occur in any given time step and can be decreased as time 

progresses to promote convergence onto a local solution. The neighborhood function 
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limits the units in the grid that change substantially in any given time step and is given 

by a two-dimensional Gaussian centered on the winning unit with a width parameter 

(standard deviation) of σ: 

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2

2

exp),,(
σ

σ
sr

srh  . (2.3) 

 

Because learning in the SOFM algorithm is driven by serial presentation of observable 

vectors to the grid and incorporates a local Hebbian learning rule via the neighborhood 

function, the algorithm can be thought of as an activity-dependent model of cortical 

reorganization. Activity is driven by the observable vectors, and thus the probability 

distribution of each feature ultimately determines the number of units devoted to a 

particular subset of the feature space.  

 

2.1.2 Unit Grid Initialization 
 

In each computational experiment, SOFM unit grid maps were initialized using one of 

two methods. The first method of “random initialization” initialized feature vector 

elements randomly across the unit grid using a Gaussian distribution with mean of zero 

and standard deviation set at one-sixth of the standard deviation for the corresponding 

feature in the observable vector. This ratio of standard deviations was based upon a 

previous study utilizing SOFMs to investigate V1 topographies (Swindale, 2004). The 

second method of “Cartesian initialization,” used only with square unit grids, initialized 
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unit feature vectors such that the first two feature maps were monotonically spaced 

along the two orthogonal axes of the unit grid while the remaining feature maps, if any, 

were initialized randomly as in the first method. Cartesian initialization was explored to 

emulate a genetically predetermined topography (e.g., development of tonotopically 

mapped projections from the thalamus to A1). Following training, Cartesian 

initialization yielded stable maps similar to those resulting from random initialization in 

all conditions tested. 

 

2.1.3 Metrics of Topographical Characteristics 
 

Metrics of topographic map characteristics were devised to quantify observations made 

in stable SOFM maps and also to view trends over sets of repeated SOFM experiments. 

All metrics except the contour orientation metric were averaged (arithmetic mean) when 

compiled over sets of SOFM experiments having identical map parameters but using 

different random seeds for initialization. 

 

We defined globally orthogonal features as two features that were mapped smoothly 

and monotonically along orthogonal orientations in the unit grid such that their contour 

lines intersected predominantly at right angles. We quantified smoothness and 

monotonicity of a feature with the cyclic contour metric (CCM). This metric measures 

the amount of grid area accounted for by units lying within the boundary of at least one 

closed iso-feature contour. A large percentage of units surrounded by iso-feature 
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contours in a particular feature map reflects either spatial periodicity or discontinuity of 

this feature. Therefore, when the CCM for a given feature is close to zero, this feature is 

smoothly and monotonically mapped along one direction through the grid. In order to 

assess whether two features were each smoothly and monotonically mapped (implying 

global orthogonality), we calculated a collective CCM as the union of units surrounded 

by iso-feature contours for each feature. If, for example, features 1 and 2 out of N were 

being evaluated for global orthogonality, the CCM1,2 would be calculated by assessing 

the union of the number of units completely enclosed by at least one iso-feature 

contour of either feature 1 or feature 2 and dividing that number by the total number of 

units in the grid: 

 

 
unitsofnumbertotal

inenclosedunitsinenclosedunitsCCM ,
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Unit enclosure was tested using 100 iso-feature contours evenly spaced over the total 

range of the feature. We accounted for periodicity along the grid edges by including 

units that were mostly but not entirely surrounded by iso-feature contours (details 

below). 

 

We defined a Cartesian map as a two-feature map on a square unit grid where each 

feature topography could be well fit with a plane. These planes are oriented so that the 

iso-feature contours of one plane lie parallel to the vertical grid edges, and the iso-

feature contours of the other plane lie parallel to the horizontal grid edges. In this case, 

the iso-feature contour plots for both features are aligned with the edges of the unit 
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grid. Two features that form a Cartesian map are globally orthogonal, and CCM1,2 for 

such a situation is zero because the iso-feature contours do not close upon themselves. 

As two feature maps depart from mutual global orthogonality, their maps become more 

periodic or discontinuous and thus the grid contains a larger percentage of units 

enclosed by iso-feature contours. The higher values of the CCM in this case imply that 

global orthogonality does not exist between these feature maps, although local 

orthogonality may still be preserved. 

 

Local orthogonality between two feature maps is a condition less strict than global 

orthogonality whereby the iso-feature contours of one feature intersect the contours of 

another feature predominantly at right angles but are not necessarily smoothly and 

monotonically mapped onto the unit grid. We evaluated local orthogonality with the 

contour intersection deviation metric (CIDM). It is difficult to calculate the angle of iso-

feature contours without interpolation, so the metric was actually calculated at each unit 

in the grid by measuring the angle between the gradient vectors of the two features 

being tested for local orthogonality. Because each feature’s gradient is perfectly 

orthogonal to its iso-feature contours, the angle between the gradient vectors is equal to 

the angle between the iso-feature contours. The contour intersection deviation metric 

was taken as the root mean squared deviation from 90° of gradient intersection angles 

between two features:  
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where M is the total number of units in the grid and gi, gj represent the gradient vector 

for features i and j, respectively. For two features that are locally or globally orthogonal, 

this metric will approach zero. For two features whose contours run mostly parallel to 

one another (i.e., angles of intersection near zero degrees), this metric will approach 90°. 

Intersection angles drawn from a uniform distribution in the range [0° 180°] have a root 

mean squared deviation from 90° equal to 52°; therefore, if a particular probability 

distribution of iso-feature contour intersections has a CIDM of less than 52°, then the 

probability density function of this distribution will be clustered closer to 90° than to 0° 

and 180°. 

  

Another property observed in some stable maps was termed dominance. We defined a 

dominant feature as one that 1) exhibits a monotonic gradient topography, 2) aligns its 

gradient axis closely with the longest line segment enclosed by the unit grid. We 

measured this characteristic with the contour orientation metric (COM). This metric 

was calculated as the angle between the longest line segment enclosed by the unit grid 

and the axis of gradation of the feature map in question. The axis of gradation direction 

was calculated by fitting grid features to a plane in three dimensions and measuring the 

orientation of the fitted plane: 
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where x and y are the grid coordinates; zi is the value of feature i represented by the unit 

at coordinates (x, y); a, b, and c are the parameters to be fit; and θi is the orientation of 

the fitted plane. The COMi was calculated by subtracting the angle of the longest line 

segment in the grid from θi. The COM assumes that the feature map under 

consideration fits a plane well, so a coefficient of determination (r2) for the fitted plane 

was also calculated to assess this assumption. This measure represents the goodness of 

the fit for the plane, i.e., the proportion of the variance in the data that is accounted for 

by the planar fit: 
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where i indexes all the points in the plane, z is the feature value being fit (as above),  is 

the fitted estimate of z at each point in the plane, and 

ẑ

z  is the arithmetic sample mean 

of all the z values. 

 

We observed that when a feature achieved dominance, its map often exhibited shared 

local orthogonality between itself and multiple secondary features. In other words, while 

each of the secondary feature maps exhibited local orthogonality with the primary 

feature map, only one of the secondary map gradients was substantially different from 

zero at any given point in the unit grid. Visually, this condition corresponds to 

secondary feature map contours that cluster together with other contours of the same 

feature and away from the contours of other secondary features. We quantified this 
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condition with the high gradient overlap metric (HGOM). We first found the maximum 

gradient for each of the secondary feature maps. For each secondary feature we then 

enumerated all units in the grid where the magnitude of the gradient was greater than 

half of this maximum. We then calculated the HGOM between two or more secondary 

features as the percentage of all such units included by at least two of the features: 
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where f1, f2, … are the secondary features over which the HGOM is calculated and gi is 

the gradient vector for feature i. The metric does not indicate that secondary features 

are locally orthogonal with the dominant feature (this is measured with the CIDM), but 

the degree of overlap between iso-feature contours of secondary features. If secondary 

features have a CIDM with respect to the dominant feature of less than 52°, indicating a 

degree of local orthogonality with the dominant feature, then values of the HGOM near 

zero percent indicate that this local orthogonality with the dominant feature map is 

shared between multiple secondary feature maps. Large values of the HGOM indicate 

that secondary feature maps have iso-feature contours that mostly overlap with each 

other, and therefore any local orthogonality with the dominant feature map is not 

shared among the secondary features. 

 

The metrics described previously were computed for a given combination of SOFM 

parameters by conducting multiple experiments with the same parameters yet different 
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random initialization seeds, computing a metric for each experiment, and taking the 

arithmetic mean of the resulting collection of metrics. The exception to this 

methodology was the measurement of contour orientation (i.e., the assessment for 

feature dominance). To compile population summaries of dominance we devised the 

contour orientation deviation metric (CODM), which summarized the dispersal in the 

primary feature map orientations across all the relevant experiments. The CODM was 

calculated as the root mean square deviation of the COMs from 0° (i.e., alignment with 

the longest line segment in the grid): 

 ∑
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where M is the number of SOFM experiments in the set and θi are the COMs.  

 

The coverage uniformity metric (c´) was used to measure the coverage of feature spaces 

in terms of feature distribution uniformity (Swindale, 1991). Greater values of c´ 

indicate a lesser evenness or uniformity of feature space coverage and a biased 

distribution for a particular feature map toward one or a few values. Uniformity of 

feature space coverage is tested using a sampling of feature space values based upon 

their observable vector distributions, so that unevenness in the original distribution is 

not reflected in c´. In other words, the coverage uniformity metric measures how well 

the collective unit vector distributions (and, consequently, map areas) reflect the 

observable vector distributions. Coverage uniformity assessment was applied both to 

entire feature spaces and to subspaces of select features. Values were compared with c´ 
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measured on a Cartesian map, which contains two globally orthogonal features equally 

spaced throughout the feature space and that yields the lowest c´ we observed. The 

arithmetic mean was used to compile c´ for sets of experiments with the same 

parameters. All the metrics used in this study are summarized in the Table 2.1. 
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Table 2.1  Summary of all metrics used to quantify trends in the SOFMs. 

Metric Acronym Units Number 
of 
Features 

Used to 
Quantify 

cyclic contour 
metric 

CCM % grid area 2 or more global 
orthogonality 

contour 
intersection 
deviation metric 

CIDM degrees 2 local 
orthogonality 

contour 
orientation 
metric 

COM degrees 1 dominance 

high gradient 
overlap metric 

HGOM % grid area 2 or more shared local 
orthogonality 

contour 
orientation 
deviation metric 

CODM degrees 1 average 
dominance in 
multiple SOFM 
maps 

coverage 
uniformity 

c´ dimensionless 1 or more feature space 
coverage 
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2.1.4 Conditions Driving Dominance and Global 
Orthogonality 

 

Sufficient uniformity of feature space coverage is generally possible, though not 

guaranteed, with up to ~4 uniformly distributed features or ~10 Gaussian distributed 

features (Swindale, 2004). We tested for conditions driving dominance and global 

orthogonality in stable feature maps having three, four or five uniformly distributed 

features. The main condition tested was the relative weight of a single unconstrained 

feature, with greater weights enforcing a more uniform coverage of the unconstrained 

feature (i.e., lower c′ values). All features in the unit grids were initialized randomly (see 

Section 2.1.2). Observable vector probability distributions were uniformly distributed 

with a mean of zero. For any given map, the standard deviation of the first feature, 

referred to as the primary feature, was fixed arbitrarily at 3. The standard deviations of 

the third and higher features, referred to as the secondary features, were fixed at 0.3. 

The standard deviation of the second feature, referred to as the unconstrained feature, 

was varied systematically. We refer to the ratios between the observable vector standard 

deviations of the primary and unconstrained features as the relative weightings. The 

relative weighting of a feature indicates to the SOFM the importance of maintaining 

coverage uniformity and continuity for that feature. If a feature has a high relative 

weighting then its coverage uniformity metric will be low. Thus, in the SOFM 

algorithm, a greater standard deviation in the observable vector corresponds to a greater 

importance for that feature to be more uniformly mapped. This scenario will confer a 
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low c´ for that particular feature relative to the features with smaller observable standard 

deviations. Relative weighting values used in these experiments were set arbitrarily for 

ease of comparison across disparate features, but monotonic transforms would maintain 

the resulting maps with a simple relabeling. For example, if the primary feature D1 

covers the range [−10, 10] and is assumed to correspond to sound frequency, then the 

transform 
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would yield exponentially distributed frequencies f in the range [20, 20000] Hz. Such 

relabeling does not alter any of the map characteristics determined from these 

experiments. 

 

Because square unit grids have typically been used in SOFM studies to represent subsets 

of sensory cortical areas, we began our initial set of SOFM experiments with square 

grids of 150×150 units. Because square grids contain the confound of two longest line 

segments (i.e., the diagonals), thereby also confounding feature dominance, we 

ultimately utilized elliptical grids for the majority of our experiments. We extensively 

tested elliptical grids with major × minor axis dimensions of 240×120 units. For the 

elliptical experiments, each unconstrained feature weighting of 10, 20, 30, 40, 50, 70 and 

90% relative to the primary feature weighting was run 20 times for a total of 140 maps 

generated for each number of features. We conducted experiments with 3, 4, and 5 

features, giving a total of 420 stabilized SOFMs tested. 
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As discussed above for the CCM, we accounted for periodicity along the grid edges by 

including units that were mostly, but not entirely surrounded by iso-feature contours. 

Contours were considered to enclose a group of units if the endpoints of the enclosing 

shape were separated by less than 10% of the grid edge length for square unit grids (15 

units of distance for the 150×150 square grids) or by less than 10% of the mean length 

of the major and minor axes for elliptical unit grids (18 units of distance for the 

240×120 elliptical grids). Because we defined a dominant feature as one that aligns with 

the longest line segment enclosed by the unit grid, we encountered a confound for 

square grids, since they possess two longest line segments of equal length (i.e., the 

diagonals). Therefore, the COM for the square grids was measured relative to the 

closest diagonal, causing the metric to fall within [−45°, 45°]. Only one longest line 

segment exists for elliptical grids (i.e., the major axis), so the metric in this case falls 

within [−90°, 90°]. In both cases the metric is symmetric around zero degrees, so the 

CODM is always measured about zero but takes on a maximum value of 45° for square 

grids and 90° for elliptical grids. 

 

SOFMs were considered stabilized after 200 million observable vector presentations. All 

SOFMs in this study incorporated fixed isotropic Gaussian neighborhood functions (see 

Section 2.1.1) with standard deviation of σ = 5. Experiments with square grids had a 

fixed learning rate of ε = 0.05 and experiments with elliptical grids had a fixed learning 

rate of ε = 0.1. Learning rates were chosen empirically so that 200 million iterations 
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were sufficient to create stabilized SOFM maps. Only sets of experiments conducted 

with elliptical grids were used to measure trends with different parameters. Experiments 

with elliptical grids whose planar fit r2 for the COM was less than 0.5 were discarded. 

These experiments typically resulted in a saddle point topography for the primary 

feature (see Section 3.3.4). 

 

2.2 Neuronal Responses to Sound Intensity 
Level 

 

2.2.1 Electrophysiology 
 

All animal procedures were approved by the Washington University in St. Louis Animal 

Studies Committee. A head cap consisting of stainless steel screws, titanium head posts 

and dental acrylic was affixed to the skull of each marmoset monkey (Callithrix jacchus) 

under isoflurane anesthesia and with aseptic procedures. Immediately following 

temporalis muscle removal during surgery, the vasculature running within the lateral 

sulcus became visible through the skull and its location was marked on the skull. This 

landmark allows later microcraniotomies (<1 mm diameter) to be drilled through the 

skull with a custom drill directly over auditory cortex (just inferior to lateral sulcus). 

Following surgery, the animals were allowed to recover sufficiently prior to beginning 

experiments. During experimentation, the animals were awake and sat upright in a 

custom, minimally restraining primate chair inside a double-walled sound-attenuation 
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booth (IAC 120a-3, Bronx, NY) with their heads fixed in place by the head posts. The 

location of primary auditory cortex (A1) was identified anatomically using lateral sulcus 

and bregma landmarks and then confirmed physiologically by high driven rates (typically 

20 – 70 spikes/s), short latencies (10 – 15 ms), robust responses to tones in middle 

layers and a cochleotopic frequency map oriented from low frequencies to high 

frequencies in the rostral to caudal direction parallel to lateral sulcus.  

 

High-impedance tungsten-epoxy electrodes (~5 MΩ @ 1kHz, FHC, Bowdoin, ME) 

were advanced perpendicularly to the cortical surface within the microcraniotomies. 

Microelectrode signals were amplified using an AC differential amplifier (AM Systems 

1800, Sequim, WA) with the differential lead attached to a grounding screw. Single-unit 

action potentials were sorted online using manual template-based spike-sorting 

hardware and software (Alpha Omega, Nazareth, Israel). When a template match 

occurred, the spike-sorting hardware relayed a TTL pulse to a DSP system (TDT RX6, 

Alachua FL) that temporally aligned recorded spike times (2.5 µs accuracy) with 

stimulus delivery. Raw waveforms were also bandpass-filtered at 300 – 5000 Hz and 

digitally sampled at 25 kilosamples/s (TDT RX6 24-bit ADC) for offline analysis. Both 

spike times and digitized raw waveforms were saved to hard disk on a PC running 

Microsoft Windows XP. 

 

Acoustic stimuli were synthesized digitally online at approximately 100 kilosamples/s 

with custom MatLab software (MathWorks, Natick, MA). The stimuli were then passed 
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through a digital-to-analog converter (TDT RX6 24-bit DAC), amplified (Crown 40W 

D75A, Elkhart, IN) and delivered to a loudspeaker (B&W 601S3, Worthing, UK) 

located 1 m directly in front of the animal’s head. Speaker output was calibrated so that 

the maximum sound level played was approximately 105 dB SPL with a flat frequency 

response (±5 dB) from 60 Hz to 32 kHz (B&K 4191 Microphone with 2669 

Preamplifier, Nærum, Denmark). 

 

2.2.2 Acoustic Stimuli 
 

Single neuron action potentials were isolated and recorded in primary auditory cortex as 

animals were presented with auditory stimuli as described in Section 2.2.1. Each single 

unit was analyzed with tones delivered at its characteristic frequency (CF), the frequency 

eliciting the greatest response from the neuron within 10 dB of threshold. Rate-level 

functions were measured by pseudorandomly delivering 100 ms CF tones of different 

amplitudes, typically 12 amplitudes spaced by 10 dB from −15 to 95 dB SPL, separated 

by at least 650 ms of silence. Absolute response latency was estimated from each neuron 

using an automated algorithm whose parameters were chosen empirically by noting how 

well the automated latency estimations compared to hand-estimated latencies. An 

overlapping peristimulus time histogram (PSTH) was calculated for the response to 

each sound level using a 20 ms spike window incremented in 2 ms steps. Time-points in 

the PSTH were aligned with the center time of the sliding spike window. Each PSTH 

was smoothed with a Gaussian kernel having a standard deviation of 4 ms, and a rate 
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threshold was calculated as either 15% of the maximum over all PSTHs (one 

corresponding to each sound-level response), or 15% of the maximum of the current 

PSTH if the maximum of the current PSTH was greater than 15% of the maximum 

over all PSTHs. For each PSTH the first time point after stimulus onset that (1) had a 

positive slope and (2) was greater than or equal to this rate threshold was chosen as the 

latency. The absolute response latency for each neuron was then taken as the minimum 

of these latencies measured over all of that neuron’s PSTHs. Rates were calculated for 

the rate-level function from a time window beginning at the absolute response latency 

and ending 100 ms later. Each stimulus amplitude was presented pseudorandomly 10 

times, and the mean rate over these repetitions was used for construction of the rate-

level curve. In the context of dynamic sound level stimuli (see Section 2.3) rate-level 

functions measured in this manner are referred to as static rate-level functions. 

 

2.2.3 Data Analysis 
 

All neurons isolated in A1 that were responsive to tones and had positive driven rates 

(i.e., raw discharge rate minus spontaneous rate) at CF during the stimulus interval were 

analyzed. Rate-level functions were fit with a six-parameter, two-tailed split Gaussian 

function to evaluate response characteristics (Figure 2.1). The model was given as 
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where r is the discharge rate of the neuron as a function of sound level l and where a, µ, 

σlow , clow , σhigh , and chigh are the parameters of the fit; a is the amplitude, µ is the best-level, 

σlow
2 is the low sound-level variance, clow  is the low sound level offset, σhigh

2 is the high 

sound-level variance and chigh is the high sound level offset. This model allowed the 

upper and lower dynamic ranges of nonmonotonic neurons to be fit separately but 

could still fit monotonic functions easily by ignoring the upper dynamic range 

parameters. The sum squared error between the data and model was minimized using 

nonlinear optimization (fmincon medium scale algorithm in MatLab). Because the 

model contained a discontinuity where the two Gaussians joined, model values falling 

between the fit data points could in some cases be considerably different from 

interpolated values. For this reason, the visually depicted model values were linearly 

interpolated from the fit data points. The result is an overfitted representation of the 

original data, but one that eliminated spurious rate values quite successfully. This 

completely automated denoising procedure was particularly effective at providing 

quantitative estimates of threshold and saturation values that matched visual estimates 

for both monotonic and nonmonotonic neurons better than any other single technique 

we employed. 
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Figure 2.1  Six-parameter, two-tailed split Gaussian model used for fitting all rate-level 

functions. The model function has separate parameters (variance and offset) for the 

upper and lower dynamic ranges being fit. The remaining parameters (amplitude and 

mean) are the same for both dynamic ranges. 
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Threshold and saturation points were measured at 20% and 80%, respectively, of the 

maximum driven firing rate (i.e., discharge rate minus spontaneous rate) of the model 

functions linearly interpolated to the nearest dB. Spontaneous firing rate was averaged 

from time intervals when no audible stimulus was presented. Threshold and saturation 

were also measured for the upper dynamic range of nonmonotonic neurons, but the 

20% and 80% points in these cases were calculated relative to the response to the most 

intense sound presented (typically 85 dB SPL). Best level was also taken from the 

model-fitted and linearly interpolated curves as the sound level eliciting the maximum 

firing rate.   

 

Monotonicity index (MI) refers to the degree of reduced spiking at higher stimulus 

intensities and was calculated from the fitted rate-level responses as: 
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where rate is the fitted rate-level function, ratemax_level is the rate in response to the most 

intense sound presented and ratespontaneous is the spontaneous rate measured as indicated 

above. Neurons with MI less than or equal to 0.5 were classified as “nonmonotonic” 

and neurons with an MI greater than 0.5 were classified as “monotonic.” A similar 

metric of monotonicity has been used in previous studies (de la Rocha, Marchetti, 

Schiff, & Reyes, 2008; Recanzone, Guard, & Phan, 2000; Sadagopan & Wang, 2008; 

Sutter & Loftus, 2003; Sutter & Schreiner, 1995), but without subtracting the 
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spontaneous rate. By subtracting spontaneous rate, our MI reflects a ratio scale (as 

opposed to simply an interval scale) and is not influenced by systematic differences in 

maximum driven and spontaneous rates over the population. Additionally, negative MIs 

indicate neurons that are inhibited below their spontaneous rate at high sound levels, 

which is likely indicative of locally inhibitory processes. 

 

Minimum population thresholds as a function of frequency were computed from the 

convex hull (Matlab convhull function) of the two-dimensional points represented 

by threshold and CF for each neuron. All neurons from all monkeys were used for this 

computation. The boundary lines from the convex hull were linearly interpolated (in log 

space for frequency) to find the minimum threshold as a function of frequency. This 

value was subtracted from threshold for each neuron to obtain residual threshold, 

which provided a fairer comparison of level encoding across frequencies than did raw 

thresholds. 

 

The relationship between many variable properties of rate-level functions was assessed 

with either Pearson correlation or Spearman rank correlation. Pearson correlation 

measures a strictly linear relationship between two variables, whereas the Spearman rank 

correlation measures any monotonic relationship (not necessarily linear) between the 

variables. Because the Spearman rank correlation is more sensitive in this regard, it was 

used in instances where we claim no significant relationship exists. Pearson correlation 

was used in instances were we claim a specific linear relationship exists.  
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A permutation test was utilized to assess whether rate-level features such as 

characteristic frequency and monotonicity index were arranged non-randomly by 

electrode penetration, i.e., if these features were related between neurons recorded at 

different depths of the same electrode penetration. Because electrodes were advanced 

approximately perpendicularly to the cortical surface, significantly non-random 

arrangement of neurons at different depths provides evidence for a columnar 

organization of the particular rate-level feature. Neurons were first grouped according 

to penetration, and only penetrations with at least two recorded neurons recorded were 

included in this analysis. Although the permutation test can apply to any rate-level 

property, we discuss only MI here for illustration. For each penetration, the mean and 

standard deviation of neuronal MIs was calculated. Because we are interested in whether 

MI values recorded on the same penetration were similar to one another, we defined 

our test statistic for the permutation test as the mean of MI standard deviations from 

each penetration. For the permutation test, a random assortment of neurons was 

created with the same number of penetrations and the same number of neurons per 

penetration as in the original dataset. The same test statistic was calculated for the 

permuted set, and this was repeated 10 million times to create a distribution of test 

statistics (mean of the penetrations’ standard deviations). Additionally, a sample 

permutation that was closest to the mean of the distribution was saved for later 

comparison. The original test statistic was then compared to the distribution. A p-value 

was calculated as the total number of distribution values that were less than or equal to 
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the original test statistic, divided by the number of iterations (10 million). Additionally, a 

z-score was calculated as the original test statistic, minus the mean of the test statistic 

distribution, divided by the standard deviation of this distribution. 

 

2.3 Neuronal Adaptation to Sound Intensity 
Level 

 

2.3.1 Acoustic Stimuli 
 

Single neuron action potentials were isolated and recorded in primary auditory cortex as 

animals were presented with auditory stimuli as described in Section 2.2.1. Each single 

unit was analyzed with tones delivered at its characteristic frequency (CF), estimated as 

the frequency eliciting the greatest response from the neuron at a sound level no more 

than 10 dB above absolute threshold. A small number of neurons (4 / 47) were found 

to respond poorly to pure tones. These neurons were therefore probed for further 

experiments with bandpass noise centered at CF and with the narrowest bandwidths 

eliciting substantial spiking responses. “Static” rate-level functions were measured by 

delivering 100 ms CF tones (or CF narrowband noise) of different amplitudes, typically 

12 amplitudes spaced 10 dB apart from −15 to 95 dB SPL, separated by at least 650 ms 

of silence. Static rate-level functions were measured and analyzed in the same manner as 

those described in Section 2.2.2, with the exception that occasionally very narrowband 

bandpass noise stimuli were used. Static rate-level functions essentially represent input-
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output functions of the neurons when adapted to silence; hence we also refer to this 

condition as “silence adapted.” 

 

Dynamic level stimuli were created using up to six different level distributions to probe 

adaptation effects in auditory cortical neurons (Figure 2.2). These distributions were 

probability mass functions with probabilities given discretely for each 1 dB. One 

stimulus consisted of all sound levels represented uniformly over the full 120 dB range 

tested. The remaining distributions each had nonoverlapping 20 dB level subranges 

(“probability plateaus”) that were more likely to occur than any of the other levels. 

Using such distributions allowed the sound levels from which stimulus amplitudes were 

drawn most commonly to be easily parameterized by the plateau midpoint or center 

(Dean, Harper, & McAlpine, 2005). An example of one such probability distribution can 

be seen in Figure 2.2A. Initial experiments used a “full set” of levels drawn from the full 

120 dB range (−15 dB SPL to 105 dB SPL) with 20 dB-wide probability plateaus 

centered at 5, 25, 45, 65 and 85 dB SPL (Figure 2.2B). In the full set, plateau levels were 

ten times more likely to be drawn during any particular time interval than were levels 

outside the plateau. After a few experiments, however, it became clear that our awake 

animals poorly tolerated stimuli at the highest plateau, most likely because of the 

relatively high level of these stimuli. We then modified the stimulus paradigm into a 

“reduced set” of distributions that spanned a 100 dB range (−15 dB SPL to 85 dB SPL) 

and omitted the highest level plateau at 85 dB SPL (Figure 2.2C). In the reduced set, 

plateau levels were fifteen times more likely to be occur within any particular time 
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interval than were levels outside the plateau. This latter alteration allowed the adaptation 

effects to be more clearly observed. The full set was run for 12 out of a total of 47 

neurons, so the 85 dB SPL plateau is only represented by 9 nonmonotonic and 3 

monotonic neurons.  Because of the smaller number of neurons recorded at the highest 

probability plateau, regression analyses exclude these data points, although they are 

included for visual comparison in the relevant figures. 
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Figure 2.2  A, Probability mass function (PMF) and cumulative density function (CDF) 

of an example dynamic stimulus with probability plateau centered at 65 dB SPL. 

Probability plateaus on this and later plots are indicated by thick colored lines on the 

level axis. Dynamic stimulus PMFs are discretized at 1 dB intervals. Each CDF depicted 

in the “full set” (B) and “reduced set” (C) of dynamic stimulus distributions 

corresponds to a single dynamic stimulus. The uniform CDF where all levels occur with 

equal probability is indicated by a black line. D, Sample dynamic stimulus amplitudes as 

a function of time corresponding to the distribution in A. 
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At every 100 ms time interval of a dynamic stimulus, a new level was drawn 

pseudorandomly from the same distribution and used to set the amplitude of a pure 

tone whose frequency matched the CF of the neuron under study. An example of the 

time-varying amplitude during a portion of one two-minute-long dynamic stimulus can 

be seen in Figure 2.2C. Amplitudes in the dynamic stimuli were linearly transitioned 

from one time interval to the next with 10 ms ramps to reduce acoustic transients (i.e., 

clicks). No transients were detected in any of the stimuli by three human listeners. 

Additionally, we used relatively long intervals in the dynamic stimuli (100 ms) to ensure 

that both neurons’ initial onset responses and any sustained firing responses were both 

captured in the analysis. 

 

For the full set, dynamic stimuli were delivered for three repetitions of two minutes 

each. For the reduced set, dynamic stimuli were delivered for two repetitions of three 

minutes each. All neurons for which a complete dynamic protocol (either all of the full 

or reduced set) was collected were included in the current analysis.  

 

2.3.2 Data Analysis 
 

All neurons isolated in A1 were analyzed if they met the following criteria: (1) were 

responsive to tones, (2) had positive driven rates during the stimulus interval under 

static rate-level conditions and (3) remained isolated during a complete full or reduced 

set (see Section 2.3.1) of dynamic level stimuli. Dynamic rate-level functions were 

 



 
 

   
 

35

determined by averaging the rate response to the stimulus in each 100 ms temporal 

interval of a particular dynamic stimulus and across all level bins (see below) and 

repetitions. The latency of each neuron in response to the static level stimuli was 

estimated by hand by evaluating the spike rasters from the static rate-level responses 

and finding the minimum time from the stimulus onset until a driven onset response to 

any sound level. This was often identified as a synchronized increase in firing over the 

multiple repetitions of a single sound level. Latencies were estimated to the nearest 5 

ms, but care was taken to ensure that this value always fell before the start of any onset 

response. The automated latency algorithm (see Section 2.2.2) was not used for neurons 

on which the dynamic protocols were run. Rates were calculated for the static rate-level 

functions from a time window beginning at the latency after stimulus onset and ending 

100 ms later.  

 

The latency of each neuron was also used to attribute spikes to a particular temporal 

interval of the dynamic stimuli. For example, if the response latency for a neuron when 

stimulated by the static stimuli was 15 ms, then spikes occurring within the first 15 ms 

of each 100 ms temporal interval were assigned to the previous temporal interval of the 

dynamic stimuli. Because the levels for each time interval were selected randomly and 

independently, spikes potentially associated with any offset response from a preceding 

time interval would therefore be distributed across the entire dynamic rate-level 

function and would not contribute systematically to any individual data point. 

Additionally, dynamic rate-level functions using spikes confined strictly to the stimulus 
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interval (i.e., with a latency estimate of 0) were similar to dynamic rate-level functions 

that accounted for response latency. Rates were averaged over all repetitions of 

temporal intervals with levels falling within a particular 10-dB bin. These level bins were 

centered from −10 to 100 dB SPL (12 bins) for the full set and −10 to 80 dB SPL (10 

bins) for the reduced set. This averaging was necessary to reduce noise for single neuron 

responses in order to estimate thresholds, best levels and dynamic ranges. Good 

estimates of these single unit data were required over the population to determine 

adaptation trends. 

 

Both dynamic and static rate-level functions were fit with the six-parameter, two-tailed 

split Gaussian function discussed in Section 2.2.3. Threshold, saturation, best level and 

monotonicity index were measured from the Gaussian fit and neurons were classified as 

monotonic or nonmonotonic, also in the same manner as discussed in Section 2.2.3. 

