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ABSTRACT OF THE THESIS 

 
Optimization of GPU-Accelerated Iterative CT Reconstruction Algorithm for Clinical Use 

by 

Tao Ge 

Master of Science in Electrical Engineering 

Washington University in St. Louis, 2018 

Research Advisor:  Professor Joseph A. O’Sullivan 

 

 

In order to transition the GPU-accelerated CT reconstruction algorithm to a more clinical 

environment, a graphical user interface is implemented. Some optimization methods on the 

implementation are presented. We describe the alternating minimization (AM) algorithm as the 

updating algorithm, and the branchless distance-driven method for the system forward operator. We 

introduce a version of the Feldkamp-Davis-Kress algorithm to generate the initial image for our 

alternating minimization algorithm and compare it to a choice of a constant initial image. For the sake 

of better rate of convergence, we introduce the ordered-subsets method, find the optimal number of 

ordered subsets, and discuss the possibility of using a hybrid ordered-subsets method. Based on the 

run-time analysis, we implement a GPU-accelerated combination and accumulation process using a 

Hillis-Steele scan and shared memory. We then analyze some code-related problems, which indicate 

that our implementation of the AM algorithm may reach the limit of single precision after 

approximately 3,500 iterations. The Hotelling observer, as an estimation of the human observer, is 

introduced to assess the image quality of reconstructed images. The estimation of human observer 

performance may enable us to optimize the algorithm parameters with respect to clinical use. 



1 

 
 
 
 
 

Chapter 1 

Introduction 
 

1.1 Motivation 
 
X-ray computed Tomography (CT) plays an important role in current clinical diagnosis of many 

diseases and in treatment planning in radiation oncology, including proton therapy. X-ray CT 

integrates the measured data received by detectors from different views to produce a stack of images. 

Physicians use the image volume for diagnostic purposes and treatment planning purpose. The quality 

of the image volume impacts the reliability of the decisions that physicians make.  

 

Our ultimate aim is to assess the performance of decisions that physicians make based on the quality 

of image volumes. In radiation oncology, these decisions impact the treatment that patients receive. 

In radiation oncology, one possible ideal task is that physicians treat patients using a treatment using 

different CT images produced by different algorithms, and then observe patients for years, possibly 

decades. However, it is not realistic to wait for so many years to get a result. A simplified task should 

be introduced for this assessment. This raises our first motivation: to start the study to assess whether 

images produced by our algorithm could lead to better diagnosis or treatment plans than algorithms 

currently used in the clinic.  

 

Another goal is to help the project of dual energy CT (DECT) imaging for proton therapy. Proton 

therapy is a high-potential particle therapy treatment used to irradiate diseased tissue. Due to the high 

dose-distribution sensitivity of proton therapy used to tissue composition and electron density, 

researchers propose to implement an accelerated and optimized quantitative DECT mapping process 

and conduct a prospective virtual clinical trial to assess the performance of DECT used in proton 

therapy. Our work could provide a fundamental tool for acceleration and optimization of the DECT 

project.  
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A graphical user interface (GUI) is a useful component for a clinical researcher who is not familiar 

with the reconstruction algorithm and the integrated development environment. Initially, we want to 

implement a prototype of the GUI for our single energetic CT reconstruction code. This GUI will 

enable clinical researchers to utilize our fast AM algorithm for tree-dimensional (3D) CT without 

requiring detailed prior knowledge of the algorithms. Our implementation should be fast enough for 

clinical use and should set algorithm parameters according to the intent of researchers. Figure 1.1 is a 

graphical user interface for our single-energetic CT reconstruction which may be used by researchers 

in the future. 

 

 

Figure 1.1: Graphical user interface for single-energetic AM CT reconstruction 

 

Through this interface, researchers select the transmission data, choose the initial condition, set the 

output image name and the number of ordered subsets of the AM algorithm. The application will 

provide presets of several sets of optimized parameters, including number of iterations and scalars for 

the penalty term, with respect to clinical use. The result would be displayed in ImageJ [1], an image 

processing program designed for scientific multidimensional images.  
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1.2 Outline 
 

This thesis has 6 chapters. Chapter 1 introduces the motivation for writing this thesis. In Chapter 2, 

we present the basic ideas of the updating algorithm, system operator, notation, geometry, data and 

the operating environment in our implementation. We introduce several acceleration methods in 

Chapter 3. In Chapter 4, we analyze several code optimization issues. In Chapter 5, a measure of image 

quality is introduced in ordered to optimize algorithm parameters and future planned experiment is 

discussed. Chapter 6 concludes this thesis with a discussion about future work.   
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Chapter 2 
 

 

Background 
 

In our CT reconstruction procedure, we use a branchless distance-driven method to get the system 

matrix and use an alternating minimization algorithm to update the image. This chapter introduces 

the branchless distance-driven method, the alternating minimization algorithm, the system geometry, 

parameters and GPU acceleration. The whole process of CT reconstruction is shown in Figure 2.1. 

 

 

Figure 2.1: Flowchart of the CT reconstruction process 

 

2.1 Methods and Algorithms 

2.1.1 Branchless Distance-driven Method 
 

The branchless distance driven method, derived by Samit Basu and Bruno De Man [2], is a highly 

parallelizable method for projection and backprojection. Compared to the original distance-driven 
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method (DD), the branchless DD divides the overlap computation into three operations: integration 

of the initial image, interpolation/anterpolation, and differentiation, which are completely decoupled. 

Therefore, we are able to accelerate the projection and back-projection procedures using parallel 

computation on GPUs. 

 

The basic idea of the distance-driven method is allocating the value according to the relative position 

between detectors and voxels. Let 𝑉 denote the image value, 𝐷 denote the detector value, 𝑣 denote 

the projected image edge and 𝑑 denote the detector edge. Figure 2.2 is a sample of the distance driven 

method. The computation of detector values would be: 

 

𝐷1,2 =
𝑉1,2(𝑣2 − 𝑑1) + 𝑉2,3(𝑑2 − 𝑣2)

𝑑2 − 𝑑1
 

𝐷2,3 =
𝑉2,3(𝑣3 − 𝑑2) + 𝑉3,4(𝑑3 − 𝑣3)

𝑑3 − 𝑑2
 

𝐷3,4 =
𝑉3,4(𝑣4 − 𝑑3) + 𝑉4,5(𝑑4 − 𝑣4)

𝑑4 − 𝑑3
 

𝐷4,5 =
𝑉4,5(𝑑5 − 𝑑4)

𝑑5 − 𝑑4
 . 

 

Figure 2.2: A sample of the distance-driven method 
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Since in the distance-driven method, irregular boundaries of projected voxels and detectors lead to 

poor predictability in the overlap kernel, the branchless distance-driven method was introduced as an 

advanced decoupled DD method for projection and backprojection. The process of the DD method 

can be written as a definite integral of the value of 𝑉 from 𝑑𝑖 to 𝑑𝑖+1, which is also equivalent to the 

difference between two definite integrals of 𝑉 with intervals  (−∞, 𝑑𝑖+1] and (−∞, 𝑑𝑖]. According to 

[1], the DD process can be converted to an interpolation of accumulated data. 

 

Then, the branchless DD method for projection/backprojection has three steps: 

1) integrate/differentiate 

2) interpolate/anterpolate 

3) differentiate/integrate 

2.1.2 Alternating Minimization (AM) Algorithm 
 

The alternating minimization algorithm, derived by O’Sullivan and Benac [3], is a statistical iterative 

algorithm for estimating the attenuation-coefficients.  

