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ABSTRACT OF THE THESIS

Early-Stage Design Space Exploration Tool for Neural Network Inference Accelerators

by

Liu Ke

Master of Science in Electrical Engineering

Washington University in St. Louis, May 2018

Research Advisor: Prof. Xuan Zhang

Deep neural networks (DNNs) have achieved spectacular success in recent years. In response

to DNN’s enormous computation demand and extensive memory footprint, numerous infer-

ence accelerators have been proposed. However, the diverse nature of DNNs, both at the

algorithm level and the parallelization level, makes it difficult to arrive at an “one-size-fits-all”

hardware implementation. In this dissertation, we develop NNest, an early-stage design space

exploration tool that can speedily and accurately estimate the area/performance/energy of

DNN inference accelerators based on high-level network topology and architecture traits,

without the need for low-level RTL codes. Equipped with a generalized spatial architec-

ture framework, NNest is able to perform fast high-dimensional design space exploration

across a wide spectrum of architectural/microarchitectural parameters. Our proposed novel

date movement strategies and multi-layer fitting schemes allow NNest to more effectively ex-

ploit parallelism inherent in DNN. Results generated by NNest demonstrate: 1) previously-

undiscovered accelerator design points that can outperform state-of-the-art implementation

vii



by 39.3% in energy efficiency; 2) Pareto frontier curves that comprehensively and quanti-

tatively reveal the multi-objective tradeoffs in custom DNN accelerators; 3) holistic design

exploration of different level of quantization techniques including recently-proposed binary

neural network (BNN).

viii



Chapter 1

Introduction

Since the groundbreaking performance of AlexNet in 2012 ImageNet competition [1], a class

of machine learning methods known as deep neural network (DNNs) have achieved spectac-

ular success, especially in applications such as computer vision, natural language processing,

and machine translation. These hierarchical network models typically employ tens or even

hundreds of connected neural network layers and incur enormous computational demands

and memory footprints, rendering their execution on conventional CPU-based computing

platforms quite inefficient. Despite the complexity, DNN exhibit vast amount of inherent

parallelism in its computational model, which can be exploited to accelerate DNN compu-

tation. For example, extensive toolchain and framework have been built on general-purpose

graphics processing units (GPGPU) to leverage its superior parallel processing capability

for deep learning tasks [1]; field-programmable gate array (FPGA) based systems [4] have

attracted much attentions thanks to their programmable fabrics that can accommodate flex-

ible parallel processing primitives and adapt to rapidly evolving algorithms; finally custom

machine learning accelerators such as Google’s tensor processing unit (TPU) have also been

making great strides, pushing the envelop of theoretical computation throughput to the range

of tens of tera floating point operation per second (TFLOPs).

However, computational speed/throughput is not the only metric that matters. Power and

cost are among the top concerns for DNN hardware accelerators, especially when designed

for neural network inference tasks to be deployed in mobile or embedded edge devices [2].

Compared to previous cloud-centric platforms using GPUs, FPGAs, and TPUs, edge de-

vices have much more stringent power budget and sensitive cost consideration, which makes

application-specific integrated circuits (ASIC) based solution a more appealing choice [13]
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for targeted implementation of specific pre-trained networks. To address this need, numerous

NN inference accelerators have been proposed [18, 22], but the diverse nature of DNNs, both

at the network level and the parallelization strategy level, make it difficult to arrive at an

“one-size-fits-all” implementation. The complex and high-dimensional design space of DNN

accelerators calls for an early-stage exploration tool that can speedily and accurately tra-

verse the available design points and estimate their performance. Such a tool could benefit a

multitude of use cases. For example, architects of DNN accelerator can be better informed of

the tradeoffs between different performance metrics under distinctive parallelization strate-

gies; circuit designers and device engineers can get an early glimpse of how device/circuit

level innovation can affect the overall system performance; algorithm developers can more

deeply understand the potential advantages/penalties of their model parameters and algo-

rithmic techniques based on custom ASIC accelerators, without being limited by the specific

implementation of commodity hardware.

In this paper, we present NNest—an early-stage tool that is designed to facilitate systematic

design space exploration for ASIC-based DNN inference accelerators. More specifically, our

main innovation and contributions include:

• We propose a spatial accelerator architecture template that can be generalized to cover

a variety of DNN accelerator implementations, sufficiently capturing important design

tradeoffs without the need for detailed RTL codes.

