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Abstract

Effective load balancing algorithms are crucial in fully realizing the performance potential
of parallel computer systems. This paper proposes a general matrix iterative model to
represent a range of dynamic load balancing algorithms. The model and associated perfor-
mance measures are used to evaluate and compare various load balancing algorithms and
derive optimal algorithms and associated parameters for a given application and multipro-
cessor system. The model is parameterized to represent three load balancing algorithms
- the random strategy, diffusion and complete redistribution algorithms. The model is
validated by comparing the results with measured performance on a realistic workload.
The parallel N-body simulation application used for this purpose has a number of inter-
esting properties and is representative of a wide class of realistic scientific applications.
The performance of the three algorithms are compared and optimal algorithm parameters
derived for the application. The random strategy outperforms both the diffusion (12%
better) and the redistribution (30% better) algorithms and its performance is within 25%
of the ideal load balance case. General performance models such as the one presented in
this paper can be used to guide the algorithm designer in choosing the best algorithm and
associated parameters for a given environment.

Keywords: Dynamic load balancing, Performance model, Matrix iterative model, Par-
allel N-body simulation
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1 Introduction

Effective processor and communication resource utilization is essential in fully realizing
the performance potential of parallel computer systems, and central to this is the devel-
opment of appropriate load balancing (or load sharing [7]) algorithms. The various load
balancing algorithms presented in the literature[4, 7, 13, 14] generally focus on distribut-
ing the workload in some equal fashion among the available processors. In this paper, we
focus on load balancing of cooperating tasks belonging to a single application running on
multiple processors|2, 8, 11, 19]. We develop a simple but effective matrix iterative model
to represent a wide range of load balancing algorithms. The model and associated per-
formance measures are used to quantitatively compare various load balancing algorithms.
For a given application and multiprocessor system, the model is used to choose a suitable
algorithm and to tailor the algorithm for “best” performance. The model is validated
using a parallel N-body simulation implementation on a network of workstations.

The load balancing model presented in this paper serves as an effective performance
evaluation tool in the design of efficient algorithms for parallel computing systems. Fol-
lowing are the highlights of the model and performance scheme presented in this paper:

¢ The matrix iterative formulation is compact and intuitive and can be parameterized
to represent a range of load balancing algorithms. Unlike other models in literature
for analyzing load balancing algorithms, our model is easily applicable to a hetero-
geneous processor systems. We apply the model to a parallel application running
on a heterogeneous workstation network.

e The performance evaluation scheme incorporates all aspects of load balancing. The
load balancing algorithm is evaluated taking into account the performance benefits
as well as the overhead (in terms of computation and communication costs) of load
balancing. The characteristics of the parallel application and the computing plat-
form are also incorporated into the performance model. The performance measure
derived therefore reflects the overall performance of the system.

e The model is validated by comparing the results with measured performance on a
realistic workload. The parallel N-body simulation application used for this purpose
has a number of interesting properties and is representative of a wide class of realistic
scientific applications.

Load balancing algorithms can be broadly classified into static and dynamic strategies
[4, 12]. In static schemes, assignment of tasks to processors is made before execution and
it is fixed throughout the execution time. Dynamic (or Adaptive) load balancing schemes
periodically reassign tasks as needed during execution to achieve balance. Dynamic load
balancing strategies can also be classified as centralized or distributed based on where
load control is exercised. Centralized load balancing algorithms have a “master” node
which allocates tasks to other processors thus maintaining a balanced workload. In dis-
tributed algorithms, each processor makes an independent load balancing decision based



on a combination of its own load and some system-wide load information. Another classi-
fication of dynamic schemes relates to where task transfer between processors is initiated.
In sender initiated schemes heavily loaded nodes initiate transfer of tasks to other nodes.
In receiver initiated schemes, lightly loaded nodes request other nodes to send tasks. The
principal focus of this paper is the analysis of dynamic, distributed, sender-initiated load
balancing schemes. The model presented here, however, can be extended to represent
other load balancing schemes.

There have been several studies on the performance analysis and modeling of load bal-
ancing algorithms[l1, 5, 6, 7, 13, 17]. Eager et.al[7] use analytic queueing models to compare
the performance of adaptive load sharing algorithms of varying complexity. Based on their
analysis, they conclude that extremely simple adaptive algorithms yield dramatic perfor-
mance improvements. The models, however, simplify several aspects of a real system. It is
hard to represent complex system constraints and overheads in analytic queueing models.
Ahmad et.al[l] present and, using simulation techniques, solve a queueing oriented state
transition model of a range of sender initiated balancing techniques. The model focuses
on the balanced scheduling of independent tasks. The state transition model formulation
and techniques differ from the iterative approach taken here. The iterative approach used
in this paper is more flexible and can be used to model load balancing on a heterogeneous
system of dependent tasks.

Cybenko[6] presents a model for a simplified diffusion load balancing scheme where the
movement of tasks between processors is analogous to the physical process of diffusion,
and using matrix iterative techniques shows that the load distribution converges to the
uniform distribution. The model does not take into account task dependencies and load
balancing costs and is thus of limited use in real parallel environments. Willbeck-LeMair
and Reeves[17] study the performance benefits and overheads of five dynamic load balanc-
ing algorithms. The five algorithms illustrate the tradeoff between the accuracy of load
balancing decisions and the costs incurred by the balancing processes. The paper presents
a comprehensive gqualitative analysis of the various phases of load balancing for each of
the five algorithms. Performance of these algorithms on an Intel iPSC/2 hypercube are
presented. Our work is also focused on the tradeoff between performance benefits and
overheads of load balancing. Our load balancing model and performance measures provide
a platform for gquantitative study of this tradeoff. The model is general and is applicable
to a wide range of algorithms and applications.

