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ABSTRACT OF THE THESIS

Essays on Margin Requirements, Endogenous Illiquidity, and Portfolio Choice

by

Yajun Wang

Doctor of Philosophy in Finance

Washington University in St. Louis, 2011

Professors Philip H. Dybvig and Hong Liu, Co-Chairs

This dissertation includes three essays. The first essay studies the effects of margin

requirements. The second essay studies how asymmetric information and imperfect

competition affect equilibrium illiquidity. The third essay derives new comparative

statics results for the distribution of portfolio payoffs.

Margin requirements have long been implemented in almost all financial markets

and are often used as an important regulatory tool for improving market conditions.

However, their economic impact beyond affecting default risk is still largely unknown.

The first essay proposes a tractable and flexible equilibrium model with and without

information asymmetry to examine how margin requirements on both long and short

stock positions affect asset prices, market volatility, market illiquidity and the welfare

of market participants. Most of my main results are obtained in closed-form. Contrary

to one of the main regulatory goals, I find that margin requirements can significantly

increase market volatility. In addition, margin requirements always increase market

illiquidity (as measured by price impact) and can lead to a greater return reversal

ii



exactly when they amplify market volatility. I also find that information asymmetry

may reverse or dampen the impact of margin requirements. Moreover, margin re-

quirements always make unconstrained investors worse off and can make constrained

investors better off. The model provides new testable implications.

The second essay proposes a novel and tractable equilibrium model to study how

information asymmetry, competition among market makers, and investors’ risk aver-

sion affect asset pricing, market illiquidity and welfare. The main innovation is that

market makers compete through choosing simultaneously quantities to buy at the bid

and to sell at the ask and accordingly market clears separately at the bid and at the

ask. Equilibrium bid and ask prices, bid and ask depths, trading volume and market

makers’ inventory levels are all derived in closed-form. Our model can help explain

some of the puzzling empirical findings, such as bid-ask spreads can be lower with

asymmetric information and can be positively correlated with trading volume. In ad-

dition, we find that information asymmetry may make informed investors worse off,

may reduce the welfare loss due to market power and may increase the competition

among market makers in equilibrium.

Hart(1975) proved the difficulty of deriving general comparative statics in port-

folio weights. Instead, in the third essay, we derive new comparative statics for the

distribution of payoffs: A is less risk averse than B iff A’s payoff is always distributed

as B’s payoff plus a non-negative random variable plus conditional-mean-zero noise.

If either agent has nonincreasing absolute risk aversion, the non-negative part can be

chosen to be constant. The main result also holds in some incomplete markets with

two assets or two-fund separation, and in multiple periods for a mixture of payoff

distributions over time (but not at every point in time).
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Chapter 1

So What Else Will Margin

Requirements Do?

“I guarantee you that if you want to get rid of the bubble, whatever it is, that [raising

margin requirements] will do it. My concern is that I am not sure what else it will

do.”

Greenspan, Sept. 24, 1996, Fed Policy Meeting

1.1 Introduction

In the wake of the 1929 Crash, the Securities Exchange Act of 1934 gave the Fed-

eral Reserve System the authority to regulate margin requirements.1 Since then,

all investors must maintain centrally mandated minimum collateral for any short or

1Before 1934, each broker/firm followed its own custom in setting initial and minimum margin
requirements.
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leveraged long positions.2 Proponents argued that margin requirements would re-

duce market volatility and make market participants better off.3 In 2000, margin

loan reached a historically high level of $278 billion (2.9% of market capitalization4)

and stock market experienced dramatic increase in volatility. This rekindled the de-

bate about using margin requirements as an instrument for reducing market volatil-

ity. More recently, in response to significant financial market volatility surrounding

the collapse of Lehman Brothers in September 2008, many countries put short-sale

restrictions (a special form of margin requirements) on some listed securities. Propo-

nents of short-sales restrictions in 2008 cited lowering volatility as a justification for

such restrictions. Clearly, more stringent margin requirements would reduce margin

credit, stock trading, and default risk.5 However, whether more stringent margin

requirements would indeed reduce market volatility and under what conditions this

might happen are still unknown.6 Even less is known about what else margin re-

quirements can do to the market. For example, how do margin requirements affect

2Specifically, Regulation T of the Federal Reserve Banks determines the initial margin require-
ment for stock positions undertaken through brokers-dealers. Currently, the initial margin require-
ment is 50% for a long equity position and 150% for a short equity position. For a long position,
this means that an investor can only borrow up to 50% of the market value of the stock. For a short
position, 102% of the short sale proceeds must typically be held in cash as noted by Geczy et al.
(2002) and Duffie et al. (2002). The remaining 48% needed to cover the margin requirement can be
held in other securities such as U.S. Treasury Bills.

3Moore (1966) summarizes the discussion that transpired in the congressional hearings on margin
authority.

4Hardouvelis and Peristiani (1990) find that, in Japan, where data on margin trading are collected
regularly, margin trading represents approximately 20 percent of trading volume despite the fact
that margin accounts are, as in the United States, less than 2 percent of the capitalized value of the
country’s stock market. Therefore, even though the size of margin debt represents a small fraction
of the market capitalization, volatility can be very sensitive to the presence of margin accounts.

5As noted by Hardouvelis and Theodossiou (2002), some may argue that there are many innova-
tions in the market (e.g., futures and options), which may help circumvent the regulatory restrictions.
These financial innovations are usually costly for many investors who are constrained by margin re-
quirements since, for the purpose of buying stocks, margin loan is easier and cheaper transaction
than any other type of loan.

6See, for example, Ferris and Chance (1988), Schwert (1989), Hsieh and Miller (1990), Hardouvelis
(1990), Seguin (1990), and Kupiec (1998).

2



market illiquidity? What is their impact on asset prices and the welfare of the market

participants?

In this paper, we propose a tractable and flexible equilibrium model with and

without asymmetric information to examine the impact of margin requirements (on

both long and short stock positions) on asset prices, market volatility, market illiq-

uidity and the welfare of market participants. We show that contrary to one of the

objectives of the regulators, margin requirements can significantly increase market

volatility. In addition, margin requirements always increase market illiquidity (as

measured by price impact) and can lead to a greater return reversal exactly when

they amplify market volatility. Furthermore, margin requirements can make all mar-

ket participants worse off even when they reduce market volatility. Interestingly,

margin requirements always make unconstrained investors worse off and can make

constrained investors better off.

More specifically, there are two types of investors, “liquidity demanders” and “liq-

uidity suppliers,” who can trade a risk-free asset and a risky asset (“stock”) on dates

0 and 1 and are both subject to margin requirements. Different from liquidity suppli-

ers, liquidity demanders are endowed with a non-traded asset (such as labor income)

whose payoff is correlated with the stock payoff.7 Therefore, liquidity demanders

have extra hedging demand for trading the stock due to the non-traded asset risk.

Under the assumption that stock price is equal to its conditional expected payoff, Di-

amond and Verrecchia (1987) show that binding short-sale constraints do not affect

7This is for expositional simplicity, in general, we only need that these two types of investors
have heterogenous endowment shocks. Endowment shocks have been modeled as a risk-sharing
motive to trade in various forms in market microstructure literature. See, for example, Grossman
and Stiglitz (1980), Bhattacharya and Spiegel (1991), Wang (1994), O’Hara (2003), Bai, Chang and
Wang (2006), and Vayanos and Wang (2010).
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asset price conditional on the same public information because rational uninformed

agents take the constraints into account. In contrast, we show that consistent with

Miller (1977), Harrison and Kreps (1978), and Scheinkman and Xiong (2003), binding

short margin requirements always increase stock price with and without asymmetric

information.8 The main difference from Diamond and Verrecchia (1987) is that in

our model all investors are risk averse and subject to short-sale constraints, while

in Diamond and Verrecchia (1987) risk neutral market makers are not subject to

short-sale constraints. Our findings of the impact of short margin requirements on

asset prices are strongly supported by extensive empirical evidence (e.g., Asquith,

Pathak and Ritter (2005), Boehme, Danielsen and Sorescu (2005), Chen, Hong and

Stein (2002), Jones and Lamont (2002) and Nagel (2005)). In addition, we show that

more stringent long margin requirements decrease the price. This is confirmed by

the empirical studies on the impact of long margin requirements on stock prices (e.g.,

Largay (1973), Eckardt and Rogoff (1976), Seguin (1990), Hardouvelis (1990), and

Hardouvelis and Peristiani (1992)).

We find that when margin requirements constrain liquidity demanders, they reduce

market volatility and lead to a smaller return reversal. However, when margin require-

ments constrain liquidity suppliers, they can significantly increase market volatility

and lead to a greater return reversal. Intuitively, binding long margin requirements

reduce purchases and thus drive price lower and binding short margin requirements

reduce sales and thus drive price higher. Therefore, if long margin requirements bind

when price is low and short margin requirements bind when price is high, then the

price fluctuation is amplified and market volatility is increased. Liquidity demanders

8For convenience, we refer to the constraints on borrowing (short selling) implied by the margin
requirements as the “long (short) margin requirement”.
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buy (sell) the stock when hedging demand is positive (negative) and drive the price

up (down). Thus, they buy when the stock price is high and sell when the stock price

is low. As the counterparty, liquidity suppliers sell when the stock price is high and

buy when the stock price is low. Therefore, if liquidity suppliers are constrained by

margin requirements, then market volatility is increased. Since in this case margin

requirements exacerbate the price fluctuation, the liquidity demanders’ trades on date

0 drive the price further away from intrinsic value, while the two coincide on date 1.

Therefore, margin requirements lead to a greater return reversal exactly when they

increase market volatility.

In addition, we show that with and without asymmetric information, even when

liquidity demanders are constrained by margin requirements, margin requirements

always increase market illiquidity as measured by the average price impact of an

exogenous additional trade. Intuitively, when margin requirements bind for some in-

vestors, the unconstrained investors have to absorb the entire additional trade and

thus require greater price change (in the right direction) to induce them to accom-

modate the extra trade.

Even when margin requirements do lower market volatility, we show that they can

make all market participants worse off, which suggests that volatility may not be a

good measure for welfare. More specifically, we show that binding margin require-

ments have an adverse price effect on unconstrained investors and have an adverse

quantity effect and a favorable price effect on constrained investors. The quantity

effect hurts constrained investors because they are restricted from trading the opti-

mal amount. The price effect hurts unconstrained investors and benefits constrained

investors. For example, short margin requirements reduce sales and thus increase

5



the equilibrium price. Therefore, short margin requirements hurt unconstrained in-

vestors who are buying and benefit constrained investors who are selling. Clearly,

margin requirements always make unconstrained investors worse off. Whether con-

strained investors are better or worse off depends on which effect dominates. If margin

requirements are stringent, then the quantity effect dominates, and therefore margin

requirements make constrained investors also worse off. If margin requirements are

not stringent, then the price effect dominates, and margin requirements make con-

strained investors better off. In some sense, margin requirements are like a cartel:

they protect constrained investors from competition with each other and allow con-

strained investors to enjoy favorable trading prices. In addition, we show that the

welfare gain of the constrained never exceeds the welfare loss of the unconstrained

and thus margin requirements always reduce the total welfare of the constrained and

the unconstrained.9

We further analyze how asymmetric information and default risk affect the impact

of margin requirements. All our main results still hold. Moreover, the presence of

asymmetric information can reverse, magnify or reduce the impact of margin require-

ments on market volatility.

Our model generates some policy implications. If regulators’ goal is to reduce

market volatility, then they may loosen long margin requirements and tighten short

margin requirements in declining markets. This would soften the downward pressure

on prices because less stringent long margin requirements encourage the technical

investors or more knowledgeable investors to enter the market and purchase stocks

and more stringent short margin requirements discourage the short sellers from selling

9The change in welfare depends on the choice of welfare function. A useful canonical choice of
welfare function is total surplus measured by taking the sum of certainty equivalent across agents.
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more shares of the stock when the prices are low, thus smoothing the decline in prices

and reducing volatility.10 On the other hand, volatility may be reduced if we tighten

long margin requirements and loosen short margin requirements in advancing markets.

In addition, our model implies that market volatility can also be reduced if we set less

stringent margin requirements for liquidity suppliers (e.g., market makers and hedge

funds) or encourage more participation of liquidity suppliers because it would be

more likely for liquidity demanders who are destabilizing investors to be constrained

by margin requirements. Since tightening margin requirements always reduce market

liquidity, policy makers need to balance any benefit from a lower volatility and the

cost of worse liquidity. If a higher volatility is not a big concern, then relaxing margin

requirements can increase market liquidity. Moreover, our paper also sheds lights on

how to determine the optimal margin requirements in practice. Margin requirements

should be determined by balancing the cost of restricting mutually beneficial trading

and the benefit of avoiding the default cost from potential systemic risk.

Our model also generates some unique testable empirical implications. (1) Market

volatility is reduced by long margin requirements that bind when the price is high and

by short margin requirements that bind when the price is low; (2) Market volatility is

increased by long margin requirements that bind when the price is low11 and by short

margin requirements that bind when the price is high; (3) If a stock is mainly owned

by liquidity suppliers ( e.g., market makers and hedge funds), then more stringent

10Seguin and Jarrell (1993) examine the relative return and volume behavior of marginable and
nonmarginable stocks during the October 1987 stock market crash, they find that the price declines
recorded by marginable securities were less severe (returns were 0.8% greater) than those recorded
by nonmarginable securities. Hardouvelis and Peristiani (1992) find that, in the Japanese stock
market, following a price decline, the authorities reduce long margin requirements and subsequently
prices rebound immediately.

11Moore (1966) finds that when the stock market has risen, margin loans are lower than if the stock
market had declined. This suggests that margin requirements may actually inhibit the stabilizing
influence of investors.
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margin requirements tend to reduce market volatility; (4) If a stock is mainly owned

by liquidity demanders ( e.g., portfolio insurers and individuals), then more stringent

margin requirements tend to increase market volatility. These unique implications

may explain why empirical analysis of the effect of margin requirements on market

volatility has been generally inconclusive. For example, a number of studies (e.g.,

Hardouvelis (1988, 1990), Hardouvelis and Peristinani (1989,1992)) find that margin

requirements indeed reduce stock price volatility. On the other hand, other studies

(e.g., Ferris and Chance (1988), Kupiec (1989), Schwert (1989), Hsieh and Miller

(1990)) find either no relationship or a positive relationship between margin require-

ments and market volatility. If we have data on stock ownership or data on which

stocks are binding at long or short margin requirements, then we can use a cross sec-

tional regression to study the relationship between margin requirements and market

volatility. Consistent with our prediction, Hardouvelis and Theodossiou (2002) find

that, following large declines in stock prices, more stringent long margin requirements

increase market volatility; and, following large increases in prices, more stringent long

margin requirements reduce market volatility.

On the theory side, Cuoco and Liu (2000) examine the impact of margin require-

ments on consumption choices and the cost of hedging contingent claims in a partial

equilibrium setting. Gârleanu and Pedersen (2010) derive a margin-adjusted asset

pricing model where securities’ required returns are characterized both by their betas

and their margins. Kupiec and Sharpe (1991) examine the impact of margin require-

ments on stock price volatility. They numerically illustrate that imposing binding

margin requirements can increase market volatility in one model and can decrease

it in a different model. In contrast, in this paper we show analytically that margin

8



requirements can increase or decrease market volatility without resorting to different

models. In addition, we also provide explicit sufficient conditions under which mar-

gin requirements increase or decrease market volatility. Our paper is also related to

Brunnermeier and Pedersen (2008), Rytchkokv (2009), and Huang and Wang (2010).

Brunnermeier and Pedersen (2008) show that market liquidity and funding liquidity

are mutually reinforcing. They emphasize the importance of availability of funding

to risk neutral speculators and they show that margins can increase in price volatility

when financiers who set the margin cannot distinguish between fundamental shocks

and liquidity shocks. In contrast to our paper, they do not study the effect of margin

requirements on market depth and they assume an exogenous autoregressive condi-

tional heteroscedasticity of fundamental volatility. Rytchkokv (2009) studies theoret-

ical implications of time variation in long margin requirements. In contrast to our

paper, he finds that binding long margin constraints always decrease return volatility

and may improve market liquidity. Huang and Wang (2010) study the impact of par-

ticipation costs of liquidity suppliers on market liquidity. They show that lowering

the cost of supplying liquidity (e.g., relaxation of ex post margin constraints) can

lower market liquidity. Our paper is also related to the literature on borrowing and

short-sale constraints. For example, Yuan (2005) studies crises and contagion in an

economy with information asymmetry and borrowing constraints. Bai, Chang and

Wang (2006) study the impact of short-sale constraints on asset prices and market

volatility assuming only liquidity demanders are subject to short-sale constraints. In

their model, short-sale constraints can bind only when prices are low and therefore

the stock price volatility is always reduced with short-sale constraints in the absence

of asymmetric information. In addition, neither Yuan (2005) nor Bai, Chang and

9



Wang (2006) has examined the effect of margin requirements on the welfare of mar-

ket participants.

The remainder of the paper is organized as follows. Section 1.2 describes the basic

model. Section 1.3 solves the equilibrium in the absence of asymmetric information,

analyzes the effects of margin requirement on market illiquidity and the level and

volatility of stock return, and conducts the welfare analysis for both types of investors.

Section 1.4 solves the equilibrium in the presence of asymmetric information and

analyzes the effects of margin requirements. Section 1.5 verifies our main results in

the presence of default risk. Section 1.6 concludes. All proofs are in the Appendix.

1.2 The Model

In a one period setting, a continuum of investors with a total population mass of 1

can trade a risk-free asset and a risky asset (“stock”) on date 0 to maximize their

expected constant absolute risk aversion (CARA) utility from the terminal wealth on

date 1. There is a zero net supply for the risk-free asset and the risk-free interest rate

is normalized to 0. The total supply of the stock is �̄ shares and the date 1 payoff of

each share is Ṽ = V̄ + F̃ + ũ, where V̄ is a constant representing the publicly known

expected payoff, F̃ is a zero-mean random variable that is realized on date 0 and

may be observed by some or all of the investors on date 0 and ũ is an independent

zero-mean random variable that no one can observe before date 1.

Every investor is endowed with �̄ shares of the stock. There are two types of

investors: liquidity demanders (LD) with a population mass of ! ∈ [0, 1], and liquidity

suppliers (LS) with a population mass of 1− !. In addition to the stock, on date 0 a
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liquidity demander is also endowed with X̃LD units of a non-traded risky asset with

per-unit payoff of M̃ on date 1. We allow ũ and M̃ to be correlated with a covariance

of �uM . A liquidity supplier does not have any endowment of the non-traded asset,

i.e., X̃LS = 0.12 Both liquidity demanders and liquidity suppliers are subject to

margin requirements when trading the stock.13 Specifically, let �i (i = LD,LS) be

the number of shares an investor holds in the stock. Then it must satisfy14

−cs�̄ ≤ �i − �̄ ≤ cb�̄, i = LD,LS (1.1)

where cs ≥ 1 and cb ≥ 0. In other words, investors who are subject to margin require-

ments cannot borrow to buy more than cb times their collateral (�̄) and cannot sell

more than cs times their collateral.15 We refer to the constraints on short selling (bor-

rowing) implied by the margin requirements as the short (long) margin requirements

and use cb (cs) measuring the stringency of long (short) margin requirements.

For tractability, we assume that F̃ , ũ, X̃LD and M̃ are all zero-mean normally

distributed random variables with variances �2
F , �

2
u, �

2
LD and �2

M , respectively. On

date 1, random variables ũ and M̃ are realized and become publicly known.

12Assuming all investors have the same stock endowment is without loss of generality because
what matters is the total endowment of each type. Assuming some investors do not have non-traded
assets is only for expositional simplicity, because X̃LD can be more or less than X̃LS (=0).

13As we assume a one-period setting, we do not incorporate maintenance margin requirements
in our model. Fortune (2003) has shown that maintenance margin requirements on equities rarely
come into play, only in the event of extreme price declines, and are therefore of minor relevance.

14As shown by Cuoco and Liu (2000), the standard margin requirement in the case of one risky
asset reduces to the form in (1.1). (1) is equivalent to say that margin requirements for long position

is �̄P
(cb+1)�̄P

= 1
cb+1 and margin requirements for short position is 1 + �̄P

(cs−1)�̄P
= cs

cs−1 , where P is

the equilibrium stock price at time 0, i.e., to buy (cb +1)�̄ shares of stock at price P on margin, we
need to put �̄P as collateral, to short sell (cs − 1)�̄ shares of stock at price P on margin, in addition
to the short-sale proceeds (cs − 1)�̄P , we also need to deposit �̄P as collateral. The current margin
requirement corresponds to cb = 1 and cs = 3 in our model.

15In contrast to Bai, Chang and Wang (2006), we assume all investors are subject to margin
requirements. As we show later, this modeling difference reverses some of the important findings in
Bai, Chang and Wang (2006).
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Let P be the equilibrium price on date 0 of the stock. In the sequel, we first consider

the symmetric information case where F̃ is observed by all investors on date 0 and

then examine the asymmetric information case where only the liquidity demanders

observe F̃ on date 0.16 The information set of liquidity demanders on date 0 is given

by ILD = {X̃LD, F̃ , P}, and that of liquidity suppliers is given by ILS = {F̃ , P} in

the symmetric information case and ILS = {P} in the asymmetric information case.

For i ∈ {LD,LS}, investor i’s problem is

max
�i

E[−e−�W̃i ∣Ii], (1.2)

subject to the budget constraint

W̃i = �̄P + �i(Ṽ − P ) + X̃iM̃, (1.3)

and the margin requirement (1.1), where � > 0 is the absolute risk-aversion parameter.

With the substitution of (3.2) into (3.1), the investor’s problem becomes equivalent

to

max
�i

−e��i(P−V̄ )+ 1
2
�2(�2i �

2
u+X̃2

i �
2
M+2�iX̃i�uM ) ×E[e−��iF̃ ∣Ii], (1.4)

subject to the margin requirement (1.1).

In this incomplete economy, we consider the following competitive equilibrium (i.e.,

all investors are price takers)

Definition 1.1 A competitive equilibrium (�LD, �LS, P ) is such that

16The case where only the liquidity suppliers observe F̃ reduces to symmetric information case
because their trading will fully reveal the private information.
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1. �i (i ∈ {LD,LS}) solves investor i’s problem (3.1); and

2. both the risk-free asset market and the stock market clear.

1.3 The Equilibrium under Symmetric Informa-

tion

In this section we examine the effect of margin requirements in the absence of in-

formation asymmetry. To this end, we divide this case into two subcases: with and

without margin requirements.

1.3.1 Symmetric Information without Margin Requirements

Let P ∗
s0 denote the equilibrium price under symmetric information and without margin

requirements. In this case, an investor’s information set is ILD = ILS = {F̃ , X̃LD, P
∗
s0}.17

Therefore, for i ∈ {LD,LS}, investor i’s objective function is equivalent to

max
�i

−��i(P
∗
s0 − V̄ − F̃ )− 1

2
�2(�2i �

2
u + X̃2

i �
2
M + 2�iX̃i�uM ). (1.5)

The following proposition provides the equilibrium price and equilibrium stock

holdings.18

17Even though liquidity suppliers do not know the liquidity demanders’ endowment of the non-
traded asset, they can infer it from the equilibrium price and F̃ .

18The proofs of all the analytical results in the text are relegated to the Appendix.
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Proposition 1.1 In the absence of asymmetric information and margin require-

ments, the date 0 equilibrium price of the stock is

P ∗
s0 = V̄ + F̃ − ��2

u�̄ + �!�2
uD̃, (1.6)

and the equilibrium stock holdings are

�∗LDs
= �̄ + (1− !)D̃, �∗LSs

= �̄ − !D̃,

where D̃ = −�uM X̃LD

�2
u

represents liquidity demanders’ hedging demand, i.e., D̃ is the

optimal number of shares a liquidity demander wants to buy on margin or sell to hedge

their risk from the non-traded asset and �uM

�2
u

is the conditional (on F̃ and X̃LD) beta

of the non-traded asset payoff (M̃) with respect to the stock payoff (Ṽ ).

Proposition 1.1 implies that the equilibrium price increases with the expected

payoff (V̄ + F̃ ), decreases with the volatility of the payoff and the supply of the

stock. In addition, liquidity demanders’ hedging demand also impacts the equilibrium

price. In particular, suppose liquidity demanders have a positive endowment of the

non-traded asset, i.e., X̃LD > 0. If the stock is negatively correlated with the non-

traded asset payoff, i.e., �uM < 0, then liquidity demanders have positive hedging

demand (D̃ > 0) and they are willing to buy at a higher price to induce liquidity

suppliers to sell more so that liquidity demanders can hedge their risk from the non-

traded asset and thus the equilibrium price gets higher than the case without non-

traded asset (X̃LD = 0). As it is well known in the literature, equilibrium price

decreases with risk aversion, because the demand for the stock decreases as risk

aversion increases. Interestingly, the equilibrium price can increase with the risk

aversion in our model. This is because for liquidity demanders the risk from the

14



non-traded asset may dominate the risk from the stock and thus they may be willing

to buy more shares of the stock to hedge the non-traded asset risk as they become

more risk averse.

We study market illiquidity using the price impact of some exogenous additional

trade (Kyle’s lambda). Suppose there is some extra exogenous trade ", the market

clearing condition becomes

!�∗LDs
+ (1− !)�∗LSs

+ " = �̄. (1.7)

The equilibrium price of the stock becomes

P ∗
s0 = F̃ + V̄ − ��2

u�̄ + �!�2
uD̃ + ��2

u", (1.8)

and the price impact without margin requirements is

�s =
∂P ∗

s0

∂"
= ��2

u. (1.9)

This implies that illiquidity increases in agents’ risk aversion and stock payoff

volatility.

1.3.2 Symmetric Information with Margin Requirements

Since both groups are subject to margin requirements, if the population weight of

liquidity demanders is very small, then the maximum number of shares that liquidity

demanders as a group can buy (sell) is always less than the maximum number of

shares that the liquidity suppliers as a group can sell (buy). For example, suppose

that there are 50 liquidity demanders and 200 liquidity suppliers, and each of them is
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endowed with 1 share of the stock. The current margin requirements imply that cb = 1

and cs = 3. Liquidity demanders as a group can buy on margin 50 shares and can sell

150 shares, while liquidity suppliers as a group can sell 600 shares and can buy on

margin 200 shares. Therefore, when the population weight of liquidity demanders is

very small, it is only possible for margin requirements to bind for liquidity demanders.

In general, depending on the population weight of liquidity demanders, there are four

different cases in equilibrium: margin requirements bind only for liquidity demanders,

margin requirements bind only for liquidity suppliers, only long margin requirements

can bind, and only short margin requirements can bind. Let P ∗
s denote the equilibrium

price under symmetric information and with margin requirements. Solving for the

equilibrium subject to the margin requirement (1.1), we have19

Proposition 1.2 1. if ! < min{ cb
cb+cs

, cs
cb+cs

}, then margin requirements can never

bind for liquidity suppliers but can bind for liquidity demanders, and the equi-

librium stock price is

P ∗
s =

⎧



⎨



⎩

V̄ + F̃ − ��2
u�̄ + �! cb

1−!
�2
u�̄ D̃ ≥ cb

1−!
�̄,

V̄ + F̃ − ��2
u�̄ + �!�2

uD̃ − cs
1−!

�̄ < D̃ < cb
1−!

�̄,

V̄ + F̃ − ��2
u�̄ − �! cs

1−!
�2
u�̄ D̃ ≤ − cs

1−!
�̄;

2. if ! > max{ cb
cb+cs

, cs
cb+cs

}, then margin requirements never bind for liquidity de-

manders but can bind for liquidity suppliers, and the equilibrium stock price

is

P ∗
s =

⎧



⎨



⎩

V̄ + F̃ − ��2
u�̄ + ��2

uD̃ − �(1− !) cs
!
�2
u�̄ D̃ ≥ cs

!
�̄,

V̄ + F̃ − ��2
u�̄ + �!�2

uD̃ − cb
!
�̄ < D̃ < cs

!
�̄,

V̄ + F̃ − ��2
u�̄ + ��2

uD̃ + �(1− !) cb
!
�2
u�̄ D̃ ≤ − cb

!
�̄;

19If ! = cb
cb+cs

or ! = cs
cb+cs

then one type of agents is binding in long margin requirements
while the other type of agents is binding in short margin requirements, the equilibrium price is
indeterminate. We assume that these two equalities are not true.
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Figure 1.1: Equilibrium Prices with and without Margin Requirements

The straight (resp. dashed) line denotes the equilibrium stock price with (resp. with-
out) margin requirements. The parameter values are V̄ = 3, �̄ = 1, �u = 0.4, �M =
0.4, � = 1, F̃ = 0.

3. if cb
cb+cs

< ! < cs
cb+cs

, then only long margin requirements can bind, and the

equilibrium stock price is

P ∗
s =

⎧



⎨



⎩

V̄ + F̃ − ��2
u�̄ + �! cb

1−!
�2
u�̄ D̃ ≥ cb

1−!
�̄,

V̄ + F̃ − ��2
u�̄ + �!�2

uD̃ − cb
!
�̄ < D̃ < cb

1−!
�̄,

V̄ + F̃ − ��2
u�̄ + ��2

uD̃ + �(1− !) cb
!
�2
u�̄ D̃ ≤ − cb

!
�̄;

4. if cs
cb+cs

< ! < cb
cb+cs

, then only short margin requirements can bind, and the

equilibrium stock price is

P ∗
s =

⎧



⎨



⎩

V̄ + F̃ − ��2
u�̄ + ��2

uD̃ − �(1− !) cs
!
�2
u�̄ D̃ ≥ cs

!
�̄,

V̄ + F̃ − ��2
u�̄ + �!�2

uD̃ − cs
1−!

�̄ < D̃ < cs
!
�̄,

V̄ + F̃ − ��2
u�̄ − ! cs

1−!
��2

u�̄ D̃ ≤ − cs
1−!

�̄.

Corollary 1.1 1. If long margin requirements are binding, then P ∗
s0 ≥ P ∗

s ;
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2. If short margin requirements are binding, then P ∗
s0 ≤ P ∗

s ;

3. If neither constraints are binding, then P ∗
s0 = P ∗

s .

To help understand the results in Proposition 1.2, we define �iLS = (1− !)ci�̄ and

�iLD = !ci�̄, for i ∈ {b, s}. Then by (1.1), �bLS represents the maximum number

of shares that liquidity suppliers as a group can buy-on-margin, whereas �sLD is the

maximum number of shares that the liquidity demanders as a group can sell. In

equilibrium the total number of shares bought on margin must be equal to the total

number of shares sold. So if �bLS > �sLD, then the long margin requirements never bind

for liquidity suppliers. Similarly if �sLS > �bLD, then the short margin requirements

never bind for liquidity suppliers. In this way, the comparisons of �iLS and �jLD, where

i, j ∈ {b, s} and i ∕= j, yield the four cases in this proposition.

The equilibrium prices reflect that when margin requirements are not binding then

the prices stay the same as the case without margin requirements. If long margin re-

quirements bind for an investor, then the equilibrium price decreases because the

demand is reduced. If short margin requirements bind for an investor, then the

equilibrium price increases because the sales are reduced. This finding implies that

in contrast to Diamond and Verrecchia (1987), imposing only short-sale constraints

would increase the expected equilibrium stock price. Diamond and Verrecchia (1987)

assume that all agents are risk neutral and the price is set to the conditional ex-

pectation of the payoff. Therefore, binding short-sale constraints do not affect asset

price conditional on the same public information because rational uninformed agents

take the constraints into account. In contrast, we show that consistent with Miller

(1977), Harrison and Kreps (1978), and Scheinkman and Xiong (2003), binding short
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margin requirements always increase stock price. The main difference from Diamond

and Verrecchia (1987) is that in our model all investors are risk averse and subject to

short-sale constraints, while in Diamond and Verrecchia (1987) risk neutral market

makers are not subject to short-sale constraints.

Figure 1.1 illustrates this comparison of the equilibrium stock prices with and with-

out margin requirements for Cases 1-4 in Proposition 1.2. In Case 1, the population

weight of liquidity demanders is small and thus margin requirements can bind only

for liquidity demanders. More specifically, when hedging demand D̃ ≤ −3.75, the

short margin requirements bind for liquidity demanders and when hedging demand

D̃ ≥ 1.25, the long margin requirements bind for liquidity demanders. In Case 2, the

population weight of liquidity suppliers is small and thus margin requirements can

bind only for liquidity suppliers. More specifically, when hedging demand D̃ ≤ −1.25,

the long margin requirements bind for liquidity suppliers and when hedging demand

D̃ ≥ 3.75, the short margin requirements bind for liquidity suppliers. In Case 3 (

Case 4 ), long (short) margin requirements are more stringent than short (long) mar-

gin requirements and therefore only long (short) margin requirements can bind for

either liquidity demanders or liquidity suppliers.

As we can see from Figure 1.1, any binding long margin requirements always

reduce the equilibrium stock price and any binding short margin requirements always

increase the equilibrium stock price. More importantly, margin requirements bind

for liquidity demanders and liquidity suppliers at different prices. Specifically, short

margin requirements bind for liquidity demanders when the equilibrium price is low

but they bind for liquidity suppliers when the equilibrium price is high. Conversely,

long margin requirements bind for liquidity demanders when the equilibrium price is
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high but they bind for liquidity suppliers when the equilibrium price is low. Therefore,

in our model margin requirements can bind both when stock price is high and when

it is low, depending on the hedging demand and the relative wealth of investors. This

finding is consistent with empirical evidence and is the critical driving force of the

result that margin requirements can increase or decrease return volatility, as we will

show in the next section. In contrast, short-sale constraints as modeled in Bai et. al.

(2006) can only bind when stock price is low.

1.3.3 The Impact of Margin Requirements on the Expected

Price, Return Volatility and Market Illiquidity under

Symmetric Information

Since conditional on F̃ and X̃LD, binding long margin requirements always decrease

stock price and binding short margin requirements always increase stock price, it is

interesting to investigate ex-ante (i.e., before the realizations of F̃ and X̃LD) whether

margin requirements increase or decrease the expected equilibrium price. To this

extent, we have the following result:

Proposition 1.3 The expected date 0 stock price with and without margin require-

ments have the following relation:

E[P ∗
s ] ≤ E[P ∗

s0] if and only if cb ≤ cs.

