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Abstract

In this paper, an asynchronous pipeline instruc-
tion simulator, ARAS is presented. With this sim-
ulator, one can design selected instruction pipelines
and check their performance. Performance measure-
ments of the pipeline configuration are obtained by
simulating the execution of benchmark programs on
the machine architectures developed. Depending on
the simulation results obtained by using ARAS, the
pipeline configuration can be altered to improve its per-
formance. Thus, one can explore the design space of
asynchronous pipeline architectures.

1 Introduction

This paper presents a graphic simulation tool,
ARAS (Asynchronous RISC Architecture Simulator),
which has been developed to ease in the model-
ing, visualization and performance evaluation of asyn-
chronous instruction pipelines. The paper has three
objectives:

¢ To present the essential elerments of the ARAS
modeling tool.

¢ To show how ARAS can model instruction
pipelines.

¢ To demonstrate how ARAS may be used to obtain
important performance data which can then guide
the design of asynchronous instruction pipelines.

Early RISC machines often employed a single, 4
or 5-stage pipeline [9, 6]. In more advanced ma-
chines, performance has been improved by increasing
the pipeline depth (i.e., superpipelined) and by em-
ploying multiple pipelines (i.e., superscalar). Super-
pipelined techniques divide each instruction into finer

LThis research has been funded in part by NSF Grant CCR-
9021041 and ARPA Contract DABT-93-C0057.

2Qurrently with ITRI: Industrial Technology Research Insti-
tute, Taiwan, Republic of China.

segments thus reducing the cycle time. Superscalar
techniques, on the other hand, issue several instruc-
tions into parallel pipelines and thus increase the av-
erage number of instructions being processed per cy-
cle. In this paper, instruction pipelines are modeled
using the ARAS simulation tool which permits visu-
alization of pipeline operation and the collection of
pipeline performance data,

Most commercial machines are currently clocked,
however, asynchronous design has attracted more at-
tention in recent years as clock rates and power levels
have increased. Although asynchronous methodology
currently requires more chip area, generally entails
higher design complexity, and does not have a large
base of available design automation tools, there are
certain potential advantages. Among these are having
performance governed by mean versus worst case func-
tion delays, eliminating limitations associated with
clock skew (although introducing other limitations),
and having potentially lower power levels. The perfor-
mance advantages associated with asynchronous sys-
tems are discussed in more detail in [3]. While the use
of asynchronous modules in the design of processors
goes back to the late 1960s with work at Washing-
ton University (St. Louis) [2], it wasn’t until 1988
that an entire asynchronous microprocessor was de-
signed at the California Institute of Technology [10].
Later an asynchronous version of the ARM processor,
AMULET], was completed at University of Manch-
ester (UK) [5]. Currently, SUN Microsystems is de-
veloping an asynchronous microprocessor called Coun-
terflow Pipeline Processor (CFPP) [11] and it appears
that several other institutions and companies are also
investigating the design of asynchronous machines [8].

Pigure 1 shows a typical b-stage instruction pipeline
with several buffers between each stage. Analyiic
modeling of such a system is not easily accomplished
for the following reasons:
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Figure 1: A b-stage pipeline with maultiple buffers

s The service rates associated with each stage are
not easily quantifiable since they reflect the pro-
cessing requirements of each instruction type.

» To achieve a realistic pipeline arrival distribution
it is best to model the arrival process with real
workload instruction fraces. Such traces gener-
ally can not be modeled analytically in a tractable
manner.

e The basic queneing system associated with a re-
alistic instruction pipeline model has a host of
logical exception conditions associated with elim-
inating hazards, result forwarding, etc. These are
not easily captured in analytic models.

In this paper, Section 2 illustrates how the ARAS
display helps in visualization of the pipeline’s opera-
tion and also discusses the data collection facilities.
In Section 3, the basic ARAS operation is briefly con-
sidered. Section 4 considers the problems associated
with insuring that the ARAS pipeline presented by
the user can be implemented and indicates the con-
straints associated with pipeline construction. Sec-
tion 5 illustrates three uses of ARAS. The first is a
pipeline design experiment, the second and third con-
sider the effects of adder design and handshaking de-
lays on pipeline performance. Conclusions and sugges-
tions for future research and modifications to ARAS
are presented in Section 6.

