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ABSTRACT OF THE THESIS

Electrocardiographic Consequences of Electrical and Anatomical Remodeling in

Diabetic and Obese Humans

by

Shuli Wang

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2009

Research Advisor: Professor R. Martin Arthur

Background. Diabetes and obesity are two major risk factors for cardiovascular disease. Both can

cause changes due to cardiac sources in body-surface potentials (BSPs), that is, in electrocardiograms

(ECGs). By identifying the major effects of diabetes and obesity on BSPs, we hope to reveal the

electrical phenotype of diabetes in body-surface ECGs in the presence of obesity.

Methods. A Bidomain Platform was constructed to link heart-surface transmembrane potentials

(TMPs) and BSPs. The Forward-Problem Module of the platform calculates BSPs from a bidomain-

model of myocyte TMPs and torso anatomy. The platform also contains a Cardio-myocyte TMP

Estimation Module in which an innovative method, named regularized waveform identification

(RWI), was developed. It is a new approach used to reconstruct the TMPs from BSPs, that

is, solving the electrocardiographic inverse bidomain problem. Using normal TMPs, BSPs were

simulated on obese torsos and compared to BSPs on a normal torso to determine ECG changes

that might accompany certain obese habitus. BSPs on a normal torso were also simulated with

both normal TMPs and TMPs whose duration was increased in a manner expected to occur in the

diabetic. In addition, BSPs were measured, heart and torso models were found on two adult male

subjects: one normal and one obese diabetic. BSPs and estimated TMPs in these subjects, found by

using the RWI method, were compared to identify ECG changes that might be found in the obese

diabetic in a clinical setting.
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Results. Forward-problem solutions found for obese heart-torso models with normal TMPs compared

to normal had relative errors (RE) of 12, 30, and 68% for 20% left-ventricular hypertrophy, 16%

abdomen extension, and displaced heart, respectively. These results suggest that standard 12-lead

ECG measurement could be significantly affected by the anatomical changes associated with obesity.

Simulation results also showed diabetic electrical remodeling may have a strong impact on BSPs. An

RE of 125% was observed between normal and diabetic BSPs due to prolongation of recovery that

might accompany diabetes. Energy reduction of BSPs was found in both simulated and measured

BSPs with obesity. Although QT interval prolongation found in simulated BSPs was not seen in

the ECGs recorded from the obese diabetic subject, QT dispersion(QTd) was found increased in

diabetic in both simulated and measure ECGs. Obviously, no statistical conclusions can be reached

with our limited data set, but the suggestive results call for further clinical observations. TMPs were

estimated in realistic, normal heart-torso model simulations using the RWI method. REs of about

15% were found for up to 10% noise added to BSPs; and for errors in heart size of 10% and heart

location of ±1 cm, which were significant improvements over conventional regularization methods

alone.

Conclusions. In this study, we characterized electrical changes with diabetes and anatomical changes

with obesity; then independently evaluated their influences on body surface potentials (BSPs).

These results suggest that standard 12-lead ECG measurements could be strongly influenced by the

anatomical changes associated with obesity. Body-surface maps and inverse solutions to the heart-

surface that minimize volume-conductor effects are likely to be more useful in investigating the

influence of diabetic electrical remodeling among obese diabetic patients. Simulation results showed

that the RWI inverse solution performed much better than traditional regularization methods alone

and is robust in the presence of noise and geometric error. By incorporating temporal information,

in the form of the basic TMP wave shape, estimation accuracy was enhanced while maintaining

computational simplicity.
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Chapter 1

Introduction

Risk for cardiovascular dysfunction, myocardial infarction (MI) and sudden cardiac

death are markedly increased by diabetes. We hypothesize that deleterious electrical

remodeling presumed to occur in the diabetic heart is a result of metabolic derange-

ments in the myocyte, structural damage to the myocardium, or both. Furthermore,

we believe this remodeling can be measured on the body surface and linked to under-

lying cardiac dysfunction. These electrical changes may presage mechanical, vascular,

or electrical dysfunction or be additive to other biomarkers of cardiovascular risk.

Few studies have focused on electrical activity in the diabetic heart. Nevertheless,

some standard electrocardiographic features have been found to be associated with

diabetes specifically. Electrocardiographic studies of diabetes, however, may be com-

plicated by accompanying obesity, which also carries risk for MI, heart failure, and

cardiovascular disease [87]. According to the American Heart Association in 2004

obesity affected over 66 million adults while more than 15 million were diagnosed

with Diabetes Mellitus. Based on statistical data from the Medical Expenditure

Panel Survey-Household Component, approximately 79% of diabetics in America are

extremely obese, obese, or overweight [101]. The long-term goal of this study is to

characterize the cardiac electrical phenotype of both obesity and diabetes to improve

our ability to predict risk for cardiac dysfunction associated with these conditions.

In obese subjects, geometrical changes produce differences in body-surface potentials

(BSPs) compared to normal subjects. Changes include left ventricular hypertrophy

(LVH), variation in heart position and orientation, and increased fat deposition in

the abdomen. In diabetic patients, symptoms which may be associated with cardiac
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electrical remodeling include derangement of metabolism and both glucose and in-

sulin sensitivity. In several animal-based experiments, cardiac cell transmembrane

potentials measured from diabetic animals differed from those in normal animals.

Furthermore, these changes in transmembrane potentials were manifest in BSPs.

The goal of this work is to reveal the electrical phenotype of diabetes in body-surface

ECGs in the presence of obesity. Research presented in each chapter of this dis-

sertation contributes to the accomplishment of the goal. The electrical remodeling

in diabetes that poses cardiovascular risk is expected to be seen in cardiac cellular

transmembrane potentials (TMPs), as well as in BSPs. Along with it, key anatom-

ical changes with obesity are also considered to affect BSPs. To study the disease

associated electrical phenotypes, we develop a bidomain framework as the foundation

of this research.

To achieve the overall goal, the following four modules will be embedded into the

framework: 1) a Bidomain Source Module, to approximate the general waveform of

cardiac cellular TMPs; 2) a Bidomain Forward-Problem Module, to estimate epi-

cardium and BSPs from cardiac TMPs by solving the bidomain forward problem; 3)

a Cardio-myocyte transmembrane potential Estimation Module, to estimate cardiac-

surface TMPs from BSPs by solving inverse-problems; 4) a Body Surface Potential

Mapping Module, to pre-process and calibrate body surface ECG measurements. In

addition to these modules, two disease related remodelings will be interpreted and

incorporated into the framework, as Diabetic Heart TMP features and Obese Habitus

features. All the work is summarized in the following five specific aims:

AIM 1. To construct a simulation platform to evaluate heart- and body-

surface potentials from cellular level electrophysiological features. Boundary-

element biophysical models, with realistic torso geometry, will be based on a double-

layer source model and the bidomain theorem. This forward-problem platform is

designed as a convenient and reliable tool for the current research on diabetes and

obesity. It will also help identify electrical phenotypes of other conditions that cause

cardiac dysfunction. To determine the impact of TMP variations in diabetes on

ECGs, BSPs will be calculated from cardiac TMPs and a description of torso volume

conductors using bidomain forward problem model. The phenotypes of diabetes and

obesity will be revealed by changes in spatial and temporal features of BSPs.

2



AIM 2. To devise methods suitable for the boundary element method

(BEM) bidomain inverse-problem in the clinical study. New schemes for

solution of the inverse-problem will, of course, rely on the forward-problem formu-

lation developed in Aim 1. With these schemes, we will not only study electrical

remodeling in simulation, but will also determine cellular cardiac electrical features

from body-surface measurement in normal and obese diabetic subjects.

AIM 3. To investigate the geometric influence of obesity on heart- and

body- surface potentials. Obesity causes dramatic variations in heart and torso

anatomic structure, such as an increased thickness in the left ventricular wall, changes

in the position and orientation of the heart, and an increase in abdominal fat volume.

Electrical changes that accompany variations in habitus will be determined by com-

paring heart- and body-surface potentials in obese heart and torso models to potentials

in normal models with the same cardiac source description.

AIM 4. To evaluate the electrophysiological influence of diabetes on heart-

and body- surface potentials. Diabetes triggers changes in ion channel current

densities and transmembrane potentials in cardiac cells. Findings in diabetic animal

studies will be used as the reference to approximate diabetic human myocyte trans-

membrane potentials. The resulting BSPs changes will be estimated with the bidomain

forward problem module designed in Aim 1.

AIM 5. To estimate the electrophysiological influence of diabetes on heart-

and body- surface potentials among normal, and obese diabetic subjects.

We collected electrical and geometrical measurements from one normal and one obese

diabetic subjects. Given body surface ECG measurements, the heart surface myocyte

transmembrane potentials are reconstructed with the bidomain inverse problem mod-

ule designed in Aim 2. By comparing heart- and body-surface potentials of normal

and obese diabetic adult males, electrocardiographic variations that accompany cell-

level changes will be determined. Differences discovered will serve as a foundation for

future studies to identify effects of obesity and diabetes.

To accomplish the above aims, we have made measurements of heart-torso geometries

and BSPs from two subjects: one normal control and one obese diabetic. Also,

we have exported simulation data of normal heart-torso geometry, BSPs, and a set
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Figure 1.1: Bidomain ECG analysis platform is built to estimate heart and torso
surface potentials based on the bidomain model.

of reference timing parameters of TMPs from the interactive simulation program

ECGSIM (University of Nijmegen, the Netherlands. http://www.ecgsim.org).

As show in Figure 1.1, a framework is constructed to achieve aims of the study. It

is composed of: a Bidomain Forward-Problem Module; a Cardio-myocyte Transmem-

brane Potential Estimation Module used to solve the forward- and inverse-problems;

a Bidomain Source Module used to represent cardiac electrical activities with APs;

and a Body-Surface Potential Mapping Module used to pre-process measured ECG

signals. Diabetes related electrical remodeling and obesity-related geometrical re-

modeling are characterized and included in this platform. This pioneering work will

help to identify electrical biomarkers for diabetes available in a clinical setting.
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Chapter 2

Background

The motivation behind this work is to find out the electrical phenotype of diabetes

from the measurable body surface electrocardiograms (ECGs). Diabetes Mellitus

(DM) is one of the most prevalent and dangerous diseases in the United States. It

increases the risk and mortality of heart diseases. The study is designed to understand

the cardiac electrophysiological environment within diabetic patients, and identify

the electrical phenotypes related to diabetes. The more we know about the diabetes

phenotypes, the better we may understand the underlying link between diabetes and

certain heart disease.

In this chapter, we review the effects of diabetes and obesity on ECGs. Obesity is a

major compounding factor of diabetes. The approaches used to solve the ECG forward

and inverse problem are also reviewed in this section. These approaches connect

the potentials distributed over heart and body surfaces, from which the diabetes

phenotypes are identified.

2.1 Effects of Diabetes and Obesity

In a technical report published by the World Health Organization (WHO), diabetes

mellitus (DM) is defined as ”a metabolic disorder of multiple aetiology character-

ized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein

metabolism resulting from defects in insulin secretion, insulin action, or both” [2].

There are two types of diabetes: Type I and Type II diabetes. Type I diabetes (also
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called insulin-dependent or immune-mediated diabetes) occurs when the body can-

not produce insulin; most of Type I diabetes appears before the age of 18. Type

II diabetes (also called non-insulin-dependent diabetes) occurs when the body can

produce insulin, but it either does not produce enough or it cannot use it properly.

About 90% of diabetics have Type II diabetes. Because of its prevalence and its role

in cardiac dysfunction, this study will focus on the Type II diabetes, which will be

referred to as just diabetes.

In 2004, more than 15 million people were diagnosed with DM and more than 72

thousand deaths have been reported because of it [87]. In addition, statistics show

an increasing trend in the prevalence of DM. The Framingham study indicates a

doubling in the incidence of diabetes over the past 30 years, with the most dramatic

increase occurring during the 1990s [31]. From 1994 to 2002, the percentage of diabetic

patients increased from 4.8 to 7.3 among adults in the United States[1].

Heart disease, stroke, and kidney disease are complications of diabetes. The effect of

diabetes on the heart includes abnormalities in both structure and function [7, 58].

Furthermore, diabetes increases mortality and morbidity of heart disease [87, 79, 13,

76, 50, 117, 59]. More than 65% of diabetic patients die of some form of heart disease

or stroke. The heart disease death rate among diabetic adults is two to four times

higher than the rate of non-diabetic adults [87].

The Strong Heart Study among Native Americans showed that left ventricular hy-

pertrophy (LVH) happens more frequently among diabetic patients than non-diabetic

subjects, and that the average left ventricle (LV) mass is about 10% higher in diabetic

patients than in glucose-tolerant subjects. Furthermore, the interventricular septal

(IVS) wall and posterior wall were on average 3% ∼ 5% thicker in the diabetic group

[25, 79, 30]. This tendency for wall thickening is even more pronounced in obese

diabetes.

2.1.1 Electrical Abnormalities due to Diabetes

Although, diabetes is one major risk factor for cardiovascular disease, the prognostic

value of the electrocardiogram (ECG) in diabetics has not been fully studied. In
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the dissertation, I will focus on diabetic associated abnormalities in two important

electrical characters: myocyte transmembrane potentials (TMPs) and body surface

ECGs.

Diabetes is related with deviations in the ion channel current density. Several animal-

based diabetic cardiomyopathy studies suggested diabetic animals tend to have dif-

ferent current densities in cardiac cells. Specifically, the decreases of potassium

(K+) current densities (Ito and Iss) and the increase of calcium (Ca2+) current den-

sity (ICa) were found in many diabetic animals [77, 21, 122, 14]. These diabetes-

related current density variations can lead to prolongation of myocyte TMP duration

[83, 27, 97, 78, 98].

Myocyte TMPs signal the depolarization and repolarization of the transmembrane

potential of a cell. In this study, TMPs are used to characterize cardiac sources. The

relationship between TMPs and body surface potentials (BSPs) can be explained with

a bidomain mathematical model [100]. With the bidomain model, we can simulate

the effect of diabetes on BSPs based on its effect on TMPs. This theory will be

verified later with ECGs recorded from the diabetic subject.

Electrocardiographic features linked to diabetes, for the most part, come from studies

of the conventional 12-lead ECG system. The 12-lead system consists of 8 electrode

signals presented as 12 waveforms: VI , VII , VIII , aVR, aVL, aVF , V1, V2, V3, V4, V5, V6

(see Figure 2.1). Among these leads, the first 2 represent electrical activity projected

onto the frontal plane; while the 6 precordial leads represent activities projected onto

the transverse plane [68].

The 12-lead ECG system provides a convenient way to characterize heart electrical

activity. It has been employed to find risk indicators for cardiac dysfunction, CVD,

and all-cause mortality among Type II diabetic patients [81, 80, 45, 39, 75, 93, 24, 113,

58]. Specifically, the following ECG features have been used to detect diabetes related

heart problems: QT interval parameters (such as corrected QT interval (QTc), or

QT dispersion (QTd)), ST segment depression (STD), and T wave alternans (TWA)

[81, 75, 93, 24, 113, 22, 57, 74].

With the 12 lead system, we can estimate certain cardiac electrical activities from

non-invasive measurements. The estimation is based on the assumption of a sphere
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Figure 2.1: Limb-lead description of the 12-lead ECG system, from
Bioelectromagnetism by Jaakko Malmivuo [68]

torso volume conductor, as shown in figure 2.1. The cardiac source is represented by

a dipole ~p located on the center of the great circle that is the frontal circumference

of sphere conductor. Three limb leads (VI , VII , VIII) are located on a inter-tangent

equilateral triangle of the great circle. Limb leads are calculated from p and its angle

α as

VI = p cosα (2.1)

VII =
p

2
cosα−

√
3

2
p sinα (2.2)

VIII = −p
2

cosα−
√

3

2
p sinα (2.3)

Based on the above equations, the strength and angle of source dipole ~p can be

reconstructed from these limb leads [68].

As a matter of fact, the sphere volume assumption ignores the torso anatomic struc-

ture, and does not consider the great diversity in anatomy among different individ-

uals, such as slim, normal, obese, and severely obese subjects. Therefore, it is hard
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to evaluate specific anatomic effects based on 12-lead system. On the other hand,

body-surface mapping uses a realistic torso model, provides a comprehensive view of

cardiac activity with higher spatial resolution. Therefore, it may be more successful

in identifying electrical characteristics of diabetes. A body-surface potential mapping

(BSPM) system typically uses > 60 electrodes to cover most of the torso surface, not

just the limbs and the precordial region [72, 73, 62, 63]. Measurements from each

electrode are registered to a common reference, such as the Wilson central terminal

(WCT), a single site on the back, or on the left leg. In this study, body-surface maps

are used to study electrical remodeling in diabetic and obese subjects.

2.1.2 Anatomical Abnormalities due to Obesity

Obesity is a main coherent factor of Type II diabetes and heart disease [39]. Based on

definitions from the World Health Organization (WHO), subjects with a body mass

index (BMI) of 25kg/m2 or above are overweight, and with BMI of 30kg/m2 or greater

are obese [121]. In 2004, 140 million U.S. adults were diagnosed as overweight and 66

million were obese, which amounts to 66% and 31% of the population, respectively

[87]. According to WHO, if current trends continue, the number of overweight and

obese people worldwide will increase to 1.5 billion by 2015.

Several parameters have been employed to calibrate obesity status: 1) body mass

index (BMI); 2) waist circumference (WC); 3) waist-to-hip ratio (WHR); 3) skinfold

measurements with callipers; 4) dual wavelength X-ray absorption; and 5) percentage

body fat [96]. BMI, WC and WHR are the most prevalent indicators, and may explain

the correlation between obesity and its complications, including diabetes and heart

disease [17, 56, 55, 43, 119]. Figure 2.2 shows that the relative risks of several diseases,

including diabetes, are monotonically increased with higher BMI. The cutoff points

of the disease risk for Type II diabetes, hypertension, and CVD in terms of BMI, WC

and WHR are given in Table 2.1.

Many studies have shown that obesity is closely related to the changes in cardiac

structure and function. In particular, obesity can cause left ventricular hypertrophy

(LVH). Specifically, obese subjects tend to have, on average, 25 to 60% higher left

ventricular (LV) mass; 15 to 25% thicker posterior wall thickness in diastole; (PWTd)
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Figure 2.2: Relation between BMI and the Relative Risk of Type II Diabetes,
Hypertension, Coronary Heart Disease, and Cholelithiasis (from Willett and

coworkers [119].)

and the interventricular septum thickness in diastole (IVSd) [32, 84, 8, 120]. These

changes are more dramatic in the severely obese group [8, 120], but can be reversed

by weight loss [51, 67].

According to the National Heart Lung and Blood Institute (NHLBI), an increase in

abdominal fat is associated with an increased risk for diabetes, cardiovascular disease

(CVD) and hypertension, when BMI in the ranges of 25 ∼ 35 [60]. People with

an apple body shape (body fat stored around the abdomen, chest and surrounding

internal organs) tend to have a higher risk of diabetes, heart disease and hypertension

than people with a pear body shape (body fat stored on the hip and thigh areas)

[20, 116, 42]. Because obese diabetics tend to be apple-shaped, in this study, we use

Waist circumference (WC) to evaluate the degree of obesity and to separate normal

from obese torsos. WC is an indicator of abdominal fat distribution, is also considered

one of the important anthropometric measures for the risk of CVD [17].