Here, we note that none of the above models extend to heterogeneous processor
systems!. The matrix iterative model presented here effectively incorporates processor
heterogeniety in load balancing decisions. The next section, begins by presenting a ma-
trix iterative model for load balancing. The model can be parameterized to reflect any
dynamic, sender-initiated load balancing algorithm. In section 3, three load balancing
schemes are considered - the random strategy, the diffusion algorithm and the complete
redistribution algorithm, and the model is parameterized to represent these algorithms.

In this context, we assume that the processors are functionally identical but differ in their computing
ability.



Using the parallel N-body simulation application as an example (section 4), the model
is validated (section 5) and used to evaluate the three load balancing algorithms and
derive an optimal set of load balancing parameters. Parallel N-body simulations have
non-uniform, dynamically changing computation and communication requirements and
are representative of realistic scientific applications.

2 A Load Balancing Algorithm Model

In this section, a general matrix iterative model is developed to represent and evaluate
a range of dynamic load balancing techniques. We assume that the application can be
broken into a large number of tasks (large compared to the number of processors). The
tasks have identical computation and communication requirements and can be executed
on any of the available processors. The processors may be of different computation and
communication capabilities.

The set of processors in the system is denoted by P = {P1, P2,P3...}. The com-
puting ability of processor Pi is denoted by C;, a number proportional to the number of
operations executed by the processor in unit time. The set P is ordered in decreasing
order of processor power (i.e., C; > Cy > Cs...). The time taken to execute a task on
P1i is inversely proportional to its computing ability, C;. To achieve load balance in a
heterogeneous system, the processors are allocated tasks proportional to their respective
computing abilities. For example, if Pi is twice as fast as Pj (i.e., C; = 2C;), Pi should
be allocated twice as many tasks as Pj so that they take approximately the same time
to execute the tasks.

The load balancing algorithm is invoked at instants denoted by £ (k= 1,2,3,...). The
algorithm may be invoked at regular intervals, at the end of each iteration in iterative
applications, or may be triggered by an external event. The matrix iterative model
developed in this paper keeps track of the task distribution at each processor in the
system at each of these instants %, when the load balancing algorithm is invoked. The
state of the system at k is represented by the task distribution vector, w(k), where w;(k)
is the number of tasks associated with processor Pi at k. The model computes the task
distribution, w(k) for all £ in terms of the task transfer between processors due to load
balancing, and due to the arrival and departure of tasks at each processor resulting from
the dynamics of the application. The load imbalance in the system is mainly due to the
application dynamics and, in some systems, due to the dynamically changing processor
capabilities.

Task distribution at time instant (£ + 1), w(k + 1), can be expressed as a function of
(1) w(k), the task distribution at %, (2) the task transfer due to load balancing, and (3)
the arrival and departure of tasks between the kth and the (k + 1)th invocation due to



the dynamics of the application. For processor Pi,

wi(k+1) = w;(k) — tasks sent by Pi (due to load balancing)
+ tasks received by Pi (due to load balancing) (1)
+ tasks arriving during [k, k& + 1) (due to application)
— tasks departing during [k, k + 1) (due to application).

The number of tasks transferred between processors due to load balancing is determined
by the load balancing algorithm used while the arrival and departure of tasks depends
on the dynamics of the application program. The load balancing algorithm attempts to
transfer tasks to compensate for the imbalance resulting from the dynamically changing
application requirements and can be described in terms of the following three phases
with the various algorithms differing in the implementation of these phases. The different
implementations reflect the tradeoffs between balancing accuracy and algorithm overhead
costs.

1. State Information: Load balancing algorithms have different system state infor-
mation requirements and also differ in how they acquire the information. Some
algorithms require a measure of the average workload in all or a subset of processors
in the system, while others may require the actual workload distribution over all
processors in the system. w(k) (defined more precisely later) is a vector represent-
ing the ideal (load balanced) task distribution where the number of tasks on each
processor is proportional to its computing ability. However, in algorithims where the
state information gathering scheme is based on partial information, each processor’s
perception of the system load may be different. We represent this “approximate”
version of the ideal task distribution by the vector @(k).

2. Processor Participation: When a load balancing algorithm is invoked, each processor
decides if it wants to participate in load balancing based on the system state infor-
mation available. In some algorithms, only the heavily loaded processors participate
in load balancing while in others, all processors are involved in redistributing the
workload. Most algorithms define a task threshold, w*(k). Processors participate
in load balancing if their load is greater than the threshold. The processor partic-
ipation in load balancing at the kth invocation of the algorithm is represented by
a matrix A(k). For a p processor system, the p X p matrix A(k) consists of ones
and zeroes such that a diagonal element of A(k) is set to one if the corresponding
processor decides to participate in load balancing; all other elements are set to zero.
The selection of a matrix representation here simplifies the expressions presented
later.