2 Using ARAS

ARAS simulates the instruction pipeline of a pro-
cessor executing a (benchmark) program and then
evaluates processor performance. Figure 2 is an exam-
ple of an ARAS display. Construction of the display
and driving program is considered later.

Each rectangle in the display represents a block of
micro-operations associated with a stage in a proces-
sor’s instruction pipeline. Lines between blocks rep-
resent paths that instructions may take during execu-
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Figure 2: ARAS Display

tion. Figure 2 illustrates a 4-stage instruction pipeline.
The pipeline begins with two parallel instruction fetch
blocks, both of which connect to a shared instruction
decode block. The two fetch blocks represent the pos-
sible parallel fetching of instructions. The third stage
has two different, but parallel blocks to handle branch
and operand fetch operations respectively. In certain
situations this will permit further instruction paral-
lelism. Finally, three different but parallel blocks are
present. This permits two ALU register based instruc-
tions to proceed in parallel while a memory access in-
struction (e.g., Load) is also taking place.

Visualization of pipeline operation and dynamics
employs the following main techniques:

» The execution and movemnent of instructions
through the pipeline corresponds to the move-
ment of dots from one block to another. The pres-
ence of a dot in a particular block indicates that
an instruction is being processed in that block;
otherwise, the block is empty.

¢ At the time an instruction moves from one block



to another, the line between the blocks involved
momentarily thickens.

o The color of the dot (not shown in the black and
white figure) corresponds to the instruction type
being executed (e.g., arithmetic, logic, branch,
etc.).

e The border of each block is color coded to reflect
changes in block status. A block may be idle,
busy, or blocked. Changes in border color reflect
changes in block status.

Since there is no clock in this system, movement of
dots between blocks is governed by the availability of
blocks and input instructions. As indicated, a dot (in-
struction} may be blocked in a particular block if the
successor block that is required by the instruction is
busy processing another instruction. Thus, the move-
ment of the dots, the temporary thickening of block
interconnect lines, and the color changes (dot or bor-
der) together, allow a designer to visualize the progress
of instructions through the asynchronous pipeline. In-
structions flow from left to right, finishing (in this ex-
ample) on completion of the fourth stage (or some-
times earlier when a branch is encountered}.

In addition to the dynamic visual display of asyn-
chronous instruction processing, a designer can gather
both global system and local block performance re-
sults. Global system performance includes: system
throughput, the number of processed instructions, and
the simulation time required for execution of the pro-
cessed instructions. The local performance of any
given block can also be obtained. These include: the
number of instructions processed, throughput, and the
percent of idle, working and blocked time associated
with the selected block.

Using these global and local results, a designer can
attempt to improve pipeline performance by modi-
fying and restructuring the pipeline. TFor example,
pipeline performance is generally improved if each
stage takes roughly equal time. Thus, the designer can
examine the effect of moving various micro-operations
between blocks (done by editing a configuration data
file), rerunning ARAS, and comparing the various re-
sults. Technical report [1] provides procedures to be
followed for altering the pipeline configuration data
files.

3 Basic ARAS Operation
3.1 Discrete-event simulation

The core of ARAS is a standard trace-driven
discrete-event simulator. After ARAS has accessed
the configuration file for a particular pipeline, a block
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Figure 3: The steps to process an event in ARAS

table is created. This table is used to schedule events
(e.g., the completion of an instruction’s usage of a
block) generated by the pipeline’s operation. As indi-
cated earilier, a block can be in one of three possible
states: idle, busy, or blocked. A block in an idle state
is available to process an instruction. The busy state
denotes that the block is currently processing a por-
tion of the instruction’s operation. The blocked state
occurs when an instruction is prevented from moving
into the next block in the pipeline because its succes-
sor block is busy or because there exists a data depen-
dency which is unresolved. An event occurs in ARAS
principally when a block completes its processing of
an instruction and changes state from busy to either
idle, blocked, or busy (for the next instruction). Once
an event has been processed, other blocks may change
their states triggering yet other events.