 

In order to get the optimal values of the reconstructed image, we want to find the image that minimizes 

objective function between our measured data and the mean data. Denoting the transmission data by 

𝑑 and mean data by 𝑔, the I-divergence for the mono-energetic case is  

 

𝐼(𝑑||𝑔) ≜ ∑ [𝑑𝑖𝑙𝑜𝑔 (
𝑑𝑖

𝑔𝑖
) + 𝑔𝑖 − 𝑑𝑖]

𝑖

 

 

Where 

 

𝑔𝑖(𝜇) = 𝐼𝑖𝑒− ∑ 𝑎𝑖𝑗𝜇𝑗𝑗  

 

Index 𝑗 stands for the image-space coordinates, and index 𝑖 stands for a pair of detector and source 

position. 𝐼𝑖 is the mean number of source counts in the absence of an attenuating medium, 𝜇𝑖𝑗 is the 
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attenuation coefficient of voxel 𝑗, and 𝑎𝑖𝑗 is the point-spread function map the detector domain and 

the image domain.  

 

Then the backprojections required in the alternating minimization algorithm can be written as  

 

𝑏𝑗 = ∑ 𝑎𝑖𝑗𝑑𝑖

𝑖

 

�̂�𝑗
(𝑘)

= ∑ 𝑎𝑖𝑗𝑔𝑖

𝑖

(𝜇(𝑘)) 

 

where (𝑘) indicates the iteration number. The update for attenuation coefficients of the alternating 

minimization algorithm defined by O’Sullivan and Benac (2006) is:  

 

𝜇𝑗
(𝑘+1)

≜ max ([𝜇𝑗
(𝑘)

−
1

𝑍
log (

𝑏𝑗

�̂�𝑗
(𝑘)

)] , 0) 

 

The penalty term is defined as [4] 

 

𝑅(𝜇) =  ∑ ∑ 𝑤

𝑗𝑛∈𝑁(𝑗)𝑗

(𝑗, 𝑗𝑛) 𝜓(𝜇𝑗 − 𝜇𝑗𝑛
) 

𝜓(𝑡) = 𝛿2 (|
𝑡

𝛿
| − log (1 + |

𝑡

𝛿
|)) 

 

where 𝑁(𝑗) is the set of neighboring voxels of voxel 𝑗, 𝑤(𝑗, 𝑗𝑛) is the weight calculated as the distance 

from voxel 𝑗  to voxel 𝑗𝑛 , and 𝛿  is an adjustable parameter of AM algorithm which controls the 

transition between the quadratic (for small |𝑡|) and linear region (for large |𝑡|).  

 

The objective function is then a combination of I-divergence and the penalty term,  

 

𝛷(𝜇) = 𝐼(𝑑||𝑔(𝜇)) + 𝜆𝑅(𝜇) 
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where 𝜆 is a scalar controlling the strength of the penalty term.  

 

The regularized attenuation coefficient 𝜇𝑗 is computed by solving [5]: 

 

𝑏𝑗 − �̂�𝑗
(𝑘)

𝑒𝑍𝑗(�̂�𝑗−𝜇𝑗) + 𝜆 ∑ 𝑤(𝑗, 𝑗𝑛)
𝜕𝜓(𝑡)

𝜕𝑡
|

𝑡=2𝜇𝑗−�̂�𝑗−�̂�𝑗𝑛𝑗𝑛∈𝑁(𝑗)

= 0 

 

Due to the complexity of the penalty term, Newton’s method is used to solve this equation.  

2.2 Geometry and Parameters 
 

In this thesis, the modality of interest is multislice helical x-ray CT. Multislice helical x-ray CT has 

proven to be a successful imaging modality in many clinical applications. The source and the detectors 

rotate helically together around the body, and the source continuously projects x-ray photons through 

the object to the detectors. The figure below, plotted by Daniel Keesing [5], shows the basic structure 

of multislice helical x-ray CT. 

 

Figure 2.3: Simplified geometry of helical x-ray CT 
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Each individual detector is specified by the cone angle 𝜂 and the fan angle 𝛾.  𝑅𝑓  is the distance 

between the focus of the x-ray source and the isocenter. the source rotation from the isocenter. 𝑅𝑑 is 

the distance between the isocenter and the center detector. 𝛽 is the angle between the positive 𝑥 axis 

and the line connecting the focal spot to the isocenter. 𝑧feed is the distance the bed moves during one 

rotation. 

2.3 Data 
 

Two sets of transmission data are utilized in this thesis. The first data set is a clinical chest-to-

abdomen-scan of a pediatric patient acquired with a Siemens Sensation 16 scanner at St. Louis 

Children’s Hospital. Table 2.1 shows the parameters of data acquisition, and Figure 2.4 and Figure 2.5 

show the transmission sinogram and the reconstructed images for several slices of the clinical data, 

respectively. The second data set is simulated NCAT-phantom transmission data. Figure 2.6 shows 

several slices of the NCAT phantom to be projected.  

Table 2.1: Parameters of Data acquisition 

 

 
Figure 2.4: Transmission sinogram of the clinical data 

Transmission Data  Chest Scan on Child/ NCAT-Projected Data

Image volume size 512*512*164

Number of views 13920  

Number of channels 672  

Number of rows 16 

Number of views per rotation 1160 

Channel spacing 0.00135413

Row spacing 1.5

Source to center distance 570.0 

Feed per rotation 24

x/y spacing 1.0 mm

z spacing 3.0 mm

Number of slices per rotation 12

Siemens Sensation 16 scanner 
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                         (a)                                              (b)                                                (c) 

   

                         (d)                                              (e)                                                (f) 

   

                         (g)                                              (h)                                                 (i) 

Figure 2.5: The reconstructed image of clinical transmission data for (a) The 12th slice (b) The 26th slice (c) The 41th slice 

(d) The 57th slice (e) The 81th slice (f) The 102th slice (g) The 123th slice (h) The 134th slice (i) The 147th slice. No order 

subsets, 4000 iterations, initial condition: zeros. Display window: [0.0129,0.0259] mm-1.  

 



11 

 
 
 
 
 

    

                         (a)                                              (b)                                                (c) 

    

                         (d)                                              (e)                                                (f) 

   

                         (g)                                              (h)                                                (i) 

Figure 2.6: The NCAT phantom for (a) The 15th slice (b) The 26th slice (c) The 41th slice (d) The 57th slice (e) The 81th 

slice (f) The 102th slice (g) The 123th slice (h) The 134th slice (i) The 147th slice. Display window: [0,0.0176] mm-1.  
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2.4 GPU Acceleration 
 

Based on the Helical CT Advanced Reconstruction Engine (HECTARE) software package by Dr. 

Daniel Keesing, Ayan Mitra for the laboratory of Dr. Joseph O’Sullivan generated parallel accelerated 

code in multi-GPU systems using CUDA programming tools. The GPU-accelerated code achieved a 

speedup of 72 times over the HECTARE. 

2.4.1 Hardware 
 

In this work, we start with an Intel Xeon E5 2630-v4 consisting of 10 cores and 20 threads and an 

installed memory of 128 Gigabytes. The base frequency of the E5 2630-v4 is 2.2 GHz. We use four 

GeForce GTX 1080Ti for GPU computation. The GeForce GTX 1080Ti is based on Pascal 

architecture with 28 multiprocessors, 128 CUDA cores, 3584 cores, a 1582 MHz boost clock and 

11172 Mbytes of global memory. Each block contains 65536 registers and 49152 bytes of shared 

memory, with a maximum of 1024 threads.  