For the purpose of calculating mean rate-level functions across the population, rate-

level functions were first normalized between zero and one to create a percentage-of-

maximum rate-level function. The minimum and maximum rate over all the rate-level 

functions collected with both the static and dynamic paradigms were used to perform 

the normalization, so that adaptation of the response gain (i.e., the scaling of the rate-

level curve) could be compared between neurons directly. 

 

To evaluate coding accuracy in response to each dynamic stimulus distribution, we used 

an information theoretic measure called the Fisher information (FI). FI provides an 
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estimate of the upper bound on encoding accuracy or discriminability that can be 

conveyed by a coding element (Dayan & Abbott, 2001), i.e., an upper bound on how 

well an optimal decoder could recreate the encoded value based on the neuron’s input-

output function. If neuronal response variance is constant as a function of response, 

then a steeper slope in the rate-level function would allow greater discrimination of 

stimulus level. Response variance may vary with response, however, in which case an 

improved upper bound on discriminability would be the slope of the mean rate-level 

function divided by the variance, which is an estimate of FI. We calculated FI precisely 

by estimating response probabilities directly: 
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where fi(s) is the FI of the ith neuron to stimulus s and Pi[r|s] is the probability that 

stimulus s elicited r spikes from the ith neuron. In our case, s indexes stimulus level in dB 

SPL, grouped into 10 dB bins as described above. The conditional probability was 

calculated by measuring a 2D histogram of the number of times r number of spikes 

occurred during each 10 dB bin (over all time bins and repetitions). This histogram was 

smoothed with a 2D Gaussian kernel having standard deviations of 8 dB and 0.5 spikes, 

then normalized into a probability distribution (i.e., the spike probabilities sum to one 

for each 10 dB bin). Differentiation was performed with a 5 point numerical method, 

disregarding two points on either end of the rate-level curves (FI for these points was 

set to zero). The 2D histogram was also calculated using all sound levels present in the 
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dynamic stimulus (1 dB bins), in order to verify that the 10 dB binning did not 

necessarily affect the population mean FI (see below). The 10 dB bins had the added 

advantage of being less noisy on the single neuron level and also aligned with the 

dynamic rate-level functions as described above. 

 

Overall coding accuracy across each of the two neuronal subpopulations was assessed 

by calculating the sample mean of the individual neuronal FIs: 
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where n represents the number of neurons in each subpopulation. A mean FI function 

was then computed separately for each of the two neuronal subpopulations (monotonic 

and nonmonotonic) and each of the dynamic stimuli. Averaging FI over a population of 

neurons inherently assumes that the neuronal responses are not correlated with each 

other (Averbeck, Latham, & Pouget, 2006). This topic is discussed and analyzed for 

paired recordings in response to sound level separately in Appendix A. 

 

Mean FI for nonmonotonic populations was for some analyses computed by evaluating 

the mean of partial FI curves on only one side of the best level (BL). For this 

manipulation, the portion of the FI curve on the same side of BL as the stimulus level 

distribution’s plateau center was averaged. Because nonmonotonic neurons have two 

dynamic ranges, this analysis provided a clearer estimation how FI curves for these 

neurons differed between dynamic stimuli by only analyzing the portion of the FI that is 
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most involved in encoding the most probable levels. A similar technique was applied to 

rate-level functions. The points on the same side of BL as the stimulus level 

distribution’s plateau center were first normalized over all the dynamic rate-level 

functions for each neuron and the mean of these normalized curves was taken over all 

nonmonotonic neurons. Any points in this analysis that were represented by two or 

fewer neurons were removed. 

 

2.4 Time Course of Neuronal Adaptation to 
Sound Intensity Level 

 

2.4.1 Acoustic Stimuli 
 

Single neuron action potentials were isolated and recorded in primary auditory cortex as 

animals were presented with auditory stimuli as described in Section 2.2.1. The 

characteristic frequency (CF) was estimated within 10 dB of threshold, and static rate-

level functions were collected in the same manner as described in Section 2.3.1. The 

dataset collected for analysis of adaptation time constants included 15 / 97 neurons that 

responded poorly to tones so were driven instead with bandpass noise centered at CF 

and with the narrowest bandwidth eliciting a response. Once static rate-level responses 

were collected, the dynamic rate-level response to the uniformly distributed dynamic 

stimulus (see Section 2.3.1) was recorded for 86 / 97 neurons. 
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From our recordings of neuronal responses to the dynamical sound level stimuli we 

found that we were unable to extract time constants of adaptation by comparing rate-

level functions over consecutive time windows, as has been done in previous studies 

(Dean et al., 2005), due to lower driven rates and higher response variance of cortical 

neurons as compared to subcortical neurons. These issues also prevented us from being 

able to characterize the time course of adaptation for the rate-level functions measured 

over the same 100 or 120 dB range used by dynamic stimuli described in Section 2.3.1. 

In addition, our aim was to test the hypothesis that in general nonmonotonic neurons 

are faster at adapting to low sound levels and monotonic neurons are faster at adapting 

to high sound levels. This did not require a full characterization of time constants as a 

function of the sound levels involved or necessarily over the entirety of our 100 or 120 

dB range, but simply between high sound levels and low sound levels as determined by 

the threshold and dynamic range of each neuron recorded individually. Therefore, we 

instead created dynamic stimuli containing only transitions between sound levels chosen 

by two separate probability distributions that were uniform over smaller ranges (Dean, 

Robinson, Harper, & McAlpine, 2008). These stimuli were referred to as dynamic-

transition stimuli to differentiate them from the dynamic stimuli described in Section 

2.3.1.  

 

Each of the two sound level probability distributions used for creating the dynamic-

transition stimuli were 20 dB in width and were discretized at 1 dB intervals, making 

them similar to the probability plateaus of the dynamic stimuli constructed to analyze 
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steady-state adaptation. Thus, in the context of a dynamic-transition stimulus, they were 

also referred to as probability plateaus. Because the plateaus were selected to be non-

overlapping, they were further specified as the high-level plateau and the low-level 

plateau. The distributions were used to determine the sound level within a 100 ms time 

interval of a pure tone (or bandpass noise) carrier. The construction of the stimulus 

based on the probability distributions is the same as was described in Section 2.3.2. 

After a uniformly-distributed random interval between 30 and 40 seconds, the 

probability distribution currently determining the sound levels was switched to the other 

distribution (Figure 2.3). Switches from the high-level plateau to the low-level plateau 

were referred to as high-to-low transitions and from the low-level to the high-level 

plateau as low-to-high transitions. Each dynamic-transition stimulus contained 12 

transitions (13 instances of different probability plateaus), 6 each of the high-to-low and 

the low-to-high transitions. Each of these dynamic-transition stimuli were on average 

7.5 minutes in total duration and were repeated 1–5 times depending on how long the 

neuron remained isolated. For 3 / 97 neurons, stimuli contained only 10 transitions (5 

of each type) and the minimum duration before a transition was 29.4 seconds, so 

neuronal examples and average responses are given over the time course of 29 seconds 

instead of 30 seconds, even though most neurons had the full 30 second duration 

before a transition. 
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Figure 2.3  Example time courses of a dynamic-transition stimulus for the high-to-low 

transition (A) and the low-to-high transition (B). Each line represents the sound 

intensity level of the pure tone or bandpass noise carrier. The carrier is presented 

continuously with only the sound level changing in each 100 ms time interval. 
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The locations of the plateaus for a dynamic-transition stimulus were decided online 

based upon either the rate-level collected in response to uniformly distributed dynamic 

stimulus (see Section 2.3.1) or in cases where this stimulus was not played, based upon 

the static rate-level function. The uniformly distributed dynamic rate-level was a better 

indicator because it represents an adapted steady-state of the neuron. In the cases where 

this was available, the low-level plateau was chosen to be near to threshold along the 

lower dynamic range. For nonmonotonic neurons, the high-level plateau as chosen to 

be at slightly higher sound levels than the upper saturation (see Section 2.2.3) of the 

neuron, along the upper dynamic range. For monotonic neurons, the high-level plateau 

was typically chosen to be at the highest level, which for all responses recorded in this 

dataset was a plateau centered at 65 dB SPL. In cases where the uniformly distributed 

dynamic rate-level response was not recorded, plateaus centers were chosen more 

conservatively, keeping in mind that responses to dynamic stimuli always shifted rate-

level functions to higher thresholds (see Chapter 4). This meant choosing a center for 

the low-level plateau that was well above threshold along the lower dynamic range. For 

nonmonotonic neurons, the high-level plateau was centered closer to the upper 

threshold. For monotonic neurons the high-level plateau was again usually chosen at the 

highest sound levels (centered at 65 dB SPL for this dataset). A few nonmonotonic 

neurons were originally recorded by placing the high-level plateau at the highest levels in 

the same fashion as for monotonic neurons. The reason this placement was replaced by 

the strategy described above was because these first few neurons were quite often 

completely saturated or completely suppressed in response to the high-level plateau. 
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During analysis, responses were averaged over 1-second time windows (see Section 

2.4.2), and this transition to complete saturation or suppression would occur faster than 

we could measure. The low level-plateau was placed so at least some of the levels were 

above threshold for the obvious reason that the neuron is not driven below threshold. 

 

2.4.2 Data Analysis 
 

All neurons isolated in A1 that were responsive to tones, had positive driven rates 

during the stimulus interval in their static-rate level responses and for which the neuron 

remained isolated for at least one complete repetition of a dynamic-transition stimulus 

(see Section 2.4.1) were analyzed. Static rate-level functions were fit with the six-

parameter split Gaussian model and monotonicity index was determined from the fitted 

response (see Section 2.2.3). Spikes from the neuronal responses to the dynamic-

transition stimuli were assigned to one of the 100-ms temporal intervals that 

corresponded to a specific sound level in the dynamic-transition stimulus in the same 

manner as for the dynamic stimuli of Section 2.3.1 (see Section 2.3.2). After this 

assignment, rates were averaged (mean) over all repetitions of temporal intervals with 

sound levels falling within a particular 2-dB bin. This was done separately in sequential 

non-overlapping 1-second time windows where time zero was defined as the point 

where a transition occurred. In other words, temporal sequences of rate-level functions 

were constructed separately for the high-level and low-level plateaus. The time sequence 

of rate-level functions was further averaged (mean) over all 10 or 12 transitions within a 
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single repetition of a dynamic-transition stimulus. We experimented with different 

sound-level bin sizes and also with different temporal window sizes and found that due 

to highly variable responses, the sequence of rate-level functions produced with bin 

sizes smaller than those described above were too noisy in order to estimate time 

constants of adaptation. 

 

The time sequence of rate-level functions described above were also averaged over all 

the sound levels in each 20 dB wide plateau (either high-level or low-level) and in each 

time window to produce a time sequence of mean-rate responses. For these mean-rate 

responses we were able to use smaller time windows and still effectively estimate time 

constants of adaptation. Note that time constants of adaptation for the rate-level 

responses and for the mean-rate responses are not a priori necessarily the same, although 

it is like that they are related. Correlation between rate-level and mean-rate adaptation 

time constants and results using different time window sizes for the mean-rate 

responses are presented in Chapter 6. 

 

The time sequence of rate-level functions was fit with a two-dimensional adapting 

sigmoid function with four free parameters. The sigmoid, given as a Gaussian 

cumulative probability distribution function, captured the rate-level functions in each 

time window, and the mean of the sigmoid was made to vary in time as a single 

exponential decay (Figure 2.4A). The model was given as 
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where r is the discharge rate of the neuron as a function of sound level l  and of time t 

and where µ0 , τ, µc and σ are the parameters of the fit; µ0 is the difference between the 

initial and the steady-state dynamic range midpoints, τ is the time constant of the 

adapting sound level, µc is the steady-state dynamic range midpoint and the σ is the 

standard deviation of the sigmoidal rate-level function. The sigmoid is a Gaussian 

cumulative probability distribution function, given as F in Equation 2.15. The sum 

squared error between the data and model was minimized using nonlinear optimization 

(fmincon medium scale algorithm in MatLab). The direction of the fitted sigmoid is 

determined by the static parameter d that is not a parameter of the fitting procedure. 

This static parameter was chosen to be greater than zero if the summed responses of 

the conditioned data (see below) from the high-level half a plateau were greater than 

those from the low-level half, averaged over all time. This indicated increasing rate-level 

functions. Otherwise d was chosen to be less than zero, indicating decreasing rate-level 

functions.  

 

Before fitting the model to the time sequence of rate-level functions, the data were first 

conditioned to avoid over-fitting noise and to provide for a good estimate of the rate-

level adaptation time constants (τ in Equation 2.15). We conditioned the data by 
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computing a “soft” range in order to avoid the effects of a few large or small outlying 

rates heavily influencing the fit. This process was done separately for the neuronal 

responses to each plateau. The lower bound of the range was taken as the median of the 

bottom 1% of rates and the upper bound as the median of the top 10% of rates over 

the entire time sequence of rate-level functions. These values were chosen empirically, 

as they qualitatively made for the best fits of the data. Most of the rate-level functions 

contained many points at or near zero discharge rate, but only a few points at very high 

rates, which is the reason for a larger percentage of high rates contributing to the upper 

bound. All rates in the rate-level time sequence were normalized to the range [0, 1] using 

this soft range (again, this process was done separately for each plateau), and values 

outside of the range were rectified, i.e., points below zero were set to zero and points 

above one were set to one. 
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Figure 2.4  A, Schematic of the two-dimensional adapting sigmoid function with four 

free parameters used to fit transient responses to dynamic-transition stimuli. B, 

Schematic of the single exponential with three free parameters used to fit transient 

mean-rate responses. 
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In the course of selecting the particular model given by Equation 2.15 many other 

possibilities were evaluated, including models with a greater number of parameters that 

included an amplitude term or an adapting amplitude term, models that had adapting 

standard deviation instead of mean and very large models with separate parameters for 

each rate-level in the time sequence. These other models typically resulted in an over-

fitting of the noise or in less goodness of fit when compared with the model given by 

Equation 2.15. Conditioning the data by smoothing over one or both dimensions (time 

and sound level) typically either was not effective in reducing noise or smoothed out the 

adaptation effects as a byproduct of smoothing out the noise. We also tried comparing 

the rate-level functions at each time point with a steady-state rate-level, computed over 

a longer period of time just before a transition (Dean et al., 2005). In our dataset this 

estimated steady-state rate-level was often not a good estimate when compared to the 

trend apparent in the time-window sequence. Additionally, the technique of using a 

single or double exponential-decay function to fit mean-rates has been utilized in 

previous studies (Chimento & Schreiner, 1990, 1991; Dean et al., 2008; Nagel & Doupe, 

2006) and the model used here is simply an extension of these one-dimensional 

exponential models to a two-dimensional dataset. The model described by Equation 

2.15 was designed to only fit to rate-level functions that were monotonically increasing 

or decreasing over the 20 dB range of the dynamic-transition plateaus. The locations of 

the plateaus were chosen so that they did not overlap with the best-level region of 

nonmonotonic responses (see Section 2.4.1). This meant that the majority of neuronal 

responses to a single plateau were either monotonically non-decreasing or 
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monotonically non-increasing. A few neurons that did not fit well to the model for this 

reason were excluded for some analyses. Many neurons did not reach saturation within 

one or both of the plateau regions, but the mean of the adapting sigmoid was not 

constrained to be within a plateau, so these responses were best-fit using only the 

sloped portion of the sigmoid. 

 

Because the model was fit to a time sequence of data that was normalized separately for 

each plateau, we were not able to differentiate between the effects of gain adaptation 

(i.e., a scaling of the rate response) and dynamic range shifting (i.e., a shifting of the 

rate-level function along the abscissa). The design of the dynamic-transition stimulus 

only revealed rate-level functions over a limited range of the full neuronal dynamic 

ranges, so this in itself would make teasing apart these two effects difficult, if not 

impossible. We therefore focused the model on the effect of dynamic range shifting 

only. To get a sense of gain adaptation without measuring rate constants, we calculated 

the amplitude index (AI) for some neurons, given by 
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where the subscript t indexes the time-window, subscript l indexes the sound-level bin, 

ratelow-to-high is the discharge rate of the neuron in response to the high-level plateau and 

ratet,l
high-to-low is the discharge rate of the neuron in response to the low-level plateau. A 

value of one indicates that no gain adaptation is occurring between the low-level and 
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high-level plateaus. Values less than one are typically expected, particularly for 

monotonic neurons, since gain adaptation usually results in an overall decrease in 

discharge rates at greater sound intensities (see Chapter 5). Values greater than one 

indicate that the neuron is responding with a greater rate to the high-level plateau, 

which would be expected in the case of a monotonic neuron that does not adapt. 

 

The time sequence of mean-rates (average obtained over sound level) was fit with a 

single exponential decay function with three free parameters (Figure 2.4B). This model 

was given as 
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where r is the discharge rate of the neuron as a function of time t and where r0 , τ and rc 

are the parameters of the fit; r0 is the difference between the initial rate and the steady-

state rate, τ is time constant of the rate decay and rc is the steady-state rate. The sum 

squared error between the data and model was minimized using nonlinear optimization 

(lsqnonlin large scale algorithm in MatLab). Time sequences of mean-rate were 

normalized using the responses to both the high-level and the low-level plateau, so in 

contrast to the fitting of the time sequences of the rate-level functions, as described 

above, a comparison of initial and steady-state rate values could be made between 

plateau responses. The fitting worked equally as well without normalization and 

examples of single neurons are shown in Chapter 6 where the mean-rate function was  

not normalized prior to fitting.
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Chapter 3 
 
A Computational Framework for 
Topographies of  Cortical Areas 
 

3.1 Introduction 
 

In many sensory cortical areas, physiological features of neurons are organized into 

functional columns perpendicular to the cortical surface, such that similar neuronal 

response features are evident in neurons throughout all cortical layers within a column 

(Mountcastle, 1997). Orderly, continuous changes in these features across the two-

dimensional cortical surface create a topographic organization or a map. Neuronal 

response features along the surface of primary visual cortex (V1), for example, are 

organized into a topographic map of visual space reflecting the two spatial dimensions 

of the retina (Tootell, Switkes et al., 1988). In many species this retinotopic map is 

accompanied by maps of other neuronal features, such as ocular dominance, orientation 

selectivity, spatial frequency and color (Blasdel & Salama, 1986; Tootell, Hamilton et al., 

1988; Tootell, Silverman, Hamilton, De Valois et al., 1988; Tootell, Silverman, 

Hamilton, Switkes et al., 1988; Yu, Farley, Jin, & Sur, 2005).  
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The visual and somatosensory systems each have a two-dimensional sensory epithelium 

(i.e., the retina and the skin, respectively). These two dimensions of sensory information 

naturally map onto the two-dimensional cortical surface. The auditory system, on the 

other hand, has only a one-dimensional sensory epithelium in the cochlea, which maps 

sound frequency along its length. Not surprisingly, sound frequency has been 

determined experimentally to be mapped along one dimension of primary auditory 

cortex (A1), resulting in a tonotopic frequency map of the neurons’ characteristic 

frequencies or CFs (Merzenich, Knight, & Roth, 1973, 1975). The frequency map in A1 

identifies collections of neurons that respond best to similar frequencies. These regions 

form band-like structures oriented orthogonally to the frequency axis (also known as the 

tonotopic axis). These isofrequency bands stretch from one border of A1 to the other 

and have evoked questions of what additional neuronal feature(s) might be mapped 

along their length. Several candidate features have emerged from neurophysiological 

studies conducted in multiple mammalian species having non-specialized auditory 

systems, including modulation frequency (Langner, Sams, Heil, & Schulze, 1997; 

Schulze & Langner, 1997a, 1997b), binaural dominance (Imig & Adrian, 1977; Kelly & 

Judge, 1994; Rutkowski, Wallace, Shackleton, & Palmer, 2000), sound source location 

(Clarey, Barone, & Imig, 1994; Middlebrooks, Xu, Eddins, & Green, 1998), frequency 

bandwidth (Cheung, Bedenbaugh, Nagarajan, & Schreiner, 2001; Philibert et al., 2005; 

Read, Winer, & Schreiner, 2001; Recanzone, Schreiner, Sutter, Beitel, & Merzenich, 

1999; Schreiner & Mendelson, 1990), response threshold (Cheung et al., 2001; Esser & 

Eiermann, 1999; Philibert et al., 2005; Recanzone et al., 1999; Schreiner, Mendelson, & 
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Sutter, 1992), response latency (Cheung et al., 2001; Mendelson, Schreiner, & Sutter, 

1997; Philibert et al., 2005), rate-level monotonicity (Clarey et al., 1994; Schreiner et al., 

1992; Sutter & Schreiner, 1995) and frequency modulation (FM) sweep speed and 

direction (Godey, Atencio, Bonham, Schreiner, & Cheung, 2005; Mendelson, Schreiner, 

Sutter, & Grasse, 1993; Shamma, Fleshman, Wiser, & Versnel, 1993; L. I. Zhang, Tan, 

Schreiner, & Merzenich, 2003). These features appear to be non-randomly distributed in 

A1, but clear evidence for a single feature mapped orthogonally to frequency has been 

elusive. 

 

Several computational models of V1 topography have been proposed, which to varying 

degrees recreate retinotopy, ocular dominance columns, and orientation preference as 

observed by neurophysiologists (for review see (Erwin, Obermayer, & Schulten, 1995)). 

In particular, the self-organizing feature map (SOFM) algorithm has been shown to be 

particularly successful at creating topographies similar to those observed experimentally 

in V1 (Farley, Yu, Jin, & Sur, 2007; Obermayer, Blasdel, & Schulten, 1992; Yu et al., 

2005). Although multi-feature A1 topographies have been postulated schematically 

(Read et al., 2001; Read, Winer, & Schreiner, 2002; Schreiner, 1995), computational 

approaches have yet to be applied to auditory cortex. Such approaches may not have 

been attempted because unlike the case for V1, the patterns of physiologically-

determined topographies beyond frequency are challenging to discern in A1. We have 

attempted to overcome this limitation by evaluating plausible sensory topographies 
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generated by SOFMs for abstracted neuronal features. Neuronal features could include 

any receptive field parameter relevant for a particular sensory cortical area. 

 

We demonstrate characteristics of SOFM topographies that become apparent upon 

varying the relative weighting of these abstracted features. Relative weighting reflects the 

relative importance given to maintaining coverage uniformity for a particular feature 

(see Section 2.1.4). In particular, we focus on conditions that result in two features 

forming maps everywhere orthogonal to one another or that result in a feature mapping 

along the longest line segment in the modeled area. In V1 and primary somatosensory 

cortex (S1), conditions are more likely conducive to the creation of maps containing two 

orthogonal features corresponding to the two orthogonal dimensions of the sensory 

epithelium. Because acoustic frequency is only one-dimensional, however, an analogous 

orthogonal map may not necessarily exist in A1. Our abstracted SOFM experiments 

explore conditions in which everywhere-orthogonal feature maps do not typically form, 

and are therefore likely to have the most relevance for A1 or other tonotopically 

mapped auditory cortical areas. 

 

The SOFM algorithm assumes that cortical topographies are constrained by the 

principles of coverage uniformity and continuity. These principles appear to reflect 

accurately the functional maps that have been observed physiologically in V1 (Farley et 

al., 2007; Swindale, Shoham, Grinvald, Bonhoeffer, & Hubener, 2000). By utilizing the 

SOFM algorithm to investigate potential topographies of arbitrary sensory cortical areas, 
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we therefore assume that the relevant cortical areas are organized by the same general 

principles as V1, including a continuous, smooth representation of the sensory 

epithelium. The results of these studies provide guidelines for anticipated topographic 

maps to be determined through physiological experiments.  

 

3.2 Results 
 

Self-organizing feature maps (SOFMs) were constructed under varying conditions to 

explore characteristics of the resulting stable feature topographies. SOFM features were 

not intended to correspond directly with specific neuronal response properties 

associated experimentally with sensory neurons; rather, the nature of the resulting 

topographies themselves was explored. Conditions leading to the creation of maps 

containing globally orthogonal or dominant features are of particular interest and 

potentially give insight into the fundamental difference between sensory cortical areas 

with a single dimension of the sensory epithelium (i.e. auditory) versus two dimensions 

of the sensory epithelium (i.e. visual or somatosensory). 

 

3.2.1 Primary Visual Cortex Topographies 
 

In order to test our implementation of the SOFM algorithm we first attempted to 

replicate results previously reported for functional maps of primary visual cortex (V1). 

These maps traditionally generate stable topographies resembling ocular dominance and 
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orientation-tuning maps observed in many species. We were able to obtain stable 

SOFMs closely resembling both these physiological feature maps as well as 

computational maps of V1 previously reported in the literature (Figure 3.1). Feature 

distributions and all SOFM variables were chosen to have the same values as 

(Obermayer et al., 1992). 

 



 
 

   
 

58

 

Figure 3.1  Topographies of V1 as generated by our SOFM implementation. A, 

Retinotopic coordinates (horizontal and vertical directions) of a 150×150 unit grid 

indicate a gross preservation of retinotopic space along with minor local 

inhomogeneities. In this representation units physically adjacent to one another are 

connected by lines. B, For the same grid section, ocular dominance (thick black lines) 

and orientation preference (thin gray lines) contours are overlaid, demonstrating that the 

maps of these features are closely related. In this representation and the next one, units 

physically adjacent to one another are plotted next to one another, so that the resulting 

maps could be superimposed directly onto the cortical surface. C, Preference to 

stimulus orientation (as indicated by oriented bars on right) reveals the distribution of 

this feature across the cortical surface in the classical pinwheel pattern. 
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3.2.2 Topographic Properties of Square Maps with Two 
Features 

 

We began studying possible sensory topographies beyond V1 by implementing the 

SOFM algorithm with two uniformly distributed, equally weighted features on a square 

unit grid. These experiments generated topographies where the iso-feature contours ran 

parallel to either horizontal or vertical unit grid boundaries such that each feature 

increased monotonically from one side of the unit grid to the other. We termed this 

globally orthogonal topography a Cartesian map (Figure 3.2). In addition to global 

orthogonality, two equally weighted features also resulted in maps that did not contain 

any single feature aligned with the longest grid line segment (in this case, the grid 

diagonal). We have termed that type of map characteristic “dominance” in reference to 

the map’s attempt to colocalize units tuned to similar dominant feature values at the 

expense of other features. Thus, two equally weighted features mapped onto a square 

unit grid resulted in maps of two globally orthogonal features, neither of which was 

dominant. 
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Figure 3.2  Cartesian maps generated by the SOFM algorithm with two equally and 

uniformly distributed features. Observable vector probability distributions for both 

features had a standard deviation of 0.3, corresponding to feature values in the 

approximate range [−0.5, 0.5]. Feature values within this range are color coded in the 

maps and colorbars in this and later figures. Maps were initialized randomly with feature 

values distributed near zero (indicated by small squares). Maps typically equilibrated 

with iso-feature contours running parallel with the grid borders. The overlay of iso-

feature contours (right) shows global orthogonality between feature 1 (black, vertical) 

and feature 2 (blue, horizontal). The cyclic contour metric (CCM) between the two 

features is zero, indicating global orthogonality, and the absolute value of the contour 

orientation metric (COM) is 45º for each feature, indicating that neither is dominant 

(see Section 2.1.3). 
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We next considered maps of two features on square unit grids where the primary 

feature was weighted more heavily than the secondary feature. When the primary 

feature was weighted 10 times greater than the secondary feature (both uniformly 

distributed), we observed that the maps typically changed such that the primary feature 

became dominant. In other words, the axis of maximal primary feature gradation 

aligned with the unit grid diagonal (Figure 3.3). The same result held true for two-

feature maps where the observable vector features were Gaussian distributed and for 

maps whose features were initialized to be Cartesian distributed instead of randomly 

distributed. For square unit grids, the secondary feature typically aligned its axis of 

gradation with the other diagonal. Because the square grids have two longest line 

segments, feature alignment could be with either diagonal, creating a potential confound 

for analysis. The iso-feature contours of both features still appeared to be smoothly and 

monotonically mapped and intersected predominantly at 90° angles. Therefore, SOFMs 

with only two features resulted in global orthogonality under all conditions tested. 
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Figure 3.3  Dominance of the primary feature (Feat1) occurs when its weighting relative 

to the secondary feature (Feat2) is 10:1. Accordingly, the observable vector standard 

deviations are 3.0 for the primary feature and 0.3 the secondary feature, corresponding 

to feature values in the approximate range [−5, 5] and [−0.5, 0.5], respectively (shown 

by colorbar). Primary feature dominance occurs for both uniformly (top) and Gaussian 

(bottom) distributed feature values, as well as random or Cartesian initialization (small 

squares). Iso-feature contours for each feature are shown on the right. The CCM for 

both cases is very near zero, indicating global orthogonality, and the COM for both 

cases is about 2° (i.e., axis of maximal feature gradation is nearly aligned with the grid 

diagonal), indicating dominance of the primary feature. 
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3.2.3 Conditions Driving Dominance and Global 
Orthogonality in Square Unit Grids 

 

Given that SOFMs with two features converged onto globally orthogonal maps, we 

next investigated the conditions under which three or more features might form globally 

orthogonal maps between any two features. At the same time, we investigated the 

conditions under which one feature might dominate the map topography. In these 

experiments, we fixed the relative weighting between a single primary feature and the 

secondary features at 10:1. The weighting between the primary feature and a single 

unconstrained feature was then systematically varied between 10:1 and 1:1. In cases 

where the relative weighting between the secondary and unconstrained features was 1:1, 

we also referred to the unconstrained feature as a secondary feature. We chose these 

relative weightings because empirically the relative weighting of 10:1 in SOFMs with 

two features always resulted in dominance of the more heavily weighted feature.  

 

When the relative weighting of the unconstrained feature was set to be the same as that 

of the secondary features, SOFM maps did not equilibrate to a globally orthogonal 

structure. Instead, the secondary features tended to become locally orthogonal to the 

primary feature. In such cases, angles of contour line intersection were still clustered 

around 90°, but the secondary feature maps were periodic across the grid rather than 

monotonic. An example of this result with three features on a square unit grid can be 

seen in Figure 3.4. In this case, the primary feature aligned along the grid diagonal, 
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indicating dominance, and the secondary features mapped with spatial periodicity along 

the orthogonal diagonal, indicating that none was globally orthogonal to the dominant 

feature or to each other. An overlay of iso-feature contours showed that most 

secondary iso-feature contours did not overlap one another substantially. They tended 

to lie parallel to one another (intersection angles clustered around 0º or 180º) and 

orthogonal to the primary feature (intersection angles clustered around 90º). These 

clusterings can be readily summarized by the distribution of contour intersection angles 

between pairs of features, which demonstrates local orthogonality between the primary 

and secondary features.  
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Figure 3.4  Example of a three-feature SOFM experiment with a square unit grid 

demonstrating dominance of the primary feature (Feat1) and lack of global orthogonality 

between the primary feature and the secondary features (Feat2 and Feat3). The 

dominance of the primary feature is quantified by a COM1 value of 0.4°. The contour 

overlay plot (lower left) demonstrates local orthogonality between the primary and both 

secondary features because the contour lines intersect predominately orthogonally. This 

map does not exhibit global orthogonality because CCM1,2 and CCM1,3 are 30.0% and 

22.4%, respectively. The distribution of contour intersection angles (lower right) 

demonstrates a clustering around 90° between the primary feature and each of the 

secondary features, further indicating local orthogonality quantified with contour 

intersection deviation metric (CIDM1,2 and CIDM1,3) values of 31.3° and 39.1°, 

respectively. Intersection angles between the Feat2 and Feat3 are clustered around 0° / 

180°, indicating that their iso-feature contours largely run parallel to one another. 
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When the relative weighting between the primary feature and the unconstrained feature 

was about 10:5 or greater, the primary and unconstrained features tended to map 

globally orthogonally to one another. An example of this case with four features on a 

square unit grid can be seen in Figure 3.5. In this example, the axis of maximal gradation 

of the primary feature ran nearly horizontal while that of the unconstrained feature ran 

nearly vertical. The unconstrained feature showed little indication of periodicity in its 

map compared to experiments when its relative weighting was lower (data not shown). 