• We develop parameterized data movement strategies and multi-layer fitting schemes

that can efficiently express the inherent parallelism in DNN algorithm for both the

convolutional and the fully-connected layers.

• Results generated by NNest not only enable quantitative investigation of impact from

memory hierarchy, data reuse, and energy/area breakdown, but also reveal previously-

unknown design point with 39.3% higher energy efficiency.

• NNest facilitate holistic evaluation and comparison of DNN models and algorithmic

techniques with software/hardware codesign consideration. Examples on AlexNet vs

VGG models and binarized quantization are given to demonstrate such capability.
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Chapter 2

Background and Related Work

2.1 Preliminary on DNN

Neural network based deep learning models typically consists of cascading of different layers,

including convolution, normalization, pooling, and fully-connected layers. Since the Conv

and FC layers tend to dominate computation and memory access, we focuses on exploring

the design space of these two kinds of layers in NNest. While sharing composition of similar

types of layers, different DNN models usually employ distinctive layer shapes and sizes,

making it difficult to find a fixed hardware configuration that is optimized for all layers and

NN models.

2.1.1 Fully-connected (FC) layer

The computational pattern (Fig. 2.2) of FC layer has three dimensions: input batch size

(N), the number of input neurons (I), and the number of output neurons (O). Each output

neuron has connections to all the neurons in the input layer. It takes multiple input vectors

(N×I) and multiplies them with a weight matrix (I×O) to get the output vectors ( N×O).

Computation of each output involves I element-wise multiplication and accumulation of all

the products to reduce to one activation of the output vector.

There exist three types of data reuse opportunities in a FC layer as shown in Fig. 2.2. 1)

Input Reuse: the same input vector is reused for different columns in the weight matrix to

calculate one output vector. 2) Weight Reuse: the same column of weight matrix is reused
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Figure 2.1: Computation pattern of FC layers.

for several input vectors to calculate different output vectors. 3) Partial Sum Reuse: the

old partial sum (PSum) is reused to get the updated PSum by accumulating with the new

element-wise products.

Figure 2.2: Data reuse patterns in FC layers.

2.1.2 Convolutional (Conv) layer

In a Conv layer, to extract features from input feature maps (ifmaps), each output neuron

is only connected to a local region of ifmaps, known as the local connectivity property of

convolution, and the weight matrix to represent the local connectivity is called a filter and has

the same size as the local ifmap region. Conv layer’s computational pattern can be regarded

as a C×R×S sliding window (SW) (Fig. 2.7) shifting on ifmaps. The ifmap data in one SW

is element-wise multiplied with a C × R × S filter before accumulation. Each SW shift on
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ifmaps (from SW1 to SW2) generates the next output value. As SW moves, data overlapped

between the consecutive windows (e.g. SW1 and SW2) is of the shape (S − U) × R × C.

Therefore, only U ×R×C new input data are needed to get a new output. In total, one SW

shifts F steps vertically and E steps horizontally to get E × F output values. The number

of 3D filters (M) corresponds to the number of channels in output feature maps (ofmaps).

Figure 2.3: Data reuse patterns in Conv layers.

Figure 2.4: Properties of Conv layers.

Contrasted with FC layers, Conv is weight-shared due to local connectivity (Fig. 2.4), because

the all-to-all connectivity (C×H×W ) is reduced to a local region (C×R×S). One channel

of output activations (E ×F ) also share the same 3D filter. Hence, there is additional reuse

opportunity in Conv layer, which is referred to as sliding window reuse in this paper. It
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takes two forms: 1) the same 3D filter is reused over E × F SWs; 2) the overlap between

two SWs can be reused, only the new stride (U ×R× C) needs loading.

Recently, many DNN models have been proposed such as LeNet[30], AlexNet[1], VGG[21],

ResNet[10] and GoogLeNet[3]. We specifically list the network structure of Alexnet (Fig. 2.5,

Table. 2.1) and VGG (Fig. 2.6, Table. 2.2)

Figure 2.5: Alexnet structure [1]

Figure 2.6: VGG structure [21]
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Table 2.1: Alexnet layers’ shape parameters [1]