2.4.2 CUDA 
 
CUDA is a parallel computing platform developed by NVIDIA, which supports a majority of 

programming languages such as C, C++, Java, Python, etc. For a CUDA kernel, we could launch at 

most 65535×65535×65535 blocks, and each block has a maximum number of 1024 threads. In this 

case, theoretically, one GPU could run up to 65535×65535×65535×1024 concurrent processes. 

However, the maximum number of threads is also restricted by the features of the GPU.  

 

Figure 2.7 shows the computations processed in GPUs, including backprojection, exponentiation, 

projection and updating. In projection and backprojection computation, we set the number of threads 

per block to 256 due to the great amount of resources used per block. The size of a grid is 6,960 and 

the maximum number of 1,781,760 threads run simultaneously.  
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Figure 2.7: The computations in GPU  
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Chapter 3 
 

 

Acceleration 
 

With GPU acceleration, the run time of the AM algorithm for CT reconstruction is 19.6 seconds per 

iteration. In other words, running the AM algorithm over 200 iterations takes approximately 1 hour. 

In the current clinical environment, doctors and researchers could not wait for such a long time to see 

the result. Therefore, other acceleration methods must be implemented to reduce the computation 

time.  

3.1 Feldkamp-Davis-Kress (FDK) as the Initial 
Condition 

 

3.1.1 Introduction to the FDK Algorithm 
 

The FDK algorithm is a three-dimensional standard filtered backprojection algorithm. In this thesis, 

we use the helical FDK algorithm in the rebinned geometry introduced by Tang et al [6].  

 

The FDK algorithm contains several data preprocessing operations and a backprojection procedure.  

1. Linearly interpolate the fan-beam data to perform row-wise fan-beam-to-parallel-beam rebinning 

2. Apply cosine weight to deal with the divergence of the x-ray source in the 𝜂 direction. The cosine 

weight is defined as 

 

𝑅𝑓 √𝑅𝑓
2 + 𝑣2⁄  

 

3. Apply the ramp filter. In our implementation, Hann window is used: 0.5 + 0.5cos(𝜋𝜔). 

4. Use a redundancy weight to normalize the contribution of different views to each voxel. The 3-D 

weighting function is 
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𝑤3𝐷(𝜃, 𝑡, 𝑣) =
𝑤2𝐷(𝜃, 𝑡)|𝑣𝑐|2

𝑤2𝐷(𝜃, 𝑡)|𝑣𝑐|2 + 𝑤2𝐷(𝜃𝑐, 𝑡𝑐)|𝑣|2
, 

 

where the subscript 𝑐 refers to the complementary ray, 𝑡 is the detector position along the 𝛾 direction, 

while 𝑣  is the detector position along the η direction, 𝜃  is the angle between the 𝑥  axis and line 

connecting the source and fan position (𝛽 = 𝛾 + 𝜃), and 

 

𝑤2𝐷(𝜃, 𝑡) = {
 1 +

𝜃

𝜋
       𝑖𝑓 − 𝜋 ≤ 𝜃 < 0,

 1 −
𝜃

𝜋
       𝑖𝑓     0 ≤ 𝜃 < 𝜋.

 

 

5. The overall backprojection expression is  

 

𝜇(𝑥, 𝑦, 𝑧) =
1

2
∫

𝑅𝑓

√𝑅𝑓
2 + 𝜂2

𝜋

−𝜋

w3𝐷(𝜃, 𝑡, 𝑣)𝜌(𝜃, 𝑡, 𝑣)𝑑𝜃, 

 

where (𝑥, 𝑦, 𝑧) refers to a voxel in the reconstructed image, and 𝜌(𝜃, 𝑡, 𝜂) is the filtered projection 

data. 

 

3.1.2 Result 
 

To assess the acceleration performance of the FDK image as the initial condition, we ran AM 

algorithm with different initial conditions (zeros and the FDK image) and plotted the objective 

function versus the number of iterations. Figure 3.1 is a comparison between an AM algorithm image 

initiated with zeros and with FDK image for the clinical data.  
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Figure 3.1: Plot of objective function of AM images computed with different initial conditions 

 

The objective function using the FDK image as the initial condition is equivalent to the objective 

function of the 8th iteration output with zero initial condition. However, the objective function of the 

300th iteration with the FDK initial condition is approximately the same as the objective function of 

the 1057th iteration with zero initial condition. Therefore, the FDK image, as the initial image, sped 

up convergence of AM algorithm not only by decreasing the initial value, but also by allowing for 

larger decreases of objective function as iterations proceed toward the convergence. In other words, 

the FDK image provides us a shortcut towards the optimal solution. For this research environment, 

including the processing unit and transmission data we used, since the run time for FDK algorithm is 

approximately 8 seconds, it is worth using the FDK image to triple the convergence speed. 
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3.2 Ordered subsets (OS) 
 

3.2.1 Introduction 
 

The ordered subsets method is an acceleration method for the convergence of iterative algorithms. 

The idea is to group the projection data into an ordered sequence and process the data sequence in 

subiterations.  

 

Given a fixed number of ordered subsets 𝑁, we divide the projection data into 𝑁 ordered subsets; in 

most cases, therse subsets do not overlap and therefore from a paritition of the total projection data. 

It is common to select subsets that are balanced, each having the same amount of projection data. We 

will only consider such balanced, non-overlapping subsets. Since we have exploited quarter-rotation 

symmetry, the number of ordered subsets should be a factor of the number of views per quarter 

rotation (290 for the Siemens geometry), which is one of the following numbers: 2, 5, 10, 29, 58, or 

145. When processing the 𝑁th ordered subset, the image is updated based on the 𝑁th subset of 

projection data and the (𝑛 − 1)st  result. Since during the processing of each subsets, only 1 𝑁⁄  of the 

data is used, the scalar for the penalty term must also be adjusted to be 𝜆/𝑁.  

 

 

Figure 3.2: An example of an ordered-subsets AM algorithm with 2 OS 
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Since the projection data used in every-ordered-subset computation is 1 𝑁⁄  of the entire data, the 

computing cost of projection and backprojection for each ordered subset is also 1 𝑁⁄  of the cost for 

the entire date set, and the total cost of projection and backprojection is approximately the same as 

for the algorithm without ordered subset. In many cases, convergence is accelerated by the number 

of ordered subsets 𝑁. Theoretically, a reconstruction algorithm with 𝑁 subsets converges 𝑁 times 

faster than the algorithm without ordered subsets, at least for the initial iterations.  

 

However, with the ordered-subsets method, the AM algorithm is not guaranteed to converge. The 

result may not be an optimal solution. Ahn, Fessler et al. [7] proposed a convergent ordered-subsets 

algorithm which is guaranteed to converge with any surrogate function that meets their requirement. 

Moreover, the ordered-subsets-switching method could also be utilized for seeking the optimal 

solution. 

 

3.2.2 Analysis of Convergence Based on Number of Ordered 
Subsets 

 
In order to find the optimal number of ordered subsets, unregularized AM algorithms with different 

numbers of ordered subsets initiated with the an FDK image have been run on the clinical 

transmission data. Figure 3.3 shows the objective function versus time for different numbers of OS.  
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Figure 3.3: Plot of objective function versus different number of ordered subsets 

 

From Figure 3.3, the plot of the objective function of the algorithm with 145 OS is far away above 

the others, which means that the algorithm with the most ordered subsets does not give the best 

performance for this data set. The algorithm with 29 ordered subsets always performs the best from 

200 to 1200 seconds.  