Neither the primary nor the unconstrained feature aligned along a diagonal, indicating 

that neither feature was dominant. 
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Figure 3.5  Example of a four-feature SOFM experiment with a square unit grid 

demonstrating global orthogonality between the primary and unconstrained features 

(Feat1 and Feat2, respectively). Secondary features (Feat3 and Feat4) demonstrate shared 

local orthogonality with both the primary and unconstrained features, and no single 

feature dominates the topography. CCM1,2 is 9.7%, confirming global orthogonality 

between features 1 and 2. COM1 and COM2 are 35.8° and 38.0°, respectively, 

confirming that neither the primary nor the unconstrained feature is dominant. CIDM1,3 

and CIDM1,4 are 30.8° and 27.1°, respectively, confirming that both secondary features 

are locally orthogonal with the primary feature. The high gradient overlap metric 

(HGOM3,4) is 6.6%, confirming that this local orthogonality is shared between features 

3 and 4. 
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Throughout the tested range of the unconstrained feature’s relative weighting, the 

secondary features demonstrated spatial periodicity in all directions of the unit grid. In 

SOFM experiments where the primary feature became dominant, this periodicity was 

oriented predominantly along dominant iso-feature contours. In these cases the 

secondary features all shared local orthogonality with the primary feature. The 

periodicity of secondary features is clearly exhibited in both cases discussed above 

(Figures 3.4 and 3.5). 

 

We quantified the qualitative trends discussed in the examples above with four metrics. 

Feature dominance was quantified with the contour orientation metric (COM), global 

orthogonality with the cyclic contour metric (CCM), local orthogonality with the 

contour intersection deviation metric (CIDM), and sharing of local orthogonality with 

the high gradient overlap metric (HGOM). Figure 3.6 demonstrates graphically how 

these metrics were calculated for square grids (for details, see Section 2.1.3) using the 

examples from Figures 3.4 and 3.5. 
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Figure 3.6  Graphical depiction of metric calculations. A, Feature dominance was 

quantified with the contour orientation metric (COM), demonstrated here with feature 1 

from the example in Figure 3.5. B, Global orthogonality was quantified with the cyclic 

contour metric (CCM), demonstrated here with feature 2 from the example in Figure 

3.4. C, Local orthogonality was quantified with the contour intersection deviation metric 

(CIDM), demonstrated here with features 1 and 2 from the example in Figure 3.4. D, 

Sharing of local orthogonality was quantified with the high gradient overlap metric 

(HGOM), demonstrated here with features 3 and 4 from the example in Figure 3.5. 
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For the example given in Figure 3.4, COM1 was near zero (0.4°) and the coefficient of 

determination for the planer fit was high for the primary feature (r2 = 0.99). CCM1,2 and 

CCM1,3 reflected a large percentage of the grid area (30.0% and 22.4%, respectively), 

indicating lack of global orthogonality. CIDM1,2 and CIDM1,3 were lower than the 52° 

expected for a uniform distribution (31.3° and 39.1°, respectively), indicating clustering 

of angles around 90° and therefore local orthogonality with the primary (dominant) 

feature. Additionally, HGOM2,3 measured between the two secondary features was a low 

percentage of grid area (2.9%), implying that local orthogonality with the dominant 

feature was shared between the two secondary features. 

 

For the example given in Figure 3.5, COM1 and COM2 were both far from 0° (35.8° 

and 38.0°, respectively), indicating that neither the primary nor the unconstrained 

feature was dominant. CCM1,2 was a low percentage of grid area (9.7%), indicating that 

these two features were globally orthogonal. CIDM1,3 and CIDM1,4 for the secondary 

features (30.8° and 27.1°, respectively) indicated local orthogonality with the primary 

feature, even though in this case the primary feature was not dominant. HGOM3,4 

between the secondary features remained a low percentage of grid area (6.6%), again 

indicating a sharing of local orthogonality with the primary feature. 

 

 

 



 
 

   
 

71

3.2.4 Conditions Driving Dominance in Other Grid 
Shapes 

 

To evaluate the effects of unit grid shape on maps resulting from 2D features of equal 

or disparate weightings, we ran the SOFM algorithm with unit grids of different shapes. 

In these experiments we again refer to the more heavily weighted feature as the primary 

feature and the other as the secondary feature and used a relative weighting of 10:1. 

Example SOFM experiments with varying unit grid shapes are shown in Figure 3.7. The 

primary feature in rectangular unit grids under these conditions typically aligned with 

one of the diagonals (Figure 3.7A). In elliptical unit grids of varying eccentricities, the 

primary feature typically aligned along the major axis of the ellipse (Figure 3.7B). 

Elliptical grids contain only one longest line segment, the major diameter, thereby 

removing the potential confound of square and rectangular grids (i.e., equal-length 

diagonals). Experiments with elliptical grids thus demonstrated that the primary feature 

does in most cases align along the longest grid line segment, implying feature 

dominance. The SOFM algorithm was also run with asymmetric curve-shaped unit 

grids. These experiments demonstrated that the axis of gradation of the primary feature 

typically aligned itself along a curved contour running parallel with the boundaries of 

the unit grid (Figure 3.7C). In circular unit grids, which have an infinite number of 

longest line segments (diameters, in this case), the primary feature aligned along an 

arbitrary diameter. The remaining primary iso-feature contours resembled latitudes 

while the secondary iso-feature contours resembled longitudes as in the flat projection 

of a sphere (Figure 3.7D). 
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Figure 3.7  Example contours of two-feature SOFM experiments with non-square unit 

grids (grid borders in thick black lines). The primary feature (iso-feature contours in 

dotted lines) is weighted 10:1 over the secondary feature (iso-feature contours in gray 

lines). The primary feature aligns along one diagonal in rectangular grids (A), along the 

major axis in elliptical grids (B), along a curved path parallel to the grid border in 

asymmetric grids (C), and along an arbitrary diameter in circular grids (D). 
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3.2.5 Conditions Driving Dominance and Global 
Orthogonality in Sets of Elliptical Grids 

 

The apparent generality of our results across grid shape and the potential confound of 

dominant features led us to extend the previous qualitative results to another grid type. 

We moved to elliptical unit grids, because unlike square or rectangular grids, elliptical 

grids contain only a single longest internal line segment, eliminating a potential 

confound when assessing feature dominance. Experiments with elliptical grids were 

parameterized the same as for square unit grids, by systematically changing the relative 

weighting of the unconstrained feature from that of the secondary features to that of 

the primary feature. The relative weightings between the primary and secondary features 

were fixed at 10:1. We again quantified resulting trends using four metrics; CODM for 

feature dominance, CCM for global orthogonality, CIDM for local orthogonality, and 

HGOM for sharing of local orthogonality (see Section 2.1.3 for details). Metrics were 

compiled over sets of stable SOFM elliptical maps resulting from experiments using the 

same parameters and then plotted over all parameters as a function of the relative 

weighting of the unconstrained feature (Figures 3.8 and 3.9).  
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Figure 3.8  Dominance / global orthogonality interrelationship in elliptical unit grids. 

A, Two example experiments with elliptical unit grids having three mapped features 

demonstrate dominance of the primary feature at lesser relative weightings of the 

unconstrained feature (left) and global orthogonality between the primary and 

unconstrained features at greater relative weightings (right). B, As the weighting of the 

unconstrained feature approaches the weighting of the primary feature, contour 

orientation becomes variable and the primary feature topography becomes less planar, 

depicted by the spread in COM and r2 values. Examples shown in A are indicated by 

arrows. C, The deviation of the COM values about 0° is used to calculate the CODM. 

For all numbers of features, the primary feature tends toward dominance as the 
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weighting of the unconstrained feature decreases. Maps with higher numbers of features 

require the primary feature to be weighted more heavily in order for it to display 

dominance. D, The CCM1,2 shows the converse, indicating that the primary and 

unconstrained features tend toward global orthogonality as the weighting of the 

unconstrained feature increases. Taken together, the trends from C and D indicate that 

dominance and global orthogonality are unlikely to occur in the same map. 

 



 
 

   
 

76

The general trend demonstrated by the sets of stable elliptical maps was a transition 

from dominance of the primary feature and lack of global orthogonality at lower relative 

weightings of the unconstrained feature, to global orthogonality between the primary 

and unconstrained feature at higher weightings. Concomitantly with this observation, 

however, no feature dominated at higher relative weightings of the unconstrained 

feature. Examples with three features from each end of this spectrum are shown in 

Figure 3.8A. COM values for the primary feature for both examples are highlighted by 

arrows within the population scatter for three-feature elliptical experiments (Figure 

3.8B). CODM values are calculated by taking the deviation of these values around 90°. 

As is clear from the population scatter of COM values, CODM values increased as the 

relative weighting of the unconstrained feature increased (Figure 3.8C), demonstrating 

increased dominance of the primary feature at lower relative weightings of the 

unconstrained feature. Curves for maps with more features were shifted to the left, 

meaning a greater weighting of the primary feature was required for it to dominate as 

the number of features increased. CCM1,2 values decreased with increasing relative 

weighting of the unconstrained feature (Figure 3.8D). When the unconstrained feature 

was weighted approximately half that of the primary feature, each CCM1,2 curve tended 

to reach an elbow point where it began to approach zero, indicating that for greater 

relative weightings, the unconstrained feature map was mostly globally orthogonal to 

the primary feature map. Taken together, these two plots (Figures 3.8C and 3.8D) 

indicate that at low relative weightings of the unconstrained feature, the primary feature 

became dominant and was not globally orthogonal to the unconstrained feature. At high 

 



 
 

   
 

77

relative weightings, on the other hand, no feature was dominant, but the unconstrained 

and primary feature maps maintained global orthogonality.  

 

The secondary features demonstrated shared local orthogonality with the primary 

feature across the majority of unconstrained feature relative weightings. The CIDM 

between the primary and secondary features was lower than expected for a uniform 

distribution in most conditions (Figure 3.9A), indicating a prevalence of local 

orthogonality between the primary and secondary features. Additionally, the HGOM 

among the secondary features remained a low percentage of grid area across all 

conditions (Figure 3.9B), indicating that this local orthogonality was shared among 

secondary features. HGOM values were calculated only between pairs of secondary 

features, so the metric was not included for maps with three features, which only 

contain a single secondary feature. Both metrics had a general trend for increasing as the 

relative weighting of the unconstrained feature increased. This trend may be attributable 

to an increased tendency for the secondary feature maps to be locally orthogonal with 

the unconstrained feature map as the relative weighting increases. 
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Figure 3.9  Trends in shared local orthogonality and coverage in elliptical unit grids as a 

function of the relative weighting of the unconstrained feature. A, The mean CIDM 

between the primary and secondary features is less than the standard deviation of the 

uniform distribution, indicating that the angles of contour intersection are clustered 

around 90°. This result implies that local orthogonality is maintained at all relative 

weightings and is consistent with three, four and five features. B, The HGOM between 

the secondary features remains a relatively low percentage of grid area for both four and 

five features, indicating that this local orthogonality is shared among the secondary 

features. The HGOM is only given for maps with four or more features because three-

feature maps have only a single secondary feature. C, D, Coverage uniformity over the 
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primary and unconstrained features remains relatively constant except at low relative 

weightings (when the primary feature is dominant), while coverage uniformity between 

all feature pairs increases with increasing relative weighting of the unconstrained feature. 

These trends are consistent for three, four and five dimensions and collectively indicate 

that both feature dominance and global orthogonality are achieved at the expense of 

secondary feature coverage. 
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In addition to the metrics discussed previously, we calculated the coverage uniformity 

metric c´ (Swindale, 1991) in order to assess whether the transition from dominance to 

global orthogonality had any effect of feature space coverage. Except at the lowest 

relative weightings of the unconstrained feature, the coverage over the primary and 

unconstrained features was approximately constant across all conditions (Figure 3.9C). 

Coverage uniformity asymptotically approached the expected value for a perfect 

Cartesian map of the 2D space at a relative weighting of about 10:3. This weighting was 

less than the weighting of about 10:5, beyond which we could safely say that the primary 

and unconstrained features were globally orthogonal. Therefore, adequate feature space 

coverage appears to be necessary but not sufficient for global orthogonality. In other 

words, global orthogonality implied adequate coverage, but stable maps were able to 

attain adequate coverage without global orthogonality. On the other hand, lower 

coverage at relative weightings of less than 10:3 corresponded with dominance of the 

primary feature. This finding indicates that feature dominance arose at the expense of 

coverage between the dominant and secondary features. We also measured coverage 

uniformity over all the features. In this case, c´ declined with increasing relative 

weighting of the unconstrained feature (Figure 3.9D). Thus, increasing tendency toward 

global orthogonality between the primary and unconstrained feature map was achieved 

at the cost of secondary feature coverage. 
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3.3 Discussion 
 

Visual, somatic and auditory sensory cortices are all known to contain topographies that 

recapitulate stimulus features transduced by the corresponding sensory epithelium. 

Retinotopy and somatotopy have a natural topographic mapping from the two 

dimensions of the sensory epithelium to the two dimensions of the cortical surface. The 

third dimension of cortex, depth, is not considered in these mappings because cortical 

neurons with similar response properties are generally arranged in a columnar fashion 

(Mountcastle, 1997). Primary auditory cortex (A1) is known to be organized by sound 

frequency along one physical dimension of cortical surface, such that neuronal tuning to 

frequency varies relatively smoothly from one end of A1 to the other (Merzenich et al., 

1973, 1975). The feature or features mapped along the other (isofrequency) dimension 

of A1, however, have remained elusive in mammalian species with non-specialized 

auditory systems. Although many neuronal response features have been shown to be 

mapped non-randomly, it is unclear whether one of those features is mapped exclusively 

along isofrequency contours.  

 

In this study we exploited a computational approach using self-organizing feature maps 

(SOFMs) to provide insight into the appearance of topographies along the continuum 

between global orthogonality, as one might expect in either primary visual (V1) or 

primary somatic (S1) sensory cortices, and feature dominance, as could be possible in 

A1. The principles governing V1 organization appear to be captured accurately by the 
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SOFM algorithm (Farley et al., 2007; Obermayer et al., 1992; Swindale et al., 2000; Yu et 

al., 2005). Such computational methods have not yet been applied to the examination of 

other cortical areas, but if the principles of V1 organization reflect general patterns of 

cortical organization, SOFM studies should be able to provide insight into the 

organization of other cortical areas such as A1. In this study we did not consider 

specialized auditory systems like that of the echolocating bat, or specific neuronal 

features of any particular sensory system; instead, the results can be interpreted to 

reflect topographic maps that might exist in any brain area exhibiting the organizational 

properties under study. 

 

3.3.1 Model Geometries 
 

We first found that the shape of the unit grid used to construct the SOFM could 

influence functional topographies that may be relevant for A1. Topographies with an 

underlying two-dimensional nature, such as retinotopy in V1 or somatotopy in S1, may 

not be as strongly influenced by the edge effects of the grid, possibly because the 

mapping does not involve a fundamental change in the number of dimensions. V1 and 

S1 both map the two dimensions of the sensory epithelium onto the two physical 

dimensions of the cortical surface. In such cases one might expect that the submaps 

from different regions of retinotopic space, for example, could then be tiled together to 

create an overall map of all visual space within V1. Edge effects appear to influence 

map topographies more substantially for conditions that might be found in A1, 
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however, possibly because the natural underlying physiological feature dimensionality 

inherited from the auditory periphery is one-dimensional (i.e., frequency). Because of 

this influence of grid shape upon map topographies, we evaluated the functional 

topographies resulting from several different grid shapes. All study findings generalized 

across all grid shapes tested, implying that as long as the entire grid geometry is taken 

into account, relationships between feature maps is predictable for any grid shape. 

Considering only a subset of the grid (or cortical area) when evaluating a feature map, 

however, could lead to erroneous conclusions of map structure, particularly regarding 

map periodicity and local versus global orthogonality. 

 

3.3.2 Feature Dominance 
 

Our activity-dependent, self-organizing networks predict that a heavily weighted feature 

will align its axis of maximal gradation (i.e., the map direction with the greatest changes 

in feature values per unit distance along the cortical surface) with the longest line 

segment in the unit grid (i.e., the longest line segment within an anatomically defined 

cortical area), an attribute we refer to as dominance. If relative weighting among 

features is interpreted as the relative importance for the system to map similar feature 

values compactly, then dominant features are the most compactly represented. Indeed, 

dominant features in our maps always demonstrated more compactness than 

nondominant features (data not shown), implying that units tuned to similar values of 

the dominant feature were physically closer to one another in the map. Note that with 
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two mapped features on a square unit grid, both features may align their axes of 

maximal gradation along a diagonal. Only one of these mappings is demonstrably more 

compact than the other, which still allows for a single dominant feature to be defined 

(c.f., Figures 3.3, 3.4). To eliminate this confound, however, later experiments made use 

of unit grids containing only a single longest internal line segment.  

 

Given a sufficiently high relative weighting of the primary feature, dominance was 

observed for all unit grid topographies, feature distributions and numbers of features we 

tested. We demonstrated the range of relative feature weightings that resulted in 

dominance of a primary feature by systematically modifying the relative weighting of an 

unconstrained feature in elliptical unit grids with three, four and five features. These 

findings imply that if the tonotopic axis in A1 aligns along the longest anatomical line 

segment of that cortical area, then frequency is likely to be the dominant feature driving 

the topography in this region. Conversely, if frequency is expected to be a dominant 

feature in a particular cortical area, then one would expect the tonotopic axis to align 

itself with the longest anatomical line segment, or along a curve parallel with the longest 

border for complex anatomical shapes. To test this hypothesis, precise anatomical 

borders and physiological maps must be determined in the same cortical area in the 

same animal. 
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3.3.3 Global Orthogonality 
 

If the relative weighting between a primary feature and another feature is near unity, the 

SOFM does not exhibit dominance. Instead, over much of the grid the two most highly 

weighted features tend to organize their gradients monotonically in orthogonal 

directions in a pattern we refer to as global orthogonality. Sets of SOFM experiments 

parameterized by the relative weighting of a single unconstrained feature demonstrated 

that the unconstrained feature became globally orthogonal to the primary feature when 

the relative weighting between the primary and unconstrained features decreased to a 

ratio of about 10:5. At that weighting the unconstrained feature no longer resembled the 

secondary features, i.e., it no longer demonstrated spatial periodicity along the primary 

iso-feature contours. As the relative weighting ratio decreased, the unconstrained feature 

transitioned from local orthogonality with the primary feature to global orthogonality, 

but no longer necessarily shared this orthogonality with the secondary features. At the 

same time, the primary feature lost its dominance of the grid and no other features came 

to dominate. This transition can be thought of as a continuum, where on one end the 

primary feature dominates the topography and no other feature is globally orthogonal to 

it, and where on the other end the primary and unconstrained features are globally 

orthogonal, but no single feature dominates the map. At the dominant end of this 

continuum, the unconstrained and secondary features share local orthogonality with the 

dominant feature and are periodic along primary iso-feature contours. At the globally 

orthogonal end of the continuum, the secondary features share local orthogonality with 

both the primary and unconstrained features. Our results show that the effect of feature 
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dominance was reduced when more features were added, i.e., the primary feature 

required a greater relative weighting to achieve dominance when more features were 

mapped. A previous study of the number of features likely to be mapped using SOFM 

algorithms (Swindale, 2004) gave an upper bound of about four uniformly distributed 

features in order to provide adequate coverage of feature space; therefore we confined 

our study to a maximum of five uniformly distributed features. 

 

3.3.4 Relevance to Cortical Physiology 
 

SOFMs have been successful at creating topographies similar to those observed 

experimentally in V1 (Farley et al., 2007; Obermayer et al., 1992; Swindale et al., 2000; 

Yu et al., 2005), implying that the algorithm reflects relevant properties of sensory 

cortex functional organization. Formation of topographic maps using the SOFM 

algorithm is based upon “activity” of virtual neurons (units) and the probability 

distributions of observable vectors that train these virtual neurons (see Section 2.2.1). 

Thus, the usefulness of the SOFM algorithm for predicting structures or trends in 

cortical topographies relies upon the assumption that topographies are formed in an 

activity-dependent manner. In the SOFM algorithm, this activity-dependence is driven 

by both local Hebbian learning, whereby local units develop similar tuning properties, 

and a global competitive learning rule, whereby non-local units compete for tuning 

properties. The activity-dependence assumption achieves credibility for A1 from 

physiological experiments demonstrating tonotopic plasticity based upon the probability 
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and behavioral relevance of sound frequencies in the local environment (Kilgard & 

Merzenich, 1998; Kilgard et al., 2001; L. I. Zhang, Bao, & Merzenich, 2001). 

Additionally, the SOFM algorithm creates maps that preserve feature continuity with 

compact unit arrangements. Such maps in cortical areas minimize wiring lengths 

between neurons, assuming that neurons with similar response properties have the 

greatest amount of interconnectivity. The SOFM would predict that for neurons having 

similar values of any particular feature, their interconnectivity would be proportional to 

the relative weighting of that feature in the model. Wire-length minimization models 

have been created that mimic orientation preference topography in V1 (Koulakov & 

Chklovskii, 2001). Cortical sensory neurons do appear to interconnect predominantly 

with other neurons having similar features (Read et al., 2001; Ts'o, Gilbert, & Wiesel, 

1986), although it remains to be seen if relative feature weighting in computational maps 

predicts the degree of anatomical interconnectivity between different regions of a 

functional map. 

 

The SOFM algorithm creates topographies that are driven by an activity-dependent 

process which tends to ensure continuity and uniformity of feature space coverage. If 

we assume that the formation and maintenance of topographies in cortical areas relies 

on analogous processes, then our results predict that in any given cortical area 

dominated by a single feature map, no other feature is likely to be mapped globally 

orthogonally to the dominant feature. As discussed previously, the changeover point in 

this continuum occurred for elliptical geometries when the relative weighting between 
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the primary and unconstrained features was about 10:5. At greater relative weightings 

the features became mostly globally orthogonal, and the orientation of the primary 

feature was far enough from the longest line segment that one would no longer consider 

it to be dominant. We may then conclude that if sound frequency is a dominant feature 

in A1 then we would be unlikely to find a single auditory feature mapped globally 

orthogonally to frequency. On the other hand, if frequency is not a dominant feature, 

one could expect to see another single feature that is globally orthogonal to frequency. 

Such a finding would have implications for the topographies of additional features that 

might be mapped. We would predict, for example, that the coverage uniformity of these 

additional features would be decreased and their topography would be periodic with a 

relatively high spatial frequency. In order to determine whether or not sound frequency 

represents a dominant feature of A1 or any other topographic auditory area, high-

resolution physiological maps of multiple neuronal response properties that cover the 

full extent of the cortical area and that can be carefully aligned with anatomical maps of 

area boundaries should be analyzed.  

 

Several anatomical studies of primary auditory cortex demonstrate cortico-cortical 

connections congruent with our SOFM topographic features. Neuroanatomical tracing 

studies have revealed horizontal connections in cat A1 that tended to be clustered in 

iso-frequency bands and were periodic in the iso-frequency direction (Ojima & 

Takayanagi, 2004; Ojima, Takayanagi, Potapov, & Homma, 2005). This result is 

analogous to our finding of periodicity in secondary features along the dominant iso-
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feature (iso-frequency) contours. Other tracing studies in cat A1 have shown horizontal 

connections between patches with similar spectral tuning (Read et al., 2001). In this 

case, single unit microelectrode recordings and tracer injections revealed a periodicity of 

these intrinsic connections along iso-frequency contours, connecting iso-frequency 

regions of narrowband tuning. This finding is also analogous to the periodicity we 

found in our secondary features and implies that neuronal bandwidth (i.e., the 

bandwidth of the neurons’ frequency tuning) may indeed be a secondary feature 

mapped in auditory cortex. Other studies in cat A1 (Matsubara & Phillips, 1988; Reale, 

Brugge, & Feng, 1983) revealed clustering of cortico-cortical connections along iso-

frequency bands, consistent with our notion that units tuned to similar frequencies are 

preferentially connected.  

 

Our SOFM experiments demonstrate shared local orthogonality between the secondary 

and more highly weighted features. Thus, even if a sensory cortical area does not 

contain two globally orthogonal features, we would still predict that in any small portion 

of the area only one secondary feature would have a high gradient parallel to the 

primary iso-feature contours. To date, the spatial resolution of physiological studies in 

auditory cortex has likely not been fine enough to determine the validity of this 

prediction. Depending upon the spatial frequency of the secondary feature periodicity, 

investigating the orthogonality of a particular secondary feature over even a relatively 

large subportion of A1 could reveal an orthogonal map. For example, in the SOFM 

experiment from Figure 3.4, we find that if one were to look at the central 2/3 of the 
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grid meant to represent A1, one might conclude that one of the secondary features is 

globally orthogonal to the dominant feature. Only when the whole map is revealed, 

however, can one observe that both secondary features share local orthogonality with 

the dominant feature at a low spatial frequency. Thus, any study that claims a single 

neuronal feature to be globally orthogonal to frequency but does not include the entire 

extent of A1 could actually have mistaken local orthogonality for global orthogonality. 

Therefore, clear topographies of A1 are only likely to be revealed with high-resolution 

functional mapping of the entire extent of the cortical area, confirmed by anatomical 

analysis. 

 

3.3.5 Experimental Limitations 
 

One possible concern with systematic unconstrained feature experiments was the choice 

to discard maps that did not converge to a non-periodic mapping of the primary feature. 

When the primary feature map did not have a good planar fit, the experiment was 

discarded (r2 < 0.5). This occurred in about 15% out of the total set of elliptical SOFM 

experiments. These maps always included a saddle point such that the primary feature 

mapping was not monotonic along one orientation in the unit grid. These non-

convergent maps may represent a local minimum in the space of equilibrated 

topographies. Given a noisier process driving the formation of the topographies (e.g., a 

simulated annealing process) the topographies would likely settle to a more stable 

structure. It is known that tonotopy in auditory cortex is not only driven by an activity 
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dependent process (Kilgard & Merzenich, 1998; Kilgard et al., 2001; L. I. Zhang et al., 

2001), but is also partially genetically determined by biochemical markers during 

development (Y. Zhang, Dyck, Hamilton, Nathanson, & Yan, 2005). If sound frequency 

represents a dominant feature in A1 area, then axonal guidance of thalamic auditory 

inputs could likely provide an initial tonotopy that is mostly non-periodic and 

monotonic along one cortical orientation. Such a biological substrate could provide a 

consistent starting point from which to launch an activity-dependent process that would 

likely stabilize in a monotonic map for the primary feature. In other words, by randomly 

initializing our unit grids, we likely overestimated the amount of major topographic 

variability, such as the presence of saddle points, that might be expected biologically. 

We used random initialization specifically to diminish the possibility of constantly 

converging to a subset of local minima and obscuring the possible influence of relative 

feature weightings on resulting maps. Indeed, we found only a fourth as many saddle 

points for Cartesian initialization as for random initialization. 

 

Another concern with the global orthogonality results is that uniformly distributed 

features may not be biologically realistic for all potential features. We did perform a 

small set of 2D experiments with Gaussian feature distributions and also found that 

primary features again dominate topographies at high relative weightings. Biologically 

accurate feature distributions were not pursued in these studies for several reasons. 

First, because the uniform distributions require the equilibrated maps to cover the entire 

range of each feature uniformly, these SOFM experiments are the most highly 
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constrained of all possible distributions in terms of coverage. Second, we deliberately 

chose not to label our generic features with specific auditory or other sensory features 

that are likely to be mapped. The precise topographic properties of physiologic features 

other than frequency are not entirely clear in A1, so we did not set out to make at this 

point strong claims about the topographies of these other features. Instead, our results 

provide boundary conditions that limit the range of possible functional topographies 

that might be expected for A1. Third, feature distributions are different for species with 

different acoustic environments, and the current study was not intended specifically to 

model A1 topography for any particular species. 

 

3.3.6 Future Studies 
 

To make quantitative assessments regarding the actual topographies in auditory cortex, 

additional anatomical and physiological details should be taken into account. First, 

estimating which features are actually mapped in the cortical area of interest establishes 

the requisite framework for construction of an appropriate SOFM. As mentioned 

previously, physiological mapping experiments in A1 of species with unspecialized 

auditory systems have indicated several nonrandomly distributed features that would 

represent logical candidates. Relevant mapped features have traditionally been more 

convincingly determined in specialized auditory systems, making echolocating bat 

auditory cortex an attractive physiological system for evaluating the model results. 

Second, estimating actual feature distributions would provide a more accurate 
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framework for the SOFM to operate upon. Coverage uniformity is tied to these 

distributions, and because coverage is a property the SOFM algorithm manipulates, 

different feature distributions could influence the final secondary feature maps, 

particularly if many features were mapped. For example, artificially over-representing 

the presence or behavioral relevance of a particular sound frequency in the acoustic 

environment of an experimental animal could potentially influence frequency, 

bandwidth and threshold maps of A1 as the cortical network reorganizes to devote 

more neurons to processing that frequency. Finally, the precise anatomical shape of the 

relevant cortical area is necessary to design a unit grid of the proper shape. Knowing 

this shape is important given our findings that feature maps with a single dominant 

feature take their shape from the anatomy. This information would also be necessary to 

verify whether or not sound frequency actually represents a dominant feature (as in 

Figure 3.4) or is mapped globally orthogonally with another feature (as in Figure 3.5). 

These anatomical data would ideally be collected in the same animal for which detailed 

physiological experiments are conducted. In order to verify the results of these 

computational studies, future physiological measurements of A1 neuronal function will 

need to be conducted at a high enough density to capture local map variations occurring 

at high spatial frequencies. Such experiments would also be able to confirm whether 

high feature gradients do not typically overlap in the same small region of cortex, as 

these computational studies predict. 

 



 
 

   
 

94

 
Chapter 4 
 
Neuronal Responses to Sound Intensity 
Level 
 

4.1 Introduction 
 

Acoustic information in sound pressure waves is transduced by the cochlea into action 

potentials that travel along cochlear nerve fibers (CNFs). Simply stated, sound at 

different frequencies causes different portions of the cochlea to vibrate so that different 

frequencies are represented by action potentials in separate CNFs. Sound intensity level, 

in units of dB SPL, is an absolute log scale by which the magnitude of sound pressure 

waves is measured. The minimum sound intensity level that causes a driven response in 

a particular CNF at any sound frequency is known as its threshold. This frequency to 

which the CNF is most sensitive—the frequency to which the CNF responds at its 

threshold—is referred to as the characteristic frequency (CF). Threshold and CF are 

also used to describe neuronal responses at higher auditory centers, postsynaptic to the 

auditory nerve (for an overview of above topics see (Geisler, 1998; Pickles, 1988)). 

Because pure tones are sounds that only contain a single frequency, at a given sound 

level they will activate the smallest section of the cochlea (von Békésy, 1960) and 

therefore are the simplest stimulus by which to probe neural responses. Pure tones are 
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also conveniently the eigenfunctions of linear systems, so it is possible that tone 

responses could completely characterize a neuron or neural system if it were linear. 

 

In the auditory nerve, the sound intensity level of a pure tone centered at each nerve 

fiber’s characteristic frequency is encoded monotonically such that each fiber shows a 

non-decreasing firing rate as sound level is increased (Galambos & Davis, 1943; Kiang, 

Watanabe, Thomas, & Clark, 1965; Palmer & Evans, 1980; Sachs & Abbas, 1974). 

Starting in the cochlear nucleus, and in higher auditory areas up to and including 

auditory cortex, some neurons show a nonmonotonic level response whereby neurons 

have a peak response at a particular level and the response decreases at higher levels. 

This response property is often referred to as intensity tuning or sound level tuning. 

Nonmonotonic level responses have been reported in the cochlear nucleus (Rose, 

Galambos, & Hughes, 1959; Young & Brownell, 1976), in the inferior colliculus (Aitkin, 

1991; Ramachandran, Davis, & May, 1999; Rees & Palmer, 1988; Rose, Greenwood, 

Goldberg, & Hind, 1963; Ryan & Miller, 1978; Semple & Kitzes, 1985) and in the 

medial geniculate body (Galambos, 1952). Because this response is not present in the 

auditory nerve, it therefore must be created by neural circuits. Direct evidence of this 

phenomenon has also been reported (Faingold, Boersma Anderson, & Caspary, 1991; 

Sivaramakrishnan et al., 2004; Tan, Atencio, Polley, Merzenich, & Schreiner, 2007; Wu, 

Li, Tao, & Zhang, 2006). The active creation and maintenance of level tuning by the 

nervous system implies that this response feature is potentially important for encoding 

of stimulus intensity or a related stimulus property. Additionally, animals trained in level 
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discrimination tasks show an increased proportion of level-tuned neurons in A1 over 

control animals (Polley, Heiser, Blake, Schreiner, & Merzenich, 2004; Polley, Steinberg, 

& Merzenich, 2006), implying that nonmonotonic level encoding also plays an 

important behaviorally-relevant role. 