Layer Conv-1 Conv-2 Conv-3 Conv-4 Conv-5
H, W 227×227 31×31 15×15 15×15 15×15

C 3 48 256 192 192
M 96 256 384 384 256

R, S 11×11 5×5 3×3 3×3 3×3
U 4 1 1 1 1

E, F 55×55 27×27 13×13 13×13 13×13

Input size 151K 45K 56.25K 42.2K 42.2K
Weight size 34K 300K 864K 648K 432K
Output size 283.6K 182.25K 63.4K 63.4K 42.25K
# of MAC 100.53M 213.57M 142.59M 106.95M 71.3M

Layer FC-1 FC-2 FC-3
I 43264 4096 4096
O 4096 4096 1000

Input size 42.25K 4K 4K
Weight size 169M 16M 4M
Output size 4K 4K 1000
# of MAC 169M 16M 4M
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Table 2.2: VGG layers’ shape parameters [21]

Layer Conv1-1 Conv1-2 Conv2-1 Conv2-2 Conv3-1 Conv3-2 Conv3-3
H, W 224×224 224×224 112×112 112×112 56×56 56×56 56×56

C 3 64 64 128 128 256 256
M 64 64 128 128 256 256 256

R, S 3×3 3×3 3×3 3×3 3×3 3×3 3×3
U 1 1 1 1 1 1 1

E, F 224×224 224×224 112×112 112×112 56×56 56×56 56×56

Input size 151K 3211.3K 802.8K 1605.6K 401.4K 802.8K 802.8K
Weight size 1.728K 36.9K 73.7K 147.5K 294.9K 589.8K 589.8K
Output size 3211.3K 3211.3K 1605.6K 1605.6K 802.8K 802.8K 802.8K
# of MAC 86.7M 1849.7M 924.8M 1849.7M 924.8M 1849.7M 1849.7M

Layer Conv4-1 Conv4-2 Conv4-3 Conv5-1 Conv5-2 Conv5-3
H, W 28×28 28×28 28×28 14×14 14×14 14×14

C 256 512 512 512 512 512
M 512 512 512 512 512 512

R, S 3×3 3×3 3×3 3×3 3×3 3×3
U 1 1 1 1 1 1

E, F 28×28 28×28 28×28 14×14 14×14 14×14

Input size 200.7K 4014K 401.4K 100.35K 100.35K 100.35K
Weight size 1179.6K 2359.3K 2359.3K 2359.3K 2359.3K 2359.3K
Output size 401.4K 401.4K 401.4K 100.35K 100.35K 100.35K
# of MAC 924.84M 1849.7M 1849.7M 462.42M 462.42M 462.42M

Layer FC-1 FC-2 FC-3
I 25088 4096 4096
O 4096 4096 1000

Input size 24.5K 4K 4K
Weight size 98M 16M 4M
Output size 4K 4K 1000
# of MAC 98M 16M 4M
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2.2 Related Work

2.2.1 Existing NN Accelerators

A recent tutorial have extensively surveyed prior work on NN inference accelerators and

categorized them based on dataflow [27].

1) No Local Reuse (NLR) represents designs which do not allocate local storage in the form

of register files or registers to each MAC unit [4, 23, 28]. Hence, all MACs share a global

buffer (GB) to load inputs and weights and store intermediate PSums.

Different with NLR, many works insert one smaller sized memory, which can be faster and

more efficiently accessed by computational blocks, called local buffer. So this multi-layer

memeory architecture is called memory hierarchy (MH) design. It keeps data stationary and

reuse it for the next computational cycle. Based on the stationary data in the LB, MH can

be divided to several types. 2) Weight Stationary (WS) refers to designs that employ local

storage for weight reuse to minimize the energy consumption of frequent weight fetching for

different ifmaps [13, 26, 17, 25, 20]. The input and PSums remain stored in GB. 3) Output

Stationary (OS) stores PSums locally [18, 33, 12], rather than weights. Similarly, the goal

is to minimize the energy for fetching old psum and saving back the updated one. 4) Row

Stationary (RS) is proposed to locally store weight, input and PSum to increase data reuse

opportunities [29]. Our framework encompasses all these previously-proposed architectures.

Figure 2.7: NLR, MH architecture
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2.2.2 NN Design Automation

A number of design automation tools have been introduced [6, 5, 32] that focus on NN

acceleration on FPGAs. These tools takes specific DNN models as input and automatically

generate implementation for compatible FPGAs. Since they are designed for a fixed hardware

platform, the optimization emphasizes maximum utility of on-chip resources and highest

throughput for a given FPGA platform. Prior work has proposed design space exploration

algorithm to study FPGA-based deep convolutional NN [15]. However, it does not explicitly

address FC layers and multi-level memory hierarchy, and provides no exploration results for

die area and power consumption, thus unsuitable for ASICs.