 

According to Chapter 3.2.1, the acceleration rate of the OS method should be approximately equal to 

the number of subsets. We can use this principle to judge if our algorithm with OS reaches the limit 

of the OS method. Figure 3.4 shows the relationship between the value of the objective function with 

different numbers of ordered subsets and without ordered subsets. The y-axis stands for the no-OS-

equivalent iteration, which is the number of iterations without ordered subsets that the AM algorithm 

with the specific number of OS could achieve from the (𝑖 − 1)st iteration to the 𝑖th iteration. For 

example, in Figure (b), the 1st point means that the objective function of the 1st iteration of the AM 

algorithm with 29 ordered subsets approximately equals the objective function of the 28th iteration of 

the AM algorithm without ordered subsets, and the 2nd point means that the decrease of objective 

function from the 1st to the 2nd iteration requires the AM algorithm without OS to run over 27 

additional iterations. The acceleration rate is given by 
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Acceleration Rate (𝑠, 𝑛) = iter𝑛
𝑠 − iter𝑛−1

𝑠  

iter𝑛
𝑠 = argminiter|obj1(iter) − obj𝑠(𝑛)|, 

 

where 𝑠  is the number of ordered subsets, 𝑛  is the number of iterations, obj𝑠(𝑛)  denotes the 

objective value with 𝑠 ordered subsets at the 𝑛th iteration. We use this no-OS-equivalent iteration as 

the acceleration rate of the OS method. 

 

 

                                              (a)                                                                                          (b) 

   
                                               (c)                                                                                         (d) 

Figure 3.4: Acceleration rate of OS method with different numbers of OS (a) 5 ordered subsets, (b) 29 ordered subsets, 

(c) 58 ordered subsets, and (d) 145 ordered subsets 
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Figure 3.4 provides a new way to assess the performance of different numbers of ordered subsets. 

The acceleration rate of 29 ordered subsets starts at 28, and drops to 5 in 60 iterations. The acceleration 

rate of 58 ordered subsets starts at 39, swiftly dropping to 5 in 13 iterations. The acceleration rate of 

145 ordered subsets starts at 10, which is much smaller than our expectation. However, the 

acceleration rate of 5 OS remains nearly the same for 500 iterations. To summarize, 145 OS already 

reached the limit at the 1st iteration, the accelerating rate of 58 OS dropped quickly, 29 OS exhibited 

a good performance at the start, and 5 OS was mostly stable for 500 iterations. In other words, 145 

OS could never be utilized in our implementation, regardless of the run time.  

3.2.3 Results 
 

In Section 3.2.2, 29 was shown to be the best number of ordered subsets for a 20 minutes’ 

computations. Figure 3.5 shows a comparison of the regularized objective function between 29-

ordered-subsets and no-ordered-subset algorithms.  

 

          
                 (a)                                                                                            (b)                                                          

Figure 3.5: Log of objective function with different numbers of ordered subsets. (a) 29 ordered subsets with FDK initial 

condition. (b) No ordered subsets with FDK initial condition.  
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The objective function of images produced by the AM algorithm with 29 ordered subsets at the 10th 

iteration is about the same as the objective function of the AM algorithm without ordered subsets at 

the 251st iteration. The acceleration rate with respect to number of iterations required to achieve a 

specific value of the objective function is about 25 in this example.  

 

It has been shown that the OS method great accelerates our reconstruction algorithm. However, 

images may dramatically differ from each other even if they have approximately the same values of 

the objective functions. We want to achieve the same solution using the OS method as from the non-

OS method. In order to assess whether 29 ordered subsets over 10 iterations is equivalent to no 

ordered subsets over 251 iterations, we computed the difference between the two reconstructed 

images, as shown in Figure 3.6. The worst-case percentage difference is approximately 0.25%. 

Therefore, the ordered-subsets algorithm achieved a similar result as the standard AM algorithm.  

 

         
                             (a)                                                       (b)                                                            (c) 

         
                             (d)                                                        (e)                                                           (f) 
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                             (g)                                                        (h)                                                           (i) 

Figure 3.6: Comparison between the result of the AM algorithm with 29 OS at the 10th iteration and the result of the AM 

algorithm without OS at the 251st iteration. (a) The 48th slice of non-OS-251-iter image, (b) The 77th slice of non-OS-251-

iter image, (c) The 126th slice of non-OS-251-iter image, (d) , The 48th slice of 29-OS-10-iter image, (e) The 77th slice of 

29-OS-10-iter image, (f) The 126th slice of 29-OS-10-iter image, (g) The 48th slice of the difference between the 29-OS-10-

iter image and the non-OS-251-iter image, (h) The 77th slice of the difference between 29-OS-10-iter image and the non-

OS-251-iter image, (i) The 126th slice of the difference between the 29-OS-10-iter image and the non-OS-251-iter image. 

The display windows for (a), (b), (c), (d), (e) and (f) are each [0.0129,0.0259] mm-1. The display windows for (g), (h), (i) 

are each [−5 × 10−5, 5 × 10−5] mm-1. 

3.3 Code-Based Acceleration 
 

Our goal of acceleration is to reduce the necessary run time of the algorithm. Although we have 

successfully found the optimal number of OS and reached the acceleration rate of 25 with respect to 

iterations for the example in Section 3.2, the run times of the AM algorithm with no ordered subsets 

for 251 iterations and 29 ordered subsets for 10 iterations are 4769 seconds and 1273 seconds, 

respectively. That means the acceleration rate with respect to time is just about 4. As mentioned in 

Chapter 3.2.1, the time required to compute projections and backprojections does not change much 

with different numbers of ordered subsets, but the algorithm with 29 OS is 6.7 times slower than the 

algorithm without ordered subsets. In this section, we will discuss the run time of the code and provide 

some solutions. 

3.3.1 Run Time Analysis 
 

To get the detailed runtime of our code, Visual Studio time analysis and the NVIDIA CUDA profiler 

were combined to generate Table 3.1.  
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Table 3.1: Run time of different processes versus different numbers of ordered subsets 

 

 

The run times of GPUs are about the same regardless of the number of subsets, which means using 

ordered subsets does not influence the time of the GPU computation significantly, which was as 

expected. However, with the increase of the number of OS, the run times of the CPU part increases 

a lot, especially in “Combination” and “Accumulation”. For every ordered subset, the combination 

and accumulation processes always deal with the whole backprojected image with size of 

512×512×164, thus the run time per iteration of these two parts is proportional to the number of 

ordered subsets. As a result, the run time of the CPU computations with 29 ordered subsets is 

approximately 12.5 times greater than the run time of the CPU computation without ordered subsets. 

In other words, as the number of subsets increases, we are losing our advantage of GPU acceleration.   

 

In order to reduce the run time of combination and accumulation, we generated GPU-accelerated 

combination and accumulation code. In our GPU-accelerated version, we mainly use the a Hillis-

Steele scan to parallelize the accumulation procedure and use shared memory in CUDA to speed up 

the read and write processes.  
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3.3.2 Hillis-Steele Scan 
 

The Hillis-Steele scan, derived by Daniel Hillis and Guy L. Steele [6], is a decoupled inclusive sum 

method, with O(log𝑁) steps and work O(𝑁log𝑁), which means the run time of the accumulation 

process could be reduced from 𝑁 to log 𝑁, theoretically.  