 

At the level of primary auditory cortex (A1), various methods for characterizing 

nonmonotonic neurons, coupled with potential differences due to neuronal sampling, 

have resulted in a large range of percentages of nonmonotonic responses reported in 

different studies and have made direct comparisons difficult. Preparations that report at 

least 25% (conservative estimates) in anaesthetized A1 include cat (Clarey et al., 1994; 

Heil, Rajan, & Irvine, 1994; Phillips, 1990; Phillips & Irvine, 1981; Phillips, Semple, & 

Kitzes, 1995; Sutter & Loftus, 2003; Sutter & Schreiner, 1995), owl monkey (Recanzone 

et al., 1999) and bat (Suga, 1977; Suga & Manabe, 1982) and in awake A1 include 

macaque (Pfingst & O'Connor, 1981), squirrel monkey (Shamma & Symmes, 1985) and 

marmoset (Sadagopan & Wang, 2008). At least one study  in awake macaque A1 reports 

percentages below 25% (Recanzone et al., 2000). Although estimates vary, the majority 

of these studies find a substantial portion of level-tuned neurons in A1, a result that is 

not true in other sensory systems, i.e., a very low percentage of nonmonotonic 

responders to contrast are reported in V1 (Peirce, 2007). Although reports again vary, a 

portion of level-tuned auditory neurons demonstrate inhibition below spontaneous rate 

at the highest levels (Pfingst & O'Connor, 1981), a property rarely described in other 

sensory systems. 
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In this chapter we present detailed results on responses of single A1 neurons to pure 

tones at different sound intensity levels. The tones are presented separately, surrounded 

by a period of silence, so that neuronal adaptation to sound level does not play a large 

role in their responses. In general we find a significant difference in neuronal thresholds 

and dynamic ranges between the monotonic and nonmonotonic populations across the 

frequency range of hearing for the species and when the effect of variable frequency 

sensitivity is removed. Statistics of several other neuronal response properties including 

best level, spontaneous rate and driven rate and are also presented. Lower non-adapted 

thresholds in nonmonotonic neurons than in monotonic neurons supports the 

hypothesis that nonmonotonic neurons may be specialized for encoding low sound 

levels. Although this is one potential role for nonmonotonic neurons, particularly in the 

context of dynamic level stimuli (see Chapter 5), it likely complements other functions 

that have been previously ascribed to level-tuned neurons (see Section 4.3). 

 

4.2 Results 
 

Altogether, 544 primary auditory cortex neurons from 12 hemispheres of 7 awake 

marmoset monkeys (Callithrix jacchus) were analyzed for sound intensity level coding 

properties in response to characteristic frequency (CF) tones. As expected, a wide 

variety of input-output functions with positive driven rates during the duration of the 

tone were recorded, including purely monotonically increasing functions, monotonically 
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nondecreasing functions with saturation at high levels and nonmonotonic functions 

with a best level eliciting the highest spiking rates (Figure 4.1). The degree of input-

output monotonicity was quantified for each neuron by a monotonicity index (MI) 

calculated on interpolated, curve-fit rate-level functions (see Section 2.2.3). MIs of this 

population ranged from 1 (completely monotonic) to 0 (completely nonmonotonic, 

suppression to spontaneous rates at high levels) and beyond to about −0.4 (completely 

nonmonotonic, suppression below spontaneous rates at high levels). The smallest MI in 

our dataset was −0.72 and only 3 / 544 neurons had MIs less than −0.4, while 78 

neurons (14%) had MIs less than zero. Threshold and saturation levels were determined 

as 20% and 80% of maximum firing rate above spontaneous rates, respectively, and 

formed the bounds of a conservative estimate of dynamic range attributed to each 

neuron. Only one dynamic range was estimated for rate-level functions with MI>0.5 

(monotonic neurons); for rate-level functions with MI≤0.5 (nonmonotonic neurons), 

however, both a lower dynamic range and an upper dynamic range were defined by 

separate threshold and saturation values. Lower dynamic ranges (blue for monotonic 

neurons and red for nonmonotonic neurons in Figure 4.1) were measured as the range 

of sound levels from threshold to saturation. Upper saturation and upper threshold for 

nonmonotonic neurons were determined at 80% and 20% of maximum firing rate 

above the response at the maximum sound level presented. Upper dynamic ranges 

(green in Figure 4.1) were measured as the range of sound levels from upper saturation 

to upper threshold.  
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Figure 4.1  Normalized rate-level functions from a representative collection of primary 

auditory cortex neurons demonstrate the diversity of monotonicity observed in the 

current study. Neurons are arranged in order from most monotonic (monotonicity 

index or MI = 1, upper left) to most nonmonotonic (MI = −0.01, lower right). Rate-

level functions were measured with 100 ms tones at characteristic frequency and are 

shown as dotted gray lines. Curve fits generated with a six-parameter split-Gaussian 

model (see Section 2.2.3) are shown as solid black lines and the goodness of fit (r2) for 

each neuron is indicated. Threshold (20% of maximum) and saturation (80% of 

maximum) points are labeled on the curves themselves, and dynamic ranges are 

indicated by horizontal colored lines superimposed onto the sound level axis. Dynamic 

range midpoints are indicated by colored ticks. For neurons categorized as monotonic 

(MI > 0.5) only one dynamic range is labeled (blue); whereas for neurons categorized as 
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nonmonotonic (MI ≤ 0.5) the lower dynamic range (red) and the upper dynamic range 

(green) are both labeled. 
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Collectively, the distribution of monotonic neuron dynamic ranges spanned the full 

range of sound levels tested, implying that this subpopulation of neurons has sufficient 

diversity to encode a wide intensity range of hearing (Figure 4.2A). About half of these 

neurons had dynamic ranges of 20 dB or less, but the apparent population spread in 

dynamic ranges and the spread in thresholds likely enables monotonic neurons to 

encode sound levels across the full range of levels and frequencies tested. The 

distribution of nonmonotonic neuron lower dynamic ranges, on the other hand, 

collectively did not span the full range of levels tested (Figure 4.2B). This difference is 

due partially to lower apparent thresholds in this subpopulation and narrower lower 

dynamic ranges (over 80% with dynamic ranges of 20 dB or less). If the upper dynamic 

ranges of these neurons are included, however, then the potential coding levels for this 

subpopulation of neurons matches that of the monotonic population. This finding is 

consistent with the apparent use of nonmonotonic upper dynamic ranges to encode 

sound level under dynamic stimulus conditions (see Chapter 5). Even with limited 

neuronal sampling across all the frequencies of hearing for this species, a dependence of 

the lowest neuronal thresholds on CF is apparent in Figure 4.2.  
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Figure 4.2  Dynamic ranges of all neurons in the study population plotted against CF. 

A, Thresholds for monotonic neurons are connected with a blue line to saturation 

values in order to depict the dynamic range for each neuron. B, Lower (red) and upper 

(green) dynamic ranges are shown for nonmonotonic neurons. Each neuronal 

population appears be capable of coding most or all combinations of frequency and 

level. Dependence of threshold on CF is depicted as a dotted line in both panels. This 

line is provides an estimate of the minimum sensitivity of a neuron at any particular 

frequency (see Section 2.2.3). The gray line in the background of both plots is the 

audiogram of the species measured with a behavioral paradigm (Seiden, 1957). 
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In order to make valid threshold comparisons between neurons independent of 

characteristic frequency (CF), the neuronal dependence of threshold on CF that is 

apparent in Figure 4.2 must be taken into account. The dataset contained a larger 

proportion of nonmonotonic neurons in the frequency range that also had the lowest 

thresholds in the population (Figure 4.3B); therefore, if the dependence of threshold on 

CF were not removed from the threshold estimates then this would bias larger numbers 

of nonmonotonic neurons towards lower thresholds relative to monotonic neurons 

simply due to this sampling difference. This dependence as measured over several 

animals is likely related to the overall behavioral frequency sensitivity (the audiogram) of 

the species, although other factors are certainly involved, e.g., how single neuron 

responses or more likely a population of neuronal responses are used for decision 

making (Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996; Shadlen, Britten, 

Newsome, & Movshon, 1996). The minimum neuronal thresholds as a function of 

frequency are grossly consistent with the audiogram (thick gray line, Figure 4.2A,B) as 

measured with behavioral studies of tone thresholds in marmosets (Seiden, 1957). We 

estimated threshold dependence on CF and removed that value from our threshold 

estimates (see Section 2.2.3). This procedure created relative minimum thresholds of 

approximately 0 dB over all frequencies in our dataset (Figure 4.3A). The procedure did 

not fit the minimum thresholds perfectly, particularly in locations of higher threshold 

concavities or notches (for example from 250 Hz to 1 kHz in Figure 4.2A,B), but 

allowed for a relatively flat 0 dB minimum residual threshold measure for neurons at 
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most frequencies (Figure 4.3A) without over-fitting small variations in minimum 

neuronal threshold. 
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Figure 4.3  Comparison of monotonic and nonmonotonic neuron residual thresholds. 

The residual threshold controls for the neuronal dependence of threshold on 

characteristic frequency (CF). A, Scatterplot of residual thresholds (i.e., neuronal 

thresholds with frequency-dependent neuronal threshold subtracted) as a function of 

frequency for monotonic (blue) and nonmonotonic (red) neurons. B, Monotonic and 

nonmonotonic neurons were separately collected into one-octave frequency bins based 

upon CF to evaluate their relative distribution across frequency. Frequency bins 

centered at 4 and 8 kHz contained significantly more nonmonotonic than monotonic 

neurons (p = 1.7×10−4 and p = 8.2×10−4, respectively; binomial test), and the frequency 

bin centered at 32 kHz contained significantly more monotonic than nonmonotonic 
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neurons (p = 0.046, binomial test). These bins are marked with asterisks. C, Collapsing 

residual thresholds across frequency reveals that the distribution of nonmonotonic 

neurons (median = 12 dB, interquartile range = 15 dB) has a lower central tendency and 

a smaller range than that of monotonic neurons (median = 23 dB, interquartile range = 

28 dB). These two distributions are significantly different (p = 7.2×10−16, Wilcoxon rank 

sum test). 
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Both monotonic and nonmonotonic neurons were found with CFs distributed across 

the full frequency range of hearing for marmosets (Figure 4.3B). Out of the entire 

population, 305 / 544 (56%) neurons were classified as nonmonotonic (MI≤0.5) and 

239 / 544 (44%) neurons were classified as monotonic (MI>0.5). These values likely 

represent a lower bound on the relative proportion of nonmonotonic neurons because 

higher-level measurements of neurons with intermediate MIs would likely have revealed 

further decreased rate responses. Overall, more sampled neurons were tuned to the 

frequencies at which the marmoset is most sensitive, in the range [6, 13] kHz (Figure 

4.3B). Marmoset vocalization energy is also greatest in this range (DiMattina & Wang, 

2006). This over-representation of middle frequency CFs is consistent with previous 

studies sampling marmoset A1 (Philibert et al., 2005; Sadagopan & Wang, 2008) but 

cannot be used to conclude an overrepresentation of these frequencies actually exists 

without thoroughly evaluating the distribution of electrode penetrations, which was not 

done. This aside, significantly more nonmonotonic than monotonic neurons were 

observed in the 4 kHz (p = 1.7×10−4, binomial test) and 8 kHz (p = 8.2×10−4, binomial 

test) frequency ranges where marmoset vocalization energy is common, and significantly 

fewer nonmonotonic neurons were observed in the 32 kHz frequency range (p = 0.046, 

binomial test) where vocalization energy is less common. 

 

Reasonable comparison of thresholds across CFs was made possible by subtracting out 

the regressed frequency dependence of absolute neuronal threshold (see Section 2.2.3). 

With this manipulation, the distribution of monotonic residual thresholds (median = 23 
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dB, interquartile range = 28 dB) was found to be significantly different (p = 7.2×10−16, 

Wilcoxon rank-sum test) from the distribution of nonmonotonic residual thresholds 

(median = 12 dB, interquartile range = 15 dB). As seen in Figure 4.3C, the distribution 

of residual thresholds is not uniform for either population. Overall, residual thresholds 

are skewed toward lower values for both populations, with 75% (409 / 544) of the 

combined population having residual thresholds of 30 dB or less. Some of this skew is 

undoubtedly caused by the limited effective range of sound levels tested at the highest 

and lowest frequencies due to this species’ audiogram, but the skew is still apparent 

even if one considers only residual thresholds in the range [0, 40] dB, which can receive 

contributions from neurons having any CF. The skew is particularly evident for the 

nonmonotonic population and results in the lower median threshold for these neurons. 

Monotonic neuron thresholds appear to be more nearly uniform than those of 

nonmonotonic neurons, however, and as a consequence extend over a wider range of 

sound levels. Only a small number of nonmonotonic neurons were found to have high 

thresholds. For neurons with residual thresholds greater than 60 dB only 6 / 36 (17%) 

were nonmonotonic versus 30 / 36 (83%) that were monotonic. 

 

A visual assessment of neuronal dynamic ranges independent of CF can be obtained by 

sorting neurons of each class by residual threshold and plotting their dynamic ranges 

(Figure 4.4). This depiction confirms that more nonmonotonic neurons have lower 

thresholds than monotonic neurons, reflecting the difference in residual threshold skew 

seen in Figure 4.3C. As also seen in Figure 4.2, the overall range of sound level spanned 
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by neuronal dynamic ranges is similar between the two populations, as long as both the 

upper and lower dynamic ranges of nonmonotonic neurons are taken into account. 

More apparent in Figure 4.4 is that the nonmonotonic lower dynamic ranges appear to 

be narrower than both the monotonic dynamic ranges and the nonmonotonic upper 

dynamic ranges. 
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Figure 4.4  Monotonic (blue), nonmonotonic lower (red) and nonmonotonic upper 

(green) dynamic ranges, sorted by residual threshold separately for the monotonic and 

nonmonotonic populations. Visualizing in this manner shows the clustering of 

nonmonotonic thresholds closer to the minimum neuronal threshold (at 0 dB residual 

threshold). Also apparent is that neurons in either population can potentially encode 

intensities across the entire range of sound levels tested regardless of threshold. 
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All dynamic ranges are also skewed towards lower values. In fact, of the combined 

dynamic ranges for monotonic neurons and lower dynamic ranges for nonmonotonic 

neurons, 80% (433 / 545) span 30 dB or less. They also show the effect of the 

audiogram as seen for neuronal thresholds (Figure 4.2) since higher minimum absolute 

thresholds at the less sensitive frequencies forces neurons at these frequencies to have 

smaller dynamic ranges for a given fixed maximum sound level (Figure 4.5A). Indeed, 

distributions of dynamic ranges (Figure 4.5C–D) show that the lower dynamic ranges 

(median = 11 dB; interquartile range = 8 dB) of the nonmonotonic population are 

significantly smaller (p = 8.0×10−22, Wilcoxon rank sum test) than the monotonic 

dynamic ranges (median = 22 dB; interquartile range = 25 dB). The nonmonotonic 

upper dynamic ranges, however, account for most of the sound levels spanned by 

nonmonotonic neurons (median = 15 dB; interquartile range = 17 dB). These three 

distributions were significantly different from one another (p = 0, Kruskal-Wallis test 

with Tukey-Kramer correction for multiple comparisons). Dynamic ranges from both 

populations can stretch across large spans of sound level regardless of residual 

threshold, and the combined population of dynamic ranges for monotonic neurons and 

lower dynamic ranges for nonmonotonic neurons was bounded by but was not 

significantly linearly correlated with residual threshold (p = 0.47, regression F test; p = 

8.1×10−5, Spearman rank correlation test). Some monotonic neurons near the threshold 

of hearing, for example, exhibit dynamic ranges that span almost the full range of 

hearing tested. The bounding of dynamic range depending on residual threshold occurs 
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because of the fixed maximum sound level of tones in our protocol (and ultimately by 

the dynamic range of the cochlea). 
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Figure 4.5  Dynamic range magnitudes for monotonic neurons (blue) and of lower 

(red) and upper (green) dynamic ranges for nonmonotonic neurons. A, Dynamic ranges 

as a function of characteristic frequency (CF) reveal that the maximum dynamic range at 

a particular frequency is limited by the audiogram of the species (as approximated by 

neuronal thresholds, see Figure 4.2). B, Distribution of dynamic ranges for monotonic 

neurons and of lower dynamic ranges for nonmonotonic neurons reveals a significantly 

lower median for nonmonotonic neurons (p = 8.0×10 , Wilcoxon rank sum test). C, 

Median of nonmonotonic upper dynamic range distribution is in between those in A 

and significantly different from both (p = 0, Kruskal-Wallis test with Tukey-Kramer 

correction for multiple comparisons). 
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Up to this point, neurons in the study population have been classified into two groups 

according to the shape of their rate-level functions. While such a distinction is historical 

(Aitkin, 1991; Pfingst & O'Connor, 1981; Phillips & Irvine, 1981; Rees & Palmer, 1988; 

Ryan & Miller, 1978; Semple & Kitzes, 1985; Sutter & Schreiner, 1995), it does not 

capture the full variety of the rate-level functions depicted in Figure 4.1. In order to 

generalize the findings reported so far, we compared each neuron’s rate-level response 

properties directly with the degree of monotonicity as measured by MI. Figure 4.6, for 

instance, depicts a scatterplot of MI and residual threshold. We found a significant 

correlation between residual threshold and MI using a linear regression fit over all MI 

values greater than −0.4 (r2 = 0.15; p = 0, regression F test, black line in Figure 4.6). 

Only 3 / 305 neurons had MIs less than −0.4 (minimum MI was −0.73) and we did not 

want these few neurons to influence the regression. The correlation remained when the 

regression was calculated for monotonic neurons only (MI > 0.5; r2 = 0.13; p = 

1.3×10−8, regression F test), but not for nonmonotonic neurons only (MI ≤ 0.5; p = 

0.91, Spearman rank correlation test). In other words, the highest residual thresholds are 

disproportionately concentrated in the subpopulation of neurons that exclusively 

saturate their rate response at the highest intensities.  

 

A large proportion of monotonic neurons (74 / 239, 31%) exhibited monotonically 

nondecreasing behavior indicated by an MI of 1. This subpopulation by itself had a 

median residual threshold of 42 dB with individual values that span nearly the full range 

of residual thresholds. This wide range of residual thresholds is particularly noteworthy 
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because 60% of all neurons measured with residual thresholds greater than 40 dB have 

an MI of exactly 1. The traditional definition of MI (de la Rocha et al., 2008; Recanzone 

et al., 2000; Sadagopan & Wang, 2008; Sutter & Loftus, 2003; Sutter & Schreiner, 1995) 

that does not subtract spontaneous rates (see Section 2.2.3) gave a qualitatively similar 

distribution as our definition of MI but with more neurons clustered at the extremes of 

0 and 1. Amongst the nonmonotonic neurons, 78 / 305 (26%) had MIs less than 0, 

indicating suppression below spontaneous rate at the highest intensities and implying a 

local inhibitory process. This number represents an upper bound since many of these 

neurons had MIs near zero. For these neurons to provide evidence for locally inhibitory 

processes contributing to nonmonotonicity, a significance test would need to be applied 

in order to verify that spiking rates were indeed inhibited below spontaneous rates, 

which was not done here. 
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Figure 4.6  Residual threshold as a function of monotonicity index (MI). A, Scatterplot 

reveals that the highest residual thresholds are concentrated in the most monotonic 

subpopulation. Linear regression reveals that threshold and MI are significantly 

correlated across the entire population (r2 = 0.15; p = 0, regression F test). Three 

neurons with MI < 0.4 were not included in the regression and not depicted in the 

scatter plot. B, Distribution of MI values with a large cluster of very monotonic neurons 

having MI equal to 1, and a large cluster of neurons having MIs less than or equal to 0. 
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Monotonicity Index (MI) and spontaneous rate of all neurons in the dataset were 

modestly monotonically related but not significantly linearly correlated (r = 0.09; p = 

0.035, Spearman rank correlation test; p = 0.26, regression F test) and distributions of 

spontaneous rate were significantly different (p = 0.014, Wilcoxon rank sum test) 

between monotonic (median = 2.5 sp/s) and nonmonotonic (median = 1.6 sp/s) 

neurons. Neurons demonstrated an inverse correlation between residual threshold and 

spontaneous rate (Figure 4.7), similar to findings in auditory nerve fibers (Kiang, 

Liberman, & Levine, 1976; Kiang et al., 1965; Liberman, 1978; Rhode & Smith, 1985). 

While a linear regression of the cortical neurons revealed a significant relationship (r2 = 

0.026; p = 1.5×10−4, regression F test), the magnitude of the phenomenon appears to be 

smaller than that seen in auditory nerve. No significant correlation was apparent 

between dynamic range and spontaneous rate (p = 0.90, Spearman rank correlation 

test), contrary to findings in the auditory nerve (Schalk & Sachs, 1980). Spontaneous 

rates were approximately log normally distributed (Figure 4.7B), except for a cluster of 

neurons with spontaneous rates measured at zero (12 / 239 monotonic and 14 / 305 

nonmonotonic). A log normal distribution of spontaneous rates in primary auditory 

cortex has been previously reported (Hromadka, Deweese, & Zador, 2008). 

 

Dividing the neuron population into three similarly sized groups with low (rate ≤ 0.95 

spike/s), medium (0.95 < rate ≤ 4 spikes/s) and high (rate > 4 spikes/s) spontaneous 

rate (Figure 4.7C–E) revealed significantly different residual thresholds in pairwise 

comparisons amongst all groups (p = 0, Kruskal-Wallis test with Tukey-Kramer 
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correction for multiple comparisons). The median residual threshold for the low, 

medium and high spontaneous groups was 23 dB, 16 dB and 12 dB, respectively. Just as 

in the auditory nerve, low-spontaneous spiking cortical neurons appear to encode higher 

sound levels. Threshold and spontaneous rate were still negatively correlated just within 

the monotonic (r2 = 0.026; p = 0.012, regression F test) and nonmonotonic (r2 = 0.069; 

p = 3.6×10−6, regression F test) subpopulations. So, although based on the findings that 

(1) monotonicity index (MI) and threshold were positively correlated, (2) MI and 

spontaneous rate were positively correlated and (3) threshold and spontaneous rate were 

negatively correlated, one might expect only the nonmonotonic subpopulation to show 

the relationship between threshold and spontaneous rate; however, this was not the 

case, as the dataset still contained many monotonic neurons with low thresholds. 
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Figure 4.7  Spontaneous rate and residual threshold are weakly correlated. A, 

Scatterplot of spontaneous rate versus residual threshold for monotonic (blue) and 

nonmonotonic (red) neurons reveals that neurons in either population with higher 

residual thresholds tend to have lower spontaneous rates. A linear regression of this 

trend reveals a significant, though small effect (r2 = 0.026; p = 1.5×10−4, regression F 

test). The regression was performed on a linear scale, leading to a curved line on this 

logarithmic plot. B, Collapsing across residual threshold reveals a significant difference 

between distributions of spontaneous rates for monotonic and nonmonotonic neurons 

(p = 0.014, Wilcoxon rank sum test). C–E, Residual threshold differs between 

groupings into approximate tertiles of spontaneous rate. 
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Contrary to spontaneous rate, neurons in our dataset did not show a significant linear 

relationship between monotonicity index and maximum discharge rate (p = 0.13, 

Spearman rank correlation test, Figure 4.8A). Likewise, there was not a significant 

difference in medians between the distributions of maximum discharge rate (Figure 

4.8B) for monotonic (median = 35 spikes/s; interquartile range = 49 spikes/s) and 

nonmonotonic (median = 36 spikes/s; interquartile range = 49 spikes/s) neurons (p = 

0.48, Wilcoxon rank-sum test). The driven rate of a neuron is the discharge rate minus 

the spontaneous rate, i.e., the amount that the neuron is excited above spontaneous 

firing. There was also not a significant difference in distributions of maximum driven 

rates (p = 0.60, Wilcoxon rank-sum test) for the two populations, both with a median of 

32 spikes/s. Similar to spontaneous rates, distributions of maximum discharge rates and 

maximum driven rates were also approximately log normally distributed. There was a 

substantial and highly significant correlation between spontaneous rate and maximum 

driven rate (r2 = 0.46; p = 2.2×10−74, regression F test). Thus, neurons with greater 

spontaneous rates often had higher driven rates above spontaneous. 
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Figure 4.8  Monotonicity index (MI) and maximum discharge rate are not correlated. A, 

Scatter plot of MI versus maximum discharge rate reveals no significant linear trend (p 

= 0.13, Spearman rank correlation test). B, Collapsing maximum discharge rate across 

MI reveals that the monotonic and nonmonotonic populations are not significantly 

different (p = 0.48, Wilcoxon rank sum test). 
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Other significant correlation trends were consistent with those reported above. Residual 

best level (BL) and dynamic range were positively correlated (Figure 4.9A; r2 = 0.47; p = 

2.4×10−76, regression F test), which follows from the lack of correlation between 

threshold and dynamic range discussed above. That is, because threshold and dynamic 

range were not correlated, a neuron with a particular threshold could have a variety of 

dynamic ranges. Therefore, a larger or smaller dynamic range would result in a higher or 

lower BL, respectively, regardless of threshold. Residual best level was calculated by 

removing the approximate effect of frequency on the overall neuronal sensitivity, in the 

same fashion as for threshold (see Section 2.2.3) For completely monotonic neurons 

(MI equal to 1; 74 / 239 monotonic neurons), the BL was the same as the maximum 

sound level presented. The best level distribution (Figure 4.9B) for monotonic neurons 

(median = 66 dB; interquartile range = 50 dB) was much more nearly uniform than that 

for nonmonotonic neurons (median = 30 dB; interquartile range = 30 dB) and these 

two distributions were significantly different (p = 3.8×10−32, Wilcoxon rank-sum test). 

Consistent with the result for residual thresholds, there was a significant correlation 

between MI and BL for monotonic neurons (r2 = 0.33; p = 3.0×10−22, regression F test) 

but not for nonmonotonic neurons (p = 0.14, Spearman rank correlation test). Finally, 

MIs were significantly positively correlated with dynamic ranges of monotonic (r2 = 

0.13; p = 1.3×10−8, regression F test) and nonmonotonic (r2 = 0.14; p = 0.015, 

regression F test) neurons. This trend was not surprising based upon the fact that 

monotonic and nonmonotonic neurons had significantly different distributions of 

dynamic ranges (Figure 4.3B). A significant negative correlation was found between MI 
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and upper dynamic range for nonmonotonic neurons, but this correlation could easily 

be an artifact of the fixed maximum sound levels presented.  
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Figure 4.9  A, A significant correlation exists between a neuron’s best level (BL) and its 

dynamic range. Black line indicates a linear regression (r2 = 0.47; p = 2.4×10−76, 

regression F test). B, The distribution of BLs for monotonic and nonmonotonic 

neurons are significantly different (p = 3.8×10−32, Wilcoxon rank-sum test). The 

distributions of BLs for monotonic neurons are relatively uniform except for a cluster 

of neurons with MI equal to 1 (74 / 239) whose best level is limited by the greatest 

sound intensity level presented to the neuron. The distribution of BLs for 

nonmonotonic neurons is skewed towards lower sound levels. 
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A comparison of the goodness of fit values (r2) for the monotonic and nonmonotonic 

populations (Figure 4.10A) demonstrated that our results were not biased by fitting the 

rate-level functions with a split Gaussian (see Section 2.2.3). The distribution of r2 

(median = 0.94; interquartile range = 0.11) values over the entire population confirmed 

that overall our fitting procedure resulted in good fits for the rate-level functions. More 

importantly, there was not a significant difference between the r2 distributions for the 

monotonic and nonmonotonic populations (p = 0.12, Wilcoxon rank-sum test). This 

means that the conclusions regarding lower median thresholds and lower median 

dynamic ranges for nonmonotonic neurons was not likely to be biased by this particular 

analysis. 

 

Because of limitations of the recording setup, a potential topography of monotonicity 

that has been reported in other studies (Clarey et al., 1994; Schreiner et al., 1992; Sutter 

& Schreiner, 1995) was not explored. When looking at the recording depth alone (the 

depth of the recorded neuron relative to the dural surface), there was no significant 

correlation between MI and neuron depth for either monotonic (p = 0.19, Spearman 

rank correlation test) or nonmonotonic (p = 0.20, Spearman rank correlation test) 

neurons. Consistent with this finding, there was no significant difference (p = 0.86, 

Wilcoxon rank-sum test) between depth distributions (Figure 4.10B) for the two neuron 

groups. Based on the size and spontaneous rates of background activity during 

recording, we found that the cutoff between layer 4 and layer 2/3 responses was at 

approximately 1.25 mm below the dura. Using this approximate figure, about 50% of 
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both monotonic and nonmonotonic neurons were recorded in layer 2/3, and about 

50% in deeper layers. Although it is more difficult to ascertain where layer 4 responses 

ended, neurons recorded at depths greater than 2 mm below the dura are almost 

certainly deeper layers. This gives about 30% of monotonic neurons and about 40% of 

nonmonotonic neurons recorded in layer 4. Thus, as can also be seen in Figure 4.10B, a 

slightly larger number of monotonic neurons were recorded in layers beyond layer 4 and 

slightly larger number of nonmonotonic neurons were recorded in layer 4. In these 

three depth subsets (depth ≤ 1.25 mm, depth > 1.25 mm and depth ≤ 2 mm, depth > 2 

mm) there were 143 / 266, 120 / 186 and 35 / 82 nonmonotonic neurons, respectively. 

Depth information was not recorded correctly for 10 neurons. The main conclusion, 

that nonmonotonic neurons have significantly lower thresholds than monotonic 

neurons, was still valid and significant in each depth subset (p = 1.8×10−9, p = 4.4×10−8 

and p = 0.032 respectively; Wilcoxon rank-sum tests). 
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Figure 4.10  A, Distributions of rate-level goodness of fit (r2) values with the six-

parameter split Gaussian function for monotonic and nonmonotonic neuron 

populations are not significantly different. Therefore, this particular analysis did not 

likely result in a bias that would negatively affect the conclusions regarding differences 

between the populations. B, Neuron depth distributions for the two populations were 

also not significantly different. Very similar numbers of neurons from the two groups 

(about half of each group) were likely recorded in layers 2/3 (cutoff at approximately 

1.25 mm neuron depth below the dura), whereas slightly more nonmonotonic neurons 

were likely recorded in layer 4 (cutoff at approximately 2 mm neuron depth below the 

dura) and slightly more monotonic neurons in deeper layers. 

 



 
 

   
 

128

In order to investigate whether neurons were organized in a columnar fashion with 

regard to monotonicity index (MI), we separated neurons into groups that were 

recorded at different depths of a single electrode penetration. Electrodes were always 

advanced roughly perpendicular to the cortical surface; thus neurons recorded at 

different depths approximately represent neurons in different layers of the same cortical 

column. Between two and seven neurons were recorded at different depths in a total of 

149 penetrations, encompassing 435 / 544 neurons in the dataset. Just over half (78 / 

149) of the penetrations consisted of two neurons only. To validate our recording and 

analytic techniques, we first verified that CF was non-randomly organized by electrode 

penetration. Frequency is known to be organized within a columnar fashion within 

marmoset A1 (Abeles & Goldstein, 1970). A sorted plot of mean ± standard deviation 

of neuronal CFs within each of the 149 penetrations is depicted in Figure 4.11A. In 

order to assess if the CF standard deviation within a penetration was significantly 

smaller than the standard deviation of neurons selected across penetrations, a 

permutation test comparing the actual penetrations with penetrations consisting of 

randomly permuted neurons was utilized. The permutation test resulted in a distribution 

of test statistics where the test statistic was the mean of the penetration standard 

deviations (see Section 2.2.3). As expected, CF was much more similar within 

penetrations than across penetrations (p < 1.0×10−7, permutation test). In this case, the 

permutation test did not result in a single instance where the test statistic was less than 

that of the actual penetrations, so the p-value from the permutation test in this instance 

is an upper bound based on the total number of permutation test iterations (10 million). 
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For this reason, and to get an assessment of the degree of columnar organization, we 

also ordered the actual penetrations by standard deviation (Figure 4.11B) and compared 

with an instance from one permutation test iteration that was near the mean of the test 

statistic distribution. The plot is marked with the mean standard deviation of the 

penetrations for the actual data and for the representative instance from the 

permutation test. The representative instance mean is also shown with an error bar 

giving ± standard deviation of the test statistic distribution. The z-score of the actual 

penetrations’ test statistic is −11 relative to this distribution. 

 

Plotting mean ± standard deviation of neuronal MIs within a penetration reveals a 

much less organized trend than that for frequency (Figure 4.11C). The within-

penetration standard deviations are much greater than was observed for the case of CF, 

but they also exhibit significant organization (p = 2.1×10−6, permutation test). Sorted 

standard deviation of the MI penetrations was less than that of a near-mean 

representative instance from the permutation test (Figure 11D; z-score of mean 

standard deviation = −4.5), but again the difference was much less than that of CF. 