2.2 Bidomain Forward and Inverse Problems

In the last section, we reviewed the electrical and anatomical abnormalities observed

in past studies. In this section, we will briefly introduce the forward and inverse
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Table 2.1: Disease Risk for Type II Diabetes, Hypertension, and CVD†

Women Men
BMI(kg/m2) >30 >30

Waist Circumference (WC) (cm) >88 >102
Waist/Hip Ratio (WHR) (%) >80 >95

†from the guidelines on overweight and obesity published by National Heart Lung
and Blood Institute[60]

approaches used to link heart TMPs and body surface ECGs. With these approaches,

the underlying electrical and anatomical causes can be connected to the observed

abnormal ECG patterns.

2.2.1 Forward Problem

Generally, the forward problem of the electrocardiogram (ECG) is formulated to

determine BSPs for given cardiac sources inside the volume-conductor models. Ap-

proaches used in solving the forward problem fall into two categories: surface methods

and volume methods [40, 90]. In surface methods, the volume outside the source is

decomposed into isotropic conductivity regions separated by interface boundaries.

Surface forward problem methods are built on the analysis of these interfaces; there-

fore, they are also termed boundary-element methods (BEM). Volume methods in-

clude finite-difference method (FDM) and finite-element methods (FEM). In volume

methods, the entire 3-D torso model is numerically represented by a combination of

elements with a certain shape. Volume methods can incorporate conductivity vari-

ation in high resolution, but they require more complex representation of the torso

model. In this study, we chose surface methods because they require a relatively

simple torso model, more suitable for clinical research.

Typically, the forward problem takes two inputs, source and volume conductor. The

general BEM source models include: dipole, multipole, distributed dipole and epicardial

potentials [68]. Among them, the dipole model represents a single current vector with

a certain orientation, magnitude and location. Just as the dipole is formed from two

equal and opposite monopoles, a multipole source is formed with two or more pairs of
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equal opposite monopoles that are close together. What is important about multipoles

is that it can be shown that any given source configuration can be expressed as an

infinite sum of multipoles of increasing order (i.e., dipole, quadrupole, octapole, etc.).

The distribute dipole source is composed of a set of dipoles located over a certain

anatomical region of the heart. The double-layer is one form of distribute dipole

source, when dipoles are uniformly distributed over a surface with enough density so

that the distribution of dipoles can be well approximated with a continuous function.

Epicardial potentials represent the potentials measured outside the heart surface. In

this study, we use the double-layer source model to present heart surface myocyte

transmembrane potentials (TMPs).

As the second input for the forward problem, the volume conductor can be classified

based on whether it is finite or infinite, homogeneous or inhomogeneous. In this

study, we solve the forward problem based on a double-layer source located in a finite

realistic inhomogeneous volume conductor, in which internal in-homogeneities include

heart muscle, lungs, and blood masses. As a volume conductor, the anatomy of the

heart and torso is an important contributor to the body surface ECG patterns among

obese diabetes. With this model, we can quantify the anatomic effects on BSPs in an

obese diabetic heart.

After choosing BEM to formulate the forward problem, we use the bidomain model to

incorporate myocyte transmembrane potentials (TMPs) as the double-layer source.

The bidomain model describes electrophysiological behavior based on discrete cell

structure. In this model, the tissue space is classified into intra- and extra-cellular

domains. The current passes from one domain to another, through the cell membrane

[68, 105, 36]. Similar applications appeared in several other studies [100, 36, 28, 107].

Among them, Fischer and Tilg combined FEM and BEM bidomain models. In their

work, an FEM bidomain model was applied to the myocardium inside the heart,

while a BEM bidomain formulation was adopted in the volume conductor outside the

heart [28]. In this study, we use the BEM bidomain model described by Geselowitz and

coworkers, in which BSPs are estimated from heart-surface TMPs and the heart-torso

anatomical structure [100, 36, 34].
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2.2.2 Inverse Problem

The reconstruction of the heart bioelectrical features has significant clinical impact.

By solving the inverse problem, the heart electrical activities can be reconstructed

non-invasively. This technique can be used to locate disease associated abnormalities,

such as myocardial infarction (MI), ischemia, pre-arrhythmic events, and accessory

pathway in Wolf-Parkinson-White(WPW) syndrome [11]. Additionally, some recent

studies indicate diabetes and long QT (LQT) syndrome are associated with a devia-

tion of cardiac myocyte transmembrane potentials (TMPs) [124, 52, 21, 122]. Here,

TMP is defined as the difference between intra- and extra-cellular potentials. It rep-

resents basic heart bioelectrical activities on the cellular level. Later in this paper,

TMP will play the role of the cardiac source in both forward and inverse problems.

It is well known that the ECG inverse-problem is an ill-conditioned problem, i.e.

the transfer matrix solved by the forward problem has an extremely high condition

number. Even small fluctuations in measured BSPs could lead to drastic deviations in

estimated results of TMPs. To solve this problem, a regularization process has been

introduced to smooth or to set bounds on the inverse problem solution. In previous

ECG inverse problem studies, regularization techniques have been widely used. They

include Tikhonov regularization (considering amplitude or spatial constraints)[69, 90];

truncated singular value decomposition (TSVD)[95, 44, 47]; Twomey regularization

(considering temporal constraints)[69, 82]; and multiple constraint methods [15, 16,

66]. This study selects two well-developed regularization approaches, TSVD and

zero-order Tikhonov, to handle the ill-conditioned situation.

Considering the property of the source model, the bidomain inverse problem is a

rank-deficient problem, i.e. transfer matrix is not a numerically full-rank matrix[44].

Then, based on the forward problem solution, there will be infinite estimations for

source TMPs. Among them, regularization results are just approximations, which do

not match the basic characters of TMP waveform. In this study, we used the nature

of TMP waveform as prior information to adjust regularization outputs to the ’ideal’

estimation of source potentials.

Several previous studies have been focused on reconstructing features or segments of

myocyte TMPs from body surface potentials (BSPs) [103, 70, 107, 106, 110]. In these

13



studies, Messnarz and Tilg used a spatiotemporal regularization approach to calcu-

late activation time (AT) imaging and potentials during depolarization [103, 70]. van

Oosterom and coworkers introduced fixed waveform and optimization methods to esti-

mate timing parameters and potentials during repolarization and depolarization[107,

106, 47]. Nevertheless, insufficient accuracy and noise sensitivity are still the problems

that have not been fully resolved. This study develops an innovative inverse calcula-

tion, which achieves relatively high accuracy, and acts less sensitive to measurement

noise, without increasing the computational complexity.

In this chapter, we reviewed electrical and geometrical abnormalities related to dia-

betes and obesity. In the following sections, these abnormalities are used to identify

the diabetes phenotypes in the presence of obesity. In addition, we also introduced

the bidomain forward and inverse problem approaches, which are used to connect an

electrical pattern over heart and body surfaces.
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Chapter 3

Bidomain Forward Problem

The goal of this work was to characterize the electrical phenotypes of diabetes in

the presence of obesity. Based on available knowledge on diabetic electrophysiology,

two electrical phenotypes are considered to be related to diabetes: 1) cardio-myocyte

transmembrane potentials (TMPs), and 2) body surface potentials (BSPs). The

former parameter is a cellular-level electrical feature commonly studied in diabetic

electrophysiologic research; the latter represents the electrical potential distribution

over body surface, which can be recorded during a clinical procedure. These are

not independent features: myocyte TMPs are considered as electrical generators,

and BSPs are the corresponding observations on the body surface. To systematically

investigate the diabetic effects on the torso electrical environment, we need to link the

electrophysiology findings of diabetic research to clinical ECG observations. In this

study, we connect myocyte TMPs with BSPs through the bidomain forward problem

model.

The forward problem of electrocardiography is formulated to calculate BSPs from the

heart electrical activities, as influenced by the torso volume conductor. By employing

the bidomain model, myocyte TMPs are incorporated into the forward problem for-

mulation as a double-layer source. The volume conductor is represented with a set of

boundaries surrounding different torso homogeneous regions. These boundaries’ ge-

ometries and the conductivities within them were used to estimate the transfer matrix

A, which links BSPs to TMPs. Based on the representations of source and volume

conductor, we call this formulation the bidomain double-layer, forward problem.
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The Algorithms developed to solve the bidomain double-layer forward-problem were

developed in the Matlab R© (Mathworks, Inc., Natick, MA) environment, and as-

sembled as a bidomain forward-problem Module. This module takes torso anatomy,

including organ geometries and conductivities, as inputs. Its output is the transfer

matrix A. BSPs were estimated by multiplying A by the source TMPs. In addition,

the inverse problem was formulated using A, the solution of the forward problem.

In this chapter, the representation of myocyte TMPs is introduced first. Based on

this representation, the bidomain double-layer, forward-problem approach is derived

in detail. Finally, the forward-problem solution was carefully verified.

3.1 Myocyte Transmembrane Potential (TMP)

Ventricular myocyte electrical activities are responsible for BSPs during segments of

QRS-complex and T wave, where most of diabetes related ECG features were found.

Therefore, ventricular myocyte TMPs were selected as the electrical source in our

forward-problem formulation. In this section, we explain what TMP is, and how to

represent it.

3.1.1 Biophysical Context of Transmembrane Potential

Transmembrane potential is also called the action potential when it reaches a certain

threshold. TMP is defined as the difference between intracellular φi and extracellular

potentials φo, as

φm = φi − φo , (3.1)

in which, φm will be used as the symbol of myocyte TMP.

Figure 3.1 demonstrates a typical waveform of ventricular myocyte TMP. It can be

divided roughly into five phases. They are: 0) depolarization, 1) notch, 2) plateau, 3)

repolarization, and 4) resting phases [52]. These phases are caused by movements of

sodium, calcium, potassium and chlorine ions. Specifically, during the depolarization

phase, voltage-gated fast sodium channels open, a rapid influx of positive sodium ions
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produces the inward sodium current INa, which leads to a dramatic jump in membrane

potential. The notch phase starts when the fast sodium channel fails to be active.

The major ion channels at this state are K+ and Cl−, and the outward potassium

current density Ito is responsible for the notch in ventricular myocyte TMPs.

Figure 3.1: Schematic representation of the cardiac transmembrane potential. It is
composed with five phases: 0) depolarization, 1) notch, 2) plateau, 3)

repolarization, and 4) resting. From Keating and Sanguinetti [52].

During the plateau stage, the calcium ion Ca2+ influx ICa and the K+ efflux IKs

remain in balance. As a result, the overall membrane potential remains roughly un-

changed. In the repolarization phase, the Ca2+ channels close while the K+ channels

remain open, and the outward currents IKr and IK1 persist. The TMP keeps falling

until it reaches the resting potential. Typical myocyte resting potential is around

−90mV . During the resting phase, the net movement of sodium Na+ into the cell

equals the net movement of potassium K+ out of the cell, i.e., the net current is

zero. The duration of repolarization is approximately 100 msec. The amplitude of

the TMP is about 100 mV for both muscle and nerve cells [68].

3.2 Bidomain Double-layer Forward Problem

The ECG forward problem is used to estimate body surface potentials (BSPs) from

heart electrical activities and the torso volume conductor. In the previous section,
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heart electrical activities were expressed as myocyte TMPs. In this section, heart-

torso geometries and conductivities are incorporated into the forward problem for-

mulation to generate A, which is the transfer matrix from source TMPs to BSPs.

The methods used to solve the forward problem can be classified into two groups:

boundary element methods (BEM) and volume methods. Here, we choose BEM,

because BEM require a relatively simple description of the torso geometry, suitable

for clinical studies. In BEM, the inhomogeneous volume conductor is decomposed

into homogeneous regions surrounded by closed boundaries, which will be discretized

and represented in the forward problem formulation. Potentials over these boundaries

(including BSPs) will be estimated from the output of the forward problem.

Tissue capacitance is negligible within the frequency band of heart electrical activity

[37]. Thus, this electromagnetic problem is quasi-static, which means the electric and

magnetic fields are decoupled, and the forward and inverse-problems can be solved at

each instant of time without considering previous conditions [36].

In BEM, boundary potentials V are composed of two terms, primary-source poten-

tials and secondary-source potentials. The primary-source potentials are potentials

produced by the cardiac sources in a infinite homogeneous volume. The secondary-

source potentials are potentials reflected by boundaries.

The general form of BEM for forward problem is:

V (r) =
1

2π(σ−r + σ+
r )

∫
v

Ji · ∇
(

1

r

)
dv (3.2)

−
m∑

s=1,s 6=r

(σ−s − σ+
s )

2π(σ−r + σ+
r )

∫
Ss

V (r′)∇
(

1

r′

)
· dS,

in which the first term on the right side is the primary source potential, and the sec-

ond term represents the secondary source potential [41]. By adding them together,

we obtain a boundary potential V (r), where r is the vector from observation to source

element of integration dv, and r′ presents the vector from observation to reflecting

boundary element dS. Conductivities, σ−s and σ+
s represent values inside and outside
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the source boundary; while σ−r and σ+
r represent values inside and outside the obser-

vation boundary, respectively. In equation (3.3), Ji is the impressed current density,

which is used to describe ion movements driven by metabolic activities.

3.2.1 Bidomain Source Model

Rather than using cell transmembrane potential Φm, the BEM form in equation (3.3)

employs the impressed current density Ji to represent the primary source. Therefore,

to incorporate diabetes-effected Φm, we need to use the bidomain model to explain

the relation between Φm and Ji. To understand how it works requires a knowledge

of some of the physical features of current density.

The overall current density, J is the summation of the impressed current density Ji

and conduction current density. The conduction current density is proportional to

the negative of the gradient of the electric scalar potential Φ [36].

∇ · J = ∇ · Ji −∇ · σ∇Φ . (3.3)

We assume that the currents in the volume conductors are stationary, i.e., that there

is not an accumulation of charge outside source. In this case, the divergence of the

total current density is zero.

∇ · J = 0 . (3.4)

Based on Equation (3.3) and (3.4), we get

∇ · Ji = ∇ · σ∇Φ . (3.5)

In the bidomain model, the microscopic space is broken into intracellular and extra-

cellular regions, which are separated by cell membrane. Based on this structure, the

current densities in these two regions are expressed as:

Ji = −σi∇Φi (3.6)

Jo = −σo∇Φo , (3.7)
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where subscripts i and o represent intracellular and extracellular region respectively

[36]. σi and σo are conductivities, and Φi and Φo are potentials in these regions.

The transmembrane potential, or so called the action potential (AP), Φm is defined

as difference between Φi and Φo, as shown in Equation (3.1). The overall current

density, J in Equation (3.3) can also be expressed as the summation of Ji and Jo,

then

J = Ji + Jo (3.8)

= −σi∇Φi − σo∇Φo (3.9)

= −σi∇Φm − σi∇Φo − σo∇Φo (3.10)

= −σi∇Φm − σH∇Φo (3.11)

For stationary volume conductors, based on Equation (3.4),

∇ · σiΦm = −∇ · σHΦo . (3.12)

where σH = σi + σo is the bulk conductivity that can be taken as the average con-

ductivity of heart muscle. In the volume conductor close to the heart surface the

scalar potential Φ in Equation (3.5) is equal to the extracellular potential Φo, and σ

in Equation (3.5) becomes σH . By combining Equation (3.5) and (3.12), we get

Ji = −σi∇Φm , (3.13)

in which, Ji is proportional to the gradient of myocyte TMP Φm. Equation (3.13)

enables us to bring Φm into the forward problem equation, and estimate the resulting

boundary potentials, such as BSPs. Then, the TMP variance due to diabetes will

lead to certain changes in BSPs. By analyzing these changes, we can have a better

understanding of the electrophysiologic effects of diabetes.

3.2.2 Bidomain Double-layer Forward Problem Model

In the previous section, the impressed current density Ji in Equation (3.3) was derived

as a function of the myocyte TMP Φm. By substituting Equation (3.13) into (3.3),
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we then get

V (r) = − 1

2π(σ−r + σ+
r )

∫
v

σi∇Φm · ∇
(

1

r

)
dv (3.14)

−
m∑

s=1,s 6=r

(σ−s − σ+
s )

2π(σ−r + σ+
r )

∫
Ss

V (r′)∇
(

1

r′

)
· dS,

Based on the rule of integration by parts, the first integration term in Equation (3.15)

can be written as:

−
∫
v

σi∇Φm · ∇
(

1

r′

)
dv = −

∫
v

∇ · (σiΦm∇
(

1

r′

)
) dv (3.15)

+

∫
v

Φm∇ · (σi∇
(

1

r′

)
) dv .

In the above equation, σi∇
(

1
r′

)
represents lead field current, whose divergence will

vanish outside the source [36]. Therefore, the second term on the right side equals

zero. By applying the divergence theorem, the first term on the right side can be

written in the form of a surface integral over heart surface SH :

−
∫
v

σi∇Φm · ∇
(

1

r′

)
dv = −

∫
v

∇ · (σiΦm∇
(

1

r′

)
) dv (3.16)

= −
∫
SH

σiΦm∇
(

1

r′

)
dSH

By substituting the above expression into Equation (3.15), the bidomain forward-

problem becomes

V (r) = − 1

2π(σ−r + σ+
r )

∫
σhΦm∇

(
1

r

)
· dSH (3.17)

−
m∑

s=1,s 6=r

σ−s − σ+
s

2π(σ−r + σ+
r )

∫
Ss

V (r′)∇
(

1

r′

)
· dS .

To implement Equation (3.17) numerically, we use a set of triangular surface elements

4 to approximate smooth boundaries in 3-D. Additionally, a solid angle expression is

introduced to represent a source surface projection onto the unit sphere centered at

the observation location. For example, the solid angle subtended by source triangle
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4j at observation point i is Ωji [41], whose derivative becomes:

dΩji = ∇
(

1

r′

)
· dSj (3.18)

Then, Equation (3.17) becomes

Vi = − 1

2π(σ−r + σ+
r )

∫
σhΦm dΩHi −

m∑
s=1,s 6=r

σ−s − σ+
s

2π(σ−r + σ+
r )

∫
4j

Vj dΩji . (3.19)

In matrix notation, the discretized version of Equation (3.19) is Vt

Vh

Vl

 = − 1
2π


σhΩth

σt

σhΩhh

σh+σt

σhΩlh

σl+σt

 [Φm] − 1
2π

 Ωtt
(σh−σt)Ωth

σt

(σl−σt)Ωtl

σt

σtΩht

σh+σt

(σh−σt)Ωhh

σh+σt

(σl−σt)Ωhl

σh+σt

σtΩlt

σl+σt

(σh−σt)Ωlh

σl+σt

(σl−σt)Ωll

σl+σt


 Vt

Vh

Vl


= − 1

2π


σh

σt

σh

σh+σt

σh

σl+σt

 •
 Ωth

Ωhh

Ωlh

 [Φm]

− 1
2π

 1 σh−σt

σt

σl−σt

σt

σt

σh+σt

σh−σt

σh+σt

σl−σt

σh+σt

σt

σl+σt

σh−σt

σl+σt

σl−σt

σl+σt

 •
 Ωtt Ωth Ωtl

Ωht Ωhh Ωhl

Ωlt Ωlh Ωll


 Vt

Vh

Vl


(3.20)

where • indicates array multiplication.