3. Task Migration: Each processor that decides to participate in load balancing has to
compute (a) the number of tasks to transfer and, (b) the task destinations. The mi-
gration decisions are typically based on the system state information available. The
techniques used in the decision making process range from simple heuristics (e.g.,



random destination selection) to complex optimization algorithms (e.g., simulated
annealing{18].). Task migration decisions are represented by a p X p matrix (for a
p-processor system), M(k). M;; is the fraction of its tasks that processor Pi de-
cides to send to Pj (i.e., Pi sends M;;(k)w;(k) tasks to P7). Often, task migration
decisions are constrained by the structure imposed by the algorithm or the system
topology. We define a topology matrix H to incorporate these constraints. H is a
p X p matrix describing the allowable task migration paths. An element of H, Hy;
is equal to one if processors Pi and Pj are allowed to exchange tasks; otherwise,
H;; is set to zero. Therefore, in constructing matrix M, M;; is nonzero ounly if the
corresponding element in the H matrix, Hj; is equal to one.

Table 1 describes the variables used in the general load balancing model developed
here. Equation 1 expressing the number of tasks on Pz at instant (k+ 1)th can be written
as follows:

wilk+1) = wik) — 3 My(R)Aa(k)wi(k) + 3 Mis(k) Agy (B)uwy (k) + Ms(h) — (k) (2)
(7#4) (774

where A(k) and u(k) are vectors denoting the application task arrival and departure rates
respectively and represent the dynamically changing workload requirements of the appli-
cation. The two summation terms represent load balancing activity. The first summation
term corresponds to the sums of all tasks transferred from processor Pi to other proces-
sors while the second summation represents the sum of all tasks transferred to Pi from
other processors. Defining M;;(k) = — 3;..; M;;(k), Equation 2 can be rewritten as:

wi(k +1) = wy(k) + 3 Myi(k)Az;(k)w;(k) + As(k) — (k) (3)

In vector form, this becomes:
w(k + 1) = w(k) + [M )] A(kyw (k) + ME) — u(k) (4)

The matrices M (k) and A(k) reflect the transfer of tasks initiated by the load balancing
algorithm and can be parameterized to represent various load balancing schemes. M (k)
and A(k) are typically functions of the task distribution, w(k), and the decision making
scheme of the load balancing algorithm. The matrix formulation derived here is simple and
intuitive and can represent a range of load balancing algorithms. The algorithms can be
compared quantitatively by solving (either analytically or numerically) the corresponding
models.

Load balancing decisions may be based on local or global knowledge of the system
state information. The “ideal” (load balanced) distribution, @(k), represents global state
information since it is computed based on the load distribution on all processors in the
system. ;(k), the “ideal” load on processor Pi is given by:

e ] ®)



Table 1: Variable Definitions

Computing System:

P
Ci
H

The set of processors, {P1, P2, P3,... Pp}
A pumber indicating computing power of processor Pi.
Topology Matrix.

1 if Pi and Pj are allowed to exchange tasks

Hy (k) = { 0 otherwise

Task Distribution:

w(k)

w(k)

Task distribution vector at k.

w; (k) = Number of tasks on processor Pi.

Ideal (load balanced) task distribution

Each processor has tasks proportional to its computing power
@y(k)/C: = i5;(k)/C;

Ideal task distribution based on local knowledge

P believes that it should have @;(k) tasks for ideal task distribution.
Task threshold vector.

Pi participates in load balancing if w;(k) > w*;(k).

The actual definition of this threshold is algorithm dependent.

Application Dynamics:

Ai(k) = No. of tasks arriving at Pi during [k, &+ 1)

u;(k) = No. of tasks departing from Pi during [k, k + 1)

Load balancing task transfer matrix.
M;;(k) wi(k) is the number of tasks transferred from Pi to Pj at k.

A(k) | Task arrival vector.
p(k) | Task departure vector.
Load Balancing Decisions:
M(k)

A(k)

Processor participation matrix

Aylk) = 1 ifi=j and Pi participates in load balancing
VY710 otherwise




The first term is the fraction of the total compute power associated with processor Pi
and the second term (3 w;(k)) is the total number of tasks in the system.

Acquiring global information is often expensive (due to the additional communication
involved) or may result in stale information (due to communication delays). Several
algorithms use local load information, the task distribution of processors in a certain
neighborhood, as an approximation of the overall system load. The 1-step neighborhood
of processor Pi is denoted by the set N,(l) and the set is defined by the topology matrix
H. Two processors Pi and Pj are 1-step neighbors if the topology matrix entries H;; =
Hj; = 1. Therefore, NEI) consists of all such processors “adjacent” to Pi as defined by the
topology matrix. Pi collects load information from its 1-step neighbors and computes its
load in an “ideal” distribution. The ideal distribution based on (I-step) local information
is denoted by @(k) and is computed as follows:

G [wi(B)+ 5 wi(k) ©)

wi(k) =
Gt Lo PjeN" Cs all PjeN{

Again, the first term denotes the fraction of the total compute power in the set PiU Nim
associated with P7 and the second term is the total number of tasks in the set PiU Ni(l).
Note that 2-step, 3-step, etc., neighborhoods can also be defined based on how much
overhead seems reasonable in a given situation. Load balancing algorithms use global
(w(k)) or local (w(k)) load information based on the cost, availability and accuracy of
global and load information.