Event scheduling is depicted in Figure 3 where the
configuration of an example pipeline is shown. The
block table lists the blocks using their unique identi-
fication numbers and indicates the finish time associ-
ated with each block. Whenever an instruction en-
ters a block, a finish time for the block is calculated
based on the instruction type and operation(s) to be
performed by the block. Block table (a) of Figure 3



shows the allocated finish times at a point in the sim-
ulation. All the blocks have finish times except for
block 4, which is idle.

ARAS proceeds through the simulation by select-
ing the busy block with the smallest finish time (scan-
ning from right to left). The finish time of the selected
block (the “current block”) is added to the global sim-
ulation clock and is also used to decrement the finish
time of all other busy blocks in the table. Next ARAS
performs the operations associated with processing of
the instruction in the “current block” (e.g., updating
registers and tables, changing block states, etc.). It
now checks to see if the “current block™ instruction
can be moved to the next block it requires. With ev-
ery movement, all other blocks are checked to see if
the event permits the further movement of blocked
mstructions.

‘The procedures described above continue, with a
new block now being selected as the “current block.”
The simulation ends when the entire trace program
kas been processed.

3.2 Driving ARAS

The instruction traces used to drive ARAS are ob-
tained by collecting execution information for pro-
grams running on a SPARC computer. The program
to be traced is first executed on a SPARC in single
step mode under control of the debugger and an in-
struction trace is collected. The execution information
collected is sent through an interpreter which puts it
into a form useful to ARAS. It is placed in a part of
ARAS memory correspording to the source segment.
Data and stack segments are also created for ARAS.

Standard benchmark traces are being developed for
users interested in experimenting with various pipeline
designs. For users interested in developing their own
traces, details on how to use the interpreter programs
are described in technical report [1].

4 Pipeline Design Constraints

There are some basic constraints on the use of
blocks in the design of instruction pipelines. This sec-
tion discusses these constraints, an associated set of
rules, and the way ARAS handles them.

The ARAS instruction set is derived from the
SPARQC instruction set. Each instruction can be di-
vided into a number of micro-operations (initially
based on DLX micro-operations [6]), some of which
may be common for all or a group of instructions.
Prior to defining pipeline blocks, the instruction
state diagram which indicates sequencing of micro-
operations must be constructed. A simple example
is shown in Figure 4 where certain ALU and Jump
instructions are illustrated [6].
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Figure 4: A Typical Finite State Diagram

In general, a pipeline block may consist of a sin-
gle micro-operation, or a group of sequential micro-
operations as defined in the state diagram. While the
entire set of micro-operations available to the user does
not correspond to the actual micro-operations associ-
ated with any given SPARC implementation, the basic
micro-operations needed for execution of any SPARC
instruction are present. Currently, due to implemen-
tation limitations, ARAS does not handle arbitrary
assignments of micro-operations to blocks. However,
a set of 40 predefined pipeline blocks (with their as-
sociated micro-operations) are available to the user to
explore a variety of pipeline designs. Work is under
way to extend this capability and to develop a more
flexible micro-operation to block assignment mecha-
nism,

Figure 4 shows three instructions (ADD R1, R2,
Rd: SUB R1, R2, Rd: and JR R1) and the path they
must take through the finite state diagram in order
to be executed correctly. Figure 5 shows how each
individual state represents a micro-operation and how
these micro-operations can grouped together to form
blocks which constitute stages in the pipeline.

As a simple example, consider the implementation

of the Instruction Fetch (IF) operation. One approach
18 to define a single IF block which performs both the
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instruction fetch (micro-operation 1 in Figure 4) and
the program counter (PC) update (micro-operation 2)
micro-operations. Another approach is to have two
separate sequential IF blocks, the first performing the
instruction fetch, and the second handling the PC up-
date. Block types are available to explore both ap-
proaches.

In designing a working pipelined machine, general
rules apply:

¢ The micro-operations constituting an instruction
should be executed in the proper sequence, and
this should be true for every instruction and pos-
sible instruction sequence.

