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ABSTRACT OF THE THESIS 
 
 

Validation of CFD Simulations for Hypersonic Flow over a Yawed Circular Cone   

by 

Julian D. Cecil 

Master of Aerospace Engineering 

Washington University in St. Louis, 2018 

Research Advisor:  Ramesh K. Agarwal, PhD 

 
 

This study aims to numerically simulate the wind tunnel results for hypersonic flow over a circular 

cone of semi-apex angle of 10 degrees yawed from 0° to 20° using the commercial computational fluid 

dynamics software ANSYS Fluent. The ANSYS workbench is used to create the 10° semi-apex 

circular cone with a shock aligned structured mesh of 3.05 million cells surrounding the cone. 

Simulation boundary conditions for pressure and temperature in the far field correspond to Tracy’s 

wind tunnel experiment at Cal Tech. The six simulations cases are conducted for yaw angles of 0, 8, 

12, 16, 20 and 24 degrees. The unsteady Reynolds-Averaged compressible Navier-Stokes solver with 

Spalart-Allmaras (SA) turbulence model is employed. The upstream flow Mach number is M = 8 and 

Reynolds number is Reꝏ = 4.2 x105 based on cone generator length. The maximum variation in static 

pressure computations around the cone is 7% of the experimental values and the maximum variation 

in heat transfer computations is within 12% of the experimental values; the maximum difference 

between the computations and experiment occurs at the leeward meridian of the cone. By further 

refinement of the mesh and using other turbulence models, it is possible that computational accuracy 

of the simulations may be further improved; however it requires additional investigation. Nevertheless 

the present simulations demonstrate that CFD can be employed with sufficient accuracy to compute 

the hypersonic flows about space vehicles with fully turbulent flow.  
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

Space vehicles for hypersonic flight have been designed in the past using a variety of methods such as  

wind tunnel testing, aerodynamic theory, and full-scale field testing. The conditions present in 

hypersonic flow are difficult to fully capture due to ionization, extreme friction heating with high 

temperatures, and chemical reactions. Wind tunnel testing can accurately replicate some of these 

conditions for a scale model. However, test sections for hypersonic tunnels are limited in size, require 

vast amounts of power, and can only isolate one flow variable at a time. Thus, wind tunnel testing 

does not facilitate rapid design changes. Purely mathematical models are limited in practice due to 

many simplifying assumptions needed to obtain a solution. These models often do not produce a 

closed form solution and are often limited to either axisymmetric or simple geometries. In many cases, 

a very simplified model is not accurate enough to describe the conditions present in real hypersonic 

flows. Numerical analysis using computational fluid dynamics (CFD) technology, has become more 

popular over the past few decades as a cost effective, yet acceptably accurate approach to analyze the 

hypersonic aerodynamics. Computer simulations are appealing since they support rapid design 

changes and allow for computation of  the flow field about complex geometries. They also include 

models for describing the real gas effects and turbulence. However, CFD methods are not perfect 

either: they are heavily dependent on boundary conditions and grid quality and can produce widely 

varying results. This study aims to validate CFD simulations against established experimental results 

for hypersonic flow past yawed cones to develop best practice guidelines that can be used for modeling 

hypersonic flows.  
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1.2 Brief Review of Literature 
 

Hypersonic flow past cones has been a subject of  study for more than 60 years. Tables for symmetrical 

hypersonic flow such as Bartlett’s [1]  and yawed hypersonic flow such as Kopal’s [2] have been 

generated using various mathematical approximating models. Ferri [3] has shown that the first order 

theory for supersonic flow over a circular cone matches well with the experimental data even up to 

12° yaw. Hypersonic flow past yawed cones was further examined by Sapunkov [4], who obtained 

solutions for the flow field between the shock and the cone surface. His method however had 

singularities at the surface and thus was inapplicable close to the cone surface. In the past few decades, 

CFD has been employed extensively for analyzing the hypersonic flows over conical geometries and 

other space vehicles. Moss, LaBeau, and Glass [5] examined the Mach 10 flow in a low-density wind 

tunnel over a sharp double cone using the direct simulation Monte Carlo (DSMC) method. They 

found a particular sensitivity in the solver to grid resolution. Gosse and Kimmel [6] conducted Mach 

8 simulations over an elliptic cone with good agreement between CFD and experiment.  

1.3 Scope of the Thesis 
 

The goal of  this thesis is to use the wind tunnel experiment results published in 1963 by Richard R. 