3 Load balancing algorithms
3.1 The Random Load Balancing Algorithm

The random strategy is based on a set of simple heuristics. A processor Pi decides to
send some of its tasks to another processor if the number of tasks assigned to it, w;(k),
is greater than a certain threshold number of tasks, w*;(k). The threshold is typically
based on the system load information at each processor. If global information is available,
w* is a function of w(k) (e.g., w*;(k) = 1.1 x W;(k)). The threshold may also be based
on local load information (e.g., w*;(k) = 1.2 x w;(k)). The number of tasks sent out is
moderated by the parameter o; a fraction « of the number of tasks over the threshold
value is sent to other processors. Thus, processor Pi sends out a(w;(k) — w*;(k)) tasks if
(w;(k) > w*i(k)). It chooses a destination processor randomly from the set of “neighbor”
processors as defined by the set Nf). Figure 1 summarizes the random load balancing
strategy.

An element of the matrix A;;(k), defined in section 2, representing processor partici-
pation in load balancing, is equal to 1 if ¢ = j and w;(k) > w*;(k). All other elements in
A are equal to zero. Processor Pi may receive tasks from each of its neighbor processors.
This can be expressed by defining the matrix M (k) such that an element of the matrix,



Each Processor Pi of p processors :
If (wi(k) 2 w*(k))
begin
Pick at random, a processor 7 € Ni(l}
Send a(w;(k) — w*;(k)) tasks to Pj;
end.

Figure 1: The Random Load Balancing Strategy

M;;(k) is o if Hy; is 1 and if Pi selects neighbor processor Pj as the recipient of its tasks.
Equation 2 can now be rewritten as:

’w,;(k -+ 1) = wi(k) — aAﬁ(k) (w,,(k) — w*i(k))
+ g Ay (k) My (k) (w;(k) — w*i()) (M
+  Aulk) — (k)

The diagonal elements of M(k), M;;(k), are set to —a indicating that a(w;(k) — w*;(k))
tasks are sent out of processor Pi. The above equation reduces to the vector form,

w(k + 1) = w(k) + [ME)]TAR)w(k) — w* (k)] + A(k) = (k) (8)

Equation 8 is similar to equation 4 with w(k) in the second term replaced by [w(k) —
w*(k)] (i.e., the task transfer due to load balancing is proportional to the difference
between the current task distribution and the threshold distribution). The selection of
w* and o determines the number of tasks transferred, and therefore, the balance achieved
and the cost for load balancing. In section 5, we use equation 8 along with performance
measure defined in section 4.2 to evaluate the load balancing scheme and to compute
optimal values of & and w* for the parallel N-body simulation example.

3.2 Diffusion Algorithm

The diffusion algorithm is analogous to the physical process of diffusion where tasks
flow between processors with excess tasks diffusing to neighboring processors that have
fewer tasks. Cybenko[6] showed that the diffusion algorithm applied to a system with
uneven load distribution and identical processors will eventually result in a balanced load
distribution. Each processor examines the task average of all its neighbor processors and
sends out tasks if its load is greater than a certain threshold, a function of the local load
information. It sends out tasks to all neighbors that have load less than the average
local load (appropriately weighted by the processor’s computing capability). This differs
from the previously described random algorithm where tasks were sent out to a random
neighbor. Figure 2 describes the diffusion algorithm in pseudocode form.



Bach processor Pi:
I (wi(k) > w*i(k))
begin
Compute ith row of M(k) such that:
If (j € N7 and (w;(k) < w*(k) x &)
My (k) oc @;(k) x @ — w;(k), and ¥ Mj;(k) = 1
Send M;;(k) x (wi(k) — w;(k)) tasks to Pj.
end.

Figure 2: Diffusion load balancing algorithm

Pi decides to send out tasks if its load, w;(k) is greater than the certain threshold,
w*;(k). The threshold is typically a function of the local load information, ;(k). There-
fore, a diagonal element of the processor participation matrix, A(k), is equal to one if the
corresponding processor load is greater than its task threshold; all other elements are zero
(i.e., Azj(k) =1if 7= 7 and w,-(k) > 'w*,(k))

If Pi decides to send out tasks, it sends all tasks above the local load average, (i.e.,
[wi(k) — w;(k)] tasks; @;(k) defined in Equation 6). The task destination is computed
based on the task distribution of its neighbors. Pi sends tasks to P4 if the load on Pj is
less than the local load average, @;(k), weighted appropriately by Pj’s computing ability
(t.e., if wi(k) < w;(k) x (C;/C;)). The number of tasks sent to Pj is proportional to the
difference, (w;(k) x (C;/C;) — w;(k)). The matrix M (k) is defined as follows:

M) o wi(k)x-gg—ij), (9)
and,
> Myk)=1 (10)
i#i

The diagonal elements of M, M;;(k), are all set to —1 because w(k) — w;(k) tasks are
transferred out of processor Pi. The load balancing equation 4 can be rewritten for the
diffusion load balancing algorithm as follows:

w(k+1) = w(k) + [ME)]TAR)[w(k) —w* (B)] + Mk) — p(k) (11)

The equation 11 is similar to equation 4 with w(k) in the second term replaced by [w(k)—
w*(k)]. The selection of w* determines the number of tasks transferred and therefore, the
balance achieved and the cost for load balancing. In section 5, we use equation 11 along
with performance measure defined in section 4.2 to evaluate the load balancing scheme
and to compute optimal values of w* for the parallel N-body simulation example.