In the custom ASIC space, tools have been developed to explore acceleration for general

computational kernels [31] that can be applied to limited NN design space [2]. Method to

roughly estimate DNN energy consumption has been proposed to guide architecture selec-

tion [24] without providing comprehensive area/power/performance tradeoffs or a generalized

architecture framework to systematically evaluate different parallelization/reuse strategies.

Finally, a design tool has been introduced specifically for binary neural network (BNN) [14]

to perform area/performance/energy estimation and analysis, but it does not readily ap-

ply to investigate the much broader design space of general NN accelerator with different

quantization schemes.

10



Chapter 3

Methodology

3.1 Generalized Architecture Framework

In order to conduct effective and thorough design space exploration, we first propose a

spatial NN accelerator architecture framework that can be generalized to produce numerous

design points. Our generalized architecture framework is illustrated in Fig. 3.1. It has

drawn inspirations from many existing accelerator prototypes and is able to encompass all

previously-explored architectures with different dataflow schemes including NLR, WS, OS,

and RS.

In our accelerator framework, the on-chip components include various partitioned global

buffer (GB), local buffer (LB), communication network in the form of 1-to-n and 1-to-1

broadcast buses (BBus), and a 2D array of arithmetic units (ALU). A large-sized on-chip

memory modeled as SRAM, GB stores input and weight data fetched from external DRAM,

holds the intermediate psums during computation, and writes the final output activations

back to DRAM. LB represents the smaller-sized memory located in between GB and the

ALU array that can be accessed by the ALU faster and more efficiently. Depending on

the data movement strategies (described in Section 3.2), LB stores certain stationary data

locally for later reuse without accessing GB. More specifically, I-LB and W-LB broadcast

input (I) and weight (W) data to the ALU array to reuse inputs and weights. Each ALU unit

receives the broadcast I/W data and performs element-wise multiplies and one accumulation

with the PSumt loaded from P-LB to get the updated PSumt+1 and store back to P-LB.

In this way, PSums in P-LB can be reused without being stored back to GB until all the

11



Figure 3.1: The proposed generalized accelerator framework based on spatial architecture.

computation for the same activation is complete. Our architecture allows the LBs to be set

to zero (in case of NLR) or partially bypassed (in case of WS and OS).

Intuitively, it is ideal to hold all data in GB to avoid multiple energy-expensive external

DRAM access for the same data, if there is no area constraint. However, the amount of

I/W/P data can be quite large even for a single layer, and varies over a wide range across

different NN layers. Considering the cost of large on-chip memory, the size of GB is limited

in practical systems by holding only a tile of data at a time. It is clear that GB size also

effects data reuse efficiencies in the LB and the ALU array. Therefore, we must determine

optimal strategies to move and replace data between and across the partitioned GB and LB

blocks in order to minimize DRAM access and achieve highest degree of data reuse, which

is discussed next.
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3.2 Data Movement Strategy (DMS)

It is increasingly the case in advanced technology node that data movement incurs consid-

erably higher cost in latency and energy as compared to computation [22]. Since DNN algo-

rithms are memory intensive, in order to achieve higher performance and energy efficiency,

it is imperative to carefully formulate the data movement strategies (DMS) to optimally ex-

ploit data reuse opportunities existed in the parallel processing of NNs. Before getting into

detailed discussions on dataflow in the FC and Conv layers, please note that in both cases

maximal data reuse is highly desirable and is achieved by 1) broadcasting input/weight data

to multiple ALUs for parallel processing and 2) keeping data stationary in on-chip storage.

In this section, we derive the microarchitecture (µarch) parameters used in NNest to express

different data movement strategies. In this way, we are able to effectively traverse the broad

NN accelerator design space by sweeping these µarch parameters (µaPMs) values listed in

Table 3.1.

Table 3.1: List of NNest µarch Parameters

Parameter Name
FC Layer Conv Layer

comp µaPM tti, tto ttm, tte, ttc, ttr, tts
mem µaPM Ti, To Th, Tm, te, tm, tc

3.2.1 Dataflow in FC layers

Due to the large amount of weights (I×O) in FC layers, hold them all in GB is impractical.