Tracy [7] for validation of  CFD methodology for computing hypersonic flows employing the 

commercially available CFD software, ANSYS Fluent. Tracy obtained the experimental data for Mach 

8 flow over a sharp circular cone at different yaw angles and six different Reynold’s numbers. His 

experimental data includes surface pressure and heat transfer measurements at two locations on the 

cone. The CFD simulations in this thesis are performed for six yaw angles and at flow conditions of  

free-stream pressure 259.3 psia, free-stream temperature 1360 °R, and Reynolds number Re= 4.2x105. 

Surface pressure and heat transfer data extracted from the simulations are compared against the 

experimental data.   
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Chapter 2 

 
Solution Methodology 

 

2.1 Governing Equations 
 

The Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a turbulence model are 

used to compute the compressible turbulent flow fields of  hypersonic flow past yawed cones. The 

conservation equations of  mass, momentum (RANS equations), and energy along with the equation 

of  state for an ideal gas are solved for the six flow variables – pressure, density, temperature, and three 

components of  velocity. These equations are solved using the commercial CFD solver Fluent. 

2.2 Turbulence Modeling 
 

This study employs the one-equation Spalart-Allmaras (SA) model for modeling the “Reynolds 

Stresses” in the RANS equations. The SA model was designed especially for aerodynamic flows and 

solves a modelled transport equation for the turbulent eddy viscosity. It has been found to be 

reasonably accurate for a wide variety of  aerodynamic flows in subsonic and transonic regimes. It may 

not be quite accurate for computing hypersonic turbulent flows; the goal of  this research is to assess 

its accuracy for computing hypersonic flows.  
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2.3 Numerical Setup 
 

2.3.1 Grid Generation 
 

The circular cone’s dimensions were obtained directly from Tracy’s [7] experimental configuration. A 

bilateral symmetry plane was used to cut the model in half, extending from the windward meridian to 

the leeward meridian. The computational domain is bounded by the symmetry plane, the cone surface, 

an outlet plane, and a far field boundary. Figure 1 shows an isometric view of the computational 

domain. 

 

Figure 1: Isometric View of the Computational Domain 

 
The far field surface of the computational domain is a segmented frustum with diameters 4.0 inches 

at the inlet, 8 inches at the segment, and 10.14 inches at the outlet. The outer diameter is 6.0 times 

greater than the diameter of the cone surface and is sufficiently large to capture the shock cone at the 

largest angle of attack. A conical mesh was chosen instead of a rectangular mesh since it projects more 

accurately on the round cone surface and requires 50.5% less computational domain size. This serves 

to increase the computational efficiency and decrease the simulation time. Figure 2 shows a top down 

view of the computational domain, looking at the symmetry plane and a cross sectional view showing 

the cone dimensions. The cone apex is truncated to a very small diameter of 0.002 inches, which is 

the machining tolerance specified in Tracy’s experimental model. This was done to increase the quality 

of the mesh and avoid the meshing problems frequently encountered with a sharp tip. 
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Figure 2: Top and Side Views of the Computational Domain Around the Cone 

  

 

The cone’s shock angle was calculated using Taylor-Maccoll analysis [8]. At Mach 8 and semi-apex 

cone angle of 10 degrees, the shock angle is 13.05 degrees. The grid is aligned such that the mesh 

elements near the cone surface are nearly parallel to the surface for boundary layer resolution, and 

elements near the shock are parallel to a cone angle of 13.05 degrees for shock layer resolution.  

The radial direction has 100 elements starting in size from 9 x 10-6 inches at the cone surface and 

growing outward with a ratio of 1.2. This places 5 elements inside the boundary layer, calculated for a 

y+ of 1.0, for adequate resolution of the turbulent boundary layers [9]. The circumferential direction 

has 135 uniformly spaced elements, and the lengthwise direction has 120 elements starting at 9 x 10-6 

inches at the cone tip, growing outward with a ratio of 1.2 for smooth transition with the far field 

mesh elements. The remaining mesh dimensions were adjusted until the overall mesh quality was 

greater than 0.7. The resulting truncated conical mesh has 3.05 million volume elements. Figure 3 

shows the top and side views of the resulting grid. The purple surface is the symmetry plane, seen in 

the top view, and the red surface is the far field boundary. The interior green area is the cone surface. 