In the above equation, Vt, Vh and Vl represent potentials on three closed surfaces

(the boundaries surrounding torso, heart, and lung). The conductivities inside these

surfaces are σt, σh, and σl. More inhomogeneities can be easily imported into Equation

(3.20), by adding additional rows and columns into solid angle matrices, without

affecting existing solid angles.

To simplify the expression of Equation (3.20), we make

B = − 1

2π

 1 σh−σt

σt

σl−σt

σt

σt

σh+σt

σh−σt

σh+σt

σl−σt

σh+σt

σt

σl+σt

σh−σt

σl+σt

σl−σt

σl+σt

 •
 Ωtt Ωth Ωtl

Ωht Ωhh Ωhl

Ωlt Ωlh Ωll

 . (3.21)
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Then, Equation (3.20) becomes Vt

Vh

Vl

 = − 1

2π


σhΩth

σt

σhΩhh

σh+σt

σhΩlh

σl+σt

 [Φm] + B

 Vt

Vh

Vl

 . (3.22)

In this equation, by moving the second term on the right to the left side, we get

(I−B)

 Vt

Vh

Vl

 = − 1

2π


σhΩth

σt

σhΩhh

σh+σt

σhΩlh

σl+σt

 [Φm] , (3.23)

where, I is the identity matrix sharing the same size with B.

It seems that surface potentials Vt, Vh and Vl can be estimated by multiplying the

inverse of (I−B) to the primary source potentials in Equation (3.23). Based on the

definition of the solid angle, however, the summation of each row of matrix B equals

one, i.e. it has an unit eigenvalue. Consequently, (I−B) will has a zero eigenvalue.

It is inappropriate to invert this matrix because it is singular. In this study, we used

multiple deflations to solve this problem. The deflated matrix C will be used to

replace B in Equation (3.23). For implementation details of deflation, see Appendix

B. After deflation, surface potentials can be calculated with the following equation: Vt

Vh

Vl

 = − 1

2π
(I−C)−1


σhΩth

σt

σhΩhh

σh+σt

σhΩlh

σl+σt

 [Φm] . (3.24)

With transfer matrix A as

A = − 1

2π
(I−C)−1


σhΩth

σt

σhΩhh

σh+σt

σhΩlh

σl+σt

 , (3.25)

the bidomain forward-problem solution becomes

V = AΦm . (3.26)
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In this work, Equation (3.24) is implemented in the Bidomain Forward-Problem Mod-

ule. Transfer matrix A is the output of our forward-problem module. It contains all

applicable anatomical information (geometries and conductivities) of the torso. By

multiplying A by the myocyte TMPs Φm, we find the potentials on the body, heart

or other organ surfaces. Furthermore, equation (3.26) can be used to estimate Φm

from the observed body surface potentials by solving the inverse-problem. For details

of the inverse operation, see Chapter 4.

3.3 Bidomain Forward Problem Numerical Imple-

ment

3.3.1 Numerical Representation of Transmembrane Poten-

tials

Two methods are typically used to construct a TMP: 1) characterization based based

on its biophysical model [61, 92, 48]; and 2) characterization from a parameterized

function [71, 35, 109, 103, 26, 106, 110]. In this study, the latter approach was used

due to its simplicity. During the implementation, this approach was broken into two

steps: 1) characterize the general shape of TMP waveform with a template that is

represented with parameterized functions, and 2) find the corresponding function pa-

rameters for each spatial location on the heart. This portion of work was implemented

in the Bidomain Source Module, as shown in Figure 1.1.

Transmembrane Potential (TMP) Template

In previous studies, several functions and their combinations have been used to gener-

ate the TMP template. The depolarization waveform has been approximated with a

step function from −90mV to 10mV [71], a ramp function [109], or an inverse tangent

function [103]. The repolarization waveform of φm has been approximated with six

linear segments [71], an exponential function [26, 110], and an integral of dominant

T wave [106]. The notch of φm has been approximated from logistic function [110].
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Figure 3.2: Transmembrane potential template composed of depolarization and
repolarization waveforms. Parameters δ and ρ identify the time instants when the

steepest potential increase and decrease occur in the depolarization and the
repolarization phase.

The shape and coordinates of these functions has been controlled by several parame-

ters. For example, depolarization and repolarization timing variables have been used

to indicate the instants when depolarization and repolarization occur [106, 103, 35].

These variables may vary from location to location over the heart surface. They can

be estimated from body surface ECGs by solving the inverse problem.

A TMP template, φm, was constructed for this study as shown in Figure 3.2. This

template is composed of two segments, as φm = [φdep, φrep]. Here, φdep represents

TMP during the depolarization phase. The template mainly decides BSPs during

the QRS complex. φrep presents TMP during the plateau, repolarization and part

of resting phases (TMP notch waveform is ignored for now), and it contributes to

BSPs during the ST segment and T wave. Similar approaches have been used by van

Oosterom [107].

Based on its waveform, φdep was characterized with an inverse tangent function

φdep(t; k, δ) =

(
2

π

)
arctan(k(t− δ)) , (3.27)
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Figure 3.3: Dominant T wave and the transmembrane potential repolarization
template.

where t indicates time instant, k is the parameter controlling the depolarization curve

shape, and δ is called depolarization timing, which is the time instant corresponding

to the maximum TMP gradient.

φrep was generated by the integrating the dominant T wave [106]:

φrep(t; ρ) ∝ −
∫

(Tdom(t− ρ))dt , (3.28)

where ρ is the depolarization timing, which is the time instant corresponding to the

minimum gradient of transmembrane potential during φrep. By combining φdep(t; δ)

and φrep(t; ρ), we get the overall ventricular transmembrane potential template φm(t; k, δ, ρ),

as shown in Figure 3.2.

The dominant T wave function Tdom() is defined as the negative of the spatial deriva-

tive of the repolarization potential φrep.

Tdom(t) = −φ′rep(t− ρ̄) , (3.29)
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Figure 3.4: TMP timing parameters from ECGSIM [111].

where ρ̄ is the average repolarization timing parameter. Its integral can be used to

construct φrep, as shown in Equation (3.28). This approach has been first used by

van Oosterom [106]. In his work, the dominant T wave was shown to be proportional

to the square of Vtw, which are BSPs during the T wave.

Tdom ∝ 1T(Vtw)TVtw (3.30)

where 1 is the unit vector. Based on Equation (3.30), we calculated a dominant T

wave, Tdom, from a set of normal BSPs. With this Tdom, the repolarization template

was estimated, as shown in Figure 3.3. The BSPs employed here were exported form

ECGSIM, which is a freeware electrophysiology simulation program developed by van

Oosterom’s group [111].

The Transmembrane Potential Parameters

To generate TMPs on the heart surface, we need a set of parameters (kn, δn, ρn)

for each location n. To simplify the problem, we set all kn equal to 1 initially.

Depolarization {δn} and repolarization parameters {ρn} from ECGSIM, as shown in

Figure 3.4 were used to adjust the template (Figure 3.2). With these parameters,

we get TMPs, Φm(t), over the whole ventricular surface as shown in Figure 3.5. The

Φm(t) were be used as the normal TMPs for the simulation part of this study.
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Figure 3.5: Transmembrane potentials at the 257 nodes on the ECGSIM ventricular
model. The waveform template is composed of two parts: arctangent depolarization

waveform and dominant T wave repolarization waveform.

Prolongation of TMP duration, or the length of the so-called action potential, is seen

in many diabetic animal experiments [77, 21, 122, 14]. Based on the reference Φm(t),

we can approximate diabetic TMPs by increasing the interval between δ and ρ in

certain patterns. The resulting heart- and body-surface potentials were calculated

with the Bidomain Forward-Problem Module, and analyzed with the Body Surface

Mapping Module in Figure 1.1. The source TMPs can be estimated from BSPs by

solving the inverse problem. Details of this operation will be introduced in Chapter

4.

3.3.2 Numerical Representation of Torso Anatomy

To set up the simulation experiment, we used the heart-torso geometries exported

from the ECGSIM platform [111], which included a 275-node ventricular model and

a 300-node torso model, as shown on the left of the Figure 3.6. For more details,

see the Appendix A. In the inhomogeneous forward problem simulation, we also

employed lungs models previously used by Arthur [5], by scaling and fitting them

into the ventricles-torso geometries as shown on the right of Figure 3.6. In addition,
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Figure 3.6: Left) ECGSIM heart-torso geometries; Right) Adding additional lung
models to the ECGSIM geometries.

two blood-mass surfaces were generated to fit into the ECGSIM ventricle cavities, as

shown in Figure 3.7.

Figure 3.7: The ventricle model from ECGSIM with derived blood mass surfaces.

A series of simulation experiments was based on the above anatomic structures, es-

pecially the heart-torso geometries. They were used to test the forward problem, to

evaluate the inverse problem approach, and to approximate certain BSP effects of an

obese habitus. In addition to the geometries, organ conductivities are also needed
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to establish the transfer matrix in the forward problem. The conductivities of heart,

torso, blood and lung are approximated with 0.3, 0.2, 0.6, 0.05 S/m [68].

3.4 Bidomain Forward Problem Verification

The bidomain forward problem model is the foundation for the remaining work of

this study, including solving the inverse problem, evaluating the anatomic effects of

obesity, and estimating the electrical phenotype of diabetes. Therefore, it is important

to make sure the forward problem solution is reliable. The previous section introduced

an approach to solve the forward problem based on bidomain and double-layer models.

In this section, we concentrate on verifying this approach.

The forward problem approach can be tested either by employing certain analytic

methods [10, 6, 102], or by comparing simulation results with experimental recordings

[86, 100, 107, 108]. Here a series of analytic procedures were developed and applied

to verify the forward-problem routines.

Specifically, the verification was performed in three steps: 1) fundamental tests, 2) a

homogeneous-volume test, and 3) an inhomogeneous-volume test. In the first step,

the test contained two parts: 1) to verify solid-angle calculations based on its defini-

tion [112], 2) to test whether or not field potentials outside a closed uniform strength

double-layer source equaled zero. After the fundamental test, dipole sources in a real-

istic homogeneous torso were employed to calculate BSPs. The simulated BSPs were

integrated over the torso surface to see if the original dipole sources could be recovered

[6]. Finally, the bidomain forward-problem routine was tested in an inhomogeneous

volume conductor. In this test, surface potentials were calculated based on a set of

eccentric-sphere conductors that surrounded a spherical double-layer source [89, 91].

Simulated potentials were compared to analytic results in the eccentric-spheres model.
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Figure 3.8: Solid angle verifications. Upper) the solid-angle divided by π subtended
by the torso surface at the heart nodes, which are located inside of the torso surface.
The plot indicates the value is precisely four. Lower) the solid-angle subtended by
the heart surface at the torso nodes, which are located outside of the heart surface.

3.4.1 Fundamental Tests

As shown in Equation (3.26), surface potentials V can be calculated by multiplying

the transfer matrix A by the cardiac surface TMPs Φm. As the output of the bido-

main forward problem, A contains information on torso geometries and corresponding

conductivities (see Equation (3.25)). Specifically, both primary and secondary poten-

tials depend on solid-angles. In the first part of this test, we verified the solid-angle

routine based on its definition. In addition, the transfer matrix A was tested based on

the fact that field potentials outside a closed uniform-strength, double-layer sources

are zero.
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Figure 3.9: Body surface potentials observed outside a uniform strength
double-layer source on a heart surface.

Part 1: Verifying the Solid Angle

The solid-angle is defined as the surface’s projection onto the unit sphere centered at

the observer [112]. It demonstrates how big a source object appears to an observation

point. By its definition, the following two criteria should be met:

• Solid-angle equals ±4π, when it is subtended by a closed surface at an observa-

tion node inside the surface;

• Solid-angle equals 0, when it is subtended by a closed surface at an observation

node outside the surface;

Corresponding to these criteria, two experiments were conducted to verify the solid-

angle routine. First, we calculated the solid-angles subtended by the torso surface at

nodes inside torso, such as nodes on the heart, to see if they all equaled ±4π. The

result is shown in the upper section of Figure 3.8. We also calculated the solid-angle

subtended by the heart surface at any nodes outside the heart surface, such as nodes
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on the torso, to see if they all equal 0. The result is demonstrated in the lower section

of Figure 3.8. Based on these results, we see that our solid-angle routine satisfies

these fundamental criteria.

Part 2: Verifying the transfer matrix A with a closed uniform-strength,

double-layer source.

In this study, the double-layer model was used to represent source potentials. Based

on the feature of source model, uniform-strength, double-layer sources will not pro-

duce an external field [106, 68]. This feature can be used to test the transfer matrix A.

By multiplying A with a unit vector e (representing a set of uniform strength sources),

we expect to see that the resulting outside potentials are all zero, i.e. A1 = 0. This

result is shown in Figure (3.9), in which simulated body surface potentials from a

uniform-strength, double-layer source over heart surface are close to zero. Clearly,the

bidomain transfer matrix A passed these tests.

3.4.2 Homogeneous Volume Test

In addition to the verification based on the features of the solid angle, the bidomain

forward-problem approach was tested using unit dipole sources in a homogeneous

volume conductor. In the next sub-section, we will discuss the more complicated

situation of an inhomogeneous conductor.

As introduced in Chapter 2, BEM source models include: dipole, multipole, distributed

dipole and epicardial potentials [68]. In the dipole model, the source is a single, fixed

current moment per unit volume. The double-layer model is a distributed dipole

source in which dipoles are uniformly distributed over a surface with enough density so

that the distribution of dipoles can be well approximated with a continuous function.

Verification based on a unit dipole sources can be used to test the bidomain forward

problem approach developed for double-layer potential source because a unit dipole

can be taken as a double-layer source with only one location being ”turned on”. In

addition, both source models can be transformed into the impressed current density

Ji, and can be incorporated into the primary source term in the general BEM forward
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Figure 3.10: A dipole source (marked in red) locates at the origin, which inside a
homogeneous torso.

problem formulation, Equation (3.3). Specifically, over a small area, a current dipole

source ~p can be represented as a function of the bidomain double-layer source φm [36]:

~p =

∫
Jidv = −

∫
σi∇φmdv = −

∫
σiφmdS , (3.31)

Furthermore, the secondary source term in Equation (3.3) is only determined by

boundaries. This term will not be affected by the choice of the source model. There-

fore, the verification of the forward problem approach based on the unit dipole source

in a homogeneous conductor is also valid for the case of a double-layer source in the

same conductor.

Methods and Results

According to the multipole model developed by Geselowitz and Arthur [33, 3, 6],

the magnitude, orientation and location of a dipole source can be recovered from the

surface potentials on a closed boundary surrounding the dipole. Specifically, a10, a11
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and b11 represent z, x and y components of the source dipole. a20, a21, b21 a22, and

b22 are quadrupole coefficients that contain information on the location of the dipole.

These multipole coefficients can be calculated from surface potentials V as:

a10 =
∫
σV dSz

a11 =
∫
σV dSx

b11 =
∫
σV dSy

a20 =
∫
σV (2z dSz − x dSx − y dSy)

a21 =
∫
σV (z dSx + x dSz)

b21 =
∫
σV (z dSy + y dSz)

a22 = 1/2
∫
σV (x dSx − y dSy)

b22 = 1/2
∫
σV (y dSx + x dSy)

(3.32)

Note that all of the quadrupole coefficients equal zero for a dipole source if the origin

is at the dipole location.

For this verification, we selected three dipole sources (unit vector along X-, Y- and

Z-axis) located at the origin surrounded by a homogeneous torso, as shown in Figure

3.11. Correspondingly, body surface potentials (BSPs) were calculated from these

sources with our bidomain forward problem approach, as shown in Figure 3.10. By

integrating BSPs using Equation (3.32), we obtained the recovered source coefficients.

Table 3.1 and Figure 3.12 show these recovered coefficients along with the original

coefficients. From these results, we can tell that the dipole source can be recovered

from BSPs with a root mean square (RMS) error equaling to 0.303%, indicating the

bidomain forward-problem approach is reliable for the case of the double-layer source

within an homogeneous torso.

Table 3.1: Multipole coefficients recovered from BSP integration.

Original Recovered Source Coefficients
Source a11 b11 a10 a20 a21 b21 a22 b22

a11 0.9918 -0.0009 -0.0008 0.0569 -0.0108 0.0047 -0.0153 -0.0045
b11 -0.0004 0.9967 -0.0002 0.0320 0.0041 0.0085 -0.0056 -0.0064
a10 -0.0002 0.0000 0.9980 -0.0059 -0.0032 -0.0056 -0.0037 -0.0009
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Figure 3.11: The point like dipole sources along X-, Y- and Z-axis, and the resulting
body surface potentials.

Figure 3.12: Multipole coefficients recovery.
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Figure 3.13: Left) Eccentric spheres (ESS) model geometry, including torso shell(in
grey), heart shell (in yellow) and source cap (in red). Right) Simulated surface

potentials on torso shell.

3.4.3 Inhomogeneous Volume Test

In the previous two sub-sections, the bidomain forward problem approach has been

verified with the fundamental test and the homogeneous volume test. In this sub-

section, the forward problem approach will be tested for the case of the double-layer

source within an inhomogeneous volume conductor. To accomplish this test, we

employed an eccentric spheres model (ESM), which was first constructed by Rudy

[89, 91].

Similar to the model used in [89, 91], a reference eccentric spheres model was built

based on which surface potentials were calculated with the bidomain forward problem

approach. Simulated potentials were compared to their corresponding analytic results.

The model consisted of 2 regions of homogeneous conductivity: a heart with a radius

of 5 cm and a conductivity of 0.6 S/m and a torso with a radius of 12.5 cm and a

conductivity of 0.2 S/m.

The heart was located at an eccentricity of 5 cm from the center of the torso [89, 91].

The source was a uniform dipole layer in the shape of a spherical cap, ranging from

5o to 36o. The ESM geometry and resulting simulated torso surface potentials are

shown in Figure 3.13. Potentials were calculated on the heart and torso surfaces using

a 50-term Legendre polynomial expansion [89, 91]. Analytic results were calculated

with the routine provided by Beetner and Arthur [11, 12].
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Figure 3.14: Left) Simulated (solid line) and Analytic (circle) surface potentials for
polar angle from 0◦ to 180◦. Right)Relative error of simulated surface potentials for

polar angle from 0◦ to 180◦.

Because the ESM is azimuthally symmetric, potentials along one longitude line (from

0o to 180o) can be used to demonstrate the potential distribution over the whole

sphere surface. Simulated and analytic surface potentials along the longitude line on

the torso sphere are shown on the left side of Figure 3.14. The relative differences

between them are small, ranging from 0.60%to 1.29%, as shown on the right side

of the figure. These results indicate that the bidomain forward-problem approach is

valid for the inhomogeneous case. During the simulation, the average numerical error

was reduced from (3% to 1.1%) by increasing the torso resolution from (16×16) to

32×32.

In this section, the bidomain forward problem approach has been verified in three

ways: the fundamental test, the homogeneous volume test, and the inhomogeneous

volume test. Based on these tests, we showed that our forward problem approach

is reliable for environments with the double-layer sources inside either homogenous

or inhomogeneous volume conductors. In the following chapters, this bidomain ap-

proach will be used to estimate body surface potentials from the diabetic heart TMPs,

considering torso variations in the anatomy of obese subjects.