Thus, although columnar organization of neurons’ MI has a much greater variance than 

that of neurons’ CF, there is still a significant non-random correlation of MI between 

neurons in different layers of the same cortical column. 
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Figure 4.11  Neurons are highly organized in columns by characteristic frequency (CF) 

and loosely, but significantly organized in columns by monotonicity index (MI). A, 

Electrode penetrations with multiple neurons recorded at different depths sorted by the 

mean CF of the neurons and with error bars indicating the standard deviation of CFs 

indicate a high degree of columnar organization of CF (p < 1.0×10−7; permutation test). 

B, When penetrations are sorted by standard deviation of CF (solid line), penetrations 

have a much lower standard deviations than those of penetrations from a permuted set 

of neurons (dashed line) that is near to the mean of a permutation test statistic 

distribution (see Section 2.2.3). The mean standard deviation of the penetrations 

(marked with a dot on solid line) is very far from the mean of the permutation test 
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statistic distribution (marked with dot on dashed line; standard deviation marked with 

error bar; z-score = −11). C, Electrode penetrations sorted by mean MI of the 

constituent neurons have many more penetrations with large standard deviations as 

compared to CF (A). Despite this, neurons still have a non-random columnar 

organization of MI (p = 2.1×10−6; permutation test). D, Same plot as B, except 

penetrations sorted by standard deviation of MI (solid line) and compared with sorted 

MI standard deviation of penetrations containing permuted neurons (dashed line). The 

mean standard deviation of the penetrations (marked with dot on solid line) is quite far 

from the mean of the permutation test statistic distribution (marked with a dot on 

dashed line; standard deviation marked with error bar; z-score = −4.5). 
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4.3 Discussion 
 

The relatively high percentage of level-tuned or nonmonotonic sound level responses in 

the auditory system, their absence in auditory nerve fibers and their relatively low 

numbers in other sensory systems collectively suggest the obvious question as to what 

functional role they play in sound level representation and transformation. In this study 

of tone-responsive neurons in the primary auditory cortex of awake marmosets using 

stimuli separated by periods of silence, we find that: (1) Nonmonotonic neurons have 

significantly lower residual thresholds (accounting for overall frequency sensitivity) than 

monotonic neurons. For monotonic neurons, the amount of on-CF inhibition, as 

measured by the monotonicity index (MI), is directly correlated with residual thresholds. 

There is no a priori reason to believe these neuronal characteristics would be related. (2) 

Both monotonic and nonmonotonic neurons have residual thresholds skewed towards 

lower sound levels. (3) Based on the neuronal sampling in this study, there are larger 

percentages of nonmonotonic neurons in the range from about 6–13 kHz. This region 

also corresponds with the most energy in marmoset vocalizations. (4) Nonmonotonic 

neurons have significantly smaller lower dynamic ranges than monotonic neurons and 

both are clustered below about 30 dB. Still, many monotonic neurons’ dynamic ranges 

and the combination of nonmonotonic neurons’ upper and lower dynamic ranges span 

the full range of sound levels tested. (5) Residual threshold and spontaneous rate are 

inversely correlated over the entire population of monotonic and nonmonotonic 

neurons. This same finding has been noted previously in auditory nerve fibers (Kiang et 
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al., 1976; Kiang et al., 1965; Liberman, 1978; Rhode & Smith, 1985), so it is possible 

that this property is inherited from subcortical inputs. (6) Spontaneous rates are 

significantly greater in the monotonic populations than in the nonmonotonic population 

and but discharge rates are not significantly different between these populations. Both 

are log-normally distributed. (7) There is not a significant difference between the 

number of monotonic and nonmonotonic neurons in superficial layers (above layer 4). 

(8) Neurons are organized in a columnar fashion by both CF and MI, although CF is 

much more highly organized in a cortical column. 

 

The mechanism by which nonmonotonicity is created in higher levels of the auditory 

system remains the subject of investigation. Nonmonotonicity in primary auditory 

cortex can be inherited from input (J. Wang, McFadden, Caspary, & Salvi, 2002; Wehr 

& Zador, 2003) or it can be refined or even created locally by combinations of 

unbalanced excitation and inhibition (Faingold et al., 1991; Sivaramakrishnan et al., 

2004; Tan et al., 2007; Wu et al., 2006). These findings are consistent with a general 

trend of increasing percentages of nonmonotonic responses at higher auditory centers. 

Given that this transformation in the neural code appears to occur gradually across 

multiple auditory stations, level-tuned neurons in auditory cortex seem unlikely to 

exhibit properties fundamentally different from analogous neurons in subcortical 

auditory areas. 
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Our finding of significantly lower thresholds of cortical nonmonotonic neurons when 

compared with monotonic neurons is consistent with results reported in cochlear 

nucleus (Spirou & Young, 1991; Young & Brownell, 1976), inferior colliculus (Aitkin, 

1991; Ramachandran et al., 1999) and at least one report from anaesthetized auditory 

cortex (Sutter & Schreiner, 1995). Cortical monotonic neurons exhibit a more nearly 

uniform distribution of thresholds than nonmonotonic neurons, which tend to have 

thresholds clustered near hearing threshold. The properties of Type V/I and Type O 

neurons in inferior colliculus also exhibit these properties (Ramachandran et al., 1999). 

Lower thresholds for nonmonotonic neurons imply that they are not simply monotonic 

neurons with inhibition added at higher intensities (in which case thresholds would be 

expected to be similar for the two populations). Nonmonotonic neurons throughout the 

auditory system appear to inherit information preferentially arising from the most 

sensitive auditory nerve fibers. The careful preservation of this information all the way 

to auditory cortex in a consistent neuronal type implies that level-tuned neurons are 

involved in a fundamental auditory processing task. 

 

The greatest percentages of nonmonotonic neurons in our study were found at 

frequencies from about 6–13 kHz. This range overlaps with frequencies exhibiting the 

greatest average power in marmoset vocalizations (DiMattina & Wang, 2006), implying 

that nonmonotonic neurons may play an important role in encoding behaviorally 

relevant sounds in the environment. Previous work in A1 of awake marmosets found 

greater numbers of nonmonotonic neurons around 2–4 kHz range, but not a statistically 
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significant difference (Sadagopan & Wang, 2008). However, the notion that 

nonmonotonic neurons play a behaviorally relevant role is supported by findings that 

rats trained to recognize a particular sound intensity level show significantly increased 

numbers of nonmonotonic cortical neurons with best levels near the trained level 

(Polley et al., 2004; Polley et al., 2006). Furthermore, the increased percentage of 

nonmonotonic neurons following training appear to have BLs concentrated in a range 

below the trained level (Polley et al., 2006), implying that these neurons may be using 

their upper dynamic range to encode the target level. 

 

Distributions of best-level (BL) for monotonic neurons in the current dataset were fairly 

uniform, except with a cluster at the highest levels, whereas for nonmonotonic neurons 

BLs were clustered at lower sound levels. Previous studies in A1 have reported either a 

clustering of BLs at the highest intensities (Recanzone et al., 1999) or a more uniform 

distribution of BLs (Heil et al., 1994; Sadagopan & Wang, 2008). One likely difference 

may be due to a larger sampling of nonmonotonic neurons that have significantly lower 

spontaneous rates, as reported here and previously (Sadagopan & Wang, 2008). 

Differences in the latter study, since it is also from awake marmoset cortex with a large 

sampling of nonmonotonic neurons, may be due to experimental design. Our design 

involved a greater sampling of sounds levels (10 dB steps as opposed to 20 dB steps), a 

larger range of sound levels tested (100 dB as opposed to 80 dB) and a longer interval of 

silence between tone bursts (650 ms as opposed to 300 ms). The final difference likely 
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at least partially explains why we find lower BLs, because there is less effect of neuronal 

adaptation to sound level with a longer silence interval. 

 

Several hypotheses have been proposed to explain the coding role of level-tuned 

neurons. The Best-Intensity Model (Shamma, 2003) proposes that nonmonotonic 

neurons represent a place code for intensity as sounds are transformed along spectral 

and intensity dimensions. In this model frequency and intensity are encoded over a 

population of neurons that are narrowly tuned to both stimulus parameters. Studies in 

the auditory cortex of bats have found evidence for this model, which has been termed 

an amplitude spectrum representation (Suga, 1977; Suga & Manabe, 1982). These 

studies also raised the possibility that level-tuned neurons create a “level-tolerant” 

representation of sounds generally. Later investigation in awake marmoset monkeys 

hypothesized that a major function of nonmonotonic neurons is to create a level-

invariant representation for complex sounds (Sadagopan & Wang, 2008). Furthermore, 

nonmonotonic neurons have been hypothesized to play a role in the detection of tones 

in noise (Rees & Palmer, 1988), be responsible for detecting HRTF spectral notches 

used in sound source localization (Davis, Ramachandran, & May, 2003) and as 

previously discussed may contribute to stimulus level discrimination (Polley et al., 2004; 

Polley et al., 2006). Our results here, particularly that nonmonotonic neurons have 

significantly lower thresholds than monotonic neurons, imply that nonmonotonic 

neurons may be specialized for encoding low intensities. This hypothesis is investigated 

further under adapted conditions to dynamic level stimuli in Chapter 5. As discussed 
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above, our results indirectly imply that nonmonotonic neurons are useful for 

behaviorally relevant tasks, but do not directly address the issue of coding sound 

information across frequency. Thus, our hypothesis is likely complementary to other 

potential functions that may be performed by nonmonotonic neurons in cortex and 

subcortically. 

 

 



 
 

   
 

138

 
Chapter 5 
 
Neuronal Adaptation to Sound Intensity 
Level 
 

5.1 Introduction 
 

Audition in humans and other mammalian species encompasses a wide dynamic range 

of sound intensity level to which these species are behaviorally sensitive. In particular, 

the human auditory system is capable of maintaining a level discriminability of 2 dB or 

less across the entirety of the approximately 120 dB dynamic range of hearing 

(Rabinowitz, Lim, Braida, & Durlach, 1976). Neuronal dynamic ranges in the 

mammalian auditory system, on the other hand, typically contain a large number of 

neurons (often reported as a majority of neurons) with dynamic ranges of 40 dB or less 

(Aitkin, 1991; Phillips & Irvine, 1981; Rees & Palmer, 1988; Schalk & Sachs, 1980). Our 

recordings of neurons in the awake auditory cortex show that 80% of dynamic ranges 

span 30 dB or less and that 75% of neuronal thresholds are at 30 dB or less above the 

minimum sensitivity of their respective characteristic frequencies (see Chapter 4). This 

result implies that under these silence-adapted conditions, the neuronal population is 

limited to about a 60 dB dynamic range over which it can represent sound level at a 

reasonable accuracy. Therefore, in order for the auditory system to maintain equivalent 
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coding accuracy over a behavioral dynamic range of 120 dB, these neurons must be able 

to alter their response properties based upon the recent history of stimulus attributes—a 

characteristic typically referred to as adaptation.  

 

A population of adapting neurons is certainly not the only possible coding strategy for 

encompassing a wide dynamic range. One potential alternative is to have sensory areas 

in the brain contain neurons with fixed responses that collectively represent the total 

behavioral dynamic range, a much simpler solution. One potential rationale for an 

adaptive coding strategy is that the accuracy with which a population of neurons can 

encode a range of values representing some aspect of a physical stimulus increases in 

proportion to the size of the neuronal population responsible for the encoding 

(Eliasmith & Anderson, 2004). Indeed, many hypotheses regarding the function of 

neuronal adaptation have focused on the idea that neurons adapt so that they can 

provide the most accurate encoding of a time-varying sensory input ((DeWeese & 

Zador, 1998). For a review of this topic see (Wark, Lundstrom, & Fairhall, 2007)). With 

regard to the representation of sound level, auditory neurons in songbirds (Nagel & 

Doupe, 2006) and in the inferior colliculus of mammals (Dean et al., 2005; Kvale & 

Schreiner, 2004) appear to adapt their response properties to be better suited for 

encoding the most probable sound levels in the environment. 

 

Encoding accuracy is typically quantified with a measure of how well the neuronal 

discharge rate is able to discriminate between values of a sensory input (also referred to 
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as a neuronal input / output function). This is the same measure that is often used in 

behavioral studies, i.e., the minimum difference in sound level that the subject or 

neuron is reliably able to detect. The performance of the neuron can be evaluated by 

applying techniques from signal detection theory, that is, how well an ideal observer 

could estimate the value that a neuron is encoding based solely upon the neuronal 

response to any given single stimulus presentation. From the standpoint of a single 

neuron, an ideal observer would have the most information about the original value 

being encoded within portions of the neuronal input / output function with steep slope 

and also when the variance of the neuronal response is small. Flat portions of the 

neuronal input / output functions are not useful in terms of discriminability on the 

single neuron level, although there is some evidence that when sensory signals 

themselves are corrupted with a high level of noise, other aspects of the input / output 

functions, such as the value encoded by the maximum response, may be better utilized 

for encoding (Butts & Goldman, 2006).  

 

The relevance of nonmonotonic encoding of sound intensity level in the auditory 

system has been introduced and discussed in Chapter 4. Many conclusions regarding the 

role of nonmonotonic neurons for representing and transforming acoustic information 

have been drawn using protocols that prevent the effects of neuronal adaptation (Davis 

et al., 2003; Rees & Palmer, 1988; Sadagopan & Wang, 2008; Shamma, 2003; Suga & 

Manabe, 1982). In this chapter we complement the results of Chapter 4 by studying 

steady-state neuronal responses to dynamic level stimuli. We focus our analysis on how 
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nonmonotonic neurons adapt their responses and evaluate this adaptation based on 

their change in encoding accuracy relative to monotonic neurons. Our analysis is 

therefore based upon the sloped portions of the neuronal response to sound level (the 

upper and lower dynamic ranges) which are likely the most relevant for discriminability. 

 

We prevent further evidence based on adaptation to sound level statistics that 

nonmonotonic neurons may preferentially encode low sound levels. Specifically, in a 

dynamic context nonmonotonic level encoding appears to preserve sensitivity to low 

sound levels even when much of the neuronal population is adapted to high sound 

levels. We also present evidence that it is the lower dynamic range of nonmonotonic 

neurons that allows them to maintain low level sensitivity, while the upper dynamic 

range continues to adapt to high sound levels. 

 

5.2 Results 
 

We investigated the responses of 47 primary auditory cortex neurons from 7 

hemispheres of 6 awake marmoset monkeys (Callithrix jacchus) for their adaptive coding 

properties in response to dynamic auditory stimuli (see Section 2.3.1). 
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5.2.1 Static Rate-Level Responses 
 

Static rate-level functions for two example neurons reflect the extremes of rate-level 

shapes (Figure 5.1). Very monotonic neurons saturate at higher levels (Figure 5.1A,B), 

while very nonmonotonic neurons do not respond at higher levels (Figure 5.1C,D). For 

dynamic range and monotonicity analyses, rate-level functions were fitted with a six-

parameter, two-tailed, split Gaussian model (see Section 2.2.3), which typically resulted 

in a very good fit (r2 > 0.95), and are presented as solid black in Figure 5.1B,D. 

Threshold and saturation levels were determined from the model fits at 20% and 80% 

of maximum firing rate above spontaneous. The dynamic range for monotonic neurons 

was measured between saturation and threshold (Figure 5.1B, blue lines). For 

nonmonotonic neurons a lower dynamic range was measured in the same manner as for 

monotonic neurons (Figure 5.1D, red lines). An upper dynamic range for 

nonmonotonic neurons was measured from 80% to 20% of maximum firing rate above 

the response to the greatest level presented (Figure 5.1D, green lines). The same 

calculations were performed to determine threshold, saturation and monotonicity index 

for the dynamic rate-level functions. Neurons were classified as monotonic if the 

average monotonicity index for the static and dynamic rate-level curves was greater than 

0.5 and as nonmonotonic if this value was less than or equal to 0.5. For a detailed 

discussion of static rate-level responses on a larger dataset, refer to Chapter 4. 
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Figure 5.1  Example neurons demonstrating the extremes of input-output responses in 

primary auditory cortex. A, The peristimulus spike raster of a very monotonic neuron 

reveals little change in discharge rate at levels above about 35 dB SPL. Stimuli were 100 

ms tones (duration indicated by shaded rectangle) delivered at the neuron’s 

characteristic frequency (CF). B, The saturating nature of this neuron can be seen in its 

monotonic rate-level function. Rate is averaged over the length of the stimulus interval 

after the onset latency. The dynamic range from threshold to saturation is highlighted 

by a blue horizontal bar whose midpoint is indicated by an upward tick. C, The 

peristimulus spike raster of a very nonmonotonic neuron reveals response over only a 

limited range of levels around 15 dB SPL. D, The level-tuning nature of this neuron can 
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be seen in its nonmonotonic rate-level function. The lower dynamic range from 

threshold to saturation is highlighted with a red bar in the same fashion as the neuron in 

B. The upper dynamic range based upon similar measures is highlighted by a green bar. 
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5.2.2 Single Neuron Adaptation to Dynamic Level Stimuli 
 

Although a few neurons showed little adaptation in response to dynamic level stimuli, 

most neurons adapted their rate-level functions with a combination of response gain 

adaptation (i.e., a scaling of the rate response) and dynamic range shifting (i.e., a shifting 

of the rate-level function along the abscissa). Individual neurons, however, exhibited a 

variety of adaptive changes in their rate-level responses. Example rate-level responses 

and Fisher information curves (see Section 2.3.2) calculated in response to dynamic 

stimuli (those depicted in Figure 2.2B or 2.2C) are shown for representative neurons in 

Figure 5.2. Fisher information gives an upper bound on how well an ideal observer 

could estimate the sound level based solely on the neuronal response, a quantification of 

encoding accuracy. Each curve is color coded to match the colored bars on the abscissa 

that indicate the location of the probability plateau for the dynamic stimulus that elicited 

the response curve (see Section 2.3.1). The solid black lines indicate the responses to the 

uniformly distributed dynamic stimulus, and the dashed black lines are the static rate-

level responses. 

 

All neurons demonstrated adaptation in their maximum firing rate (i.e., gain adaptation) 

for dynamic stimuli. These gain changes typically reduce the slope of the corresponding 

rate-level functions. Lower response rates usually brought about lower response 

variance, however, so measures of coding accuracy might not be expected to decrease in 

this situation. In actuality, Fisher information curves were mostly unaffected by pure 
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gain changes. The most variety in individual neuronal adaptation was exhibited in the 

amount of shifting of the rate-level responses in the direction of the dynamic stimuli 

probability plateaus. Monotonic neurons could demonstrate a large amount of shifting 

(Figure 5.2A,B) or a small amount of shifting (Figure 5.2C,D); similarly, nonmonotonic 

neurons could demonstrate a large (Figure 5.2E,F) or small amount of shifting (Figure 

5.2G,H). Nonmonotonic neurons could also exhibit adaptation (causing both gain and 

shift changes) predominantly in their lower dynamic range (Figure 5.2C,D), in a 

combination of both dynamic ranges (Figure 5.2I,J), or predominantly in their upper 

dynamic range (Figure 5.2K,L). Because individual neurons demonstrated a variety of 

adaptation profiles, population analysis (Section 5.2.3) more clearly revealed global 

response trends in both monotonic and nonmonotonic neuron populations. 

Additionally, single neurons to varying degrees are better or worse at encoding sound 

level information, meaning that encoding accuracy on a single neuron level is not as 

relevant as how well the population together is able to encode sound level. Postsynaptic 

neurons will likely rely on a pool of neuronal inputs to decode sound level information, 

and not just on one neuron (Britten et al., 1996; Shadlen et al., 1996). Also, some 

neurons recorded here that respond to sound level may not actually be utilized at all by 

postsynaptic neurons to decode sound level, so the aggregate response of the 

population is more meaningful to how downstream brain areas are likely to utilize the 

encoded sound-level information. 
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Figure 5.2  Dynamic rate-level and Fisher information (FI) functions for six example 

neurons. A,B, A strongly adaptive monotonic neuron reveals dynamic range shifts and 

corresponding FI peak shifts to align with probability stimulus level plateaus (see Figure 

2.2). Plateaus are indicated by colored horizontal lines and corresponding curves have 

the same color. The neuron’s response to the uniformly distributed stimulus is indicated 

by the solid black line, and the silence-adapted response is indicated by the dashed black 

line. C,D, A weakly adaptive monotonic neuron demonstrates nearly invariant coding 

properties with different stimulus statistics. E,F, The dynamic ranges of a strongly 

adaptive nonmonotonic neuron clearly shift in response to different stimulus statistics, 

but the result does not optimize coding accuracy. G,H, A weakly adaptive 
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nonmonotonic neuron demonstrates gain adaptation but no systematic shift in coding 

properties with different stimulus statistics. I,J, Some nonmonotonic neurons appear to 

adapt both their upper and lower dynamic ranges. K,L, Other nonmonotonic neurons 

appear only to adapt one dynamic range or the other, the upper dynamic range in this 

example. 
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5.2.3 Population Adaptation to Dynamic Level Stimuli 
 

In the interests of understanding how well the population of adapting neurons was able 

to encode sound intensity level, mean Fisher information was calculated separately over 

the populations of monotonic and nonmonotonic neurons in response to each dynamic 

stimulus (see Section 2.3.2). Fisher information (FI) provides an upper bound on how 

well an optimal decoder would be able to discriminate sound level based on the 

neuronal responses to sound level. Intuitively, regions of high slope and low response 

variance in individual neuronal rate-level functions provide the best estimate of the 

sound level presented based on the response (see Section 2.3.2). In order for the average 

FI over the population to be meaningful, we are inherently assuming relatively low 

correlations between individual responses. For a discussion of how correlations affect 

neuronal encoding and analysis of correlations between simultaneously recorded pairs 

of neurons in response to sound level, see Appendix A. 

 

Specialized Neuronal Adaptation for Preserving Input Sensitivity Inspection 

of the mean rate-level functions computed separately for the populations of monotonic 

and nonmonotonic neurons showed that monotonic neurons typically adjusted the 

sloped portion of their rate-level functions to match the most common sound intensity 

levels in the stimulus—the most accurate encoding strategy (Figure 5.3A). This 

encoding strategy was verified by the peak of the mean FI approximately aligning with 

the probability plateau for each dynamic stimulus (Figure 5.3B) Only 3 neurons are 
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represented in the mean rate-level and mean FI for the 85 dB plateau (see Section 2.3.2) 

so although there is an FI peak near the plateau, the trend is not as clear as the curves 

for the other plateaus. Nonmonotonic neurons adapted in a manner similar to 

monotonic neurons except at the highest levels, where the rising slope of their rate-level 

functions remained relatively constant (Figure 5.3C). In response to the 85 dB plateau 

dynamic stimulus (represented by 9 neurons, see Section 2.3.2) the mean rate-level 

function actually relaxed toward lower levels. Nonmonotonic neurons generally adapted 

to improve coding accuracy except when the highest levels were the most common, at 

which point the largest FI peak returned to lower sound levels (Figure 5.3D). The mean 

FI curve in response to the 65 dB plateau dynamic stimulus showed a larger peak at 

lower levels and the curve for the 85 dB plateau showed an almost equally large peak at 

lower levels. 

 

We did not find dynamic rate-level thresholds that were lower than the static rate-level 

threshold for any neuron in the dataset (neither monotonic nor nonmonotonic). We 

refer to the static-rate level functions (mean rate-level shown as black dashed line in 

Figure 5.3A,C) as “silence-adapted” because in response to tone bursts presented during 

long periods of the silence, the neuron is adapted to respond to the lowest sound levels 

to which it is sensitive. Typically these silence-adapted rate-level functions also had a 

much larger maximum firing rate than the dynamic rate-level functions. Silence 

adaptation is therefore analogous to the maximum gain setting for the neuron. Thus, 
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silence-adapted responses were the most sensitive and had the largest gain in 

comparison with any dynamic-level-adapted response. 
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Figure 5.3  Average dynamic rate-level and Fisher information (FI) functions at 

different plateau centers. A, Mean rate-level functions indicate the adaptive behavior of 

the monotonic population. Neurons adapt their dynamic ranges in the direction of the 

most probable stimuli. Dotted black line in all plots represents silence-adapted 

population response. B, Mean FI across sound level for monotonic neurons. FI curve 

maxima tend to align with high-probability plateaus, with the exception of the lowest 

sound levels, which are lower than the thresholds of most monotonic neurons. Solid 

black line in all plots represents population response to the uniform dynamic stimulus. 

C, Mean rate-level functions indicate the adaptive behavior of the nonmonotonic 
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population, which demonstrates clear adaptation only at the highest and lowest plateaus. 

D, Mean FI across sound level for nonmonotonic neurons. FI curve maxima are less 

prominent than those of monotonic neurons. Peaks in the FI curves corresponding to 

the low-level stimuli are near to high-probability plateaus. For the 65 and 85 dB stimuli, 

equally large or larger peaks remain at lower sound levels, showing that nonmonotonic 

neurons remain sensitive to low levels even while adapted to predominantly high level 

stimuli. 
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From this surprising result, that nonmonotonic neurons had higher levels of encoding 

accuracy to low sound level stimuli when dynamic stimuli contained predominantly high 

sound levels, we hypothesized that sound level tuning and dynamic low-level sensitivity 

could be directly related through the effects of adaptation. Intense acoustic events have 

the potential to rapidly desensitize an adaptive auditory neuron to less-intense events by 

shifting its threshold away from lower levels and toward higher levels. From the 

previous result, one might expect that nonmonotonic neurons would not shift their 

lower dynamic range much in response to the most intense sounds and would certainly 

shift less than monotonic neurons. Our next analysis was therefore to compare 

estimates of dynamic range adaptation between the populations of monotonic and 

nonmonotonic neurons. 

 

Low Level Sensitivity Preserved in Nonmonotonic Lower Dynamic Range We 

calculated the mean dynamic ranges for neurons elicited by each dynamic stimulus 

(Figure 5.4). For monotonic neurons this measure consisted of a single contiguous 

dynamic range (depicted in blue in Figure 5.4A) from threshold to saturation. For 

nonmonotonic neurons this measure consisted of both lower (depicted in red in Figure 

5.4A) and upper (depicted in green in Figure 5.4A) contiguous dynamic ranges 

corresponding to the two slopes of nonmonotonic rate-level responses on either side of 

BL. For both neuron types the average dynamic ranges (lower dynamic range of 

nonmonotonic neurons) adapted toward the probability plateaus (i.e., a shifting of the 

rate-level responses), although the amount of this change between any two dynamic 
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stimuli was less than the corresponding difference between the probability plateau 

centers (indicated by the diagonal line of unity slope). On average, monotonic neurons 

adapted their dynamic ranges more than nonmonotonic neurons (i.e., steeper slope of 

the blue curve in Figure 5.4A). Average dynamic ranges collected with static rate-level 

functions were consistently lower in both threshold and saturation than for any dynamic 

stimulus, as expected to be the case under silence-adapted conditions. For both 

monotonic and nonmonotonic neurons, the average dynamic ranges elicited by the 

uniformly distributed dynamic stimulus was closest to that elicited by the dynamic 

stimuli with probability plateau of 45 dB SPL. It is clear from Figure 5.4A that the lower 

dynamic range of nonmonotonic neurons is closer to the 5 dB and 25 dB dynamic 

stimuli probability plateaus and the upper dynamic range is closer to the 65 dB and 85 

dB plateaus under all adapted conditions. This result, along with the nonmonotonic 

mean rate-level functions (Figure 5.3C), indicates that the lower dynamic range of 

nonmonotonic neurons on average remains aligned with lower sound levels even while 

adapted to high level dynamic stimuli. 
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Figure 5.4  Average adapted dynamic ranges as a function of dynamic stimulus 

probability plateau center. A, Monotonic dynamic ranges are indicated in blue, 

nonmonotonic lower dynamic ranges in red and nonmonotonic upper dynamic ranges 

in green. Thresholds and saturations are indicated with vertical lines representing 

standard error of the mean. Dynamic ranges for the silence-adapted (static) rate-level 

functions and for the uniformly distributed dynamic stimulus are presented to the left 

for comparison. Changes in dynamic ranges with plateau center reflect adaptive 
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threshold shifts. Adaptation that always aligned the center of the dynamic ranges with 

the probability plateau would follow a line with a slope of 1. B, Changes in mean 

response amplitude with plateau center reflect gain adaptation. 

 



 
 

   
 

158

We calculated the mean range of firing rates for each stimulus condition in order to 

quantify the other effect of adaptation: a change in the overall firing rate as a function 

of plateau center, termed response gain adaptation. Rate-level responses were 

normalized for each neuron over all dynamic and static stimuli and the mean was taken 

over these normalized values for each stimulus type (see Section 2.3.2). Although trends 

in the gain are visible in the average rate-level responses from Figure 5.3, gain 

adaptation is presented separately in Figure 5.4B to quantify these trends. Monotonic 

neurons on average showed monotonically decreasing response gain with increasing 

plateau center, whereas nonmonotonic neurons showed a nonmonotonic trend in 

response gain. In the latter case the response gain increased for the 65 dB and 85 dB 

plateau stimuli, coincident with the probability plateau being closer to the upper 

dynamic range of these neurons’ rate-level functions than to the lower dynamic range. 

 

In order to quantify the previously observed adaptation effects as a function of MI and 

under different stimulus conditions, we compiled dynamic range midpoints (midpoints 

of both lower and upper dynamic ranges for nonmonotonic neurons) as a simple 

summary of the coding region. Systematically lower midpoints for nonmonotonic 

neurons’ lower dynamic ranges than for monotonic neurons’ dynamic ranges (Figure 

5.5A-E) reflect a lower average threshold and corresponding encoding of lower levels 

for nonmonotonic neurons, as discussed in Chapter 4. For all dynamic stimuli, a 

significant correlation between MI and the midpoint of the dynamic range existed. Four 

neurons out of 47 with a combination of low maximum firing rates and substantial 
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inhibition below spontaneous spiking rates in response to the highest levels yielded large 

negative MIs as the denominator of the MI calculation approached 0. The resulting ill-

conditioned data points were omitted from this particular analysis because they exerted 

a disproportionate influence on the regression. A linear regression between MI and 

dynamic range midpoint for the remaining 43 neurons (all with an MI ≥ –0.4) gave a 

slope of 21 dB SPL and intercept of 22 dB SPL (r2 = 0.35; p = 3.4×10−5, regression F 

test) for the 5 dB plateau, a slope of 23 dB SPL and intercept of 28 dB SPL (r2 = 0.49; p 

= 2.1×10−7, regression F test) for the 25 dB plateau, a slope of 29 SPL and intercept of 

29 dB SPL (r2 = 0.56; p = 6.5×10−9, regression F test) for the 45 dB plateau and a slope 

of 31 dB SPL and intercept of 32 dB SPL (r2 = 0.52; p = 5.9×10−8, regression F test) for 

the 65 dB plateau. The regression intercepts become progressively larger with increasing 

plateau center, indicating that over the population, neurons adapted in the direction of 

the plateau center. The regression slopes also increased with increasing plateau center, 

indicating that monotonic neurons’ dynamic ranges were shifting more in response to 

dynamic stimuli containing more high-level sounds than were nonmonotonic neurons’ 

lower dynamic ranges. Note in this plot that monotonic neurons are plotted on the left 

and nonmonotonic neurons on the right, which results in MI values becoming more 

negative toward the right. 
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Figure 5.5  Dynamic range midpoints for each neuron as a function of MI. Midpoints 

of the lower dynamic range only are shown for nonmonotonic neurons. Four out of 47 

neurons with MI < −0.4 were excluded from this analysis. A–D, Dynamic range 

midpoints are plotted against MI for the four plateaus used to stimulate all neurons. 
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Colored lines indicate linear regression. Regressions are significant for all plateaus (p < 

10−4). E, Dynamic range midpoints for silence-adapted stimuli (blue) and the uniform 

dynamic stimulus (red). Regressions are significant for both stimuli (p < 0.01), although 

the silence-adapted stimulus elicited the greatest variability of dynamic range. F, 

Overlaid regression lines from A–D, demonstrating by the greater separation at MI = 1 

than MI < 0 that monotonic neurons adapt more than the lower dynamic range of 

nonmonotonic neurons. 
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Comparing the regression lines for each dynamic stimulus plateau directly (Figure 5.5F) 

reveals graphically that higher-level probability plateaus induce upward shifts and 

increasing regression slopes. This analysis confirms the results shown in Figure 5.4, but 

specifically as a function of monotonicity and not simply by dividing the neurons into 

two classes of monotonic and nonmonotonic. Figure 5.5 also shows that the 25, 45 and 

65 dB regression lines are very close to each other for the most nonmonotonic neurons 

(MI ≤ 0, 15 / 27 nonmonotonic neurons). The 5 dB regression line, however, is slightly 

below these three. This indicates that the lower dynamic range of these neurons adapts 

slightly between the dynamic stimuli with 5 dB and 25 dB plateau centers, but does not 

shift much in the direction of the probability plateau in response to the higher level 

dynamic stimuli. Because the lower dynamic ranges do not adapt much in response to 

the higher level dynamic stimuli, nonmonotonic neurons are able to remain sensitive to 

low level sounds even when adapted to predominantly high levels. Trends revealed in 

the above analysis thus support our hypothesis that level-tuning is involved in 

nonmonotonic neurons’ ability to maintain low-level sensitivity, and that this low-level 

sensitivity is predominantly encoded by the lower dynamic range. 