Corollary 1.2 E[P ∗
s ] increases in cb and decreases in cs.

Because long and short margin requirements have opposite effects on the equilib-

rium stock price, whether margin requirements increase or decrease the stock price
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depends on which constraint has a greater effect. By (1.1), if cb = cs, then it is equally

likely for long and short margin requirements to be binding. Therefore, the effects of

long and short margin requirements cancel out in expectation and the expected stock

price remains the same with and without margin requirements. When cb < (>)cs, the

long (short) margin requirements are more likely to be binding and therefore margin

requirements tend to decrease (increase) the equilibrium stock price.

The result of Corollary 1.2 is also driven by the opposite effects of long and short

margin requirements. The result that E[P ∗
s ] increases in cb is consistent with ear-

lier empirical studies concentrated on the effect of long margin requirements on the

level of the market prices. For example, Largay (1973), Eckardt and Rogoff (1976),

Hardouvelis (1990), and Hardouvelis and Peristiani (1992) find that less stringent long

margin requirements (larger cb) tend to increase stock prices. The result that E[P ∗
s ]

decreases in cs is consistent with most empirical studies which focus on the impact

of short-sale constraints on stock prices. For example, Asquith, Pathak and Ritter

(2005), Boehme, Danielsen and Sorescu (2005), Chen, Hong and Stein (2002), Jones

and Lamont (2002) and Nagel (2005) find that more stringent short-sale constraints

(smaller cs) tend to increase stock prices.

Next we examine the effects of margin requirements on the volatility of stock

returns. In our set-up, we measure stock returns by the price differences. Then we

have:

Proposition 1.4 1. If ! < min{ cb
cb+cs

, cs
cb+cs

}, then margin requirements decrease

the volatility of stock returns on both date 0 and date 1, i.e.,

V ar[P ∗
s −P ∗

s,−1] < V ar[P ∗
s0−P ∗

s0,−1] and V ar[Ṽ−P ∗
s ] < V ar[Ṽ −P ∗

s0], (1.10)
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which implies that margin requirements lead to a smaller return reversal (less

negative stock return auto-covariance), i.e.,

Cov(P ∗
s0 − P ∗

s0,−1, Ṽ − P ∗
s0) < Cov(P ∗

s − P ∗
s,−1, Ṽ − P ∗

s ) < 0, (1.11)

where P ∗
s,−1 and P ∗

s0,−1 denote the equilibrium stock prices with and without

margin requirements before date 0, which are constants.20

2. If ! > max{ cb
cb+cs

, cs
cb+cs

}, then margin requirements increase the volatility of

stock returns on both date 0 and date 1, which implies that margin requirements

lead to a greater return reversal (more negative stock return auto-covariance).21

3. If min{ cb
cb+cs

, cs
cb+cs

} < ! < max{ cb
cb+cs

, cs
cb+cs

}, then margin requirements can

increase or decrease market volatility.

As illustrated in Figure 1.1, in Case 1, margin requirements can only bind for

liquidity demanders. From this Figure, we can see that, from left to right, P ∗
s −E[P ∗

s −

P ∗
s0] crosses P

∗
s0 only once22 and from above. This implies that P ∗

s −E[P ∗
s −P ∗

s0] second-

order stochastically dominates P ∗
s0 and therefore V ar[P ∗

s −P ∗
s,−1] < V ar[P ∗

s0−P ∗
s0,−1].

More specifically, when liquidity demanders have positive hedging demand, to hedge

their non-traded asset risk, liquidity demanders want to buy more shares of the stock.

The positive hedging demand drives up the stock price. When the positive hedging

20More specifically, assuming agents are identical on date -1, and a fraction ! of agents receive
X̃LD units of non-traded risky asset on date 0, we solved the equilibrium prices on date -1 with and
without margin requirements in closed-form. We find that the equilibrium price on date -1 decreases
in the volatility of the amount of non-traded asset �2

LD, risk aversion �, the absolute value of the
covariance between the payoff of stock and non-traded risky asset ∣�uM ∣, the volatility of stock payoff
�u, the volatility of the non-traded risky asset payoff �M , and the proportion of liquidity demanders
!.

21The auto-covariance is negative because the liquidity demanders’ trades on date 0 drive the price
away from the stock’s intrinsic value (the equilibrium price when X̃LD = 0), while the two coincide
on date 1.

22If E[P ∗

s ] = E[P ∗

s0], then P ∗

s cross P ∗

s0 over a line from above, we can pick any point on the line.
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demand is very large, long margin requirements bind for liquidity demanders when

stock price is high. On the other hand, if liquidity demanders have negative hedging

demand, and they want to sell more shares of the stock to hedge their risk. The

negative hedging demand drives down the stock price. When the negative hedging

demand is very large, short margin requirements bind for liquidity demanders when

stock price is low. Therefore, in this Scenario, the long margin requirements bind

and thus reduce price when the stock price is high and the short margin requirements

bind and thus increase price when the stock price is low. Margin requirements reduce

the overall fluctuation of the stock price and thus decrease market volatilities.

Conversely, in Case 2, margin requirements can only bind for liquidity suppliers.

From this Figure, we can see that, from left to right, P ∗
s −E[P ∗

s −P ∗
s0] crosses P

∗
s0 only

once and from below. This implies that P ∗
s −E[P ∗

s −P ∗
s0] is second-order stochastically

dominated by P ∗
s0 and therefore V ar[P ∗

s −P ∗
s,−1] > V ar[P ∗

s0−P ∗
s0,−1]. More specifically,

liquidity demanders’ positive hedging demand drives up the stock price, and when

liquidity demanders buy a lot to hedge their risk, the short margin requirements can

bind for liquidity suppliers (who are selling) when the stock price is high. On the

other hand, the negative hedging demand drives down the stock price, and when

liquidity demanders sell a lot to hedge their risk, the long margin requirements can

bind for liquidity suppliers (who are buying) when the price is low. Therefore, in

this Scenario, the long margin requirements bind and thus reduce price when the

stock price is low and the short margin requirements bind and thus increase price

when the stock price is high. Contrary to one of the stated regulatory goals, margin

requirements can exacerbate the overall fluctuation of the stock price and thus increase

market volatilities.
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In Case 3, either the long margin requirements or the short margin requirements

bind both when stock price is low and when stock price is high (for different investors).

Therefore margin requirements have opposite effects on price volatility depending on

whether they bind in the high price region or in the low price region. Thus the

net effect of margin requirements in this case depends on the distribution of the

equilibrium price which is in turn determined by the distribution of the hedging

demand.

In our model, liquidity demanders are destabilizing traders since they are buying

when price is high and they are selling when price is low. Therefore, when margin

requirements bind for liquidity demanders, market volatility is reduced. Liquidity

suppliers in our model are like those technical investors or knowledgeable investors

who take positions that stabilize the market. They may buy on margin when they

think the prices are too low and they may short-sell when they think the prices are

too high. When they are constrained by margin requirements, market volatility is

increased.

In contrast, Bai, Chang and Wang (2006) show that short-sale constraints can

bind only when prices are low and the stock price volatility is always reduced with

short-sale constraints in the absence of asymmetric information. The main reason for

this difference is that we assume both liquidity demanders and liquidity suppliers are

subject to short margin requirements, while they assume only liquidity demanders are

subject to short-sale constraints. As we have shown that short margin requirements

have opposite impact on market volatility when they are binding for different type

of investors. Kupiec and Sharpe (1991) numerically illustrate that imposing binding

margin requirements can increase market volatility in one model and can decrease
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it in a different model. In contrast, in this paper we show analytically that margin

requirements can increase or decrease market volatility without resorting to different

models. In addition, we derive sufficient conditions under which margin requirements

increase or decrease market volatility. Specifically, if ! < min{ cb
cb+cs

, cs
cb+cs

}, then

margin requirements decrease market volatility. If ! > max{ cb
cb+cs

, cs
cb+cs

}, then margin

requirements increase market volatility.

Our finding may explain why empirical studies which focus on the impact of mar-

gin requirements on market volatility have been generally inconclusive (e.g., Ferris

and Chance (1988), Kupiec (1989,1998), Schwert (1989), Hsieh and Miller (1990),

Hardouvelis (1988, 1990)). In addition, our model generates some unique empirically

testable implications. For example, if we have data on which stocks are binding on

short margin requirements and we divide stocks into two groups: one with short mar-

gin requirements more likely binding at high prices and the other more likely binding

at low prices, then the volatilities of the stock returns in the first group are increased

while those in the second are decreased. Consistent with our prediction, Hardou-

velis and Theodossiou (2002) find that, following large declines in stock prices, more

stringent long margin requirements increase market volatility; and, following large

increases in prices, more stringent long margin requirements reduce market volatility.

Alternatively, our model predicts that, if a stock is mainly owned by liquidity suppliers

(e.g., market makers and hedge funds), then more stringent margin requirements tend

to reduce market volatility; and if a stock is mainly owned by liquidity demanders

(e.g., portfolio insurers and individuals), then more stringent margin requirements

tend to increase market volatility.
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If regulators’ goal is to reduce market volatility, then they may loosen long margin

requirements and tighten short margin requirements in declining markets. This would

soften the downward pressure on prices because less stringent long margin require-

ments encourage the technical investors or more knowledgable investors to enter the

market and purchase stocks and more stringent short margin requirements discourage

the short sellers to sell more shares of the stock when the prices are low, thus smooth-

ing the decline in prices and reducing volatility. On the other hand, volatility may

be reduced if we tighten long margin requirements and loosen short margin require-

ments in advancing markets. This would encourage short sellers to sell more shares

of the stock when the prices are high and discourage investors to buy more shares of

the stock, thus dampening the upward pressure on prices and reducing volatility. In

addition, our model implies that market volatility can also be reduced if we set less

stringent margin requirements for liquidity suppliers (e.g., market makers and hedge

funds) or encourage more participants of liquidity suppliers because it would be more

likely for liquidity demanders who are destabilizing investors to be constrained by

margin requirements.

We now examine how margin requirements affect market liquidity using the price

impact of some exogenous additional trade on date 0. We define Kyle’s lambda with

margin requirements, �m
s as the average price impact of per unit of the additional

trade, ". We have
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Proposition 1.5 1. Price impact with margin requirements �m
s =

⎧











⎨











⎩

��2
u

1−!

(

1 + !N(− cs
1−! �̄ +

"
1−! )− !N( cb

1−! �̄ +
"

1−! )
)

! < min{ cb
cb+cs

, cs
cb+cs

},
��2

u

!

(

1 + (1− !)N(− cb
! �̄ − "

! )− (1− !)N( cs! �̄ − "
! )
)

! > max{ cb
cb+cs

, cs
cb+cs

},
��2

u

!(1−!)

(

! − !2N( cb
1−! �̄ +

"
1−! ) + (1− !)2N(− cb

! �̄ − "
! )
)

cb
cb+cs

< ! < cs
cb+cs

,

��2
u

!(1−!)

(

1− ! + !2N(− cs
1−! �̄ +

"
1−! )− (1− !)2N( cs! �̄ − "

! )
)

cs
cb+cs

< ! < cb
cb+cs

;

2. �m
s > �s;

3. �m
s decreases in cs and cb.

Proposition 1.5 implies that margin requirements always increase market illiquidity

measured by price impact of per unit of some extra exogenous trade. Intuitively, when

some investors are constrained by margin requirements, the unconstrained investors

need to absorb all the extra net demand. Therefore, unconstrained investors require

greater price change (in the right direction) to induce them to accommodate the extra

trade. In addition, Proposition 1.5 also implies that market liquidity decreases when

margin requirements become more stringent (smaller cb and cs). Since tightening

margin requirements always reduce market liquidity, policy makers need to balance

any benefit from a possible lower volatility (when margin requirements constrain

liquidity demanders) and cost of worse liquidity.

1.3.4 Welfare Analysis under Symmetric Information

In this subsection, we analyze how margin requirements affect market participants’

welfare by comparing the expected utilities investors achieve in equilibrium with and

without margin requirements. We first define the “stringency” of margin requirements

as below:
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Figure 1.2: Certainty Equivalent Wealth Gain/Loss with Margin Requirements

The dashed (resp. thin solid) curve denotes the certainty equivalent wealth gain/loss
with margin requirements of liquidity demanders (resp. liquidity suppliers) and the
thick solid curve denotes the change in total surplus with margin requirements. The
parameter values are V̄ = 3, �̄ = 1, �u = 0.4, �M = 0.4, � = 1, F̃ = 0.

Definition 1.2 For any given hedging demand D̃, margin requirements are stringent

for liquidity demanders if

cb <
(1− w)2D̃

(1 + w)�̄
or cs < −(1− w)2D̃

(1 + w)�̄
;

margin requirements are stringent for liquidity suppliers if

cb < − !2D̃

(2− !)�̄
or cs <

!2D̃

(2− w)�̄
.

Proposition 1.6 1. Binding margin requirements always hurt the unconstrained

investors;

2. Stringent margin requirements hurt the constrained investors;
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3. Binding but not stringent margin requirements benefit constrained investors.

Binding margin requirements have a price effect on the unconstrained investors

and have two opposite effects on the constrained investors, a quantity effect and a

price effect. The quantity effect hurts the constrained investors because they are

restricted from trading the optimal amount. The price effect hurts unconstrained

investors and benefits constrained investors. This is because margin requirements

always move the price in favor of the constrained investors. For example, short

margin requirements reduce sales and thus increase the equilibrium price. Therefore

they hurt unconstrained investors who are buying and benefit constrained investors

who are selling. Thus, somewhat surprisingly, binding margin requirements always

make unconstrained investors worse off and may make the constrained investors better

off. Whether constrained investors are better or worse off depends on which effect

dominates. If margin requirements are stringent, then the quantity effect dominates,

and therefore constrained investors are also worse off. If margin requirements are not

stringent, then the price effect may dominate, and thus constrained investors may be

better off. In some sense, margin requirements are like a cartel: constrained investors

are protected from competition with each other and thus enjoy better trading prices.

Figure 1.2 illustrates the certainty equivalent wealth gain/loss with margin require-

ments as a function of hedging demand D̃ for liquidity demanders (dashed curve) and

liquidity suppliers (thin solid curve) for Cases 1-4 in Proposition 1.2.23 As we can see

from the graph, in Case 1, liquidity suppliers are never better off. When hedging de-

mand is large (for D̃ > 1.9, or D̃ < −5.6), liquidity demanders are also worse off. This

23The certainty equivalent wealth is defined to be the extra initial wealth required for an investor
to be indifferent between facing margin requirements or not.
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figure also shows that liquidity demanders can be better off with margin requirements

if and only if the hedging demand is neither too small nor too large. Intuitively, if the

hedging demand is too small, then margin requirements do not bind. As the hedging

demand increases to a certain level, margin requirements start to bind. At this point

the price effect dominates and therefore liquidity demanders are better off. As we

discussed before, when margin requirements reduce too much hedging, the quantity

effect dominates and therefore liquidity demanders become worse off. In contrast, in

Case 2, liquidity demanders are never better off. When hedging demand is large (for

D̃ > 5.6, or D̃ < −1.9), liquidity suppliers are also worse off. Liquidity suppliers are

better off if D̃ is neither too small nor too large.

Theorem 1 Under symmetric information, imposition of margin requirements is

Pareto-dominated by some lump-sum transfer from unconstrained investors to con-

strained investors.

Corollary 1.3 Under symmetric information, any binding margin requirements re-

duce market participants’ total welfare measured using certainty equivalents.

Intuitively, when margin requirements are binding, the marginal rates of substitu-

tion differ across investors in equilibrium, which implies that the equilibrium is Pareto

suboptimal. Therefore there exists a redistribution of wealth that Pareto-dominates

the imposition of margin requirements. In the case when constrained investors are

better off with margin requirements, this implies that the welfare gain (measured

by certainty equivalent wealth increase) of the constrained investors is insufficient to

offset the welfare loss of the unconstrained investors. In this sense, the imposition of
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margin requirements is always socially suboptimal. The thick solid curve in Figure

1.2 illustrates the change of total welfare with margin requirements measured using

certainty equivalents. As we can see from the graph, any binding margin requirements

always reduce the total welfare.

1.4 The Equilibrium under Asymmetric Informa-

tion

We now consider the impact of information asymmetry on the above analysis. Specif-

ically, we assume that F̃ and X̃LD are private information to the liquidity demanders

who trade for both risk-sharing and private information.24 We first look at the bench-

mark case, the equilibrium without margin requirements.

1.4.1 Asymmetric Information without Margin Requirements

To understand how equilibrium price may depend on the state variables, it is helpful

to first derive the optimal demand of the liquidity demanders which is the same as in

the symmetric information case,

�∗LDa
=

V̄ + F̃ − ��uMX̃LD − P ∗
a0

��2
u

. (1.12)

Other market participants can only observe �∗LDa
and accordingly the equilibrium price

can only depend on S̃ ≡ 1
2

(

F̃ − ��uMX̃LD

)

. Thus we conjecture that there exists an

equilibrium where the equilibrium stock price depends on F̃ and X̃LD only through S̃.

24The case where the liquidity suppliers are informed is reducible to the case with symmetric
information because the liquidity demanders can fully back out the private information from the
market price.
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Let P ∗
a0 denote the equilibrium price with asymmetric information but without margin

requirements. The information sets for liquidity demanders and liquidity suppliers

are respectively ILD = {F̃ , X̃LD, P
∗
a0} and ILS = {P ∗

a0}. We have

Proposition 1.7 With asymmetric information but without margin requirements,

there exists an equilibrium where the equilibrium price is

P ∗
a0 = V̄ + A2S̃ − B2�̄, (1.13)

The liquidity demanders and liquidity suppliers’ optimal stock demands are

�∗LDa
= �̄ + (1− !)a1(S̃ +

1

2
��2

F �̄), �∗LSa
= �̄ − !a1(S̃ +

1

2
��2

F �̄), (1.14)

where A2 > 0, B2 > 0, a1 > 0 and b1 > 1 are constants defined in (1.36)-(1.37) in

the Appendix.

Since A2 > 0 and B2 > 0, the equilibrium price increases with the combined

demand of liquidity demanders and decreases with the stock supply. In addition, while

liquidity demanders’ optimal stock holding increases with S̃, the liquidity suppliers’

demand decreases with S̃ because of the increase in the equilibrium price.

As in the symmetric information case, we study market illiquidity using the price

impact of some exogenous additional trade (Kyle’s lambda). Suppose there is some

extra exogenous trade ", the market clearing condition becomes

!�∗LDa
+ (1− !)�∗LSa

+ " = �̄. (1.15)
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The market lambda without margin requirements in the presence of asymmetric in-

formation,

�a =
P ∗
a0

∂"
= ��2

u

⎛

⎝1 +
1− !

! +
(

1
�2�2

uM�2
LD

+ 1
�2
F

)

�2
u

⎞

⎠ . (1.16)

This implies that �a increases in �2
u, �

2
F , �uM , �LD, and �, and decreases in !.

Next we examine the effect of information asymmetry on the expected equilibrium

price. We have:

Proposition 1.8 Asymmetric information reduces the expected equilibrium stock price,

i.e., E[P ∗
a0] ≤ E[P ∗

s0].

The presence of asymmetric information decreases the expected stock price because

investors require a higher risk premium for trading the stock.

Letting � = D̃
F̃+��2

F �̄
, i.e., � is the ratio between liquidity demanders’ trading due

to hedging demand to the trading due to private information. We have:

Proposition 1.9 In the absence of margin requirements, liquidity demanders are

worse off in the presence of asymmetric information if

� > C1 or � < −C2, (1.17)

where C1 > 0 and C2 > 0 are constants and defined in (1.39) in Appendix.25

25Clearly, liquidity suppliers can also be worse off in the presence of asymmetric information in
certain states.
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To understand the intuition behind Proposition 1.9, we consider those states when

F̃ > −��2
F �̄. From Propositions 1.1 and 1.7, for any F̃ , if � > C1, i.e., the hedging

demand is very large, then the equilibrium stock price is higher with asymmetric

information. This is because, observing a large combined demand, liquidity suppliers

rationally attribute some of the trade due to hedging demand to the trade due to

private information and therefore they are willing to sell the stock only at a higher

price, i.e., P ∗
a0 > P ∗

s0. Consequently, liquidity demanders will optimally buy less shares

of the stock due to the higher stock price and they are worse off with asymmetric

information. Conversely, if � < −C2, then liquidity demanders are worse off with

asymmetric information because they sell less shares than in the case with symmetric

information due to the lower stock price.

Proposition 1.10 Asymmetric information increases the variance of the stock re-

turn on date 1 and the total variance of the stock returns on date 0 and 1, i.e.,

V ar[Ṽ − P ∗
a0] > V ar[Ṽ − P ∗

s0],

V ar[P ∗
a0 − P ∗

a0,−1] + V ar[Ṽ − P ∗
a0] > V ar[P ∗

s0 − P ∗
s0,−1] + V ar[Ṽ − P ∗

s0],

which implies that asymmetric information leads to a greater return reversal (more

negative stock return auto-covariance), i.e., Cov(P ∗
a0 − P ∗

a0,−1, Ṽ − P ∗
a0) < Cov(P ∗

s0 −

P ∗
s0,−1, Ṽ − P ∗

s0) < 0, where P ∗
a0,−1 and P ∗

s0,−1 denote the equilibrium stock prices with

and without asymmetric information before date 0, which are constants.

Because liquidity suppliers can only observe S̃ in the presence of asymmetric in-

formation, they rationally attribute some hedging motivated trades to information

motivated ones and vise versa. Therefore, comparing to the case with symmetric
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information, for a given shock in F̃ , the equilibrium return on date 0, (P ∗
a0 − P ∗

a0,−1)

changes less, and for a given shock in X̃LD, the equilibrium return on date 0 changes

more. This implies that the date 0 return is less sensitive to F̃ and more sensitive to

X̃LD and therefore the date 0 return volatility may increase or decrease with asym-

metric information, depending on which effect dominates. Since the date 1 stock price

is equal to Ṽ = V̄ + F̃ + ũ, the date 1 return Ṽ −P ∗
a0 is more sensitive to both F̃ and

X̃LD and therefore the date 1 return volatility always increases with asymmetric in-

formation. The total variance also increases with asymmetric information because the

volatility reduction due to the decreased sensitivity of date 0 return to F̃ is dominated

by the sum of the volatility increase due to the increased sensitivity of date 0 and date

1 returns to X̃LD and the increased sensitivity of date 1 return to F̃ . This is similar

to the main result of Wang (1993), which uses a dynamic asset-pricing model under

asymmetric information and also finds that information asymmetry among investors

can increase price volatility and negative auto-covariance in returns.

1.4.2 Asymmetric Information with Margin Requirements

In this subsection, we examine the effect of margin requirements in the presence of

asymmetric information. In the presence of margin requirements, it is easy to show

that a liquidity demander’s optimal stock demand is:

�∗LDa
= min

{

max

[

V̄ + 2S̃ − P ∗
a

��2
u

,−(cs − 1)�̄

]

, (cb + 1)�̄

}

, (1.18)

and a liquidity supplier’s optimal stock demand is:

�∗LSa
= min

⎧

⎨

⎩

max

⎡

⎣

V̄ + E[F̃ ∣S̃]− P ∗
a

�
(

�2
u + V ar[F̃ ∣S̃]

) ,−(cs − 1)�̄

⎤

⎦ , (cb + 1)�̄

⎫

⎬

⎭

, (1.19)
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where P ∗
a denotes the equilibrium stock price with asymmetric information and mar-

gin requirements. When liquidity demanders are constrained, there may be multiple

equilibria, in this section, we focus on one type of equilibrium,26 under which the

equilibrium stock price is an affine function of S̃, as in the case without margin

requirements.27

We summarize this equilibrium in the following proposition:

Proposition 1.11 In the presence of asymmetric information, there are four cases:

(1) if ! < min{ cb
cb+cs

, cs
cb+cs

}, then margin requirements can never bind for liquidity

suppliers but can bind for liquidity demanders, and the equilibrium stock price is

P ∗
a =

⎧



⎨



⎩

V̄ + A1S̃ − B1�̄ +
!cb
1−!

B1�̄ S̃ ≥ S∗
LD1,

V̄ + A2S̃ − B2�̄ S∗
LD2 < S̃ < S∗

LD1,

V̄ + A1S̃ − B1�̄ − !cs
1−!

B1�̄ S̃ ≤ S∗
LD2;

(2) if ! > max{ cb
cb+cs

, cs
cb+cs

}, then margin requirements can never bind for liquidity

demanders but can bind for liquidity suppliers, and the equilibrium stock price is

P ∗
a =

⎧



⎨



⎩

V̄ + 2S̃ − ��2
u�̄ − (1−!)cs

!
��2

u�̄ S̃ ≥ S∗
LS1,

V̄ + A2S̃ − B2�̄ S∗
LS2 < S̃ < S∗

LS1,

V̄ + 2S̃ − ��2
u�̄ +

(1−!)cb
!

��2
u�̄ S̃ ≤ S∗

LS2;

26There may exist another type of equilibrium, under which the equilibrium stock price is an affine
function of S̃ in certain region and independent on S̃ beyond that region as in Bai, Chang and Wang
(2006). There seems to be no closed-form solution in this case, but all the numerical results are
consistent with the main results of the equilibrium we focus on in this section. Detailed analysis of
this case is available from the author.

27Implicitly we assume that there is an auctioneer to whom all investors submit their optimal
orders disregarding the existence of margin requirements and then the their optimal demand is
censored by the margin requirements.
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(3) if cb
cb+cs

< ! < cs
cb+cs

, then only long margin requirements can bind, and the

equilibrium stock price is

P ∗
a =

⎧



⎨



⎩

V̄ + A1S̃ − B1�̄ +
!cb
1−!

B1�̄ S̃ ≥ S∗
LD1,

V̄ + A2S̃ − B2�̄ S∗
LS2 < S̃ < S∗

LD1,

V̄ + 2S̃ − ��2
u�̄ +

(1−!)cb
!

��2
u�̄ S̃ ≤ S∗

LS2;

(4) if cs
cb+cs

< ! < cb
cb+cs

, then only short margin requirements can bind, and the

equilibrium stock price is

P ∗
a =

⎧



⎨



⎩

V̄ + A1S̃ −B1�̄ − !cs
1−!

B1�̄ S̃ ≤ S∗
LD2,

V̄ + A2S̃ −B2�̄ S∗
LD2 < S̃ < S∗

LS1,

V̄ + 2S̃ − ��2
u�̄ − (1−!)cs

!
��2

u�̄ S̃ ≥ S∗
LS1.

where S∗
LD1, S

∗
LD2, S

∗
LS1, S

∗
LS2, A1, B1, A2, and B2 are constants defined in (1.48)-

(1.52) and (1.36) in Appendix.

S∗
LD1 (resp. S∗

LD2 ) is the critical point at which the long (resp. short) margin

requirements start to bind for liquidity demanders. Similarly, S∗
LS1 (resp. S∗

LS2) is

the critical point at which the short (resp. long) margin requirements start to bind

for liquidity suppliers. As in Proposition 1.2, the comparisons of �iLS and �jLD, where

i, j ∈ {b, s} and i ∕= j, yield the four cases in this proposition. Since A1 < A2 < 1,

Proposition 1.11 suggests that even though the equilibrium price is always informa-

tive about the state variable S̃, it becomes less sensitive when margin requirements

bind for liquidity demanders and more sensitive when margin requirements bind for

liquidity suppliers. This proposition also implies that, as in the symmetric informa-

tion case, long margin requirements tend to decrease the equilibrium price and short

margin requirements tend to increase it. Figure 1.3 illustrates the comparison of the
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Figure 1.3: Equilibrium Prices with and without Margin Requirements in the presence
of Asymmetric Information

The solid (resp. dashed) line denotes the equilibrium stock price with (resp. without)
margin requirements. The parameter values are V̄ = 3, �̄ = 1, �u = 0.4, �M = 0.4, � =
1, �LD = 0.6, �F = 0.2, �uM = 0.4.

equilibrium stock prices with and without margin requirements for Cases (1)-(4) in

Proposition 1.11. For example, in Case (1), when S̃ ≤ −0.5, the short margin re-

quirements bind for liquidity demanders and thus the equilibrium price is higher with

margin requirements. On the other hand, if S̃ ≥ 0.15, then long margin requirements

bind for liquidity demanders and thus the equilibrium price is lower. Figure 1.3 shows

that, as in the symmetric information case, short margin requirements bind for liquid-

ity demanders when the equilibrium price is low and bind for liquidity suppliers when

the equilibrium price is high. Similarly, long margin requirements bind for liquidity

demanders when the equilibrium price is high and bind for liquidity suppliers when

the equilibrium price is low.
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1.4.3 The Impact of Margin Requirements on the Expected

Stock Price, Return Volatility and Market Illiquidity

We now examine the impact of margin requirements on the initial expected stock

price under asymmetric information. We have the following results:

Proposition 1.12 Under asymmetric information, the expected date 0 stock price

with and without margin requirements have the following relation:

E[P ∗
a ] < E[P ∗

a0] if and only if cb < cs + d,

where d > 0 when ! < min{ cb
cb+cs

, cs
cb+cs

}, d < 0 when ! > max{ cb
cb+cs

, cs
cb+cs

}, and

d = 0 when cb
cb+cs

< ! < cs
cb+cs

, and d is defined in (1.54) in the Appendix.

Corollary 1.4 E[P ∗
a ] increases in cb and decreases in cs.

The basic intuition of Proposition 1.12 is the same as that of Proposition 1.3 in

symmetric information case. The two propositions differ in the thresholds for cb − cs

in Part (1). In symmetric information case d = 0 and we combine the three cases.

From margin requirements (1.1), when cb = cs + d, it is equally likely for the long

and short margin requirements to be binding, and therefore the equilibrium prices

with and without margin requirements are the same, where d > 0 for the case when

margin requirements can only bind for liquidity demanders and d < 0 for the case

when margin requirements can only bind for liquidity suppliers. The intuition is

as follows. From Proposition 1.7, the expected net trade for liquidity demanders,

E[�∗LDa
]− �̄ > 0, and the expected net trade for liquidity suppliers, E[�∗LSa

]− �̄ < 0.
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Liquidity suppliers require a higher risk premium to hold the stock. Therefore, ex-

ante, in the presence of asymmetric information, liquidity demanders are buying and

liquidity suppliers are selling.

Next we examine whether margin requirements reduce or increase the volatility of

stock return in the presence of asymmetric information. We have

Proposition 1.13 1. If margin requirements can only bind for liquidity deman-

ders, then margin requirements reduce the volatility of the initial equilibrium

stock return, i.e., V ar[P ∗
a − P ∗

a,−1] < V ar[P ∗
a0 − P ∗

a0,−1], where P ∗
a,−1 and P ∗

a0,−1

denote the equilibrium stock prices with and without margin requirements before

date 0, which are constants. In addition, if A1 > 1,28 then margin requirements

also reduce the total variance of stock returns on dates 0 and 1, i.e.,

V ar[P ∗
a − P ∗

a,−1] + V ar[Ṽ − P ∗
a ] < V ar[P ∗

a0 − P ∗
a0,−1] + V ar[Ṽ − P ∗

a0],

which implies that margin requirements lead to a smaller return reversal (less

negative stock return auto-correlation),i.e., Cov(P ∗
a0−P ∗

a0,−1, Ṽ−P ∗
a0) < Cov(P ∗

a−

P ∗
a,−1, Ṽ − P ∗

a ) < 0;

2. If margin requirements can only bind for liquidity suppliers, then margin require-

ments increase the volatility of the date 0 stock return, in addition, if A2 > 1,

then margin requirements also increase the total variance of stock returns on

dates 0 and 1;

3. If margin requirements can bind for both liquidity demanders and liquidity sup-

pliers, then margin requirements can increase or decrease market volatility.

28Although we are not able to prove that the total variance is also reduced even when A1 ≤ 1, all
our numerical results suggest that this is likely to be true.

40



0.4 0.6 0.8
ω

0.20

0.15

0.10

0.05

0.05

Var[P Var Pa0

Var [Pa0

and
Var Ps Var Ps0

Var Ps0
Symmetric Info.

Asymmetric Info.

a
] ]]

]

[ [

[

[ ]

]

- -* *

* *

**

-

-

-

-

. .

Figure 1.4: The Percentage Volatility Changes with Margin Requirements with and
without Asymmetric Information

The dashed (resp. solid) curve denotes the percentage volatility changes with margin
requirements with (resp. without) asymmetric information. The parameter values
are V̄ = 3, �̄ = 1, �u = 0.4, �M = 0.4, � = 1, �LD = 0.6, �F = 0.2, �uM = 0.4, cs =
3, cb = 1.

Proposition 1.13 shows that the presence of asymmetric information does not

change the conclusion that margin requirements may increase or decrease market

volatility. More specifically, market volatility increases when short margin require-

ments bind at high prices or when long margin requirements bind at low prices. Con-

versely, market volatility decreases when short margin requirements bind at low prices

or when long margin requirements bind at high prices. However, margin requirements

may have a smaller impact on market return volatility in the presence of asymmetric

information. Figure 1.4 illustrates the difference of the percentage volatility changes

due to margin requirements with and without asymmetric information. The dashed

curve denotes the percentage volatility change ((V ar[P ∗
a ]− V ar[P ∗

a0])/V ar[P ∗
a0]) due

to margin requirements with asymmetric information, and the solid curve denotes the

percentage volatility change ((V ar[P ∗
s ]− V ar[P ∗

s0])/V ar[P ∗
s0]) due to margin require-

ments with symmetric information. As we can see from the graph, in the example, in
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the case when margin requirements increase market volatility with and without asym-

metric information (for 0.55 < ! < 1), market volatility increase less in the presence

of asymmetric information. Similarly, in the case when margin requirements decrease

market volatility with and without asymmetric information (for 0 < ! < 0.39), mar-

ket volatility decreases less in the presence of asymmetric information. Intuitively, as

the degree of information asymmetry measured by �F increases, the adverse selection

problem becomes more severe and liquidity demanders may buy less or sell less due to

the price pressure. For example, suppose liquidity demanders optimally buy shares

on margin, if �F is large, then liquidity suppliers optimally attribute more of the

combined demand to the private information about stock payoff and thus liquidity

suppliers are only willing to sell their shares at a higher price. Liquidity demanders

optimally buy less on margin because of this adverse price impact. Therefore, margin

requirements may become less likely to bind and have a smaller impact on market

volatility with asymmetric information.