10



If (w; (k) > w*i(k)) for any Psi,
begin
Find M{k) such that:
w(k) + [M (&) Twk) =~ o(k)
For all j # 1, if M;;(k) > 0,
Send M;;(k)w;(k) tasks to Pj.
end.

Figure 3: The Complete Redistribution Algorithm
3.3 Complete Redistribution

The complete redistribution algorithm presented here requires complete (global) state
information (i.e., w;(k), Vi). The algorithm is activated if the load on any of the processors
exceeds the threshold w*;(k). The condition reflects imbalance in the overall system. All
processors participate in load balancing. When the algorithm is activated, the processors
use a set of heuristics or an optimization algorithm to compute the load balancing matrix
M (k) that results in a uniform, balanced task distribution. The processors send out tasks
according to the corresponding entries in the M (k) matrix. The redistribution algorithm
is described in pseudocode form in Figure 3.

Since all processors participate in load balancing, the processor participation matrix,
A(k), is a diagonal matrix of ones if the load balancing algorithm is activated (i.e.,
Au(k) = 1 Vi, ifw;(k) > w*;(k) for some 7 and A;;(k) = 0if 7 # 7). The load balancing
matrix M (k) may be computed in several ways. For example, all tasks may be “pooled”
together on a master processor and then redistributed evenly using some static load
balancing algorithm. Alternately, the computation of M (k) can be formulated as an
optimization problem where optimum transfer of tasks is computed subject to certain
constraints. Each processor Pi executes the optimization algorithm to compute the ith
row of M (k) such that the norm

I (w(k) + [ME) (k) — @) | (12)

is minimized, subject to the constraints defined by the topology matrix H. Another
option is to run the optimization algorithm on a selected processor and communicate
the results to all the other processors. After computation of M(k), all processors would
participate and transfer tasks as required. In our implementation of the algorithm for the
N-body simulation application, the task information is communicated to processor P1
and P1 computes the M matrix using the orthogonal recursive bisection technique[8] and
communicates the appropriate rows of the matrix to the other processors. The processors
then participate in task transfer as required.

The load balancing model for redistribution algorithm is the same as that of equation
4 and is repeated below.

w(k + 1) = w(k) + [MET AR)w(k) + Ak) — p(k) (13)

11



The matrix M (k) is computed such that the term (12) is minimized.

4 Case Study: The N-body Problem

4.1 Parallel N-body Simulations

In this section a parallel implementation of the N-body problem is briefly described. The
load balancing model is applied to this problem and relative performance of the random,
diffusion and redistribution load balancing algorithms is evaluated and compared with the
experimental results. The model is thus validated and its applicability to a real application
demonstrated. Optimal load balancing parameters for the application are derived and the
general approach to obtaining such parameters is discussed.

N-body techniques study the evolution of a system of particles where there exists a
force (e.g., gravitational) between every pair of particles. Such techniques are widely
applied to a number of problems in astrophysics, fluid dynamics, etc. They require dy-
namically changing, non-uniform, intense computation and long range communication
and are therefore, good candidates for use as parallel computer benchmarks. Due to
their non-uniform, time varying computational requirements, some form of dynamic load
balancing is necessary to obtain good performance on parallel systems.

The N-body simulation discussed here is an implementation of the Barnes-Hut hi-
erarchical algorithm[3] for a two dimensional gravitational N-body problem. The input
consists of the mass, initial position and initial velocity of the particles distributed over
a finite physical domain. The simulation proceeds over a number of time-steps (or itera-
tions), each time-step computing the net force on every particle and updating its position
and other attributes. The simulation enables us to study the evolution of such a system
over time.

The computing platform consists of up to 16 Sun/Sparc workstations networked by a
standard ethernet. The application program is implemented under the PVM[16, 10] envi-
ronment. PVM is a programming environment that enables a set of networked computers
to be used as a single concurrent computing resource. The processors in our network are
of unequal computing abilifies.

In the parallel implementation of N-body simulation, the entire physical domain is
divided into smaller regions and each processor is allocated one such region. Each pro-
cessor is responsible for all the computation associated with the particles present in its
region. However, to compute the forces on a single particle, the position of every other
particle needs to be known and this involves exchange of information between every pair
of processors. The iterations in the N-body simulation algorithm are denoted by &. It is
assumed that the load balancing algorithms are invoked every iteration but are executed
only if the load imbalance exceeds the thresholds specified by the algorithms. The count
k in the load balancing model coincides with the iteration count. The computations as-
sociated with a single particle are referred to as a “task” with each processor having as
many tasks as there are particles allocated to it. The task distribution is denoted by the

12



On each processor, each iteration:
Begin
Exchange particle information with other processors.
Spawn off a task for every particle.
Each task:
Compute resultant force on particle.
Update position and velocity of particle.
If particle crosses processor boundary,

Send particle to appropriate processor
Receive particles (if any) from other processors.
Execute load balancing algorithm.

End.

Figure 4: N-Body Algorithm

vector w(k).