Furthermore, based on the output of the bidomain forward problem, the inverse

problem will be formulated and solved. Precise reconstruction of the source potentials
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from BSPs is another verification of the forward-problem formulation. For details,

see Section 4.3.
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Chapter 4

Bidomain Inverse Problem

4.1 Problem Statement

Diseases such as Type II diabetes may lead to abnormalities in the transmembrane

potentials (TMPs) of cardiac myocytes that are manifest as changes in body-surface

potentials (BSPs), such as long QT syndrome. Direct inference of TMPs from body

surface potentials for use in clinical practice, however, remains a challenge. Several

groups have been working on the reconstruction of TMPs from BSPs [70, 103, 107].

Nevertheless, limited accuracy and sensitivity to noise are problems that have not

been resolved. In this chapter, a new inverse approach called regularized waveform

identification (RWI) is developed. RWI combines spatial regularization with temporal

optimization to estimate TMPs from BSPs with greater accuracy than conventional

regularization alone.

The inverse problem is formulated based on the bidomain model developed in the

previous chapter. In that model, BSPs, V, are determined from cardiac TMPs, Φm,

by multiplying them by the transfer matrix A,

V = AΦm . (4.1)

With the bidomain model, the inverse approach was developed to reconstruct Φm

from the observed V, given the transfer matrix A established from the forward prob-

lem.
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Many diabetes and obesity associated ECG features have been found during S-T

segment and T wave. In this chapter, we focus on the repolarization TMPs. Due

to the quasi-static features of the inverse problem, repolarization potentials can be

reconstructed from the T wave measured on the body surface. During the S-T segment

and T wave, the repolarization Φm is a function of the repolarization timing parameter

~ρ, that is Φm(t; ~ρ).

The parameter ~ρ is used to indicate the instant at which the steepest decrease in the

TMP occurs. It varies from location to location. After selecting a waveform template

(such as the integral of dominant-T wave or the logistic function), we can determine

the Φm and its ~ρ) from each other.

The inverse approach developed in this chapter was implemented in MATLAB. These

corresponding implementations were incorporated into the bidomain simulation plat-

form (Figure 1.1) as the Cardio-myocyte transmembrane potential Estimation Module,

or the so called the inverse-problem module.

4.2 Theoretical Framework

4.2.1 Least Squares Estimation (LSE)

In general, the least-squares approach is optimal if the errors are zero-mean, uncor-

related, and have equal variances [53, 118]. For the linear model in Equation (4.1),

the objective is to find the Φm, which minimize the body-surface residual error, as

J =
T∑
t=1

‖V −AΦm‖2 (4.2)

in which T is the time span, such as the QRS-complex or the T wave. The least-

squares solution for the above equation is:

Φm = (ATA)−1ATV . (4.3)
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This estimation problem, however, is ill-conditioned, i.e. matrix A has a large con-

dition number. Under this situation, any small changes in the measured BSPs will

have drastic effects on the estimated Φm. Therefore, Equation (4.3) is usually not

useful. To solve this problem, regularization has often been introduced to smooth or

to set a bound on the inverse problem solution.

4.2.2 Regularization

Typically, regularization is achieved by adding one or more penalty terms to the

residual function. These penalty terms act as constraints incorporating prior in-

formation into the inverse model [66]. Several regularization techniques have been

adopted to solve the inverse-problem, such as: Tikhonov regularization (consider-

ing amplitude or spatial constraints) [69, 90], truncated singular value decomposi-

tion (TSVD) [95, 44, 47], Twomey regularization (considering temporal constraints)

[69, 82], and multiple constraint methods [15, 16, 66]. In this study, we selected

two well-developed, widely used regularization approaches, TSVD and Tikhonov, to

handle the ill-conditioned situation. These two methods demonstrate the limits of

regularization for the bidomain inverse problem.

TSVD Regularization

From the numerical point of view, the transfer matrix A has one or more near-to-zero

singular values, which contribute to its ill-conditioned property. TSVD solves this

problem by removing the small singular values from A, resulting in a rank-deficient

matrix Ak. Source potentials can be estimated with the pseudo-inverse of Ak. This

approach contains the following steps:

1. Decompose A with SVD, as A = UΣVT;

2. Remove the k smallest singular values from diagonal matrix Σ, by setting them

to zero, the resulted matrix becomes Σk;

3. Construct Ak from Σk, as Ak = UΣkVT;
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4. Calculate the pseudo inverse of Ak as A†k = VΣ−1
k UT.

In the above steps, U and V are unitary matrices, containing orthonormal basis

vectors. The regularized estimate of the TMPs thus becomes

ΦTSVD = A†kV = VΣ−1
k UTV. (4.4)

The above solution is the minimum-norm least-squares solution for Φm [44], that is

it finds the

min ‖Φm‖2 subject to min ‖AkΦm −V‖2 .

Tikhonov Regularization

In Tikhonov regularization a constraint term is added to the residual term to obtain

spatial smoothness and thereby reduce the amplitude of estimates of the TMPs.

There are three commonly used Tikhonov approaches: zero, first- and second-order

regularization. They all share a common objective function

‖J‖2 = ‖V −AΦm‖2 + λ‖RΦm‖2 . (4.5)

In the zero-order Tikhonov, R is an identity matrix. In the first-order and second-

order Tikhonov methods, R is the surface gradient operator or the surface Laplacian

operator, respectively.

The Tikhonov regularization solution is [69, 90]

ΦTikh = (ATA− λRTR)−1ATV , (4.6)

where λ is a weighting parameter, known as the ”regularization parameter”. It is

used to control the tradeoff between the residual error and regularization term. The

regularization weighting parameter can be found with a variety of techniques, such

as the CRESO (Composite Residual Smoothing Operator) or L-curve and the zero-

crossing techniques [3, 11, 49, 114]. The value of this parameter is crucial to the

accuracy of results. There is often only a small range of values that work well [69].
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Figure 4.1: Regularization parameter λ is determined by means of the maximum
curvature of the L-curve.

In this study, we use the L-curve, as shown in Figure 4.1 to find effective values

for λ. In Equation (4.5), the regularization term is a function of the TMP. This

constraint was used to achieve spatial smoothness of TMPs. For similar reasons the

timing parameters, ~δ and ~ρ, have been employed to calculate the regularization term

in other bidomain inverse studies [103, 107].

4.2.3 Regularized Waveform Identification (RWI)

Spatial regularization can be achieved with the above TSVD or Tikhonov approaches.

The corresponding TMP estimates are then calculated with Equations (4.4) or (4.5).

If these regularization methods do not provide adequate estimation accuracy, is there

a better way to reconstruct the source potentials? These questions are addressed in

this section.
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Rank-deficient Problem

Given the property of the source model, the bidomain inverse problem is a rank-

deficient one, i.e. the transfer matrix A is not a numerically full-rank matrix [44]. For

example, it is known that the uniform strength double-layer source will not produce

an external field [106], i.e.

A1 = A


1

1

.

1

 = 0 , (4.7)

where, 1 is a unit vector, and 0 is a zero vector. In other words, the unit vector

belongs to the null space of A, represented as N(A),

1 ∈ N(A) = {~v|A~v = 0} . (4.8)

By defining a matrix W, which has identical rows, we will also get a zero matrix by

multiplying A by W.

AW = A


n1 n2 ... nk

n1 n2 ... nk

. . .

n1 n2 ... nk

 = [0] , (4.9)

where n1, n2, ...nk are any real values. If n1 = n2 = ... = nk, W becomes a unit

matrix U, then

1

m
AUΦesti = A(

1

m
UΦesti) = A


φave

φave

...

φave

 = [0] .

In the above equation, U is an n ×m matrix with all of its elements equal to 1, n

and m are numbers of nodes on body- and heart-surface models, respectively.
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In particular,

AΦave = A


φave

φave

...

φave

 (4.10)

The matrix Φave has identical vectors, φave, which represent the spatial average of

the ideal TMP estimate Φesti, and contains the temporal information of the TMPs.

Thus φave is called the averaged waveform, and Φave is called the averaged waveform

matrix.

Because the ideal estimate Φesti should satisfy Equation (4.1), it follows that

V = AΦesti

= AΦesti − 1
m

AUΦesti

= A[Φesti − 1
m

UΦesti]

(4.11)

Based on Equation (4.10), the above equation can be re-written as

V = A[Φesti −Φave] = AΦm (4.12)

There are an infinite number of estimates of Φm that satisfy this expression. Among

them, ΦTSVD and ΦTikh are two approximations that employ similar criteria: they

try to minimize the residual error on the body-surface, as well as minimize the energy

level of estimated sources, measured by ‖Φm‖2 [44]. Based on the current knowledge

of ventricular myocyte TMPs, we know that during the early plateau stage, instead

of equaling to zero, the TMPs are all positive values. This phenomenon indicates the

true TMPs set is not the one with small ‖Φm‖2, as both ΦTSVD or ΦTikh yield.

By subtracting Φave from the ideal estimate Φesti in Equation (4.12), we get an

estimate with a small signal energy level, which can be approximated by ΦTSVD

or ΦTikh. Φesti can therefore be approximated as the summation of Φave and a

regularization result,

Φesti = Φave + ΦTSVD, (4.13)
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or

Φesti = Φave + ΦTikh. (4.14)

In the above equations, the regularization terms are calculated based on the transfer

matrix A, BSPs and the spatial constraints. The averaged waveform term allows

inclusion of temporal constraints into the final TMP estimate. The new inverse

approach introduced here is called regularized waveform identification (RWI), because

it incorporates both spatial and temporal information by summing the regularization

results and the averaged TMP waveform. In this study, the averaged TMP waveform

was found with a non-linear optimization technique.

Optimization

To determine the average waveform, φave, we used the general TMP waveform as a

reference. In other studies, several functions and their combinations have been used

to approximate the general TMP shape. Specifically, the repolarization waveform

has been approximated with six linear segments [71], an exponential function [26],

a logistic function [110], or an integral of dominant T wave [106]. In this study, an

integral of dominant T wave was chosen to represent the shape of the repolarization

TMP waveform, as shown in Figure 3.2.

Consequently, in this study, the averaged wave φave has the form,

φave(t, ρave) ∝ −
∫

Tdom(t− ρave)dt . (4.15)

An alternate that was explored was to use a logistic function to represent the TMP

wave shape,

φave(t, ρave) ∝
1

1 + e−α(t−ρave)
. (4.16)

In the above equations, ρave is the timing parameter for the averaged repolarization

waveform, indicating the instant when the steepest potential descending occurs. To

match TMP waveforms, φave was shifted in time and scaled in amplitude to the range

of -90 to +10 mV.
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Given a shape for the averaged waveform, we determined the ’optimal’ choice for ρave.

To accomplish this task, an optimization method based on the Levenberg-Marquardt

algorithm (LMA) was employed. The optimization procedure is described in the

following steps:

1. Estimate the regularized TMPs, with for example TSVD, as ΦTSV D.

2. Initialize ρave, as ρ0
ave, and calculate the corresponding φave and Φave.

3. Calculate the estimated TMPs Φ̂esti, as Φ̂esti = Φave + ΦTSV D.

4. Calculate the corresponding BSPs V̂ from Φ̂esti, and evaluate the BSP residue

error.

5. Calculate the cost value with the optimization objective function using the

results of steps 3 and 4.

6. Test for convergence of the independent variable ρave. If so, quit; if not, update

ρkave and go to step 3.

At each optimization iteration, Φesti was estimated as the sum of Φave and the reg-

ularization result from either Equation (4.13) or (4.14). Based on the TMP repolar-

ization waveform, the following three criteria were used to formulate the optimization

objective function.

• Φesti ≤ 10mV, (TMP voltage is less than 10mV);

• Φesti ≥ −90mV, (TMP voltage is greater than −90mV);

• Φesti(ti) ≥ Φesti(tj) (ti ≤ tj), (TMP is monotonically decreasing during repo-

larization).
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In addition to the above constraints the BSP residue was minimized during the opti-

mization. The overall objective function was:

f(ρave) =
∑
{
∑

max(0,Φesti − 10)

+γ1

∑
max(0,−90−Φesti)

+γ2

∑
|max(0,Φesti(t2 : tl)−Φesti(t1 : tl−1))|}

+γ3‖V −AΦesti‖ ,

(4.17)

where, {t1, t2, ..., tl} are time coordinates of Φesti. γ1, γ2 and γ3 are weighting param-

eters for the penalty terms. In Equation (4.17), the first term describes the estimated

TMPs that extend over the upper bound of the actual TMP waveform, 10 mV. For

any TMPs equal or less than 10 mV, this penalty term is zero. Similarly, the second

term includes all TMPs that are less than the lower bound, -90 mV. The last term

in Equation (4.17) is used to make sure that the TMPs are monotonically decreasing

for any of these time instants.

In the next section, we evaluate the RWI technique in simulation. For the zero-

noise case, it takes 200 iterations to find the global optimization result. The effect of

initial value is negligible. For the case with measurement noise, it takes more than

1000 steps to converge. In this case, the initial value matters because multiple local

optimal solutions may exist.

4.3 Methods and Results

To solve the bidomain inverse problem, we developed an innovative approach, reg-

ularized waveform identification (RWI). In the approach, spatial constraints were

applied with the regularization techniques, such as the truncated SVD (TSVD) and

the Tikhonov. Temporal constraints were incorporated by introducing the actual

waveform of the TMPs. This new method combines spatial and temporal constraints

by summing the regularization results with the averaged TMP waveform. Parameters

of the waveform were determined with a non-linear optimization technique.
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Figure 4.2: The regularized waveform identification (RWI) scheme is developed to
solve the bidomain inverse problem. It contains two parts: the regularization for the
spatial regularization, and the averaged waveform identification (AWI) used to find

the optimal averaged waveform, which contains the temporal information.

The flow chart of the inverse problem approach is shown in Figure 4.2. From body-

surface ECGs, we calculated the regularized estimates of the TMPs. Both the reg-

ularization results and the general waveform template are fed into the optimization

procedure to find the optimal estimation of source potentials.

The proposed inverse approach was tested with heart-torso models and source poten-

tial parameters exported from ECGSIM [111]. With the transfer matrix A and the

reference source potentials Φref the reference BSPs, Vref , were found during the T

wave as shown in Figure 4.3.

From the reference BSPs, regularized TMPs estimates were determined with the

TSVD and Tikhonov techniques. As demonstrated in Figure 4.4, the RWI method

estimated the TMP sources from the sum of the regularization result and the averaged

TMP waveform.

In this study, we used three regularization methods: TSVD, zero-order Tikhnonov

and Laplacian (second-order Tikhonov). The regularization weighting parameter was
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Figure 4.3: The reference repolarization TMPs and corresponding BSPs during the
T wave.

found for the Tikhonov approaches from the maximum curvature of the L-curve. For

the TSVD method, the truncation rank was determined from estimated noise levels.

Noise levels were found by subtracting low-pass filtered signals from the raw signals

using the approach introduced previously to study artifacts in ECGs [4]. In Figure

4.5, the three regularization results, ΦTikh, ΦTSVD and ΦLaplacian, are compared with

the RWI estimates.

ΦTSVD is more successful at reducing noise effects without loss of signal energy than

ΦTikh and ΦLaplacian regularization. None of the regularization results, however, ac-

curately represents the basic waveform of the reference TMPs. To solve this problem,

we incorporated temporal constraints by adding the averaged waveform φave to the

regularization results, as shown in Figure 4.4. The shape of φave is based on the gen-

eral TMP waveform. The repolarization parameter for φave, ρave, was determined with

a unconstrained nonlinear optimization approach. It was performed with the LMA

algorithm provided by MATLAB R©. A logistic function was used to approximate the

averaged waveform, during optimization iterations.

The timing parameters ~ρesti can be extracted from the reconstructed TMPs Φesti.

Figure 4.6 suggests that the new inverse approach can be used to reconstruct the

repolarization TMPs and ρ, with improved accuracy, at least in a noise-free environ-

ment.
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Figure 4.4: The final reconstruction is achieved by adding regularization results
with averaged waveform.
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Figure 4.5: TMPs reconstructed from BSPs without noise. Upper Left, The
truncated SVD (TSVD) regularized TMPs ΦTSV D. Upper Right, The zero-order

Tikhonov regularized TMPs ΦTSV D. Lower Left, The Laplacian regularized TMPs
ΦLaplacian. Lower Right, the TMPs estimated with the new developed approach.
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Figure 4.6: Without electrical or geometric noises, the new RWI reconstructs the
repolarization timing parameters precisely (RE=0.0657; CC=0.9984).

Additional tests were made, however, on the RWI method. Specifically, two types

of disturbance were simulated to approximate the real circumstance. They were:

(1) the addition of electrical noise to the body surface ECG measurements; (2) the

introduction of geometrical error in heart shape and position. The sensitivity of RMI

to the electrical noise and to the geometric errors was evaluated with the simulation

experiments.

4.3.1 Sensitivity of RWI to Electrical Noise

Electrical noise in ECG recordings is a critical issue in the inverse problem. Small

amounts of noise can cause large errors in the result of the inverse problem. Therefore,

it is important to evaluate the sensitivity of the proposed approach to the electrical

noise. In this study, the electrical noise was simulated with additive white noise with

1%, 2%, 5%, and 10% noise-to-signal ratios (NSR).

Figure 4.7 shows the effects of 1% noise on the regularization results ΦTSVD and

ΦTikh estimated from the noisy BSPs. Similar to the noise-free case, the TSVD

technique was better. It was more efficient at noise compression than zero-order
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Tikhonov regularization. The corresponding RWI estimates of TMPs are depicted in

Figure 4.8. The reconstructed signals are clearly much closer to the reference TMPs

than regularization alone. This phenomenon is due to the information loss during

regularization.

Figure 4.7: Regularization TMP estimated under 1% white noise. Left) ΦTSVD

estimated from truncated SVD regularization approach. Right) ΦTikh estimated
from zero-order Tikhonov regularization approach.

Figure 4.9 shows the comparison between reconstructed and reference TMPs. To

provide a full view of repolarization, six snap shots were taken during the T wave,

which is the consequence of the ventricular repolarization. The results indicate that

new inverse approach is able to reconstruct the TMP distribution pattern during the

repolarization.

Relative error (RE) and the correlation coefficient (CC) were used to quantify the

similarity between the reconstructed and reference source potentials. They were cal-

culated with the following expressions:

RE =
‖Xref −X‖
‖Xref‖

(4.18)

CC =
(Xref − X̄ref )†(X − X̄)

‖Xref − X̄ref‖2‖X − X̄‖2
(4.19)
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Figure 4.8: TMP waveforms reconstructed under 1% white noise. The
reconstruction is achieved by adding regularization results to the averaged waveform.
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Figure 4.9: With 1% measurement noise, the TMPs are reconstructed by the new
approach with 0.119 relative error (RE) and 0.98 correlation coefficient (CC). By
taking the snapshots of TMPs at six time instants (T1, T2, T3, T4, T5, T6), we
could find that the reference and reconstructed TMPs share the similar pattern

during the T wave.
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TMPs were reconstructed from noisy BSPs. The corresponding ρ values were calcu-

lated as well. Both the TMPs and ρ are compared with the references. The resulting

RE and CC are listed in the following tables. The RE of TMPs ranges from 3 to 15%;

the CC between the reference and reconstructed TMPs are higher than 98%. These

results show the advantage in TMP reconstruction with the RWI method compared

to the other TMP reconstruction methods. For example, Tilg and coworkers found

31% RE and 91% CC on body surface [70].

In addition to BSPs, epicardial potentials (EPs) were also used as inputs to test the

RWI inverse method results. The results suggest that the myocyte TMPs could be

reconstructed accurately from EPs (RE < 7.3%; CC > 99%).