A pipelined machine should be able to handle con-
trol hazards which occur due to branching.

A pipelined machine should be able to handle
resource hazards that may arise when multiple
instructions request the same execution resource

{e.g., adder).

A pipelined machine should be able to handle
data hazards and ensure that instructions are ex-
ecuted with their proper operands.

The first rule is implemented by the user in defin-
ing blocks and pipelines that maintain the operation
sequence defined by each instruction’s state diagram.
For example, suppose that the write back micro-
operation (RD+C) is placed prior to the execution
micro-operations performing addition and subtrac-
tion, (C+A+TEMP and C+A-TEMP). This clearly

would result in incorrect instruction execution since
the C register would be written prior to being up-
dated. ARAS users are provided with a table (sim-
ilar to Figure 5) which gives the sequence of micro-
operations to be followed. The table also indicates
which micro-operations can be performed in paralle]
(provided there are no resource hazards).

The second rule is implemented by requiring that
all instructions are in-order up to and including the
bleck or blocks which include instruction decoding,
branch address calculation, and branch condition eval-
uation. Qut-of-order execution is permitted after
these micro-operations have been performed. If a
branch is detected when the condition evaluation takes
place, only instructions earlier in the pipeline need to
be flushed. This ensures that there will be no control
hazards since the instructions which have entered the
pipeline after the branch will not have changed any
register states before they are flushed.

The third rule is enforced by the handshaking pro-
tocol inherent in the asynchronous design. That is,
an instruction requesting resources (other blocks) that
are busy will be automatically stalled in the current
block until an acknowledgement is received.

ARAS handles data hazards by using a standard
scoreboarding technique [6]. This includes check-
ing the register reservation table at the start of the
operand fetch micro-operation to ensure that it has
not been reserved by a prior instruction, and stalling
at this block if the register has been reserved. In addi-
tion, an instruction which will write to a register, must
reserve that register when it is in the operand fetch
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block. Later, when the write back micro-operation
has completed, this same instruction must cancel the
register reservation. This ensures that register opera-
tions are all in-order.

5 Performance Evaluation and Design

This section illustrates three uses of ARAS. First,
the architecture of a pipelined machine is developed by
using ARAS. Second, the effect of alternative module
(in this case adder) designs on pipeline performance
is presented. Third, the influence of a particular de-
sign parameter (handshaking delay) on performance
is considered.

5.1 Design an Asynchronous Pipeline
with ARAS

Consider an initial pipeline which has three basic
stages, an Instruction Fetch stage, an Instruction De-
code stage and an Execute stage. Assume that Write
Back operations may be performed in the Execute
stage. The Execute stage also includes the Memory
Access micro-operations.

One approach to developing higher performance
machines is to attempt to lengthen the instruction
pipeline, Various design alternatives are available and
the issue is to find a design which yields the highest
instruction throughput. Preliminary executions indi-
cated that in a three stage pipeline, the Instraction
Fetch stage was a bottleneck. It was therefore divided
into two stages® and the four stage pipeline of Figure 6
was examined.

3We are not concerned here whether or not this can be
achieved in an actual hardware implementation. If the results
show significant improvement, then such an implementation can
be explored.

100%

Figure 7: Block Status Display

A set of benchmark programs (see Table 1) was ex-
ecuted on the four stage pipelined machine and simu-
lation results were then used to identify blocks in this
pipeline which were performance bottlenecks.

Block status information can be obtained both visu-
ally (using the ARAS display) and by the ARAS out-
put at the end of the simulation. Figure 7 shows the
visualization of the block status in the ARAS display.
With this display option the user can get information
about both the dynamic and the final block status.
The figure shows the final block status for a 4-stage
pipeline machine for one of the benchmark programs.