Instead, we assume only a tile (Ti×To) of weight is stored on-chip, which determines the GB

size. The batch size N is used to represent the number of inputs being processed concurrently,

allowing for weight reuse in a broadcasting manner. It in turn determines the size of the

ALU array, since the number of ALUs, as well as the number of updated PSums per cycle,

equals to N × tto. There are tti parallel MAC operations in each ALU, resulting in tti

multipliers and an adder tree to sum up the tti products. Since tto, tti used to size the ALU

array, we refer to them as as comp µaPMs, and others that determine the size of GB and

LB as mem µaPMs. For FC layers, we study two strategies that leverage distinctive data
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reuse. For each strategy, data movement at both the GB and the LB levels are described in

details.

Figure 3.2: Illustration of different DMS in FC layers

Input Reuse (IR): As illustrate in Fig. 3.2(a), at the GB level, N×Ti1 inputs are kept sta-

tionary in I-GB. The sub-index denotes the range of fetched data, Tix = [Ti × (x− 1) + 1 : Ti × x],

and the same convention applies to other notations in the paper. In IR, Weights are replaced

in O-dimension, Ti1 × (To1 → To2), to reuse the N × Ti1 input data. After fetching all O

columns of weight matrix with Ti1 rows, N × O PSums are computed. Both inputs and

weights are replaced in I-dimension, N × (Ti1 → Ti2) (input) , Ti1×Tox → Ti2×To1 (weight,

x = O/To), to update previous N × O PSums. To avoid frequent DRAM access, P-GB is

sized to N × O as in Fig. 3.2(b) and I-GB and W-GB are sized according to mem µaPMs
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(Ti, To). At LB level, to satisfy the processing speed of the ALU array, the size of stationary

data in LB is defined by the comp µaPMs (tti, tto) and sized accordingly. As shown in

Fig. 3.2(b)(e), to reuse inputs, N × tti1 input data are kept stationary in I-LB, the weights

are replaced in To-dimension tti1 × (tto1 → tto2). After To/tto cycles, all the To columns

with tti1 rows of weight data in W-GB are processed. Then inputs and weights in LB are

replaced in Ti-dimension to update Psums.

PSum Reuse (PR): The derivation of dataflow in PR can be done in a similar manner, and

is illustrated in Fig. 3.2(c)-(e). Here, at the GB level, PSums are kept stationary in P-GB,

and inputs and weights are replaced in I-dimension, N×(Ti1 → Ti2) (input), To1×(Ti1 → Ti2)

(weight). After processing I rows of input data and weight matrix with To1 columns, N×To1
PSums in P-GB are finalized. Then weights are replaced in O-dimension, Tix×To1 → Ti1×To2
(weight, x = I/Ti) to compute the next N × To2 output, and all the input data are fetched

again from N× (Ti1 → Tix). At the LB level,PSums are stationary in P-LB, and weights and

inputs are replaced in Ti-dimension N × (tti1 → tti2) (input), tto1 × (tti1 → tti2) (weight).

After Ti/tti cycles, all the Ti rows of N input vectors and tto1 weight columns are processed

and N × tto1 PSums are written back to GB.

In addition to GB and LB sizes, DMS also determines the BBus configuration based on the

broadcasting requirements between GB and LB (defined by the mem µaPMs) and between

LB and ALU array (defined by the comp µaPMs). For example, tto × (tti) weights in

W-LB and N × (tti) inputs in I-LB broadcast to N -by-tto ALU array, therefore, BBus’s

configuration is 1-to-N from W-LB to ALU,and 1-to-tto from I-LB to ALU.

3.2.2 Dataflow in Conv layers

As discussed earlier, the same IR and PR opportunities naturally exist in Conv layers, with

additional possibilities from sliding window reuse. We briefly describe the two Conv strategies

below:

PSum Reuse (PR) All data in C-dimension of inputs (Th × C ×W ) and weights (Tm ×
C × R× S) are stored in GB. To reuse the SW overlap, SW first shifts on inputs along W-

dimension for F steps, then moves to the next tc channels and shifts along the W-dimension

15



Figure 3.3: Illustration of different DMS in Conv
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again to update Psums computed in the last F steps. Input SW size is defined by te and tc,

and determines I-LB size as te × tc × R × S. The corresponding filter window is defined as

tm× tc×R×S. In the F steps of SW shifting, tm 3D filters are kept stationary in W-LB and

reused to get tm× te× F PSums. After shifted through all C channels, te × tm × F PSums

are finalized, setting P-GB size as te × tm × F . This process is graphically illustrated in

Fig. 3.3(a). In this DMS, P-GB size can be small to store a limited number of intermediate

PSums, but I-GB and W-GB should have sufficient space to store C channels of inputs and

weights.