Interestingly, margin requirements may have opposite effect on market volatility

with and without asymmetric information. In addition, margin requirements may

also have a larger impact on volatility in the presence of asymmetric information. In

our example with cb = 1 and cs = 3, when 0.43 < ! < 0.55, margin requirements

decrease market volatility with asymmetric information while they increase market

volatility with symmetric information. For 0.39 < ! < 0.43, margin requirements

decrease more of the market volatility with asymmetric information. The intuition is

as following. With cb < cs, only long margin requirements can bind for either liquid-

ity suppliers or liquidity demanders. Ex-ante, liquidity demanders are buyers since

liquidity suppliers require a higher risk premium for holding the stock. Therefore,
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in the presence of asymmetric information, the same long margin requirements bind

for liquidity demanders more often than they bind for liquidity suppliers comparing

to the case with symmetric information case. Since long margin requirements reduce

market volatility when they bind for liquidity demanders and increase market volatil-

ity when they bind for liquidity suppliers, long margin requirements may decrease

market volatility with asymmetric information while they increase market volatility

with symmetric information, or margin requirements decrease more of the market

volatility with asymmetric information.

We now examine how margin requirements affect market illiquidity in the presence

of asymmetric information using the average price impact (�m
a ) of some additional

exogenous trade on date 0. We have

Proposition 1.14 1. Price impact with margin requirements �m
a > �a;

2. �m
a decreases in cs and cb.

Proposition 1.14 implies that the presence of asymmetric information does not

change our main results: margin requirements always increase market illiquidity mea-

sured by price impact of some extra exogenous trade and market illiquidity increases

when margin requirements become more stringent (smaller cb and cs). The intuition

is the same as the symmetric information case.

1.4.4 Welfare Analysis under Asymmetric Information

In this subsection, we examine the impact of margin requirements on market par-

ticipants’ welfare in the presence of asymmetric information. We also compare the
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welfare impact of margin requirements with and without asymmetric information.

We first define the “stringency” of margin requirements with asymmetric information

as below:

Definition 1.3 Under asymmetric information, given S̃, margin requirements are

stringent for investors i (i = LD,LS) when long margin requirements cb < bi(S̃)− 1,

or short margin requirements cs < 1 − bi(S̃), where bi(S̃), i = LD,LS, is defined

(1.63) in Appendix.

Proposition 1.15 In the presence of asymmetric information,

(1) stringent margin requirements make all market participants worse off;

(2) binding but not stringent margin requirements make constrained investors better

off but unconstrained investors worse off.

As in the symmetric information case, the following theorem shows that even when

constrained investors are better off with margin requirement, margin requirements are

always socially suboptimal.

Theorem 2 In the presence of asymmetric information, any binding margin require-

ments are Pareto-dominated by some lump-sum transfer from unconstrained investors

to constrained investors.

Corollary 1.5 In the presence of asymmetric information, any binding margin re-

quirements reduce total welfare measured using certainty equivalents.
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The basic intuition of Proposition 1.15 and Theorem 2 is the same as that in the

case with symmetric information. However, the presence of asymmetric information

has a significant impact on this welfare analysis. Due to asymmetric information,

informed agents also trade to explore their private information. Therefore the pres-

ence of asymmetric information can magnify the negative welfare impact of margin

requirements on the agents when the trade due to private information F̃ is more sig-

nificant than the trade due to the hedging demand. The darker shade area in Figure

1.5 illustrates those states when the same margin requirements reduce more of the

total surplus in the presence of asymmetric information for the case when margin

requirements can only bind for liquidity demanders,29 i.e., ! < min{ cb
cb+cs

, cs
cb+cs

}. The

lighter shaded area in Figure 1.5 illustrates those states when margin requirements

are not binding in either symmetric or asymmetric information case. Clearly, we can

see that, in the presence of asymmetric information, the same margin requirements

reduce more of the total welfare surplus in certain states when F̃ is far away from its

ex ante mean for a given realization of X̃LD. For example, if X̃LD = 1, then when

F̃ > 0.7 or F̃ < −0.7, margin requirements reduce more of the total welfare surplus

in the presence of asymmetric information.

1.5 Margin Requirements with Limited Liability

In this section, we check our main results in the presence of limited liability, i.e.,

investors can default if the wealth on the margin account is negative.30 Our main

29The graphes comparing the welfare impact of margin requirements with and without asymmetric
information for Cases (2)-(4) in Proposition 1.11 are similar to Case (1), we skip them to save space
and they are available from the author.

30For simplicity, we assume that investors’ non-traded assets are protected if they default.
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Figure 1.5: The Comparison of the Total Certainty Equivalent Wealth Gain/Loss
with Margin Requirements with and without Asymmetric Information

The darker shaded area illustrates those states when the same margin requirements
reduce more of the total surplus in the presence of asymmetric information. The
parameter values are V̄ = 3, �̄ = 1, �u = 0.4, �M = 0.4, � = 1, �LD = 0.6, �F =
0.2, �uM = 0.4, cs = 3, cb = 1, ! = 0.2.

results on the impact of margin requirements on market volatility and equilibrium

stock prices still hold. Furthermore, the systemic cost of default could provide a

justification for having margin regulation.

Specifically, when liquidity demanders buy and liquidity suppliers sell some of their

endowed shares of the stock, liquidity demanders’ problem is:

max
�LD≤cb�̄

E[−e−�W̃LD ]

s.t. W̃LD =
(

(�̄ − �LD)P + �LDṼ
)+

+ X̃LDM̃, (1.20)

and liquidity suppliers’ problem is:

max
�LS

E[−e−�W̃LS ]
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s.t. W̃LS = (�̄ − �LS)P + �LS Ṽ − !

1− !

(

(�̄ − �LD)P + �LDṼ
)−

. (1.21)

To incorporate limited liability in our model, we assume that the payoff of the

risky asset Ṽ = eṽ and the payoff of the non-traded asset M̃ = em̃−e�m+ 1
2
�2
m ,31 where

ṽ and m̃ follow a bivariate normal distribution, i.e., the joint p.d.f. of ṽ and m̃ is:

f(ṽ, m̃) =
1

2��v�m

√

1− �2
e
− 1

2(1−�2)

(

(ṽ−�v)
2

�2
v

+ (m̃−�m)2

�2
m

− 2�(ṽ−�v)(m̃−�m)
�v�m

)

, (1.22)

where � = �vm

�v�m
is the correlation coefficient between ṽ and m̃.

In equilibrium, both stock market and bond market clear,

!�∗LD + (1− !)�∗LS = �̄. (1.23)

From (1.20), (1.21) and (1.23), we can numerically solve the equilibrium stock

prices with different level of long margin requirements cb. We find that the stricter

margin requirement may significantly reduce investors’ default probability. As we can

see from Figure 1.6, with one share of stock as collateral in the margin account, if

borrowers are allowed to borrow to buy 2 shares of the stock, then the borrower’s

default probability is 14%. If buyers are only allowed to borrow to buy 1 share of the

stock, then the default probability is reduced to 3%.

Consistent with our previous results, the equilibrium stock price is lower with the

stricter long margin requirement.32 In Figure 1.7, long margin requirements bind for

31We demean the payoff of the non-traded asset, so that the expected payoff of the non-traded
asset is zero and the average endowment shock is zero ex-ante.

32We use the equilibrium with less strict long margin requirements as the benchmark in this
section while we use the equilibrium without margin requirements as the benchmark in the previous
sections.
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Figure 1.6: The Borrower’s Default Probability Against the Level of Long Margin
Requirements

The parameter values are �̄ = 1, �u = 0.4, �M = 0.6, �uM = 0.2, � = 1, ! = 0.2, �M =
0, �V = 0, X̃LD = −1.
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Figure 1.7: Equilibrium Prices with Long Margin Requirements cb = 1 and cb = 3
(Case 1)

The dashed (resp. solid) curve denotes the equilibrium price with long margin re-
quirements cb = 3 (resp. cb = 1). The parameter values are �̄ = 1, �u = 0.4, �M =
0.6, �uM = 0.2, � = 1, ! = 0.2, �M = 0, �V = 0.
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Figure 1.8: Equilibrium Prices with Long Margin Requirements cb = 1 and cb = 3
(Case 2)

The dashed (resp. solid) curve denotes the equilibrium price with long margin re-
quirements cb = 3 (resp. cb = 1). The parameter values are �̄ = 1, �u = 0.4, �M =
0.6, �uM = 0.2, � = 1, ! = 0.8, �M = 0, �V = 0.

liquidity demanders and the long margin requirements bind when equilibrium stock

price is relatively high. Therefore the long margin requirements reduce volatility.

In Figure 1.8,33 long margin requirements bind for liquidity suppliers and the long

margin requirements bind when equilibrium stock price is relatively low. Therefore

the long margin requirements increase volatility.

Interestingly, in the presence of limited liability, as we can see from Figure 1.9, there

is an optimal long margin requirement for margin buyers and sellers respectively. In

our example, cb = 1.52 is optimal for margin buyers and cb = 1.04 is optimal for sell-

ers. As we discussed in the welfare analysis in Section 3.4, long margin requirements

have two effects, a quantity effect and a price effect on margin buyers. If long margin

requirements are not very stringent, then margin buyers can be better off because

the price effect dominates the quantity effect. Therefore, in the presence of limited

33This is the case when liquidity demanders sell some of their endowed shares of the stock and
liquidity suppliers buy.
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Figure 1.9: The Certainty Equivalent Wealth of Borrowers and Lenders Against Long
Margin Requirements

The parameter values are �̄ = 1, �u = 0.4, �M = 0.6, �uM = 0.2, � = 1, ! = 0.2, �M =
0, �V = 0, X̃LD = −1.

liability, the optimal margin requirements for margin buyers are determined by bal-

ancing the price effect, the quantity effect and default benefit. On the other hand,

long margin requirements have an adverse price effect on the sellers because sellers

have to sell at a lower price. However, in the presence of limited liability, long margin

requirements protect sellers who are also lenders from borrowers’ default. Therefore,

the optimal margin requirements for sellers are determined by balancing the price

effect and buyers’ default risk.

In addition, regulators solve an optimal margin requirement which maximizes social

welfare by incorporating some systemic cost of default.34 We use a simplest reduced-

form model to capture the systemic cost of default. More specifically, we assume that

34Schwarcz (2008): systemic risk results from a type of tragedy of the commons in which market
participants lack sufficient incentive, absent regulation, to limit risk taking in order to reduce the
systemic danger to others. For example, default in paying debts might well cause the institution’s
failure, as well as trigger a potential chain of defaults as other institutions are not paid amounts
owned them (and in turn, if highly leveraged, such other institutions might then be unable to pay
amounts owed to other institutions.) These costs would likely be high because they include not only
direct economic costs but also indirect social costs (poverty, unemployment and crime as potential
social costs).
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regulator’s problem is

max
cb

!E[−e−�W̃LD ]+(1−!)E[−e−�W̃LS ]+E

[

c!
(

�LDṼ + (�̄ − �LD)P − z(�LD − �̄)P
)−
]

.

(1.24)

The sum of the first two terms in (3.39) is the weighted average utility of buyers

and sellers. The third term in (3.39) captures the externality of financial crisis and

c measures the severity of the externality imposed the the economy when borrowers

as a group are in distress.35 We define that borrowers are in financial distress when

all borrowers’ total wealth is below a fraction of their total debt,36 i.e., �LDṼ + (�̄ −

�LD)P < z(�LD− �̄)P , and each borrower’s systemic expected shortfall as the amount

that the wealth drops below a fraction z of the debt in case of a systemic crisis, i.e.,

E

[

(

�LDṼ + (�̄ − �LD)P − z(�LD − �̄)P
)−
]

.

The optimal margin requirement for the regulator is more stringent than the sellers

would prefer, as illustrated in Figure 1.10, the optimal margin requirement for the

regulator in our example is cb = 0.95. Therefore, this systemic cost of default could

provide a justification for having margin regulation.

The results with default shed some lights on how to determine the optimal margin

requirements in practice. Margin requirements should be determined by balancing two

facts: the cost of restricting mutually beneficial trading and the benefit of avoiding

the default cost from potential systemic risk. If it is unlikely that defaulting on

margin can lead to systemic risk, then the damage may be greater than the potential

35This is similar to the reduced-form model of measuring systemic risk used in Acharya, Pedersen,
Philippon and Richardson (2010).

36Though in our model all borrowers are identical and there is one risky asset, and thus all
borrowers default at the same time, our simplified model captures the economics without bearing
complicated numerical computations since borrowers who buy on margin on multiple risky assets
may default at the same time when they face a systematic shock.
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Figure 1.10: The Certainty Equivalent Wealth of Regulators Against Long Margin
Requirements

The parameter values are �̄ = 1, �u = 0.4, �M = 0.6, �uM = 0.2, � = 1, ! = 0.2, �M =
0, �V = 0, X̃LD = −1.

benefit from margin regulation. It might be optimal to leave the private sectors to

determine their own margin requirements. On the other hand, as we experienced in

financial crisis in 1929, private sectors’ margin requirements are extremely loose and

that encourage margin buying and might have caused the following market crash. It

might be social optimal for the regulators to set margin requirements.

1.6 Concluding Remarks

We propose a tractable and flexible equilibrium model with and without asymmetric

information to examine the impact of margin requirements (on both long and short

stock positions) on asset prices, market volatility, market illiquidity and the welfare

of market participants. We show that margin requirements reduce market volatility

and lead to a smaller return reversal when they constrain liquidity demanders (e.g.,

portfolio insurers and individuals) who are buying when prices are high or selling

when prices are low. However, margin requirements can significantly increase market

volatility and lead to a greater return reversal when they constrain liquidity suppliers
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(e.g., market markers and hedge funds) who are selling when prices are high or buying

when prices are low.

In addition, margin requirements always increase market illiquidity measured by

price impact even when they constrain liquidity demanders. Moreover, stringent

margin requirements make both participants worse off and less stringent margin re-

quirements benefit constrained investors and hurt unconstrained investors. Our main

results remain the same in the presence of asymmetric information and default risk

while the presence of asymmetric information may reverse or reduce the impact of

margin requirements on market volatility.

1.7 Appendix

We provide all the proofs for the case when margin requirements never bind for liq-

uidity suppliers and can only bind for liquidity demanders i.e., ! < min{ cb
cb+cs

, cs
cb+cs

},

the proofs for the case when ! > max{ cb
cb+cs

, cs
cb+cs

} are very similar and we skip them

here to save space and they are available from the author.

Proof of Proposition 1.1:

From investor i’s objective function (1.5), it is straightforward to get i’s optimal

demand for the risky asset:

�∗i =
(F̃ + V̄ − P ∗

s0)− ��uMX̃i

��2
u

, i = LD,LS. (1.25)
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Substituting (1.25) into the market clearing condition, !�∗LDs
+ (1 − !)�∗LSs

= �̄, we

get that the equilibrium price is

P ∗
s0 = V̄ + F̃ − �!�uMX̃LD − ��2

u�̄. (1.26)

Plugging (1.26) into (1.25), we get �∗LDs
= �̄ − (1 − !)�uM

�2
u
X̃LD, and �∗LSs

= �̄ +

! �uM

�2
u
X̃LD.

Q.E.D.

Proof of Proposition 1.2 and Corollary 1.1:

Liquidity demanders’ optimal demand is given by (1.25), if

−(cs − 1)�̄��2
u < V̄ + F̃ − P ∗

s − ��uMX̃LD < (cb + 1)�̄��2
u, (1.27)

then neither long nor short margin requirements are binding, the equilibrium price

is the same as that without margin requirement, i.e., P ∗
s = P ∗

s0. Plugging (1.26) into

(1.27), we get that when − cb
1−!

�2
u�̄ < �uMX̃LD < cs

1−!
�2
u�̄, neither long or short margin

requirements are binding for liquidity demanders; if �uM X̃LD > cs
1−!

�2
u�̄, then short

margin requirements are binding for liquidity demanders; if �uMX̃LD < − cb
1−!

�2
u�̄,

then long margin requirements are binding for liquidity demanders.

Similarly, we have: (i) if − cs
!
�2
u�̄ < �uMX̃LD < cb

!
�2
u�̄, then margin requirements

are not binding for liquidity suppliers; (ii) if �uMX̃LD > cb
!
�2
u�̄, then long margin

requirements are binding for liquidity suppliers; (iii) if �uMX̃LD < − cs
!
�2
u�̄, then

short margin requirements are binding for liquidity suppliers. Therefore, we have the

following cases: (1) if !
1−!

< min{ cb
cs
, cs
cb
}, then margin requirements can bind only for
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liquidity demanders; (2) if !
1−!

> max{ cb
cs
, cs
cb
}, then margin requirements can bind

only for liquidity suppliers; (3) if cb
cs

< !
1−!

< cs
cb
, then long margin requirements

are more stringent than short margin requirements. Therefore, only long margin

requirements can bind. (4) if cs
cb

< !
1−!

< cb
cs
, then short margin requirements are more

stringent than long margin requirements. Therefore, only short margin requirements

can bind.

We now prove the Proposition for case (1). For case (1), if �uMX̃LD ≤ − cb
1−!

�2
u�̄,

long margin requirements are binding. In equilibrium, �∗LDs
= (cb + 1)�̄ and �∗LSs

=

1−!−!cb
1−!

�̄. From (1.25), liquidity suppliers’ optimal demand is �∗LSs
= V̄+F̃−P ∗

s

��2
u

. It fol-

lows that the equilibrium stock price is P ∗
s = V̄ + F̃ − 1−!−!cb

1−!
��2

u�̄. It can be shown

that P ∗
s0 − P ∗

s = −�!�uMX̃LD − ! cb
1−!

��2
u�̄ ≥ 0, i.e., P ∗

s0 ≥ P ∗
s , long margin require-

ments tend to decrease stock price. If �uM X̃LD ≥ cs
1−!

�2
u�̄, short margin requirements

are binding. In equilibrium, �∗LDs
= −(cs − 1)�̄ and �∗LSs

= 1−!+!cs
1−!

�̄, from (1.25),

liquidity suppliers’ optimal demand is �∗LSs
= V̄+F̃−P ∗

s

��2
u

. It follows that the equilib-

rium stock price is P ∗
s = V̄ + F̃ − 1−!+!cs

1−!
��2

u�̄. It can be shown that P ∗
s0 − P ∗

s =

−�!�uMX̃LD + ! cs
1−!

��2
u�̄ ≤ 0, i.e., P ∗

s0 ≤ P ∗
s , short margin requirements tend to

increase stock price. Q.E.D.

Proof of Proposition 1.3 and Corollary 1.2:

E[P ∗
s ]− E[P ∗

s0] = �! × ∣�uM ∣�LD√
2�

×
[

−e
− (−cb�

2
u�̄)2

2(1−!)2�2
uM

�2
LD + e

− (cs�
2
u�̄)2

2(1−!)2�2
uM

�2
LD

]

+
�!cb�

2
u�̄

1− !
N

(

− cb�
2
u�̄

(1 − !)∣�uM ∣�LD

)

− �!cs�
2
u�̄

1− !
N

(

− cs�
2
u�̄

(1− !)∣�uM ∣�LD

)

.
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Note that E[P ∗
s ] = E[P ∗

s0], when cb = cs. We now prove that E[P ∗
s ] increases in cb

and decreases in cs, then, it follows that E[P ∗
s ] ≥ E[P ∗

s0], iff cb ≥ cs. We have

∂E[P ∗
s ]

∂cb
=

!��2
u�̄

1− !
N

(

− cb�
2
u�̄

(1− !)∣�uM ∣�LD

)

> 0,

∂E[P ∗
s ]

∂cs
= −!��2

u�̄

1− !
N

(

− cs�
2
u�̄

(1− !)∣�uM ∣�LD

)

< 0. (1.28)

Therefore, E[P ∗
s ]− E[P ∗

s0] increases in cb and decreases in cs. Q.E.D.

Lemma 1.1 S is continuously distributed in [−∞,+∞] with probability density func-

tion fS(s), we define

Y =

⎧



⎨



⎩

kS + (1− k)n S ≥ n

S m < S < n

kS + (1− k)m S ≤ m

where m, n and k are constants with n > m and 0 ≤ k < 1. Then, V ar(Y ) < V ar(S)

Proof of Lemma 1.1: We define Y1 = Y + E[S]− E[Y ], then E[Y1] = E[S]. From

Figure 1.11, there exists s∗, (not necessarily unique, pick one) such that Y1 > S, for

S < s∗ and Y1 < S for S > s∗. Let FY1(s) be the c.d.f. for Y1 and GS(s) be the

c.d.f. for S. ∀s < s∗, Y1 < s ⇒ S < s. This implies that GS(s) − FY1(s) ≥ 0

for s < s∗. And ∀s ≥ s∗, Y1 ≥ s ⇒ S ≥ s. This implies Prob(S > s) ≥

Prob(Y1 > s), i.e., GS(s) − FY1(s) ≤ 0 for s ≥ s∗. Now, consider the stochastic

dominance integral I(s) =
∫ s

�=−∞ (GS(�)− FY1(�)) d�. Since E[S] = E[Y1], we have

I(+∞) = 0. The sign pattern of GS(s) − FY1(s) implies that ∀s, we have I(s) ≥ 0.

i.e.,
∫ s

−∞GS(�)d� ≥
∫ s

−∞ FY1(�)d�, ∀s. This means that Y1 second-order stochastically

dominates S, we immediately get V ar(Y1) < V ar(S), note that V ar(Y1) = V ar(Y ),
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Figure 1.11: Random Variables Y1, Y and S

The dot-dashed line denotes Y1. The solid line denotes Y . The dashed line denotes
S.

therefore, V ar(Y ) < V ar(S). Q.E.D.

Proof of Proposition 1.4:

P ∗
s =

⎧



⎨



⎩

V̄ + F̃ − 1−!−!cb
1−!

��2
u�̄ P ∗

s0 ≥ V̄ + F̃ − 1−!−!cb
1−!

��2
u�̄

P ∗
s0 V̄ + F̃ − 1−!+!cs

1−!
��2

u�̄ < P ∗
s0 < V̄ + F̃ − 1−!−!cb

1−!
��2

u�̄

V̄ + F̃ − 1−!+!cs
1−!

��2
u�̄ P ∗

s0 ≤ V̄ + F̃ − 1−!+!cs
1−!

��2
u�̄

And we have V ar[Ṽ −P ∗
s ] = V ar[F̃ −P ∗

s ] and V ar[Ṽ −P ∗
s0] = V ar[F̃ −P ∗

s0]. For any

fixed F̃ , using Lemma 3.1 with k = 0, we get V ar[P ∗
s ] < V ar[P ∗

s0], and V ar[F̃−P ∗
s ] <

V ar[F̃ − P ∗
s0]. Since the sum of the variances of stock returns of dates 0 and 1 with

and without margin requirements are respectively V ar(P ∗
s −P ∗

s,−1) + V ar(Ṽ −P ∗
s ) =

V ar(Ṽ ) − 2Cov(P ∗
s − P ∗

s,−1, Ṽ − P ∗
s ), and V ar(P ∗

s0 − P ∗
s0,−1) + V ar(Ṽ − P ∗

s0) =

V ar(Ṽ )−2Cov(P ∗
s0−P ∗

s0,−1, Ṽ −P ∗
s0). Under symmetric information, since F̃ is public

information, we have Cov(P ∗
s −P ∗

s,−1, Ṽ −P ∗
s ) = −V ar(P ∗

s ) < 0, Cov(P ∗
s0−P ∗

s0,−1, Ṽ −
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P ∗
s0) = −V ar(P ∗

s0) < 0. Therefore margin requirements lead to a less negative auto-

correlation of stock returns. Q.E.D.

Proof of Proposition 1.5: We prove the first case, other cases are very similar.

If ! < min{ cb
cb+cs

, cs
cb+cs

}, then margin requirements can only bind for liquidity de-

manders. When long margin requirements bind for liquidity demanders, i.e., when

D̃ > cb
1−!

�̄+ "
1−!

, we have P ∗
s = F̃+V̄ −��2

u�̄+�! cb
1−!

�2
u�̄+

��2
u

1−!
". Therefore, ∂P ∗

s

∂"
= ��2

u

1−!
.

Similarly, we can show that �m
s = ∂P ∗

s

∂"
= ��2

u

1−!
when short margin requirements bind for

liquidity demanders, i.e., when D̃ < − cs�̄
1−!

+ "
1−!

. Therefore, the average price impact

�m
s = ��2

u

1−!

(

1 + !N(− cs
1−!

�̄ + "
1−!

)− !N( cb
1−!

�̄ + "
1−!

)
)

> ��2
u = �s. In addition, we

have ∂�m
s

∂cb
< 0 and ∂�m

s

∂cs
< 0. Q.E.D.

Proof of Proposition 1.6: We first show that stringent margin requirements make

liquidity demanders worse off while binding but less stringent margin requirements

make liquidity demanders better off. More specifically, let W ∗
LD and W ∗

LD0 denote

the equilibrium terminal wealth of liquidity demanders with and without margin

requirements respectively. We want to show the following: (1) if D̃ < − 1+!
(1−!)2

cs�̄ or

D̃ > 1+!
(1−!)2

cb�̄, then E[−e−�W̃ ∗

LD0 ] > E[−e−�W̃ ∗

LD ]; (2) if − 1+!
(1−!)2

cs�̄ < D̃ ≤ − �̄
1−!

cs or

�̄
1−!

cb ≤ D̃ < 1+!
(1−!)2

cb�̄, then E[−e−�W̃ ∗

LD0 ] ≤ E[−e−�W̃ ∗

LD ]; (3) if− �̄
1−!

cs ≤ D̃ ≤ �̄
1−!

cb,

then E[−e−�W̃ ∗

LD0 ] = E[−e−�W̃ ∗

LD ].

From Proposition 1.1 and Proposition 1.2, we can compute E[−e−�W̃ ∗

LD0 ] = −ed1 ,

and when short margin requirements bind for liquidity demanders, E[−e−�W̃ ∗

LD ] =
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−ed2 . We have:

d1 − d2 = −�2(1− !)2�2
u

2

(

−D̃ − cs
�̄

1− !

)(

−D̃ − 1 + !

(1− !)2
cs�̄

)

. (1.29)

Therefore, if D̃ < − 1+!
(1−!)2

cs�̄ then d1 < d2; and if − 1+!
(1−!)2

cs�̄ ≤ D̃ ≤ −cs
�̄

1−!
,

then d1 ≥ d2. When long margin requirements bind for liquidity demanders, we can

compute E[−e−�W̃ ∗

LD ] = −ed3 . And we have

d1 − d3 = −�2(1− !)2�2
u

2

(

−D̃ +
�̄

1− !
cb

)(

D̃ +
1 + !

(1− !)2
cb�̄

)

. (1.30)

Therefore, liquidity demanders are worse off if margin requirements are stringent and

they are better off if margin requirements are binding but not stringent.

We now show that liquidity suppliers are always worse off with binding margin

requirements. Let W ∗
LS and W ∗

LS0 denote the equilibrium terminal wealth of liquid-

ity suppliers with and without margin requirements respectively. We can compute

E[−e−�W̃ ∗

LS0 ] = −ed4 , and if short margin requirements bind for liquidity demanders,

E[−e−�W̃ ∗

LS ] = −ed5 , we have

d4 − d5 = −1

2
�2!2�2

u

(

D̃2 − c2s
�̄2

(1− !)2

)

. (1.31)

Obviously, if D̃ ≤ − �̄
1−!

cs, then d4 ≤ d5. Therefore, liquidity suppliers are always

worse off when short margin requirements bind for liquidity demanders. Similarly, we

can prove that liquidity suppliers are always worse off when long margin requirements

bind for liquidity demanders.

Q.E.D.
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Proof of Theorem 1 and Corollary 1.3: We assume that liquidity suppliers are

indifferent between having margin requirements and lifting margin requirements after

transferring ΔWLS to liquidity demanders, i.e., −ed5 = −ed4+�ΔWLS . We get

ΔWLS =
d5 − d4

�
=

1

2
�w2�2

u

(

D̃2 − c2s
�̄2

(1− !)2

)

. (1.32)

To make liquidity demanders better off, we need −ed1−�ΔWLD ≥ −ed2 , i.e., d1 − d2 ≤

�ΔWLD = � 1−!
!

ΔWLS, which is equivalent to
(

D̃ − cs
�̄

1−!
D̃
)2

≥ 0. Therefore, even

though the liquidity demanders are better off with binding but not stringent short

margin requirements, the total surplus measured by certainty equivalent is reduced.

This implies that short margin requirements are dominated by a lump-sum transfer

scheme without constraints. Similarly, we can prove that long margin requirements

are also dominated by some lump-sum wealth transfer.

Q.E.D.

Proof of Proposition 1.7: Liquidity demanders’ optimal stock demand is

�∗LDa
=

V̄ + F̃ − ��uMX̃LD − P ∗
a0

��2
u

=
V̄ + 2S̃ − P ∗

a0

��2
u

. (1.33)

Liquidity suppliers’ information set is: ILS = {P ∗
a0} = {S̃}, therefore, liquidity sup-

pliers’ problem is

min
�LS

e��LS(P
∗

a0−V̄ )+ 1
2
�2(�2LS�

2
u+X̃2

LS�
2
M+2�LSX̃LS�uM ) × E[e−��LS F̃ ∣S̃]. (1.34)
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Letting a = ��uM , and k = �LD/�F , then S̃ ∼ N(0, 1
4
(�2

F + a2�2
LD)). We have

E[F̃ ∣S̃] = 2S̃

1 + a2k2
, V ar[F̃ ∣S̃] = a2k2

1 + a2k2
�2
F , E[e−��LS F̃ ∣S̃] = e−��LSE[F̃ ∣S̃]+ 1

2
�2�2LSV ar[F̃ ∣S̃].

(1.35)

Liquidity suppliers’ optimal stock demand given P ∗
a0 is �∗LSa

=
V̄+ 2S̃

1+a2k2
−P ∗

a0

�
(

�2
u+

a2k2

1+a2k2
�2
F

) . Define

A2 =
2 [(1 + !a2k2)�2

u + !a2k2�2
F ]

(1 + a2k2)�2
u + !a2k2�2

F

, B2 =
��2

u [(1 + a2k2)�2
u + a2k2�2

F ]

(1 + a2k2)�2
u + !a2k2�2

F

. (1.36)

a1 =
2a2k2

� ((1 + a2k2)�2
u + !a2k2�2

F )
, b1 =

(1 + a2k2)�2
u + a2k2�2

F

(1 + a2k2)�2
u + !a2k2�2

F

. (1.37)

We can solve for the equilibrium price P ∗
a0 = V̄ +A2S̃−B2�̄ using the market clearing

condition, !�∗LDa
+(1−!)�∗LSa

= �̄. Q.E.D.

Proof of Proposition 1.8: We have E[P ∗
a0] = V̄ −B2�̄, E[P ∗

s0] = V̄ − ��2
u�̄. There-

fore, E[Pa0∗ ]−E[Ps0∗ ] = (��2
u−B2)�̄ < 0. Q.E.D.

Proof of Proposition 1.9: We can compute the expected utilities of liquidity de-

manders with and without asymmetric information are −ec1 and −ed1 . It is not

difficult to get

c1 − d1 = C3�
2
u

(

D̃ − C1(F̃ + ��2
F �̄)
)(

D̃ + C2(F̃ + ��2
F �̄)
)

, (1.38)

where

C3 =
�2(1− !)2(�2

u + !a2k2�2
F )((1 + 2a2k2)�2

u + !a2k2�2
F )

2 ((1 + a2k2)�2
u + !a2k2�2

F )
2
�2
u

> 0,

C1 =
a2k2

� (�2
u + !a2k2�2

F )
> 0, C2 =

a2k2

� ((1 + 2a2k2)�2
u + !a2k2�2

F )
> 0. (1.39)

61



The results in Proposition 1.9 follow directly. Q.E.D.