The micro-operations for those stages identified
as performance bottlenecks were redistributed over a
greater number of blocks. This resulted in more blocks
(increasing the pipeline depth) with a fewer number
of micro-operations per block (reducing block delay)
and enabled us to find configurations which yielded



Table 1: Benchmark Programs and Instruction Counts

Program Description Instruction Type and Counts

Name ALU | Branch | Memory | Total
Qsort quick sort of 30 randomly generated numbers | 11833 3508 10893 | 26234
Sieve calculation of prime numbers up to 100 20462 8393 3235 | 32090
Dsim discrete event simulation (first 121 iterations) | 22321 5715 12442 | 40478
Percent 55.3% | 17.8% 26.9% | 100%

Table 2: Simulation Results for the 45P Pipeline

Block State IF1 Ir2 1D EX
Idle 0 5.4% 7.6% | 40.2%
Busy 61.2% | 68.2% | 90.9% | 59.8%
Blocked 38.8% | 26.4% | 1.4% 0

higher throughput. There are a large number of ways
in which the blocks may be divided, however, using
simple heuristic approaches in conjunction with ARAS
it was not difficult to analyze various configurations.

Table 1 gives details about the three benchmark
programs used: their instruction counts and the total
number of ALU, branch and memory access instruc-
tions for each program. Qsort is 2 program which uses
the quick sort algorithm to sort thirty numbers. Sieve
is a program which uses Erastothenes’ sieve method to
obtain all prime numbers less than hundred. Dsimisa
discrete event simulator which performs a hundred and
twenty one iterations. Table 2 shows the percentage
of idle, busy and blocked time for the 4-Stage Pipeline
(4SP) shown in Figure 6. The benchmark programs
discussed above were used to obtain this data. The
simulation results (Table 2) show that the ID stage
was busy for 90.94% of the time indicating that it is a
performance bottleneck. This is reinforced by the high
percentage of time that the IF stages are blocked. The
user of ARAS could also see this through the visual-
ization of the pipeline, noting that the ID block was
almost always busy. Note also that the IF1 stage is
never idle since instructions are always available to be
processed.

One approach to reducing this bottleneck is to di-
vide the micro-operations associated with the ID block
into two blocks, ID1 and ID2. In addition, since the
IF blocks are busier than the EX block, further in-
crease in performance may result from dividing the
micro-operations associated with the instruction fetch
stage into three blocks, IF1, IF2 and IF3. Simulation

Table 3: Simulation Results (MIPS)

| Model | Qsort | Sieve | Dsim | Harmonic Mean
45p 57.1 71.2 | 63.4 63.8
6SP 65.7 | 76.8 | 70.5 71.0
8SP 62.8 74.7 | 674 68.2
4SP/PF | 69.2 | 85.3 | 76.1 76.8

results (Table 3} for this 6-Stage Pipeline (65P) show
an 11% performance improvement over the four stage
case.

An 8-Stage Pipeline (8SP) was then constructed
with the ID micro-operations now divided across three
blocks, and the EX block divided into an EX and
a separate WB (Write Back) block. The results of
that simulation are shown in Table 4. Performance
for this case, however, while higher than the 4-stage
pipeline, was lower than the 6-stage pipeline. This re-
sults from a combination of factors. First, as the num-
ber of pipeline stages increases, the average cycle time
per stage decreases. Handshaking delays (discussed
later) thus become a larger percentage of the stage
cycle time and establish a lower bound on this time.
In addition, with longer pipelines, the role of hazards
increases since both the probabilities of a hazard and
the pipeline stall penalties associated with a hazard
increase. The combination of these factors results in
a lower throughput [3].

Another approach to increasing performance, in ad-
dition to dividing the blocks, is to alter the pipeline
configuration to take advantage of instruction level
parallelism. An example of this is shown in the
4SP/PF case of Figure 6 which illustrates a simple
superacalar configuration. In this case, branch inatruc-
tions flow through the BR (Branch) block, while other
instructions proceed through the OF (Operand Fetch}
block. Since there are multiple IF and EX blocks, in-
struction level parallelism is present thus potentially



