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ABSTRACT OF THE THESIS

Inferring Intent from Interaction with Visualization
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Ran Wan
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Research Advisor: Professor Alvitta Ottley

Today’s state-of-the-art analysis tools combine the human visual system and domain knowl-

edge, with the machine’s computational power. The human performs the reasoning, deduc-

tion, hypothesis generation, and judgment. The entire burden of learning from the data

usually rests squarely on the human user’s shoulders. This model, while successful in simple

scenarios, is neither scalable nor generalizable. In this thesis, we propose a system that in-

tegrates advancements from artificial intelligence within a visualization system to detect the

user’s goals. At a high level, we use hidden unobservable states to represent goals/intentions

of users. We automatically infer these goals from passive observations of the user’s actions

(e.g., mouse clicks), thereby allowing accurate predictions of future clicks. We evaluate

this technique with a crime map and demonstrate that, depending on the type of task,

users’ clicks appear in our prediction set 79% – 97% of the time. Further analysis shows

that we can achieve high prediction accuracy after only a short period (typically after three

clicks). Altogether, we show that passive observations of interaction data can reveal valuable

information about users’ high-level goals, laying the foundation for next-generation visual

viii



analytics systems that can automatically learn users’ intentions and support the analysis

process proactively.
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Chapter 1

Introduction

This thesis is based on:

Ran Wan, Roman Garnett, & Alvitta Ottley. Inferring Intent from Interaction.

In submission.

1.1 Introduction

Humans are entering a new era in which data increasingly surround us. This new access

to data promises fresh opportunities for increased awareness, informed decision-making, and

enhanced quality of life. Our most significant challenge now is not accessing more data, but

making sense of it all. Visualization has been widely successful in helping people explore,

reason, and make judgments with data. By and large, this success is due to fusing human

intuition with interactive tools [26] and analysts in areas such as medicine, business, and

government make daily decisions with visualizations.

Unfortunately, as data become larger and more complex, the utility of visualization sys-

tems in many real-world situations declines. The state-of-the-art analysis tools assume a

work distribution that leverages the human visual system and domain knowledge with the

machine’s computational power [22, 30, 54]. Typically, it is the human that performs the

reasoning, deduction, hypothesis generation, and judgment. The entire burden of learning

from the data rests squarely on the human user’s shoulders [28]. This model, while successful

in simple scenarios, is neither scalable nor generalizable. For visualizations to continue to
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be useful in scenarios with increasingly complex and large datasets, we must create systems

that can better support the human during the analysis process.

The work in this thesis is ambitious in setting an agenda for revolutionizing the design of

visual analytics systems. We propose a more-intelligent system where the computer learns

about the user, her analysis process, and her task as she uses the system to shape hypotheses

and gain insight from the data. Beyond the scope of this thesis, our long-term goal is to create

systems that will enable the human–computer team to function more like equal collaborators,

but to achieve this, the system must have the capability to leverage interaction data to learn

about the user’s goals and the user herself.

Learning from interaction data is a critical challenge in the visualization community [93].

Prior work has largely focused on history tracking [8, 16, 58, 66, 102], annotating the analysis

process for reuse [35, 59, 66, 72, 69, 92, 102], and automatic model parameter updates [13, 43,

42, 53, 120]. More recent work apply a grammar-based approach to capture the interaction

process [31]. We build on this prior work but take a proactive approach to user modeling.

Instead of analyzing interactions to inform future tasks, our approach focuses on supporting

users’ current tasks in real-time.

In this thesis, we introduce a probabilistic model to recognize and predict future behavior

with visualization systems. At a high level, we use hidden unobservable states to represent

goals/intentions of users and observable states to represent observed user actions (e.g., mouse

clicks, eye gaze data), thereby allowing us to estimate and predict users goals/intentions

through their actions. To evaluate our approach, we analyzed click-stream data from a map

visualization that shows a real-world dataset of reported crimes (see figure 3.1). Our results

show that the probabilistic model achieves, depending on the type of task, between 79%

and 97% accuracy at predicting future mouse clicks. Further analysis shows that we can

achieve high prediction accuracy in a short period (typically after three clicks). Altogether,

we show that passive observations of interaction data can reveal valuable information about

users’ high-level goals. We discuss how this technique can be used to create next-generation

visual analytics systems that can automatically learn users’ intentions to support the analysis

process better.

We make the following contributions:

2



• A design-agnostic approach to modeling interaction with visualization: We provide a

design-agnostic approach to automatically extracting users’ intent with visualization

systems and demonstrate, using a scatter plot, how to model users’ interests and ac-

tions.

• Predicting future clicks from passive observations: We demonstrate how to apply this

model to a real-world visualization and dataset. Our proof-of-concept experiment

validates that we can use this approach on real systems for real-time predictions. We

demonstrate an overall prediction accuracy of 88% at guessing the next click based on

prior observations.

• Implications for designing adaptive visualizations: We discuss techniques for adapting

the visualization in real time and contribute to next-generation of visual analytics

systems that actively support users during their analysis.