Proof of Proposition 1.10: From Proposition 1.1 and 1.7, we have

V ar(P ∗
s0) = �2

F + !2a2�2
LD, V ar(P ∗

a0) =
1

4
A2

2(�
2
F + a2�2

LD), V ar(Ṽ − P ∗
s0) = !2a2�2

LD

(1.40)

V ar(Ṽ − P ∗
a0) = �2

F +
1

4
A2

2(�
2
F + a2�2

LD)− 2Cov(F̃ , A2S̃)

= (1− 1

2
A2)

2�2
F +

1

4
A2

2a
2�2

LD > !2a2�2
LD. (1.41)

It is not difficult to get that

(V ar(P ∗
s0 − P−s1) + V ar(Ṽ − P ∗

s0))− (V ar(P ∗
a0 − P−a1) + V ar(Ṽ − P ∗

a0)), (1.42)

is equivalent to

2!(! − 1)a2�2
LD

(

(1 + a2k2)�2
u + !a2k2�2

F

)2

(

(1 + a2k2)�4
u + !(! + 1)a4k4�4

F + a2k2
(

2!(1 + a2k2) + 1
)

�2
u�

2
F

)

< 0

(1.43)

The increase of the total variance implies that Cov(P ∗
s0−P−s1, Ṽ −P ∗

s0) > Cov(P ∗
a0−

P−a1, Ṽ − P ∗
a0). We also have

Cov(P ∗
s0 − P−s1, Ṽ − P ∗

s0) = −V ar(P ∗
s0) < 0,

Cov(P ∗
a0 − P−a1, Ṽ − P ∗

a0) = A2

(

1

2
− 1

4
A2(1 + a2k2)

)

�2
F < 0. (1.44)

Therefore, the presence of asymmetric information tends to increase market volatility

and leads to a more negative market return auto-correlation. Q.E.D.
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Proof of Proposition 1.11: Similarly to the proof of Proposition 1.2, we have four

cases. For case (1), when margin requirements can bind only for liquidity demanders,

liquidity demanders’ optimal stock demand is:

�∗LDa
= min{max[

V̄ + 2S̃ − P ∗
a

��2
u

,−(cs − 1)�̄], (cb + 1)�̄}. (1.45)

From the proof of Proposition 1.7, we know that �∗LSa
=

V̄+ 2S̃
1+a2k2

−P ∗

a

�
(

�2
u+

a2k2

1+a2k2
�2
F

) . If neither

long or short margin requirements are binding, then the equilibrium price is the

same as that without margin requirements, i.e., P ∗
a = V̄ +A2S̃−B2�̄. If long margin

requirements are binding for liquidity demanders, then �∗LDa
= (cb+1)�̄, and therefore

in equilibrium, using market clearing condition, we get that the equilibrium price is

P ∗
a = V̄ +

2S̃

1 + a2k2
− �

(

�2
u +

a2k2

1 + a2k2
�2
F

)

(1− ! − !cb)
�̄

1− !
. (1.46)

If short margin requirements are binding for liquidity demanders, then �∗LDa
= −(cs−

1)�̄, and therefore in equilibrium, using market clearing condition, we get that the

equilibrium price is

P ∗
a = V̄ +

2S̃

1 + a2k2
− �

(

�2
u +

a2k2

1 + a2k2
�2
F

)

(1− ! + !cs)
�̄

1− !
. (1.47)

Define

A1 =
2

1 + a2k2
, B1 = �

(

�2
u +

a2k2

1 + a2k2
�2
F

)

, (1.48)

we can write the equilibrium stock price as in the Proposition. S∗
LD1 and S∗

LD2 can be

solved directly by the continuity of the equilibrium stock price. Specifically, we have

S∗
LD1 =

[

1 + a2k2

2a2k2
cb�

2
u −

1

2
(1− ! − !cb)�

2
F

]

��̄

1− !
, (1.49)
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S∗
LD2 =

[

−1 + a2k2

2a2k2
cs�

2
u −

1

2
(1− ! + !cs)�

2
F

]

��̄

1− !
, (1.50)

S∗
LS1 =

[

1 + a2k2

2a2k2
cs�

2
u +

1

2
!(cs − 1)�2

F

]

��̄

!
, (1.51)

S∗
LS2 =

[

−1 + a2k2

2a2k2
cb�

2
u −

1

2
!(cb + 1)�2

F

]

��̄

!
. (1.52)

Proof of Proposition 1.12 and Corollary 1.4:

E[P ∗
a ] = E[P ∗

a0] + (A1 −A2)×
√
1 + a2k2�F

2
√
2�

×
[

e
− 2S∗

LD1
2

(1+a2k2)�2
F − e

− 2S∗

LD2
2

(1+a2k2)�2
F

]

+

(

B2�̄ − B1
(1− ! − !cb)�̄

1− !

)

N

(

− 2S∗
LD1√

1 + a2k2�F

)

+

(

B2�̄ − B1
(1− ! + !cs)�̄

1− !

)

N

(

2S∗
LD2√

1 + a2k2�F

)

, (1.53)

where A1, A2, B1, B2 are defined in (1.48) and (1.36). We notice that E[P ∗
a ] = E[P ∗

a0],

when cb = cs + d, where

d =
d1a

2�2
LD�

2
F

(�2
F + a2�2

LD)�
2
u + !a2�2

LD�
2
F

, (1.54)

where d1 = 2(1−!) for ! < min{ cb
cb+cs

, cs
cb+cs

} and d1 = −2! for ! > max{ cb
cb+cs

, cs
cb+cs

}.

Now, we want to prove that E[P ∗
a ] increases in cb and decreases in cs. Then, it follows

that E[P ∗
a ] > E[P ∗

a0] iff cb > cs + d. It is not difficult to see that

∂E[P ∗
a ]

∂cb
= (A1 − A2)×

[

1 + a2k2

2a2k2
�2
u +

!

2
�2
F

]

(−S∗
LD1)f(S

∗
LD1)

+(B2�̄ − B1(1− ! − !cb)
�̄

1− !
)×

[

1 + a2k2

2a2k2
�2
u +

!

2
�2
F

]

(−f(S∗
LD1))

+B1!
�̄

1− !
N

(

− 2S∗
LD1√

1 + a2k2�F

)

= B1!
�̄

1− !
×N

(

− 2S∗
LD1√

1 + a2k2�F

)

> 0. (1.55)
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The last equality follows from S∗
LD1(A1−A2) = −B2�̄+B1(1−!−!cb)

�̄
1−!

. Similarly,

we can prove that ∂E[P ∗

a ]
∂cs

< 0. Therefore, E[P ∗
a ] increases in cb and decreases in cs.

Q.E.D.

Proof of Proposition 1.13:

P ∗
a =

⎧





⎨





⎩

A1
A2

P ∗
a0 +

A1
A2

B2�̄ −B1
(1−!−!cb)�̄

1−! +
(

1− A1
A2

)

V̄ P ∗
a0 ≥ V̄ +A2S

∗
LD1 −B2�̄

P ∗
a0 V̄ +A2S

∗
LD2 −B2�̄ < P ∗

a0 < V̄ +A2S
∗
LD1 −B2�̄

A1
A2

P ∗
a0 +

A1
A2

B2�̄ −B1
(1−!+!cs)�̄

1−! +
(

1− A1
A2

)

V̄ P ∗
a0 ≤ V̄ +A2S

∗
LD2 −B2�̄

It is not hard to show that A1

A2
< 1, using Lemma 3.1, it is obvious that V ar[P ∗

a −

P ∗
−a1] < V ar[P ∗

a0 − P−a1]. In order to prove the reduction of total variance, we need

the following Lemma

Lemma 1.2 For two functions f(x), g(x) with f ′(x) ≥ 0 and g′(x) ≤ 0, where x

is randomly distributed in set Ω with probability density function p(x). We have

Cov(f(x), g(x)) ≤ 0.

P roof :

Cov(f(x), g(x)) = E(f(x)g(x))−E(f(x))E(g(x))

=

∫

Ω

f(x)g(x)p(x)dx−
∫

Ω

f(x)p(x)dx

∫

Ω

g(x)p(x)dx

=

∫

Ω

p(y)dy

∫

Ω

f(x)g(x)p(x)dx−
∫

Ω

f(y)p(y)dy

∫

Ω

g(x)p(x)dx

=

∫

Ω

∫

(f(x)g(x)− f(y)g(x))p(x)p(y)dxdy

=
1

2

∫

Ω

∫

(f(x)− f(y)) (g(x)− g(y)) p(x)p(y)dxdy.
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From f ′(x) ≥ 0 and g′(x) ≤ 0, we know that (f(x)− f(y))(g(x)− g(y)) ≤ 0 is always

true. Q.E.D.

The difference of total variance with and without margin requirements is:

V ar(Ṽ − P ∗
a ) + V ar(P ∗

a − P ∗
−a1)− V ar(Ṽ − P ∗

a0)− V ar(P ∗
a0 − P−a1)

= 2Cov(P ∗
a − P ∗

a0, P
∗
a + P ∗

a0 − F̃ ). (1.56)

It is not hard to see,

f(F̃ , X̃LD) ≡ P ∗
a − P ∗

a0

=

⎧



⎨



⎩

1
2 (A1 −A2)F̃ − 1

2 (A1 −A2)aX̃LD −B1(1− ! − !cb)
�̄

1−!
+B2�̄ F̃ − aX̃LD ≥ 2S∗

LD1

0 2S∗

LD2 < F̃ − aX̃LD < 2S∗

LD1
1
2 (A1 −A2)F̃ − 1

2 (A1 −A2)aX̃LD −B1(1− ! + !cs)
�̄

1−!
+B2�̄ F̃ − aX̃LD ≤ 2S∗

LD2

and

g(F̃ , X̃LD) ≡ P ∗
a + P ∗

a0 − F̃

=

⎧



⎨



⎩

(

1
2 (A1 +A2)− 1

)

F̃ − 1
2 (A1 +A2)aX̃LD −B1(1− ! − !cb)

�̄
1−!

−B2�̄ F̃ − aX̃LD ≥ 2S∗

LD1

(A2 − 1)F̃ −A2aX̃LD − 2B2�̄ 2S∗

LD2 < F̃ − aX̃LD < 2S∗

LD1
(

1
2 (A1 +A2)− 1

)

F̃ − 1
2 (A1 +A2)aX̃LD −B1(1− ! + !cs)

�̄
1−!

−B2�̄ F̃ − aX̃LD ≤ 2S∗

LD2

We know that A2 > A1 > 0, if A1 ≥ 1, it is easy to see that

∂f

∂F̃
≤ 0,

∂f

∂X̃LD

≥ 0,
∂g

∂F̃
≥ 0,

∂g

∂X̃LD

≤ 0 (1.57)

The strict inequalities in (1.57) hold for non-zero measure sets.

Cov
(

f(F̃ , X̃LD), g(F̃ , X̃LD)
)

= EF̃ X̃LD

(

f(F̃ , X̃LD)g(F̃ , X̃LD)
)

−EF̃ X̃LD
f(F̃ , X̃LD)×EF̃ X̃LD

g(F̃ , X̃LD)

= EX̃LD

(

CovF̃

(

f(F̃ , X̃LD), g(F̃ , X̃LD)
))

+ CovX̃LD

(

EF̃f(F̃ , X̃LD), EF̃ g(F̃ , X̃LD)
)

.

(1.58)
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From Lemma 1.2 and (1.57), we know that for any X̃LD, we have

CovF̃

(

f(F̃ , X̃LD), g(F̃ , X̃LD)
)

< 0,

Therefore, the first term in (1.58) is negative. Also, we have

∂EF̃f(F̃ , X̃LD)

∂X̃LD

= EF̃

∂f(F̃ , X̃LD)

∂X̃LD

≥ 0,
∂EF̃ g(F̃ , X̃LD)

∂X̃LD

= EF̃

∂g(F̃ , X̃LD)

∂X̃LD

≤ 0.

(1.59)

The strict inequalities in (1.59) hold for non-zero measure sets. Using the above

Lemma, we get that the second term in (1.58) is negative too. Therefore, we have

showed that, for A1 > 1, Cov(P ∗
a −P ∗

a0, P
∗
a +P ∗

a0− F̃ ) < 0, and from (1.56), the total

variance of stock returns on date 0 and 1 is reduced with margin requirements. The

auto-correlation between stock returns on date 0 and 1 without margin requirements

is:

Cov(P ∗
a0 − P−a1, Ṽ − P ∗

a0) = Cov(A2S̃, F̃ − A2S̃) = A2

(

1

2
− 1

4
A2(1 + a2k2)

)

�2
f < 0

Using similar argument, when A1 > 1, it is not hard to show that the auto-

correlation between stock returns on date 0 and 1 with margin requirements Cov(P ∗
a−

P ∗
−a1, Ṽ − P ∗

a ) < 0. The reduction of total variance implies that margin requirements

lead to a less negative auto-correlation between stock returns under asymmetric infor-

mation. Q.E.D.
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Proof of Proposition 1.14: If margin requirements bind for liquidity demanders,

then �m
a = P ∗

a

∂"
=

�
(

�2
u+

a2k2

1+a2k2
�2
F

)

1−!
> �a. If margin requirements bind for liquidity sup-

pliers, then �m
a = ��2

u

!
> �a. Therefore, the average �

m
a > �a. Q.E.D.

Proof of Proposition 1.15: We first show that stringent margin requirements make

liquidity demanders worse off while binding but less stringent margin requirements

make liquidity demanders better off. More specifically, let W ∗
LD and W ∗

LD0 denote

the equilibrium terminal wealth of liquidity demanders with and without margin

requirements respectively. We want to show the following: (1) if S̃ > S∗∗
LD1 or S̃ <

S∗∗
LD2, then E[−e−�W̃ ∗

LD0 ] > E[−e−�W̃ ∗

LD ]; (2) if S∗
LD1 < S̃ ≤ S∗∗

LD1 or S
∗∗
LD2 ≤ S̃ < S∗

LD2,

then E[−e−�W̃ ∗

LD0 ] ≤ E[−e−�W̃ ∗

LD ]; (3) if S∗
LD2 ≤ S̃ ≤ S∗

LD1, then E[−e−�W̃ ∗

LD0 ] =

E[−e−�W̃ ∗

LD ]. S∗
LD1 and S∗

LD2 are defined in (1.49) and (1.50), S∗∗
LD2 < S∗

LD2 and S∗∗
LD1 >

S∗
LD1 are constants depending on parameters in this model, we will define them below.

From Proposition 1.7, we can computeE[−e−�W̃ ∗

LD0 ] = −ec1 , and when short margin

requirements bind for liquidity demanders, we can compute E[−e−�W̃LD ] = −ec2 . It

is not difficult to compute

c1 − c2 ≡ f1(S̃) = −2(1− !)2

!2�4
F

(

1− B2

B1

)2

�2
u(S̃ − S∗

LD2)(S̃ − S∗∗
LD2),

where

S∗∗
LD2 = − 2B1

2 −A1

�̄

1− !

(

1

2
+

!

1− !

B1

B2

)

+
!�2

F

1− B2

B1

(

1

2
− B1

(1− !)B2

)

�(cs − 1)
�̄

1− !
.

(1.60)

S∗∗
LD2−S∗

LD2 = − !

1 − !

2B1

2− A1

B1

B2

�̄

1− !
+

!�2
F

1− B2

B1

(

1− B1

(1− !)B2

)

�(cs−1)
�̄

1− !
< 0.

(1.61)
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Therefore, if S̃ < S∗∗
LD2, then c1 < c2; and if S∗∗

LD2 ≤ S̃ ≤ S∗
LD2, then c1 ≥ c2. Similarly,

we can prove the arguments for the long margin requirements and

S∗∗
LD1 = − 2B1

2 −A1

�̄

1− !

(

1

2
+

!

1− !

B1

B2

)

− !�2
F

1− B2

B1

(

1

2
− B1

(1− !)B2

)

�(cb + 1)
�̄

1− !
.

(1.62)

Therefore, liquidity demanders are worse off if margin requirements are stringent and

they are better off if margin requirements are binding but not stringent. Letting

bLD(S̃) =
S̃ + 2B1

2−A1

�̄
1−!

(

1
2
+ !

1−!
B1

B2

)

!�2
F

1−B2
B1

(

B1

(1−!)B2
− 1

2

)

� �̄
1−!

, bLS(S̃) = −
S̃ + ��̄�2

F − �2�2
F �2

u�̄

!B2

(

1−B2
B1

) + ��2
u−!B2

(2−A2)!
�̄

��2
F �̄

(

1−B2
B1

)

(

��2
u

!B2
− 1

2

) ,

(1.63)

where A1, B1 and B2 are defined as in (1.48) and (1.36). Margin requirements are

stringent for investors i when cb < bi(S̃)− 1 or cs < 1− bi(S̃), i = LD,LS.

We now show that liquidity suppliers are always worse off with binding margin

requirements. Let W ∗
LS and W ∗

LS0 denote the equilibrium terminal wealth of liquid-

ity suppliers with and without margin requirements respectively. We can compute

E[−e−�W̃ ∗

LS0 ] = −ec4 , and if short margin requirements bind for liquidity demanders,

E[−e−�W̃ ∗

LS ] = −ec5 , we have

c4 − c5 ≡ g1(S̃) = −(2− A1)

(

1− B2

B1

)

!B2

��2
F�

2
u

(S̃ − S∗
LD2)(S̃ − S ′

LD2).

It is not difficult to show that

S ′
LD2 − S∗

LD2 =

(

1 + a2k2

a2k2
cs�

2
u + (1− ! + !cs)�

2
F − (1− !)�2

F

)

�
�̄

1− !
> 0.

69



Obviously, if S̃ ≤ S∗
LD2, then c4 ≤ c5, i.e., liquidity suppliers are always worse off with

binding short margin requirements under asymmetric information. Similarly, we can

prove that liquidity suppliers are worse off with binding long margin requirements.

Q.E.D.

Proof of Theorem 2 and Corollary 1.5: Given the hedging demand, when short

margin requirements are not stringent, i.e., S∗
LD1 < S̃ ≤ S∗∗

LD1, liquidity demanders are

better off and liquidity suppliers are worse off, i.e., −ec1 ≤ −ec2 , −ec4 ≥ −ec5 . First,

we assume liquidity suppliers are indifferent between having margin requirements

and lifting margin requirements after transferring ΔWLS to liquidity demanders, i.e.,

−ec5 = −ec4+�ΔWLS . Therefore, ΔWLS = c5−c4
�

, to make liquidity demanders better

off, we need −ec1−�ΔWLD ≥ −ec2 , i.e.,

c1 − c2 ≤ �ΔWLD = �
1− !

!
ΔWLS =

1− !

!
(c5 − c4).

This is equivalent to

(

S̃ +
1

2

(

!�2
F

1− B2

B1

(cs − 1) +
2B1

(2− A1)�

)

�
�̄

1− !

)2

≥ 0. (1.64)
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Chapter 2

Asymmetric Information,

Endogenous Illiquidity, and Asset

Pricing With Imperfect

Competition1

2.1 Introduction

How do information asymmetry, competition among market makers and risk aversion

affect asset pricing, market illiquidity and welfare? How are bid and ask prices, bid

and ask depths, and market makers’ inventory levels jointly determined in equilib-

rium? What is the impact of information asymmetry on the equilibrium degree of

competition among market makers? Is the value of private information to informed

investors always positive? In this paper, we develop a novel and tractable equilibrium

model that can help answer questions like these.

Specifically, we consider an economy with three types of risk averse investors:

informed investors, uninformed investors, and potential market makers who are also

1This is a joint work with Hong Liu.
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uninformed. All investors optimally choose how to trade a risk-free asset and a stock

to maximize their expected utility and all are endowed with some shares of a stock

but no risk-free asset. Informed investors can privately observe the expected payoff

of the stock before the terminal date and thus they have trading demand motivated

by the private information. They are also subject to a liquidity shock modeled as

a random endowment of a nontraded asset (e.g., labor income, highly illiquid asset)

that is correlated with the stock. Accordingly, informed investors also have trading

demand motivated by the liquidity needs for hedging.2 Neither the informed nor the

uninformed trade strategically. Any trades informed and uninformed investors choose

to make must be with market makers at the bid or ask prices. A potential market

maker can choose to be an uninformed investor or to pay a fixed utility cost to become

a (uninformed) market maker.3 As in Kyle (1985), informed and uninformed investors

submit buy or sell orders simultaneously to market makers who then choose how to

trade. In contrast to the standard literature which assumes Bertrand (or perfect)

competition among market makers, we model the competition among market makers

as a Cournot competition: they choose simultaneously how much to buy at the bid and

2As in Glosten (1989) and Vayanos and Wang (2009), the assumption that the informed have
both information and liquidity motivated trades is a simple way to keep the private information not
fully revealed in equilibrium. All we need is that some uninformed investors with liquidity needs
trade in the same direction as the informed so that market makers only see the pooled order flow.
Indeed, we analyzed an alternative model where we have four types of investors: (1) informed who
observe the expected stock payoff, but do not have any liquidity shock; (2) uninformed without
any liquidity shock; (3) uninformed with a privately observed liquidity shock; and (4) uninformed
market makers without any liquidity shock. In the non-fully revealing equilibrium, the equilibrium
price is a linear combination of the private signal and the liquidity shock. The uninformed with a
privately observed liquidity shock can infer the private information from the market price and thus
become informed. We show that our qualitative results in this alternative model stay the same as
in our current model. However, the alternative model involves much more notations and makes the
key intuitions less transparent.

3Allowing informed and uninformed investors to be strategic does not change our main results.
For example, the bid-ask spread could still be lower with asymmetric information. If the market
making cost were a pecuniary payment, then one would need to model where this payment goes in
the economy. We assume it is a utility cost so that we can focus on our main points of interest.
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how much to sell at the ask, taking into account the price impact of their trades. The

equilibrium bid and ask prices are then determined by the market clearing conditions

at the bid and at the ask, i.e., the total amount market makers buy at the bid is equal

to the total amount other investors sell, and the total amount market makers sell at

the ask is equal to the total amount other investors buy. In equilibrium, both the

stock market and the risk-free asset market clear. We solve the equilibrium bid and

ask prices, bid and ask depths, trading volume, and inventory levels in closed forms.

In addition to the methodological contribution, our model can also help explain

some puzzling empirical findings, such as the bid-ask spread can be lower with asym-

metric information (e.g., Kini and Mian (1995), Brooks (1996), Huang and Stoll

(1997), Acker, Stalker and Tonks (2002)) and the bid-ask spread can be positively

correlated with trading volume (e.g., Brock and Kleidon (1992), Lin, Sanger and

Booth (1995), Chordia, Roll, and Subrahmanyam (2001)).4 To help explain the main

intuitions behind these findings, consider the case where the informed buy the stock

while the uninformed sell it in equilibrium. Unlike “noise traders” as modeled in most

of the microstructure models, uninformed investors in our model optimally react to

market prices in determining their trades. Define the reservation price as the critical

price such that an investor buys (sells) the stock if and only if the ask (bid) is lower

(higher) than this critical price. Since the informed buy and the uninformed sell, we

must have the reservation price of the informed > ask > bid > the reservation price

of the uninformed. Similar to the standard result in the classical Cournot competi-

tion models, the equilibrium spread is equal to the absolute value of the difference

4For example, Brooks (1996) find a negative relationship between bid-ask spreads and information
asymmetry around earnings and dividends announcements. Similarly, Acker, Stalker and Tonks
(2002) find that bid-ask spreads start to narrow about two weeks before earnings announcements.
Chordia, Roll, and Subrahmanyam (2001) find that the effective bid and ask spread is positively
correlated with trading volume unconditionally (Table III).
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between the informed’s and the uninformed’s reservation prices, divided by one plus

the number of competitors, i.e., market makers. Because the uninformed do not have

liquidity shock and must estimate the expected stock payoff, the difference is the

sum of three differences across the informed and the uninformed: (1) the difference

due to hedging demand for liquidity shock (“hedging demand effect”); (2) the dif-

ference in the estimation of the expected payoff (“estimation error effect”); and (3)

the difference in the risk premium required for estimation risk (“estimation risk ef-

fect”). Since the uninformed are risk averse, they require a positive estimation risk

premium, thus the estimation risk effect lowers the reservation price. In contrast,

because the uninformed can overestimate or underestimate the expected payoff, the

estimation error effect can increase or decrease their reservation price. When the

uninformed overestimate, the estimation error effect drives up the reservation price

of the uninformed. Thus, if the estimation error effect dominates the estimation risk

effect, then the absolute value of the reservation price difference in the asymmetric

information case can be lower than in the symmetric information case where only the

first effect is present. Therefore, the bid-ask spread with asymmetric information can

be lower than with symmetric information. On the other hand, if the uninformed

underestimate, then the estimation error effect drives down the reservation price and

thus makes it further away from that of the informed. then the absolute value of the

reservation price difference is greater and so is the spread in the asymmetric infor-

mation case. Because the difference between the bid (ask) and the seller’s (buyer’s)

reservation price is also proportional to the absolute value of the reservation price

difference, the trading volume from both the informed and the uninformed also in-

creases in this case. Therefore, the trading volume can be higher with asymmetric

information and can be positively correlated with the bid-ask spread.
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In addition, we show that as competition among market makers (measured by the

number of market makers) increases, the equilibrium bid-ask spread decreases and

trading volume increases. Therefore, our model can also allow for negative corre-

lation between the bid-ask spread and trading volume. As the number of market

makers increases, the net benefit from being a market maker decreases, therefore the

maximum number of market markers that can exist in equilibrium is finite if mar-

ket making cost is positive. We find that the maximum number of market makers in

equilibrium increases in the trading demand and decreases in the market making cost.

When the bid-ask spread increases in information asymmetry, so does the maximum

number of market makers in equilibrium.

Unlike the standard models with noise traders, we find that the value of private

information to the informed can be negative. This is because the uninformed can

over-attribute the informed’s trading to the private information and thus the mar-

ket prices can be worse for the informed investors with asymmetric information. We

also find that even though market makers gain from their market power, both the

informed and the uninformed investors lose. More importantly, the market makers’

welfare gain is smaller than the welfare losses of other investors and thus social welfare

is reduced by the presence of market power. This finding suggests the importance of

increasing competition among market makers through some systematic mechanism

(e.g., improving electronic markets). It also suggests that some limits on bid-ask

spreads and the bid-ask depths with appropriate compensation for market making

may increase social welfare. In addition, consistent with the finding that asymmetric

information may reduce the bid-ask spread, we find that greater information asym-

metry can reduce the social welfare loss due to market power.
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While our analysis focuses on a pure dealership market, our main results also

apply to designated market makers in hybrid markets (e.g., NYSE). As found by

Venkataraman and Waisburd (2007) and Saar (2010), in many limit order markets,

designated market makers for less active securities can improve market quality and

are indeed commonly hired to facilitate trading in these securities.

In contrast to our model, most of the existing models in market microstructure

literature assume market makers engage in Bertrand competition, have unlimited

capital, and are risk neutral (e.g., Copeland and Galai (1983), Kyle (1985), Glosten

and Milgrom (1985)). As is well-known, it takes only two Bertrand competitors to

reach the perfect competition equilibrium prices. However, market prices can be far

from the perfect competition ones (e.g., Christie and Schultz (1994), Chen and Rit-

ter (2000), and Biais, Bisière and Spatt (2003)). In addition, the capital of market

makers is likely finite and market makers can be risk-averse (e.g., Garman (1976),

Lyons (1995)).5 The existing literature also assumes that market makers acquire a

net inventory position after each trading. As shown by the existing literature (e.g.,

Sofianos (1993)), market makers on average lose money from inventory positions and

they tend to offset trades at the bid and the ask to avoid significant net inventory

positions. In addition, in contrast to standard theories (e.g., Amihud and Mendelson

(1980)) which predict that dealers will use their price quotes to control their inven-

tories, Madhavan and Sofianos (1998) find that market makers mainly adjust quote

depths to manage inventories. Our model provides a simple framework for analyzing

how market makers vary the bid and ask depths (and then market determines the

prices) to offset trades to control inventories.

5The popularity of various hedging trades (e.g., delta hedging) by market makers also suggests
they are typically risk averse.
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Our model is also related to Kyle (1989), Subrahmanyam (1991), Diamond and Ver-

recchia (1991), Naik, Neuberger, and Viswanathan (1999), Back and Baruch (2004),

Vayanos and Wang (2009), and Rasu (2010). Kyle (1989) considers the imperfect

competition among risk averse informed investors. He shows that informed investors

reveal less information when competition is imperfect. Subrahmanyam (1991) finds

that increasing the precision of private information intensifies competition between

risk averse informed investors and thus can increase market liquidity. Diamond and

Verrecchia (1991) show that reducing information asymmetry can increase liquidity

and security prices may be nonmonotonic in information asymmetry because of the

potential exit of market makers. In all these three papers, market makers post a single

price, the trading needs of some of the uninformed investors (i.e., “noise investors”)

are exogenous and thus do not respond to price changes. Therefore if market makers

were allowed to post bid and ask prices, then in contrast to our predictions, the bid-

ask spread would always be increasing in information asymmetry. Naik, Neuberger,

and Viswanathan (1999) examine whether full and prompt disclosure of public-trade

details improves the welfare of a risk-averse investor in a two-stage dealership mar-

ket. Similar to the other three papers, market makers post a single price which is the

conditional expected payoff of the stock. Back and Baruch (2004) solve a version of

the Glosten-Milgrom model with a single informed investor, in which the informed in-

vestor chooses his trading times optimally. As in the original Glosten-Milgrom model,

they find that the bid-ask spread is greater with asymmetric information. Vayanos

and Wang (2009) examine how liquidity and asset prices are affected by market imper-

fections and find asymmetric information always increases market illiquidity measured

by price impact. In contrast to Vayanos and Wang (2009), in our model, market mak-

ers are strategic and transaction costs are endogenous. Rasu (2010) finds that bid-ask
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spread can decrease with the fraction of informed investors because the competition

among them intensifies (similar to the effect of signal precision on competition in Sub-

rahmanyam (1991)) and they can trade with impatient investors who are assumed

to always submit market orders. In contrast to our setting and the markets where

bid-ask spreads were empirically found to be smaller with asymmetric information

(e.g., NYSE, Nasdaq), Rasu (2010) considers a pure limit order book market where

there is no designated market maker who must post reasonable quotes.

There also exists a large literature on the effect of illiquidity on portfolio choice

and asset pricing (e.g., Constantinides (1986), Vayanos (1998), Liu and Loewenstein

(2002), Lo, Mamaysky and Wang (2004), Liu (2004), Acharya and Pedersen (2005)).

In this literature, illiquidity is generally modeled as exogenous transaction costs and

therefore the fundamental question of what affects illiquidity (which in turn affects

asset pricing) is largely unanswered.6

The remainder of the paper proceeds as follows. In Section 2.2 we present the

model. In Section 2.3 we solve the case with symmetric information, and in Section 2.4

we derive the equilibrium under asymmetric information. In Section 2.5 we provide

some comparative statics on asset prices, illiquidity, and welfare. We conclude in

Section 2.6. All proofs are in the Appendix.

6In addition, in most of this literature, it is not clear where transaction costs paid by the investors
go and the impact of the agents who receive these transaction costs is thus not examined.
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2.2 The model

In a one period setting, there are N investors who maximize their expected constant

absolute risk aversion (CARA) utility from the terminal wealth on date 1. They can

trade one risk-free asset and one risky asset (“stock”) on date 0. There is a zero net

supply for the risk-free asset, which also serves as the numeraire and thus the risk-free

interest rate is normalized to 0. The total supply of the stock is N�̄ shares and the

date 1 payoff of each share is Ṽ = V̄ + F̂ + ũ, where V̄ is a constant representing

the publicly known expected payoff, F̂ ∼ N(F̄ , �2
F ) is realized on date 0 and may be

observed only by informed investors on date 0, and ũ ∼ N(0, �2
u) cannot be observed

by anyone until it becomes public on date 1, where F̄ is a constant, �F > 0, and N(⋅)

denotes the normal distribution.7

There are three types of investors: NI informed investors (I), NU uninformed

investors (U), and NM ≡ N − (NI +NU) potential market makers (M) who are also

uninformed. Every investor is endowed with �̄ shares of the stock but no risk-free

asset. To become a market maker, an investor must be a potential market maker and

must pay a fixed market-making utility cost c on date 0 before making the market.

We assume that both NU and NI are large such that all I and U investors are price

takers and there are no strategic interactions among them or with market makers.

In addition to the stock, a type I investor is also subject to a liquidity shock that is

modeled as a random endowment of X̂I ∼ N(0, �2
I ) units of a non-traded risky asset

on date 0, with X̂I realized and only directly known to the investor on date 0. The

7F̄ can be set to zero and will not affect any of our results. Allowing F̄ to be nonzero makes it
clear that the asymmetric information case nests the symmetric information case. Throughout this
paper, “bar” variables are constant, “tilde” variables are realized on date 1 and “hat” variables are
realized on date 0.
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non-traded asset has a per-unit payoff of Ñ ∼ N(0, �2
N) that has a covariance of �uN

with ũ and is realized and becomes public on date 1.8 The correlation between the

nontraded asset and the stock results in a liquidity demand for hedging the nontraded

asset payoff. Assuming that the one who is subject to a liquidity shock is also informed

is for simplicity: even if he does not observe the private signal F̂ , because he observes

liquidity shock, he can infer it perfectly from the equilibrium price that reflects the

sum of private information and liquidity shock. Asymmetric information can therefore

exist only if some investors who do not have any liquidity shock are uninformed. We

assume that these investors are all uninformed for simplicity.9

All trades must go through market makers. Specifically, given market bid price B

and ask price A, I and U investors sell to market makers at the bid or buy from them

at the ask or do not trade at all.

For each i ∈ {I, U,M}, investors of type i are ex ante identical. Accordingly, we

restrict our analysis to symmetric equilibria where all type i investors adopt the same

trading strategy. Let ℐi represent a type i investor’s information set on date 0 for

i ∈ {I, U,M}. Given B and A, for i ∈ {I, U}, a type i investor’s problem is

max
�i

E[−e−�W̃i ∣ℐi], (2.1)

subject to the budget constraint

W̃i = (�̄ − �i)
+B − (�i − �̄)+A + �iṼ + X̂iÑ , (2.2)

8The random endowment can represent any shock in the demand for the stock, such as a liquidity
shock or a change in the labor income or a change in a highly illiquid asset.

9Alternatively, we can view an informed investor as a broker who combines the information
motivated trades and liquidity shock motivated trades.
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where X̂U = 0, � > 0 is the absolute risk-aversion parameter, �i is the number of

shares held until date 1 by the investor, and x+ ≡ max(0, x).10

As in Kyle (1985), informed and uninformed investors submit buy or sell orders

simultaneously to market makers who then choose how to trade. Since other investors

buy from market makers at ask and sell to them at bid, we can view these trades

occur in two separate markets: the “ask” market and the “bid” market. In the “ask”

market, other investors are demanders and market makers are suppliers and the op-

posite is true in the “bid” market. As market makers supply (sell) more in the “ask”

market, the ask price goes down and as market makers demand (buy) more in the

“bid” market, the bid price goes up. Accordingly, in contrast to the standard mi-

crostructure literature where market makers directly choose market prices, we assume

market makers directly choose how much to buy at bid given the inverse supply func-

tion (a function of the market makers’ purchasing quantity) of all other participants

and how much to sell at ask given the inverse demand function (a function of the

market makers’ selling quantity) of all other participants.11 Since all trades must go

through market makers, market makers can have market powers especially when the

number of market makers is small. To model the oligopolistic competition among the

market makers, we use the notion of the Cournot competition that is well studied and

understood in economics. Specifically, we assume that market makers simultaneously

choose the optimal number of shares to sell at ask and to buy at bid, taking into

10For the more general case where all investors have liquidity shocks or different risk aversions,
there are eight different subcases. We also obtain closed-form solutions and our main results still
hold in this more general case. We focus on the current case where all investors have the same risk
aversion and only an I investor has liquidity shock to make the main intuitions as clear as possible
and to save space.

11We view the posted bid and ask prices as the required prices to achieve the optimal amount
market makers choose to trade.
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account the price impact of their trades. This is the key innovation of this model and

it drives our main results.