Table 4: Simulation Results for the 8SP Pipeline

Block State | 1F1 | 1F2 | 1F3 | IDI | 1D2 | 103 | EX | WB |
Idle 0 4.6% | 10.8% | 14.4% | 26.2% | 24.3% | 48.8% | 66.1%
Busy 55.4% | 66.9% | 61.1% | 55.2% | 33.1% | 72.3% | 50.8% | 33.9%
Blocked 44.6% | 28.5% | 28.1% | 30.4% | 40.7% | 3.4% | 0.4% 0
Table 5: Simulation Results for the 4SP/PF Pipeline

Block State | IF(Up) | IF(Down) | ID BR OF EX1 | EX2
Idle 0 0 12.2% | 84.9% | 28.4% | 60.6% | 69.0%
Busy 67.4% 741% | 64.8% | 12.7% | 69.7% | 39.4% | 31.0%
Blocked 32.6% 25.9% 23.1% | 2.4% | 1.9% 0 0

improving performance. Note that while the output
of the BR block is shown as entering the EX blocks,
since branch instructions will have zero execute time,
they will essentially exit from the system after leaving
BR. As shown in Table 3 this configuration yields the
highest performance.

5.2 Influence of a Functional Module:
Adder

In the current version of ARAS, several functional
modules are simulated in greater detail and provide
the information of operation time to the main pipeline
simulation. For example, a cache memory simulator
is present to determine the times associated with each
memory access. In this simulator, separate set associ-
ated caches are present for instructions and data.

Another module which is simulated in greater de-
tail is the 32-bit 2’s complement integer adder. Three
different adder designs are available: asynchronous
Ripple-Carry Adder (RCA), asynchronous carry-
SELect adder (SEL), and Conditional-Sum Adder
(CSA). The structures of these adders are described
in [4]. Users can observe the change in performance
resulting from the use of different adders in a particu-
lar configuration. The simulation results for previous
configurations using different adders are shown in Ta-
ble 6.

Since the CSA has a tree structure and takes a con-
stant amount of time (O(logyn)) to complete addi-
tion, it is considered {o be one of the fastest adders
(for clocked design) [7, 12] and achieves the highest
throughput for all configurations. However, the com-
plexity of the CSA circuit is higher than that of most
other adder circuits. Of the remaining adders, the use
of the SEL(8) results in the best throughput. The

SEL(8) has 8 blocks, each of which performs an addi-
tion of two 4-bit numbers. If the SEL(16) (containing
16 blocks, each of which performs an addition of 2-bit
numbers), is used, the performance is not as good asin
the SEL(8) case. This is due to the presence multiplex-
ers, which alter the output of each block depending
on the carry of previous block. The multiplexer delay
becomes more significant when the number of parti-
tions is increased. Therefore, the overall throughput
is decreased. The configuration using the RCA has
the worst throughput among all adders since the long
carry chain present increases the addition delay.

Figures 8 and 9 show the distribution of the ad-
dition times for two of the adders, RCA and SEL(8).
These were obtained using the Qsort benchmark pro-
gram referred to in Table 1. The ARAS display en-
ables the user to view the distribution of addition
times either dynamically or at the end of the simula-
tion. Addition times are dependent on the operand
distribution and the adder used, and not on the
pipeline configuration. The distributions indicate that
long carry chains occur more often then would be ex-
pected with uniformly distributed operands. This ap-
pears to be due to additions which occur during effec-
tive address calculations (e.g., stack operations which
occur at high memory addresses) and can influence
the performance of pipeline configurations and choice

of adders.

With these sort of simulation results, used in
conjunction with VLSI implementation requirements,
users can decide which adder design is most appropi-
rate for their design environment. For example, given
that a CSA is much larger than a SEL(8) and increases
the pipeline performance by only 3%, an SEL(8) de-



Table 6: Simulation Results by Using Different Adders (MIPS: H. Mean for all Benchmarks)

[ Adder | RCA | SEL(2) | SEL(4) | SEL(8) | SEL(16) | CSA |
4SP | 54.6 | 585 | 624 | 634 60.8 | 66.2
6SP | 604 | 640 | 695 | 707 679 | 73.3
8SP | 600 | 633 | 672 | 682 558 | 733

4SP/PF | 644 | 600 | 736 | 7490 719 | 793

i ADDITION TIME: RCA .