Figure 4 shows a rear view of the computational domain (outlet boundary plane). The elements along 

the circumference have an angular resolution of 1.33 degrees per cell.  
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Figure 3: Top and Side Views of Fluent Mesh 

 

Figure 4: Rear View of Fluent Mesh Showing the Outlet Plane 

2.3.2 Solution Algorithm 
 

A double precision implicit solver, using the Advection Upstream Splitting Method (AUSM) is used 

in all simulations. The gradients are calculated with the least squares cell-based gradient method. A 

second order upwind scheme is used for discretization of  both the RANS and SA turbulence 

equations. Sutherland’s viscosity law [10] is used to account for the high temperature effects on the 

molecular viscosity. 
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2.3.3 Boundary Conditions 
 

The computational domain has four bounding surfaces, one each for the far field, symmetry plane, 

outlet plane, and the cone surface. Isentropic flow relations are used to calculate the static pressure 

and static temperature from the given total pressure and total temperature [11]. These relations are 

shown below in Eq. (2.1) and Eq. (2.2). 

𝒑

𝒑𝒕
= (𝟏 +

𝜸−𝟏

𝟐
𝑴𝟐)

−
𝜸

𝜸−𝟏
   (2.1) 

𝑻

𝑻𝒕
= (𝟏 +

𝜸−𝟏

𝟐
𝑴𝟐)

−𝟏

    (2.2) 

At Mach 8, for 1.788 MPa total pressure and 755.6 K total temperature, the static pressure is 190.7 Pa 

and the static temperature is 55.4 K. The static flow variable conditions are used in Fluent to specify 

the far field as a pressure-inlet. Tracy mentions that the cone is actively cooled such that the wall 

temperature to freestream total temperature ratio is 0.40. The cone surface is a smooth copper wall at 

constant temperature of  302.2 K. The outlet boundary condition is specified as a pressure-outlet 

condition. Table 1 summarizes the freestream quantities.  

Table 1: Freestream Conditions 

𝑴∞ 7.95 

𝒑𝒕∞ (MPa) 1.788 

𝑻𝒕∞ (K) 755.6 

𝒑∞ (Pa) 190.98 

𝑻∞ (K) 55.39 

𝑻𝒘 (K) 302.2 K 
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Sutherland’s law of  viscosity, given in Eq. (2.3), is used because it is more accurate considering the 

large temperature difference between the far field (55 K) and the cone surface (302 K) [10].  

𝝁 = 𝝁𝒓𝒆𝒇 (
𝑻

𝑻𝒓𝒆𝒇
)

𝟑
𝟐⁄ 𝑻𝒓𝒆𝒇+𝑺

𝑻+𝑺
   (2.3) 

2.3.4 Convergence Criteria 
 

Five convergence criteria are used to determine the convergence of  the solution. Numerical residuals 

for the six conservation equations must be below 10-6 for the solution to be considered converged. 

Surface integrals over the cone for both static pressure and heat transfer coefficient are monitored. 

These values should not change between iterations for the solution to be considered converged. 

Finally, mass and heat fluxes through each of  the four surfaces are monitored to assure the system’s 

adherence to conservation laws. The sum of  the fluxes must be zero for the solution to be converged.  
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Chapter 3 

 

Results 
 

3.1 Test Cases 
 

Six simulations cases are computed for the cone yaw angles of  0, 4, 8, 12, 16, and 20 degrees. The 

nondimensional pressure and nondimensional heat transfer coefficient are calculated to compare them 

with the experimental data of  Tracy [7]. The nondimensional pressure is defined as a ratio of  the static 

pressure to free stream total pressure, and the nondimensional heat transfer coefficient is defined as a 

ratio of  the yawed heat transfer coefficient to un-yawed heat transfer coefficient.  This study considers 

only the first set of  Tracy’s experiment with 259.3 psia supply pressure, 1360 ˚R supply temperature, 

and freestream Reynolds number of  4.2 x 106. Following Tracy’s experiment, computational values are 

also obtained 4.0 inches from the vertex of  the cone.  

3.2 Simulation Results 
 

Figure 5 shows the comparison of  computed and experimental variables of  surface pressure 

coefficient on the cone from windward side (φ = 0°) to leeward side (φ = 180°) for the six yawed 

angles. All the computations are performed with 3.05 million grid points, except for the case of  the 

cone at zero angle of  attack. Excellent agreement between the computations and experimental data 

can be observed. Figure 6 shows the details of  the pressure distributions in the ranges φ = 90° to 

180°. Some disagreement can be seen between the computational experiment at yaw angles α =16° 

and 20°. 
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Figure 5: Surface Pressure on the Cone for Six Yaw Angles 
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Figure 6: Details for Surface Pressure on the cone for Six Yaw Angles 

 