Let � = (�1, �2, ..., �NM
)⊤ and � = (�1, �2, ..., �NM

)⊤ be the vector of the number

of shares market makers buy at bid (i.e., bid depth) and sell at ask (i.e., ask depth)

respectively. The bid price B(�) (i.e., the inverse supply function) and the ask price

A(�) (i.e., the inverse demand function) can be determined by the following stock

market clearing conditions at the bid and ask prices.12

NM
∑

j=1

�j =
∑

i=I, U

Ni(�̄ − �∗i (A,B))+,

NM
∑

j=1

�j =
∑

i=I, U

Ni(�
∗
i (A,B)− �̄)+, (2.3)

where the left-hand sides represent the total purchases and sales by market makers

respectively and the right-hand sides represent the total sales and purchases by other

investors respectively.

Then for j = 1, 2, ..., NM , the potential market maker Mj ’s problem is

max
�j≥0,�j≥0,Rj∈{0,1}

E
[(

−e−�W̃Mj − c
)

Rj +
(

−e−�W̃Mj

)

(1− Rj)∣ℐM

]

, (2.4)

subject to the budget constraint

W̃Mj
=

(

�jA(�)− �jB(�) + (�̄ + �j − �j)Ṽ
)

Rj

+
(

�jB − �jA+ (�̄ + �j − �j)Ṽ
)

(1− Rj), (2.5)

where Rj ∈ {1, 0} indicates the choice of being a market maker or not. Note that

if potential market maker Mj chooses to be a market maker (i.e., Rj = 1), then she

takes into account the price impact of her own trades, i.e., recognizing both A and B

12The risk-free asset market will be automatically cleared by the Walras’ law. A buyer’s (seller’s)
trade only depends on ask A (bid B). So A only depends on � and B only depends on �.
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will be affected by her trades. On the other hand, if Mj chooses not to be a market

maker (i.e., Rj = 0), then she takes prices B and A as given and has exactly the same

problem as an uninformed investor.13

This leads to our definition of the Nash equilibrium of the Cournot competition

where all potential market makers choose to be market makers.14

Definition 2.1 An equilibrium (�∗I , �
∗
U , �

∗, �∗, A∗(�∗), B∗(�∗)) is such that

1. given A∗(�∗) and B∗(�∗), �∗i solves a type i investor’s Problem (2.1) for i ∈

{I, U};

2. given �∗I and �∗U , �
∗
j , �

∗
j and R∗

j = 1 solve potential market maker Mj’s Problem

(2.4), for j = 1, 2, ..., NM ; and

3. A∗(�∗) and B∗(�∗) clear both the stock and the risk-free asset markets.

2.3 The equilibrium with symmetric information

As a benchmark, in this section we study the case with symmetric information where

F̂ is publicly known at date 0 and therefore other investors can also infer a type I

13Note that other investors’ problems can also be written in terms of the amount to sell at bid
(�i) and the amount to buy at ask (�i), for i ∈ {I, U}. However, different from market makers,
either �i or �i must be zero for any of other investors. For simplicity, we use the after-trade position
�i to describe the problems for other investors.

14This is without loss of generality, because the case where some potential market makers choose
not to be market makers is equivalent to the case with less potential market makers. Deviations
by undercutting prices can be prevented by matching prices by other market makers in subsequent
periods in a repeated games setting. As in a standard Cournot competition, varying prices is not in
the strategy space.
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investor’s liquidity shock from the equilibrium stock price. In this case, the equilib-

rium illiquidity arises from the market making cost and the market power of market

makers.

2.3.1 Perfect competition with symmetric information

We first examine the simplest subcase where all investors are price takers and there

is no market-making cost.15 With perfect competition and zero market-making cost,

equilibrium bid and ask prices must be the same and thus all investors trade at the

same price. Let P ∗
s denote the equilibrium stock price. In this subcase a market

maker has exactly the same problem as an uninformed, with �M ≡ �̄+�j − �j (recall

that all market makers are identical and use the same trading strategy). In addition,

the market clearing condition becomes

NI(�
∗
I − �̄) +NU(�

∗
U − �̄) +NM(�∗M − �̄) = 0. (2.6)

With symmetric information, investors’ information sets are such that ℐI = ℐU =

ℐM = {F̂ , X̂I , P
∗
s }. Therefore, a type i (i = I, U,M) investor’s problem is equivalent

to

max
�i

−e−�(�̄−�i)P
∗

s −��iV̄−��iF̂E[e−��iũ−�X̂iÑ ∣ℐi], (2.7)

15With positive market making cost, no competitive equilibrium exists. This is because on one
hand market makers need compensation in terms of a positive bid-ask spread for the market making
cost, on the other hand, a positive bid-ask spread implies infinite demand and supply by market
makers since as price takers they no longer internalize their trades’ price impact.
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which can be simplified into

min
�i

��i(P
∗
s − V̄ − F̂ ) +

1

2
�2(�2i �

2
u + X̂2

i �
2
N + 2�i�uNX̂i), (2.8)

where X̂M = X̂U = 0. Let

ℎ̂i = −�uN

�2
u

X̂i (2.9)

be a type i investor’s hedging demand and

Ĥi = ��2
uℎ̂i (2.10)

be the premium that a type I investor is willing to pay for hedging. From the first

order condition, we get:

P ∗
s − V̄ − F̂ − Ĥi + ��2

u�
∗
i = 0, (2.11)

which leads to the optimal position

�∗i =
V̄ + F̂ + Ĥi − P ∗

s

��2
u

, i = I, U,M. (2.12)

The following concept is helpful for understanding many main results of this paper.

Definition 2.2 The reservation price of an investor for a stock is the critical price

such that the investor buys (sells, respectively) the stock if and only if the ask price is

lower (the bid price is greater, respectively) than this critical price.

Equation (3.41) then implies that the reservation price of a type-i investor is

PR
i ≡ V̄ + F̂ + Ĥi − ��2

u�̄, i = I, U,M. (2.13)
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Equation (2.13) implies that the reservation price of a type-i investor increases with

expected stock payoff and the premium for hedging and decreases with stock payoff

volatility. Then (3.41) can be rewritten as

�∗i = �̄ +
PR
i − P ∗

s

��2
u

, i = I, U,M. (2.14)

Let ΔRPs denote the difference in the reservation prices of the I and U investors,

i.e.,

ΔRPs ≡ PR
I − PR

U = ĤI . (2.15)

The following theorem provides the equilibrium price and equilibrium stock hold-

ings.

Theorem 2.1 With symmetric information, zero market-making cost, and perfect

competition,

1. the equilibrium price of the stock is

P ∗
s =

NI

N
PR
I +

NU

N
PR
U +

NM

N
PR
M = V̄ + F̂ − ��2

u�̄ +
NI

N
ΔRPs; and (2.16)

2. the equilibrium stock holdings are

�∗I = �̄ +

(

1− NI

N

)

ΔRPs

��2
u

, �∗U = �∗M = �̄ − NI

N

ΔRPs

��2
u

. (2.17)

Theorem 2.1 shows that the equilibrium price is the population weighted average

of the reservation prices of all the investors, which follows directly from (2.14) and

the market clearing condition (2.6). The equilibrium price can also be rewritten as
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the reservation price of the uninformed investor plus the difference in the reservation

prices ΔRPs. Theorem 2.1 implies that the equilibrium price increases with the

expected payoff (V̄ + F̂ ), but decreases with the payoff volatility and stock supply.

Since ΔRPs = ��2
uℎ̂I , which increases with risk aversion, the equilibrium price can

increase with the risk aversion in our model. This is because the risk from the non-

traded asset may dominate the risk from the stock and thus investors may be willing

to buy more shares of the stock to hedge the non-traded asset risk as they become

more risk averse, and thus drive up the stock price. Theorem 2.1 implies that I

investors buy and U investors sell if and only if I investors have a higher reservation

price than U investors. Later we show that this result carries through the cases with

imperfect competition and with asymmetric information.

2.3.2 Imperfect competition with symmetric information

When the market-making cost is positive or the competition among market makers

is imperfect, the equilibrium bid-ask spread will no longer be zero. As the number

of market makers increases, the competition among market makers increases and the

benefit from market making decreases. When the number of market makers is so

high that the benefit of market making is lower than the cost of market making,

some potential market makers will choose not to make the market. The following

proposition shows that if the market making cost is below the utility gain from being

the monopolistic market maker and the number of potential market makers is small

enough, then there always exists a unique equilibrium (where all potential market

makers choose to be market makers).
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Proposition 2.1 For any given c ∈ [0, c̄], where c̄ is a monopolistic market maker’s

utility gain from making the market in equilibrium, there exists a unique positive

integer N∗
M such that: there is a unique equilibrium if and only if NM ≤ N∗

M , where

N∗
M represents the maximum number of market makers that can exist in equilibrium

for the given market-making cost c.16

As in the perfect competition case, we conjecture that I investors buy and U

investors sell if and only if I investors have a higher reservation price than U investors.

The following theorem shows that this conjecture is indeed correct.17

Theorem 2.2 Suppose NM ≤ N∗
M . In the presence of market-making cost and mar-

ket power,

1. the equilibrium ask and bid prices are

A∗
s = V̄ + F̂ − ��2

u�̄ +
NMNI

(N + 1)(NM + 1)
ΔRPs +

1

NM + 1
(ΔRPs)

+, (2.18)

B∗
s = V̄ + F̂ − ��2

u�̄ +
NMNI

(N + 1)(NM + 1)
ΔRPs −

1

NM + 1
(ΔRPs)

−, (2.19)

which implies that A∗
s > P ∗

s > B∗
s , where P ∗

s is the perfect competition equi-

librium price as defined in (2.16), x− ≡ max(0,−x), and the bid-ask spread

is

A∗
s − B∗

s =
∣ΔRPs∣
NM + 1

=
∣ĤI ∣

NM + 1
;

16Amixed-strategy equilibrium can exist only when a potential market maker is indifferent between
being a market maker and being an uninformed investor and NM = N∗

M . In these rare cases, we
pick the pure strategy equilibrium.

17Since market makers are identical, we use notations without the subscript j to save notation.
We also use subscript s to indicate the symmetric information case and subscript a to indicate the
asymmetric information case in the next section.
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2. the equilibrium stock holdings are

�∗I = �̄+
NM(NU +NM + 1)

(N + 1)(NM + 1)

(

ΔRPs

��2
u

)

, �∗U = �̄− NINM

(N + 1)(NM + 1)

(

ΔRPs

��2
u

)

,

(2.20)

�∗M = �̄ − NI

N + 1

(

ΔRPs

��2
u

)

; and (2.21)

the equilibrium quote depths are

�∗
s =

NI(NM +NU + 1)

(N + 1)(NM + 1)

(

ΔRPs

��2
u

)−
+

NINU

(N + 1)(NM + 1)

(

ΔRPs

��2
u

)+

,

�∗
s =

NI(NM +NU + 1)

(N + 1)(NM + 1)

(

ΔRPs

��2
u

)+

+
NINU

(N + 1)(NM + 1)

(

ΔRPs

��2
u

)−
,

which implies that the equilibrium trading volume is

NM(�∗
s + �∗

s ) =
NINM(NM + 2NU + 1)

(NM + 1)(N + 1)

( ∣ΔRPs∣
��2

u

)

. (2.22)

Theorem 2.2 implies that both the bid and the ask prices increase in the reservation

price difference ΔRPs. In addition, similar to the results of classical Cournot compe-

tition models of multiple firms who compete through choosing the amount of output

of a homogeneous product, the bid and ask spread is equal to the absolute value of

the reservation price difference ΔRPs, divided by the number of market makers plus

one. This implies that market makers equally split the market making benefit, which

increases in ∣ΔRPs∣ and decreases in competition among market makers.

To help understand this result, suppose I investors buy and U investors sell. The

market clearing condition (2.3) implies that the inverse demand and supply functions

faced by the market makers are respectively

A = PR
I − k1�s, B = PR

U + k2�s,
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NM=1 NM=2

α

βs

s

αs βs,

Figure 2.1: Inverse Demand and Supply Functions and Bid and Ask Spread.

where

k1 =
NM��2

u

NI
, k2 =

NM��2
u

NU
.

We plot the inverse demand and supply functions and equilibrium spreads in Figure

2.1 for the case PR
I > PR

U . Figure 2.1 shows that as market makers buy (sell) more

at the bid (ask), the bid (ask) price goes up (down). In the monopolistic case, the

equilibrium spread is equal to half of the reservation price difference. In addition,

Figure 2.1 also shows that the difference between PR
I (PR

U ) and the ask (bid) price

is also proportional to the reservation price difference ΔRPs = PR
I − PR

U . Therefore

the trading amount of both I and U investors and thus the trading volume are also

proportional to ΔRPs.

As in the perfect competition case, I investors buy and U investors sell if and only

if I investors have a higher reservation price than U investors. Because market makers

have the same reservation price as the U investors, in the net they trade in the same

direction as U investors. Because market makers trade at more favorable prices due
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to market power, they trade more in the net than U investors. More specifically, we

have

�∗M − �̄ =
NM + 1

NM

(�∗U − �̄),

then by the market clearing condition, the net trade of an I investor satisfies

�∗I − �̄ = −NU +NM + 1

NI
(�∗U − �̄).

Therefore, informed and uninformed investors always trade in the opposite directions.

(2.20) and (2.17) imply that investors buy less and sell less for the same hedging

demand ΔRPs/(��
2
u) than the perfect competition case, due to the market illiquidity

resulted from the market power. As we show in the next section, all these properties

hold in the presence of asymmetric information.

2.4 The equilibrium with asymmetric information

We now assume that both F̂ and X̂I are only observable to the informed investors.

Therefore, informed investors’ trades can be motivated by both liquidity shock and

private information. As before, we first consider the perfect competition case without

market making cost.

2.4.1 Perfect competition with asymmetric information

Let P ∗
a denote the competitive equilibrium price with asymmetric information. The

optimal demand of an informed investor is then

�∗I =
V̄ + Ŝ − P ∗

a

��2
u

, (2.23)
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where Ŝ ≡ F̂+ĤI and Ŝ/(��2
u) measures the combined demand from private informa-

tion about the expected payoff and hedging needs. (2.23) implies that the reservation

price for I investors is

PR
Ia = V̄ + Ŝ − ��2

u�̄, (2.24)

which is, as expected, the same as the reservation price PR
I in the symmetric infor-

mation case.

Since the informed investor’s demand is a monotonically increasing function of

Ŝ, his order reveals the value of Ŝ to market makers. Thus we conjecture that

the equilibrium price depends on Ŝ. Since the uninformed investors can then infer

the value of Ŝ from the market price, the information sets for the informed, the

uninformed investors and market makers are ℐI = {F̂ , X̂I , P
∗
a } and ℐU = ℐM =

{P ∗
a } = {Ŝ} respectively. Therefore, the uninformed investor’s problem is

max
�U

−e−��̄P ∗

a+��U (P ∗

a−V̄ )+ 1
2
�2�2U�2

u ×E[e−��U F̂ ∣ℐU ]. (2.25)

Let �2
H ≡ �2�2

uN�
2
I , assumed to be strictly positive, be the variance of the premium

for hedging ĤI . Then the conditional expectation of F̂ is

E[F̂ ∣Ŝ] = F̄ +
�2
F (Ŝ − F̄ )

�2
F + �2

H

, (2.26)

and the conditional variance of F̂ is

Var[F̂ ∣Ŝ] = �2
F�

2
H

�2
F + �2

H

. (2.27)

Let

�̄2
u = Var[Ṽ ∣Ŝ] = �2

u +
�2
H�

2
F

�2
F + �2

H
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be the conditional variance of the stock payoff of the uninformed (and the market

makers) and

� =
�̄2
u

�2
u

> 1

be the ratio of the conditional variance of the stock payoff of the uninformed to that

of the informed. Then, the optimal position of a U -investor is:

�∗U =
V̄ + F̄ +

�2
F (Ŝ−F̄ )

�2
F+�2

H

− P ∗
a

��̄2
u

. (2.28)

As in the symmetric information case with perfect competition, market makers solve

exactly the same problem as the uninformed and have the same reservation price

as the uninformed. Equation (2.28) then implies that the reservation price for a U

investor and an M investor is now

PR
Ua = PR

Ma = V̄ + F̄ +
�2
F (Ŝ − F̄ )

�2
F + �2

H

− ��̄2
u�̄. (2.29)

Thus the difference in the reservation prices is:

ΔRPa = PR
Ia − PR

Ua = ĤI + (F̂ − E[F̂ ∣Ŝ]) + ��̄V ar[F̂ ∣Ŝ] = �2
H

�2
F + �2

H

(Ŝ − F̄ + ��2
F �̄).

(2.30)

Remark 1. As �2
F → 0, since F̂ ∼ N(F̄ , �2

F ), we must have F̂ → F̄ . By (2.27),

we have �̄2
u → �2

u and � → 1. Then PR
ia → PR

i for i = I, U , ΔRPa → ΔRPs,

and therefore the equilibrium with asymmetric information converges to the equilib-

rium with symmetric information. This convergence holds with or without perfect

competition and with or without market making costs. In this sense, the symmetric

information case is a special case of the asymmetric information case. Accordingly,

we only provide proofs for the asymmetric information case.
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As in the symmetric information case, we conjecture that I investors buy and U

and M investors sell if and only if ΔRPa > 0. The following theorem provides the

equilibrium price and equilibrium stock holdings, confirming our conjecture.

Theorem 2.3 In the presence of asymmetric information, there exists a unique com-

petitive equilibrium with stock price being linear in Ŝ, where the equilibrium price is

P ∗
a =

�NI

Na
PR
Ia +

NU

Na
PR
Ua +

NM

Na
PR
Ma = V̄ + F̄ − �(�2

F + �2
u)�̄ +

(

�2
F

�2
H

+
�NI

Na

)

ΔRPa,

(2.31)

and the investors’ optimal stock positions are given by

�∗I = �̄ +

(

1− �NI

Na

)

ΔRPa

��2
u

, (2.32)

�∗U = �∗M = �̄ − �NI

Na

ΔRPa

��̄2
u

, (2.33)

where

Na ≡ �NI +NM +NU > N (2.34)

is the information weighted total population.

As noted above, when �2
F → 0, the equilibrium quantities in Theorem 2.3 converge

to those in the symmetric information case. Since the difference in reservation prices

ΔRPa is linear in Ŝ, so is the equilibrium price. This implies that in equilibrium all

investors can indeed infer the unique value of Ŝ from observing the market price.18

As shown by (2.31), similar to the symmetric information case, the equilibrium price

18In our model, market makers observe order flow and can infer how much informed investors are
trading. However, they do not know how much of the informed investor’s order is due to information
on the stock’s payoff or how much is due to the hedging demand. This is similar to the set-up of
Glosten (1989) and Vayanos and Wang (2009). See Footnote 2.
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is again a weighted average of the reservation prices of the investors in the economy.

Compared to the symmetric information case, however, since � > 1, the weight of the

reservation price of the informed investors (�NI/Na) is greater, because they have

more information about the stock payoff. Accordingly, the information weighted to-

tal population Na puts more weight on the informed investors, which justifies the

interpretation of Na as the information weighted total population. Since ex ante

E[ΔRPa] =
�2
H

�2
F
+�2

H

��2
F �̄ > 0, on average informed investors buy in equilibrium be-

cause the uninformed investors require a risk premium for estimation risk and thus

on average value the stock lower than the informed. Since Na > N , Theorems 2.3

and 2.1 imply that the informed trade less than in the symmetric information case

given the same difference in reservation prices.

2.4.2 Imperfect competition with asymmetric information

As in the symmetric information case, we first show that when the market-making

cost c is not too large, there exists a maximum number of market makers N∗
Ma

below

which a unique equilibrium exists.

Proposition 2.2 For any given c ∈ [0, c̄a], where c̄a is a monopolistic market maker’s

equilibrium utility gain from making the market in the presence of asymmetric in-

formation, there exists a unique positive integer N∗
Ma

such that: there is a unique

equilibrium if and only if NM ≤ N∗
Ma

, where N∗
Ma

represents the maximum number of

market makers that can exist in equilibrium for the given market-making cost c.
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From now on, we assume NM ≤ N∗
Ma

. Let B∗
a and A∗

a be the equilibrium bid price

and ask price respectively. Define

CI ≡
NM(NU +NM + 1)

(NM + 1) (Na + 1)
, CU ≡ �NMNI

(NM + 1) (Na + 1)
, (2.35)

CM ≡ �NI

Na + 1
, CD ≡ NI(NU +NM + 1)

(NM + 1) (Na + 1)
, and � ≡ �2

F

�2
H

+ CU . (2.36)

The following theorem provides the equilibrium bid and ask prices and equilibrium

stock holdings in the presence of asymmetric information and market power.

Theorem 2.4 Suppose NM ≤ N∗
Ma

. In the presence of asymmetric information and

market power, we have that

1. the equilibrium bid and ask prices are

A∗
a = V̄ + F̄ − �(�2

F + �2
u)�̄ + �ΔRPa +

ΔRP+
a

NM + 1
,

B∗
a = V̄ + F̄ − �(�2

F + �2
u)�̄ + �ΔRPa −

ΔRP−
a

NM + 1
.

The bid and ask spread is

A∗
a − B∗

a =
∣ΔRPa∣
NM + 1

=
�2
H ∣Ŝ − F̄ + ��2

F �̄∣
(NM + 1)(�2

F + �2
H)

, (2.37)

and we have

A∗
a > P ∗

a > B∗
a; (2.38)

2. the equilibrium stock holdings are

�∗I = �̄ + CI
ΔRPa

��2
u

, �∗U = �̄ − CU
ΔRPa

��̄2
u

, �∗M = �̄ − CM
ΔRPa

��̄2
u

; (2.39)
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the equilibrium quote depths are

�∗
a = CD

(

(

ΔRPa

��2
u

)−
+

�NU

NU +NM + 1

(

ΔRPa

��̄2
u

)+
)

, (2.40)

and

�∗
a = CD

(

�NU

NU +NM + 1

(

ΔRPa

��̄2
u

)−
+

(

ΔRPa

��2
u

)+
)

, (2.41)

which implies that the equilibrium trading volume is

NM(�∗
a + �∗

a) =
NMNI(NM + 2NU + 1)

(NM + 1)(Na + 1)

( ∣ΔRPa∣
��2

u

)

. (2.42)

Theorem 2.4 implies that both the bid and ask prices increase in ΔRPa and thus

also in Ŝ.19 As in the symmetric information case, the bid and ask spread is equal

to the absolute value of the reservation price difference, divided by NM + 1. Thus

the bid-ask spread decreases in competition among market makers and increases in

∣ΔRPa∣, as illustrated in Figure 2.2.

Both Theorem 2.2 and Theorem 2.4 imply that the bid price converges from be-

low and ask price converges from above to the competitive market equilibrium price

as NM increases when the market making cost is zero, as illustrated in Figure 2.3.

Moreover, the equilibrium bid price always increases in NM while the equilibrium

ask price always decreases in NM due to the more intensive competition among mar-

ket makers.20 Because the equilibrium bid (ask) price is lower (higher) than the

competitive equilibrium price, the equilibrium trading volume is lower than that in

19Theorem 2.4 also implies that in equilibrium, all investors always trade unless the reservation
prices of the I investors and U investors are exactly the same. In the more general case where
different types of investors have different risk aversions or different liquidity shocks, then some types
of non-market-makers might not trade in equilibrium.

20If we measure the stock return of a non-market-maker by Ṽ
A∗

, these results suggest that market
maker competition increases expected return and return volatility, but does not affect the Sharpe-
ratio.
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Figure 2.2: Bid and Ask Spread Against NM and ∣ΔRPa∣

The default parameter values are: �̄ = 1, � = 1, NM = 10, �F = 0.4, �H = 0.4, �u =
0.4, Ŝ = 0.5, and F̄ = 0.

the perfect competition case. Therefore, market power and market making cost in-

crease the spread and decrease the equilibrium trading volume. Thus market power

and market making cost tend to make the bid-ask spread negatively correlated with

trading volume, as expected. On the other hand, because both spread and trading

volume increase in ∣ΔRPa∣, the bid-ask spread can also be positively correlated with

trading volume. Lin, Sanger and Booth (1995) find that trading volume and effective

spreads are positively correlated at the beginning and the end of the day. Chordia,

Roll, and Subrahmanyam (2001) find that the effective bid-ask spread is positively

correlated with trading volume. Our model suggests that these positive correlation

may be caused by a change in the valuation difference of investors.

2.5 Comparative statics

In this section, we provide some comparative statics on asset prices, market illiquidity,

and welfare.
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Figure 2.3: The Bid (lower curve), Ask (upper curve) and Competitive Market Equi-
librium Price (middle line) When NM Increases (with fixed NU +NM)

The default parameter values are: �̄ = 1, � = 1, V̄ = 3, NI = 100, NU = 1000, �F =
0.4, �H = 0.4, �u = 0.4, Ŝ = −0.5, and F̄ = 0.

2.5.1 Bid-ask spread, market depths, and trading volume

First we compare bid-ask spread with and without asymmetric information.

Proposition 2.3 A∗
a − B∗

a < A∗
s −B∗

s iff ∣ΔRPa∣ < ∣ΔRPs∣.

Proposition 2.3 implies that the bid-ask spread with asymmetric information can

be smaller than with symmetric information. This occurs if and only if the reser-

vation price difference with asymmetric information is smaller than with symmetric

information. Figure 4 shows that this occurs when F̂ is relatively small for a given

premium for hedging ĤI . To help understand this result, we can rewrite (2.30) as

ΔRPa = ĤI +

(

F̂ − F̄ − �2
F (Ŝ − F̄ )

�2
F + �2

H

)

+

(

��̄
�2
H�

2
F

�2
F + �2

H

)

, (2.43)

where the first term is from the difference in the hedging demand (“hedging demand

effect”), the second term is the difference in the estimation of the expected stock pay-

off (“estimation error effect”), and the third term is the difference in the risk premium

required for the estimation risk (“estimation risk effect”). Since only the uninformed
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Figure 2.4: The Bid-Ask Spread with and without Asymmetric Information

The colored area denotes those states where the bid-ask spread is narrower with
asymmetric information. The default parameter values are: �̄ = 1, � = 1, V̄ = 3,
NM = 10, �H = 0.4, �F = 0.4, �u = 0.4, and F̄ = 0.

are subject to the estimation risk and they are risk averse, they require a higher risk

premium, which drives their reservation price down and thus the estimation risk effect

always drives up the reservation price difference ΔRPa. In contrast, since the unin-

formed can overestimate or underestimate the expected stock payoff, the estimation

error effect can drive ΔRPa down or up. When the uninformed overestimate and thus

the estimation error effect is negative, which occurs when the realized F̂ is relatively

small, the net of the estimation error effect and the estimation risk effect can cancel

out some of the hedging demand effect. In these cases, the reservation price differ-

ence with asymmetric information can be lower than with symmetric information,

and accordingly the bid-ask spread with asymmetric information can be lower than

with symmetric information. For example, if F̂ = F ∗ ≡ F̄ − ĤI − ��2
F �̄, then the

reservation prices are the same for I and U , because the net of the estimation error

effect and the estimation risk effect exactly cancels out the hedging demand effect.
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Therefore, the equilibrium bid-ask spread must be zero (and no trade). When F̂ is

near F ∗, then investors’ reservation prices are close, and thus the bid-ask spread can

be smaller than with symmetric information. On the other hand, when F̂ is far from

F ∗, then investors’ reservation prices are significantly different from each other, thus

market makers can take advantage of this difference by increasing the bid-ask spread.

Therefore, when F̂ is far from F ∗, the bid-ask spread with asymmetric information

is wider than with symmetric information.

The bid-ask spread comparison in Proposition 2.3 is an ex-post result which is

dependent on the realized values of F̂ and ĤI . We next provide an ex-ante comparison

of the expected bid-ask spreads before the realization of F̂ and ĤI with and without

asymmetric information.

Proposition 2.4 1. The expected bid-ask spreads under symmetric and asymmet-

ric information are:

E[A∗
s −B∗

s ] =
2

NM + 1

�H√
2�

, (2.44)

E[A∗
a − B∗

a] =
�2
H

(NM + 1)b2

(

2b√
2�

e−
�2�4

F �̄2

2b2 + ��2
F �̄

(

2N

(

��2
F �̄

b

)

− 1

))

,

(2.45)

where b =
√

�2
F + �2

H and N is the cdf of the standard normal distribution.

2. If 0 < �H < �F

1+��F �̄
√

�
2

, then E[A∗
a − B∗

a] < E[A∗
s −B∗

s ].

3. If

�2
F >

2�2
H

��H �̄
√
2� − 2

and �H >
2√
2���̄

, (2.46)

then E[A∗
a −B∗

a] > E[A∗
s − B∗

s ].
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Proposition 2.4 shows that in the presence of asymmetric information, if the uncer-

tainty about the hedging demand (�H) is small and the uncertainty about the private

information (�F ) is large, then the average bid-ask spread with asymmetric informa-

tion is smaller than with symmetric information. This is because (1) E[ΔRPa] > 0

and so the informed buy on average; (2) when the uncertainty of the private in-

formation is much greater than that of the hedging demand, the uninformed can

significantly overestimate the expected stock payoff and thus the estimation error

effect offsets some hedging demand effect and the estimation risk effect, making the

expected spread smaller.

Next we further examine how bid-ask spread changes with the degree of information

asymmetry. The difference in the stock payoff conditional variances of the informed

and the uninformed is

Var(Ṽ ∣ℐU)− Var(Ṽ ∣ℐI) =
�2
F�

2
H

�2
F + �2

H

.

Since uncertainty about the hedging demand is unrelated to stock payoff, we will fix

�H and use �F to measure the degree of information asymmetry. The larger �F is,

the greater the information asymmetry between the informed and the uninformed

is. For example, as noted before, if �F → 0, then the asymmetric information case

converges to the symmetric information case because there would be no uncertainty

about stock payoff Ṽ .21

21Alternatively, as in Subrahmanyam (1991) and Vayanos and Wang (2009), one can assume that
the informed observes a private signal s about the stock payoff Ṽ in period 0, where s = Ṽ + "̃,

and "̃ is independently normally distributed with mean zero and variance �2
" . Then V ar[Ṽ ∣s] =

(�2

u
+�2

F
)�2

"

�2
u
+�2

F
+�2

"

. In our model, V ar[Ṽ ∣F̂ ] = �2
u. So, the measure of the precision of private information,

�2
" = �2

u(1 +
�2

u

�2

F

). Therefore, increasing the precision of the signal (decreasing �") in the alternative

model is qualitatively equivalent to increasing �2
F in our model.
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Figure 2.5: The Bid-Ask Spread in Equilibrium Against �F

The default parameter values are �̄ = 1, � = 1, V̄ = 3, NM = 10, NI = 100, NU =
1000, �F = 0.4, �u = 0.4, �H = 0.4, and F̄ = 0. Ŝ = −0.5 in the left graph, and
Ŝ = 0.1 in the right one.

The following proposition shows that in contrast to most of the existing literature

(e.g., Glosten and Milgrom (1985)), the bid-ask spread can decrease as the degree of

information asymmetry increases.

Proposition 2.5
∂(A∗

a−B∗

a)
∂�F

< 0 iff ΔRPa < 0 or ΔRPa > ��2
H �̄.

Proposition 2.5 implies that the bid-ask spread decreases with the information

asymmetry if the informed sell or the informed buy a sufficient amount. To help

understand the intuition, note that �F does not affect the informed’s reservation

price PR
Ia and we rewrite the reservation price of the uninformed (2.29) as

PR
Ua = V̄ +

(

F̄ +
�2
F (Ŝ − F̄ )

�2
F + �2

H

)

− �

(

�2
u +

�2
F�

2
H

�2
F + �2

H

)

�̄. (2.47)

If ΔRPa < 0, then the reservation price of the uninformed is above that of the

informed and I investors sell, U investors buy. In addition, in this case Ŝ− F̄ < 0 by

(2.30), which implies that as �F increases, the conditional mean (the second term in

(2.47)) decreases and the risk premium (the third term in (2.47)) increases. Therefore

as �F increases, the reservation price of the uninformed decreases and gets closer to the
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reservation price of the informed as long as ΔRPa < 0, which reduces the reservation

price difference and hence also the spread.

If ΔRPa > ��2
H �̄, then the reservation price of the informed is above that of the

uninformed and I investors buy, U investors sell. As �F increases, the risk premium

still increases and thus drives down the reservation price of the uninformed and makes

it further away from the reservation price of the informed. However, because in this

case Ŝ − F̄ > ��2
H �̄ > 0 by (2.30), the conditional mean increases as �F increases,

which drives up the reservation price of the uninformed and thus makes it closer to

the reservation price of the informed. When Ŝ − F̄ > ��2
H �̄, the effect of �F on

the conditional mean dominates its effect on the risk premium and thus drives up

the reservation price of the uniformed. Therefore, the reservation price difference

decreases and so does the spread. On the other hand, if 0 < ΔRPa < ��2
H �̄, then the

effect of �F on the risk premium dominates its effect on conditional mean and thus

drives down the reservation price of the uniformed. Therefore, the reservation price

difference increases and so does the spread. These cases are shown in Figure 2.5.

Next we examine how market depths, trading volume and net order size change

with information asymmetry, reservation price difference, the number of market mak-

ers and the stock payoff volatility.

Proposition 2.6 1. �∗
a > �∗

s, �∗
a > �∗

s , and NM(�∗
a + �∗

a) > NM(�∗
s + �∗

s ) iff

∣ΔRPa∣ > Na+1
N+1

∣ΔRPs∣.

2. ∂(NM (�∗

a+�∗

a))
∂�F

> 0 iff

0 < ΔRPa <
(Na + 1)��2

u�̄

NI + (N + 1)�2
u/�

2
H

(< ��2
H �̄).
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The same is true for the net order size ∣�∗
a − �∗

a∣.

3. As ∣ΔRPa∣ increases, the bid depth �∗
a, the ask depth �∗

a, the net order size

∣�∗
a − �∗

a∣, and the trading volume NM (�∗
a + �∗

a) all increase.

4. Fixing NU+NM , as NM increases, both the bid depth and the ask depth decrease,

but trading volume increases when the number of uninformed investors is large.

5. As the stock payoff volatility �u increases, the bid depth, the ask depth, the net

order size, and the trading volume all decrease.