 

Potential Roles of On-CF Inhibition Clearly if the lower dynamic range of 

level-tuned neurons preferentially encodes low sound levels under different adapted 

conditions, then this particular encoding task is not conducted by the on-CF inhibition 

that creates the upper dynamic range. There are at least two potential roles that the 

upper dynamic range might perform: (1) A potential strategy to preserve the sensitivity 
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of adaptive coders when the stimuli contain predominantly intense events could be to 

shield them from high-intensity events. In the shielding hypothesis, inhibition serves as 

a blockade of the normal adaptive processes apparent in the monotonic population. If 

inhibition serves in such a shielding role only, one would not expect any adaptive 

changes in the inhibitory regime of the dynamic rate-level functions. (2) A new type of 

adaptation that is able to capture the encoding of high sound levels is invoked by the 

inhibitory inputs themselves. In this capture hypothesis, the inhibitory regime of the 

dynamic rate-levels functions change so that encoding improves at high sound levels in 

response to predominantly high-level stimuli. In this case, the on-CF inhibitory inputs 

of nonmonotonic neurons play an adaptive role in response to dynamic stimuli, whereas 

in the shield hypothesis the on-CF inhibition statically shields the excitatory inputs so 

that they do not adapt to the high intensity stimuli. Thus, shielding might be thought of 

as a passive process while capturing might be thought of as an active process.  

 

The previous analyses were extended to specifically look at the role of the upper 

dynamic range in encoding. Any adaptive processes that improved encoding accuracy in 

the upper dynamic range would provide support for the capture hypothesis discussed 

above. Although it is likely that on-CF inhibition is directly involved in the shielding 

hypothesis, we do not provide direct evidence of this phenomenon. If the regulation of 

overall firing rate is what is primarily responsible for the effects of adaptation, then this 

inhibition is certainly directly involved in shielding the lower dynamic range from 

adapting to higher sound levels by maintaining the mean-rate at reasonable levels when 
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intense sounds occur. We only briefly discuss potential adaptation mechanisms below 

(Section 5.2.4). 

 

Support for the Capture Hypothesis By subdividing the neuronal population 

based upon MI and analyzing lower dynamic range midpoint trends as a function of 

plateau center, the monotonic neurons can be seen to shift their dynamic range toward 

each plateau center more than nonmonotonic neurons do (Figure 5.6). Note that data 

from the highest level plateau (9 nonmonotonic and 3 monotonic neurons) were not 

included in the regression analysis, although the regression line was extended (dotted 

line) toward the highest level plateau to demonstrate qualitatively that these data are 

consistent with the trends from the other four plateaus. Neurons were segregated based 

upon their mean monotonicity index (MI) into four groups: “very monotonic” (1 ≥ MI 

> 0.9), “mostly monotonic” (0.9 ≥ MI > 0.5), “mostly nonmonotonic” (0.5 ≥ MI > 0.1) 

and “very nonmonotonic” (MI ≤ 0.1). The analysis of Figure 5.5 captured slices along 

one dimension of the three dimensional dataset (dynamic range midpoint as a function 

of dynamic stimulus plateau center and neuron MI) and subdividing in this manner 

captured slices along the other dimension. The cutoffs were chosen because they 

divided monotonic and nonmonotonic categories approximately in half within the much 

larger static rate-level dataset (see Chapter 4). The very nonmonotonic category included 

the four neurons with MI < −1 that were excluded from the regression analysis of 

Figure 5.5. Very monotonic neurons showed the most correlation based upon a linear 

regression between plateau center and dynamic range midpoint (slope = 0.34, intercept 
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= 45; r2 = 0.35; p = 1.5×10−4, regression F test), followed by mostly monotonic neurons 

(slope = 0.27, intercept = 33; r2 = 0.22; p = 0.0014, regression F test), then mostly 

nonmonotonic neurons (slope = 0.23; intercept = 27; r2 = 0.20; p = 0.010, regression F 

test) and finally very nonmonotonic neurons (slope = 0.12; intercept = 19; r2 = 0.036; p 

= 0.10, regression F test), for which the regression was not significant. 
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Figure 5.6  Dynamic range midpoints for each neuron as a function of dynamic 

stimulus probability plateau center segregated by MI class. For nonmonotonic neurons, 

data points represent the lower dynamic range midpoint only. A–D, Relationship 

between dynamic range midpoint and plateau center for very monotonic, mostly 

monotonic, mostly nonmonotonic and very nonmonotonic subpopulations. Regression 

lines were fit only for the 5, 25, 45 and 65 dB plateau centers because the 85 dB plateau 

center includes only 12 neurons. Dashed line indicates extrapolated regression out to 

the 85 dB plateau for visual comparison. Regressions indicate a significant (p < 0.05) 

dynamic range shift with plateau center for all monotonicity classes except for the very 

nonmonotonic neurons. 
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The very nonmonotonic neurons did not show significant adaptation of their lower 

dynamic range as a function of plateau center, but did for their upper dynamic range 

(Figure 5.7A,B). Very nonmonotonic neurons had a larger slope and significant 

correlation between upper dynamic range midpoints and dynamic stimuli plateau 

centers (slope = 0.17, intercept = 46; r2 = 0.065; p = 0.027, regression F test) than did 

mostly nonmonotonic neurons, for which the fit was not significant (slope = 0.073, 

intercept = 60; r2 = 0.035; p = 0.30, regression F test). Data from the highest level 

plateau were again not included in the regressions. This finding provides the first direct 

evidence for the capture hypothesis. The very nonmonotonic neurons showed a 

significant adaptation trend for upper dynamic ranges, but not for lower dynamic 

ranges, whereas the opposite was the case for the mostly nonmonotonic neurons. This 

means that the upper dynamic range of the most nonmonotonic neurons appears to 

shift in the direction of the most probable sound levels, thereby actively adapting to the 

high sound levels in a manner that captures the encoding of these levels. 

 

We investigated other ways of segregating the nonmonotonic population as a way to 

evaluate whether adaptation in the upper dynamic range of very nonmonotonic neurons 

was truly due to their high degree of nonmonotonicity (corresponding to large on-CF 

inhibition at high sound levels) or whether other factors were better predictors. We 

found that segregating nonmonotonic responses by best level (BL) of the static rate-

level curves (Figure 5.7C,D) revealed a slightly larger and more significant correlation 

between upper dynamic range midpoint and plateau center for neurons with BL ≤ 25 
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dB (slope = 0.19; intercept = 44; r2 = 0.13; p = 0.0023, regression F test). Neurons with 

BL > 25 dB did not show a significant correlation (slope = 0.061; intercept = 61; r2 = 

0.0087; p = 0.57, regression F test). As discussed in Chapter 4, there was not a 

significant correlation between MI and BL amongst the nonmonotonic population of 

static rate-level responses, so this difference may mean that low BL is a better predictor 

of adaptability of the upper dynamic range than is the degree of on-CF inhibition (as 

measured by MI), although the current data and analysis do not fully substantiate this 

claim. Regardless, two different methods of segregating nonmonotonic neurons both 

demonstrated shifting of the upper dynamic range for one of the subsets in a direction 

that would improve coding accuracy, providing substantial evidence for the capture 

hypothesis. 

 



 
 

   
 

169

 

Figure 5.7  Upper dynamic range midpoints for each nonmonotonic neuron as a 

function of dynamic stimulus probability plateau center. A–B, Nonmonotonic neurons 

are segregated by monotonicity index (MI). The trend is significant for very 

nonmonotonic neurons but not for mostly nonmonotonic neurons. C–D, 

Nonmonotonic neurons are segregated by best level (BL) of the static rate-level 

function. The trend is significant for neurons with low BLs but not for those with high 

BLs. Both figures indicate that across the population of nonmonotonic neurons, the 

upper dynamic range is capturing the adaptation by shifting in the direction of the most 

probable sound levels. Whether the capture hypothesis is better represented by 
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nonmonotonic neurons with the most on-CF inhibition (lowest MIs) or those with the 

lowest BLs is currently inconclusive. 
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We performed the analogous segregation by best level (BL) for each nonmonotonic 

neuron’s contribution to Fisher information (FI) curves (Figure 5.8). Fisher information 

was separated into upper and lower dynamic ranges for each neuron and Fisher 

information curves from the dynamic range on the same side of BL as the probability 

plateau center for each dynamic stimulus condition and for each neuron were averaged 

(see Section 2.3.2). This technique allowed us to measure the population effects of 

adaptation using strictly the portion of the FI that is most involved in encoding the 

most probable levels. These mean Fisher information curves showed peaks aligned near 

the 5, 25 and 45 dB plateaus for the lower dynamic ranges (Figure 5.8A) and near the 

25, 45, 65 and 85 dB plateaus for the upper dynamic ranges (Figure 5.8B). Note that the 

averages are over all 27 nonmonotonic neurons in the dataset, but each point is not 

necessarily an average over all 27 neurons because of the manner in which the FI is split 

for each dynamic FI curve. Using this analysis, the adaptive nature of nonmonotonic 

neurons to dynamic level stimuli in a manner that improves coding accuracy can be 

readily discerned, and it in fact differs between the upper and lower dynamic ranges of 

these neurons. This result provides more support for the capture hypothesis—not only 

did upper dynamic ranges shift in the plateau direction, the encoding accuracy of the 

upper dynamic ranges, as measured by FI, also shifted so that the peaks aligned with the 

higher level plateaus. Mean rate-level functions computed using the same type of 

analysis (Figure 5.8C,D), show shifting of the respective dynamic range that is 

congruent with the shifting of the FI peaks. Note that in Figure 5.8B and all subsequent 

figures that present the plateau-side upper dynamic range, the curve for the 25 dB 
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stimulus is only represented by 3 neurons. This curve shows the most variability in later 

figures comparing FI results for different analyses (Figure 5.10 – 5.13). 
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Figure 5.8  Nonmonotonic neurons were split into lower and upper dynamic ranges by 

separating responses on either side of best level (BL) for each dynamic stimulus. The 

lower dynamic ranges have increasing rate-level slopes and the upper dynamic ranges 

have decreasing rate-level slopes. A–B, Mean Fisher information (FI) for the upper and 

lower dynamic ranges respectively on the same side of BL as the high probability region 

of the corresponding dynamic stimulus. C–D, Mean of the corresponding rate-level 

functions. Separating upper and lower dynamic ranges in this manner for 

nonmonotonic neurons more clearly demonstrates adaptation to improve coding 

accuracy, in the lower dynamic range for the 5, 25 and 45 dB plateau stimuli (A) and in 
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the upper dynamic range for the 25, 45, 65 and 85 dB plateau stimuli (B). Note that 

averages are computed over all 27 nonmonotonic neurons in the dataset, but each point 

is not necessarily average over 27 neurons because only the portion of the FI and rate-

level curves that is on the same side of BL as the plateau center is taken from each 

neuron. 
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Fisher information (FI) was also averaged separately for upper and lower dynamic 

ranges with the same analysis as that in Figure 5.8 but taking the dynamic range on the 

opposite side of best level (BL) from the plateau center. This method revealed how 

encoding accuracy changed for the dynamic range which was not actively involved in 

encoding the most probable sound levels in the dynamic stimulus. The peak FI for the 

lower dynamic range remained at relatively low sound levels in response to the high 

level dynamic stimuli (Figure 5.9A). This means that the lower dynamic range remained 

sensitive to low sound levels even when nonmonotonic neurons were adapted to high 

sounds levels, again confirming the previous result. Note that this is a completely 

different form of adaptation than the monotonic neurons exhibited. 

 

The peak FI for the upper dynamic range did show some shifting in the direction of the 

low level plateaus (Figure 5.9B), even when these sound levels were most accurately 

encoded by the lower dynamic range (see Figure 5.8A). This result supports the notion 

that the neurons on average are shifting their BLs as well as their thresholds as they 

adapt to the lower level dynamic stimuli, thereby causing the shift in the upper dynamic 

range. This claim is not entirely conclusive, noting in particular that over the population 

of nonmonotonic neurons (n = 27), the correlation between dynamic rate-level BL and 

plateau center was not significant (p = 0.080, Spearman rank correlation test). When 

these neurons were subdivided by MI and BL (same analysis as Figure 5.7 but regressing 

BL instead of upper dynamic range midpoint), the trend was not significant for any 

category (p > 0.10, Spearman rank correlation test) except for nonmonotonic neurons 
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with BL ≤ 25 dB SPL (n = 17; slope = 0.13; intercept = 30; r2 = 0.059; p = 0.046, 

regression F test). Mean rate-level functions for the opposite side upper and lower 

dynamic ranges (Figure 5.9C,D) in general revealed very little shifting between dynamic 

stimuli. 
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Figure 5.9  Same plots as in Figure 5.8 except using the dynamic range on the opposite 

side of BL from the dynamic stimulus plateau center. A–B, Mean Fisher information 

(FI) for the upper and lower dynamic ranges respectively on the opposite side of BL. 

C–D, Mean of the corresponding rate-level functions. Lower dynamic ranges remain 

sensitive to low levels even when adapted to high level dynamic stimuli (A,C). Although 

mean rate-level functions for the upper dynamic range (D) do not shift much in 

response to low level dynamic stimuli, the corresponding FI does show shifting in the 

direction of the plateau (B). 
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In order to ensure that calculating Fisher information using 10-dB bins from data 

collected in 1-dB increments (see Section 2.3.2) did not affect our population results, FI 

was also calculated using all sound levels present in the dynamic stimuli (1 dB bins). 

Qualitatively, the mean FI curves calculated in this manner (Figure 5.10) were similar 

with those previously presented (Figure 5.3), mostly differing in the magnitude of the FI 

peaks and not the location. We conclude that our choice for 10 dB bin size in order to 

reduce noise on the single neuron level, essential for accurately estimating dynamic rate-

level thresholds and dynamic range midpoints, did not have a large effect our 

conclusions regarding adaptation and encoding accuracy. Mean rate-level functions over 

the population using 1 dB bins (data not shown) were noisy, so the 10 dB bin size also 

allowed for better comparison between the mean FI and mean rate-level curves, 

particularly for the static rate-level curves for which only 10 dB increments were 

measured. Modifying the dynamic protocol so that dynamic level stimuli only contained 

10 dB increments would likely have altered the effects of adaptation and would have 

been more difficult to compare with previous studies that also discretized sound level 

probability distributions into 1 dB or smaller bin sizes (Dean et al., 2005; Kvale & 

Schreiner, 2004). 
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Figure 5.10  Fisher Information (FI) averages calculated using 1-dB sound level bins. 

Mean FI for the monotonic (A) and nonmonotonic (B) populations (compare to 

5.3A,B). C–D, Upper and lower dynamic range mean FI for the nonmonotonic 
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population taking only the FI on the same side of best level (BL) as the dynamic 

stimulus plateau center for each neuron (compare to 5.8A,B). E–F, Upper and lower 

dynamic range mean FI for the nonmonotonic population taking only the FI on the 

opposite side of best level (BL) as the dynamic stimulus plateau center for each neuron 

(compare to 5.9A,B). 
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5.2.4 Adaptation in Onset versus Sustained Spiking 
 

As a first step towards exploring the mechanism of adaptation in monotonic and 

nonmonotonic neurons, the effects of adaptation to dynamic stimuli were studied using 

only the first 50 ms (Figure 5.11) of the spiking responses in each 100 ms time bin (still 

accounting for latency, see Section 2.3.2) and using only the last 50 ms (Figure 5.12). 

This type of analysis to differentiate onset from sustained responses has been utilized in 

previous studies (Sadagopan & Wang, 2008; X. Wang, Lu, Snider, & Liang, 2005). The 

first portion of spiking responses is typically referred to as onset spiking and the later 

portion typically referred to as sustained firing. The results indicate that in general the 

effect of adaptation in terms of shifting of the FI peaks is seen in both portions of the 

response, although the FI peaks are generally larger for the onset firing. The two 

exceptions to this are in the case of the nonmonotonic upper dynamic ranges capturing 

the adaptation for high-level stimuli (compare Figures 5.11D and 5.12D) and in the case 

of nonmonotonic lower dynamic ranges encoding low-level sounds when adapted to 

high-level stimuli (compare Figures 5.11E and 5.12E). In these cases the adaptive 

response is delayed, in that more information regarding this adaptation is available in 

the sustained portion of the response than in the onset portion. On-CF inhibition is 

known to be delayed relative to excitation (Tan et al., 2007; Wu et al., 2006), so this 

result provides additional evidence that on-CF inhibition is responsible for these 

adaptive features of nonmonotonic neurons, as previously hypothesized. 
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Figure 5.11  Fisher Information (FI) averages calculated using onset responses only 

(first 50 ms of response in each time bin, still accounting for individual neuron 

latencies). Mean FI for the monotonic (A) and nonmonotonic (B) populations (compare 
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to 5.3A,B). C–D, Upper and lower dynamic range mean FI for the nonmonotonic 

population taking only the FI on the same side of best level (BL) as the dynamic 

stimulus plateau center for each neuron (compare to 5.8A,B). E–F, Upper and lower 

dynamic range mean FI for the nonmonotonic population taking only the FI on the 

opposite side of best level (BL) as the dynamic stimulus plateau center for each neuron 

(compare to 5.9A,B). 

 



 
 

   
 

184

 

Figure 5.12  Fisher Information (FI) averages calculated using sustained responses only 

(second 50 ms of response in each time bin, still accounting for individual neuron 

latencies). Mean FI for the monotonic (A) and nonmonotonic (B) populations (compare 
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to 5.3A,B). C–D, Upper and lower dynamic range mean FI for the nonmonotonic 

population taking only the FI on the same side of best level (BL) as the dynamic 

stimulus plateau center for each neuron (compare to 5.8A,B). E–F, Upper and lower 

dynamic range mean FI for the nonmonotonic population taking only the FI on the 

opposite side of best level (BL) as the dynamic stimulus plateau center for each neuron 

(compare to 5.9A,B). 
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5.2.5 Adaptation Dynamics 
 

The time course and rate of adaptation transients are discussed in-depth in Chapter 6. 

Lower driven rates and higher response variability in cortex did not allow adaptation 

time constants to be studied with the existing protocol alone (see Section 2.3.1) as has 

been done in previous studies subcortically (Dean et al., 2005; Dean et al., 2008). 

However, to verify that adaptation dynamics did not affect conclusions derived from 

the steady-state responses discussed in this chapter, mean FI responses were measured 

excluding the spiking responses collected during the first 60 seconds of each dynamic 

level stimulus (Figure 5.13). The shortest dynamic stimuli were two minutes in duration, 

so 60 seconds excludes the first halves of responses to the shortest stimuli. Both fast 

and slow components of adaptation have been reported subcortically with the median 

time constant of the fast component being well under one second (Dean et al., 2008; 

Kvale & Schreiner, 2004) and that of the slow component at approximately 12 seconds 

(Dean et al., 2008). This puts 60 seconds far outside the adaptation time course for all 

but a very small number of subcortical neurons. Although the possibility exists that 

cortical time constants may be longer, results using a forward-masking type design with 

complex stimuli in auditory cortex indicate that suppression and facilitation effects 

occur when stimuli are separated by times within the range of a few seconds (Bartlett & 

Wang, 2005). Qualitatively our results are again quite similar. The biggest differences are 

in the 25 dB curve for the plateau-side upper dynamic range (Figure 5.13D) and for the 

85 dB curve for the mean monotonic FI (Figure 5.13A). Both of these curves, however, 
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are only represented by 3 neurons. The similarity of the results implies two things: (1) A 

large majority of cortical neurons are likely to have time constants of adaptation that are 

well below 60 seconds, both for fast and slow components. (2) Adaptation in a manner 

that improves coding efficiency is sustained over a period of several minutes or more. 
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Figure 5.13  Fisher Information (FI) averages calculated by excluding spiking responses 

from the first 60 seconds of the dynamic stimuli. This method ideally captures only the 

steady state response in the means and not any component of the adaptation dynamics. 
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Mean FI for the monotonic (A) and nonmonotonic (B) populations (compare to 

5.3A,B). C–D, Upper and lower dynamic range mean FI for the nonmonotonic 

population taking only the FI on the same side of best level (BL) as the dynamic 

stimulus plateau center for each neuron (compare to 5.8A,B). E–F, Upper and lower 

dynamic range mean FI for the nonmonotonic population taking only the FI on the 

opposite side of best level (BL) as the dynamic stimulus plateau center for each neuron 

(compare to 5.9A,B). 
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5.3 Discussion 
 

Auditory neurons in different species and in multiple areas of the auditory system tend 

to adapt their responses in a manner that improves the encoding of sound level based 

on the level statistics of the stimulus (Dean et al., 2005; Kvale & Schreiner, 2004; Nagel 

& Doupe, 2006). Dynamic level stimuli have not previously been used to probe unique 

coding properties of auditory neurons with on-characteristic-frequency (on-CF) 

inhibition at higher sound levels called level-tuned or nonmonotonic neurons. Single 

neuron data recorded for this study from the primary auditory cortex of awake 

marmosets provide evidence that nonmonotonic neurons: (1) preferentially encode low 

sound levels by maintaining sensitivity to less intense sounds even when presented with 

high-level dynamic stimuli (2) preserve this sensitivity by encoding low-level sounds 

predominantly with their lower dynamic range even when intense sounds are common; 

and (3) capture encoding of high-levels using their upper dynamic range particularly 

when intense sounds are common. Using tones presented during periods of silence 

(static stimuli), we previously demonstrated that threshold and the amount of CF 

inhibition at high intensities (as measured by a low monotonicity index) were correlated 

(see Chapter 4). Those results imply that nonmonotonic neurons may preferentially 

encode low intensities. Here we reach a similar conclusion, but when the neurons are in 

an adapted steady-state induced by dynamic level stimuli. This behavior is potentially 

even more useful than the static property because under adapted conditions, monotonic 

neurons in A1 tend to shift their dynamic ranges toward the most probable sound levels 
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in a stimulus, consistent with findings in inferior colliculus (Dean et al., 2005). 

Consequently, monotonic neurons as a population do not retain much of their 

sensitivity to lower sound levels when high levels are common, meaning that the 

nonmonotonic neurons play a vital encoding role under these conditions. Both neuronal 

types appear to adapt similarly to softer sounds. 

 

Level-tuned neurons are likely created in a hierarchical fashion starting in the cochlear 

nucleus and are present in larger percentages at higher auditory centers (see discussion 

in Section 4.3), implying an important role on on-CF inhibition in the auditory system. 

Given that this transformation in the neural code appears to occur gradually across 

multiple auditory stations, level-tuned neurons in auditory cortex seem unlikely to 

exhibit properties fundamentally different from analogous neurons in subcortical 

auditory areas. In fact, we would anticipate that subcortical level-tuned neurons would 

exhibit adaptive behavior similar to that reported here for cortex. In this Chapter, we 

posited two potential roles for on-CF inhibition in level-tuned neurons under dynamic 

level conditions, termed the shielding and capture hypotheses. In the shielding role, on-

CF inhibition may prevent high intensity sound inputs from influencing the adaptation 

of nonmonotonic neurons’ lower dynamic range. This is in contrast to monotonic 

neurons, which we know will adapt their dynamic range to higher levels when presented 

with mostly high-level sounds. Thus, the shielding hypothesis predicts that on-CF 

inhibition actively and directly prevents nonmonotonic neurons from adapting to 

intense sounds, thereby preserving their low-level sensitivity. We do not present direct 
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evidence for that hypothesis here, as the experiments to do so would involve direct 

manipulation of the on-CF inhibition of these neurons. The capture hypothesis posits 

that adaptation to dynamic stimuli, particularly those with predominantly high sound 

levels, is directly influenced by on-CF inhibition such that the inhibitory regime of the 

rate-level function (the upper dynamic rage) adapts in a way that improves the encoding 

efficiency of high-level sounds. Results of the current study indicate that when loud 

sounds are common, nonmonotonic neurons tend to adapt their upper dynamic ranges 

toward the loud sounds, lending support to the adaptation capture hypothesis. 

 

Collectively, monotonic neurons shift their dynamic ranges more than nonmonotonic 

neurons, and nonmonotonic neurons appear to exhibit two regimes of adaptation 

depending upon the ratio of high levels to low levels present in the stimulus at short 

time scales. A schematic summary of these findings based upon population averages can 

be seen in Figure 10. The monotonic population exhibits a decreasing response gain 

with increasing plateau center, whereas response gain for nonmonotonic neurons 

decreases with increasing plateau center up to about 45 dB, beyond which gain actually 

increases. This gain increase at high dynamic levels, in addition to decreases in response 

threshold, provides a mechanism for nonmonotonic neurons to encode low levels more 

accurately than monotonic neurons under dynamic conditions with frequent intense 

sounds. Note that the average nonmonotonic best level, where less information is 

available from the nonmonotonic population, always falls within the average dynamic 

range of the monotonic population. When information from both populations is 

 



 
 

   
 

193

considered collectively, therefore, this complementary coding scheme enables high 

encoding accuracy over a larger dynamic range than either subpopulation is able to 

provide on its own and under a wide variety of stimulus dynamics. This effect is clearly 

evident when considering the mean Fisher information over the population in response 

to the uniformly distributed dynamic stimulus. Monotonic neurons demonstrate a peak 

near 35 dB SPL (Figure 5.3A, solid black line), while nonmonotonic neurons 

demonstrate two peaks, one near 20 dB SPL and one near 60 dB SPL (Figure 5.3C, 

solid black line). Again, the encoding accuracies of the two populations complement 

each other so that together they can cover a large portion of the wide dynamic range 

presented by the uniformly distributed dynamic stimulus. 
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Figure 5.14  Average adaptive behavior of primary auditory cortex neuron in response 

to dynamic stimuli with different level statistics. A–E, Each panel displays schematic 

input-output functions for monotonic and nonmonotonic neurons in response to 

dynamic level stimuli with the high probability levels indicated by gray lines on the level 
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axis. Model functions are constructed as split-Gaussians (see Section 2.2.3) with mean 

dynamic range data (indicated by horizontal colored lines) from the population of 

neurons in this study. Both types of neurons exhibit threshold shifts and response gain 

adaptation. The result is a double encoding scheme at low levels and a complementary 

coding scheme at high levels. The separation between monotonic and nonmonotonic 

functions becomes greatest when high levels are most common, as depicted in E. F, A 

similar encoding scheme is apparent even under silence-adapted conditions and in 

response to a uniformly distributed dynamic stimulus. 
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5.3.1 Dynamic Range and Level Encoding 
 

In the effort of distinguishing unique encoding properties of level-tuned neurons, we 

utilized the technique of subdividing each neuron’s response into its upper and lower 

dynamic range—regions of negative and positive slope in the rate-level function 

respectively, separated by the neuron’s best level (BL). We focused on the sloped 

portions of the rate level functions as the dynamic range of the neuron because in terms 

of sound level discriminability, the sloped portions convey the most information. Under 

noisy conditions other aspects of the rate-level response, particularly BL, may be more 

useful for encoding (Butts & Goldman, 2006). We do not consider this situation here 

for two reasons, first that our stimulus were not designed to measure differences in level 

encoding between clean and noise corrupted signals, and second that the focus of this 

study is on relative differences in encoding between the monotonic and nonmonotonic 

population and not necessarily on absolute discriminability properties. Discriminability 

was quantified with Fisher information (FI) which is typically used as a measure of the 

upper bound on the performance of an optimal decoder. In this study, however, we 

utilized FI only to infer encoding properties and do not present evidence here regarding 

specifically how postsynaptic neurons would decode this information. To do so would 

require proposing an actual decoder, which we do not do here. 

 

As discussed above, we focused on encoding properties conveyed by sloped portions of 

each neuron’s rate-level response. Because the slope at the maximum response (the best 
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level) is necessarily zero, this portion is not useful in terms of encoding, particularly with 

regards to level discrimination of pure tones without background noise. This qualifies 

BL as a logical point at which to separate the neuron into two dynamic ranges because it 

is a point of zero FI surrounded by two bumps of positive FI. Additionally, because we 

were interested in testing the hypothesis that on-CF inhibition of level tuned neurons is 

directly involved in the ability of level-tuned neurons to preferentially encode low sound 

levels, BL also represents a logical point to split the neuron into excitatory and 

inhibitory regimes of the rate-level function. Although it may seem that this analysis of 

splitting the neurons into an upper and lower dynamic range will by design result in our 

conclusion, that the lower dynamic range adapts to low-level stimuli and the upper 

dynamic range to high-level stimuli, this is not the case. For example, this analysis could 

have revealed that only the lower dynamic range adapted to accurately encode all of the 

plateaus. This case would have shown all the possible curves in Figure 5.8A aligning 

their peaks with the plateaus and no curves doing the same in Figure 5.8B. 

 

For a portion of our analysis of dynamic rate-level functions we utilized the midpoint of 

either the lower or upper dynamic ranges as a single representative point (Figures 5.5, 

5.6 and 5.7). This point was chosen because our interest was in understanding how the 

overall dynamic range shifted depending on the dynamic stimulus. Other choices are 

certainly possible, including threshold, saturation, best-level and point of maximum 

slope. The point of maximum slope would have the most meaning specifically in 

regards to level encoding for discriminability. The midpoint, however, is located at the 
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center between threshold and saturation, so not only is it quite likely to be near the 

point of maximum slope, it also encompasses changes in both threshold and saturation. 

We performed similar analyses with best-level, and although some results were 

significant, they were not as convincing as with the dynamic range midpoint, lending 

credence to the idea that most of the adaptation is taking place along the dynamic range 

and less is occurring at the best level itself. 

 

The current results are consistent with studies of adaptation in cortical and subcortical 

levels of the auditory system indicating that preceding spiking rate alone is an 

incomplete predictor of the amount of observed adaptation (Bartlett & Wang, 2005; 

Dean et al., 2005; Malone & Semple, 2001; Nelson, Smith, & Young, 2009). Therefore it 

seems likely that additional processes, possibly inhibitory in nature, participate in 

creating the observed responses. Adaptation similar to that of the monotonic neurons in 

the present study have also been observed in inferior colliculus (Dean et al., 2005), 

implying that this type of adaptation emerges subcortically, as well. Level-tuned neurons 

remain to be tested subcortically, however, so a cortical origin or refinement of 

complementary level-tuned adaptation cannot presently be ruled out. The overall 

amount of adaptation observed by mean population rate alone in cortical neuron 

populations is insufficient to fully adjust neural coding for the stimuli used (best 

visualized in Figure 5.4A). Given that Fisher information measures do reveal adaptation 

matched well to stimulus statistics for both monotonic (Figure 5.3B) and nonmonotonic 

neurons (Figure 5.8A,B), the neural code is likely to include spiking properties beyond 
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simply mean rate. The overall variety in dynamic range location for dynamic stimuli 

evident in Figure 5.5 reflects a distributed code under dynamic conditions so that even 

though the population adapts to maintain coding accuracy for high-probability events, 

enough variability in individual responses remains to encode lower probability events. 

 

5.3.2 Relation to Previous Studies 
 

Other putative functions of nonmonotonic neurons for representing and transforming 

auditory information that have been put forth in other studies are based on recordings 

using predominantly non-time-varying level stimuli (see Section 4.3). It is likely that the 

role of nonmonotonic neurons as preferential encoders of low-intensity dynamic stimuli 

discussed here is complementary to these other potential functions. In addition, 

nonmonotonic specialization for low-levels does not directly address the issue of coding 

sound information across frequency but does imply that monotonic and nonmonotonic 

neurons encode level for different purposes. Nonmonotonic neurons, for example, 

would be particularly useful for encoding softer sounds interspersed amongst louder 

sounds, allowing the monotonic neurons to remain adapted and maintain coding 

accuracy to the more common loud sounds but without loss of soft sound level 

information. 