Figure 7 shows the comparison of  the computed and experimental normalized local heat transfer on 

the cone from the windward side (φ = 0°) to the leeward side (φ = 180°) for the six yawed angles. All 

the computations are performed with 3.05 million grid points except the case of  the cone at zero 

angle of  attack performed with 2.3 million grid points. It can be seen that the disagreement between 

the computations and experimental data increases from φ = 90° to φ = 180° on the leeward side and 

also with increase in angle of  attack. This can be attributed to lack of  enough grid points near the 

surface and/or to the SA turbulence model. Based on the grid independence study reported later in 

the thesis, it is surmised that this disagreement can more likely be attributed to the SA model which is 

really not appropriate for high speed flows.  
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Figure 7: Normalized Local Heat Transfer on the Cone for Six Yaw Angles 

 

In the following subsections, more clear graphs for comparison of  computed pressure and 

experimental data for static pressure and heat transfer on the cone are presented at various angles of  

yaw.  
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3.2.1 Cone at 0° and 4° Angle of Attack 
 

Figure 8 and 9 show the surface pressure and heat transfer on the cone surface for 0° and 4° angles 

of  attack. It can be seen from Figure 8 that the computed and experimental pressure distributions are 

in reasonably good agreement. However, Figure 9 shows that there is large discrepancy between the 

computed and experimental heat transfer coefficient for φ = 90° to 180°. Based on the grid 

independence study it is conjectured that this discrepancy is likely due to the use of  the SA turbulence 

model which is really not suitable for high speed flows.  

 
Figure 8: Surface Pressure on the Cone at 0° and 4° Yaw 
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Figure 9: Normalized Local Heat Transfer Coefficient on the Cone at 0° and 4° Yaw 
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3.2.2 Cone at 8° Angle of Attack 
 

Figures 10 and 11 show the surface pressure and heat transfer on the cone surface for 8° angle of  

attack. It can be seen from Figure 10 that the computed and experimental pressure distributions are 

in reasonably good agreement. However, Figure 11 shows that there is large discrepancy between the 

computed and experimental heat transfer coefficient for φ = 90° to 180°. Based on the grid 

independence study it is conjectured that this discrepancy is likely due to the use of  the SA turbulence 

model which is really not suitable for high speed flows. 

 
Figure 10: Surface Pressure on the Cone at 8° Yaw 
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Figure 11: Normalized Local Heat Transfer Coefficient on the Cone at 8° Yaw 
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3.2.3 Cone at 12° Angle of Attack 
 

Figures 12 and 13 show the surface pressure and heat transfer on the cone surface for 12° angle of  

attack. It can be seen from Figure 12 that the computed and experimental pressure distributions are 

in reasonably good agreement. However, Figure 13 shows that there is large discrepancy between the 

computed and experimental heat transfer coefficient for φ = 90° to 180°. Based on the grid 

independence study it is conjectured that this discrepancy is likely due to the use of  the SA turbulence 

model which is really not suitable for high speed flows. 

 
Figure 12: Surface Pressure on the Cone at 12° Yaw 
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Figure 13: Normalized Local Heat Transfer Coefficient on the Cone at 12° Yaw 
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3.2.4 Cone at 16° Angle of Attack 
 

Figures 14 and 15 show the surface pressure and heat transfer on the cone surface for 16° angle of  

attack. It can be seen from Figure 14 that the computed and experimental pressure distributions are 

in reasonably good agreement. However, Figure 15 shows that there is large discrepancy between the 

computed and experimental heat transfer coefficient for φ = 90° to 180°. Based on the grid 

independence study it is conjectured that this discrepancy is likely due to the use of  the SA turbulence 

model which is really not suitable for high speed flows. 

 
Figure 14: Surface Pressure on the Cone at 16° Yaw 
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Figure 15: Normalized Local Heat Transfer Coefficient on the Cone at 16° Yaw 

  

0

0.5

1

1.5

2

2.5

3

3.5

0 30 60 90 120 150 180

h/h0

φ (degrees)

Tracy 16°

3.05M 16°



 
 
 
 
 
 
 
 

21 
 
 

3.2.5 Cone at 20° Angle of Attack 
 

Figures 16 and 17 show the surface pressure and heat transfer on the cone surface for 20° angle of  

attack. It can be seen from Figure 16 that the computed and experimental pressure distributions are 

in reasonably good agreement. However, Figure 17 shows that there is large discrepancy between the 

computed and experimental heat transfer coefficient for φ = 90° to 180°. Based on the grid 

independence study it is conjectured that this discrepancy is likely due to the use of  the SA turbulence 

model which is really not suitable for high speed flows. 

 

 
Figure 16: Surface Pressure on the Cone at 20° Yaw 
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Figure 17: Normalized Local Heat Transfer Coefficient on the Cone at 20° Yaw 
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3.3 Grid Independence Study 
 

Figures 18 and 19 show the simulation results for the cone at 4° yaw with identical upstream flow 
conditions for 4 different grid sizes. The results shown are at 2.3 million, 3.05 million, 5.4 million, and 
7.1 million grid points.  