 

A Hillis-Steele scan has ceil(log2 𝑁) iterations. For every iteration 𝑗, the 𝑖th element is added to the 

(𝑖 − 𝑗)thelement. Figure 3.7 shows the process of the Hillis-Steele scan of 7 elements.  

 

Since the GPU version of accumulation process simultaneously deals with 512 images of size 512 ×

164, the number of run steps is ceil(log2(512) + log2(164)) = 17, instead of 512 × 164. 

 

 

Figure 3.7: Process of Hillis-Steele scan of 7 elements 
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3.3.3 Shared Memory 
 

Shared memory in CUDA is an on-chip memory that can be accessed concurrently by all the threads 

in the same block without any conflict. Compared to global memory, shared memory is much faster 

and easier to synchronize. Since in every iteration in a Hillis-Steele scan, the summation process always 

deals with the same data, we can read the data from global memory into shared memory and write it 

to global memory after the scanning iterations. The number of threads per block is set to 512 to match 

the size of the data to be accumulated. A block in NVIDIA GTX 1080 Ti has 49,152 bytes of shared 

memory, which is enough for our Hillis-Steele scan.  

3.3.4 Results 
 

The run time of the combination and accumulation processes decreases from 1.13 seconds to 0.37 

seconds. Therefore, this modification saved about 0.8 second/subset/iteration. Taking 29 ordered 

subsets, for instance, our GPU implementation of the AM algorithm saves 23.4 seconds per iteration.  

 

Table 3.2 Run time comparison between original code and modified code with different OS 

  No Ordered Subsets 5 Ordered Subsets 29 Ordered Subsets 

Procedure Original Modified Original Modified Original Modified 

Combination 0.306 0.084 1.455 0.395 6.177 1.885 

 Accumulation 0.845 0.201 4.375 0.92 24.766 5.278 

 

Since the AM algorithm with more OS takes greater advantage of this code modification, Figure 3.8 

is plotted to show that 29 ordered subsets still perform the best among all the numbers of ordered 

subsets in 20 minutes for the clinical data. Figure 3.9 compares the projected result of the modified 

code and the original code for the clinical data. The worst-case percentage error is approximately 

6×10-6 %.  
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Figure 3.8: Plot of objective function versus different number of ordered subsets of modified code 

 

           
                              (a)                                                        (b)                                                           (c) 



28 

 
 
 
 
 

   
                              (d)                                                        (e)                                                           (f) 

   
                              (g)                                                        (h)                                                           (i) 

Figure 3.9 Comparison of backprojected images between the results of the original implementation and the modified 

implementation. (a), (b), and (c) are the results of the modified implementation. (d), (e), and (f) are the results of the original 

implementation. (g), (h), and (i) are the differences. (a), (d), and (g) are the 38th slice. (b), (e), and (g) are the 75th slice. (c), 

(f), and (i) are the 124th slice. The display windows for (a), (b), (c), (d), (e), and (f) are each [0,168595] mm-1. The display 

windows for (g), (h), and (i) are each [−0.0,0.01] mm-1. 

3.4 Hybrid Ordered-subsets Method 
 

According to a convergence analysis, the AM algorithm with ordered subsets is not guaranteed to 

converge. As a result, the number of ordered subsets should be switched (reduced) after a specified 

number of iterations in order to reach the global optimum.  

 

To ascertain the switching point, Figure 3.10 shows a plot of the gradient of the objective value versus 

the value of the objective function with the different numbers of ordered subsets. The gradient of the 



29 

 
 
 
 
 

objective value measures the descent per second of our algorithm with a specific number of ordered 

subsets at a specific point, which is computed as (
current objective value−next objective value

run time per iteration
), based on 

the assumption that images with the same objective value generated by AM algorithms with different 

ordered subsets are approximately the same.  

 

If the gradient of the objective value for other numbers of ordered subsets is greater than the gradient 

of the objective value for the current number of subsets, the number of subsets should be changed. 

From Figure 3.10, the gradient of the objective function of 29 OS crosses the gradient objective 

function of 5 OS at the objective value of 1.074 × 106, which is the 45th iteration of AM algorithm 

with 29 OS. Then, approximately 900 seconds would be saved.  

 

However, in a clinical environment, the expected run time of our reconstruction implementation is at 

most 20 minutes, while the hybrid-ordered-subsets method is available with the reconstruction 

running for more than 2185 seconds. This method may be utilized in a more time-insensitive task.  

 

 



30 

 
 
 
 
 

 

Figure 3.10: Gradient of the objective value versus the value of objective function with different numbers of ordered 

subsets 

45 iterations 
2128.5 seconds 

137 iterations 
3027.7 seconds 
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Chapter 4 
 

 

Code-related Problems 
 

During the optimization process, several problems related to our implementation were found. This 

chapter presents the analysis of these code-related problems and discusses the explanation and 

solutions.  

4.1 Problem Descriptions 

4.1.1 Increasing-objective-value Problem 
 

The objective-function-increasing problem was first discovered when we compared the performance 

of our algorithm with different numbers of ordered subsets. With FDK image as the initial condition, 

the objective function decreased initially, bounced up at 3500th iteration and increased with the rate of 

20/iteration eventually, which is shown in Figure 4.1.  

 

Figure 4.1: The objective function of the regularized AM algorithm starting from FDK image without ordered subsets 

with 𝝀=100, 𝜹=0.0002 
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Increase of the objective function is a severe problem, since it may indicate the failure of convergence 

of our implementation. In order to analyze the convergent property of the updating algorithm, we 

came up with the following assumptions and set up corresponding experiments. 

 

Inappropriate penalty term: Since the penalty term from Lange [9] is adopted in our objective 

function, we want to see if inappropriate regularization parameters influence the convergence 

properties of the AM algorithm. To assess the influence of the penalty term, Figure 4.2 shows the plot 

of the objective function of unregularized AM algorithm without ordered subsets initiated with the 

FDK image and computed for 6000 iterations. It is shown that the weight of the penalty term did not 

change the trend of the curve. The objective function without a penalty, which is just the I-divergence, 

also increased after some specific number of iterations. Therefore, the penalty is not the reason for 

the increasing objective function.  

 

 

Figure 4.2: The objective function of the unregularized AM algorithm 
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Value vibration: We observed that the objective function of the AM algorithm increases after 3500 

iterations. We want to know if the objective function will keep increasing, or it will bounce up and 

down. The objective function of the AM algorithm for 20,000 iterations is plotted in Figure 4.3. The 

objective function keeps increasing from the 3,500th iteration to the 20,000th iteration.  

 

 

Figure 4.3: The objective function of the unregularized AM algorithm over 20,000 iterations starting at zeros 

 

The problem caused by the GPU implementation: The AM algorithm and the branchless distance-

driven method was first implemented on CPUs by Dr.  Daniel B. Keesing [5], in a software package 

he called HECTARE. HECTARE code was accelerated by Ayan Mitra on GPUs [4]. We want to 

compare the output of the GPU code to the CPU code, to see whether the CPU code has the same 

problem. Since the run time of the CPU code is 300 seconds per iteration, it is unrealistic to run it for 

over 20,000 iterations. An alternative experiment is required. We ran the CPU version of the AM 

algorithm with the output image of the AM algorithm after 20,000 iterations (computed on GPUs) as 

the initial condition. If the CPU code was not suffering the same problem, the objective function 

would have a decreasing trend. Figure 4.4 is a plot of the objective function of the CPU-based AM 

algorithm starting at the image after 20,000 iterations. The objective function of the CPU code is also 
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increasing, which shows that the original CPU implementation also encounters the problem of 

increasing objective function value, but the plotted values jitter more than for the GPU.  