The initial distribution is load balanced, (i.e., the number of particles allocated to a
processor is proportional to its computing capabilities). At the beginning of each iteration,
processor Pi has a certain number of particles (and associated tasks) within its spatial
domain. The exchange of particle information between processors acts as an implicit
synchronization point at each iteration. Each task computes the resultant force on a
particle and updates its position and velocity. The processor then checks for its particles
that have crossed out of its space domain and transfers such particles to the appropriate
processors. This domain crossing causes an imbalance in the workload distribution among
processors with model variables A(k) and p(k) representing the system particle dynamics
at iteration %k in terms of their processor (and therefore spatial domain) association.
Estimates of A(k) and u(k) can be obtained by collecting relevant data on a test run of
the application or some scaled down version of the application. For the N-body simulation
example, there is a strong correlation between the number of tasks on a processor, w;(k),
and the number of tasks that leave the processor, y;(k). Typically, the tasks leaving a
processor are equally likely to go to any one of its adjacent processors.

Load balancing, in this case, consists of attempting to reassign spatial domains for
each processor so that the number of particles associated with the processors is balanced.
This effectively is a task transfer operation and is represented by the matrix M (k) in the
model. For the N-body application, only pairs of processors that are allocated adjacent
domains in space are allowed to exchange tasks. This is captured by appropriately defining
the topology matrix, H. The topology matrix constraints the load balancing activity and
the mm matrix.

The dynamics of the N-body simulations depend on the initial distribution of particles.
Our workload simulates the evolution of 1024 particles with an initial mass, velocity and
spatial distribution based on the Plummer’s model[15]. Plummer’s model is a standard
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Table 2: Performance Measure: Definitions

magz.iter | total number of iterations.

fl}(j?,u total execution time.

On P Processors.

Tg;l,i(k) time for application task execution

for iteration k, on Pi, for a p processor run.
i}(_’;,)i(k) time for load balancing on Pi

for iteration &, for a p processor execution
Ttask No. operations in a single application task.

method for generating initial conditions for the simulation of star clusters and results in
a non-uniform spatial distribution of the particles.

4.2 A Performance Measure

Load balancing algorithms maintain a balanced workload by transferring work from heav-
ily loaded processors to lightly loaded processors. However, the algorithms themselves in-
cur both communication and computation costs. Below we define a performance measure
that takes into account both the costs and benefits of load balancing. In doing this, it is
assumed that a good performance model of the application program is available.

The basic performance measure used is the total execution time, Tjpsq. Other per-
formance indicators such as processor utilization, message traffic, resource contention,
etc. can also be employed based on application and system requirements. For iterative
applications (such as the N-body simulations), the total execution time is determined for
a fixed number of iterations, maz_iter. Each iteration involves execution of the applica-
tion and the load balancing algorithm. The total execution time on the p processor set
{P1,P2,...Pp} is given by:

maz_iter

Tam = >, max[T3) (k) +T5i(k) ] (14)

A ppl,i
=1 all ©

The max term above results from processor synchronization at the end of each iteration.
Tg,’;l is a function of the computation and communication requirements of the applica-
tion and the task distribution at iteration k. 7j;(k) is a function of the load balancing
algorithm complexity and its computation and communication costs (e.g., a function of
number of tasks transferred).

The application is divided into a number of identical tasks, and the tasks are dis-
tributed over the available processors. Processor Pi is allocated w;(k) tasks in iteration k

and if fige is the compute and communication load associated with a single application
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task expressed in terms of number of operations?, processor Pi takes w;(k) X fizsr/C; time
to execute all tasks for iteration k. Incorporating this into equation 14, we have:

maox.-ifer
T = 2, maxfwi(k) X framn/Cs + TE5()] (15)
k=1
An ideal load balancing algorithm maintains a “perfectly balanced” task distribution
(where the number of tasks on any processor is proportional to its computing capability,
given by @(k)) and incurs zero cost. Since w;(k)/C; = w;(k)/Cj;, the total execution time
for ideal load balancing (with no overhead costs) can be written as:

maz-iler

Tt%?al,ideal = > Wi(k) X fum/Ch (16)
k=1

Often, in parallel implementations, the speedup obtained over a single processor is a useful
performance measure. The speedup is defined in the standard manner as:

Tt(olt)al on processor P1

Speedup(p) = 3 (17)

Ty o0 processors {P1, P2,... Pp}

Ideal speedup is calculated using Equation 17 with %), set equal to ’l}((ﬂ)al,idm from
Equation 16. The maximum speedup that can be obtained on a p—processor execution,
however, is limited by the ratio of the combined computing ability of the p processors to
that of processor P1. The maximum speedup on processors {P1, P2,...Pp} is given by:

Speedi e (p) = [ G / O 08)

Note that if all processors are of equal computing power, the maximum speedup is given
by speedup,,,,(p) = p. In evaluating the load balancing algorithms, a good performance
model for the application is necessary to evaluate fi.sr of equation 15, and with this
available, the total time and speedup can be established. A mean value performance
model for the N-body simulation application on a network of workstations was developed
in [9]. Measured and model predicted values were found to be within 10% of each other.

5 Model and Experimental Results

5.1 Model Validation

In this section validation results for the load balancing model (applied to the N-body
application) are presented. These studies contrast model derived performance data with
experimentally obtained data.