 

Adaptive processes have been of considerable interest as a potential mechanism to help 

explain well-studied psychophysical phenomena such as forward masking. In classic 
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forward masking, the detection of a brief tone is degraded by the occurrence of a 

preceding tone at the same frequency, and all other factors being equal, the amount of 

masking is proportional to the level of the masker (Jesteadt, Bacon, & Lehman, 1982; 

Lüscher & Zwislocki, 1949). Auditory nerve studies reveal that while adaptation in the 

periphery is evident under these stimulus conditions, it alone cannot fully account for 

this masking phenomenon (Harris & Dallos, 1979; Relkin & Turner, 1988; Turner, 

Relkin, & Doucet, 1994). Subcortical excitatory and inhibitory circuits, on the other 

hand, appear to contribute substantially to forward masking (Nelson et al., 2009). While 

similar to masking protocols, the sound sequences used in the current experiments were 

sufficiently different to prohibit direct comparisons with forward masking studies. In 

particular, we were largely examining the suprathreshold behavior of cortical neurons, 

which does not necessarily mirror the behavior at threshold even for classic forward 

masking (Zeng, Turner, & Relkin, 1991). Nevertheless, the adaptation of level-tuned 

neurons to maintain coding accuracy for soft sounds when loud sounds are common 

appears to run counter to the type of adaptation underlying psychophysical forward 

masking. In masking paradigms, gain adaptation of nonmonotonic neurons has been 

shown in some cases to be a nonmonotonic function of masker level, although not 

systematically so (Bartlett & Wang, 2005; Brosch & Schreiner, 1997; Calford & Semple, 

1995). A non-systematic gain trend has also been shown as songbird auditory neurons 

adapt to a mean level increase (Nagel & Doupe, 2006). The nonmonotonic gain 

adaptation for nonmonotonic neurons apparent in Figure 5.4B could be a reflection of a 

similar process. 
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The stimuli in this study were designed to look predominantly at rate-level changes 

depending on the mean of sound-level distributions. Because of the location of the 

high-probability plateaus relative to the rest of the distribution, a change in the mean 

also resulted in a change in the variance of the stimulus. However, this effect was small 

because of the relatively low probability of choosing any level outside of a plateau. We 

did not systematically investigate the effect of changing the width of the probability 

plateaus (fixed at 20 dB) that would have been required to thoroughly investigate 

adaptation to variance (Kvale & Schreiner, 2004; Nagel & Doupe, 2006), except solely 

for our use of the uniformly distributed dynamic stimulus. Our uniformly distributed 

stimulus, which has much higher level variance than the high-probability plateau stimuli, 

consistently resulted in a decrease in gain (see Figure 5.3, solid black lines), consistent 

with results in songbirds (Nagel & Doupe, 2006). Additionally, although the design of 

the dynamic stimuli used here is inherently time-varying, it is difficult to compare with 

studies of amplitude modulation or those that consider linear temporal receptive fields 

because each time interval of the dynamic stimulus is composed of a stationary signal 

(typically a pure tone at CF). Comparisons are difficult because the 100-ms time 

intervals are relatively short when compared to typical best modulation frequencies of 

cortical neurons in response to AM stimuli (Bartlett & Wang, 2005; Liang, Lu, & Wang, 

2002) and relatively long when compared to the width of a typical cortical linear 

temporal receptive field (Depireux, Simon, Klein, & Shamma, 2001). There is however a 

nice parallel to another neural adaptation effect, stimulus-specific adaptation, created 
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from what is also a very different stimulus design—the oddball paradigm (Ulanovsky, 

Las, Farkas, & Nelken, 2004; Ulanovsky, Las, & Nelken, 2003). In this design a deviant, 

or low-probability amplitude event evokes a significantly larger response than that 

evoked by the more common amplitudes. Based on our conclusions, nonmonotonic 

neurons could very well serve this purpose when the common amplitudes are high-level 

and the deviant is low-level. 

 

In conclusion, we have found that the level-dependent inhibition of level-tuned cortical 

neurons appears to drive neuronal adaptation when high intensities occur commonly in 

dynamic stimuli. Unlike classically studied neurons whose input-output functions 

increase or saturate at high levels, adaptation of level-tuned neurons does not appear 

simply to optimize overall coding accuracy. The nature of their adaptation implies that 

they purposefully remain sensitive to rare, faint sounds even when louder sounds are 

much more common. If sensory neurons with tuned input-output functions are truly 

specialized for encoding low input values and maintain this sensitivity even when the 

most common input values are high, we speculate that the high prevalence of such 

neurons in the auditory system relative to other sensory systems implies that 

behaviorally relevant sound processing uniquely requires the ability to preserve 

sensitivity over a wide dynamic range and on the relatively fast time scales contained in 

dynamic environmental sounds. 
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Chapter 6 
 
Time Course of  Neuronal Adaptation to 
Sound Intensity Level 
 

6.1 Introduction 
 

Neurons in sensory systems likely adapt their responses so that encoding accuracy is 

reflected in the statistical distribution of sensory inputs (for review see (Wark et al., 

2007). This type of adaptation prevents a large number of neurons from encoding 

sensory input feature values that are not particularly relevant given the current 

environment of the animal, allowing much of the population to instead focus its 

encoding on the most probable values. Given that the error of the optimal decoder for a 

neuronal population encoding a particular sensory feature scales inversely with the size 

of the population (Eliasmith & Anderson, 2004), a larger number of neurons 

representing a particular high-probability subset of possible feature values is 

advantageous for maximizing encoding accuracy. However, under many environmental 

conditions, the statistics of the sensory input are not stationary. Thus, the dynamics of 

neuronal adaptation to time-varying sensory stimuli have been proposed to reflect those 

of an optimal estimator, particularly of the mean and variance of the time-varying signal 

(DeWeese & Zador, 1998). 
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Auditory neurons adapt to changes in mean sound level (Dean et al., 2005; Nagel & 

Doupe, 2006) and to changes in higher order moments of the sound level distribution 

(Kvale & Schreiner, 2004; Nagel & Doupe, 2006) in a manner that improves their 

encoding of the sensory stimuli. Adaptation time constants of responses to changes in 

variance and higher order moments are asymmetric, showing faster adaptation from 

low-to-high variance (Kvale & Schreiner, 2004), as supported by models of optimal 

variance estimation (DeWeese & Zador, 1998). Although one might not expect a non-

biased mean estimator to show such asymmetry, results using time-varying level stimuli 

in the inferior colliculus (Dean et al., 2008) and from forward masking experiments in 

auditory nerve fibers (Chimento & Schreiner, 1990, 1991) also show faster adaptation 

from low-to-high mean sound levels. This asymmetry in mean sound level adaptation 

has not been reported in all studies, however (Nagel & Doupe, 2006). The 

aforementioned forward masking experiments in auditory nerve fibers fit transient 

responses with a double model of exponential decay, with fast decay time constants 

near 10 ms and slow decay time constants near 100 ms. Fast and slow components are 

also evident in the inferior colliculus on longer time scales, with the fast components on 

the order of hundreds of milliseconds and the slow components on the order of 

seconds (Dean et al., 2008). A distribution of time constants allowing for suppression or 

facilitation of complex masker-probe type stimuli in auditory cortex range from 

hundreds of milliseconds to several seconds (Bartlett & Wang, 2005). 
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Previously (Chapters 4 and 5) we have presented evidence that nonmonotonic neurons 

may preferentially encode low sound levels under silence-adapted and level-adapted 

conditions. Based on these findings, we hypothesized that nonmonotonic neurons may 

adapt more quickly to a high-to-low mean level transition relative to a low-to-high mean 

level transition. Monotonic neurons, on the other hand, are likely to be consistent with 

previous studies showing faster adaptation to the low-to-high mean level transition. 

Here we present evidence demonstrating differences in the time course of adaptation 

between monotonic and nonmonotonic neurons. 

 

6.2 Results 
 

As an initial measure of the time course of neuronal adaptation in response to dynamic 

stimuli, the mean rate-level functions of monotonic and nonmonotonic neurons were 

plotted as a function of both the current and preceding time interval using the same 

population of neuronal responses presented in Chapter 5. Only adaptation responses to 

the uniformly distributed dynamic stimulus (see Section 2.3.2) were utilized for these 

initial studies, so that the effects of adaptation to high probability sound levels were not 

encountered. For monotonic neurons (Figure 6.1A,B), greater sound levels in the 

preceding time interval generally elicited higher response thresholds in the succeeding 

time interval. In other words, monotonic rate-level curves shifted to the right by an 

amount proportional to level of the preceding time interval. A qualitative comparison of 

single rate-level functions collected at three different preceding levels (Figure 6.1B) with 
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the overall average adaptation for monotonic neurons (see Chapter 5, Figure 5.3A), 

reveals that much of the adaptation apparent in the population average over the entire 

dynamic stimulus duration is already apparent after a single 100 ms time interval. 

 

In contrast, second-order rate-level profiles for nonmonotonic neurons (Figure 6.1C,D) 

demonstrated a relatively consistent threshold regardless which level preceded the 

current time interval. Thresholds shifted slightly, but by an amount much less than 

monotonic neurons, up to a preceding sound level of about 50 dB SPL, at which point 

thresholds remained relatively constant. When the preceding tone was quite intense, the 

threshold average threshold remained near 20 dB SPL, possibly shifting back to lower 

thresholds in response to the highest preceding level. This trend allows nonmonotonic 

neurons to maintain most of their silence-adapted sensitivity, consistent with our 

findings in Chapter 5. Again by qualitatively comparing the amount of adaptation after a 

single 100 ms preceding level (Figure 6.1D) with that occurring over the duration of the 

dynamic stimulus (Figure 5.3C), much of the adaptation is already apparent. The trend 

of upper dynamic ranges capturing the adaptation at higher sound levels (see Chapter 5) 

is not entirely clear with this plot, possibly indicating that this effect is occurring on a 

slower time scale. 
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Figure 6.1  Influence of preceding stimulus sound levels on spiking rates. A–B, As level 

of an immediately-preceding tone increases, the mean monotonic rate-level function 

shifts toward higher thresholds. C–D, The mean threshold of nonmonotonic rate-level 

functions shifts to higher thresholds until a preceding level of about 50 dB SPL and 

then the lower dynamic range remains at lower thresholds. All plots demonstrate that a 

large amount of the overall adaptation response (see Figure 5.3) is already evident after 

only a single 100 ms preceding sound level. 
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Evidence presented previously (see Chapters 4 and 5) indicates that nonmonotonic 

neurons are able to remain sensitive to low-intensity sounds and therefore likely to be 

specialized encoders of low sound levels. Under the assumption that nonmonotonic 

neurons do preferentially encode low level sounds, we hypothesized that nonmonotonic 

neurons would also be more likely to adapt more slowly on average from low to high-

intensity sounds but more quickly on average from high to low-intensity sounds when 

compared to monotonic neurons. This adaptive behavior would complement 

nonmonotonic neurons’ steady-state low-level sensitivity at shorter time scales when the 

dynamics of the adaptation become important. Because of the generally low spiking 

rates and high response variability in cortex, we were unable to extract time constants of 

adaptation from the original adaptation paradigm as discussed in Chapter 5. Instead, we 

created a modified protocol that had a design similar to the previous one, but only 

contained transitions from a low level probability plateau to a higher level plateau, both 

20 dB in width and with zero probability of a level outside the plateau (see Section 

2.4.1). 

 

6.2.1 Dynamic-Transition Stimuli 
 

We recorded the responses of 97 primary auditory cortex neurons from 3 hemispheres 

of 3 awake marmoset monkeys (Callithrix jacchus) for their adaptive coding properties in 

response to a modified design of the dynamic level stimuli. Each modified stimulus, 

termed a dynamic-transition stimulus, focused solely on transitions between relatively 
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low and relatively high sound intensity levels (see Section 2.4.1). Sound levels during 

these periods were determined by non-overlapping 20-dB wide uniform probability 

distributions referred to as the high-level and low-level plateaus. The location of the 

plateaus was individualized for each neuron online by first measuring a rate-level 

function in response to the uniformly distributed dynamic stimulus (see Section 2.3.2). 

The low-level plateau was placed above threshold along the lower dynamic range for a 

neuron of any monotonicity. The high-level plateau was placed at the highest sound 

levels (centered at 65 dB SPL) for neurons that showed mostly monotonic rate-level 

functions and just below the saturation of the upper dynamic range for neurons that 

showed mostly nonmonotonic rate-level functions (see Section 2.4.1). For 11 / 97 

neurons for which a rate-level response to the uniformly-distributed dynamic stimulus 

was not measured, the static rate-level response was used to estimate these points 

instead. 

 

6.2.2 Adaptation Time Course in Single Neurons 
 

For each neuron we calculated its mean rate-level response in 2 dB bins and in 1-second 

time windows subsequent to each transition type of the dynamic-transition stimuli (see 

Section 2.4.2). Transitions were either from high sound levels to low sounds levels, 

eliciting the high-to-low transition response (or, equivalently, the response to the low-

level plateau), or from low sound levels to high sound levels, eliciting the low-to-high 

transition response (or, equivalently, the response to the high-level plateau). Mean-rate 
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responses (averaged over all sound levels) were also calculated using the same time 

windows. The time sequence of rate-level functions was normalized separately for each 

plateau and fit with a two-dimensional adapting sigmoid function having four free 

parameters and whose mean was given by a single exponential decay function (see 

Section 2.4.2). We chose this method because a large degree of response variability 

made comparisons between rate-level functions from each time window difficult. The 

adaptation of mean rate was normalized using the range of discharge rates over both 

plateaus and fit with a single exponential decay function having three free parameters 

(see Figure 6.2B, for example). 

 

Example neurons are shown in Figures 6.2 and 6.3. Each example has two gray-scale 

images that capture the time sequence of neuronal rate-level functions in response to 

the high-to-low transition (e.g., Figure 6.2A) and the low-to-high transition (e.g., Figure 

6.2B). Model fits are displayed as contour overlays on the images where the black line 

represents 20% of maximum and the white line 50% of maximum. Mean-rate responses 

are also shown, along with their respective model fits for both transition types (e.g., 

Figure 6.2C,D). For each neuron, the static rate-level function—collected with single 

100 ms tone bursts surrounded by silence (see Section 2.2.2)—and the dynamic rate-

level function corresponding to the uniformly distributed dynamic stimulus (see Section 

2.3.1) are displayed for a sense of where the transition plateaus were located relative to 

the full rate-level functions and also in order to compare monotonicity in these two 

different adapted conditions. Static rate-level functions were fitted with a six-parameter 
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split Gaussian model in the same manner as in Chapters 4 and 5 (see Section 2.2.3) in 

order to obtain a monotonicity index (MI). 
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Figure 6.2  Example neurons with responses to the dynamic-transition stimuli that 

would be expected given their static rate-level functions. A neuron with a highly 

monotonic static rate-level function shows increasing rate-level functions after the high-

to-low transition (A) and also after the low-to-high transition (B). These grayscale image 

plots show rate-level functions during 1-second time windows subsequent to each 

transition and are overlaid with the 20% (black line) and 50% (white line) contours of 

the two-dimensional adapting sigmoid function fitted to the rate-level data. Goodness-

of-fit values (r2) and fitted time constants (τ) are labeled for each transition. For this 

neuron, the time course of the mean-rate adaptation increases for the high-to-low 

transition (C) and decreases for the low-to-high transition (D). Mean-rate adaptation 

was fitted with a single exponential decay function for which goodness-of-fit (r2) and 
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fitted time constants (τ) are given for each transition. The increasing rate-level profiles 

in response to the low-to-high transition in A are what would be expected from a 

neuron with a static rate-level (E) monotonicity index (MI) of 1.0. F–J, The same plots 

are shown for a neuron that is inhibited below spontaneous rate at the highest sound 

levels in its static rate-level profile and consequently shows decreasing rate-level 

functions for the high-to-low transition. 
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A variety of response types to the dynamic-transition stimuli were recorded, regardless 

of the monotonicity of the respective neuron’s static rate-level function (as measured 

with the monotonicity index (MI), see Section 2.2.3). For example, some neurons that 

had very monotonic static rate-levels showed increasing rate level functions in response 

to both low and high-level plateaus (Figure 6.2A–E). Some neurons with very 

nonmonotonic static rate-levels showed increasing rate-level responses to the low 

plateau and decreasing rate-level responses to the high plateau (Figure 6.2F–J). These 

responses are what would be expected based on the monotonicity of the static rate-level 

function and on the placement of the plateau centers. On the other hand, a few 

monotonic neurons showed decreasing (Figure 6.3A,B) and a few nonmonotonic 

neurons showed increasing (Figure 6.3F,G) responses after the low-to-high transition. 

These responses are the opposite of what would be expected based on their respective 

MIs. These examples outline two major response categories—neurons with increasing 

rate-level functions or neurons with a decreasing rate-level functions—that can be 

applied to either transition type (either high-to-low or low-to-high transition). 
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Figure 6.3  Example neurons with responses to the dynamic-transition stimuli that 

would not be expected given their static rate-level functions. Plots are the same as 

described in the legend for Figure 6.2. A–E, Profile of a neuron that has a static rate-

level monotonicity index (MI) of 0.71, indicating that it is partially suppressed at the 

highest sound levels but does not meet the defined classification of 0.5 for a fully 

nonmonotonic neurons (see Chapter 4). This neuron adapts to dynamic-transition 

stimuli with decreasing rate-level functions for the high plateau. F–J, The same plots are 

shown for a neuron that is suppressed to a rate that is approximately 50% below the 

max rate at the highest sound level in its static rate-level profile but still shows 

increasing rate-level functions for the high-to-low transition. 
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6.2.3 Population Rate-Level Adaptation to Dynamic-
Transition Stimuli 

 

The neuronal responses to dynamic-transition stimuli in this dataset were highly variable 

in time and many transition responses were either completely suppressed or completely 

saturated. For this reason, the time course of rate-level adaptation after a transition for 

many neurons did not fit well to our two dimensional adapting sigmoid model. Typically 

this occurred for one of three reasons: (1) The neuron showed almost zero driven rate 

in response to one of the plateaus (usually the high-level plateau). (2) The neuron 

showed a nonmonotonic response profile within the plateau. This type of adaptation 

was not systematic across the population, so we were unable to characterize a model 

that would ascribe time constants to these transitions. (3) The neuron showed a very flat 

driven rate within the plateau, indicating that, despite being driven by levels within the 

plateau, it was doing a very poor job of encoding these levels. A total of 64 / 97 high-

to-low transitions and 51 / 97 low-to-high transitions were well-fit by the model. This 

outcome was determined by a criterion of 25% variance accounted for by the model, 

which was established empirically by qualitatively assessing the model fits. 

 

Although the possible directions of rate-level functions, either increasing or decreasing, 

in response to the two transition types—high-to-low and low-to-high—were distributed 

across the range of monotonicity indices (MIs) as measured in the static rate-level 

functions, most of the neurons with static MIs below 0.5 had decreasing rate-levels in 
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response to the high-level plateau (Figure 6.4). Also, of the neurons with static MIs 

greater than 0.9, the majority revealed increasing rate-levels in response to the high 

plateau. Finally, only 3 / 64 neurons demonstrated decreasing rate-level functions in 

response to the low-level plateau. 
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Figure 6.4  Distribution of static rate-level monotonicity indices (MIs) for transitions 

from each neuron in the dataset that were well fit by a two-dimensional adapting 

sigmoid model. Neurons were not required to have both transitions well fit in order to 

be included in this analysis. For the total of 97 neurons, 64 had well fit high-to-low 

transitions (top distribution) and 51 had well fit low-to-high transitions (bottom 

distribution). For each transition type, the direction of the model fit, either increasing 

(blue) or decreasing (red) is indicated. The majority of neurons with nonmonotonic 

static rate-levels (MI ≤ 0.5) had decreasing responses to the high-level plateau. The 

majority of neurons with MI ≥ 0.9 had increasing responses to the high-level plateau. 

Only a small number of neurons demonstrated decreasing responses to the low level 

plateau. 
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Of the populations of transitions with rate-level functions well fit by the two-

dimensional adapting sigmoid, neurons that had fitted time constants outside of the 

range that could be reasonably measured with the current analysis (less than 0.5 seconds 

or greater than 30 seconds) were excluded. Neurons with time constants outside of an 

acceptable range most likely were in one of four categories: (1) The neuron adapted its 

rate-level function faster than could be measured using 1-second time windows. (2) The 

neuron’s time course of adaptation was slower than can be measured with the 

approximately 30 second plateau duration. (3) The neuron did not adapt. (4) Any 

adaptation trends were not discernable because of a very large amount of overall 

response variability. After these exclusions, the remaining transitions (considered 

separately for each neuron) were considered to have a monotonic and robustly-adapting 

rate-level profile. A total of 46 / 64 high-to-low transition responses and 37 / 51 low-

to-high transition responses met this combination of criteria. The remaining transitions 

were further characterized depending on the direction of adaptation of the rate-level 

functions. For some transitions, the adaptation caused the thresholds of the rate-level 

functions to decay towards higher sound levels and for some to decay towards lower 

sound levels. These categories are referred to as “up” or “down” respectively. These 

additional possibilities created a total of eight response categories, which are the 

combinations of the stimulus transition type (high-to-low or low-to-high), the 

orientation of the rate-level functions (monotonically increasing or monotonically 

decreasing) and the direction of the adaptation (decaying toward higher sound levels or 
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decaying toward lower sound levels). The time constants and counts of neurons in each 

category are presented in Figure 6.5. 

 

The population of responses to level transitions demonstrated a highly significant 

correlation between the estimated time constants of rate-level adaptation and mean-rate 

adaptation (r2 = 0.67; p = 0, regression F test, Figure 6.5A). The distributions of rate-

level adaptation time constants (Figure 6.5B) for the high-to-low (median = 3.2 ms, 

interquartile range = 4.3 ms) and for the low-to-high (median = 4.4 ms, interquartile 

range = 6.3 ms) transitions were not significantly different (p = 0.53, Wilcoxon rank 

sum test). The distributions of mean-rate adaptation time constants (Figure 6.5C) for 

the high-to-low (median = 3.9 ms, interquartile range = 4.7 ms) and for the low-to-high 

(median = 4.1 ms, interquartile range = 6.1 ms) transitions were also not significantly 

different (p = 0.96, Wilcoxon rank sum test). Our conclusions from this first analysis do 

not reveal the same time constant asymmetry for mean level adaptation. The lack of 

asymmetry from this analysis is the same as results reported in songbirds (Nagel & 

Doupe, 2006), but contrary to subcortical (Dean et al., 2008) and auditory nerve fiber 

(Chimento & Schreiner, 1990, 1991) results in mammals. The high correlation between 

level and rate adaptation time constants, is however consistent with the subcortical 

study, and provides evidence that rate regulation may be involved in the mechanism of 

adaptation to sound level for dynamic stimuli. The data reported here do not reveal an 

easy dividing point that would indicate for two unique time scales of adaptation, but 
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instead reveal a continuum of time constants in the range from a few hundred 

milliseconds up to tens of seconds. 
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Figure 6.5  Comparison of rate-level and mean-rate adaptation time constants, divided 

into four categories describing the shape of the neuronal rate-level functions in 

response to either the high-to-low or low-to-high dynamic level transitions. A, Time 

constants estimated from the time course of adaptation for the rate-level functions and 

those from that of the mean-rate are strongly correlated (r2 = 0.67; p = 0, regression F 

test). B, Distributions of rate-level adaptation time constants are not significantly 

different between the high-to-low and low-to-high transitions (p = 0.53, Wilcoxon rank 

sum test). C, The same is true for the distributions of time constants for the mean-rate 

adaptation (p = 0.96, Wilcoxon rank sum test). 
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For each of the six out of eight categories that were represented by at least one 

transition response in our dataset, we calculated mean rate-level and mean-rate 

responses for both the raw data and for the fitted models (Figures 6.6 and 6.7). 

Averages calculated in this manner displayed the effects of adaptation for rate-level 

responses for which we could measure an adaptive response. The categorization of 

neurons into subpopulations based upon both the direction of the rate-level function 

and the direction of the adaptive decay prevented adaptation effects in opposing 

directions from averaging each other out. In general, for the high-to-low transition, 

neurons that adapted down (Figure 6.6A) were slower than those that adapted up 

(Figure 6.6B). For the low-to-high transitions, neurons with increasing rate-level 

functions were generally fastest at adapting to high-level plateaus (Figure 6.7A). In 

general, of the neurons with decreasing rate-level functions, those that adapted down 

(Figure 6.7B) were faster than those that adapted up (Figure 6.7C). Also note that the 

average of the model fits converges quite well with the average of the neuronal 

responses, meaning that our particular choice of analysis likely did not lead to a bias in 

the estimation of time constants. 
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Figure 6.6  Mean rate-level and mean-rate responses for the different categories of the 

high-to-low transients given in Figure 6.5. Only neurons that have robustly adapting 

responses for the low-level plateau are included. Mean rate-level (A) and mean mean-

rate (B) for 15 neurons with increasing responses that decay to higher sound levels (up). 

Mean rate-level (C) and mean mean-rate (D) for 29 neurons with increasing responses 

that decay to lower sound levels (down). Mean rate-level (E) and mean mean-rate (F) 

for 2 neurons with decreasing responses that decay to lower sound levels (down). We 

did not record any neurons with decreasing responses to the low-level plateau that 

decayed to higher sound levels. 
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Figure 6.7  Mean rate-level and mean-rate responses for neurons represented in Figure 

6.5 that have robustly adapting responses for the high-level plateau. Mean rate-level (A) 

and mean mean-rate (B) for 18 neurons with increasing responses that decay to higher 

sound levels (up). Mean rate-level (C) and mean mean-rate (D) for 10 neurons with 

increasing responses that decay to higher sound levels (up). Mean rate-level (E) and 

mean mean-rate (F) for 9 neurons with decreasing responses that decay to lower sound 

levels (down). We did not record any neurons with increasing responses to the high-

level plateau that decayed to lower sound levels. 
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In the interest of comparing how adaptation between levels occurred within the same 

neuron, we pruned the dataset further so that only neurons that met the criteria 

previously discussed for both transition types were included. These conditions were met 

for 20 / 97 neurons in the dataset. Our rationale for only looking at this subset of 

neurons is that we are interested in potential asymmetries in adaptation dynamics for 

single neurons. Without comparisons within the same neuron, it is otherwise difficult to 

compare the high-to-low and low-to-high transitions by simply evaluating distributions 

across neurons collectively encompassing a large range of time constants (about two 

orders of magnitude). Of the remaining neurons, 10 showed increasing rate-level 

functions in response to the low-to-high transition, all of which also showed increasing 

rate-level functions that decayed down in response to the high-to-low transition. The 

other 10 neurons showed decreasing rate-level functions in response to the low-to-high 

transition; 5 of these decayed down and 5 decayed up. For these neurons, the response 

to the high-to-low transition was mixed amongst all possibilities (except for decreasing 

up, which was not present in the dataset at all, see Figure 6.5). 

 

Because there were seven total possibilities of combinations between transition 

categories in our dataset (see above) and because of the small number of remaining 

neurons with robustly adapting responses to both transitions, the remaining neurons 

were categorized only based upon whether the response to the low-to-high transition 

was increasing or decreasing (10 each in these categories). In the context of the 

dynamic-transition stimuli, we considered the increasing responses to be the analogs of 
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monotonic neurons and the decreasing responses to be the analogs of nonmonotonic 

neurons, even though the monotonicity index from static rate-level responses was not 

entirely indicative of these dynamic-transition categories (Figure 6.4). These dynamically 

nonmonotonic neurons (red, Figure 6.8A) were in general separable from dynamically 

monotonic neurons (blue, Figure 6.8A) based on adaptation time constants for the two 

transitions. The approximate line separating the two populations was found empirically 

and was given by: 

 
  , (6.1) 22 HightoLowLowtoHigh −−−− = ττ
 

which is a line with slope of 2 on the log-log plot (dotted line, Figure 6.8A). In other 

words, dynamically monotonic neurons are typically faster at adapting to the low-to-

high transition. Dynamically nonmonotonic neurons, on the other hand, are not 

necessarily faster at adapting to the high-to-low transition, but on average do not show 

the same disparity in the time constant transition speed as do dynamically monotonic 

neurons. 

 

Based on theoretical principles of optimal gain control, one would expect that if a 

neuron were acting as an optimal estimator of variance transitions, it would adapt twice 

as fast to the low-to-high transition compared to the high-to-low transition (DeWeese & 

Zador, 1998). On the other hand, if a neuron were acting as an optimal estimator of 

mean transitions, one would not expect asymmetric time constants for the two 

transition types. However, such asymmetries are actually observed experimentally 
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(Chimento & Schreiner, 1990, 1991; Dean et al., 2008). The dotted line in Figure 6.8A 

(Equation 6.1) empirically divides the categories well, although the significance is 

uncertain. Our finding represents evidence supporting the hypothesis that dynamically 

nonmonotonic neurons are specialized for high-to-low transients in dynamic-level 

stimuli. This function would likely work in conjunction with their sensitivity to lower 

levels based on their non-adapted responses (Chapter 3) and their steady-state-adapted 

responses (Chapter 4). 
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Figure 6.8  A, Comparison of estimated rate-level adaptation time constants for 

neurons that have monotonic and robustly adapting rate-level functions for both 

transitions. Most dynamically monotonic neurons (blue), those with increasing rate-level 

functions in response to the high-level plateau, are clustered apart from most 

dynamically nonmonotonic neurons (red), those with decreasing rate-level functions in 

response to the high-level plateau. The dotted line (well below the diagonal representing 

equal time constants) is able to separate most of the two populations. B, Amplitude 

index distributions for the same categories demonstrate that the role of changes in 

gain—part of the adaptive response to higher level sounds—is slighter greater for 

dynamically nonmonotonic neurons than for dynamically monotonic neurons, but is not 

significant (p = 0.068, Wilcoxon rank sum test). Both distributions have medians near 1, 

indicating that in general gain adaptation to dynamic-transition stimuli was small. 
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The method of estimating time constants by using a two-dimensional adaptive sigmoid 

model fit was unable to differentiate between the effects of gain changes (scaling of the 

maximum response rate) and dynamic range shifting (shifting of rate-level curves along 

the abscissa). Additionally, the dynamic-transition stimuli themselves may not be able to 

differentiate these effects because the entire dynamic range of each neuron was not 

collected in order to counter the high variance of the neuronal responses encountered 

by presenting more repetitions of fewer stimuli. To obtain an estimate of the gain 

adaptation effect, we calculated an amplitude index (AI)—the maximum response to the 

high-level plateau divided by the maximum response to the low-level plateau (see 

Section 2.4.2). This metric was calculated for all neurons whose responses were well fit 

to the two-dimensional adaptive sigmoid model, regardless of the fitted time constants. 

Only well-fit neurons were included so that dynamically monotonic and dynamically 

nonmonotonic neurons could be compared. The median AI was slightly greater for 

dynamically monotonic neurons (median = 1.1) than for dynamically nonmonotonic 

neurons (median = 0.99), but this difference was not significant (p = 0.068, Wilcoxon 

rank sum test). Gain adaptation in steady-state dynamic responses typically resulted in a 

reduction in overall rates for higher sound level plateaus, except for nonmonotonic 

neurons for which the overall rates typically increased at the highest sound levels (see 

Figure 5.4B). Given this, a majority of AI values below one would be expected, which 

was true for some neurons, particularly for dynamically nonmonotonic neurons. 

However, since both AI medians were near one and not significantly different, in 
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general the effect of gain adaptation for dynamic-transition stimuli appeared to be rather 

small.  

 

6.2.4 Population Mean-Rate Adaptation to Dynamic-
Transition Stimuli 

 

Although the high response variance of our dataset did not allow analysis of rate-level 

adaptation time constants smaller than about 500 ms (half of the original analysis time 

window width), we were able to use smaller time windows to estimate mean-rate 

adaptation time constants. Time constants measured with a 1-second window size and 

with a 400-ms window size were compared directly. Both techniques have an upper 

bound for time constants that can be reasonably estimated of 30 seconds, the 

approximate duration between transitions. We chose a reasonable lower bound on the 

estimate to be half the window size since this value represents a neuron whose discharge 

rate has decayed to approximately 13% of its original value within one time window, 

and values smaller than this are typically within the steady-state response variance. Four 

clusters of points in the scatter plot between time constants measured with the two 

different window sizes (Figure 6.9A, cluster numbers in the same order as presented 

here) were identified: (1) Points along the unity line from about 0.5 seconds to about 30 

seconds that have quite similar time constants when measured with either window size. 

(2) Points that have reasonable time constants when using the 400-ms windows but 

with values below 0.2 seconds when using the 1-second windows. These cases represent 

 



 
 

   
 

232

transitions with one or two outlying mean-rates in time that heavily influence the mean-

rate and cause a poor fit using the 1-second windows. (3) Points that have reasonable 

values when using 1-second windows, but values below 200 ms when using the 400-ms 

windows. In these cases the noise is over-fitted when using the smaller window size. (4) 

A small number of points that have reasonable time constant values when measured 

with either method, but are on the order of a few seconds when using the 1-second 

windows and on the order of several hundred milliseconds when using the 400-ms 

windows. These neurons often clearly exhibited two time scales of adaptation when the 

fits were observed directly. We chose not to utilize time window sizes below 400-ms 

because the effect of over-fitting short term noise or neuronal variability (cluster 3, 

described above) became obviously and dramatically worse. Such analysis would have 

caused many neurons with valid adapting mean-rate time courses to be excluded. 