 

 

Figure 4.4: The objective function of the AM algorithm running on CPU after 20,000 GPU iterations 

 

Transmission data issue: The clinical real data used in our previous are complicated, due to noise 

and incompletely known preprocessing. Therefore, we simulated noiseless transmission data from the 

NCAT phantom and reconstructed it with our implementation of the AM algorithm. Figure 4.5 shows 

objective function of the AM algorithm reconstructed from the simulated NCAT phantom. The 

objective function also increases after approximately 1000 iterations.   

 

 

Figure 4.5: The objective function of the AM algorithm for NCAT-simulated data over 4700 iterations  
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Arithmetic Precision: Since the branchless distance-driven method contains numeric accumulation 

and back-accumulation processes, a lot of summation processes are required in our implementation, 

which is different from other implementations of the projections and backprojections. The summation 

is sensitive to both the order of execution of the processes and to their precision. Therefore, reaching 

the limit of precision should be obvious. A double-precision AM algorithm running on the a CPU was 

then implemented and the objective function between the different sets of code was analyzed. 

Considering the run time of the AM algorithm on a CPU, we used the output image of the single-

precision AM algorithm on the GPU after 20,000 iterations as the initial condition, and ran the double-

precision code on a CPU and single-precision code on GPUs.  The results are shown in Figure 4.6. 

The plot of the result from the single-precision code on the CPU is also included as a reference. The 

objective function of the double-precision CPU implementation is decreasing. It differs from both 

the single-precision CPU and GPU implementations. We then concluded that the precision is the key 

issue. However, from Figure 4.6, we observed that the initial objective values are different, even if we 

used the same initial conditions. Further discussion of this issue is given in Section 4.1.2.  

 

 
 (a) 
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(b) 

 
  (c) 

Figure 4.6 The objective function generated by (a) double-precision code on CPU (b) single-precision code on CPU, and 

(c) single-precision code on GPU 

4.1.2 Code Inconsistency in Single and Double Precision 
 

Analysis of the problem of the objective function increasing introduces a new problem: the different 

initial objective value between single-precision code and double-precision code. From figure 4.6, with 

the same initial condition, the initial value of double-precision code is 1.055*106, while the initial value 

of both CPU and GPU single-precision code is 1.297×106.  
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4.2 Analysis 
 

To solve the different-initial-value problem, all the procedures that compute I-divergence should be 

analyzed. The I-divergence is given by 

 

𝐼(𝑑||𝑔) ≜ ∑ [𝑑𝑖 log (
𝑑𝑖

𝑔𝑖
) + 𝑔𝑖 − 𝑑𝑖]

𝑖

 

 

where 𝑑 is the transmission data and 𝑔 is predicted data based on the current image.  

 

The computation of the initial value has two steps: projection and tje I-divergence computation. We 

computed the objective function of the same projected data in single and double precision. The 

similarity between the double-precision and single-precision I-divergence computational results shows 

that the I-divergence computation is not the problem. Therefore, we assumed that the projection of 

the initial image reached the limit of precision after thousands of iterations. In order to test our 

hypothesis, different initial images were used to compute different objective values in single and 

double precision. If our assumption is true, there should be a minor difference of I-divergences 

between single-precision and double-precision code when the objective function is decreasing. Table 

4.1 shows the objective values of single-precision and double-precision implementations with different 

initial conditions 

 

Table 4.1: The objective values of single-precision and double-precision code with different initial conditions 

 

 

As indicated in Table 4.1, the difference of the initial objective value between single and double 

precision is minor when the initial condition is zeros (air), FDK and the output image of 100 iterations 

of the conjugate descent (CG) algorithm. After 3,000 iterations of the AM algorithm, the difference 

increased, which indicates, during the projection process, some pixels have already reached the limit 

of precision.  
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With the AM algorithm iterating, the error is accumulating and an increasing numbers of projected 

pixels reached the limit of precision. The limit of precision in projection process leads to the 

inconsistency of objective function between single-precision and double-precision code. Moreover, 

the initial value of double-precision code is approximately the same as the minimum objective value 

that single-precision code could reach, which raises another question: in our single-precision 

implementation, while the objective function is increasing, is the reconstructed image approaching the 

optimal solution, or departing the optimal solution?  

 

To solve this problem, we use the double-precision objective function as the distance between the 

reconstructed image and the optimal solution. The blue curve in Figure 4.7 shows the I-divergence of 

single-precision code for the NCAT simulated data, while the red curve is the double-precision I-

divergence of the single-precision-reconstructed image. In other words, a set of reconstructed images 

is generated by a single-precision AM algorithm. Then, single-precision and double-precision codes 

are utilized to plot the single-precision and double-precision objective function of the set of 

reconstructed images, as the curves in Figure 4.7, respectively.  

 

In Figure 4.7, the double-precision objective function is still decreasing while the single-precision 

objective function is increasing, which means, regarding the double-precision objective function as 

the distance measure, the single-precision-reconstructed image is not departing from the optimal 

solution as the single-precision objective function would seem to indicate.  
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Figure 4.7: Objective function of single-precision AM algorithm for NCAT simulated data and its corresponding double-

precision-computed objective function  

 

Since the double-precision code can also be affected by the precision exhaustion issue, a more direct 

measure of distance is introduced. Differing from the clinical data, simulated NCAT data enable us to 

assess the difference between the test image and truth directly. Figure 4.8 shows the root mean square 

error (RMSE) between the reconstructed image and the NCAT phantom. Compared to the single-

precision objective function, which starts increasing at approximately the 1000th iteration, the trend of 

RMSE plot is decreasing.  
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Figure 4.8: RMSE between the reconstructed images and truth 

4.3 Conclusion 
 

In Section 4.2, we conclude that the limit of precision in projection, as well as the numeric summation 

processes in the branchless DD method, lead to the inconsistency between single-precision and 

double-precision code. Due to this limit, the single-precision objective function may not correctly 

reflect the distance between the truth and the reconstructed images near the optimum. However, the 

single-precision objective function is still significant when we are far away from the optimal solution.  

 

Moreover, limited by the precision, the objective function is supposed to eventually vibrate up and 

down about its asymptotic value. More experiments are still required to further explain the relationship 

between projection process and the non-stop growth of the objective function.  
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Chapter 5 
 

 

Optimization of  Parameters 
 

In our graphical user interface, the algorithm is supposed to choose algorithm parameters 

automatically according to the clinical demand. In other words, if the “head” option is chosen, our 

application should set parameters automatically, such as 𝜆 , 𝛿 and the number of iterations. In this 

chapter, we will discuss methods for choosing parameters to satisfy the intentions of clinical 

researchers.  

5.1 Experimental Program 
 

The goal of CT reconstruction is translating the transmission data from the CT scanner to images that 

can be easily understood in medical practice. Based on a function quantifying the performance of our 

algorithms with specified parameters, we could find the optimal parameters that achieve the best image 

quality.  

 

Figure 5.1 shows the designed process of the algorithm parameters optimization. The experiment is 

planned as follows:  

 

1) Run the AM algorithm for a transmission data set with different sets of algorithm parameters 𝜆 

and 𝛿. The transmission data set should contain cases of data with or without lesions.  