Part 1 of Proposition 2.6 shows that the equilibrium market depths and trading

volume can be higher with asymmetric information when the reservation price differ-

ence is large relative to the symmetric information case. Intuitively, with a greater

reservation price difference, the difference between a buyer’s (seller’s) reservation price

and the ask (bid) price also increases, so the trading demand of the investor increases

and therefore both the market depths and the market trading volume increase. In

addition, Part 2 suggests that both the trading volume and the net order size can

increase with information asymmetry when I investors buy a moderate amount. In

contrast to Easley and O’Hara (1987, 1992), Proposition 2.5 and Part 2 of Proposition

2.6 imply that net order size can be negatively correlated with the bid-ask spread.

For example, if

(Na + 1)��2
u�̄

NI + (N + 1)�2
u/�

2
H

< ΔRPa < ��2
H �̄,

then as information asymmetry �F increases, the net order size decreases by Part 2

of Proposition 2.6, but bid-ask spread increases by Proposition 2.5. However, since

the bid-ask spread also increases with ∣ΔRPa∣, Part 3 implies that the bid-ask spread

and net order size can also be positively correlated. A typical justification of this
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positive correlation (e.g., Easley and O’Hara (1987, 1992)) is that as the net order

size increases, the adverse effect of information asymmetry increases and thus the bid-

ask spread increases. In contrast, we view the net order size as the net trade that the

market makers are willing to make, because ∣�∗
a − �∗

a∣ = ∣�∗M − �̄∣. As the reservation

price difference increases, the spread increases and thus the market makers are willing

to sell or buy more in the net at the better price.

Part 4 shows that when the number of the uninformed is large, then competition

increases market trading volume, although it decreases the quote depths of individual

market maker. Part 5 implies that as the stock payoff volatility increases, market

depths, trading volume, and net order size all decrease due to the increased risk.

2.5.2 Value of private information and utility loss due to

market power

In the standard microstructure models with noise investors, the value of private in-

formation to the informed is always positive, because the informed can always profit

from trading with noise investors. The following result shows it can be negative in

our model because the uninformed optimally react to market prices.

Proposition 2.7 1. The informed investors are worse off in the asymmetric in-

formation case than in the symmetric information case iff ∣ΔRPa∣ < Na+1
N+1

∣ΔRPs∣.

2. The expected utility of the informed decreases with information asymmetry �F

iff

ΔRPa < 0 or ΔRPa >
(Na + 1)��2

u�̄

NI + (N + 1)�2
u/�

2
H

.
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Proposition 2.7 implies that for any given liquidity shock, if the private information

F̂ is relatively small in magnitude, then the informed are worse off with asymmetric

information, and therefore the value of the private information is negative in these

cases (similar to Figure 4). Intuitively, when the private information F̂ is relatively

small, the uninformed over-attribute the informed’s trading to the private informa-

tion F̂ and thus the market prices are worse for the informed investors than in the

symmetric information case. In addition, the expected utility of the informed can

decrease with information asymmetry when I investors sell or buy a large amount,

because the uninformed over-attribute more the informed’s trading to the private

information as the information asymmetry increases.

Next we analyze the welfare loss due to market power. To isolate the effect of

market power on welfare, in this subsection, we assume that the market-making cost

c = 0. Let Ui and Ūi denote the utility of i (i = I, U,M) investors with imperfect

and perfect competition respectively and fi and f̄i be the corresponding certainty

equivalent wealth, i.e., Ui = − exp(−�fi), and Ūi = − exp(−�f̄i).

Definition 2.3 The certainty equivalent wealth loss of a type i investor (i = I, U,M)

due to market power is f̄i − fi.

The following proposition shows how market power affects the welfare of the in-

formed, the uninformed and market makers.22

22Closed-form expressions for the equivalent wealth losses are available from the authors.
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Proposition 2.8 1. Market makers’ market power makes themselves better off

and non-market-makers worse off. More importantly, the sum of their welfare

is reduced.

2. Both the certainty equivalent wealth losses for I and U investors and the cer-

tainty equivalent wealth gain for M investors decrease with NM , and increase

with ∣ΔRPa∣.

Not surprisingly, market makers benefit from their market power by earning a

higher bid-ask spread. Other investors are worse off because they have to trade

at a worse price. More importantly, Proposition 2.8 shows that market makers’

welfare gain is less than the welfare loss of the other investors. This is because when

determining their trades, market makers do not internalize other investors’ losses.

As NM increases, market power decreases and thus both market makers’ utility gain

and other investors’ utility loss decrease. This implies that there exists a Pareto

improvement wealth transfer and market regulation mechanism that limits market

bid-ask spreads and depths and makes all investors (including market makers) strictly

better off. It also suggests the importance of promoting competition among market

makers on improving market liquidity and social welfare.

If the difference between reservation prices increases, then investors trade more

with market makers and therefore investors’ certainty equivalent wealth loss increases

as we can see in Figure 2.6.

Next we compare investors’ total certainty equivalent wealth loss due to market

power with and without asymmetric information and examine how the loss changes
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Figure 2.6: The Total Certainty Equivalent Wealth Loss due to Market Power Against
NM and ∣ΔRPa∣.

The default parameter values are: �̄ = 1, � = 1, V̄ = 3, NM = 10, NI = 100, NU =
1000, �F = 0.4, �H = 0.4, �u = 0.4, Ŝ = 0.5, and F̄ = 0.

with information asymmetry. Since the bid-ask spread can decrease with informa-

tion asymmetry and investors’ welfare can increase when the spread is smaller, one

expects that the presence of asymmetric information may decrease the welfare loss

from market power. The following proposition confirms this expectation.

Proposition 2.9 Let WLa and WLs be the certainty equivalent wealth loss due to

market power with and without asymmetric information respectively, then

1. WLa < WLs if and only if ∣ΔRPa∣ < C1∣ΔRPs∣, where C1 ≥ 1 is as defined in

(2.68) in the Appendix.

2. If ΔRPa < 0, then the total certainty equivalent wealth loss due to market power

decreases with information asymmetry �F .

Proposition 2.9 implies that the presence of asymmetric information indeed may

decrease the investors’ total certainty equivalent wealth loss due to market power.

This decrease typically occurs when F̂ is relatively small for a given hedging premium
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Figure 2.7: The Total Certainty Equivalent Wealth Loss with and without Asymmet-
ric Information.

The colored area denotes those states where the total certainty equivalent wealth loss
is greater with symmetric information. The default parameter values are: �̄ = 1, � =
1, V̄ = 3, NM = 10, NI = 100, NU = 1000, �H = 0.4, �F = 0.4, �u = 0.4 and F̄ = 0.
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Figure 2.8: The Total Certainty Equivalent Wealth Loss due to Market Power Against
�F .

The default parameter values are: �̄ = 1, � = 1, V̄ = 3, NM = 10, NI = 100, NU =
1000, �F = 0.4, �H = 0.4, �u = 0.4, and F̄ = 0. Ŝ = −0.5 in the left graph, and
Ŝ = 0.1 in the right graph.
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ĤI , as illustrated in Figure 2.7. In most of these cases, the bid-ask spread is smaller

in the presence of asymmetric information.

In addition, Part 2 of Proposition 2.9 shows that the total certainty equivalent

wealth loss due to the market power can decrease in information asymmetry �F , as

illustrated in Figure 2.8. Intuitively, since the bid-ask spread can increase or decrease

with information asymmetry, so can the total welfare loss.

2.5.3 Maximum number of market makers in equilibrium

As shown in Propositions 1 and 2, as long as the market making cost is not too large,

there exists a positive maximum number of market makers in equilibrium.

Figure 2.9 shows that as the market making cost c or the competition increases, the

maximum number decreases, because market making becomes less profitable. Figure

2.10 shows the same cases as Figure 2.5. When ∣Ŝ∣ is large, the maximum number of

market makers decreases with information asymmetry, because the spread decreases

with information asymmetry (as shown in Figure 2.5) and the profitability of market

making declines.

2.6 Concluding remarks

In this paper we develop a novel framework to study how asymmetric information,

competition among market makers, and risk aversion affect equilibrium illiquidity and

asset pricing. All our results are obtained in closed-form. In contrast to most of the

existing models, our model can help explain many puzzling empirical findings such as
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Figure 2.9: The Maximum Number of Market Makers in Equilibrium Against Market
Making Utility Cost c and ∣ΔRPa∣

The default parameter values are �̄ = 1, � = 1, V̄ = 3, NI = 100, NU = 1000, �F =
0.4, �u = 0.4, �H = 0.4, c = 0.005, Ŝ = −0.5, and F̄ = 0.
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Figure 2.10: The Maximum Number of Market Makers in Equilibrium Against �F

The default parameter values are �̄ = 1, � = 1, V̄ = 3, NM = 10, NI = 100, NU =
1000, �F = 0.4, �u = 0.4, �H = 0.4, and F̄ = 0. Ŝ = −0.5 in the left graph, and
Ŝ = 0.1 in the right one.
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the bid-ask spread may decrease with asymmetric information, and trading volume

may be positively correlated with market illiquidity. The main departure from the

existing literature where market makers directly compete through prices is that in

our model market makers choose simultaneously how much to sell at the ask and how

much to buy at the bid through Cournot competition and then the market clearing

condition determines both the bid and the ask prices. Our new framework is flexible,

tractable and can be applied to analyze many interesting questions on the effect of

asymmetric information, competition, trading constraints on asset prices and market

illiquidity.

2.7 Appendix

Proof of Theorem 2.1: This is a special case of the proof of Theorem 2.3 with

�2
F = 0 and F̄ = F̂ . Q.E.D.

Proof of Theorem 2.2: This is a special case of the proof of Theorem 2.4 with

�2
F = 0 and F̄ = F̂ . Q.E.D.

Proof of Proposition 2.1: This is a special case of the proof of Proposition 2.2

with �2
F = 0 and F̄ = F̂ . Q.E.D.
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Proof of Proposition 2.2: Let UM denote the utility of the N tℎ
M potential market

maker with NU uninformed investors and UU denote the utility of the (NU+1)tℎ unin-

formed investor with NM − 1 market makers. We compare their certainty equivalent

wealths fM and fU , where fM and fU are such that UM = − exp(−�fM ) − c, and

UU = − exp(−�fU ). To save space, we prove the case when U investors are buyers

in equilibrium. The proof for the other case is similar. First we assume that given

NM and NU , all potential market makers choose to be market makers, then the proof

of Theorem 2.4 implies the existence of a unique (linear) equilibrium and provides

explicit expressions for the equilibrium. Later we show that when the market making

cost c is small enough, the assumption indeed holds. Under the assumption, we have

fM = (�∗
aA

∗
a−�∗

aB
∗
a)+(�̄+�∗

a−�∗
a)

(

V̄ +
�2
F Ŝ + �2

HF̄

�2
F + �2

H

)

− 1

2
�(�̄+�∗

a−�∗
a)

2�2
u, (2.48)

and

fU = (�̄ − �∗U)A
∗
a + �∗U

(

V̄ +
�2
F Ŝ + �2

H F̄

�2
F + �2

H

)

− 1

2
��∗U

2�2
u, (2.49)

where �∗
a, �

∗
a, A

∗
a and B∗

a are as given in Theorem 2.4.

fM(NM , NU)− fU(NM − 1, NU + 1) = NI(ΔRPa)
2×

2N2
M (NM +NU + 1)2 + �NI(N

2
M (2NM + 2NU + 3)− 1)

2N2
M(NM + 1)2(Na + 1)2��2

u

> 0,

and fM(NM , NU) → fU(NM − 1, NU + 1) as NM → ∞. It can be verified that

fM(NM , NU) − fU(NM − 1, NU + 1) strictly decreases in NM . Therefore, for small

enough c > 0, −e−�fM (NM , NU ) − c −
(

−e−�fU (NM−1, NU+1)
)

> 0 when NM < ∞,

and −e−�fM (NM , NU ) − c < −e−�fU (NM−1, NU+1), when NM → ∞. It follows that for

small enough c > 0, there is a unique 0 < x∗ < ∞, such that −e−�fM (x∗, NU ) − c =
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−e−�fU (x∗−1, NU+1). Then for any NM ≤ N∗
Ma ≡ [x∗], all potential market makers

choose to be market makers and then Theorem 2.4 implies there exists a unique equi-

librium. It can be shown that for a fixed NU +NM , the equivalent wealth of a market

maker decreases with competition (NM) and the equivalent wealth of an uninformed

investor increases with competition, i.e., fM(n, NU +NM − n) is decreasing in n and

fU(n − 1, NU + NM − n + 1) is increasing in n. This implies that a monopolistic

market maker’s equivalent wealth gain from making the market is the greatest. Let

c̄ =
(

−e−�fM (1, NU+NM−1)
)

−
(

−e−�fU (0, NU+NM )
)

be the monopolistic market maker’s

equivalent wealth gain from making the market, where fU(0, NU + NM) is the cer-

tainty equivalent wealth of the (NU + NM)tℎ uninformed investor when there is no

trade. Then for any c < c̄, there exists a unique N∗
Ma such that for any NM ≤ N∗

Ma,

there exists an equilibrium where all potential market makers choose to be market

makers in equilibrium and then Theorem 2.4 implies the existence of a unique equi-

librium. Q.E.D.

Proof of Theorem 2.3: From our assumption that F̂ and �uNX̂I are i.i.d nor-

mally distributed, we know that Ŝ is normally distributed with mean F̄ and variance

�2
F + �2

H . The covariance between F̂ and Ŝ is Cov(F̂ , Ŝ) = Cov(F̂ , F̂ − ��uNX̂I) =

V ar(F̂ ) = �2
F , therefore, the correlation coefficient of F̂ and Ŝ is �F̂ ,Ŝ = �F√

�2
F+�2

H

.

E[F̂ ∣Ŝ] = �2
F Ŝ+�2

H F̄

�2
F+�2

H

, and V ar[F̂ ∣Ŝ] = �2
H�2

F

�2
F+�2

H

. The optimal stock holding of an unin-

formed investor is given in (2.28), and similarly, for an market maker we get:

�∗M =
V̄ +

�2
F Ŝ+�2

H F̄

�2
F+�2

H

− P ∗
a

��̄2
u

. (2.50)
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Substituting (2.23), (2.28) and (3.47) into the market clearing condition NI�
∗
I +

NU�
∗
U + NM�∗M = N�̄, we get the equilibrium stock price P ∗

a . Substituting P ∗
a into

(2.23), (2.28) and (3.47), we can get I, U and M investors’ optimal stock holdings.

Q.E.D.

Proof of Theorem 2.4: We prove the case when ΔRPa < 0. In this case, we

conjecture that I investors sell at the bid and U investors buy at the ask. Given bid

price B and ask price A, the optimal demand of I and U are:

�∗I =
V̄ + Ŝ −B

��2
u

and �∗U =
V̄ +

�2
F Ŝ+�2

H F̄

�2
F+�2

H

− A

��̄2
u

. (2.51)

Substituting (2.51) into the market clearing conditions (2.3), we get that the mar-

ket clearing bid and ask prices are:

A = V̄ +
�2
F Ŝ + �2

H F̄

�2
F + �2

H

−��̄2
u�̄−

��̄2
u

NU

NM
∑

j=1

�j, and B = V̄ +Ŝ−��2
u�̄+

��2
u

NI

NM
∑

j=1

�j , (2.52)

where �j and �j are the optimal shares of stock Mj choose to buy from I investors

and sell to U investors respectively. Market maker Mj ’s problem is:

min
�j ,�j

−�(�jA−�jB)−�(�̄+�j−�j)

(

V̄ +
�2
F Ŝ + �2

HF̄

�2
F + �2

H

)

+
1

2
�2�̄2

u(�̄+�j−�j)
2, (2.53)

where A and B are the market clearing prices given in (2.52). F.O.C with respect to

�j gives us:

�2
H

�2
F + �2

H

(Ŝ− F̄ ) + �
(

�̄2
u − �2

u

)

�̄+
��2

u

NI

NM
∑

j=1

�j +

(

�2
u

NI

+ �̄2
u

)

��j − ��̄2
u�j = 0. (2.54)
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Sum all, we get:

NM�2
H

�2
F + �2

H

(Ŝ − F̄ ) +NM�
(

�̄2
u − �2

u

)

�̄+

(

(NM + 1)�2
u

NI

+ �̄2
u

)

�

NM
∑

j=1

�j − ��̄2
u

NM
∑

j=1

�j = 0.

(2.55)

F.O.C with respect to �j , we get:

�

NU

NM
∑

j=1

�j − �(�j − �j) +
�

NU
�j = 0. (2.56)

Sum all, we get:
NM
∑

j=1

�j =
NU +NM + 1

NU

NM
∑

j=1

�j . (2.57)

Substituting (2.57) into (2.55), we get

NM
∑

j=1

�j = − NMNINU

(NM + 1) (Na + 1)

�2
H

(

Ŝ − F̄ + ��2
F �̄
)

(�2
F + �2

H)��
2
u

= − NMNINU

(NM + 1) (Na + 1)

ΔRPa

��2
u

.

(2.58)

Substituting (2.58) into (2.52), we can get the equilibrium ask and bid price A∗
a and

B∗
a. And then substituting A∗

a and B∗
a into (2.51), we can get the optimal stock

holdings of I and U investors as stated in Theorem 2.4.

It is not difficult to derive that A∗
a < P ∗

aU and B∗
a > P ∗

aI are equivalent to

Ŝ < F̄ − ��2
F �̄ which is exactly the condition we conjecture for I investors to sell

and U investors to buy. Similarly, we can prove the other case of this Theorem when

I investors buy and U investors sell. Q.E.D.

Proof of Proposition 2.3: This is direct from Theorem 2.4. Q.E.D.
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Proof of Proposition 2.4:

E[A∗
s − B∗

s ] =
1

NM + 1
E∣ĤI ∣ =

2

NM + 1

�H√
2�

. (2.59)

We know from previous section,

f(Ŝ) =
1√
2�b

e−
(Ŝ−F̄ )2

2b2 , Ŝ = F̂ + ĤI .

Therefore,

E[A∗
a − B∗

a]

=
�2
H

(NM + 1)b2

∫ +∞

−∞
∣Ŝ − F̄ + ��2

F �̄∣f(Ŝ)dŜ

=
�2
H

(NM + 1)b2

(

2b√
2�

e−
�2�4

F �̄2

2b2 + ��2
F �̄

(

2N

(

��2
F �̄

b

)

− 1

))

.

We use the fact that x
1+x2n(x) < 1−N(x) < n(x)

x
, for x ≥ 0, where n(x) is the pdf

for standard normal distribution. We have:

E[A∗
a − B∗

a] >
��2

H�
2
F �̄

(NM + 1)(�2
F + �2

H)
.

And we have

E[A∗
a −B∗

a] ≤
�2
H

(NM + 1)(�2
F + �2

H)
E(∣F̂ − F̄ ∣+ ∣ĤI ∣+ ��2

F �̄)

=
�2
H

(NM + 1)(�2
F + �2

H)

(

2�F√
2�

+
2�H√
2�

+ ��2
F �̄

)

Therefore, if
��2

H�2
F �̄

�2
H+�2

F

> 2�H√
2�
, which is equivalent to (2.46), then E[A∗

a − B∗
a] >

E[A∗
s −B∗

s ], and if 0 < �H < �F

1+��̄�F

√
�
2

, then E[A∗
a − B∗

a] < E[A∗
s −B∗

s ]. Q.E.D.
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Proof of Proposition 2.5: If Ŝ < F̄ − ��2
F �̄, then

∂(A∗

a−B∗

a)
∂�F

=
2�F �2

H (Ŝ−F̄−��2
H �̄)

(�2
F+�2

H )2(NM+1)
< 0.

If Ŝ > F̄−��2
F �̄, then

∂(A∗

a−B∗

a)
∂�F

= −2�F �2
H (Ŝ−F̄−��2

H �̄)

(�2
F
+�2

H
)2(NM+1)

< 0, when Ŝ > F̄+��2
H �̄. Q.E.D.

Proof of Proposition 2.6: Part 1 is direct from Theorems 2.2 and 2.4.

For Part 2, if ΔRPa < 0, i.e., Ŝ < F̄ − ��2
F �̄, then

∂ (NM(�∗
a + �∗

a))

∂�F

=

−2�FNMNI(1 +NM + 2NU)�
2
H(−(�2

HNI + (N + 1)�2
u)(Ŝ − F̄ ) + (N + 1)��2

H�
2
u�̄)

�(NM + 1)(�2
F (N + 1)�2

u + �2
H(�

2
FNI + (N + 1)�2

u))
2

< 0,

(2.60)

and if ΔRPa > 0, i.e., Ŝ > F̄ − ��2
F �̄, then

∂ (NM(�∗
a + �∗

a))

∂�F

=

2�FNMNI(1 +NM + 2NU)�
2
H(−(�2

HNI + (N + 1)�2
u)(Ŝ − F̄ ) + (N + 1)��2

H�
2
u�̄)

�(NM + 1)(�2
F (N + 1)�2

u + �2
H(�

2
FNI + (N + 1)�2

u))
2

,

(2.61)

which is positive if ΔRPa <
(Na+1)��2

u �̄

NI+(N+1)�2
u/�

2
H

.

Part 3 follows directly from Theorem 2.4 and noting that the net order size is

∣�∗
a − �∗

a∣ =
NI ∣ΔRPa∣

(�NI +NU +NM + 1)��2
u

.

For Part 4, fixing NU +NM , we have

∂�∗
a

∂NM
=

∂�∗
a

∂NM
= −NI(1 +NU +NM)∣ΔRPa∣

(NM + 1)2(Na + 1)��2
u

< 0,
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∂
∑NM

j=1(�
∗
a + �∗

a)

∂NM
=

NI(2NU + 1−N2
M)∣ΔRPa∣

(NM + 1)2(Na + 1))��2
u

,

which is positive when NU is large.

For Part 5, if ΔRPa < 0, then

∂�∗
a

∂�u
=

2NI(NU +NM + 1)(N + 1)ΔRPa

(NM + 1)(Na + 1)2��3
u

< 0,

∂�∗
a

∂�u
=

∂�∗
a

∂�u

NU

NM +NU + 1
< 0.

The case for ΔRPa > 0 is similar. Q.E.D.

Proof of Proposition 2.7: The expected utility of I investors in asymmetric infor-

mation case is: UIa = − exp(−�fIa), where

fIa =
1

2

(

− Ĥ2
I�

2
N

��2
uN

+ 2�̄

(

ΔRPa + F̄ + V̄ − ��̄�2
F +

ΔRPa�
2
F

�2
H

)

(2.62)

+
ΔRP 2

a (1 +NM +NU)
2N2

M

(1 +Na)2(1 +NM)2��2
u

− ��̄2�2
u

)

(2.63)

Similarly, the expected utility of I investors in symmetric information case is: UIs =

− exp(−�fIs), where

fIs =
1

2

(

−Ĥ2
I �

2
N

��2
uN

+ 2�̄
(

ΔRPs + F̂ + V̄
)

+
ΔRP 2

s (1 +NM +NU)
2N2

M

(1 +N)2(1 +NM )2��2
u

− ��̄2�2
u

)

.

Therefore, after some simplification, we have

fIa − fIs =
N2

M(1 +NM +NU)
2
(

− ΔRP 2
s

(1+N)2
+ ΔRP 2

a

(1+Na)2

)

2(1 +NM)2��2
u

.
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Therefore, the informed investors are better off if and only if ∣ΔRPa∣ > Na+1
N+1

∣ΔRPs∣.

Part 2 follows from the proof of the second part of Proposition 2.6. Q.E.D.

Proof of Proposition 2.8: We will provide proof only for the case when I investors

sell and U investors buy. Similar proof applies to the other case. The expected

utility of I investors in the perfect competition case (i.e., without market power) is:

ŪI = − exp(−�f̄I), where

f̄I =

(

�̄ − Ŝ + V̄ − P ∗
a

��2
u

)

P ∗
a +

Ŝ + V̄ − P ∗
a

��2
u

(V̄ + F̂ )

−1

2
�

⎛

⎝

(

Ŝ + V̄ − P ∗
a

��2
u

)2

�2
u + X̂2

I �
2
N + 2

Ŝ + V̄ − P ∗
a

��2
u

�uNX̂I

⎞

⎠ . (2.64)

The expected utility of I investors with market power is: UI = − exp(−�fI), where

fI =

(

�̄ − Ŝ + V̄ − B∗
a

��2
u

)

B∗
a +

Ŝ + V̄ − B∗
a

��2
u

(V̄ + F̂ )

−1

2
�

⎛

⎝

(

Ŝ + V̄ −B∗
a

��2
u

)2

�2
u + X̂2

I �
2
N + 2

Ŝ + V̄ −B∗
a

��2
u

�uNX̂I

⎞

⎠ . (2.65)

It is not difficult to see that:

WLI ≡ f̄I − fI = (P ∗
a − B∗

a)

((

�̄ − Ŝ + V̄

��2
u

)

+
1

2�

P ∗
a +B∗

a

�2
u

)

. (2.66)

Substituting P ∗
a , B

∗
a and A∗

a into (2.66) and simplifying, we have

WLI = (ΔRPa)
2 (NaNU + (NU +NM )(NM + 1))((Na + 1)(2NM + 1)(NU +NM) + �NINM)

2N2
a (Na + 1)2(NM + 1)2��2

u

,
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which is greater than 0, i.e., I investors are always worse off with market power.

Similarly, we can show that

WLU = (ΔRPa)
2N

2
I ((NM + 1)2 + 2Na(NM + 1)2 +N2

a (2NM + 1)) �

2N2
a (Na + 1)2(NM + 1)2��2

u

which is greater than 0 and

WLM = −(ΔRPa)
2NI ((NM + 1)2((2Na + 1)(NU +NM)−Na) + 2N2

aNU(Na +NM + 2))

2N2
a (Na + 1)2(NM + 1)2��2

u

,

which is less than 0, i.e., the uninformed are worse off and market makers are better

off with market power. The total certainty equivalent wealth loss is WLA = NI ×

WLI +NU ×WLU +NM ×WLM , which can be shown to be

(ΔRPa)
2 (Na + 1)2NU +NM ((NM + 1)2 + (Na +NM + 2)NU)

2Na(Na + 1)2(NM + 1)2��2
u

,

which is strictly greater than 0, i.e., other investors lose more than market makers

gain due to market power.

Then taking derivative of WLi (i = I, U,M) with respect to NM yields that they

all decrease with NM . WLi (i = I, U,M) clearly increases with ∣ΔRPa∣. Q.E.D.

Proof of Proposition 2.9: The total equivalent wealth loss with symmetric infor-

mation is: WLs = (ΔRPs)
2D2, and the total equivalent wealth loss with asymmetric

information is: WLa = (ΔRPa)
2E2, where D2 and E2 are as follows.

D2 =
NI (NU(N + 1)2 +NMNU(N + 1) +NM(NM + 1)(NU +NM + 1))

2(NM + 1)2N(N + 1)2��2
u

, (2.67)

E2 =
NI (NU(Na + 1)2 +NMNU(Na + 1) +NM(NM + 1)(NU +NM + 1))

2(NM + 1)2Na(Na + 1)2��2
u

.
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We then have

C1 ≡
D

E
≥ 1, (2.68)

where the inequality holds because E is decreasing in Na, which is increasing with

information asymmetry �2
F . Then we have WLa < WLs if and only if ∣ΔRPa∣ <

C1∣ΔRPs∣. For Part 2, taking derivative of WLa with respect to �F (Na is a function

of �F ) shows that WLa decreases with �F when ΔRPa < 0. Q.E.D.
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Chapter 3

Increases in Risk Aversion and the

Distribution of Portfolio Payoffs1

3.1 Introduction

The trade-off between risk and return arises in many portfolio problems in finance.

This trade-off is more-or-less assumed in mean-variance optimization, and is also

present in the comparative statics for two-asset portfolio problems explored by Arrow

(1965) and Pratt (1964) (for a model with a riskless asset) and Kihlstrom, Romer,

and Williams (1981) and Ross (1981) (for a model without a riskless asset). However,

the trade-off is less clear in portfolio problems with many risky assets, as pointed

out by Hart (1975). Assuming a complete market with many states (and therefore

many assets), we show that a less risk-averse (in the sense of Arrow and Pratt)

agent’s portfolio payoff is distributed as the payoff for the more risk-averse agent,

plus a non-negative random variable (extra return), plus conditional-mean-zero noise

(risk). Therefore, the general complete-markets portfolio problem, which may not be

a mean-variance problem, still trades off risk and return.

1This is a joint work with Philip H. Dybvig.
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If either agent has non-increasing absolute risk aversion, then the non-negative

random variable (extra return) can be chosen to be a constant. We also give a

counter-example that shows that in general, the non-negative random variable cannot

be chosen to be a constant. In this case, the less risk averse agent’s payoff can also

have a higher mean and a lower variance than the more risk averse agent’s payoff.

We further prove a converse theorem. Suppose there are two agents, such that in all

complete markets, the first agent chooses a payoff that is distributed as the second’s

payoff, plus a non-negative random variable, plus conditional-mean-zero noise. Then

the first agent is less risk averse than the other agent.

Our main result applies directly in a multiple period setting with consumption

only at a terminal date, and perhaps dynamic trading is the most natural motivation

for the completeness we are assuming. Our main result can also be extended to

a multiple period model with consumption at many dates, but this is more subtle.

Consumption at each date may not be ordered when risk aversion changes, due to

shifts in the timing of consumption. However, for agents with the same pure rate

of time preference, we show there is a weighting of probabilities across periods that

preserves the single-period result.

Our main result also extends to some special settings with incomplete markets,

for example, a two-asset world with a risk-free asset. The proof is in two parts. The

first part is the standard result: decreasing the risk aversion increases the portfolio

allocation to the asset with higher return. The second part shows that the portfolio

payoff for the higher allocation is distributed as the other payoff plus a constant plus

conditional-mean-zero noise. However, for a two-asset world without a risk-free asset,

both parts of the proof fail in general and we have a counter-example. Therefore, our
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result is not true in general with incomplete markets. We further provide sufficient

conditions under which our results still hold in a two-risky-asset world using Ross’s

stronger measure of risk aversion. Each result from two assets can be re-interpreted

as applying to parallel settings with two-fund separation identifying the two funds

with the two assets.

The proofs in the paper make extensive use of results from stochastic dominance,

portfolio choice, and Arrow-Pratt and Ross (1981) risk aversion. One contribution of

the paper is to show how these concepts relate to each other. We use general versions

of the stochastic dominance results for L1 random variables2 and monotone concave

preferences, following Strassen (1965) and Ross (1971). To see why our results are

related to stochastic dominance, note that if the first agent’s payoff equals the second

agent’s payoff plus a non-negative random variable plus conditional-mean-zero noise,

this is equivalent to saying that negative the first agent’s payoff is monotone-concave

dominated by negative the second agent’s payoff.

Section 3.2 introduces the model setup and provides some preliminary results,

Section 3.3 derives the main results. Section 3.4 extends the main results in a multiple-

period model. Section 3.5 discusses the case with incomplete markets. Section 3.6

illustrates the main results using some examples and Section 3.7 concludes.

2We assume that the consumptions have unbounded distributions instead of compact support
(e.g., Rothschild-Stiglitz (1970)). Compact support for consumption is not a happy assumption in
finance because it is violated by most of our leading models. Unfortunately, as noted by Rothschild-
Stiglitz (1972), the integral condition is not available in our general setting.
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3.2 Model Setup and Some Standard Results

We want to work in a fairly general setting with complete markets and strictly concave

increasing von Neumann-Morgenstern preferences. There are two agents A and B

with von Neumann-Morgenstern utility functions UA(c) and UB(c), respectively. We

assume that UA(c) and UB(c) are of class C2, U ′
A(c) > 0, U ′

B(c) > 0, U ′′
A(c) < 0 and

U ′′
B(c) < 0. Each agent’s problem has the form:

Problem 3.1 Choose random consumption c̃ to

maxE[Ui(c̃)],

s.t. E[�̃c̃] = w0. (3.1)

In Problem 3.1, i = A or B indexes the agent, w0 is initial wealth (which is the

same for both agents), and �̃ > 0 is the state price density. We will assume that �̃ is

in the class P for which both agents have optimal random consumptions with finite

means, denoted c̃A and c̃B.

The first order condition is

U ′
i(c̃i) = �i�̃, (3.2)

i.e., the marginal utility is proportional to the state price density �̃. We have

c̃i = Ii(�i�̃), (3.3)

where Ii is the inverse function of U ′
i(⋅). By continuity and negativity of the second

order derivative U ′′
i (⋅), c̃i is a decreasing function of �̃.
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Our main result will be that c̃A ∼ c̃B + z̃ + "̃, where “ ∼ ” denotes “is distributed

as,” z̃ ≥ 0, and E["̃∣cB+z] = 0.3 We firstly review and give the proofs in the Appendix

of some standard results in the form needed for the proofs of our main results.

Lemma 3.1 If B is weakly more risk averse than A,
(

∀c,−U ′′

B(c)

U ′

B(c)
≥ −U ′′

A(c)

U ′

A(c)

)

, then

1. for any solution to (3.2) (which may not satisfy the budget constraint (3.1)),

there exists some critical consumption level c∗ (can be ±∞) such that c̃A ≥ c̃B

when c̃B ≥ c∗, and such that c̃A ≤ c̃B when c̃B ≤ c∗;

2. assuming c̃A and c̃B have finite means, and A and B have equal initial wealths

w0, then E[c̃A] ≥ E[c̃B] ≥ w0

E[�̃]
. Note that w0

E[�̃]
is the payoff to a riskless invest-

ment of w0.

The first result in Lemma 3.1 implies that the consumptions function of the less

risk averse agent crosses that of the more risk averse agent at most once and from

above. This single-crossing result is due to Pratt (1964), expressed in a slightly dif-

ferent way. Lemma 3.1 gives us a sense in which decreasing the agent’s risk aversion

takes us further from the riskless asset. In fact, we can obtain a more explicit descrip-

tion (our main result) of how decreasing the agent’s risk aversion changes the optimal

portfolio choice. The description and proof are both related to monotone concave

stochastic dominance.4 The following theorem gives a distributional characterization

3Throughout this paper, the letters with “tilde” denote random variables, and the corresponding
letters without “tilde” denote particular values of these variables.