Averaga: 1581

o]

0.0

Figure 8:; Addition Time for RCA
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Figure 9: Addition Time for SEL(8)

sign might be the desired choice. Similar studies can
be performed by focusing on other functional mod-
ules, such as the influence of the number of sets in
cache memory or the size of instruction and data cache
mermnories.
5.3 Technology and Design Parameters
‘The prior sections have focused on high level
pipeline architecture considerations and on an indi-
vidual functional modules. However, underlying the
asynchronous simulation is a set of assumptions con-
cerning technology parameters and implementations.
ARAS allows one to explore the effects of many of

Fable 7: Operation Delays

| Type of operation | Delay
Handshaking 3 ns
Cache access 10 ns
Main memory access 100 ns
Instruction decode 5 ns
Simple ALU operation 3 ns
Add or Sub (each bit of carry chain) | 1 ns
Register access and update 3ns

these parameters on performance in conjunction with
configuration considerations.

The performance results associated with Table 3
are based on the parameter values of Table 7. The
optimum configuration may depend on these param-
eters. For example, if handshaking delays are re-
duced, then the optimum configuration may have more
stages. These synchronization overheads are impor-
tant factors which affect the performance of asyn-
chronous pipelines (especially in the case of the longer
pipelines). To obtain an idea of the sensitivity to
handshaking delays with a given configuration con-
sider the results of Table 8. These results indicate that
a 16% performance gain can be achieved in a 6-stage
pipeline if the handshaking delays are reduced from
3 to 1.5 ns. If techniques for overlapping handshak-
ing with other operations are can be developed which
lead to an effective zerc handshaking delay, then a 38%
improvement can be achieved over the 3 ns case. The
results also show that with lower handshaking delays,
the 8-stage pipeline yields higher performance than
the 6-stage pipeline.

Thus, ARAS reflects the change in the optimal
depth of the pipelines with the change in handshaking
delays. Keeping other factors constant, if handshaking
delays are reduced, deeper pipelines will not necessar-
ily perform better than shallower pipelines. This is
due to data dependencies and is seen in the compari-



Table 8 Simulation Results (MIPS: H. Mean for all
Benchmarks)

Delay | 45P | 6SP | 8SP | 4SP/PF |
0.0mns | 81.3] 97.7 | 1041 | 100.1
15ns | 715 ] 825 | 83.1 | 87.0
3.0ns | 63.8 | 710 | 682 | 76.8
45 ms | 57.7 | 62.1] 58.0 | 67.1

son of 6- and 8-stage pipelines for handshaking delays
of 3 ns. Since ARAS uses program traces, such fac-
tors are taken into account., ARAS also indicates that
for handshaking delays greater than 1.5 ns, the su-
perscalar configuration presented outperforms all the
single pipeline configurations since this configuration
is less sensitive to changes in handshaking delays.

8 Conclusions and Future Research

An asynchronous RISC architecture simulator,
ARAS, was presented in this paper. A brief descrip-
tion of simulator operation and of the user interface
was given. General rules for building a working in-
struction pipeline were explained and examples of how
ARAS can be used to explore the performance of alter-
native pipeline configurations, functional module per-
formance and parameter values was given. ARAS can
be used to simulate a pipelined machine, visualize its
operation and obtain performance data. ARAS sim-
ulation times depend on the size of benchmark pro-
grams being used. For the set of programs given in
Table 1, ARAS took an average of about 30 seconds
on a Sun SPARC-20 workstation for simulation and
presentation of the final results. If intermediate re-
sults are required (such as the status of registers after
each instruction etc.) or if the visualization is used
then longer times will result.

This paper reports on a first version of ARAS. Cur-
rent work includes making ARAS more user friendly
and flexible in the block and configurations specfica-
tion areas. Other enhancements include permitting
ARAS to simultaneocusly simulate both clocked and
asynchronous versions of the same pipeline configu-
ration. The performance data presented in this pa-
per used program traces which did not include system
calls {supervisor mode instructions). Work is now be-
ing done remove this limitation and to integrate the
SPECmark set of programs into ARAS.
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