 

2) Apply image quality measure on the reconstructed image set generated in (1) to get a set of 

image performance with different algorithm parameters.  

 

3)  The combination of algorithm parameters with the best performance could be regarded as 

the optimal parameter combination among the parameters set for the specified environment 

corresponding to the transmission data set.  
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Figure 5.1: The designed process of the parameter-selecting experiment 

 

 

5.2 Prediction of Human Observer Performance 
 

In Section 5.1, we introduce a methodology for algorithm-parameters optimization. Based on our 

design, an image quality measure is important. One choice is the Hotelling observer, which is widely 

used to simulate the performance of human observer. Therefore, we can use the Hotelling observer 

to predict the performance of doctors on our reconstructed images.  

5.2.1 Hotelling Trace Criterion (HTC) 
 

The Hotelling Trace Criterion (HTC) is used to find a linear separator of two classes of objects, as 

well as a separability measure. Fiete RD, Barrett HH et al. [10] showed its relationship with the 

performance of human observer in 1987. The HTC is given by 

 

HTC = tr(𝑺𝟐
−𝟏𝑺𝟏) 

 

where “tr” denotes the trace of the matrix. 𝑆1 is an inter-class scatter matrix given by 

 

𝑺𝟏 = ∑ 𝑃𝑖(�̅�𝒊 − �̅�𝟎)

𝐾

𝑖=1

(�̅�𝒊 − �̅�𝟎)
𝑇
 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Fiete%20RD%5BAuthor%5D&cauthor=true&cauthor_uid=3598746
https://www.ncbi.nlm.nih.gov/pubmed/?term=Barrett%20HH%5BAuthor%5D&cauthor=true&cauthor_uid=3598746
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where �̅�𝒊 is the mean vector of the 𝑖𝑡ℎ class, �̅�𝟎 is the mean vector of all the objects from all classes 

and 𝑃𝑖 is a priori probability of the 𝑖𝑡ℎ class.  

 

𝑺𝟐 is an in-class scatter matrix given by 

 

𝑺𝟐 = ∑ 𝑃𝑖

𝐾

𝑖=1

(∑ 𝑝𝑗

𝑁

𝑗=1

(𝒅𝒊𝒋 − �̅�𝒊)(𝒅𝒊𝒋 − �̅�𝒊)
𝑇

) 

 

where 𝒅𝒊𝒋 is the 𝑗𝑡ℎ object in the 𝑖𝑡ℎ class, 𝑝𝑗  is the a priori probability that 𝒅𝒊𝒋 appears in the 𝑖𝑡ℎ 

class, and 𝑁 is the number of objects in one class. 𝑺𝟏 assess the distances between classes, while 𝑺𝟐 

assess the mean distances between objects over all classes. The HTC is a scalar, positively quantifying 

the separability of a data set.  

 

It was shown that merit of the receiver operating characteristic (ROC) curve of the HTC has a 

correlation coefficient of 0.988 with the merit of the ROC curve of humans on simulated liver CT 

images with or without tumors. 

5.2.2 Channelized Hotelling Observer (CHO) 
 

Based on the correlation between the merit of the HTC and human observers, the Hotelling observer 

(HO) is developed to predict the task performance of human observers in a signal-known-exactly 

(SKE) binary classification task, with channels to simulate the human visual system [11]. The weight 

and test statistic for the linear separator is given by 

 

𝝎 = 𝑺𝟐
−𝟏(�̅�𝟐 − �̅�𝟏) 

𝜆 = 𝝎𝑻𝒅𝒄, 

 

where 𝒅𝒄 = 𝑼𝑻𝒅𝒕 is the channelized test image, 𝑼 is the matrix representation of a set of the channel 

filters, �̅�𝟐 is the mean of the channelized signal-absent data and �̅�𝟏 is the mean of the channelized 
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signal-present data. Test statistic 𝜆  then could be used for classification with a threshold or 

computation of merit of the ROC curve. 

 

In the CHO model, the test image is filtered through a set of channels with different frequencies. The 

channelized test image 𝒅𝒄 is then generated as a vector of scalars from different channels. If we denote 

the test image as a vector with the size of 𝑁2, and filter it with 𝑃 channels, the dimension of the 

filtered test image is then reduced from  𝑁2 to 𝑃, where P ≪ 𝑁2.  

 

One choice for the channel is the Gabor filter, which has been shown to simulate the 2-dimensional 

(2-D) response of simple cells in the visual cortex [12] [13]. The function of the Gabor filter could be 

expressed as 

 

G(𝑥, 𝑦) = exp (−
4ln2((𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2)

𝜔𝑠
2

)

⋅ cos(2𝜋𝑓𝑐((𝑥 − 𝑥𝑜)cos𝜃 + (𝑦 − 𝑦𝑜)sin𝜃) + 𝛽) 

 

where (𝑥𝑜 , 𝑦𝑜) is the spatial center, corresponding to the center of the lesion, 𝜔𝑠 is the width of the 

frequency band, 𝑓𝑐 is the central frequency, 𝜃 is the orientation and 𝛽 is the phase. The parameters of 

the Gabor filter, including 𝜔𝑠, 𝑓𝑐 , 𝜃 and 𝛽 are selected with respect to properties of visual cells. In the 

implementation of Lifeng Yu et al. [14], they use six frequency band: [1/128, 1/64], [1/64, 1/32], 

[1/32, 1/16], [1/16, 1/8], [1/8, 1/4] and [1/4, 1/2]; five orientations: 0, 2π/5, 4π/5, 6π/5 and 8π/5; 

and two phases: 0 and π/2. The data dimension would be decreased to 60. The overall performance 

correlation on phantom-scanned data between the human observer and the CHO by Lifeng Yu et al. 

is 0.986.  

 

5.2.3 Three-dimensional CHO 
 

In Section 5.1.2, we introduced a channelized Hotelling observer as an estimate of the human observer 

for 2D images. In this section, to apply the CHO on our 3D AM algorithm, some implementations 

of three-dimensional CHO will be discussed.   
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In the current CT image diagnosis process, doctors may read the image either by slice, or in a 

volumetric 3D view. 3D CHO contains 2 types of models: volumetric CHO (vCHO) and multislices 

CHO (msCHO), depending on the way of the image reading is done. In these models, the test image 

is represented as 𝒅𝒕,𝟑𝑫 = [𝒅𝒕,𝟏 … … 𝒅𝒕,𝑴], where 𝑀 is the number of slices. 

 

vCHO uses a bank of 3D filters to generate the channelized test data for Hotelling Observer [15]. In 

this case, 𝒅𝒄,𝒗 = 𝑼𝒗
𝑻𝒅𝒕,𝟑𝑫 , where 𝑼𝒗 is the matrix of a bank of volumetric filters with different 

frequencies and 𝒅𝒄,𝒗 is the volumetric channelized test data filtered by these filters, whose dimension 

should equal the number of filters in  𝑼𝒗. The weight for vCHO is given by 

 

𝝎𝒗 = 𝑺𝟐,𝒗
−1 (�̅�𝟐,𝒗 − �̅�𝟏,𝒗) 

 

where �̅�𝟏,𝒗 and  �̅�𝟐,𝒗 are the 3-D mean signal-present and signal-absent volumetric-channelized data, 

respectively, 𝑺𝟐,𝒗
  is the in-class scatter matrix of volumetric-channelized data. Then the test statistic 

is given by 

  

𝜆𝑣 = 𝝎𝒗𝒅𝒄,𝒗 

 

Compared to 2-D channelized data that only contains contrast and structure in one slice, the 

volumetric channelized data would store the volumetric information, including contrast, structure and 

correlation between voxels. The vCHO process is shown in Figure 5.2(a).  