4We avoid using the term “second order stochastic dominance” in this paper because different
papers use different definitions. In this paper, we follow unambiguous terminology from Ross (1971):
(1) if E[V (X̃)] ≥ E[V (Ỹ )] for all nondecreasing functions, then X̃ monotone stochastically dominates
Ỹ ; (2) if E[V (X̃)] ≥ E[V (Ỹ )] for all concave functions, then X̃ concave stochastically dominates
Ỹ ; (3) if E[V (X̃)] ≥ E[V (Ỹ )] for all concave nondecreasing functions, then X̃ monotone-concave
stochastically dominates Ỹ .
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of stochastic dominance for all monotone and concave functions of one random vari-

able over another. The form of this result is from Ross (1971) and is a special case of

a result of Strassen (1965) which generalizes a traditional result for bounded random

variables to possibly unbounded random variables with finite means.

Theorem 3.1 (Monotone Concave Stochastic Dominance: Strassen (1965)

and Ross (1971)) Let X̃ and Ỹ be two random variables defined in R1 with finite

means; then E[V (X̃)] ≥ E[V (Ỹ )], for all concave nondecreasing functions V (⋅), i.e.,

X̃ monotone-concave stochastically dominates Ỹ , if and only if Ỹ ∼ X̃− Z̃+ "̃, where

Z̃ ≥ 0, and E["̃∣X − Z] = 0.

Rothschild and Stiglitz (1970, 1972) popularized a similar characterization of

stochastic dominance for all concave functions (which implies equal means) that is a

special case of another result of Strassen’s.

Theorem 3.2 (Concave Stochastic Dominance: Strassen (1965), and Roth-

schild and Stiglitz (1970, 1972)) Let X̃ and Ỹ be two random variables defined in R1

with finite means; then E[V (X̃)] ≥ E[V (Ỹ )], for all concave functions V (⋅), i.e., X̃

concave stochastically dominates Ỹ , if and only if Ỹ ∼ X̃ + "̃, where E["̃∣X ] = 0.

Rothschild and Stiglitz (1970) also offered an integral condition for Concave Stochas-

tic Dominance, which unfortunately does not generalize to all random variables with

finite mean, as they note in Rothschild and Stiglitz (1972).5

5The integration by parts used to prove the integral condition unfortunately includes a term
at the lower endpoint which needs not equal to zero in general. Therefore, the integral condition
may not be sufficient or necessary condition for Concave Stochastic Dominance under unbounded
distribution. As noted by Rothschild and Stiglitz (1972), the integral condition does not appear to
have any natural analog in these more general cases. Ross (1971) has a sufficient condition for the
integral condition to be valid, but unfortunately it is hard to interpret.
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3.3 Main Results

Suppose agent A with utility function UA and agent B with utility function UB have

identical initial wealth w0 and solve Problem 3.1. Recall that we assume that UA(c)

and UB(c) are of class C2, U ′
A(c) > 0, U ′

B(c) > 0, U ′′
A(c) < 0 and U ′′

B(c) < 0. We have

Theorem 3.3 If B is weakly more risk averse than A in the sense of Arrow and Pratt
(

∀c,−U ′′

B(c)

U ′

B(c)
≥ −U ′′

A(c)

U ′

A(c)

)

, then for every �̃ ∈ P, c̃A is distributed as c̃B + z̃ + "̃, where

z̃ ≥ 0 and E["̃∣cB + z] = 0. Furthermore, if c̃A ∕= c̃B, neither z̃ nor "̃ is identically

zero.

Proof: The first step of the proof6 is to show that −c̃B monotone-concave stochas-

tically dominates −c̃A, i.e., E[V (−c̃B)] ≥ E[V (−c̃A)] for any concave nondecreasing

function V (⋅). By Lemma 3.1, c̃A and c̃B are monotonely related and there is a critical

value c∗ above which c̃A is weakly larger and below which c̃B is weakly larger. Let

V ′(⋅) be any selection from the subgradient correspondence ∇V (⋅), then V ′(⋅) is posi-

tive and nonincreasing and it is the derivative of V (⋅) whenever it exists. Recall from

Rockafellar (1970), the subgradient for concave7 V (⋅) is ∇V (x1) ≡ {s∣(∀x), V (x) ≤

V (x1) + s(x − x1)}. By concavity of V (⋅), ∇V (x) is nonempty for all x1. And if

x2 > x1, then s2 ≤ s1 for all s2 ∈ ∇V (x2) and s1 ∈ ∇V (x1).

The definition of subgradient for concave V (⋅) implies that

V (x+Δx) ≤ V (x) + V ′(x)Δx. (3.4)

6As noted in Footnote 4, the integral condition does not hold under unbounded distributions,
so that a proof using Lemma 3.1 and the intergral condition would be wrong. More specifically,
because c̃A and c̃B might be unbounded, we cannot get that −c̃B monotone concave stochastically
dominates −c̃A directly from

∫ c

q=−∞
[F−cA(q)− F−cB (q)] dq ≥ 0.

7For convex V (⋅), the inequality is reversed.
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Letting x = −c̃B and Δx = −c̃A + c̃B in (3.4), we have

V (−c̃A)− V (−c̃B) ≤ V ′(−c̃B)(−c̃A + c̃B). (3.5)

If c̃B ≥ c∗, then c̃A ≥ c̃B (by Lemma 3.1), and V ′(−c̃B) ≥ V ′(−c∗), while if c̃B ≤ c∗,

then c̃A ≤ c̃B and V ′(−c̃B) ≤ V ′(−c∗). In both cases, we always have (V ′(−c̃B) −

V ′(−c∗))(c̃A − c̃B) ≥ 0. Rewriting (3.5) and substituting in this inequality, we have

V (−c̃B)− V (−c̃A) ≥ V ′(−c̃B)(c̃A − c̃B) ≥ V ′(−c∗)(c̃A − c̃B). (3.6)

Since V (⋅) is nondecreasing and E[c̃A] ≥ E[c̃B] (result 2 of Lemma 3.1), we have

E[V (−c̃B)− V (−c̃A)] ≥ E[V ′(−c∗)(c̃A − c̃B)] = V ′(−c∗)(E[c̃A]− E[c̃B]) ≥ 0. (3.7)

Therefore, we have that −c̃B is preferred to −c̃A by all concave nondecreasing V (⋅),

and by Theorem 3.1, this says that −c̃A is distributed as −c̃B − z̃ + "̃, where z̃ ≥ 0

and E["̃∣ − cB − z] = 0. This is exactly the same as saying that c̃A is distributed as

c̃B + z̃ + (−"̃), where z̃ ≥ 0 and E[−"̃∣cB + z] = 0. Relabel −"̃ as "̃, and we have

proven the first sentence of the theorem.

To prove the second sentence of the theorem, note that because c̃A and c̃B are

monotonely related, c̃A is distributed the same as c̃B only if c̃A = c̃B. Therefore,

if c̃A ∕= c̃B, one or the other of z̃ or "̃ is not identically zero. Now, if z̃ is identi-

cally zero, then "̃ must not be identically zero, and c̃A is distributed as c̃B + "̃, by

Jensen’s inequality, we have E[UA(c̃A)] = E[UA(c̃B + "̃)] = E[E[UA(c̃B + "̃)∣c̃B]] <

E[UA(E[c̃B∣c̃B] + E["̃∣c̃B])] = E[UA(c̃B)], which contradicts the optimality of c̃A for

agent A. If "̃ is identically zero, then z̃ must not be, and c̃A is distributed as c̃B + z̃,
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where z̃ ≥ 0 and is not identically zero. Therefore, c̃A strictly monotone stochastically

dominates c̃B, contradicting optimality of c̃B for agent B. This completes the proof

that if c̃A and c̃B do not have the same distribution, then neither "̃ nor z̃ is identically

0. Q.E.D.

We now prove a converse result of Theorem 3.3: if in all complete markets, one

agent chooses a portfolio whose payoff is distributed as a second agent’s payoff plus

a nonnegative random variable plus conditional-mean-zero noise, then the first agent

is less risk averse than the second. Specifically, we have

Theorem 3.4 If for all �̃ ∈ P, E[c̃A] ≥ E[c̃B], then B is weakly more risk averse

than A
(

∀c,−U ′′

B(c)

U ′

B(c)
≥ −U ′′

A(c)

U ′

A(c)

)

. This implies a converse result of Theorem 3.3: if for

all �̃ ∈ P, c̃A is distributed as c̃B + z̃ + "̃, where z̃ ≥ 0 and E["̃∣cB + z] = 0, then B

is weakly more risk averse than A.

Proof: We prove this theorem by contradiction. If B is not weakly more risk averse

than A, then there exists a constant ĉ, such that −U ′′

B(ĉ)

U ′

B(ĉ)
< −U ′′

A(ĉ)

U ′

A(ĉ)
. Since UA and

UB are of the class of C2, from the continuity of −U ′′

i (c)

U ′

i(c)
, where i = A,B, we get

that there exists an interval RA containing ĉ, s.t., ∀c ∈ RA, −U ′′

B(c)

U ′

B
(c)

< −U ′′

A(c)

U ′

A
(c)
. We

pick c1, c2 ∈ RA with c1 < c2. Now from Lemma 3.5 in the Appendix, there exists

hypothetical agents A1 and B1, so that UA1 agrees with UA and UB1 agrees with UB

on [c1, c2], but A1 is everywhere strictly more risk averse than B1 (and not just on

[c1, c2]).

Fix any �B > 0 and choose �̃ to be any random variable that takes on all the

values on [
U ′

B(c2)

�B
,
U ′

B(c1)

�B
]. Then, the corresponding c̃B solving the first order condition
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U ′
B(c̃B) = �B�̃ takes on all the values on [c1, c2]. Because U

′′
B < 0, the F.O.C solution

is also sufficient(expected utility exists because �̃ and UB(c̃B) are bounded), c̃B solves

the portfolio problem for utility function UB, state price density �̃ and initial wealth

w0 = E[�̃c̃B]. Since UB1 = UB on the support of c̃B, letting c̃B1 = c̃B, then c̃B1 solves

the corresponding optimization for UB1 for �B1 = �B.

We now show that there exists �A1 such that c̃A1 ≡ IA1(�A1 �̃) satisfies the budget

constraint E[�̃c̃A1] = w0. Due to the choice of UA1, IA1(�A1 �̃) exists and is a bounded

random variable for all �A1. Letting � =
U ′

B(c2)

�B
and �̄ =

U ′

B(c1)

�B
( so, �̃ ∈ [�, �̄]), we

define �1 =
U ′

A1
(c1)

�
and �2 =

U ′

A1
(c2)

�̄
, then we have

c1 = IA1(�1�) > IA1(�1�̃) , c2 = IA1(�2�̄) < IA1(�2�̃). (3.8)

The inequalities follow from IA1(⋅) decreasing. From (3.8) and c1 ≤ c̃B ≤ c2, we have

E[�̃IA1(�1�̃)] < E[�̃c1] ≤ E[�̃c̃B] = w0, E[�̃IA1(�2�̃)] > E[�̃c2] ≥ E[�̃c̃B] = w0.

(3.9)

Since IA1(��̃) is continuous from the assumption that UA1(⋅) is in the class of C2

and U ′′
A1

< 0. By the intermediate value theorem, there exists �A1 , such that

E[�̃IA1(�A1 �̃)] = w0, i.e., c̃A1 satisfies the budget constraint for �̃ and w0.

From the second result of Lemma 3.6 in the Appendix, if c̃A1 ∕= c̃B1 , then we have

that c̃B1 has a wider range of support than that of c̃A1. Let the support of A1’s

optimal consumption be [c3, c4] ⊆ [c1, c2]. From the construction of UA1 , UA1 = UA on

the support of c̃A1 . Letting c̃A = c̃A1 , then c̃A solves the corresponding optimization

for UA for �A = �A1.
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Now, since B1 is strictly less risk averse than A1, from Theorem 3.3, c̃B1 ∼ c̃A1 +

z̃1 + "̃1, where z̃1 ≥ 0 and E["̃1∣cA1 + z1] = 0. Furthermore, if c̃A1 ∕= c̃B1, then neither

z̃1 nor "̃1 is identically zero. From the first result of Lemma 3.6 in the Appendix, if A1

is strictly more risk averse than B1, then c̃A1 ∕= c̃B1 . Thus, by Theorem 3.3, neither

z̃1 nor "̃1 is identically zero. Therefore, E[c̃B1 ] > E[c̃A1 ], i.e. E[c̃B] > E[c̃A], this

contradicts the assumption that, for all �̃ ∈ P, E[c̃A] ≥ E[c̃B]. This also contradicts

a stronger condition: for all �̃ ∈ P, c̃A is distributed as c̃B + z̃ + "̃, where z̃ ≥ 0 and

E["̃∣cB + z] = 0. Q.E.D.

Theorem 3.3 shows that if B is weakly more risk averse than A, then c̃A is dis-

tributed as c̃B plus a risk premium plus random noise. The distributions of the

risk premium and the noise term are typically not uniquely determined. Also, it

is possible that the weakly less risk averse agent’s payoff can have a higher mean

and a lower variance than the weakly more risk averse agent’s payoff as we will see

in example 3.6.2. This can happen because although adding condition-mean-zero

noise always increases variance, adding the non-negative random variable decreases

variance if it is sufficiently negatively correlated with the rest (Since V ar(c̃A) =

V ar(c̃B)+V ar("̃)+V ar(z̃)+2Cov(c̃B, z̃), if Cov(c̃B, z̃) < −1
2
(V ar(z̃) + V ar("̃)) , then

V ar(c̃A) < V ar(c̃B)). This should not be too surprising, given that it is well-known

that in general variance is not a good measure of risk8 for von Neumann-Morgenstern

8See, for example Hanoch and levy (1970), and the survey of Machina and Rothschild (2008).
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utility functions,9 and for general distributions in a complete market, mean-variance

preferences are hard to justify.

Our second main result says that when either of the two agents has non-increasing

absolute risk aversion, we can choose z̃ to be non-stochastic, in which case z =

E[c̃A − c̃B]. The basic idea is as follows. If either agent has non-increasing absolute

risk aversion, then we can construct a new agent A∗ whose consumption equals to

A’s consumption plus E[c̃A − c̃B]. We can therefore get the distributional results for

agent A∗ and B since A∗ is weakly less risk averse than B.

Theorem 3.5 If B is weakly more risk averse than A and either of the two agents

has non-increasing absolute risk aversion, then c̃A is distributed as c̃B + z + "̃, where

z = E[c̃A − c̃B] ≥ 0 and E["̃∣cB + z] = 0.

Proof: Define the utility function UA∗(c̃) = UA(c̃ + E[c̃A − c̃B]). In the case when A

has non-increasing absolute risk aversion, A∗ is weakly less risk averse than B because

A is weakly less risk averse than B and non-increasing risk aversion of A implies that

A∗ is weakly less risk averse than A. In the case when B has non-increasing absolute

risk aversion, B∗ with utility UB∗ = UB(c̃+E[c̃A− c̃B]) is weakly less risk averse than

B and A∗ is weakly less risk averse than B∗. Therefore, in both cases, we have that

A∗ is weakly less risk averse than B.

9If von Neumann-Morgenstern utility functions are mean-variance preferences, then they have
to be quadratic utility functions, but quadratic preferences are not appealing because they are not
increasing everywhere and they have increasing risk aversion where they are increasing. Also, Dybvig
and Ingersoll (1982) show that if markets are complete, mean-variance pricing of all assets implies
there is arbitrage unless the payoff to the market portfolio is bounded.
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Give agent A∗ initial wealth wA∗ = w0 −E[�̃]E[c̃A − c̃B], where w0 is the common

initial wealth of agent A and B. A∗’s problem is

max
c̃

E[UA(c̃+ E[c̃A − c̃B])],

s.t. E[�̃c̃] = wA∗ . (3.10)

The first order conditions are related to the optimality of c̃A for agent A. To satisfy

the budget constraints, agent A∗ will optimally hold c̃A −E[c̃A − c̃B].

By Lemma 3.1, c̃A − E[c̃A − c̃B] and c̃B are monotonely related and there is a

critical value c∗ above which c̃A − E[c̃A − c̃B] is weakly larger and below which c̃B is

weakly larger. This implies that

(V ′(−c̃B)− V ′(−c∗))(c̃A − E[c̃A − c̃B]− c̃B) ≥ 0, (3.11)

where V (⋅) is an arbitrary concave function and V ′(⋅) is any selection from the sub-

gradient correspondence ∇V (⋅). The concavity of V (⋅) implies that

V (−c̃A + E[c̃A − c̃B])− V (−c̃B) ≤ V ′(−c̃B)(−c̃A + E[c̃A − c̃B] + c̃B). (3.12)

(3.11) and (3.12) imply that

V (−c̃B)− V (−c̃A + E[c̃A − c̃B]) ≥ V ′(−c∗)(c̃A −E[c̃A − c̃B]− c̃B). (3.13)

We have

E[V (−c̃B)− V (−c̃A +E[c̃A − c̃B])] ≥ E[V ′(−c∗)(c̃A − c̃B −E[c̃A − c̃B])] = 0. (3.14)
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Therefore, for any concave function V (⋅), we have

E[V (−c̃B)] ≥ E[V (−c̃A + E[c̃A − c̃B])]. (3.15)

By Theorem 3.2, this says that −c̃A + E[c̃A − c̃B] is distributed as −c̃B + "̃, where

E["̃∣ − cB] = 0. This is exactly the same as saying that c̃A −E[c̃A − c̃B] is distributed

as c̃B + (−"̃), where E[−"̃∣cB] = 0. Relabel −"̃ as "̃, and we have

c̃A − E[c̃A − c̃B] ∼ c̃B + "̃, i.e., c̃A ∼ c̃B + E[c̃A − c̃B] + "̃, (3.16)

where E["̃∣cB + z] = 0. Q.E.D.

The non-increasing absolute risk aversion condition is sufficient but not neces-

sary. A quadratic utility function has increasing absolute risk aversion. But, as

illustrated by example 3.6.1, the non-negative random variable can still be chosen to

be a constant for quadratic utility functions (which can be viewed as an implication

of two-fund separation and Theorem 3.7). If the non-negative random variable can

be chosen to be a constant, then we have the following Corollary:

Corollary 3.1 If B is weakly more risk averse than A and either of the two agents

has non-increasing absolute risk aversion, then V ar(c̃A) ≥ V ar(c̃B).

Proof: From Theorem 3.5, the non-negative random variable z̃ can be chosen to be

the constant E[c̃A− c̃B]. Then we have E("̃∣c̃B) = 0, which implies that Cov("̃, c̃B) =

0. Therefore, V ar(c̃A) = V ar(c̃B) + V ar("̃) + 2Cov(c̃B, "̃) = V ar(c̃B) + V ar("̃) ≥

V ar(c̃B). Q.E.D.
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3.4 Extension to a Multiple-Period Model

We now examine our main results in a multiple period model. We assume that each

agent’s problem is:

Problem 3.2

max
c̃t

E[

T
∑

t=1

DtUi(c̃t)],

s.t. E[
T
∑

t=1

�̃tc̃t] = w0, (3.17)

where i = A or B indexes the agent, Dt is a discount factor (e.g., Dt = e−�t if the

pure rate of time discount � is constant), and �̃t is the state price density in period t.

Again, we will assume that both agents have optimal random consumptions, denoted

c̃At and c̃Bt, and both c̃At and c̃Bt have finite means. The first order condition gives

us

U ′
i(c̃it) = �i

�̃t
Dt

, i = A,B,

we have

c̃it = Ii

(

�i
�̃t
Dt

)

,

where Ii(⋅) is the inverse function of U ′
i(⋅), by negativity of the second order deriva-

tives, c̃it is a decreasing function of �̃t. By similar arguments in the one period model,

we have

Lemma 3.2 If B is weakly more risk averse than A, then

1. there exists some critical consumption level c∗t (can be ±∞) such that c̃At ≥ c̃Bt

when c̃Bt ≥ c∗t , and such that c̃At ≤ c̃Bt when c̃Bt ≤ c∗t ;
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2. if it happens that the budget shares as a function of time are the same for both

agents at some time t, i.e., E[�̃tc̃At] = E[�̃tc̃Bt], then E[c̃At] ≥ E[c̃Bt], and we

have c̃At ∼ c̃Bt + z̃t + "̃t, where z̃t ≥ 0 and E["̃t∣cBt + zt] = 0. And if c̃At ∕= c̃Bt,

then neither z̃t nor "̃t is identically zero. In particular, if the budget shares are

the same for all t, then this distributional condition holds for all t.

The proof of Lemma 3.2 is essentially the same as the proof of the corresponding

parts of Lemma 3.1, and Theorem 3.3 in the one-period model. If the Dt is not the

same for both agents, or the same for the two agents without any restriction on budget

shares, then the distributional condition may not hold in any period. For example, if

the weakly more risk averse agent B spends most of the money earlier but the weakly

less risk averse agent A spends more later, then the mean payoff could be higher in

an earlier period for the weakly more risk averse agent, i.e., E[c̃Bt] > E[c̃At].

Now, assume both agents have the same discount factor Dt and choose the period

and consumption using a mixture model: first choose t with probability �t =
Dt

∑T
t=1 Dt

,

and then choose �̃t from its distribution. Then, we will show that, under this proba-

bility measure c̃A ∼ c̃B + z̃ + "̃.

Definition 3.1 Suppose the original probability space has probability measure P over

states Ω with filtration {ℱt}. We define the discrete random variable � on associated

probability space (Ω∗,ℱ∗, P ∗) so that P ∗(� = t) = �t ≡ Dt/(
∑T

t=1 Dt). We then

define a single-period problem on a new probability space (Ω̂, ℱ̂ , P̂ ). Define the state

of nature in the product space (t, !) ∈ Ω̂ ≡ Ω∗×Ω with t and ! drawn independently.

Let ℱ̂ be the optional �-algebra, which is the completion of ℱ∗ × ℱ� . The synthetic
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probability measure is the one consistent with independence generated from P̂ (f ∗, f) =

P ∗(f ∗)× P (f) for all subsets f ∗ ∈ ℱ∗ and subsets f ∈ ℱ� .

The synthetic probability measure assigns a probability measure that looks like a

mixture model, drawing time first assigning probability �t to time t, and then drawing

from �̃t using its distribution in the original problem.

Recall that under the original probability measure, each agent’s problem is given

in (3.17). Now we want to write down an equivalent problem, in terms of the choice

of distribution of each c̃t, but with the new synthetic probability measure. The

consumption c̃ under the new probability space over which synthetic probabilities are

defined is a function of �̃ and t; we identify c̃(�̃, t) with what used to be c̃t(�̃). To

write the objective function in terms of the synthetic probabilities, we can write

E[
T
∑

t=1

DtU(c̃t)] =
T
∑

t=1

DtE[U(c̃t)] =
T
∑

t=1

(
T
∑

s=1

Ds)�tÊ[U(c̃)∣t]

= (

T
∑

s=1

Ds)

T
∑

t=1

�tÊ[U(c̃)∣t] = (

T
∑

s=1

Ds)Ê[U(c̃)], (3.18)

where Ê denotes the expectation under the synthetic probability.
∑T

s=1Ds is a posi-

tive constant, so the objective function is equivalent to maximizing Ê[U(c̃)].

Now, we can write the budget constraint in terms of the synthetic probabilities,

w0 = E[

T
∑

t=1

�̃tc̃t] =

T
∑

t=1

�tE[
�̃t
�t
c̃t] =

T
∑

t=1

�tÊ[
�̃

�
c̃∣t] = Ê[

�̃

�
c̃]. (3.19)

Then we can apply our single-period results (Theorem 3.3, 3.4 and 3.5) to derive

that our main results holds on a mixture model of the c̃A and c̃B over time:
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Theorem 3.6 In a multiple-period model, assume agent A and B have the same dis-

count factor Dt and solve Problem 3.2, and let c̃A and c̃B be the optimal consumption

of A and B respectively under the synthetic probability measure, we have

1. if B is weakly more risk averse than A, then, c̃A ∼ c̃B+ z̃+ "̃ under the synthetic

probabilities, where z̃ ≥ 0, Ê["̃∣cB + z] = 0;

2. If for all �̃ ∈ P, Ê[c̃A] ≥ Ê[c̃B], then B is weakly more risk averse than A. This

implies a converse result of statement 1: if for all �̃ ∈ P, c̃A is distributed as

c̃B + z̃ + "̃, where z̃ ≥ 0 and Ê["̃∣cB + z] = 0, then B is weakly more risk averse

than A;

3. If B is weakly more risk averse than A and either of the two agents has non-

increasing absolute risk aversion, then c̃A is distributed as c̃B + z + "̃, where

z = Ê[c̃A − c̃B] ≥ 0 and Ê["̃∣cB + z] = 0.

Therefore, if the budget shares are not the same for both agents at each time

period t, then the distributional result may not hold period-by-period in a multiple-

period model with time-separable von Neumann-Morgenstern utility having identical

weights over time. However, Theorem 3.6 implies that our main results still hold

under the synthetic probabilities in a multiple-period model. This results retain the

spirit of our main results while acknowledging that changing risk aversion may cause

consumption to shift over time.

150



3.5 Possibly Incomplete Market Case

Our result still holds in a two-asset world with a risk-free asset. For a two-asset world

without a risk-free asset, we have a counter-example to our result holding. Therefore,

our main result does not hold in general with incomplete markets. However, our result

holds in a two-risky-asset world if we make enough assumptions about asset payoffs

and the risk-aversion measure. Also, each two-asset result has a natural analog for

models with many assets and two-fund separation, since the portfolio payoffs will be

the same as in a two-asset model in which only the two funds are traded.10 Note

that while this section is intended to ask to what extent our results can be extended

to incomplete markets, the results also apply to complete markets with two-fund

separation.

First, we show that our main result still holds in a two-asset world with a risk-free

asset. The proof is in two parts. The first part is the standard result: decreasing the

risk aversion increases the portfolio allocation to the asset with higher return. The

second part shows that the portfolio payoff for the higher allocation is distributed

as the other payoff plus a constant plus conditional-mean-zero noise. To show the

second part, we use the following Lemma:

Lemma 3.3 1. If E[q̃] = 0 and 0 ≤ m1 ≤ m2, then m2q̃ ∼ m1q̃ + "̃, where

E["̃∣m1q] = 0.

2. Let E[�̃] be finite, E[q̃∣�] ≥ 0, and 0 ≤ m1 ≤ m2. Then �̃+m2q̃ ∼ �̃+m1q̃+z̃+"̃,

where z̃ = (m2 −m1)E[q̃∣�] ≥ 0 and E["̃∣�+m1q + z] = 0.

10See Cass and Stiglitz (1970) and Ross (1978) for characterization of two-fund separation, i.e.,
for portfolio choice to be equivalent to choice between two mutual funds of assets.
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Proof: We prove 2, and 1 follows immediately by setting �̃ = 0 and E[q̃] = 0. Let

z̃0 ≡ E[q̃∣�] and z̃ ≡ (m2 − m1)z̃0. By Theorem 3.2, we only need to show that,

for any concave function V (⋅), E[V (�̃ + m2q̃)] ≤ E[V (�̃ + m1q̃ + z̃)]. Fix V (⋅) and

let V ′(⋅) be any selection from its subgradient correspondence ∇V (⋅) (so V ′(⋅) is the

derivative of V (⋅) whenever it exists). The concavity of V (⋅) and the definitions of z̃0

and z̃ imply that

V (�̃ +m2q̃)− V (�̃ +m1q̃ + z̃) ≤ V ′(�̃+m1q̃ + z̃)(m2 −m1)(q̃ − z̃0). (3.20)

Furthermore, V ′(⋅) nonincreasing, m2 ≥ m1 ≥ 0, and the definitions of z̃0 and z̃ imply

(V ′(�̃+m1q̃ + z̃)− V ′(�̃+m2z̃0))(m2 −m1)(q̃ − z̃0) ≤ 0. (3.21)

From (3.20), (3.21), and the definitions of z̃0 and z̃, we get

E[V (�̃ +m2q̃)]− E[V (�̃+m1q̃ + z̃)] ≤ E[V ′(�̃+m1q̃ + z̃)(m2 −m1)(q̃ − z̃0)]

≤ E[V ′(�̃+m2z̃0)(m2 −m1)(q̃ − z̃0)]

= E[E[V ′(�̃+m2z̃0)(m2 −m1)(q̃ − z̃0)∣�]] = 0.

Q.E.D.

Now, we consider the following portfolio choice problem:

Problem 3.3 (Possibly Incomplete Market with Two Assets) Agent i’s (i = A,B)

problem is

max
�i∈R

E[Ui(w0x̃+ �iw0ṽ)],
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where w0 is the initial wealth, �i is the proportion invested in the second asset, and

ṽ is the excess of the return on the second asset over the first asset, i.e., ṽ = ỹ − x̃,

where x̃ and ỹ are the total returns on the two assets. We assume that E[ṽ] ≥ 0, ṽ is

nonconstant, and E[ṽ] and E[x̃] are finite.

We denote agent A and B’s respective optimal investments in the risky asset with

payoff ỹ by �∗
A and �∗

B. The payoff for agent A is c̃A = w0x̃ + �∗
Aw0ṽ and agent

B’s payoff is c̃B = w0x̃ + �∗
Bw0ṽ. We maintain the utility assumptions made earlier:

U ′
i(⋅) > 0 and U ′′

i (⋅) < 0, so ṽ nonconstant implies that �∗
A and �∗

B are unique if they

exist. We have the following well-known result.

Lemma 3.4 Suppose x̃ is riskless (x̃ nonstochastic), if B is weakly more risk averse

than A, then the agents’ solutions to Problem 3.3 satisfy �∗
A ≥ �∗

B.

Proof: The first-order condition of A’s problem is:

E[U ′
A(xw0 + �∗

Aw0ṽ)w0ṽ] = 0. (3.22)

The analogous expression for B is '(�∗
B) = 0, where

'(�) ≡ E[U ′
B(xw0 + �w0ṽ)w0ṽ]. (3.23)

Since UB(⋅) = G(UA(⋅)), where G′(⋅) > 0 and G′′(⋅) ≤ 0, we have:

'(�∗
A) = E[G′(UA(xw0 + �∗

Aw0ṽ))U
′
A(xw0 + �∗

Aw0ṽ)w0ṽ]

= G′(UA(xw0))E[U ′
A(xw0 + �∗

Aw0ṽ)w0ṽ]

+E[(G′(UA(xw0 + �∗
Aw0ṽ))−G′(UA(xw0)))U

′
A(xw0 + �∗

Aw0ṽ)w0ṽ] ≤ 0, (3.24)
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where the first term in (3.24) is zero by (3.22) and the expression inside the expec-

tation in the second term is non-positive because G′′(⋅) ≤ 0 and U ′
A(⋅) > 0. Finally,

the concavity of UB(⋅) implies that '(⋅) is decreasing, and therefore from (3.23) and

(3.24), we must have �∗
A ≥ �∗

B. Q.E.D.

Lemma 3.4 implies that decreasing the risk aversion increases the portfolio alloca-

tion to the asset with higher return. Now, we show that our main result still holds

in a two-asset world with a risk-free asset. We have

Theorem 3.7 (Two-asset World with a Riskless Asset) Consider the two-asset world

with a riskless asset (x̃ nonstochastic) of Problem 3.3, if B is weakly more risk averse

than A in the sense of Arrow and Pratt, then c̃A is distributed as c̃B + z + "̃, where

z = E[c̃A − c̃B] ≥ 0 and E["̃∣cB + z] = 0.

Proof: When the first asset in Problem 3.3 is riskless, then we have c̃A − E[c̃A] =

�∗
Aw0(ỹ − E[ỹ]) and c̃B − E[c̃B] = �∗

Bw0(ỹ − E[ỹ]). From Lemma 3.4, �∗
A ≥ �∗

B. Let

q̃ ≡ ỹ − E[ỹ], m1 ≡ �∗
Bw0 and m2 ≡ �∗

Aw0 in the first part of Lemma 3.3, we have

c̃A−E[c̃A] ∼ c̃B −E[c̃B] + "̃, which implies that c̃A is distributed as c̃B + z+ "̃, where

z = E[c̃A − c̃B] ≥ 0 and E["̃∣cB + z] = 0. Q.E.D.

Theorem 3.7 generalizes in obvious ways to settings with two-fund separation since

optimal consumption is the same as it would be with ordering the two funds as

assets. The main requirement is that one of the funds can be chosen to be riskless,

for example, in a mean-variance world with a riskless asset and normal returns for
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risky assets.11 In this example, if B is weakly more risk averse than A, Theorem 3.7

tells us that c̃A ∼ c̃B + z + "̃, where z ≥ 0 is constant and E["̃∣cB + z] = 0. We know

that A’s optimal portfolio is further up the frontier than B′s, i.e., E[c̃A] ≥ E[c̃B] and

V ar[c̃A] ≥ V ar[c̃B]. This result is verified by noting that we can choose z = E[c̃A−c̃B],

"̃ ∼ N(0, V ar[c̃A]− V ar[c̃B]), and "̃ is drawn independently of c̃B.

Now, we examine the case with two risky assets in Problem 3.3. For a two-asset

world without a riskless asset, we have a counter-example to our result holding. In

the counter-example, �∗
A > �∗

B, but the distributional result does not hold.

Example 3.6.1 We assume that there are two risky assets and four states. The

probabilities for the four states are 0.2, 0.3, 0.3 and 0.2 respectively. The payoff of

x̃ is (10 8 1 1)T and the net payoff ṽ is (−1 1 1 − 1)T . Agent’s utility function is

Ui(w̃i) = −e−�iw̃i, where i = A,B, and w̃i is agent i’s terminal wealth. We assume

that agent B is weakly more risk averse than A with �A = 1 and �B = 1.5. The agents

solve Problem 3.3 with initial wealth w0 = 1.

The agents’ problems are:

max
�A

0.2e−(10−�A) + 0.3e−(8+�A) + 0.3e−(1+�A) + 0.2e−(1−�A),

and

max
�B

0.2e−1.5(10−�B) + 0.3e−1.5(8+�B) + 0.3e−1.5(1+�B) + 0.2e−1.5(1−�B).