2 Fiasr includes the number of compute operations in each task and the number of operations “equiv-
alent” to the communication load of the task.
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Figure 5: Comparing Model and Measured Speedups
(Solid lines represent measured values and dashed lines represent model values.)
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The performance of load balancing algorithms is bounded by the two extreme cases
of “no balance” and “ideal balance”. The “no balance” case corresponds to application
execution without any load balancing. To evaluate the “no balance” performance the
model is solved (numerically) with the matrix M (k) in equation 4 set to zero, and (for the
experimental data) the application is run without load balancing. In an ideally balanced
system, the number of tasks allocated to a processor is proportional to its compute speed.
All the processors therefore spend almost equal time for each iteration. The performance
model of [9] is used in conjunction with equation 16 to obtain the execution time and
speedup associated with the ideal balance case.

For both the experiment and the model, the initial workload distribution is perfectly
balanced (i.e., the task distribution, w(0) = @(0)). Performance data is gathered for
the first 100 iterations with each data point in the graphs being the average of several
independent runs such that the result falls within a 95% confidence interval.

To validate the model, model and measured values for the total time, Ttg?ah over
different processor populations are obtained and the speedup (equation 17) calculated.
Figure ba shows the comparison for the random load balancing algorithm. No balance,
ideal balance and the random load balancing case (o = 0.5 and w*(k) = 1.1 x w(k)) are
shown. Figure 5b shows the comparison for the diffusion load balancing algorithm. The
figure shows speedup curves for no balance, ideal balance and for the diffusion algorithm
with w* = 1.1 x 1i(k). Figure 5¢c shows the comparison for the redistribution algorithm.
Again, no balance, ideal balance and redistribution case (with w*(k) = 1.3 * w(k)) are
shown.

The difference between predicted and measured speedups is well below 20% of the
measured value for all three algorithms. This level of error is reasonable considering that
the underlying system is a network of time shared workstations subject to non-uniform
computational loads and communication delays due to spurious network traffic. The
performance model used and the characterization of x4 and A also contribute to the error.
Although the comparison shown here is for only a few parameter values, similar results
apply for the entire range of parameters considered.

Figure 6 shows the model predicted speedups of the three load balancing algorithms
along with the speedups for the ideal and no balance cases. For the no balance case,
speedup increases up to about 8 processors and then decreases slightly. This is due to
the increased communications costs and poor balance when more processors are present.
Load balancing improves the performance with the speedup (with random load balanc-
ing) at 16 processors being within 25% of the ideal balance case. Balancing would have a
greater positive effect if the underlying interconnection network were faster and had less
contention. The speedup curves associated with the random and diffusion load balancing
algorithms are similar. The complete redistribution algorithm shows some performance
improvement for small processor systems (2 to 4 processors) but the high execution costs
causes performance degradation for larger systems. It performs worse than the no balance
case. The random strategy is generally better than the diffusion and the complete redis-
tribution algorithms and, at 16 processors, it is about 12% better than diffusion algorithm

17



G.5
' —— = maximum speedup
6.0 |- % — — 3 [deal balarice (modal) -
| @ —— - random ]
2« ~ 25 diffusion
5.5 ' » - - w redistribution ]
F o - - © neo load balance T 1
5.0 | ’___,-—‘ ]
——
"—‘/
4.5 - - - 2
~ A7 e
i =T =TT b
“.0 AT e C3
- LT T T T
g P
§- 3.5 T - o
- . - -dh
o
3.0 | /.:3_-:_’_.-—", e B — — TS, R R
’, Lt i
£ # T
25 | A i .
Flamd
L Pl
L
2.0 F Ig» T
L
1.5 —Lg" .
1.0 s L . L L . L N L L s L . L
k 2 3 4 & -] 7 8 9 10 11 12 13 14 15 16

p: No. of processora «.s-

Figure 6: Load balancing algorithm performance

and about 30% better than the complete redistribution algorithm. The performance of the
three load balancing algorithms reflects the trade-off between the load balance achieved
by the algorithms and the costs incurred in executing them.

The random strategy uses minimum state information (task averages) and involves
minimum processing for decision making (random destination selection). Also, the tasks
are sent to a single neighbor processor. Therefore, the execution costs for load balancing
are very small (typically about 1% of the application execution time per iteration in
the N-body simulation example). For the diffusion algorithm, each processor uses the
actual task distribution of its neighbors to compute the number of tasks that are sent to
each of its neighbors. The cost for acquiring state information, processing cost for task
migration decisions and the cost incurred in the actual transfer of these tasks to one or
more neighbors (as opposed to a single neighbor processor in the random strategy) are
much more for the diffusion algorithm than for the random strategy. Further, the load
balance achieved by the diffusion algorithm is only marginally better than the random
strategy. Due to this disparity in cost and performance, the random strategy yields a
better overall performance. The complete redistribution algorithm brings the system to a
near perfect balance every time it is activated. But, the costs incurred by the algorithm
are prohibitively high. The overall performance is therefore poorer than the random
and the diffusion algorithms, and sometimes poorer than the no load balance case as
well. The large communication costs incurred in a networked system like the one used in
our experiment may be the major cause for this performance degradation. The relative
performance of these algorithms may be different for different applications and computing
platforms. Our load balancing and performance models can be parameterized to evaluate
performance for any given system or application.
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5.2 Parameter Selection

Maximizing the parallel performance of a given application requires the selection of the
“best” load balancing algorithm and optimum algorithm parameters. Each load balancing
algorithm is quantitatively represented using model equation 4. We first identify the
control parameters for the algorithm and specify a range for each of these parameters.
The model is then numerically solved over the parameter ranges and the corresponding
performance evaluated. The set of parameters that yield the best performance for a given
system is chosen as the optimal set. The results of this process are presented.