Table 4.1: Relative errors (RE) of estimated transmembrane potentials (in percent).
TMPs were reconstructed from two sources: BSPs and EPs.

Known 0% 1% 2% 5% 10%
BSPs 2.7± 0 11.94± 0.08 13.45± 0.16 13.33± 0.17 14.76± 0.37
EPs 1.45± 0 1.91± 0.05 2.45± 0.04 4.22± 0.07 7.09± 0.1

Table 4.2: Correlation coefficients (CC) of estimated transmembrane potentials (in
percent). TMPs were reconstructed from two sources: BSPs and EPs.

Known 0% 1% 2% 5% 10%
BSPs 99.94± 0 98.48± 0.01 98.26± 0.02 98.26± 0.02 98.03± 0.06
EPs 99.98± 0 99.97± 0 99.94± 0 99.83± 2e− 3 99.53± 7e− 3

The repolarization timing parameters ρ were also reconstructed and compared with

the reference. The RE and CC of ρ are listed in the Table 4.3 and 4.4.

Table 4.3: Relative errors (RE) of the repolarization parameter ρ (in percent).
TMPs were reconstructed from two sources: BSPs and EPs.

0% 1% 2% 5% 10%
BSPs 6.57± 0 10.49± 0.06 10.48± 0.02 10.59± 0.01 11.02± 0.11
EPs 5.04± 0 4.14± 0.02 4.26± 0.03 3.57± 0.04 4.17± 0.15
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Table 4.4: Correlation coefficients (CC) of the repolarization parameter ρ (in
percent). TMPs were reconstructed from two sources: BSPs and EPs.

0% 1% 2% 5% 10%
BSPs 99.84± 0 38.14± 0.17 34.15± 0.19 30.23± 0.24 24.80± 0.24
EPs 99.93± 0 99.84± 0.02 99.64± 0.03 99.03± 0.06 93.62± 0.54

For the ρ estimated from the BSPs, the estimation results have low CC with the

reference, except for the non-noisy situation. This phenomenon is linked to the spatial

regularization applied to the TMP estimates. On the other hand, from the EPs, the

ρ are estimated with significantly lower error because regularization did not require

removing nearly as many singular values.

Furthermore, based on the reconstructed TMPs, the epicardial potentials (EPs) were

also estimated. The transfer matrix from TMPs to EPs was calculated with the

bidomain forward approach. For details, see Chapter 3. The RE and CC of estimated

EPs are listed in the following tables.

Figure 4.10: The RE and CC between the reconstructed TMP and the reference.
Left 1) RE. Right 2) CC.

Tables 4.1, 4.2 and Figure 4.10 present the RE and CC between the reconstructed

source potentials and the reference TMPs. These results indicate that, without mea-

surement noise, TMP could be reconstructed with high accuracy, from both the BSPs

and EPs. As the noise percentage increased from 1% to 10%, the RE increased slightly
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and the CC was reduced slightly. By substituting the EPs for the BSPs as the input

of the inverse problem, the RE of TMP reconstruction were dramatically decreased,

and the corresponding CC are noticeably increased.

Table 4.5: The relative error (RE) and the correlation coefficient (CC) of the
epicardial potentials (EPs) (in percentage). The TMPs are reconstructed from

BSPs.

0% 1% 2% 5% 10%
RE 0.01± 0 93.79± 0.008 93.88± 0.006 96.18± 0.011 98.75± 0.007
CC 100± 0 36.7± 0.014 35.5± 0.013 30.3± 0.025 22.2± 0.016

4.3.2 Sensitivity of RWI to Geometric Errors

In addition to electrical noise, changes in the heart-torso geometry is another factor

that may influence the performance of the inverse approach. Therefore, we used

typical changes in heart shape and location to test the RWI method. We extended

the heart size by 10% and shifted the heart location ± 1cm along the X-, Y- and

Z-axis. These errors are labeled EH10, X1,Y1 and Z1, respectively.

After calculating BSPs Vref in simulation from the reference TMPs Φref (Figure 4.3),

heart-torso geometry was adjusted and the corresponding transfer matrices calculated.

RWI was applied to these transfer matrices and Vref to reconstruct the source TMPs.

RE and CC between the reconstructed and the reference TMPs are listed in the Table

4.6. Results suggest that RWI is robust in the presence of geometric error.

Table 4.6: Relative error (RE) and correlation coefficient (CC) of the TMPs
estimates (in percent) for errors in heart geometry: An increase in size by 10%

(EH10) and shifts in location of X(±1cm), Y(±1cm) and Z(±1cm).

Parameters EH10 X Y Z
1 -1 1 -1 1 -1

RE 12.47 13.08 11.71 11.31 11.60 11.15 15.19
CC 98.24 98.28 98.44 98.55 98.50 98.59 97.41
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4.4 Conclusions

In this study, a new inverse approach called regularized waveform identification (RWI)

was developed that combines spatial regularization with temporal optimization to

estimate TMPs from BSPs with greater accuracy than conventional regularization

alone. TMPs were estimated throughout the T wave, using the realistic ventricle-torso

model and heart-surface TMPs of the ECGSIM simulation package. We evaluated

the sensitivity of our RWI approach to 1, 2, 5 and 10% electrical noise on the body

surface. Relative errors (RE) of <15% and correlation coefficients (CC) >0.98 were

found. A 10% enlargement of the heart and position errors of ±1cm in all directions

yielded REs of <15% and CCs >0.97. Simulation results showed that this approach

performed much better than traditional regularization methods alone and is robust

in the presence of noise and geometric error. By incorporating temporal information,

in the form of the basic TMP wave shape, estimation accuracy was enhanced while

maintaining computational simplicity.
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Chapter 5

Obese Anatomical Remodeling

5.1 Introduction

Myocardial disease is common in Type II diabetics, including elevated risk for myocar-

dial infarction, heart failure, and sudden cardiac death. Both diabetes and obesity,

which are widespread among diabetics, contribute to deleterious changes to the heart.

Among obese diabetics, obesity itself plays an important role in the heart disease de-

velopment and clinical diagnosis. To separate the consequences of geometric changes

from the consequences of electrophysiological ones, we investigated how changes in

cardiac and torso geometry, associated with obesity, affected body-surface electrocar-

diograms.

Although it is well known that the standard 12-lead set is not specific for diabetes,

several previous studies indicate that ECGs recorded among the obese group tend

to be different from ones measured from normal subjects. For example, obesity was

suspected of causing a significant increase in P-wave and QTc dispersion in a 12-lead

ECGs study [94]; obese patients were shown to have significantly more abnormalities

on signal-averaged electrocardiograms [54]. Among obese subjects, ECG abnormal-

ities could be caused by either anatomical or electrophysiological remodeling. This

chapter is focused on obese anatomical, or so called geometric, remodeling and its

effects.

In this study, we are particularly interested in apple-shaped obesity (body fat stored

around the abdomen, chest and surrounding internal organs) because people with this

body shape tend to have a higher risk of diabetes and heart disease [116, 20]. Several
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important changes, in heart and torso anatomical structure associated with obesity

include increased thickness of the left ventricular walls, change in the position and

orientation of the heart, and enlargement of the abdominal volume. Based on these

observations, three obesity associated anatomical features were characterized: 1) left

ventricular hypertrophy (LVH), 2) heart displacement, and 3) abdomen enlargement,

measured with the waist circumference (WC) [17, 43].

Simulation experiments were devised to evaluate the effect of these three anatomical

variations on the body surface potentials (BSPs). Simulations were carried out with

the bidomain platform. Our bidomain forward-problem model was used to calcu-

late body-surface ECGs, V, from cardiac transmembrane potentials, Φm using the

forward-problem solution A (see Chapter 3). As shown in Figure 1.1, the normal

cardiac source potentials are generated with the Bidomain Source Module; trans-

fer matrices from the source potentials to BSPs were calculated with the Bidomain

Forward-Problem Module based on normal and obese anatomies.

Obese habitus was characterized by modifying normal heart-torso geometry based on

the three obese anatomical characteristics. Specifically, four heart-torso models were

generated: 1) a normal heart and in a normal torso, 2) an hypertrophied heart in

a normal torso, 3) a displaced heart in a normal torso, and 4) a normal heart in a

torso with an extended abdomen. These anatomical models were used as the volume

conductors to calculate body surface ECGs with the forward problem module, while

the cardiac sources remain unchanged. In other words, the normal source TMPs were

common to both normal and obese geometrical models.

From body surface ECGs simulated from both the normal and obese anatomies, we

evaluated obese anatomical effects on BSPs. We investigated variations in both the

conventional 12-lead system and body surface ECGs during the Q-T interval due to

obese habitus. BSP maps provide a comprehensive view of cardiac activity in the

12-lead system. Several analysis methods were used to characterize the BSPs, in-

cluding the standard deviation, power spectral density, principal component analysis,

isopotential and iso-integral mapping. These features were compared on normal and

obese torsos. Conclusions drawn from these simulations were tested on measurements

made on normal and obese diabetic subjects as described in Chapter 7.
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5.2 Obese Anatomical Features

In this study, three obese habitus features were considered separately, namely: 1)

left ventricular hypertrophy (LVH), 2) heart displacement, and 3) increased abdom-

inal size. Obese heart-torso models were generated by modifying the realistic heart

and torso models of the simulation package ECGSIM (see A [111]. A set of MAT-

LAB codes was developed to modify the left ventricular wall thickness, the heart’s

orientation and position, as well as the torso abdominal size.

5.2.1 Left Ventricular Hypertrophy (LVH)

Figure 5.1: Normal ventricle model (opaque red) and 20% left ventricular
hypertrophy (LVH) model (transparent red) that encloses the normal one.

Echocardiography measurements show that the obese subjects are vulnerable to left

ventricular hypertrophy (LVH). The symptoms include larger left ventricular wall

thickness and mass [32, 84, 8, 120]. In addition, compared to non-obese subjects,

obese patients have on average 15% to 25% thicker inter-ventricular septums (IVS)

and posterior walls (PW). This percentage is even higher among the severely obese

group [8, 120].

64



To simulate obesity-associated LVH effects, algorithms were developed to thicken the

IVS and the PW of the given normal ventricle by a set amount. Here, the 3D ventric-

ular model exported from ECGSIM was used as the normal reference. In Figure 5.1,

the dark red model presents the shape of the normal reference ventricle, which was

exported from ECGSIM; whereas the shadow outside represents the simulated LVH

ventricle shell, in which both IVS and PW are thickened 20%. The resulting model is

labeled LVH20 heart. The corresponding 12-lead ECGs (see Figure 5.10) and BSPs

(see Figure 5.7) were calculated with the Bidomain Forward-Problem Module in Fig-

ure 1.1.

5.2.2 Heart Displacement in Obesity

Figure 5.2: Heart displacement caused by obesity. The blue heart model presents
the normal heart position. The red one demonstrates the position after

displacement.

In addition to LVH, heart position and orientation variation is another important

outcome of apple-shaped obesity because the dramatically increased abdominal fat

can push the heart up and turn it to a relatively ”flat” position. This phenomenon

has been observed in our experiment on an obese subject, whose heart was shifted
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by 8% of the torso height and rotated by 6, 4.5 and 28 degrees in the coronal, frontal

and sagittal planes, respectively, compared to a normal subject. Details of the hu-

man subject measurements are given in Chapter 7. Figure 5.2 shows the heart-torso

structure variation due to obesity-associated heart displacement (HD).

5.2.3 Abdominal Size Enlargement

Figure 5.3: Left) normal and obese torsos measured from real adult male subjects.
Right)ECGSIM torso and corresponding simulated obese torso (with 16% WC

increase). In the figures, the normal and obese waist lines were marked with blue
squares and red circles, respectively.

An extended abdomen (EA) is another obese habitus feature considered in this work.

Waist circumference (WC) was used to quantify abdominal size. It is a parameter

that is easy to measure and compare, and more importantly, it has been used as an

indicator for the risk of diabetes and heart disease [17, 43]. We evaluated the WC

difference between a normal and an obese subjects. Their torso shapes are shown in

the left of Figure 5.3. Based on the WC difference, we increased the normal ECGSIM

torso WC by 16%, from 98 cm to 114 cm, to generate the obese ECGSIM torso in

the simulation. The resultant torsos are shown in the right of Figure 5.3.

To modify a normal torso into an obese one, in addition to WC, we need a realistic

obese torso shape to provide enough detailed information to characterize torso shape.
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A set of MATLAB algorithms was designed to simulate the torso enlargement. For

details, see Appendix C.

From the anatomical models associated with obesity we calculated their body surface

ECGs. By comparing BSPs on these obese model with ECGs from a normal model,

we evaluated effects on body surface ECGs of the anatomical changes that occur with

obesity.

5.3 Effects of Obese Anatomy on BSPs

Effects of anatomical remodeling due to obese habitus are expected to be observed

in body surface potentials, even when cardiac sources remain unchanged. Obese

anatomy was characterized with three features: left-ventricular hypertrophy, heart

displacement and abdominal enlargement. Consequently, comparisons were made

among the BSPs simulated under four circumstances: normal heart and torso, 20%

LVH heart (LVH20) in a normal torso, displaced heart (DH) in a normal torso, and

a normal heart in a torso with 16% enlargement of the abdomen (EA).

We employed several signal processing tools to reveal the spatial and temporal fea-

tures of the simulated BSPs during QRS complex and T wave. These features from

the three obese models were compared to those from the normal one. The spatial

standard deviation (SD) gave the effective values of the BSPs as a function of time.

Principal components analysis (PCA) was used to decompose the BSPs. The com-

ponents represent the ranked dynamic. The corresponding analysis was focused on

the diagnostic frequency band 0.05 ∼ 100Hz, which was specified by the American

Heart Association [9]. In addition, isopotential and iso-integral maps were used to

present the spatial dispersion of the BSPs. Standard 12-lead ECGs were also simu-

lated for the three forms of obese habitus and compared to simulated 12-lead ECGs

on the normal torso with a normal heart. Results of the 12-lead comparisons may

help explain why 12-lead ECGs are not specific to diabetes, especially in the presence

of obesity.
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Spatial Standard Deviation (SD)

The spatial standard deviations (SD) of BSPs were calculated for the four simulated

cases. The SD describes the spatial variation of the BSPs during a time interval.

The amplitude of SD represents the effective value of BSPs. To compare SDs from

the three obese habitus torsos with the normal reference, we subtracted the normal

SD from all cases, the results are shown in Figure 5.4. As expected, the absolute SD

differences between normal- and obese-torso BSPs were largest around the peaks of

R wave and T wave.
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Figure 5.4: Based on the BSPs during QRS-complex and T wave, the differences of
spatial standard deviation (STD) between the obese cases and the normal. The

normal STD is used as zero reference. The similar demonstration approach
appeared in an earlier study [18].

Among the three obese habitus features, the LVH and DH hearts increased the spatial

SD; while the EA remodeling decreased the SD. The increases in SD may be associ-

ated with anatomical changes that moved cardiac sources closer to the body surface.
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EA remodeling moved the body surface farther from the sources, which presumably

reduced the amplitude of the resulting ECGs.

Power Spectra Density (PSD)

BSPs are spatial-temporal signals, which present the electrical signal distribution

over the torso surface during the cardiac cycle. To capture the periodicity of the

BSP energy distribution, spectrum analysis was used to translate the BSPs into the

frequency domain. Means of the spectral magnitudes of the Fourier transforms of the

Q-T potentials over the body surface in the three altered geometries were compared

to spectra on the normal torso with a normal heart, as shown in Figure 5.5.
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Figure 5.5: The power spectra density (PSD) difference between the obese and
normal BSPs during Q-T interval. The normal PSD is used as reference.

In the figure, the power spectral density (PSD), which describes how the power (or

variance) of a time series is distributed with frequency. At each frequency, for display

only, the magnitudes were adjusted so that normal was always at 0 dB. The changes
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relative to normal are similar for the hypertrophied and displaced hearts. The com-

parison was made in the low frequency band (≤100 Hz), where the most of ECG

energy locates[9].

Among the three obese habitus features, the DH and LVH20 slightly increased PSD of

BSPs with 1dB on average; while the EA decrease spectral magnitudes with 2 ∼ 3 dB.

Similarly to SD, the changes in PSD may be associated with the anatomical changes:

the DH and LVH20 reduce the distance between cardiac source and observation points

on body surfaces, while the EA remodeling prolonged this distance. Compared with

the DH and LVH, the EA has larger impact on ECGs.

Principal Component Analysis (PCA)

To reduce the data dimension and perhaps reveal hidden structures in the BSPs, we

performed principal component analysis (PCA). PCA is a well-known linear, data-

decomposition technique. It is based on the assumption that the input data set is the

linear combination of its basis vectors [99]. PCA is used to remove data redundancy

from BSPs by minimizing covariance among channels, and improve signal-to-noise

ratio (SNR) by selecting components corresponding to large variances.

Figure 5.6 depicts the first three principal components of the normal- and the three

obese-torso BSPs. These components account for the fundamental dynamic infor-

mation in the BSPs. In the figure, the first three principal components were not

changed by the LVH and EA. On the other hand, the DH flipped the second and

third principal components, indicating the underling energy distribution was dramat-

ically changed by DH. The right side of the figure presents the ratios of the principal

component coordinates of the three obese cases compared to normal. The LVH and

DH respond for coordinates higher than normal, whereas EA reduced coordinate ratio

values (< −2dB), which were continually dropping while the order increases.

Iso-potential Mapping

An iso-potential map is a measure of the electrical potential over a surface at a

specific instant of time. Figures 5.7 and 5.8 capture the iso-potentials at the peak of
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Figure 5.6: Principal component analysis over the cardiac cycle of signal-averaged,
BSPs from a normal, LVH20, displaced heart (DH) and extended abdomen (EA)

models. Left: the first three principal components. Right) the principal components
ratios refer to the normal.
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the R-wave and T wave, respectively. These instants account for the highest dynamic

energy during depolarization and repolarization of the ventricles. In both figures, the

iso-potential maps of the normal, LVH20, DH and EA cases are listed in the clockwise

order. From the figures, we could tell the EA reduced the magnitude of BSPs due to

the prolonged distance between cardiac source and observation points. At the peak of

the R and T waves, there is an area with minimum potential on upper left precordial,

and a region with maximum potential on the lower left side of torso. By comparing

the locations of minimum and maximum potentials between the DH and normal,

we found DH moved BSPs For the case of DH toward upper middle areas of chest,

while increased BSP magnitudes on precordial area. This phenomenon represents the

shifting and rotation of the cardiac source. Among the three obese habitus, LVH has

the least effect on BSPs. The relative errors of the iso-potential maps are summarized

in Table 5.1.

Iso-integral Mapping

ECGs during QRS complex are determined by depolarization TMPs; while ECGs

during T wave are mainly dominated by repolarization TMPs. In 1934, Wilson used

QRST area of body surface ECGs to define the ventricular gradient [29]. In this study,

we calculated iso-integral maps over Q-T interval for the four groups: one normal and

three obese heart-torso models. The integral maps were obtained by calculating for

each lead the algebraic sum of all instantaneous potentials from the wave onset to

the wave end multiplied by the sampling interval.