Input/Weight Reuse (IWR): To increase input and weight reuse, the parameters that

define the number of SWs should be large. Due to limited GB size, only tc input channels are

held in GB, and tc is usually small to accommodate large Th, Tm. As shown in Fig. 3.3(b),

SW first shifts along the W-dimension and then moves to the next te input rows and shifts

along W-dimension. After shifting through all Th input rows in I-GB, tm×Te×F PSums are

generated with the tm 3D filters kept stationary in W-LB. The next step replaces W-LB with

the next tm weights and SW is shifted along the entire Th rows of input data. After processing

all Tm 3D filters in W-GB, Tm × Te × F PSums are generated, then both inputs and filters

are replaced to the next tc channels. In this DMS, all of the intermediate Tm×Te×F results

are Psums to be held in P-GB. Therefore P-GB accounts for the majority of GB size. The

IWR strategy described here is similar to the row stationary method introduced in Eyeriss,

where 80% ∼ 90% GB are used for PSums. The ALU array size is again defined by Conv’s

comp µaPMs (ttm× tte), and the parallel MAC operations in each ALU is ttc× ttr × tts.
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3.3 Multi-Layer Fitting

Methods detailed in Section 3.2 can be used to design custom accelerators tailored for a

specific NN layer. However, most DNN algorithms consist of multiple layers with diverse

shapes and thus require efficient schemes to fit them on a single hardware.

To determine the optimal architecture configuration that can fit multiple layer, we resort

to finding the consistency between layer types and shapes. Recall that Conv and FC layer

types (Fig. ??) are related is we consider Conv as weight-shared FC layers. Assuming the

size of Conv filter (R×S) is expanded to cover the entire infmaps (i.e. H = R, W = S), the

Conv layer is effectively converted to a FC. The number of input neurons I is equal to the

size of ifmaps I = C ×H ×W , and the number of output neurons O is equal to the ofmaps

size O = M ×E × F,E = F = 1. The 3D filter’s size is equal to the size of ifmaps, and the

total number of the 3D filters is M . Based on this methodology, we can simply regard FC

layer is a special type of Conv layer.

Figure 3.4: FC layer’s Conv view

In the Conv architecture, I-LBs consist of te×Racc shifters and each shifter stores tc × Sacc

data. Racc and Sacc is fixed in the hardware accelerator, but Rnn and Snn can take different

values for each layer in a network. To fit different Conv sizes on a single accelerator, we

proposed certain methods for two cases, Rnn < Racc and Rnn > Racc.

To fit the Rnn <Racc Conv layers (Fig. 3.5), the LBs and ALUs cannot be fully utilized to

during the execution, since the LB size is defined by fixed Racc, Sacc values.
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Figure 3.5: Rnn <Racc

So the utilization rate among those resources can be calculated by the following equations

(considering R, S dimension):

I − LB util rate =
⌈
Rnn

Racc

⌉
×
⌈
Snn

Sacc

⌉

W − LB util rate =
⌈
Rnn ×Racc

Snn × Sacc

⌉

ALU util rate =

⌈
Rnn × Snn

# of cycles×# of MACs

⌉

# of cycles =
⌈
Rnn × ttr
Snn × tts

⌉
# of MACs = ttr × tts

To fit Rnn >Racc Conv layers (Fig. 3.6), we define a fitting parameter nf = (Racc ×
Sacc)/(Rnn × Snn). If nf is larger than 1, the I-LB can store bnfc × te input SWs in I-

LB and requires a reconfigurable multiplexer (MUX) to fetch (R− U) + U × bnfc × te rows

of inputs under different shape configurations. W-LBs should be similarly implemented by

Racc × Sacc SRAMs and each SRAM feeds tm × tc data blocks to W-LB. This fitting scheme

allows for consistent dataflow for different layers. At the GB level, the I-GB, W-GB, and P-

GB SRAMs are sized to store the largest data structure among the layers. If the nf is smaller

than 1, meaning the I-LB and W-LB are too small to store the entire SW, fitting is achieved
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Figure 3.6: Rnn >Racc

by decomposing the larger convolution (R×S) into n2 smaller filters (dR/ne-by-dS/ne) and

accumulate the n2 channels to get the final outputs.