The parameters that control the random algorithm are: «, the percentage of task
transfer and w*, the task threshold at which processors send out tasks. o ranges from 0
to 1. w*, typically a function of the ideal balance task distribution vector, @w(k), ranges
from w(k) to 1.5 x w(k). Both a and w* effect the number of tasks transferred and
therefore, the balance achieved and the load balancing costs. Figure 7 shows the effect
of these parameter values on the performance of the random algorithm for the eight
processor case. Performance for the 16-processor case is similar. The performance for
smaller systems (2 and 4 processors) is much less sensitive to parameter changes. For small
values of «, fewer tasks are transferred and the workload may remain unbalanced. Larger
values of ¢ result in higher task transfer and is more likely to balance the workload, but
incurs high load balancing costs, and, since tasks are transferred to a random processor,
may result in overloading the recipient processor causing performance degradation. The
performance improves with increasing ¢, reaches a maximum and further increases in «
results in poorer performance. For the eight processor case, the best & values are between
0.3 and 0.7.

The w* parameter also affects the number of tasks transferred and hence the balance
and the costs incurred. A higher w* causes fewer tasks to be transferred. For small
systems (not shown in Figure 7), this results in poorer performance (a speedup of 1.8
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Table 3: Diffusion Algorithm: Effect of w*
For 8-processor system

w} Speedup
1.0 x w; 2.87
1.1 X ; 3.08
1.2 x ; 3.26
1.3 x 1 3.21
1.4 x ; 3.11

Table 4: Complete Redistribution: Effect of w*
For 8-processor system

w* Speedup
1.0 x w 2.44
1.1 x @ 2.76
1.2 x @ 2.95
13 x @ 3.07
14 %@ 2.94
1.0 xw 2.83

on 2 processors for w* = 1.2 x & as opposed to 1.95 for w* = @). For larger systems,
the performance improves for higher threshold values. For example, the results for an
8 processor system (Figure 7) show that a threshold of 1.1 x @ performs better than
the w* = @ case. For 16 processor systems (not shown in the figure), a threshold of
1.3 X w yields the best performance. This is because a higher w* value eliminates system
instabilities (e.g., thrashing) and incurs lower load balancing costs as fewer tasks are
transferred and these effects are more prominent in large processor systems than in smaller
systems.

Similar effects of threshold parameter, w* can be seen in both diffusion and complete
redistribution algorithms. Table 3 shows the speedup obtained with diffusion algorithm for
different w* values for the 8-processor case. w*(k) = 1.2 x @(k) yields best performance.
The performance of complete redistribution algorithm for different values of w* is shown
in Table 4 (8 processor case). w*(k) = 1.3 x w(k) yields best performance. The choice
of w* reflects the tradeoff between the load balance achieved and the cost incurred in
load balancing. Since diffusion and redistribution algorithms incur higher execution costs
than the random algorithm, the optimal thresholds are also higher than for the random
algorithm.

Based on the results cited above, a set of optimal control parameters can be derived
for the algorithms and the given workload. Table 5 gives the optimal parameters to
be used for the N-body simulation example for the random, diffusion and redistribution
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Table 5: Optimal parameters: N-body simulation example

no balance Random Diffusion Redistribution ideal
n | (speedup) || o w* speedup w* speedup w* speedup || (speedup)
2 1.71 0.9 o 1.76 w 1.76 11 xw 1.90 1.94
4 2.54 0.7 17 2.92 1.1 x @ 2.61 1.2 x % 2.87 3.13
8 2.96 05 (11xw 3.75 1.2 %@ 3.25 13xw 3.07 3.91
16 2.99 05 12xw 3.95 1.2 x @ 3.27 14 x 2.75 4.41

load balancing algorithms. The corresponding performance is also given. The “best”
performance obtained with load balancing is compared with the no balance and the ideal
balance case. The random strategy results in speedups within 30% of the ideal balance
case. Redistribution algorithm performance is somewhat poorer but shows considerable
improvement over the no balance case.

6 Conclusions and Future Work

A matrix iterative model was developed to represent a range of sender-initiated load
balancing schemes. The model was parameterized to represent the random strategy, the
diffusion algorithm and the complete redistribution algorithm. An N-body simulation
example was used to validate the model for the three load balancing schemes with errors
between model and measured values less than 20%.

Based on the model and the performance measures defined, we proposed a method-
ology for choosing a near optimal load balancing algorithm and associated parameters
for a given application and multiprocessor system. This is important since the differ-
ence between optimal parameters and say, average parameter selections (e.g., e = 0.3,
w* = W) can be as much as 15%. For the N-body simulation example shown, the random
strategy outperforms both the diffusion (12% better) and the redistribution (30% better)
algorithms and its performance is within 25% of the ideal balance case.

Performance modeling tools for parallel applications and computing systems are im-
portant in the design of high performance computing systems. The work reported in this
paper is part of an ongoing research effort towards developing effective performance mod-
els that incorporate application requirements, computing platform characteristics, and
the impact of performance improvement support techniques like load balancing. The load
balancing model presented in this paper is used to evaluate various load balancing schemes
and to compare their performance. Such performance modeling and evaluation can be
used to guide the the algorithm designer in choosing the best algorithm and associated
parameters for a given application and platform.
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