Results are shown in Figure 5.9. For the normal, LVH20 and EA cases, maximum

potentials appeared on the center of left anterior chest. Due to the change of distance

between heart and torso surface, the overall iso-integral potentials were increased

by the LVH20 and decreased by the EA. Due to the movement of the heart inside

the torso, the maximum region of iso-integral potential is shifted to the superior

central area of the torso for the DH case. The similar phenomenon has appeared

in the previous isopotential maps, indicating the effects of obesity habitus on ECGs

are relatively consistent during Q-T interval. Relative errors over the body-surface

during the Q-T interval are listed in Table 5.1.
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Figure 5.7: Anterior BSP maps at the peak of R-wave. A) with the normal heart,
B) with the LVH20 heart, C) with the displaced heart (DH), D) with the extended

abdomen (EA) torso.

Table 5.1: The relative error (RE) of BSPs at the peaks of R and T wave and
during Q-T interval for the three obese habitus: 20% LVH (LVH20) heart, displaced
heart (DH) and extended abdomen (EA) models. The normal BSPs are used as the

reference.

Parameters 20%LVH Displaced Heart extended Abdomen
R-peak 0.10 0.92 0.32
T-peak 0.13 0.72 0.31

QT-interval 0.12 0.68 0.30
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Figure 5.8: Anterior BSP maps at the peak of T wave. A) with the normal heart,
B) with the LVH20 heart, C) with the displaced heart (DH), D) with the extended

abdomen (EA) torso.
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Figure 5.9: Anterior iso-integral maps over the Q-T interval on the body surface. A)
Normal heart, B) LVH20 heart, C) Displaced heart (DH), D) extended abdomen

(EA) torso.
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Standard 12-Lead ECGs

In addition to BSPs, the standard 12-lead ECGs are also employed due to their preva-

lence in clinical diagnosis. Out of the twelve leads, there are only eight independent

signals, including any two of the limb leads and the six precordial leads (V1-V6).

Waveform changes and pattern shifts of electrocardiographic potentials with obesity

is clearly seen in the four precordial leads during T wave, as shown in Figure 5.10. It

is especially important to identify effects of obese geometry on the T wave because

they may confound T wave changes seen in diabetics [25]. Relative errors with heart

displacement over the T wave in the precordial leads V3 to V6 were 117, 98, 74, and

44 %, respectively. The mean relative error was 83%.

In Figure 5.10, the LVH slightly increased the amplitudes of T wave recorded with

precordial leads. The EA decreased the T wave amplitudes. The DH dramatically

decreased all potentials measured with leads V3-V6, because the cardiac source was

shifted away from left precordial area due to heart displacement associated with

obesity. For details, see Figure 5.8.

However, we should be very careful with the 12-lead ECG measurements. Both the

isopotential and iso-integral maps (Figure 5.7, 5.8 and 5.9) suggested the obese-related

geometrical changes of heart and torso could lead to big distortions of potentials

over precordial area. These distortions may raise some difficulty into 12-lead ECG

interpolation.

Relative errors and correlation coefficients

Finally RE and CC were calculated to quantify both temporal and spatial differences

in BSPs caused by the three obese habitus features. The results are recorded in Table

5.2. Taking the normal as the reference, the DH model shows the highest RE and

lowest CC, followed by the EA model. Both LVH20 and EA BSPs demonstrate fairly

high CC with the normal.
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Figure 5.10: Independent measurements in the standard 12-lead ECG set during T
wave from the Normal (green solid), LVH20 heart, Displaced heart (DH), and

extended abdomen torso (EA).

Table 5.2: The relative error (RE) and correlation coefficient (CC) of BSPs for the
three obese habitus: 20% LVH (LVH20) heart, displaced heart (DH) and extended

abdomen (EA) models. The normal BSPs are used as the reference.

Parameters 20%LVH Displaced Heart extended Abdomen
Relative error 0.1261 0.8157 0.3189

correlation coef. 0.9980 0.7018 0.9785
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5.4 Discussions and Conclusions

For this study, we modified the realistic heart and torso models of the simulation

package ECGSIM. Body-surface potentials were calculated from transmembrane po-

tentials on the heart surface and studied using spectral and principal-component

analysis and iso-potential and iso-integral maps. We found relative errors over the

body-surface during the Q-T interval of 12, 32, and 82% for hypertrophy of the heart,

extension of the abdomen, and heart displacement with obesity, respectively.

In addition to BSPs, standard 12-lead ECGs were simulated for the normal and three

obese anatomies. The major change to the standard 12-lead set occurred with heart

displacement. The mean relative error over the T wave in the precordial leads V3 to

V6 was 83% with heart displacement. These results demonstrate the limitations of

using standard lead sets to characterize electrocardiographic changes in obese sub-

jects and point to the need for more comprehensive measures, such as body-surface

mapping and inverse electrocardiography, to describe electrical remodeling in obesity

and diabetes.

Our results suggest that geometric changes accompanying obesity may have a sig-

nificant effect on electrocardiograms that may be confused with electrophysiologic

changes due to diabetes. An understanding of the geometric effects is essential to

distinguishing changes that occur due to obesity from those due to diabetes.

Electrocardiographic features among diabetic and obese cohorts are only beginning

to be studied. Further investigative effort is necessary. During these simulation

studies, the increase of fat tissue has not been fully characterized. Fat resistivity is

higher than the regular muscle’s, and it may lead to an additional potential reduction

on the anterior surface. Although some nuance may be lost with this simulation

study, it allows us to detect the effects of obese habitus and get the initial ideas

on ECG patterns in obesity. The approach and results used here can be used as

reference for future work. In addition, the simulation platform can be applied to

other electrophysiology studies.
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Chapter 6

Diabetic Electrical Remodeling

Type II diabetes is a major elevator of the risk of heart diseases, including myocardial

infarction, heart failure, and sudden cardiac death. Although the value of electro-

cardiogram (ECG) in investigating effects of diabetes on the heart has been realized,

the prognostic value of ECG abnormalities in diabetics has not been fully studied

and characterized. In this Chapter, we focus on the electrical phenotype of diabetes,

represented as body-surface potentials (BSPs) and cardiac myocyte transmembrane

potentials (TMPs).

TMPs are the differences between intra- and extra-cellular potentials. Changes have

been found in the ion channel currents across myocyte membranes in several diabetic

animal studies [77, 21, 122, 14, 46]. Results suggest that, in diabetic rats, ion currents

Ito, Iss, and IKr were reduced during repolarization, which leads to action potential

duration (APD) prolongation. The action potential (AP) signals the depolarization

and repolarization of the transmembrane potential (TMP) of a cell. In this study, we

used TMP changes in myocytes to characterize electrical remodeling due to diabetes.

Based on results from diabetic animals, diabetic TMPs in humans were simulated

by prolonging the duration of normal source potentials. Normal potentials were

constructed from the dominant T wave [106] and timing parameters exported from

ECGSIM [111]. For details, see Section 3.3.1. From these normal and diabetic source

potentials, we calculated the corresponding normal and diabetic BSPs with the Bido-

main Forward-Problem Module developed in Chapter 3. By comparing diabetic BSPs

with the normal one, we explored the sensitivity of body-surface ECGs to diabetic

electrical remodeling.
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Figure 6.1: ECGSIM ventricle model, marked at three regions: the whole wall of the
right ventricle (RV) (in blue), the subepicardium at the apex (EpiALV) (in yellow),

and the subendocardium at the base (EndoBLV) (in red). In these regions,
unproportionate APD increase was found in a diabetic rat study [21].

As high-dimension signals, the BSPs provide a comprehensive view of cardiac activ-

ity with higher spatial resolution than the standard 12-lead set. As in Chapter 5,

several analysis methods and features were used to characterize the BSPs, including

standard deviation (SD), power spectral density (PSD), principal component analysis

(PCA) and isopotential maps. These features were calculated and compared in the

normal and diabetic cases. Conclusions drawn from these simulations were tested on

measurements made on one normal and one obese diabetic subject as described in

Chapter 7.

6.1 Diabetic Electrical Remodeling for TMPs

Certain pathological aspects of the diabetic heart have been found to be common to

both human and animal models, including electrocardiographic changes such as Q-T

and QRS prolongation [23, 88]. In this chapter, we simulated the human diabetic
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Figure 6.2: Transmembrane potential measured in cells isolated from RV, EpiALV
and EndoBLV regions on ventricles of A) normal and B) diabetic rats (Casis and

coworkers, 2000 [21]).

heart based on the TMP pattern found in a study on streptozotocin-induced Type 1

diabetic rats, because of the limited availability of animal data for Type 2 diabetes

[21].

Among the diabetic rats with Type 1 diabetes, the APD increase differed in three

regions of the ventricle. The three regions are: 1) total right ventricle (RV), 2)

subepicardium at the apex of the left ventricle (EpiALV), and 3) subendocardium at

the base (EndoBLV). We marked these regions on the ventricular model exported from

ECGSIM, as shown in Figure 6.1. The APD measured after 90% of repolarization

(APD90) was found prolonged by 80%, 125% and 148% in the above areas. Figure

6.2 illustrates the TMPs on the above regions in normal and diabetic rats [21].
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Figure 6.3: In simulation, APD90 of diabetic subject is 15.84%, 25.02% and 29.48%
longer than normal, in the areas of RV, EpiALV and EndoBLV.

To apply the findings in diabetic rats to a human study, we multiplied the APD

changes in the rat by 0.2. This factor was chosen relative to the normal pulse rates of

human and rat. According to American Heart Association (AHA), a normal human

heart resting rate is 60 ∼ 80 times a minute[115]. Data from Yale Animal Resources

Center indicate normal heart rate for rat ranges 330 ∼ 480 beats per minute[123].

The resulting 16%, 25% and 29% changes were used as APD prolongation percent-

ages for the RV, EpiALV and EndoBLV areas of a human ventricle, respectively. By

adjusting normal AP duration by these percentages, we get diabetic TMPs used in

the simulation studies. The normal TMPs were generated with the Cardio-myocyte

Transmembrane Potential Estimation Module based on ECGSIM TMP timing pa-

rameters. For details, see Section 3.3.1. Figure 6.3 compares average APD90 values

of the simulated TMPs used to represent normal and diabetic subjects.
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In the following section, body surface ECGs generated by normal and diabetic hearts

are compared. To evaluate effects of diabetic TMP changes on BSPs, we used the

Bidomain Forward-Problem Module to calculate the transfer matrix A, which maps

heart surface TMPs onto body surface. Heart and torso models exported form

ECGSIM platform were used as normal anatomy. To separate anatomical effects

from electrical ones in order to simplify the problem, the ECGSIM normal heart-

torso anatomy was used in both diabetic and normal cases. The only differences

between the models were the heart surface TMPs.

6.2 Effects of Diabetic Electrical Remodeling on

BSPs

Diabetes has been associated with changes in BSPs [23, 88, 21, 46]. In this section, we

evaluated the changes in BSPs due to diabetic electrical remodeling, represented as

regional APD prolongation on the ventricular surface. The diabetic and normal BSPs

were calculated from the corresponding TMPs with the bidomain forward module.

We employed several signal processing tools to reveal the spatial and temporal fea-

tures of the simulated BSPs during QRS complex and T wave. These features were

compared in the normal and diabetic cases, as was done in the habitus study of

Chapter 5. The spatial standard deviation (SD) was used to evaluate changes in

BSP effective values. Principal components analysis (PCA) was used to decompose

the BSPs. Power spectral densities (PSD) were found to represent signals in the fre-

quency domain. The corresponding analysis will be focused on the frequency band of

0.05 ∼ 100Hz, where most of the ECG energy is located[9]. Iso-integral maps were

used to present the depolarization and repolarization differences in BSPs. Several

clinical studies have indicated that the Q-T interval of the ECG could be influenced

by diabetes. In this section, we also compare Q-T intervals in normal and diabetic

cases.
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Figure 6.4: The spatial standard deviation (STD) of the normal and diabetic BSPs,
during QRS-complex and T wave. The normal STD is used as zero reference. The

similar demonstration approach appeared in an earlier study [18].
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Spatial Standard Deviation (SD)

Spatial standard deviations (SDs) of BSPs were calculated for simulated normal and

diabetic BSPs. They describe the spatial variation of the BSPs. The amplitude of SD

represents the effective value of BSPs at each time instant. To highlight the differences

between normal and diabetic BSPs, we subtracted the normal SD from diabetic one,

and the results indicate that the effective value during T wave is dramatically raised

by APD prolongation in the diabetic case, as shown in Figure 6.4. Based on these

results, we may expect diabetic subjects have a different T wave pattern due to the

changes of APD related to diabetes. Later, we will test this comment with BSPs from

real subjects. For details, see Chapter 7.

Power Spectra Density (PSD)

BSPs are spatial-temporal signals which represent the electrical distribution over the

torso surface during certain periods of time. To capture the harmonic content of

the BSP energy distribution, spectrum analysis was used to transfer the BSP signals

into the frequency domain. Power spectral density (PSD) describes how the power

(or variance) of a time series is distributed in the frequency domain. Means of the

spectral magnitudes of the Fourier transforms during the Q-T interval from diabetic

BSPs were compared to spectra from normal BSPs.

Figure 6.5 demonstrates the PSD of normal and diabetic BSPs. At each frequency

the magnitudes were adjusted so that normal was always at 0 dB. The results sug-

gest that the prolongation of APD cause an increase of the PSD of BSPs in low

frequencies (especially ≤ 10Hz). By putting Figure 6.5 and 6.4 together, we could

tell the information they demonstrated are consistent. The major smooth change of

SD occurred during T wave, contributing to changes in low frequency range; while

fractional changes of SD happened before and after T wave, corresponding to ripples

in a relatively high frequency range.

85



0 50 100 150
−20

0

20

40

60
Power Spectral Density (PSD) of BSPs

dB

 

 

Normal
Diabetic

0 50 100 150
−2

0

2

4

6

Frequency (Hz)

dB

 

 

Normal−Normal
Diabetic−Normal

Figure 6.5: The power spectra density (PSD) of the normal and diabetic BSPs
during Q-T interval. The normal PSD is used as reference.
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Figure 6.6: Principal component analysis of normal and diabetic BSPs. Left: the
first three principal components. Right) the principal components ratios refer to the

normal.
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Principal Component Analysis (PCA)

To reduce the data dimension and perhaps reveal hidden structures in the BSPs, we

applied principal component analysis (PCA), a well-known linear data decomposition

technique. The technique is based on the linear assumption, i.e. the input data

set is the linear combination of its basis vectors [79]. PCA was used to remove

data redundancy from BSPs by minimizing covariance among channels, and improve

signal-to-noise ratio (SNR) by selecting components with large variances.

Figure 6.6 shows that for diabetic BSPs, Q-T interval prolongation occurs in the

first three principal components that account for most of the fundamental dynamic

information in the BSPs. The change in the ratios of principal components is up to

14 dB in the diabetic compared to the normal. In the left side of Figure 6.6, we can

tell that significant changes happened during QRS complex on body surface, which

indicates the changes of the TMP shape (associated with APD prolongation) go all

the way back to the repolarization phase. On the other hand, these BSPs changes

during QRS have not been found in Figure 6.5 and 6.4; this means, unlike during T

wave, during QRS complex BSP changes do not involve energy changes.

Q-T Interval

Q-T interval is another important ECG feature that has been investigated as an

indicator for diabetes [38, 85, 24]. Instead of using Q-T itself, we evaluated the

corrected Q-T value (QTc) for both subjects. Here, the QTc is calculated from QT

with a standard clinical correction, Bazett’s formula,

QTc =
QT√
RR

. (6.1)

in which, RR is the interval between the peaks of two R-waves. It represents the

heart rate. QTd reflects the underlying heterogeneity of ventricular repolarization.

In contrast to most clinical QT studies, we used BSPs rather than the standard

12-lead ECGs to calculate the QTc.
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Figure 6.7: The distribution of QT corrections (QTc) on body surface.

Figure 6.7 demonstrates the QTc distributions based on the BSPs of both the normal

control and diabetic subjects. The results indicate there is significant difference in

QTc between the normal and diabetic subjects, with p < 0.001.

Iso-potential Mapping

An iso-potential map is a measure of the electrical potential over a surface at a spec-

ified instant in time. This technique uses the ECG data to obtain a map as the

projected current image on the torso surface from the heart. The spatial derivatives

indicate the contours of the electrostatic field. In this study, we calculated the isopo-

tential at the peak of T wave, which accounts for the largest energy measured on

body surface during repolarization, as shown in Figure 6.8.

By comparing the isopotential maps of normal and diabetic subjects side by side,

we determined that the uneven temporal changes on the heart surface have a spatial

impact on body surface. The correlation coefficient between the normal and diabetic

BSPs was 0.43, and the relative error is 125%. In the figure, the diabetic BSPs show a
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Figure 6.8: Anterior BSP maps at the peak of T wave. The white dots mark the
locations of precordial electrode. The correlation coefficient between the normal and

diabetic BSPs are 43.12%. The relative error is 124.82%.

higher potential diversity in space. At the same time, the maximum potential region

of diabetic BSPs were shifted towards the left shoulder. As we can see, this pattern

change will cause dramatic distortion in 12-lead ECG measurement. The white dots

in figures represent the locations precordial electrodes in 12-lead ECG system.

Standard 12-Lead ECGs

In addition to BSPs, the standard 12-lead ECGs were also employed because of their

prevalence in clinical diagnosis. Of the twelve leads, only eight are independent.

Here, we choose two limb leads (I, II) and six precordial leads (V1-V6), as shown in

Figure 6.9. Dramatic changes occurred in 12-lead ECGs due to the APD prolongation

associated with diabetes. As expected, an obvious delay of the T wave was found,

especially in lead II of diabetic. In addition, compared with normal, precordial leads

measurements were inverted in the diabetic case. These results can be explained with

Figure 6.8, in which the maximum potential region of diabetic BSPs were shifted

towards the left shoulder, the potentials on front chest area were reduced to negative,

while the potentials on left side of chest were slight increased to positive.
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Figure 6.9: Standard 12-lead ECG during T wave of normal and diabetic BSPs.

91



6.3 Discussions and Conclusions

In this work, diabetic electrical remodeling was characterized as regional APD pro-

longation based on findings in diabetic animal studies. The resulting diabetic BSPs

were generated with the Bidomain Forward Platform developed in Chapter 3. The

influence of diabetic remodeling on BSPs was revealed by comparing normal and

diabetic BSPs in simulation.

Results show that APD prolongation that might be associated with diabetes has a

large effect on BSPs. By increasing APD by 16, 25 and 29% in three ventricle areas,

we can expect about 125% relative error (RE) in ECGs on body surface. At the

same time, the Q-T interval increased in both BSPs and lead II ECGs. These results

match findings in several earlier studies on diabetic ECGs [23, 88] and support the

hypothesis that Q-T interval may increase among diabetics.

Because there is not enough evidence on human subjects yet, the diabetic electrical

remodeling of this study was based on the findings in animal experiments. Neverthe-

less, this study provides a valuable first step in helping to identify what changes to

look for in BSPs among human diabetic subjects.
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Chapter 7

Geometrical and Electrical

Remodeling in Human Subjects

Both diabetes and obesity carry strong risks for cardiovascular disease and sudden

cardiac death. Although electrocardiogram (ECG) has been used to predict cardio-

vascular mortality in diabetes, the prognostic value of ECG abnormalities in diabetics

has not been fully characterized. We hypothesize that cardiac abnormalities associ-

ated with diabetes can be revealed from body surface potentials (BSPs) and cardiac

transmembrane potentials (TMPs). In this chapter, we collected body surface ECGs

and heart-torso geometries from two adult males (one normal, one obese diabetic).