So the utilization rate among those resources can be calculated by the following equations

(considering R, S dimension):

I − LB util rate =
Rnn × Snn

(
⌈
Rnn

Racc

⌉
×
⌈
Snn

Sacc

⌉
)× (Racc × Sacc)

W − LB util rate =
Rnn × Snn

(
⌈
Rnn

Racc

⌉
×
⌈
Snn

Sacc

⌉
)× (Racc × Sacc)

ALU util rate =

⌈
Rnn × Snn

# of cycles×# of MACs

⌉

# of cycles = (
⌈
Rnn

Racc

⌉
×
⌈
Snn

Sacc

⌉
)× (

⌈
Racc

ttr

⌉
×
⌈
Sacc

tts

⌉
)

# of MACs = ttr × tts
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3.4 Area/Performance/Energy Modeling

To accurately model the design tradeoffs of NN accelerators, we need actual area/performance/energy

data for each on-chip components (GB, LB, BBus, and ALU) characterized in a parame-

terized manner. As illustrated in Fig. 3.7, these characterization data is obtained through

NNest interfaces with other simulator tools, such as Cacti [16] for SRAM modeling, mem-

ory compiler for register file modeling, Synopsys Design Compiler (DC) for arithmetic block

modeling. To account for the area/latency/power of arithmetic blocks in the ALU array, we

synthesize the basic multipliers and adder trees in the datapath using DC with a 40nm stan-

dard cell library, similar to the method used in Aladdin [31]. Although 40nm is used in our

experiment due to limited access to process technology, the same block-level characterization

can be easily ported and implemented in a new technology. Apart from block-level charac-

terization data, NNest can take NN structure parameter directly from DNN software tools

such as TensorFlow and it also accounts for user-specified area/timing/energy constraints.

Figure 3.7: NNest’s area/performance/energy modeling framework

The data movement strategies and fitting schemes introduced earlier allows NNest to ef-

ficiently explore the design space defined by the µarch parameters in Table 3.1. This
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Figure 3.8: NNest pipeline stage

architectural-level exploration has already taken into consideration of different parallelization

strategies such as MAC loop unrolling and hierarchical memory optimization.

At the circuit level, we also consider different pipelining strategies. The execution of the

NN accelerator based on spatial architecture can be broken down into 3 stages—loading

data, computing for one cycle, and storing PSum results, as illustrated in Fig. 3.8. We start

with an initial 3-stage pipeline implementation and simulate the critical paths of each stage.

Due to the different memory and ALU array size, the initial 3-stage pipeline may not be

balanced, and NNest searches through different arithmetic block designs in the characteri-

zation database to balance the pipeline. If failed, NNest would attempt to break the ALU

stage into multiple pipeline stages and iterate through the balancing step, until a reasonable

pipeline solution is arrived. Finally, the last resort is to reduce the parallelism of ALU to

sequentially process the computation in several cycles.
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Chapter 4

Experiment

All the experiments are performed in 40nm technology.

4.1 Layer-Level Exploration

First, we use NNest to generate designs tailored to specific NN layers and explore single-

layer design spaces. AlexNet’s Conv-3 and FC-1 layers are used as examples. Results are

shown in Fig 4.1, where the all the design points are scatter-plotted and the Pareto frontiers

consisting of the optimal design points are identified. In AlexNet Conv-3 design space, we

observe the general trend that NLR dataflow consumes power than PR and IWR where

multi-level memory hierarchy is employed for local data reuse. The Pareto frontiers of IWR

and PR lie closely together. We choose one design point on IWR and PR frontier each with

similar performance and analyze their energy and area breakdown. The PR’s total energy

is about 93.4% of IWR due to energy saving from GB access, which comes with extra area

overhead because PR needs to store the entire C channels of input and weight rows. In

IWR, inputs and weights consume less memory space, but PSums need to be fetched from a

large P-GB every cycle and this frequent PSum load/store increases GB access energy. We

also mark the design points based on the dataflow strategies introduced in previous work