First-order conditions give �∗
A = 1

2
log
(

3+3e−7

2+2e−9

)

= 0.2, and �∗
B = 1

3
log
(

3+3e−10.5

2+2e−13.5

)

=

0.135. Therefore, agent A’s portfolio payoff is (9.8 8.2 1.2 0.8)T and agent B’s portfolio

11This example is a special case of two-fund separation in mean-variance worlds or the separating
distributions of Ross (1978).
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payoff is (9.865 8.135 1.135 0.865)T . If agent A’s payoff c̃A ∼ c̃B + z̃ + "̃, where

E["̃∣cB + z] = 0, then we have Pr("̃ ≥ 0∣cB + z) > 0, therefore, we have max c̃A ≥

max c̃B. However, in this example, we can see that max c̃A = 9.8 and max c̃B = 9.865,

i.e., max c̃A < max c̃B. Contradiction! Therefore, in general, our result does not hold

in a two-asset world without a riskless asset. Q.E.D.

It is a natural question to ask whether our main result holds in a two risky asset

world if we make enough assumptions about asset payoffs. We can, if we use Ross’s

stronger measure of risk aversion (see Ross (1981)) and his payoff distributional con-

dition. We have

Theorem 3.8 (Two Risky Assets with Ross’s Measure) Consider the two-risky-asset

world of Problem 3.3 with E[ṽ∣x] ≥ 0 for all x. If B is weakly more risk averse than

A under Ross’s stronger measure of risk aversion, then c̃A is distributed as c̃B + z̃+ "̃,

where E["̃∣cB + z] = 0, and z̃ ≥ 0.

Proof: Our proof is in two parts. The first part is from Ross (1981): if agent A is

weakly less risk averse than B under Ross’s stronger measure, then �∗
A ≥ �∗

B. The

first order condition of A’s problem is

E[U ′
A(w0x̃+ �∗

Aw0ṽ)w0ṽ] = 0. (3.25)

The analogous expression for B is '(�∗
B) = 0, where

'(�∗
B) ≡ E[U ′

B(w0x̃+ �∗
Bw0ṽ)w0ṽ]. (3.26)

156



From Ross (1981), if B is weakly more risk averse than A under Ross’s stronger

measure, then there exists � > 0 and a concave decreasing function G(⋅), such that

UB(⋅) = �UA(⋅) +G(⋅). Therefore,

'(�∗
A) = E[(�U ′

A(w0x̃+ �∗
Aw0ṽ) +G′(w0x̃+ �∗

Aw0ṽ))w0ṽ]

= E[G′(w0x̃+ �∗
Aw0ṽ)w0ṽ] = E[E[G′(w0x̃+ �∗

Aw0ṽ)w0ṽ∣x]] ≤ 0, (3.27)

where the last inequality is a consequence of the fact that G′(⋅) is negative and

decreasing while E[ṽ∣x] ≥ 0. The concavity of UB(⋅) implies that '(⋅) is decreasing.

Therefore, from (3.25) and (3.27), we have �∗
A ≥ �∗

B.

The second part shows that the portfolio payoff for the higher allocation is dis-

tributed as the other payoff plus a constant plus conditional-mean-zero noise. Let

q̃ ≡ ṽ, �̃ ≡ w0x̃, m1 ≡ �∗
Bw0 and m2 ≡ �∗

Aw0 in Lemma 3.3, part 2, we have w0x̃ +

�∗
Aw0ṽ ∼ w0x̃+�∗

Bw0ṽ+ z̃+ "̃, i.e., c̃A ∼ c̃B+ z̃+ "̃, where z̃ = w0(�
∗
A−�∗

B)E[ṽ∣x] ≥ 0

and E["̃∣cB + z] = 0. Q.E.D.

Theorem 3.8 implies that our main result holds when we use Ross’s stronger mea-

sure of risk aversion with the assumption of E[ṽ∣x] ≥ 0. If the condition E[ṽ∣x] ≥ 0

is not satisfied, then our main result may not hold even when we use Ross’s stronger

measure of risk aversion as we can see in the following example.

Example 3.6.2 We assume that there are two risky assets and four states. The

probabilities for the four states are 0.3, 0.2, 0.3 and 0.2 respectively. The payoff of x̃

is (10 8 1 1)T and the net payoff ṽ is (−1 1 1 − 1)T . Agent A’s utility function is

UA(w̃A) = e6w̃A − e−w̃A, and agent B’s utility function is UB(w̃B) = w̃B − e6−1.5w̃B ,
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where w̃i is the terminal wealth of agent i. The agents solve Problem 3.3 with initial

wealth w0 = 1. We have

U ′′
B(w)

U ′′
A(w)

=
2.25e6−1.5w

e−w
= 2.25e6−0.5w,

U ′
B(w)

U ′
A(w)

=
1 + 1.5e6−1.5w

e6 + e−w
.

Therefore, infw
U ′′

B(w)

U ′′

A(w)
> supw

U ′

B(w)

U ′

A(w)
, for any 0 ≤ w ≤ 10, which implies that agent

B is strictly more risk aversion than agent A under Ross’s stronger measure of risk

aversion.

The Agents’ problems are:

max
�A

0.3
(

e6(10− �A)− e−(10−�A)
)

+ 0.2
(

e6(8 + �A)− e−(8+�A)
)

+0.3
(

e6(1 + �A)− e−(1+�A)
)

+ 0.2
(

e6(1− �A)− e−(1−�A)
)

,

and

max
�B

0.3
(

10− �B − e6−1.5(10−�B )
)

+ 0.2
(

8 + �B − e6−1.5(8+�B)
)

+0.3
(

1 + �B − e6−1.5(1+�B)
)

+ 0.2
(

1− �B − e6−1.5(1−�B)
)

.

From the first order condition, e2�
∗

A = 3+2e−7

2+3e−9 , i.e., �
∗
A = 1

2
log
(

3+2e−7

2+3e−9

)

= 0.2029,

and e3�
∗

B = 3e−1.5+2e−12

2e−1.5+3e−15 , i.e., �
∗
B = 1

3
log
(

3e−1.5+2e−12

2e−1.5+3e−15

)

= 0.1352. Therefore, agent A’s

portfolio payoff is (9.7971 8.2029 1.2029 0.7971)T and agent B’s portfolio payoff is

(9.8648 8.1352 1.1352 0.8648)T . If agent A’s payoff c̃A ∼ c̃B + z̃ + "̃, where E["̃∣cB +

z] = 0, then we have Pr("̃ ≥ 0∣cB + z) > 0. Therefore, we have max c̃A ≥ max c̃B.

However, in this example, we can see that max c̃A = 9.7971 and max c̃B = 9.8648,

i.e., max c̃A < max c̃B. Contradiction! Therefore, in a two-risky asset world, our main

result does not hold in general even under Ross’s stronger measure of risk aversion if
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we don’t make the assumption that E[ṽ∣x] ≥ 0. Q.E.D.

An alternative to the approach following Ross (1981) is the approach of Kihlstrom,

Romer and Williams (1981) for handling random base wealth. They show that the

Arrow-Pratt measure works if we restrict attention to comparisons in which (1) at

least one of the utility functions has nonincreasing absolute risk aversion and (2)

base wealth is independent of the other gambles. Here is how their argument works.

The independence implies that we can convert a problem with random base wealth

x to a problem with nonrandom base wealth by using the indirect utility functions

Ûi(w) ≡ E[Ui(x̃+w)], and our results for nonrandom base wealth apply directly. For

this to work, the indirect utility functions ÛA and ÛB must inherit the risk aversion

ordering from UA and UB, which as they point out, does not happen in general.

However, letting F (⋅) be the distribution function of x̃, simple calculations tell us

that provided integrals exist, we can write

−Û ′′
i (w)

Û ′
i(w)

=

∫

U ′
i(x̃+ w)

∫

U ′
i(ỹ + w)dF (ỹ + w)

(

−U ′′
i (x̃+ w)

U ′
i(x̃+ w)

)

dF (x̃) (3.28)

For both agents, the risk aversion of the indirect utility function is therefore a weighted

average of the risk aversion of the direct utility function, but the weights are different

so the risk aversion ordering is not preserved in general (since the more risk averse

agent may have relatively higher weights from wealth regions where both agents have

small risk aversion). However, we do know that the more risk averse agents’ weights

put relatively higher weight on lower wealth levels (since i’s absolute risk aversion is

−d log(U ′
i(w)/dw)), so if either agent has nonincreasing absolute risk aversion, then

the risk aversion ordering of the direct utility function is inherited by the indirect
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utility function. Subject to existence of some integrals (ensured by compactness in

their paper), their results and our Theorem 3.7 imply that if B is weakly more risk

averse than A, at least one of UA and UB has nonincreasing absolute risk aversion,

and ṽ is independent of x̃, then our main result holds: c̃A ∼ c̃B + z̃ + "̃, where z̃ ≥ 0

and E["̃∣cB + z] = 0.

As we have shown that our main result does not hold in general in the traditional

type of incomplete markets where portfolio payoffs are restricted to a subspace. How-

ever, it is an open question whether the results extend to more interesting models of

incomplete markets in which there is a reason for the incompleteness. For example, a

market that is complete over states distinguished by security returns and incomplete

over other private states (see Dybvig (1992) or Chen and Dybvig (2009)). Another

type of incompleteness comes from a nonnegative wealth constraint (which is an im-

perfect solution to information problems when investors have private information or

choices related to default), which means agents have individual incompleteness and

cannot fully hedge future non-traded wealth or else they would violate the nonnega-

tive wealth constraint (see Dybvig and Liu (2009)).

3.6 Examples

In example 3.6.1, we illustrate our main result with specific distribution of c̃A, c̃B

and "̃. In this example, the nonnegative random variable z̃ can be chosen to be a

constant, and therefore from Corollary 3.1 in Section 3.3, the variance of the less risk

averse agent’s payoff is higher.
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Example 3.6.1 B is weakly more risk averse than A, A and B have the same

initial wealth w0 = 1 and the utility functions are as follows

UA(c̃) = −1

2
(4− c̃)2 , UB(c̃) = −1

2
(3− c̃)2 ,

where c̃ < 4 for agent A, and c̃ < 3 for agentB. We assume that the state price density

�̃ is uniformly distributed in [0, 1]. The first-order conditions give us c̃A = 4 − �A�̃,

and c̃B = 3−�B�̃. Because E[�̃] = 1
2
and E[�̃2] = 1

3
, the budget constraint E[�̃c̃i] = 1,

i = A,B, implies that �A = 3 and �B = 3
2
. Therefore, c̃A is uniformly distributed

in [1, 4] and c̃B is uniformly distributed in
[

3
2
, 3
]

. We have E[c̃A] − E[c̃B] =
1
4
. Let

"̃ have a Bernoulli distribution drawn independently of c̃B with two equally possible

outcomes 3
4
and −3

4
. It is not difficult to see that c̃A is distributed as c̃B+ z̃+ "̃ , where

z̃ = E[c̃A]− E[c̃B] =
1
4
, and "̃ is independent of c̃B, which implies E["̃∣cB + z] = 0.

Next, in example 3.6.2, we show that in general z̃ may not be chosen to be a con-

stant. Interestingly, the variance of the weakly less risk averse agent’s payoff can be

smaller than the variance of the weakly more risk averse agent’s payoff.

Example 3.6.2 B is weakly more risk averse than A, A and B have the same

initial wealth w0 = 1 and the utility functions are as follows

UA(c̃) = −(8− c̃)3

3
, UB(c̃) = −(8− c̃)5

5
,

where c̃ < 8. The first-order conditions give us

U ′
A(c̃A) = (8− c̃A)

2 = �A�̃, U ′
B(c̃B) = (8− c̃B)

4 = �B�̃. (3.29)
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Therefore,

c̃A = 8−
√

�A�̃, c̃B = 8− (�B �̃)
1/4. (3.30)

From (3.30), we get

c̃A = 8−
√

�A

�B
(8− c̃B)

2. (3.31)

We have: c̃A ≥ c̃B iff c̃B ≥ 8−
√

�B

�A
. From Theorem 3.3, we know that c̃A ∼ c̃B+ z̃+ "̃,

where z̃ ≥ 0 and E["̃∣cB + z] = 0. To find an example that the variance of the less

risk averse agent’s payoff can be smaller, we assume that �̃ has a discrete distri-

bution, i.e., �1 = " with probability 1
2
, �2 = 1

4
with probability 1

4
, and �3 = 1

2

with probability 1
4
. If " is very tiny (close to zero), then from (3.30) and the bud-

get constraint E[�̃c̃A] = 1. It is not difficult to compute �A ≈ 17.5, �B ≈ 125.8,

c̃A ≈ (8 5.91 5.045) and c̃B ≈ (8 5.632 5.184). Therefore, E[c̃A] ≈ 6.73, E[c̃B] ≈ 6.70,

and V ar(c̃A) ≈ 1.684 < V ar(c̃B) ≈ 1.704, i.e., the variance of the weakly more

risk averse agent’s payoff is higher. In this example, both agents’ utility functions

have increasing absolute risk aversion, which gets very high at the shared satiation

point c̃ = 8. In the high-consumption (low �̃), the optimal consumptions of agent

A and B are both very close to 8. To have E[c̃A] > E[c̃B], z̃ is greater in the low-

consumption states. Therefore z̃ is large when c̃ is small and small when c̃ is large,

and thus z̃ is very negatively correlated with c̃B + "̃. As noted in Section 3.3, we

know that if the non-negative random variable z̃ can be chosen to be a constant, then

V ar(c̃A) = V ar(c̃B) + V ar("̃) ≥ V ar(c̃B). Therefore, in this example, z̃ cannot be

chosen to be a constant.
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The next example shows that if the utility functions are not strictly concave, then

our main result does not hold.

Example 3.6.3 B is weakly more risk averse than A, A and B have the same initial

wealth w0 = 1 and the utility functions are UA(c̃) = UB(c̃) = c̃. We assume there are

two states with �1 = 1
2
with probability 1

3
, and �2 = 1

2
with probability 2

3
. It is not

difficult to see that c̃A = (0, 3) and c̃B = (4, 1) is an optimal consumption for agent

A and B for �A = �B = 2. We have E[c̃A] = E[c̃B] = 2 and V ar[c̃A] = V ar[c̃B] = 2.

If c̃A ∼ c̃B + z̃ + "̃, where z̃ ≥ 0 and E["̃∣cB + z] = 0, then z̃ = 0 and "̃ = 0, we

get c̃A ∼ c̃B. Contradiction! So, we cannot have c̃A ∼ c̃B + z̃ + "̃, where z̃ ≥ 0 and

E["̃∣cB + z] = 0.

Example 3.6.3 is degenerate with constant �̃ and linear utility. It is not difficult to

construct a more general example (Example 3.6.4), where �̃ is random and the utility

function has two straight segments. The optimal portfolio is not unique on these two

straight segments taken together and therefore our payoff distributional result may

not hold.

Example 3.6.4 B is weakly more risk averse than A, A and B have the same

initial wealth w0 = 2 and the utility functions are as follows

UA(c̃) = UB(c̃) =

⎧













⎨













⎩

−(c̃− 1)4 + c̃ c̃ < 1

c̃ 1 ≤ c̃ ≤ 2
1

256
(c̃4 − 16c̃3 + 72c̃2 + 128c̃+ 80) 2 < c̃ < 6

1
2
c̃+ 2 6 ≤ c̃ ≤ 14

1
2
e−(c̃−14) − 2e−(c̃−14)/2 + 9 c̃ ≥ 14.
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In this example, the utility function has two straight segments and the optimal

portfolio is not unique on these two straight segments taken together. We assume

that �1 =
1
2
with probability 1

2
and �2 =

1
4
with probability 1

2
. Then, it is not difficult

to see that c̃A = (2, 12) and c̃B = (1, 14) is the optimal consumption for agent A and

B for �A = �B = 2. So, while A is weakly less risk averse than B (their risk aversion

is equal everywhere), c̃A is not distributed as c̃B+ z̃+ "̃ with z̃ ≥ 0 and E["̃∣cB+z] = 0.

It is natural to think of the completeness in our model as coming from dynamic

trading in a continuous-time model. This is a good setting for seeing that our distri-

butional result holds even if it is hard to interpret what is happening with portfolio

weights. In the next example, we consider a continuous-time model with one-year

investment horizon. There are two assets: a locally riskless bond and a one-year risky

discount bond. We show that a very risk averse agent may invest all of his wealth

in the one-year risky discount bond while a less risk averse agent invests part of his

wealth in the locally riskless bond. Therefore, the comparative statics results in port-

folio weights do not hold in a continuous-time model with two assets. However, our

comparative statics results in the distribution of portfolio payoffs still hold.

Example 3.6.5 There are two assets that trade continuously: a locally riskless

bond and a one-year discount bond that is locally risky because the interest rate is

random. Agents are endowed with wealth w0 at time 0 and consume c̃ at time 1. Each

investor has constant relative risk aversion U(c̃) = c̃1−


1−

(or U(c̃) = log(c̃) if 
 = 1),

and chooses a dynamic portfolio strategy to maximize E[U(c̃)], where c̃ equals wealth
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at time 1. The interest rate follows the absolute12 Vasicek process drt = �dZt, or

equivalently rt = r0 + �Zt, where Zt is a standard Wiener process. The state price

density is

�̃t = e−
∫ t
0 (rs+

1
2
�2)ds−

∫ t
0 �dZs = e−r0t−

∫ t
0 (�+�(t−s))dZs−�2

2
t, (3.32)

where � > 0 is the local Sharpe ratio. We have �̃1 = e−r0−
∫ 1
0
(�+�(1−s))dZs−�2

2 . Agents’

problem is maxc̃E[ c̃
1−


1−

], subject to the budget constraint E[�̃1c̃] = w0.

The first order condition gives us c̃−
 = ��̃1. Substituting c̃ = (��1)
− 1


 into the

budget constraint, we get

� = e−r0(
−1)−�2

2
(
−1)+ 


2
(1− 1



)2(�2+�2

3
+��).

Therefore, we have

c̃ = er0+
1
2
�2− 1

2
(1− 1



)2(�2+ 1

3
�2+��)+ 1




∫ 1
0 (�+�(1−s))dZs . (3.33)

Suppose that there are two agents A and B with risk aversion 
A and 
B, with


A < 
B. For i = A,B, we have

log c̃i ∼ lnN(r0 +
1

2
�2 − 1

2
(1− 1


i
)2(�2 +

1

3
�2 + ��),

1


2
i

(�2 +
1

3
�2 + ��)). (3.34)

It is not difficult to show that c̃A ∼ c̃B+z̃+"̃, where z̃ = c̃B

(

e
( 1

A

− 1

B

)(�2+ 1
3
�2+��) − 1

)

>

0, and

"̃ = c̃Be
( 1

A

− 1

B

)(�2+ 1
3
�2+��)

(

e
�− 1

2
( 1


2
A

− 1


2
B

)(�2+ 1
3
�2+��)

− 1

)

,

where � ∼ N
(

0, ( 1

2
A

− 1

2
B

)(�2 + 1
3
�2 + ��)

)

and is drawn independently of c̃B. This

confirms our comparative statics result for the distribution of portfolio payoffs from

12A more complex Vasicek process with mean reversion gives similar results but the calculations
are more complex.
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Theorem 3.3. However, we next show that the comparative static result in portfolio

weights does not hold, i.e., the more risk averse agent may invest more in the locally

risky bond.

Investor’s wealth at time t,

Wt = Et

[

�̃1c̃

�̃t

]

= f(t)e
∫ t

0 ((�+�(t−s))−(1− 1


)(�+�(1−s)))dZs , (3.35)

where f(t) = er0t+
1
2
�2t− 1

2(1−
1

 )

2
( 1
3
�2t2−�(�+�)t+(�+�)2)t. Using Ito′s Lemma, we get

dWt

Wt
=

(

rt + �

(

�−
(

1− 1




)

(�+ �(1− t))

))

dt

+

(

�−
(

1− 1




)

(�+ �(1− t))

)

dZt. (3.36)

The discount bond price at time t,

Bt = Et

[

�̃1
�̃t

]

= g(t)e
∫ t

0
�(t−1)dZs , (3.37)

where g(t) = e−(r0+
1
2
�2)(1−t)+ 1

6� ((�+�(1−t))3−�3). Using Ito′s Lemma, we have

dBt

Bt
= (rt + ��(t− 1)) dt+ �(t− 1)dZt. (3.38)

From (3.36) and (3.38), we get that the investor with risk aversion 
 optimally invests

�−
(

1− 1



)

(� + �(1− t))

�(t− 1)
= 1− 1




(

1 +
�

(1− t)�

)

(3.39)

proportion of wealth in the risky discount bond. Therefore, the proportion of wealth

invested in the locally risky bond increases in investors’ risk aversion. It is useful to

consider the intuition in a limiting case when � ↓ 0 and 
B ↑ ∞, with 
A = 1. In this

case, agent A with log utility holds approximately the locally riskless asset, because
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log utility is myopic, and the agent does not invest much in the risky bond when

its local risk premium is small. The very risk averse agent B puts approximately

100% in the locally risky bond with a positive risk premium. This generates a nearly

riskless payoff at the end, which is what a very risk averse agent wants. This example

illustrates that although it is hard to get comparative statics results in portfolio

weights, our comparative statics result in the distribution of portfolio payoffs still

holds.

3.7 Concluding Remarks

Under some assumptions, Hart (1975) proved the impossibility of deriving general

comparative statics on how portfolio weights vary with risk aversion. We have proven

comparative statics results instead in the distribution of portfolio payoffs. Specifically,

in a complete market, we show that an agent who is less risk averse than another will

choose a portfolio whose payoff is distributed as the other’s payoff plus a nonnegative

random variable plus conditional-mean-zero noise. This result holds for any increasing

and strictly concave C2 utility functions. If either agent has non-increasing absolute

risk aversion, then the non-negative random variable can be chosen to be a constant.

The non-increasing absolute risk aversion condition is sufficient but not necessary. We

also provide a counter-example showing that, in general, this non-negative random

variable cannot be chosen to be a constant.

We further prove a converse theorem. If in all complete markets the first agent

chooses a payoff that is distributed as the second’s payoff, plus a non-negative random

variable, plus conditional-mean-zero noise, then the first agent is less risk averse than
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the second agent. We also extend our main results to a multiple period model. Due

to shifts in the timing of consumption, agents’ optimal consumption at each date may

not be ordered when risk aversion changes. However, for agents with the same pure

rate of time preference, there is a natural weighting of probabilities across periods

that preserves the single-period result.

The optimal consumption may not be ordered for agents with different risk aver-

sion when agents’ utility functions are concave but not strictly concave as we have

shown in example 3.6.3 and 3.6.4. Intuitively, the problem is that even with identical

preferences, two different optimal consumptions may not be ordered. We conjecture

that there exists some canonical choice of optimal consumption for each agent that

extends our main results to weakly concave preferences. Our paper derives compar-

ative statics results in complete markets for agents with von Neumann-Morgenstern

preferences. Machina (1989) has shown that many previous comparative statics re-

sults generalize to the broader class of Machina preferences (Machina (1982)). Our

proofs do not generalize obviously to this class, but we conjecture that our results are

still true.

We also show that our main result still holds in a two-asset world with a risk-free

asset or more generally in a two-fund separation world with a risk-free asset. However,

our main result is not true in general with incomplete markets. We further provide

sufficient conditions under which our results still hold in a two-risky-asset world or a

world with two-fund separation.
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3.8 Appendix

Proof of Lemma 3.1: By Pratt (1964), we have the concave transform characteri-

zation13 that there exists G(⋅) ∈ C2, such that

UB(c) = G(UA(c)), (3.40)

where G′(⋅) > 0 and G′′(⋅) ≤ 0. Using the concave transform characterization of more

risk averse in (3.40), the first order condition (3.2) becomes

U ′
A(c̃A) = �A�̃ =

�A

�B
�B �̃ =

�A

�B
G′(UA(c̃B))U

′
A(c̃B). (3.41)

Because marginal utility is strictly decreasing, we have: if G′ < �B

�A
, then c̃A >

c̃B; if G
′ = �B

�A
, then c̃A = c̃B; and if G′ > �B

�A
, then c̃A < c̃B. Choose c∗ so that

G′(UA(c
∗)) = �B

�A
if possible, or pick c∗ = −∞ if G′ < �B

�A
everywhere or c∗ = +∞ if

G′ > �B

�A
everywhere. If c̃B ≥ c∗, then G′(UA(c̃B)) ≤ G′(UA(c

∗)) = �B

�A
, i.e., G′ ≤ �B

�A
,

therefore, c̃A ≥ c̃B. If c̃B ≤ c∗, then G′(UA(c̃B)) ≥ G′(UA(c
∗)) = �B

�A
, i.e., G′ ≥ �B

�A
,

therefore, c̃A ≤ c̃B. This proves statement 1.

Now suppose that A and B have equal initial wealths, then the budget constraints

for the agents are that

E[�̃c̃A] = E[�̃c̃B] = w0, (3.42)

therefore, we have E[�̃(c̃A − c̃B)] = 0. Since �B�̃ = U ′
B(c̃B) and U ′′

B < 0, �̃ and c̃B are

negatively monotonely related. Let �∗ ≡ U ′
B(c

∗)/�B > 0. Then �̃ ≥ �∗ ⇒ c̃A ≤ c̃B

13This result can be obtained by defining G(⋅) implicitly from (3.40) and using the implicit function
theorem to compute the derivatives of G(⋅).
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and �̃ ≤ �∗ ⇒ c̃A ≥ c̃B. Therefore, (�̃− �∗)(c̃A − c̃B) ≤ 0 and we have

0 = E[�̃(c̃A − c̃B)] = E[�∗(c̃A − c̃B)] + E[(�̃− �∗)(c̃A − c̃B)] ≤ �∗E[c̃A − c̃B]. (3.43)

Therefore, E[c̃A] ≥ E[c̃B]. This proves statement 2. Q.E.D.

Proof of Theorem 3.1: (Sufficiency) The monotonicity and concavity of the

function and Jensen’s inequality yield E[V (Ỹ )] = E[V (X̃ − Z̃ + "̃)] = E[E[V (X̃ −

Z̃ + "̃)∣X,Z]] ≤ E[V (X̃ − Z̃)] ≤ E[V (X̃)].

(Necessity) Let �1 be the distribution of −X̃ , and let �2 be the distribution of −Ỹ .

From Theorem 9 of Strassen (1965),14 the following two statements are equivalent.

(i) For any concave nondecreasing function V (s),
∫

V (−s)d�1(s) ≥
∫

V (−s)d�2(s).

(ii) There exists a submartingale �̃n (n = 1, 2), i.e., E[�̃2∣�1] ≥ �̃1, such that the

distribution of �̃n is �n.

Let Z̃ ≡ E[�̃2∣�1]− �̃1 and "̃ ≡ −�̃2 + E[�̃2∣�1], then (ii) implies that Z̃ ≥ 0. Since

�̃1 + Z̃ = E[�̃2∣�1], we have E["̃∣�1 + Z] = E[(−�̃2 +E[�̃2∣�1])∣E[�̃2∣�1]] = 0. (i) implies

E[V (X̃)] ≥ E[V (Ỹ )], and since �̃2 = �̃1 + (E[�̃2∣�1] − �̃1) + (�̃2 − E[�̃2∣�1]), we have

−Ỹ ∼ −X̃ + Z̃ − "̃, where Z̃ ∼ E[−Ỹ ∣ −X ] + X̃ ≥ 0 and "̃ ∼ Ỹ + E[−Ỹ ∣ −X ]. It

follows that Ỹ ∼ X̃ − Z̃ + "̃, where Z̃ ≥ 0 and E["̃∣X − Z] = 0. Q.E.D.

Proof of Theorem 3.2: The sufficiency follows directly from Jensen’s inequality.

The necessity can be proved using Theorem 8 in Strassen (1965). We prove it instead

14In applying Strassen’s result, we ignore �n for n > 2. Formally, we set �n = �2 and �n = �2 for
all n > 2.
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using Theorem 3.1 above. We have E[V (X̃)] ≥ E[V (Ỹ )] for all concave function, and

in particular, E[V (X̃)] ≥ E[V (Ỹ )] for all concave nondecreasing functions. Therefore,

by Theorem 3.1, Ỹ ∼ X̃ − Z̃1 + "̃1, where Z̃1 ≥ 0 and E["̃1∣X − Z1] = 0. We have

E[Ỹ ] = E[E[Ỹ ∣X−Z1]] = E[E[X̃−Z̃1+ "̃1∣X−Z1]] = E[X̃ ]−E[Z̃1] ≤ E[X̃ ]. (3.44)

Now E[V (X̃)] ≥ E[V (Ỹ )] for all concave functions also implies E[V (X̃)] ≥ E[V (Ỹ )]

for all concave nonincreasing functions, i.e., E[V (−X̃)] ≥ E[V (−Ỹ )] for all concave

nondecreasing functions. From Theorem 3.1, −Ỹ ∼ −X̃−Z̃2+ "̃2 ⇒ Ỹ ∼ X̃+Z̃2− "̃2,

where Z̃2 ≥ 0, and E["̃2∣X + Z2] = 0. We have

E[Ỹ ] = E[E[Ỹ ∣X+Z2]] = E[E[X̃+Z̃2− "̃2∣X+Z2]] = E[X̃ ]+E[Z̃2] ≥ E[X̃ ]. (3.45)

Therefore, E[X̃ ] = E[Ỹ ], which implies E[Z̃1] = 0. Since Z̃1 ≥ 0, we must have

Z̃1 = 0. It follows that Ỹ ∼ X̃ + "̃, where E["̃∣X ] = 0. Q.E.D.

Lemma 3.5 Suppose B is not weakly more risk averse than A, then there exists

an bounded nondegenerate interval [c1, c2] and hypothetical agents A1 and B1, such

that A1 strictly more risk averse than B1 (∀c,−U ′′

B1
(c)

U ′

B1
(c)

< −U ′′

A1
(c)

U ′

A1
(c)
) and ∀c ∈ [c1, c2],

UA1(c) = UA(c) and UB1(c) = UB(c).

Proof of Lemma 3.5: If B is not weakly more risk averse than A, then there exists

a constant ĉ, such that −U ′′

B(ĉ)

U ′

B(ĉ)
< −U ′′

A(ĉ)

U ′

A(ĉ)
. Since UA and UB are of the class of C2

(see our assumptions in the beginning of Section 3.2), from the continuity of −U ′′

i (c)

U ′

i(c)
,

where i = A,B, we get that there exists an interval RA containing ĉ, s.t., ∀c ∈ RA,
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−U ′′

B(c)

U ′

B(c)
< −U ′′

A(c)

U ′

A(c)
. We pick c1, c2 ∈ RA with c1 < c2. Now, let

UA1(c) =

⎧





⎨





⎩

a1 −m1 exp(
U ′′

A(c1)

U ′

A(c1)
c) c < c1

UA(c) c1 ≤ c ≤ c2

a2 −m2 exp(
U ′′

A(c2)

U ′

A(c2)
c) c > c2,

and let

UB1(c) =

⎧





⎨





⎩

b1 − n1 exp(
U ′′

B(c1)

U ′

B(c1)
c) c < c1

UB(c) c1 ≤ c ≤ c2

b2 − n2 exp(
U ′′

B(c2)

U ′

B(c2)
c) c > c2,

where aj and mj (j = 1, 2) are determined by the continuity and smoothness of

UA1(c), and bj and nj (j = 1, 2) are determined by the continuity and smoothness of

UB1(c). More specifically, for j = 1, 2, we have

mj = −(U ′
A(cj))

2

U ′′
A(cj)

exp

(

−U ′′
A(cj)

U ′
A(cj)

cj

)

, aj = mj exp

(

U ′′
A(cj)

U ′
A(cj)

cj

)

+ UA(cj), (3.46)

and

nj = −(U ′
B(cj))

2

U ′′
B(cj)

exp

(

−U ′′
B(cj)

U ′
B(cj)

cj

)

, bj = nj exp

(

U ′′
B(cj)

U ′
B(cj)

cj

)

+ UB(cj). (3.47)

Now, UA1(c) is in the class of C2 since from (3.46), we have:

−mj exp

(

U ′′
A(cj)

U ′
A(cj)

cj

)(

U ′′
A(cj)

U ′
A(cj)

)2

= U ′′
A(cj),

i.e., UA1 is twice differentiable. Similarly, we can show that UB1(c) is also in the class

of C2. Also, we have U ′′
A1
(c) < 0, U ′′

B1
(c) < 0, and ∀c, −U ′′

B1
(c)

U ′

B1
(c)

< −U ′′

A1
(c)

U ′

A1
(c)
, i.e., agent

A1 is more risk averse than B1. Q.E.D.
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Lemma 3.6 Suppose B is strictly more risk averse than A (∀c,−U ′′

A(c)

U ′

A(c)
< −U ′′

B(c)

U ′

B(c)
),

and A and B have equal initial wealths. A has an optimal choice c̃A, and B has an

optimal choice c̃B. We assume that the state price density �̃ is not a constant. Then,

we have

1. c̃A ∕= c̃B;

2. if c̃A has a bounded support [c1, c2], then we have sup c̃A ≥ sup c̃B, and inf c̃A ≤

inf c̃B.

Proof of Lemma 3.6: We first prove statement 1 by contradiction. If c̃A = c̃B,

then we pick any two points, for example, c3, c4 (c3 < c4) in the support of both c̃A

and c̃B. From the first order conditions, we get:
U ′

A(c3)

U ′

A(c4)
=

U ′

B(c3)

U ′

B(c4)
, i.e.,

U ′

A(c3)

U ′

B(c3)
=

U ′

A(c4)

U ′

B(c4)
.

However, from −U ′′

A(c)

U ′

A(c)
< −U ′′

B(c)

U ′

B(c)
, we have: d

dc

(

log
U ′

B(c)

U ′

A(c)

)

< 0, i.e.,
U ′

B(c)

U ′

A(c)
decreases in

c. We have:
U ′

B(c3)

U ′

A(c3)
>

U ′

B(c4)

U ′

A(c4)
. Contradiction! So, c̃A ∕= c̃B.

Since B is more risk averse than A, from Lemma 3.1, we know that there exists

c∗, such that c̃A ≥ c̃B when c̃B ≥ c∗, and c̃A ≤ c̃B when c̃B ≤ c∗. And we have

c∗ ∈ [c1, c2], or else either c̃A ≤ c̃B but c̃A ∕= c̃B or c̃A ≥ c̃B but c̃A ∕= c̃B and both

could not satisfy the budget constraint (E[�̃c̃A] = E[�̃c̃B] = w0). Therefore, c̃A has a

wider range of support than that of c̃B. Q.E.D.
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