 

Another way to present a 3-D CT images in clinical environment is presenting it as several slices of 2-

D CT scans on film. msCHO simulates the process of multislice-based diagnosis. There are 2 models 

that could be implemented for msCHO. In the first model for msCHO, introduced by Mu Chen at el 

[16], two stages are required to compute the test statistic among images and slices, respectively. The 

filtered test image of the 𝑚𝑡ℎ slice is 𝒅𝒄,𝒎 = 𝑼𝟐𝑫
𝑇𝒅𝒕,𝒎, where 𝑼𝟐𝑫 is the 2D channel matrix. The 

weight and test statistic among images is calculated with respect to a specific slice, specifically:   
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𝝎𝒎 = 𝑺𝟐,𝒎
−1 (�̅�𝟐,𝒎 − �̅�𝟏,𝒎) 

 𝜆𝑚 = 𝝎𝒎𝒅𝒄,𝒎  

 

Where the index 𝑚 ∈ [1, 𝑀] denotes a slice in test image, �̅�𝟏,𝒎 and  �̅�𝟐,𝒎 are the mean signal-present 

and signal-absent 2D-channelized data of the 𝑚𝑡ℎ slice, respectively, 𝑺𝟐,𝒎
  is the in-class scatter matrix 

of 2D-channelized data of the 𝑚𝑡ℎ slice. Other than the index standing for slice, this equation is the 

same as the equation in section 5.1.2. Let 𝜦 = [𝜆1, 𝜆2 … 𝜆𝑀]𝑇 be the new variable vector. 𝜦 is divided 

into two classes: signal-present slice 𝜦𝟏 and signal-absent slice 𝜦𝟐. The overall test statistic 𝜆𝑚𝑠 is then 

given by 

 

𝜆𝑚𝑠 =  (�̅�𝟐 − �̅�𝟏) 𝑇𝑺𝟐,𝜦
−1 (�̅�𝟐 − �̅�𝟏)  

 

where �̅�𝟐 is the mean of 𝜆 of the signal-absent slices, �̅�𝟏 is the mean of 𝜆 of the signal-present slices, 

and 𝑺𝟐,𝜦
−𝟏  is the intra-class scatter matrix of 𝜦 . The observer distinguishes the signal from the 

background among not only images, but also slices, using the HO test statistic. The model is shown 

in Figure 5.2(b). 

 

In the second model, introduced by Ljiljana Platiša et al [16], the channelized test image is computed 

by a bank of multislice filters, 𝒅𝒄,𝒎𝒔 = 𝑼𝒎𝒔𝒅𝒕,𝟑𝑫, where 𝑼𝒎𝒔 is the channel matrix for integrated 

multislices. The weight, which is similar to the weight for vCHO, is given by 

 

𝝎𝒎𝒔 = 𝑺𝟐,𝒎𝒔
−𝟏 (�̅�𝟐,𝒎𝒔 − �̅�𝟏,𝒎𝒔) 

 

where �̅�𝟏,𝒎𝒔 and  �̅�𝟐,𝒎𝒔 are the mean signal-present and signal-absent multislice-channelized data, 

respectively, 𝑺𝟐,𝒎
  is the in-class scatter matrix of multislice-channelized data. The msCHO test 

statistic is then  

 

𝜆𝑚𝑠 = 𝝎𝒎𝒅𝒄,𝒎𝒔 
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The process for this msCHO model is shown in Figure 5.2(c). Compared to vCHO, the msCHO 

models utilize the image information of pixel-direction and slice-direction separately. The second 

model is computationally simpler than the first one. Besides, according to Ljiljana Platiša et al., the 

second method result is closer to the ideal observer than the result of the first msCHO model when 

the data statistics are Gaussian. 

 

 

(a) 

 

 (b) 

 

(c) 

Figure 5.2: The process of (a) the vCHO (b) the first msCHO (c) the second msCHO 
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Chapter 6 
 

Conclusions and Future Work 
 

6.1 Conclusions 
 

In order to transition the GPU-accelerated CT reconstruction algorithm to a more clinical 

environment, this thesis discusses the acceleration methods, code-related problems, and methods for 

optimizing algorithm parameters in the future. 

 

Using the FDK image as the initial condition significantly accelerates the convergence speed, not only 

by decreasing the initial objective value, but also by increasing the steps toward convergence. The no-

OS-equivalent iteration is defined to assess the acceleration rate of the OS method. From the plots of 

no-OS-equivalent iterations, 145 OS performs the worst, 29 OS and 58 OS could be used for starting 

iterations, while 5 OS is stable and maintains the acceleration rate of 5X for 500 iterations. We also 

analyze the run time of our implementation with different numbers of OS. In 20 minutes, 29 OS is 

always the optimal selection for the AM algorithm, which achieves a speedup of 25X with respect to 

iteration. Then, code acceleration is implemented by modifying the CPU-version combination and 

accumulation process into a GPU-based version, which reduces the run time by 0.8 seconds per subset 

per iteration. Therefore, the run time of 29 OS is decreased from 71 seconds/iteration to 47.5 

seconds/iteration. Moreover, we plot the gradient of the objective function versus the objective 

function with different numbers of OS, indicating that, to maximize the acceleration effect of the OS 

method, we should start with 29 OS, then switch to 5 OS at the 45th iteration for the algorithm running 

more than 2200 seconds.  

 

Moreover, we analyzed the problem of the increasing objective function value and the inconsistency 

of single-precision and double-precision code. After thousands of iterations, the AM algorithm 

reaches the limits of precision. Since the branchless distance-driven method requires numeric 

summation processes, the limit of precision greatly influences the projection processes with the error 

accumulating, which leads to an approximate 30% difference of the objective function value between 
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single-precision code and double-precision code. The limit of precision also limits the role of our 

objective function as a distance measure between the reconstructed image and the truth. We concluded 

that the increasing objective function does not indicate the failure of convergence of our 

implementation.  

 

In Chapter 5, we built a prototype of the parameters optimization process and introduced a choice of 

the image quality measure. According to the high correlation between HO and the human observer, 

the 3D CHO with a bank of Gabor filters is introduced to assess the quality of reconstructed images.  

6.2 Future Work 
 

The runtime analysis provides us significant insight to achieve run time reduction to achieve 0.8 

seconds per subset per iteration. However, from the runtime table, we observed that the 

backprojection procedure is 4 times slower than the forward-projection procedure. Since the 

projection and backprojection processes have the same number of steps, further investigation is 

required to determine this difference based on a more detailed timeline of processes in the GPUs.  

 

In Chapter 4, we conclude that, limited by the precision of the projection processes, the objective 

value doues not represent the distance between the truth and the reconstructed image. However, the 

reason for the non-stop growth of I-divergence computed using single precision should be further 

investigated.   

 

In Chapter 5, we introduced a prototype of a parameter-optimization experimental program. 

Feasibility research for this prototype is required, with respect to model performance and data 

acquisition. A bank of 3-D filters is also needed to simulate the 3-D response of the visual cortex. 

Moreover, since there is a tradeoff between image quality and the running time in the iterative 

reconstruction algorithm, we should find a method to optimize the number of iterations.  
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