(Eyeriss [29] and ASP-DAC [15]). Both designs are located away from the frontier identified

by NNest, where more energy-efficient design points can be found (improvement of 28.5%

compared to ASP-DAC [15] and 39.3% compared to Eyeriss [29]).
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In AlexNet FC-1 design space, IR represent more optimal designs than PR with less area

overhead. The reason PR performs poorly is due to its GB. PR holds all input data N×I in

I-GB, whereas IR holds all PSums N ×O in P-GB. In AlexNet FC-1, I = 43264, O = 4096,

I � O, making the PR’s GB area and energy cost grow. So, in FC layer, if I is much larger

than O in FC layer, IR dataflow outperforms PR significantly. Comparing NLR and MH

frontiers reveal that data reuse in LB can save energy consumption around 9% with only

0.3% extra area. FC layer consumes much more energy on DRAM+GB memory access than

Conv layer (more that 98% of total energy for both PR and IR frontier in FC vs 70% ∼ 80%

in Conv). This stems from Conv layer’s local connectivity property.
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Figure 4.1: (a) Conv-3 design space, (b) Conv-3 energy/area breakdown, (c) FC-1 design
space, (d) FC-1 energy/area breakdown
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4.2 Network-Level Exploration

Next, we apply the multi-layer fitting scheme described in Section 3.3 to explore the design

space for a complete neural network. We use AlexNet [1] and VGG [21] as examples. The

design space results are presented in Fig. 4.2. Unsurprisingly, VGG consumes higher power

than AlexNet, as it uses deeper network and larger weight parameters. We identify the

minimum total energy design points for both networks, which indicates across the entire

design space, VGG is at least 4× more energy hungry than AlexNet. Interestingly, if we plot

the design points that minimize the energy per MAC operation for both AlexNet and VGG,

we observe that for each MAC operation, accelerator tailored to VGG consumes only 17%

energy as compared to per MAC operation in AlexNet-optimized accelerators. The reason

is that filter sizes (R, S = 11, 5, 3) in different AlexNet layers vary greatly, which causes a

large hardware overhead when fitted across multiple layers. VGG has much more uniform

layer pattern (R, S = 3), allowing it to better utilize the hardware resources. NNest can

conveniently generate design points based on other specifications. For example, to achieve

real-time image processing of 33frame/s, we pick the two design points on Fig 4.2 with the

lowest power consumption (87 mW for AlexNet and 306 mW for VGG). The die area of

each design can also be obtained of that AlexNet and VGG accelerator design are 4.2mm2

and 8.02mm2
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Figure 4.2: Alexnet, VGG design space comparison
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4.3 Quantization Technique Exploration

Finally, we use NNest to holistically evaluate different level of quantization in DNNs. It is

important to note that certain quantization techniques require larger network to maintain

acceptable accuracy. For example, BNN has to employ higher number of convolutional

filters to compensate for its accuracy loss due to extreme quantization. Therefore the naive

approach of simply binarize the original network does not accurately capture the actual

design tradeoff for BNN and would significantly underestimate the power and area cost.

Instead, NNest allows the user to specify both NN structure parameters and circuit-level

parameters such as bitwidth and therefore is able to quickly generate the correct design

space and Pareto frontiers for early-stage evaluation of different quantization techniques.

In conclusion, an early-stage design exploration tool for NN accelerator such as NNest can

prove useful in many design scenarios as demonstrated in these experiment examples.
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Figure 4.3: Alexnet bitwidth design space
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Chapter 5

Conclusion

We have present NNest, an early-stage design space exploration tool for NN inference accel-

erator, to speedily and accurately estimate the area/performance/energy for the ASIC-based

NN accelerators with low-level RTL code. Based on the general architecture framework, a

parameterized data movement and parallel processing strategies are proposed. The high-

dimensionallt broad design space is explored by sweeping µarch parameters. The several

experiment results reveal that NNest can be applied in many design scenarios, like finding

the optimal µarch designs, evaluating DNN models and NN optimization algorithms, etc.

As for the future work, it could have many possibilities. The hardware platform can be

extended to many other popular parallelization processors, like FPGA, GPU and CGRA. In

the algorithm level, our tool currently only includes FC and Conv layer. Other layers, like

activation function, normalization and pooling layer can be extended to our framework. Also,

other NN algorithms, like RNN/LSTM and deep reinforcement learning, can be considered

as an extension. A failure rate or error model can be explored to compute the error from

the hardware, like approximate multiplier and fuzzy memory.
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