 

Distributions of time constants and steady-state normalized mean-rates were compiled 

for mean-rates that were fit using the 1-second window size (Figure 6.9B,C) and using 

the 400-ms window size (Figure 6.9D,E). Only transition responses with reasonable 

time constants were included (half the window size up to 30 s). Counts of transitions 

included for each category are given in Figure 6.9. Because by using the 400-ms window 

size we were able to better estimate time constants for neurons that adapted quickly, a 

stronger asymmetry between the responses to the two transition types was revealed. 

When using the 1-second windows, there was not a significant difference between the 

high-to-low and low-to-high time constant medians (p = 0.26, Wilcoxon rank sum test, 
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Figure 6.9B) nor for the steady-state mean-rate medians (p = 0.18, Wilcoxon rank sum 

test, Figure 6.9C). This is the same result that was revealed by the time constant analysis 

in Figure 6.5C. When using the 400-ms windows, however, there was a significant 

difference between the distributions of time constants for the high-to-low and low-to-

high transition responses (p = 0.020, Wilcoxon rank sum test, Figure 6.9D). The 

distributions of steady-state mean-rates demonstrated a greater asymmetry than with the 

1-second time windows, but the difference did not reach significance (p = 0.083, 

Wilcoxon rank sum test, Figure 6.9E). Thus, with smaller time windows that can more 

accurately measure the shorter time constants, our dataset reveals a similar time 

constant asymmetry as has been reported subcortically (Dean et al., 2008). 
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Figure 6.9  A, Comparison of mean-rate adaptation time constants estimated using 1-

second and 400-ms time windows. Points along the diagonal (Cluster 1) represent 

similar estimates with either window which occur mostly in the range from about 0.5 – 

30 seconds, the range we chose for estimating time constants of rate-level adaptation 

using the 1-second window size. Points near the bottom (Cluster 2) represent transitions 

with outlying low responses that cause poor fits with the larger window size. Points 

along the left (Cluster 3) represent transitions that are over-fitted by the smaller window 

size. A few transitions (Cluster 4) qualitatively appear to genuinely contain two time 

scales of adaptation. Distribution of time constants using the 400-ms window size (B) 

show a greater number of small rate constants particularly for the low-to-high 
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transitions than the same distribution using the 1-second window size (D). Most of the 

general distribution shape remains the same using both sizes. Distributions of steady-

state rate from the exponential fits for the 400-ms window size (C) show a better 

disparity between the transition types than those for the 1-second window size (E). 
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The results presented in Figure 6.8A regarding the separability of rate-level adaptation 

time constants for the two transition types were complemented with the same analysis 

using with mean-rate adaptation time constants. We compiled another set that included 

all neurons for which we could reasonably measure mean-rate adaptation time constants 

using 400-ms time windows for both transition types which included 36 / 97 neurons. 

Here we again redefined the classes of monotonic and nonmonotonic based on the 

direction of rate decay in response to the low-to-high transition. In response to this 

transition, the neurons that decayed to lower mean-rates were classified as mean-

dynamically monotonic neurons while those that decayed to higher mean-rates were 

classified as mean-dynamically nonmonotonic neurons. Again, these categories are not 

the same as the analogous ones defined with static rate-level functions (see Figure 6.4).  

 

By and large, mean-dynamically nonmonotonic neurons were faster at adapting to the 

high-to-low transition than to the high-to-low transition (Figure 6.10A). The opposite 

was true of mean-dynamically monotonic neurons. This trend is consistent with that of 

the rate-level adaptation (Figure 6.8A) evaluated using a slightly larger dataset, but in 

this case the categories were approximately separable along a line of equal time 

constants for the two transition types (dotted line, Figure 6.10A). For the low-to-high 

transition (Figure 6.10B) the mean-dynamically nonmonotonic median time constant 

was significantly greater than the mean-dynamically monotonic median (p = 0.0013, 

Wilcoxon rank sum test), and for the high-to-low transition (Figure 6.10D) it was less, 

but not significantly so (p = 0.15, Wilcoxon rank sum test). The opposite trend was true 
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of the steady-state rates. For the low-to-high transition the mean-dynamically 

monotonic distribution of steady-state rates was less than the mean-dynamically 

nonmonotonic distribution (Figure 6.10C) but the difference was not significant (p = 

0.19, Wilcoxon rank sum test), while the same comparison was significant for the high-

to-low transition (p = 0.018, Wilcoxon rank sum test, Figure 6.10E).  
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Figure 6.10  A, Comparison of estimated mean-rate adaptation time constants for 

mean-dynamically monotonic (blue) and mean-dynamically nonmonotonic (red) 

neurons. In general, mean-dynamically monotonic neurons are faster in response to the 

low-to-high transition while mean-dynamically nonmonotonic neurons are faster in 

response to the high-to-low transition, since the populations are approximately 

separable along a line of equal time constants (dotted line). The distribution of time 

constants for the low-to-high transition is significantly less for mean-dynamic 

monotonic neurons than for mean-dynamic nonmonotonic neurons (B, p = 0.0013, 

Wilcoxon rank sum test). The median time constant of mean-dynamic nonmonotonic 

neurons for the high-to-low transition is less than that of mean-dynamic monotonic 
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neurons, but the difference is not significant (D, p = 0.15, Wilcoxon rank sum test). 

Distributions of steady-state rates have relatively similar medians between the two 

populations for both transitions (C, E); however, there is a significant difference for the 

high-to-low transition (p = 0.018, Wilcoxon rank sum test). 
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6.3 Discussion 
 

Time constants of adaptation to sound level in the auditory systems have been explored 

using forward-masking and dynamic-level paradigms (see Section 6.1). Some studies 

have reported asymmetric adaptation to mean sound level with neurons on average 

adapting faster from a high mean to a low mean than vice versa (Chimento & Schreiner, 

1990, 1991; Dean et al., 2005). For neurons recorded in this study we find evidence that: 

(1) Nonmonotonic neurons adapt mean-rate more quickly in response to the high-to-

low transitions as compared with responses to the low-to-high transitions. Monotonic 

neurons, on the other hand, show the opposite trend—an asymmetry which is 

consistent with previous studies. This difference between monotonic and 

nonmonotonic neurons is apparent for rate-level time constants as well, but a good 

portion of nonmonotonic neurons also adapt more quickly in response to the low-to-

high transition than in response to the high-to-low transition. However, this disparity 

between the two rates of adaptation is less than that seen in monotonic neurons. (2) 

The estimated time constants of rate-level and mean-rate adaptation are highly 

correlated. (3) A large variety of different transient responses to high-to-low and low-to-

high dynamic transitions exist that are related to but not entirely predicted by the 

monotonicity of the static-rate level function (that measured with tones presented in 

periods of silence). (4) Neurons that have increasing rate-level functions in response to 

high dynamic levels (dynamic monotonic neurons) also always had increasing rate-level 
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functions that decayed to lower sound levels in response to the high-to-low mean level 

transition. 

 

Of the analyses performed on neurons’ responses to the dynamic-transition stimuli, 

several of them excluded a large number of neurons. We encountered a large number of 

neurons that despite having robust tonal responses, either did not respond well or were 

completely saturated in response to one or both plateaus of the respective dynamic-

transition stimulus. In the effort of estimating adaptation time constants, we did not 

want to include neurons that did not show clear rate-level or steady-state mean-rate 

responses. Because most of the neurons in our dataset revealed monotonic rate-level 

functions over the 20-dB range of the plateaus, an adapting-sigmoid model was used for 

fitting to the data. Our final model choice was based on qualitative assessment of fits 

and overall goodness of fit values. For the minority of neurons that did not show 

monotonic rate-level responses in response to one or both plateaus, we were not able to 

even visually discern any time course of adaptation. Finally, many neurons that did show 

monotonic rate-level functions over one or both plateaus still did not show a visually 

discernable adaptation response based on the 1-second time windows. These neurons 

were eventually also excluded for the final level of analysis because we did not want to 

report time constants that were not reflective of real trends in the data. The choice of 1-

second time windows for the rate-level functions and minimum 400-ms time windows 

for the mean-rate was so that time constants were not misestimated due to model over-

fitting of the data. Neuronal variance on short time scales can easily obscure adaptation 
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trends that are more readily discernable using longer time averages. The chosen time 

windows were a tradeoff between these considerations and the ability to measure short 

time constants. 

 

One of our primary conclusions was that of a strong correlation between time constants 

of adaptation for rate-level and for mean-rate responses, consistent with previous 

studies in inferior colliculus (Dean et al., 2008). The implication of this finding is that 

rate-level adaptation, (the adaptation of input / output functions for these neurons) that 

is created locally is likely to rely on a mechanism of mean-rate regulation. Clearly, 

because our findings in cortex are consistent with those found subcortically, much of 

the adaptation reported here may be inherited, and we expect that the difference in time 

constant asymmetry between dynamic monotonic and dynamic nonmonotonic neurons 

is also likely to be found subcortically as well. Time constants measured in this study 

span a range from 200 ms up to 30 seconds that could be accurately estimated with our 

particular protocol and analysis. The distributions of time constants for both transition 

types were fairly uniform on a log scale. It was therefore difficult to separate out what 

would be considered two different time scales of adaptation. We only found clear 

evidence of multiple time-scales that would be fit with a double exponential decay in a 

very few neurons in our dataset, so we did not explore this effect systematically. 

 

In general the effect of adaptation is likely smaller in auditory cortex than subcortically 

and in the auditory nerve, reflected by our low number of neurons that showed robust 
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adaptation in response to the dynamic-transition stimuli. Multiple time scales of 

adaptation are present in auditory nerve fibers (Chimento & Schreiner, 1991), but the 

slower time scale reported there is much faster than slow time scales reported in the 

inferior colliculus and auditory cortex (Bartlett & Wang, 2005; Dean et al., 2008). 

Because we were not able to fully discern a cutoff between long term and short term 

adaptation in this study, a comparison of time constants from this and other related 

studies is presented in Table 6.1. The table uses mean values from other studies, but 

medians for our study, since we found a relatively uniform distribution of log 

transformed time constants over a range from a few hundreds of milliseconds up to 

tens of seconds. Values in Table 6.1 from this dissertation are taken from the analysis 

for Figure 6.9 using the 400-ms time windows. 
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Table 6.1  Comparison of time constants measured in this and other studies of 

adaptation involving sound level. All values reported are distribution means, except for 

this dissertation where we report medians (see text). Means from other studies marked 

with an asterisk (*) indicate that the study reported a significant difference between the 

high-to-low and low-to-high means. Means marked with a plus sign (+) indicate that 

they were not directly reported but reconstructed from a published figure. Values either 

not collected or not reported are marked with NA (not available). 

First 
Author 
(Year) 

Auditory 
Area 
Sampled 

Species Paradigm High-to-
Low 
Transition 
(Fast/Slow) 

(ms / sec ) 

Low-to-
High 
Transition 
(Fast/Slow) 

(ms / sec) 

Watkins 
(2009) 

auditory 
cortex 

marmoset 
monkey 

dynamic 
level 

2400 / NA 740 / NA 

Dean (2008) inferior 
colliculus 

guinea pig dynamic 
level 

331.8* / 12.3 159.7* / NA 

Nagel (2006) field-L zebra 
finch 

dynamic 
level 

670+ / NA 690+ / NA 

Kvale (2004) inferior 
colliculus 

cat dynamic 
variance 

140 / NA 300 / NA 

Bartlett 
(2005) 

auditory 
cortex 

marmoset 
monkey 

forward 
masking 
variant 

(suppression / facilitation) 

600 ms / 500 ms 

Chimento 
(1991) 

auditory 
nerve 
fibers 

cat forward 
masking 

8.3 / 682 5.5 / 93.7 
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Monotonicity index (MI) measured in silence-adapted rate-level functions did not 

completely predict neuronal responses to dynamic-transition-stimuli plateaus. Certainly, 

a few example neurons under steady-state adapted conditions demonstrated changes in 

their MI depending on the mean sound level of the dynamic stimulus (for example, see 

Figure 5.2G). In the steady-state analyses this issue was addressed by using the mean MI 

over all static and dynamic responses. For the dynamic-transition stimuli we recorded 

responses to uniformly distributed dynamic stimuli (see Section 2.3.1), which often gave 

a better estimate of responses to plateaus of dynamic-transition stimuli. However, in 

general some monotonic neurons demonstrated decreasing rate-level functions in 

response to the high-level plateau, and some nonmonotonic neurons demonstrated 

increasing rate-level functions in response to the high-level plateau (Figure 6.3), contrary 

to what would be expected given the static MI. For steady-state responses to dynamic 

stimuli, MIs were all considered separately and in general still conformed to decreasing 

amount of adaptation with decreasing MI (Figure 5.5), but this analysis considered this 

effect across the population and not in the same neuron. Therefore, we based our 

monotonic / nonmonotonic categorization for responses to the dynamic-transition 

stimuli on whether the responses themselves were increasing or decreasing for the low-

to-high transition and not considering the MI from the silence-adapted rate-level. In 

general, these considerations mean that the amount of on-CF inhibition present in the 

neuronal responses is also a function of sound-level, with a rate-level profile that is 

distinct from that of the excitatory inputs, consistent with intracellular studies (Tan et 

al., 2007). 
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The result that the subset of dynamic monotonic neurons considered in the analysis for 

Figure 6.8 always had increasing responses that decayed to higher sound levels in 

response to the high-level plateau and always had increasing responses that decayed to 

lower sound levels in response to the low-level plateau is compelling. Neurons of this 

type are likely to be responsible for the general finding in other studies that neurons 

adapt more quickly for the low-to-high level transition (compare Figures 6.6B and 

6.7A). Dynamic nonmonotonic neurons, on the other hand, seem to come in at least 

two varieties, separated by whether their decreasing responses to the high-level plateau 

decay to lower sound levels or to higher sound levels (compare Figures 6.7B and 6.7C). 

Dynamic nonmonotonic neurons that decayed to higher sound levels (Figure 6.7B) 

showed a much greater average time constant than those that decayed to lower sound 

levels (Figure 6.7C). Additionally, for neurons in our dataset, these subsets of dynamic 

nonmonotonic neurons were not predictive of how the same neuron would adapt to the 

low-level plateau. These results imply that nonmonotonic neurons may very well be 

composed of several other categories either that have response characteristics preserved 

from particular auditory nerve fibers inputs or whose dynamic properties are created 

from central neural circuits. These two populations could then be serving even more 

specific tasks in regards to transient dynamic level responses. 
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Appendix A 
 
Neuronal Correlations between 
Simultaneously Recorded Neurons and 
the Effect on Measures of  Encoding 
and Decoding of  Sound Intensity Level 
 

As alluded to briefly in the Methods (Section 2.3.2) and Results (Section 5.2.3) for 

Chapter 5, drawing conclusions based on the mean Fisher Information (FI) calculated 

over a population of neurons inherently assumes that the neural responses are not 

correlated. Such correlations, referred to as noise correlations are correlations between 

neurons in response to a fixed stimulus, and thus are not correlations strictly due to the 

effect of the stimulus (referred to signal correlations). Noise correlations in the neural 

responses change the amount of information regarding the signal that is conveyed by 

the population. Such correlations can either increase or decrease the amount of 

information encoded by the population, but only have the effect of decreasing the 

amount of information that can be decoded from the population response (for review 

see (Averbeck et al., 2006)). This appendix presents the results of analyzing the discrete 

analog of FI, discriminability (d-prime, a measure of the decoding accuracy possible 

from an ideal observer) for a population of simultaneously recorded neurons in 

response to different sound levels of a pure tone stimulus, at or very close to the 
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characteristic frequency (CF) of the recorded neurons. We calculate the effect of noise 

correlations on each measure of discriminability from these rate-level responses. Other 

aspects of these responses, termed static rate-level responses or silence-adapted 

responses in the context of dynamic stimuli, were described in detail in Chapter 4. The 

same type of noise correlation analysis could be performed on the Fisher Information 

directly; unfortunately, our dataset only contained two pairs of neurons that were 

recorded simultaneously in response to the dynamic level stimuli. 

 

A.1 Methods 
 

Methods for recording single action potentials from neurons in the primary auditory 

cortex and constructing rate-level responses are described in Sections 2.2.1 and 2.2.2 

respectively. Out of the dataset of rate-level responses evoked with pure tone stimuli at 

the characteristic frequency (CF) of the neuron we analyzed neurons that were recorded 

simultaneously on one electrode for the noise correlation analysis. Because we utilized 

online template-based spike sorting, up to 4 distinct action potentials could be isolated 

from a single electrode simultaneously (see Section 2.2.1). We chose a time bin width of 

100 ms for the purposes of computing noise correlations. This was chosen because this 

is the same as the time interval utilized in the dynamic-level stimuli (see Section 2.3.1) 

for which Fisher Information was calculated and averaged (see Section 5.2.3) and is also 

the duration of our static rate-level stimuli. In order to make a more informed choice on 

an appropriately sized time bin for the noise correlation analysis, our experiments would 
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require some measure of decoding performance (possibly based on a behavioral task) 

with which to evaluate different time bin sizes (Averbeck & Lee, 2003), which we did 

not have. Noise correlations were analyzed over the 100 ms interval starting at the 

shortest neuronal latency of the simultaneously recorded neurons (for a description of 

how latency was estimated for each neuron, see Section 2.2.3). 

 

Discriminability was calculated using d-prime, a measure of the separation between two 

Gaussian distributions, defined as: 
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where d2 is d-prime squared, µi are the mean spike counts in response to two different 

stimuli (two different sound levels in this case), and σ2 is the variance of the spike count 

distribution. This later value was taken as the average variance of the two respective 

spike count distributions. Discriminability was calculated for all possible pairs of sound 

levels that were collected for most of the rate-level dataset from −15 dB SPL to 85 dB 

SPL in increments of 10 dB. This amounts to a total of 55 possible pairs of sound levels 

for which d2 was calculated for each neuron. Discriminability was extended for multiple 

neurons recorded simultaneously using a multivariate generalization involving the 

covariance matrix of the neurons and then re-calculated in order to understand the 

changes in both the information encoded and that can be decoded when neuronal 

correlations are ignored. The calculations were reproduced in exactly the same manner 
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as given by (Averbeck & Lee, 2006). For completeness, the next paragraph briefly 

describes these calculations.  

 

The multivariate extension of d2 is given by: 

 
  , (A.2) µµ ∆∆= −12 Qd T

 

where ∆µ is the difference in mean spike counts in response to two different sound 

levels and Q is the mean covariance matrix for these spike count distributions. The 

dimensionality of the ∆µ vector and the Q matrix is given by the product of the number 

of time bins and the number of neurons. For the purposes of this analysis, only 100 ms 

time bins for 100 ms duration stimuli were used, resulting in only a single time bin. 

Thus, the dimensionality was given as the number of simultaneously recorded neurons. 

The effect of ignoring correlations on the amount of information encoded by the 

simultaneously recorded neurons was measured by removing the correlations between 

neurons: 

 
  , (A.3) µµ ∆∆= −12

d
T

shuffled Qd
 

where Qd is the mean covariance matrix with off diagonal elements set to zero. The 

effect of how much information can be decoded from the simultaneously recorded 

neurons without knowledge of the correlations was measured by deriving the optimal 

decoder using the diagonalized covariance matrix: 
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Each d-prime value was converted into a coding accuracy metric, which essentially gives 

an upper bound on the percentage of times that an optimal decoder would correctly 

classify the sound level, based on any of the d-prime measurements (see (Averbeck & 

Lee, 2006) for derivation): 
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2
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where A is the coding accuracy and d is the square root of one of the discriminability 

metrics measured above (either d2, d2
shuffled or d2

diag). The expression is equivalent to the 

value of the standard normal cumulative density function at d / 2, and was evaluated as 

such. The changes in encoding accuracy, 

 
 shuffledshuffled AAA −=∆  , (A.6) 
 

and decoding accuracy, 

 
 diagdiag AAA −=∆  , (A.7) 
 

quantified the amount of information that was gained or lost by ignoring noise 

correlations between neurons. Here Ashuffled and Adiag are computed from Equation A.5 

using dshuffled and ddiag respectively. Ashuffled can be positive, meaning encoding information is 

lost without accounting for correlations, or negative, meaning encoding information is 
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gained without accounting for correlations. A decoder without knowledge of the 

correlations can only lose information, so Adiag is always positive. 

 

For the purposes of this appendix, the primary interest is to show the effect, if any, that 

noise correlations in auditory cortex neurons may have on our conclusions drawn from 

averaging FI in Chapter 5 (for example, Figure 5.4B,D). In Chapter 5, the primary 

purpose of the mean FI analysis was to determine differences in encoding between 

monotonic and nonmonotonic neurons. Thus, any significant differences in noise 

correlation or coding accuracy between monotonic and nonmonotonic neurons could 

potentially introduce a caveat for conclusions drawn based on mean FI. To investigate 

this issue, simultaneously recorded neurons were characterized by both the mean and 

standard deviation of neurons’ monotonicity indices (MIs, see Section 2.2.3). 

Simultaneously recorded neurons were classified as monotonic if all the neurons had MI 

> 0.5 and as nonmonotonic if all the neurons had MI ≤ 0.5. Although some 

simultaneously recorded groups had neurons with MIs on both sides of 0.5, any 

correlation relationships amongst these groups was not relevant for the current analysis, 

and we did not find any significant effects. Because of the large number of possible 

comparisons for which coding accuracy measures were derived, an overall accuracy for 

each simultaneously recorded group was calculated as the mean across all possible 

sound level discriminability comparisons. In addition, we calculated mean coding 

accuracies and correlations for each possible stimulus comparison, averaged separately 

for the monotonic and nonmonotonic classes of simultaneously recorded neurons. 
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Some calculations for coding accuracy, as described above, resulted in a singular matrix 

or a divide by zero situation. These values were considered as empty data points and 

were removed for the averages across stimulus pairs or across simultaneously recorded 

groups. 

 

A.2 Results 
 

As described in Section 4.2, 544 primary auditory cortex neurons from 12 hemispheres 

of 7 awake marmoset monkeys (Callithrix jacchus) were analyzed for sound intensity level 

coding properties in response to characteristic frequency (CF) tones. From these 

responses, (static) rate-level functions were computed as described in Section 2.2.3. Of 

these 544 rate-level functions, 541 contained the standard set of sound levels from −15 

dB SPL to 85 dB SPL in increments of 10 dB for which 55 pairs (all combinations of 11 

sound levels taken 2 at a time) of coding accuracy measurements were collected. These 

measurements reflect the coding accuracy of single “silence-adapted” neurons (not 

necessarily simultaneously recorded). Neurons were classified as monotonic if their 

monotonicity index (MI, see Section 2.2.3) was greater than 0.5 and nonmonotonic if 

their MI was less than or equal to 0.5. Of the 541 neurons containing the standard 

sound levels, 238 were classified as monotonic and 303 as nonmonotonic. Coding 

accuracies averages for all 55 possible pairs of the standard sounds levels showed that 

nonmonotonic neurons are better at discriminating amongst the lower sound levels than 

monotonic neurons (Figure A.1A,B). This is also consistent with the hypothesis that 
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nonmonotonic neurons are specialized encoders of low sounds levels, for which a good 

deal of evidence was presented in Chapters 4 through 6. Nonmonotonic neurons also 

generally have better average coding accuracy for discriminating the closest sounds 

levels (Figure A.1C) at 10 dB (solid lines) and 20 dB (dashed lines) increments. These 

increments are represented as the first and second diagonals below the main diagonal 

(red line) in Figure A.1A,B. 
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Figure A.1  Average coding accuracy of the population of single monotonic neurons 

(A) versus that of single nonmonotonic neurons (B) shows better coding of low sound 

intensities by nonmonotonic neurons. C, Coding accuracy from the first and second 

diagonals below the main diagonal in A and B represents discriminability between 

sound levels separated by 10 dB (solid lines) and 20 dB (dashed lines) respectively. Mean 

accuracy is better at larger separations of sound level and overall better in the 

nonmonotonic population. 
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Of the 541 neurons whose responses were recorded with the standard set of sound 

levels, 206 of these neurons were involved in simultaneous recordings. This total 

consisted of 86 groups of two simultaneously recorded neurons, 10 groups of three and 

one group of four for a total of 97 groups of simultaneously recorded neurons. Of these 

groups, 27 had all neurons classified as monotonic (MI > 0.5), 40 had all neurons 

classified as nonmonotonic (MI ≤ 0.5) and the remaining 30 had a combination of 

monotonic and nonmonotonic neurons recorded simultaneously. In general, average 

coding accuracy was greater for the simultaneously recorded groups than that of the 

individual neurons composing the groups for both monotonic (Figure A.2A versus 

Figure A.2C) and nonmonotonic (Figure A.2B versus Figure A.2D) neurons. Mean 

accuracy of the all monotonic or all nonmonotonic simultaneously recorded groups 

showed similar trends to that over the whole population, with nonmonotonic groups 

having better accuracy at the lowest intensities. No trends revealing a systematic 

relationship of change in encoding accuracy (Figure A.2E,F) or change in decoding 

accuracy (Figure A.2G,H) when correlations were ignored were immediately apparent 

across the different stimulus pairs. 
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Figure A.2  Mean single neuron coding accuracy from the populations of 

simultaneously recorded monotonic (A) and nonmonotonic neurons (B). Mean coding 

accuracy of the simultaneously recorded groups that contain either all monotonic (C) or 

all nonmonotonic (D) neurons. Mean coding accuracy for the simultaneously recorded 

groups (C,D) is in general greater than that of the individual neurons composing the 

groups (A,B). The change in encoding accuracy when correlations are ignored can be 

negative, meaning encoding accuracy improves, or positive, meaning encoding accuracy 

degrades, when correlations are ignored for the same monotonic (E) and 

nonmonotonic (F) groups of simultaneously recorded neurons in C,D. G–H On the 

other hand, the change in decoding accuracy is always positive when the decoder has no 

knowledge of noise correlations. 
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The change in encoding and decoding accuracy for the simultaneously recorded groups 

of neurons was relatively small in comparison with the overall coding accuracy (Figure 

A.3A–D). For discrimination between levels that were 10 dB and 20 dB apart (first and 

second diagonals below the main diagonals in A.2) it is apparent that nonmonotonic 

groups have a slightly larger deficit in decoding accuracy than monotonic groups when 

correlations are ignored at the lowest sounds levels. This can be seen by a larger 

distance between blue line and green line in Figure A.3B versus Figure A.3A for 10 dB 

discriminability, and the same in Figure A.3C versus A.3D for 20 dB discriminability. 

Indeed, there are larger correlations between nonmonotonic groups than between 

monotonic groups at sound levels less than or equal to 35 dB SPL (Figure A.3E). 
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Figure A.3  A–D, First and second diagonal slices below main diagonal from Figure 

A.2 show the relatively small difference between coding accuracy (blue lines) and coding 

accuracy that does not account for correlations in encoding (red lines) or decoding 

(green lines). A larger difference is apparent for the decoding in the nonmonotonic 
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groups at lower sound levels. This difference is because of large correlations amongst 

the nonmonotonic groups at sound levels below 35 dB SPL relative to the monotonic 

groups (E). Both populations are near a mean correlation coefficient (r2) of about 0.2 

across all sound levels. 
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For mean coding accuracy averaged across all stimulus pairs, there was not a significant 

difference (p = 0.45, Wilcoxon rank sum test) between monotonic and nonmonotonic 

groups of simultaneously recorded neurons (Figure A.4A). All plots in Figure A.4, show 

mean coding accuracies, coding accuracy differences or correlations across all stimulus 

pairs expressed as a function of the mean MI of the simultaneously recorded neurons. 

Again, only groups with all monotonic or all nonmonotonic neurons were included for 

this analysis. Significance was tested by comparing central tendencies of the monotonic 

and nonmonotonic distributions (split at MI of 0.5) of these coding measures. A p-value 

is shown above each plot where a significant difference (p < 0.05) was found. There 

was also not a significant different in the change in encoding accuracy when noise 

correlations were ignored (p = 0.27, Wilcoxon rank sum test) between monotonic and 

nonmonotonic groups (Figure A.4B). The change in decoding accuracy (Figure A.4C), 

however, was significantly greater for nonmonotonic groups (p = 0.0071, Wilcoxon 

rank sum test), likely due to a significantly greater mean correlations in nonmonotonic 

groups (Figure A.4D, p = 0.0080, Wilcoxon rank sum test). Thus, these results show 

that slightly larger average noise correlations amongst groups of simultaneously 

recorded nonmonotonic neurons resulted in more information lost by a decoder with 

no knowledge of the correlations, although not resulting in significantly more encoding 

information lost. Additionally, this result is not due to an overall difference in overall 

coding accuracy. 
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When these same coding accuracy and correlation measurements plotted in 

FigureA.4A–D were calculated by averaging over stimuli with sound levels greater than 

15 dB SPL, the significant trends were no longer revealed (Figure A.4E–H). The same 

measurements averaged over sound levels less than or equal to 15 dB SPL first revealed 

significantly better coding accuracy in nonmonotonic groups (Figure A.4I, p = 0.0014, 

Wilcoxon rank sum test). There was again no significant difference in encoding 

information changed by ignoring correlations (Figure A.4J, p = 0.75, Wilcoxon rank 

sum test), but nonmonotonic groups showed significantly more information lost in 

decoding (Figure A.4K, p = 0.0081, Wilcoxon rank sum test) and significantly greater 

correlations (Figure A.4L, p = 0.0018, Wilcoxon rank sum test). This final result is 

consistent with Figure A.4E, showing more correlations in nonmonotonic neurons at 

lower sounds levels. So, nonmonotonic neurons show significantly better coding 

accuracy, but more decoding information lost due to noise correlations and only at 

lower sound levels. 
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Figure A.4  Mean coding accuracy and correlation measurements similar to Figures A.2 

and A.3 but with the average taken across all stimulus pairs and expressed as a function 

 



 
 

   
 

265

of mean MI of the simultaneously recorded neurons, where only simultaneous groups 

where all the neurons were monotonic or all the neurons were nonmonotonic are 

shown. Plots where there is a significant different (p < 0.05) in medians between the 

monotonic and nonmonotonic groups are labeled with the p-value. Mean coding 

accuracy (A) is not significantly different between monotonic and nonmonotonic 

groups (p = 0.45, Wilcoxon rank sum test), nor is the change in encoding accuracy 

when correlations are ignored (B, p = 0.27, Wilcoxon rank sum test). Nonmonotonic 

simultaneously recorded groups showed significantly more decoding information lost 

than did monotonic groups when correlations were ignored (C, p = 0.0071,  Wilcoxon 

rank sum test) and showed significantly greater correlations (D, p = 0.0080,  Wilcoxon 

rank sum test). E–H, The same measures as in A–D, but only averaged across sound 

levels greater than 15 dB SPL do not show any significant differences between the 

monotonic and nonmonotonic groups. I–L, The same measures as in A–D, but only 

averaged across sound levels less than or equal to 15 dB SPL show nonmonotonic 

groups having significantly greater mean accuracy (p = 0.0014, Wilcoxon rank sum test), 

significantly more information lost in decoding by ignoring noise correlations (p = 

0.0081, Wilcoxon rank sum test), and significantly more noise correlations (p = 0.0018, 

Wilcoxon rank sum test). 
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A.3 Discussion 
 

Our purpose for using Fisher Information (FI) in Chapter 5 was to compare relative 

differences in encoding properties between monotonic and nonmonotonic neurons. In 

particular we did not propose necessarily how these responses would be decoded by 

postsynaptic neurons. Thus, a large degree of correlations in auditory cortex neurons 

would not have necessarily been a problem, but only if there was a difference in these 

correlations between the nonmonotonic and monotonic population. We did indeed find 

this effect to be significant in neurons that were either all monotonic or all 

nonmonotonic and recorded simultaneously on the same electrode. Although this 

potentially presents a caveat for our conclusions in Chapter 5, this effect was quite small 

overall (see Figure A.3A–D). Additionally, we would expect the effect to be much 

smaller when correlations were measured between neurons separated by greater distance 

in the cortex (Smith & Kohn, 2008), as opposed to the close proximity of 

simultaneously recorded neurons from one electrode that were analyzed here. 

Therefore, we still do not anticipate that accounting for noise correlations would have 

such a large effect as to change our conclusions from Chapter 5 drawn based upon 

mean FI analyses. In addition the analysis presented in Appendix A potentially provides 

preliminary data for two additional hypotheses: (1) that nonmonotonic neurons are 

more likely to be involved in the same circuitry and (2) that at the lowest sound levels, 

the auditory system may be sacrificing discriminability for detectability, as is done in the 
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visual system where receptive fields become larger at lower contrasts (Sceniak, Ringach, 

Hawken, & Shapley, 1999). 
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