 

Figure 18: Computed Surface Pressure on the Cone at 4° yaw angle for four grid densities ranging from 2.3 
million to 7.1 million cells  
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Figure 19: Computed normalized Heat Transfer Coefficient on the cone at 4° yaw angle for four grid densities 

ranging from 2.3 million to 7.1 million cells 
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also increases as expected. The difference in results due to the change in the mesh size for static 

pressure is not significant, however it is not true for the heat transfer results, especially on the leeside; 

2.3 million and 3.05 million cell results are nearly identical, but the 5.4 million and 7.1 million cell 

mesh results are closer to the experiment. It could be argued that in excess of  10 million cells are 

probably needed to obtain more accurate results. In this study, 3.05 million cells have been used in all 

the computations.   
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Chapter 4 

 

Conclusion 
 

The purpose of  this study was to validate the building-blocks of  CFD methods and obtain best 

practice guidelines for predicting the flow properties of  hypersonic flow over a circular yawed cone. 

The high quality, structured conical mesh was needed to allow adequate resolution of  both the shock 

layer and the boundary layer while reducing the computing time. Most of  the simulation results agreed 

with Tracy’s wind tunnel experiment, except for heat transfer measurements near the leeward meridian. 

This may be due to insufficient grid resolution between the shock and the cone surface near the 

leeward side as well as due to the inadequacy of  the Spalart-Allmaras (SA) turbulence model for 

computing high speed flows. Nevertheless, the results show that CFD can be used with acceptable 

accuracy for computing hypersonic flow over circular yawed cones and perhaps other space vehicles.  

4.1 Future Work 
 

The results described in this thesis could be further improved by examining the effects of  different 

turbulence models. The large discrepancy between the computations and the experiment in the heat 

transfer coefficient can most likely be attributed to the inadequacy of  the SA turbulence model for 

computing high speed turbulent flows. In addition, additional computations should be performed 

using the second data set in Tracy’s experiment at lower Reynolds numbers. These calculations can be 

useful in determining the role of  turbulence model in the computational accuracy. Finally, the mesh 

density could be improved by dynamically adapting the grid around the shock layer and boundary 

layer. This effect was noted in the mesh independence study in chapter 3. Eventually the inclusion of  

real gas and dissociation effects should be considered in modeling. 
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Appendix A 

 

Supplementary Plots 

 
The following figures show the contour plots of Mach number, static pressure, and temperature 
respectively for cones at various yaw angles. These cross sections are in the circumferential plane 4.0 
inches downstream of the cone vertex.  
 

A1: Cone at 4° Angle of Attack 

 

 
A1.1 Cone at 4° yaw, Mach Number Contours 
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A1.2 Cone at 4° yaw, Static Pressure Contours 

 

 
 

A1.3 Cone at 4° yaw, Static Temperature Contours 
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A2: Cone at 8° Angle of Attack 

 
 

A2.1 Cone at 8° yaw, Mach Number Contours 

 

 
 

A2.2 Cone at 8° yaw, Static Pressure Contours 
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A2.3 Cone at 8° yaw, Static Temperature Contours 

 
 

A3: Cone at 12° Angle of Attack 

 
 

A3.1 Cone at 12° yaw, Mach Number Contours 
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A3.2 Cone at 12° yaw, Static Pressure Contours 

 
 

A3.3 Cone at 12° yaw, Static Temperature Contours 
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A4: Cone at 16° Angle of Attack 

 
 

A4.1 Cone at 16° yaw, Mach Number Contours 

 
 

 
A4.2 Cone at 16° yaw, Static Pressure Contours  
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A4.3 Cone at 16° yaw, Static Temperature Contours 

 
 

A5: Cone at 20° Angle of Attack 

 

 
 A5.1 Cone at 16° yaw, Mach Number Contours 
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A5.2 Cone at 20° yaw, Static Pressure Contours 

 

 
 

A5.3 Cone at 20° yaw, Static Temperature Contours 
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Appendix B 

 

Computer Specifications 
 

Simulations were run on the custom desktop computer with specifications given in Table 2.  

 

Table 2: Computer Hardware Used in Simulations 

Component Manufacturer Model 

CPU Intel (2) Xeon E5-2690 V1 2.9 MHz 

Motherboard SuperMicro MBD-X9Dai-O EATX 

RAM Kingston 64 GB DDR3-1600 MHz 

GPU NVIDIA Quadro K4200 4GB 

 

With the above hardware, each simulation converged after an average of  22,000 iterations at a rate of  
203.7 iterations per hour.  
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