With these measurements, we estimated the corresponding normal and diabetic car-

diac TMPs. An initial characterization of the electrical phenotype of diabetes could

be formed by analyzing the BSPs and TMPs.

In Chapter 3 and 4, we implemented the bidomain forward problem formula, and

solved the inverse problem. By doing so, we were able to build a connection between

BSPs and cardiac TMPs. These two electrical representations can be generated from

each other based on a given heart-torso anatomy. In Chapter 5 and 6, the effects of

obese anatomical and diabetic electrical remodeling were evaluated separately with

simulation experiments. In this chapter, we characterize features of BSPs and TMPs,

which are associated with diabetes in the presence of obesity, based on the measure-

ments from real subjects.
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Figure 7.1: Portable Mapping System. Components include a Terason 3000
ultrasonic imaging system, BioSemi ECG mapping system, custom phantom for

ultrasonic image registration, and Immersion 3D digitizer.

7.1 Clinical Data Acquisition

The clinical data collected from human subjects included their BSPs and heart-torso

geometry. During the experiment, we use a Vac-LokTM (Civco Medical Solutions,

Kalona, IA ) to immobilize the patients. It contains a cushion filled with polystyrene

beads that forms rigidly to the patient when a vacuum is applied. Torso surface ge-

ometry was measured with an Immersion 3-D digitizer (Immersion Human Interface

Corp., Palo Alto, CA); BSPs were recorded with a BioSemi mapping system (Am-

sterdam, Netherlands). Heart size, orientation and location were determined with

the images taken by a Terason 3000 ultrasonic imaging system (Teratech Corpora-

tion, Burlington, MA). Along with a custom image registration phantom, the above

equipments comprised a portable mapping system, as shown in Figure 7.1.
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Figure 7.2: Torso surface (black dots) and electrode positions (magenta circles)
measured with a 3D digitizer (Immersion 3DL). Red triangles represent the planes
on which ultrasound image were taken. The black line on heart surface marks the

trace from atrioventricular (AV) node to the apex through AV junction.
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Figure 7.3: Interface of BioSemi ECG Mapping System

7.1.1 Protocol

A protocol was developed to control the experimental procedure that consisted of the

following steps: 1) Register ultrasonic images of the heart to the coordinate systems

of the 3D digitizer [104]. Calibrate the probe by imaging a phantom consisting of

multiple N-fiducial and computing a transformation between ultrasound coordinates

and Immersion measurements. 2) Measure the torso surface and electrode locations.

The anterior surface and electrode was measured by tracing the 3D digitizer directly

on subject torso. The posterior surface and electrode locations were recorded on

the Vac-Lok, after subject sitting up and getting off it. 3) Record 120-channel body-

surface ECG signals with the BioSemi system, which contains the reference electrodes

CMS and DRL and ten 12-electrode strips. These electrodes were attached over the

front and back of subject torso. 4) Measure the spatial locations of body-surface

ECG electrodes with the 3D digitizer. 5) Repeat the above procedures 3 ∼ 5 times

for data registration consistency. 6) Remove electrodes from the subjects and clean

up the equipment. For procedure details, see Appendix D.
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7.1.2 Heart and Torso Geometry

Figure 7.2 illustrates the geometric measurements for the normal subject. The mea-

sured point cloud (black dots) on the torso surface were interpolated into 3D torso

models with the Matlab FastRBFTM Toolbox from FarField Technology Limited

(Christchurch, New Zealand). Figure 7.4 demonstrates the resulting normal and

obese torsos. A plastic heart model was digitized and used as a template. According

to the ultrasound heart images, the template heart was shifted, rotated, scaled, and

placed into the torso models [104]. Figure 7.2 also shows the locations of ECG elec-

trodes (magenta circles), which were attached to the front and back of subject torso

during experiments. Later in this chapter, these heart-torso geometries are used to

solve the inverse problem, and estimate the TMPs for each individual.

7.1.3 Electrical Body-Surface Measurements

Body surface ECGs of the subjects were collected with BioSemi ECG system, which

contains 123 active electrodes, a receiver, an AD-box, optic cable and a battery

box. Figure 7.3 shows the interface of BioSemi. The ECG signals recorded here

are raw signals with a sample rate of 2048 Hz. Based on these ECG measurements,

we calculated the signal-averaged ECGs (SAECGs). Before the calculation, the raw

signals were delimited, de-noised, truncated into ECG cycles. Later in this chapter,

heart surface potentials for both subjects are reconstructed from the above SAECGs

and geometric models.

7.2 Heart and Torso Models

The 3D heart and torso models were built with the Matlab FastRBFTM Toolbox

based on point clouds recorded with the Immersion 3-D digitizer. By comparing the

heart-torso models of the two subjects side-by-side in Figure 7.4, we can tell that, in

the obese torso, where the abdominal fat is increased, the position and orientation of

the heart is changed relative to the torso. These two features have been incorporated
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Figure 7.4: The heart-torso geometries. Left) the normal subject. Right) the obese
diabetic subject.

in the obese anatomical remodeling in Chapter 5, as extended abdomen (EA) and

displaced heart (DH).

In the coming sections, the comparison will first be made between the BSPs directly

measured from the two subjects. By doing so, we try to 1) find out which BSPs

features, if any, may be useful as potential bio-markers in future diabetic heart studies;

and 2) test the conclusions on the sensitivities of BSPs to the obese anatomical and

diabetic electrical remodeling, found during the simulations in Chapter 5 and 6. After

comparing BSPs, we will reconstruct TMPs for the both subjects, and then compare

them to determine if there are TMP changes that may be associated with diabetes.

7.3 Body Surface Potentials (BSPs)

A Matlab package was developed to process ECG recordings (100-second, 2048-Hz,

24-bit). With this package, the 120-channel ECGs are low-pass filtered, delimited, cut

into cardiac cycles, shifted to base-line, and averaged. One example of the outcoming

SAECGs is demonstrated in Figure 7.5, in which the red dash line represents their
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Figure 7.5: ECG signal recorded from the normal subject. After truncating the ECG
recording into cycles, certain standard deviations were observed among these cycles
(as blue bar). The signal averaged ECG (SAECG) is demonstrated as the red line.

average, while blue bars indicate standard deviation among different cycles recorded

with one electrode.

Body surface SAECGS of normal and obese diabetic subjects were compared in Figure

7.6. In the figure, the obese diabetic subject has lower amplitudes of BSPs, especially

during R and T wave.

7.4 Heart Surface Transmembrane Potentials (TMPs)

The heart surface myocyte TMPs are used to present the cardiac sources, which

generate the BSPs. They also play the important role in diabetes associated electrical

phenotype. By solving the bidomain inverse problem with an innovative technique,

the myocyte TMPs are reconstructed noninvasively from the BSPs measurements of

the normal and obese diabetic subjects.

To link BSPs and TMPs together, we developed the Bidomain Forward Problem

Module in Chapter 3 and the regularized waveform identification (RWI) approach in
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Figure 7.6: BSPs measurements. Left) the normal subject. Right) the obese
diabetic subject.

Chapter 4. The forward problem module was used to calculate the transfer matrices

for both the normal and diabetic subjects, as An and Ad, based on their torso

geometries (in Figure 7.4) and tissue conductivities. During the calculation, the

conductivities of the heart and torso equals 0.3 S/m and 0.2 S/m. The outputs of

the forward problem module are represented as the following linear equations:

Vn = AnΦn , (7.1)

Vd = AdΦd , (7.2)

in which, Vn and Vd are BSPs for normal and diabetic subjects; Φn and Φd are

the corresponding TMPs. Here, BSPs during the T wave are fed into the inverse

problem to estimate the myocyte TMPs during the repolarization. Figure 7.7 shows

the T waves for both individuals, as Vn and Vd. The signals, measured on the

obese diabetic subject, are in a much lower energy level. At the peak of T wave, Vd

also has less potential divergence in space. This phenomenon does not match the

results shown in Figure 6.8, in which diabetic associated APD prolongation increased

potential divergence, instead of decreased it.

To estimate TMPs from available BSP measurements, we developed the new ap-

proach, called RWI, in which the spatial constraints were accomplished with the
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Figure 7.7: BSPs during the T wave. Left) the normal subject. Right) the obese
diabetic subject.

regularization approach, such as TSVD or Tikhonov; while the temporal features of

TMPs were caught by introducing an averaged waveform.

Specifically, the first step of the inverse approach is to calculate the TMPs with

the regularization method. Here, we use truncated singular value decomposition

(TSVD). To make the results comparable, the same truncation rank, 20, is set for both

regularization cases. The resulting ΦTSVD are shown in Figure 7.9. Similar to the

BSPs, the obese diabetic regularization TMPs have, on average, smaller amplitudes

and spatial divergence than normal.

As expected, the regularization results do not show the general TMP shape during the

repolarization. To solve this problem and to incorporate the temporal information,

the averaged waveform identification (AWI) technique is developed. By adding an av-

eraged TMP waveform to the regularization results, the technique recovers the shape

information lost during the regularization. Two steps are taken to find the averaged

waveform: 1) capture the rough TMPs shape with a parameterized function. Here, we

use the logistic function; 2) find the optimal parameter for the selected function. For

details, see Chapter 4. Figure 7.9 shows the estimated averaged waveforms for both

subjects. We could tell the obese diabetic subject has a much earlier decline on the

averaged TMP potential. This result does not match the findings in diabetic animal
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Figure 7.8: Regularization estimation for the repolarization transmembrane
potentials. Left) the normal subject. Right) the obese diabetic subject.

Regularization rank is 20 for the both cases.
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Figure 7.9: The Averaged repolarization transmembrane potentials for the normal
subject and obese diabetic subject.
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studies, in which APD were found generally prolonged. With the limited number of

subjects, we are not able to draw any firm conclusion at this stage.
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Figure 7.10: Estimated repolarization transmembrane potentials. Left) the normal
subject. Right) the obese diabetic subject.

The final TMP estimations are achieved by summing up the regularization results

(in Figure 7.8) with the averaged waveform (in Figure 7.9). The results are shown in

Figure 7.10. With the same regularization level, the obese diabetic TMPs demonstrate

less diversity than the normal one’s. In the next section, signal analysis tools will be

applied to BSPs and TMPs of the two subjects. Further interpretation will be made

based on the analysis results.

7.5 Characteristics of BSPs and TMPs

Similar to Chapter 5 and 6, this chapter uses spatial standard deviation (SD), power

spectra density (PSD) and principal component analysis (PCA) to extract key fea-

tures out of BSPs (in Figure 7.6) and repolarization TMPs (in Figure 7.10) of the

normal and obese diabetic subjects.

Figure 7.11 shows spatial standard deviation (SD) of the measured BSPs. As we

expected from Figure 7.6, the obese diabetic subject has smaller BSP effective values

at the peak of R and T wave. Here, the effective value is evaluated with spatial SD.

Also, in Figure 7.11, the average cardiac cycle and ST-segment is shorter in the obese
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Figure 7.11: Spatial deviation (SD) of BSPs recorded from the normal and obese
diabetic subjects.

Figure 7.12: Spatial-averaged power spectral density (PSD) of BSPs recorded from
the normal and diabetic subjects. Normal PSD is used as zero reference.
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Figure 7.13: Principal component analysis over the cardiac cycle of signal-averaged
BSPs from a normal adult male and an obese, diabetic adult male. Left) The first
three principal components for the both subjects. Right) The ratio of the principal
component coordinates between the obese diabetic subject and the normal. Similar

parameters were used by Okin and coworkers. to predicted cardiovascular
mortality.[81]

diabetic subject. This phenomenon indicates an earlier repolarization activity on the

heart of the diabetic subject. This finding conflicts with the assumption of APD

prolongation made in Chapter 6 based on diabetic animal experiments. It suggests

the conclusions drawn from diabetic animal studies may not be applicable to diabetic

human studies.

Figure 7.12 shows that the obese diabetic BSPs have a lower power spectral density

(PSD) than the control’s, especially in the diagnostic frequency band ≤ 100Hz spec-

ified by the American Heart Association [9]. The result matches what we got in the

simulated extended abdomen (EA) obese case in Chapter 5. It indicates the increased

fat tissue dilutes the electrical signals on their way traveling to torso surface.
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Figure 7.14: The statistical features of QTc intervals for the normal and obese
diabetic subject.

The principal components of the obese diabetic BSPs have relatively small amplitudes

during T wave compared to those from the normal control, as shown in Figure 7.13.

In addition to amplitude changes, for the obese diabetic case, the T wave of the

first principal vector is a reverse of the corresponding normal one. The same pattern

appeared in Chapter 6, not in Chapter 5. It suggests that the first principal vector

could be a potential indicator for diabetic-related cardiac electrical activity changes,

and more important, this indicator is not affected by obese habitus.

QT interval is a key ECG feature corresponding to transmembrane potential (TMP)

duration, or so-called action potential duration (APD) on the heart. Although, APD

prolongation has been found in many diabetic animal experiments [83, 27, 97, 78, 98],

there is not enough evidence to show that a similar pattern exists in diabetic human

subjects. On the other hand, an abnormal QT interval, especially QT dispersion

(QTd), is suggested to be a very useful parameter in the evaluation of cardiovascular

risk in participants with Type 2 diabetes, particularly in patients without previous

cardiac diseases [38, 85, 19]. It indicates the abnormal QT is related to certain fatal

cardiac dysfunction in the presence of diabetes.
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In this study, we evaluate the QT correction (QTc) and QTc dispersion for the both

subjects. A MATLAB routine was developed to capture the start and end instants

of Q wave and T wave respectively. The QTc is calculated from QT with a standard

clinical correction, Bazett’s formula, as shown in the following equation,

QTc =
QT√
RR

. (7.3)

in which, RR is the interval between the peaks of two R-waves. It represents the

heart rate. Figure 7.14 demonstrates the QTc distributions based on the BSPs of

both the normal control and obese diabetic subjects. Unlike what we found in the

previous simulation (Figure 6.7), the median QTc value of the obese diabetic subject

is shorter than the one of normal subject.

Based on QTc, QTd is calculated as the difference between the maximum and min-

imum QTc. As a predictor of cardiovascular and cardiac mortality, it is a feature

reflecting the underlying heterogeneity of ventricular repolarization. In the previous

chapter, QTd of the simulated normal and diabetic BSPs are 41 ms and 83 ms. Here,

QTd of the BSPs measured from the normal and obese diabetic subjects are 71 ms

and 108 ms. In both simulation and human study, diabetic BSPs demonstrate higher

QTd than normal ones do. These results demonstrate significant difference between

the two subjects. Further study and a large subject pool is necessary to draw the

final conclusion.

In several earlier studies [38, 85, 19], the diabetic patients with a QTd greater than a

certain value seemed to have a higher ratio of cardiovascular events and death. The

risky value of QTd varies in different studies from 50 to 65 ms. These numbers are

not directly comparable to the QTd value in this study, because different from most

of the clinical QT studies, we use the BSPs rather than the standard 12-lead ECGs

to calculate the QTd.

7.6 Conclusions

The goal of this study is to reveal the electrical phenotype of diabetes based on body

surface ECG recordings in the presence of obesity. Both the BSP measurements and
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the corresponding TMP estimations are characterized and compared between the two

available subjects, one normal and one obese diabetic.

Significant differences were found in the BSPs between the two subjects. The BSPs

of the obese diabetic subject were shown to have much lower signal effective values

during R and T wave. It matches what we found in BSPs of the extended abdomen

(EA) case in the obese habitus simulation. An intuitive explanation is that the in-

creased fat tissue weakens the signals observed on body surface. During T wave, the

first principal vector of BSPs was reversed in the obese diabetic subject. The same

phenomenon was observed in the PCA results of the simulated diabetic ECGs. On

the other hand, the three obese habitus did not show such an impact on the first

principal vector. These results suggest the first PCA vector could be used as a poten-

tial indicator to present certain changes of BSPs due to diabetes electrophysiology,

and more important, it is free from obese geometrical effects. Long QT associated

with APD prolongation was not observed in the obese diabetic subject. QTd was

found increased in both the measured and simulated diabetic BSPs. As a predic-

tor of cardiovascular disfunction, QTd was shown to be associated with the risk of

cardiovascular event and even mortality in the presence of diabetes. The discovery

here indicates QTd is a valuable feature that may tie up with certain cardiac changes

associated with diabetes. Repolarization TMPs were reconstructed from the BSPs

measurements of the two subjects with the inverse approach developed in Chapter 4.

By comparing their TMPs, we found that the repolarization timing parameters of the

obese diabetic TMPs have less spatial variance. Referring to our inverse approach,

this phenomenon is associated with the lack of diversity of the amplitudes at the peak

of T wave.

This pioneering work will help to reveal electrical biomarkers for diabetes available

in a clinical setting. The methods developed here may also be applicable to elucidate

electrical features of other cardiac pathology. Differences discovered will represent

electrical remodeling in both obesity and diabetes that will serve as a foundation for

future studies to identify separate effects of obesity and diabetes. The limitation of

the study is the small data set. Measurement from only one subject in each category

is obviously inadequate to reach any statistical conclusions. Results and conclusions

can be tested by more clinical observations in the future.
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Chapter 8

Summary, Conclusion and Future

Work

Diabetes and obesity are two major risk factors for cardiovascular disease. Obesity is

a compounding factor of diabetes. They both have certain electrophysiological and

anatomical influences on human body. The goal of this dissertation is to reveal the

electrical phenotype of diabetes in the presence of obesity based on the body surface

ECGs. Multiple techniques and algorithms were developed to accomplish this goal.

In the study, a bidomain model lays down the foundation for the rest of the work.

Based on it, the boundary element method (BEM) was used to solve the forward

problem; an approach, named regularized waveform identification (RWI), was inno-

vated to solve the inverse problem. In addition, a collection of MATLAB algorithms

was developed to simulate the electrical and anatomical remodeling associated with

diabetes and obesity. A set of signal analysis approaches were implemented to pro-

cess and extract features from the measured or simulated normal, diabetic and obese

ECGs. In the rest of this Chapter, we will summarize the contribution and limitations

of the above work.

A bidomain simulation platform was constructed to provide a mathematical basis. It

contains four modules: 1) Bidomain Source Module, 2) Bidomain Forward-Problem

Module, 3) Cardio-myocyte transmembrane potential Estimation Module (also called

Bidomain Inverse-Problem Module), and 4) Body-Surface Potential Mapping Module.

The bidomain forward and inverse modules allow us to link transmembrane potentials

(TMPs) to body surface potentials (BSPs). TMP represents the electrical activities

on a cellular base; while BSPs present comprehensive measurement of heart electrical
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activities on body surface. Both TMPs and BSPs are potentially affected by diabetes.

By isolating the simulation environment from the practical difficulties associated with

actual data, the bidomain platform allows us to investigate the effects of diabetic- and

obese-associated remodelings on BSPs as individual factors. The platform provides

a feasible means for observing and understanding remodeling and its consequences.

A novel approach, named regularized waveform identification (RWI), was developed

to solve the inverse problem based on the bidomain model. In addition to the spatial

regularization techniques, our inverse approach brought in the temporal constraints

in a simple and straightforward way. The physical model of the double-layer source

determines that the unit vector belongs to the null space of the forward transfer

matrix. Based on this knowledge, the temporal information of TMP is presented

as an averaged TMP waveform. The TMPs are estimated as the summation of the

averaged TMP waveform and the regularization results. By incorporating temporal

information, in the form of the basic TMP wave shape, estimation accuracy was

enhanced while maintaining computational simplicity. We evaluated the sensitivity

of our RWI approach to 1, 2, 5 and 10% electrical noise on the body surface. Relative

errors (RE) of <15% and correlation coefficients (CC) >0.98 were found. A 10%

enlargement of the heart and position errors of ±1cm in all directions yielded REs of

<15% and CCs >0.97. Simulation results showed that this approach performed much

better than traditional regularization methods alone and is robust in the presence of

noise and geometric error.

Obese anatomical remodeling was characterized using three features: left ventricular

hypertrophy (LVH), heart displacement and abdomen enlargement. The geometri-

cal variation caused by these obese features were simulated with a set of customized

MATLAB routines, which can be applied to future obesity related studies. Based

on obese anatomy, body surface ECGs were calculated with the bidomain platform.

By comparing the simulated obese and normal ECGs, we evaluated the effects of the

three obese features. In the simulation, we found relative errors over the body-surface

during the Q-T interval are 12, 30, and 68% for hypertrophy of the heart, extension

of the abdomen, and heart displacement with obesity, respectively. The major change

to the standard 12-lead set also occurred with heart displacement. The mean relative

error over the T wave in the precordial leads V3 to V6 was 83% with heart dis-

placement. The results suggest that geometric changes accompanying obesity have
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a significant effect on electrocardiograms that may be confused with electrophysio-

logic changes due to diabetes. An understanding of the geometric effects is essential

to separating changes that occur due to obesity from those due to diabetes. These

results also demonstrate the limitations of using the standard 12-lead signals in the

presence of hypertrophy, an extended abdomen, and a displaced heart to character-

ize electrical remodeling with diabetes. On the other hand, body-surface maps can

provide a relatively comprehensive view, and help us to have a better understanding

on the underlying cause for the changes of potential distribution.

An electrical remodeling associated with diabetes was characterized as regional action

potential duration (APD) prolongation. Referring to the discovery made on diabetic

rat and the ratio of heart rate between human and rat, diabetic human TMPs were

simulated by increasing normal APD with 16, 25 and 29% on three ventricle regions:

total right ventricle (RV), subepicardium at the apex of the left ventricle (EpiALV)

and subendocardium at the base (EndoBLV) respectively. The corresponding diabetic

body surface ECGs were calculated with the bidomain platform. By comparing the

simulated diabetic and normal ECGs, we found 125% RE during Q-T interval. Also,

both QT interval and QT dispersion (QTd) were found increased due to APD prolon-

gation related to diabetes. In particular, the averaged QT increased from 380 to 419

ms, and QTd increased from 95 to 124 ms. The isopotential maps suggest diabetic

associated uneven temporal changes on the heart cause dramatic spatial changes in

ECGs on body surface. At the peak of T wave, the maximum potential region of dia-

betic BSPs were shifted towards the left shoulder. As the result, dramatic distortion

was found in 12-lead ECG measurements. Although the insufficient knowledge on

diabetic human heart set a limit, the study provides a valuable first step to identify

the effects of diabetes on BSPs in human. Based on this work, further study can be

carried on.

In the study, we collected BSPs and heart-torso geometric information from two adult

males, one normal and one obese diabetic. To collect data, we established a protocol

for operating a portable Mapping System, which includes a Terason 3000 ultrasonic

imaging system, BioSemi ECG mapping system, custom phantom for ultrasonic im-

age registration, and Immersion 3D digitizer. To process the raw measurements, we

also developed a MATLAB signal averaged ECG (SAECG) package. Like the data
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collecting system, the package was designed for general ECG related data acquisi-

tion. In Chapter 7, the BSP measurements were compared between the two subjects.

Referring to the normal, the obese diabetic BSPs show three major changes: 1) the

signal effective value was reduced; 2) QT dispersion was increased from 86 to 164 ms

3) during T wave, the first principal vector was flipped. The first phenomenon was

also found in the simulated obese case, and it is potentially caused by abdomen en-

largement. Unlike the simulated diabetic BSPs, the BSPs measured from the obese

diabetic subject did not have increased QT interval. At the same time, QTd was

found increased in the both simulated and measured diabetic BSPs. Several stud-

ies suggested abnormal QT dispersion (QTd) is an useful predictor of cardiovascular

events and mortality in the presence of diabetes. In addition to BSPs, TMPs were

reconstructed for the subjects, by using the inverse approach developed in Chapter

4. The results suggest the TMP repolarization of myocyte occurs earlier, and the re-

polarization timing parameters are less sparse. Obviously, no statistical conclusions

can be reached with our limited data set, but the suggestive results call for further

clinical observations.
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Appendix A

ECGSIM Simulation Platform

Figure A.1: A snap shot of ECGSIM

interface. Upper left) Geometry of

and potential distribution on the

ventricles. Upper right) Geometry of

and potential distribution on the

torso. Lower left) Action potential

cycle of selected heart-surface location.

Lower right) 12-lead ECG signals.

ECGSIM is an interactive simulation pro-

gram that enables its users to study the re-

lationship between the electric sources of the

ventricular myocardium and the resulting

potentials on the thorax (QRST waveforms,

as well as body surface potential maps) and

on the heart surface (electrograms, poten-

tial maps, and maps of the local action po-

tential) during both depolarization and re-

polarization phases of cardiac activity [111].

ECGSIM was designed to serve as a research

tool for those interested in testing hypothe-

ses they may have regarding the manifesta-

tion of cardiac dysfunction in electrocardio-

graphic waveforms on the thorax. Figure

A.1 is a snap shot of ECGSIM interface.

Simulations in this study build on data

from ECGSIM (University of Nijmegen,

the Netherlands. http://www.ecgsim.org).

Cardiac AP parameters, body surface poten-

tials, and thorax geometry, including torso

and heart models were taken from ECGSIM, as indicated in Figure A.2.
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Figure A.2: Data exported from the ECGSIM platform. Upper left) Normal
ventricular geometry. Upper right) Normal torso geometry. Lower left)

Depolarization and repolarization parameters at 257 nodes on the ventricular
surface. Lower right) Body surface potentials during the QRS complex and T wave.
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Appendix B

Deflation Procedure

To find proper numerical approaches to solve the bidomain forward problem equation

(3.23), we need to consider the singularity problem. To solve this problem, the defla-

tion method was employed to remove the undesired eigenvalues of B. The resulting

matrix C shares all the rest of the eigenvalues with B. By replacing B with C in

Equation (3.23), we can get the correct solution for the surface potentials.

To simplify the problem let us consider only the torso surface boundary while ignoring

the inhomogeneities of the heart and lungs. Based on the definition of solid angle,

the summation of each row of matrix B will be one, i.e.

Be = e , (B.1)

where, e is the unit column vector. Equation (B.1) indicates B has an eigenvalue

λ = 1. Correspondingly, one eigenvalue of matrix (I−B) will be zero. To avoid this

singularity, we need to remove the λ = 1 from B, by replacing B with C

C = B− ept . (B.2)

Here, p is any column vector, which satisfies

etp = pte = 1 . (B.3)

A common choice for p is [64, 65].

p = e/n , (B.4)
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where n is the length of e. Matrix C has the same eigenvalues as B, except for the

one at unity, which is replaced by zero [41]. For a homogeneous body, with only one

boundary, the torso, we can estimate BSPs Vt by multiplying the inverse of (I −C)

with corresponding primary source potentials. If we want to increase the accuracy

of estimation by adding more inhomogeneities, such as heart, lungs, or even blood

mass, we need to apply multiple deflations to matrix B.

During multiple deflation, a set of λs need to be removed from B. Each λs corresponds

to one boundary Ss which separates inhomogeneous tissues.

λs =
σ−s − σ+

s

σ−s + σ+
s

, s = 1, 2, ...,m , (B.5)

where σ−s and σ+
s are conductivities inside and outside boundaries Ss and m represents

the number of boundaries considered. The corresponding eigenvector fs is a column

vector with length of n1 + n2 + ... + nm, where, nr (r = 1, 2, ...,m) is the number of

observation locations on surface Sr.

fs = [(f s
1)t, (f s

2)t, ..., (f s
m)t]t , (B.6)

with

f s
r = γrse , (B.7)

where

γrs =


0 for Sr not inside and not equals to Ss

1 for Sr equals to Ss
(σ−s )2−(σ+

s )2

(σ−s )2+(σ+
s )2

for Sr inside Ss

(B.8)

Let p share the same size as fs then

p = [0t, ..., 0t, es
t/ns, 0

t, ..., 0t]t , (B.9)

where 0t are zero vectors with length of n1, n2, ..., ns−1, ns+1, ..., nm. The deflated

matrix C then becomes

C = B−
m∑
s=1

λsfsps
t . (B.10)
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Appendix C

Torso Extension Routine

A routine used to extend a normal torso into an obese one is introduced in this section.

It allows specifying the desired amount of increase in waist circumference (WC). This

technique was used in Chapter 5 to simulate the abdominal enlargement that occurs

in obese subjects, so that we could evaluate the influence of obese habitus on BSPs.

To generate an obese torso with a given WC, we used two torso models, one normal

template torso and one obese reference torso. The former one was a template which

was extended to form the obese torso model. The latter one was a real obese torso

shape. In the simulation, the normal torso model was exported from ECGSIM [111],

as shown in the left of Figure C.1.

As shown on the right of Figure C.1, the reference obese model, with a total of 2840

nodes, provided sufficient detail to guide the extension of the normal torso model. The

underlying strategy was to interpolate the space between the given normal template

and the obese reference model. Specifically, the procedure can be broken down into

the following steps:

1. Adjust the reference obese torso, so that it has the same height as the normal

template torso. Specifically, we first shift the centers of both the normal and

reference obese torsos to the original point, then divide the X-, Y- and Z-

coordinates of the obese reference with the ratio rh, where

rh = heightobese/heightnormal (C.1)
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Figure C.1: Left) The ECGSIM torso served as the normal template. Right) Torso
model of an obese subject provided detailed information on obese torso shape.
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Figure C.2: In one coronal slice, nodes on the boundaries of normal and obese
reference torsos are marked as blue and red circles. The red circles were fitted with

a polynomial curve (in cyan), which represents a contour of the obese reference
torso. For each blue node A, the corresponding node B (in black) was identified on

the obese contour. Node C (in magenta) is a node of the output obese torso,
corresponding to node A of the normal template. It was determined by

interpolating between node A and B.
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Given the reference obese torso and the normal template, the ratio rh is 1.18 in

this study.

2. Lay the normal template and the adjusted obese reference models side by side,

then ’cut’ them from waist to shoulder, into m slices, here m=20.

3. Pick the ith slice (i=1, 2, ... m) of the normal and reference obese torsos,

and project them onto coronal plane. Now we have two contours composed of

nodes from normal and obese torso surfaces, as the blue and red circles shown

in Figure C.2

4. For each node on the contour of the normal template, find the corresponding

node on the output obese torso with the following sub-steps

(a) Curve fit the obese contour with polynomial function, as

y =
n+1∑
j=1

pjx
n+1−j (C.2)

here, the polynomial order n equals to 10. x and y are coordinates in

coronal plane. The fitted curve is shown in cyan in Figure C.2.

(b) Draw a ray from origin to node A.

(c) Find node B, as the cross point of the above ray and the fitted curve of

obese boundary.

(d) Find a point C along the ray crossing both node A and B with a linear

interpolation approach. The interpolation ratio p is preselected based on

the amount of waist circumference extension. In Figure C.2, the X- and

Y-coordinates for node A and B are xA, yA, xB and yB. Based on them,

the coordinates for node C could be found with the following equations.

xC = xA + (xB − xA)× p (C.3)

yC = xC × yA/xA (C.4)

(e) Repeat sub-steps (b) through (d) until we find all node C’s for nodes A’s

on the normal contour.

5. Repeat Step 3 and 4 for all m torso slices.
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Figure C.3: The normal template (in blue) and the corresponding output obese
torso (in red).

Figure C.3 shows the normal reference torso and the interpolated obese torso, with

16% WC increase. These models were used in Chapter 5, to study the influence of

abdominal enlargement on ECGs. The routine was designed to generate an obese

torso shape by interpolating the space between one normal and one obese torso.

The approach developed here can be applied to generate one convex close surface by

interpolating two other convex surfaces.
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Appendix D

Clinical Data Acquisition Protocol

This appendix describes the procedures used to acquire torso and heart geometry

as well as electrical body-surface maps for inverse electrocardiography, i.e., to find

cardiac-source descriptions from these body-surface measurements.

D.1 Equipment

The items used in the data collection procedure listed below are shown in Figure 7.1.

• Vac-Lok patient immobilizing system (Civco Medical Solutions, Kalona, IA )

with vacuum pump

• 3D Immersion digitizer (Immersion Human Interface Corp., Palo Alto, CA)

• Biosemi body-surface mapping system (Amsterdam, Netherlands) with 120 elec-

trodes

• Terason 3000 ultrasonic imaging system (Teratech Corporation, Burlington,

MA)

• Custom ultrasonic calibration phantom designed by Jason W. Trobaugh and

built by Patrick T. Harkins
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Figure D.1: Left) Calibration of the ultrasonic view plane with the custom
phantom, Right) Ultrasonic scan of the heart with the Terason 3000 system using a

4VC (64-element, 2 MHz) transducer.

D.2 Preparation

1. Deionize and degas water for the ultrasound calibration phantom (15 minutes)

2. Charge the battery for the Biosemi System (3-4 hours)

3. Prepare the reference electrodes CMS and DRL and the back electrodes D1-

D24, E1-E24 by attaching adhesive rings, removing paper covers, and applying

electrode paste (13 minutes)

4. Calibrate the ultrasound system as seen in Figure D.1 (16 minutes)

• Measure the reference-point divots on the phantom with the 3D Immersion

digitizer

• Record images of filaments in the phantom with the focal point near mid-

depth of the filaments

• Mark centers of the filament images

5. Connect the components of the BioSemi system together (1 minute)
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Figure D.2: Left) Position of back electrodes A1-A24 (left two strips) and B1-B12
(right strip). Electrodes B13-B24 are on the right side, Right) Position of front

electrodes with C1-24 and on the right side of the anterior midline and D1-24 and
E1-E24 on the left side.

D.3 Data Acquisition

1. Attach reference electrodes (CMS and DRL) and back and right side electrodes

(A1-A24 and B1-B24) to the subject, as seen in Figure D.2 (7 minutes)

2. Run the ActiView software, click ”start” to request data, check for signal quality

and range (2 minutes)

3. Place the subject on the Vac-Lok cushion (10 minutes)

4. Mark 3 table reference points and 4 anatomic reference points, specifically the

right arm, left arm, left leg and CMS electrode sites.

5. Check the quality and ranges of the back electrodes signals

6. Acquire apical 4-chamber and parasternal short axis-views of the heart with the

Terason 3000 using a 4VC transducer as seen in Figure D.1 (16 minutes)

7. Attach the front electrodes (C1-C24, D1-D24 and E1-E24) to the subject [pre-

pared during the above acquisition steps] as seen in Figure D.2 (18 minutes)
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Figure D.3: Torso surface measurement with the Immersion 3DL digitizer. Left)
Front torso scan, Right) Back torso scan and measurement of electrode location

from Vac-Lok impressions.

8. Check the quality and ranges of the front electrode signals

9. Record body-surface ECGs (5 minutes)

• Select specific torso channels, reference channels and display scales to view

during recording

• Record ECG signals for 100 seconds, save channels A1-E24, plus EXGs

• Repeat this procedure to record a second 100-second body-surface map

10. Measure torso surface locations in 3D as shown in Figure D.3 (21 minutes)

• Record front torso 3D points (8 minutes)

• Mark tops of strips of D13-D24, E1-E12 and E13-E24 on the Vac-Lok

• Draw the positions of torso sides on the Vac-Lok

• Remove front electrodes from the subject (4 minutes)

• Measure the reference sites on the table and the anatomical sites on the

subject

• Help patient sit up and get off the Vac-Lok

• Record the location of back torso points and electrodes (9 minutes)

11. Clean up
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• Remove back electrodes from the patient during geometrical measurements

on the back impressions in the Vac-Lok

• Remove the adhesive rings and electrode paste from the electrodes during

geometrical measurement on the back

• Disassemble the Biosemi system and put into its backpack

• Put the Terason 3000, power supply, and the 4VC transducer into its case

• Put the 3DL digitizer into its case

• Store the Vac-Lok and calibration phantom

D.4 Notes

1. When helping the subject onto or off of the Vac-Lok care must be taken to

reduce movement of the Vac-Lok and wrinkling of its surface both of which

compromises making accurate geometrical measurements on the back

2. Some electrodes at the end of electrode strips on the front of the torso may need

tape to keep them tightly connected to the torso surface

3. We used two electrode paste products; 1) ”Signa Gel”, which tended to dry out

after 15-20 minutes and 2) ”Redux Creme”, which remained moist throughout

ECG body-surface mapping
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Appendix E

Table of Symbols

A: The transfer matrix in the forward and inverse problem.

Ak: The rank-deficient transfer matrix. It is calculated by removing

the small singular values from the original transfer matrix A.

δ: The depolarization timing parameter, indicating the instant when

the steepest transmembrane potential incline happens.

J: The overall current density.

Ji: The impressed current density.

Ωji: The solid angle subtended by source triangle 4j at observation

point i.

∇: The gradient operator.

~p: A current dipole source.

Φave, φave: The averaged waveform matrix and vector. The rows of Φave

are identical and equal to vector φave, which represents

the spatial average of transmembrane potentials on heart.

φdep: The transmembrane potential waveform during the depolarization.

Φesti: The final estimation of transmembrane potentials on heart.

Φi, φi: The intracellular potential matrix and vector.

Φm, φm: The transmembrane potential matrix and vector.

Φo, φo: The extracellular potential matrix and vector.

φrep The transmembrane potential waveform during the repolarization.
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ΦLaplacian: The transmembrane potential matrix estimated with the

first-order Tikhonov regularization.

Φn and Φd: The transmembrane potentials on the heart surface for the

normal and obese diabetic subjects.

ΦT ikh: The transmembrane potential matrix estimated with the

Tikhonov regularization.

ΦTSV D: The transmembrane potential matrix estimated with the

truncated singular value decomposition.

QTd: The dispersion of QT interval.

QTc: QT interval correction.

r: The vector from observation to source boundary element

R: The Tikhonov regularization matrix. It is an identity matrix

for the zero-order Tikhonov method, and a surface gradient

operator for the first-order Tikhonov methods, respectively.

ρ: The repolarization timing parameter, indicating the instant

when the steepest transmembrane potential decline happens.

ρave: The repolarization timing parameter for the averaged waveform.

RR: The interval between the peaks of two R-waves, representing the

pulse rate.

σ−s , σ+
s : The conductivities inside and outside a boundary surface.

SH : The heart surface.

Tdom: The dominant T-wave waveform.

U and V: Unitary matrices the results of singular value decomposition.

Then contain orthonormal basis vectors.

V: The boundary surface potential matrix.

Vn and Vd: The body surface potentials for the normal and obese

diabetic subjects.

Vt, Vh and Vl: The potentials distributed on three closed surfaces surrounding

torso, heart, and lung.
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