1.2 Prior Work

Analyzing interactions to learn about the user or an interface design has been a significant

area of research in many different areas of computer science. For example, in the machine-

learning community, researchers have used interaction data to model and predict users’

browsing behaviors on websites and web search systems [41, 74, 75, 107]. Some researchers

have also used interaction data to explore how the interface design can bias user behaviors [62,

73], and how to overcome these biases [73].

In databases, Battle et al. [7] analyzed interaction data to improve prefetching techniques.

They showed that analyzing behavioral data resulted in a 430% improvement in system

latency. In the HCI field, researchers showed that displaying interaction history of past users

improves the problem-solving of future users [119]. Furthermore, Gajos et al. developed the

SUPPLE system that can learn the type and degree of a user’s disability by analyzing mouse

interaction data [49, 50, 51]. Fu et al. developed statistical and machine-learning models to

predict behavior on crowdsourcing annotation and web search tasks [48].
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1.2.1 Analytic Provenance

It is a common belief that interaction logs contain crucial information about an analyst’s rea-

soning process with a visualization [93]. Through interaction with a visual interface, analysts

explore data, form and revise hypotheses, and make judgments. To better understand how

analysts make sense of data, Pirolli and Card created the sensemaking loop which explains

the analyst’s progression from data foraging through hypothesis generation and insight [96].

The term provenance refers to the history of an object or idea, and analytic provenance re-

searchers aim to track and analyze the analytics process [46, 98, 82, 83]. At a high level, the

goal is to automatically capture and encode interactions with a visual interface to infer an-

alysts’ goals and intentions. Researchers and practitioners can then recall, replicate, recover

actions, communicate, present, and perform meta-analyses on the analysis process [98].

A standard approach to recovering the analytic process is to capture low-level user actions

such as mouse and keyboard events. For example, Cowley et al. developed Glassbox with

the goal of logging interactions to infer intent, knowledge, and work-flow automatically [28].

Dou et al. demonstrated that is it possible to extract high-level information from interaction

data [33]. They conducted a user study and recorded interactions while financial analysts

used a visual analytics system to detect wire fraud. Through a manual analysis of the

interaction data, they showed that is possible to recover analysts’ strategies, methods, and

findings. More recent work by Dabek and Caban introduced a grammar-based approach

to modeling user interactions [31]. They used automatons to model users’ behavior and

demonstrated that their technique could capture user’s analytic process.

A series of work focused on recording, annotating, and maintaining interaction history, and

demonstrates the benefit of preserving a linear history for future use [8, 12, 16, 58, 66, 102].

VisTrails, for instance, automatically keeps track of the analyst’s workflow and pipeline,

making it possible for the user to resume, reuse and share their explorations [8, 16, 47].

Heer et al. [66] and Javed and Elmqvist [70] created graphical history tools that would allow

users to track, recall and share their process. Gotz et al. developed tools for supporting the

sensemaking process by augmenting existing data with user annotations [58].
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1.2.2 Analyzing Interaction to Infer User Attributes

Researchers have also used interaction logs to infer user knowledge. Brown et al. used Dis-

Function to learn analysts’ knowledge through direct manipulation of visual elements [13].

They allow users to express their domain knowledge by grouping similar points then used this

information to update the underlying distance function for their data projection automati-

cally. Prior work also demonstrate how interaction data can be used to steer computation

and refine model parameters [43, 42, 53, 88, 120]. For example, Endert et al. [43, 42] designed

ForceSPIRE, which is a text data analysis tool that automatically updates the underlying

layout model as users interact with documents. Guo et al. analyzed interaction logs to

understand how analysts achieve insights [63].

Other researchers analyzed interaction data to infer individual characteristics. For instance,

Brown et al. used machine-learning techniques to infer user attributes automatically [14].

They showed that off-the-shelf algorithms could successfully predict completion time and

personality traits based on low-level mouse clicks and moves [14]. They also demonstrated

the viability of making real-time inferences from passive observations. Ottley et al. analyzed

clickstream data to demonstrate a correlation between personality traits and search strategies

with hierarchical visualizations [87]. Lu et al. used eye-tracking data to select parameters

for a visualization automatically [78]. Also utilizing eye gaze data, Steichen et al. [109] and

Toker et al. [114] predicted cognitive traits such as visual working memory, personality, and

perceptual speed.
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Chapter 2

Inferring Technique

Figure 2.1: A hidden Markov model approach to modeling actions and interest with a
visualization system. We represent users’ interest as a sequence of latent variables in the
hidden state space. Observable states are the user’s actions. The conditional distribution of
each observation depends on the state of the corresponding latent variable.

2.1 Overview of Approach

The previous section recaps prior work aimed at learning from interaction data. Much of

the proposed approaches in the visualization community have primarily focused on analyz-

ing behavior for tracking analytic provenance. While some of the prior work on applying

machine-learning techniques to predict individual characteristics demonstrate the feasibility

of real-time predictions, it is not clear how these techniques can generalize beyond the tested

interfaces. Our objective is to introduce a generalizable and design-agnostic approach to

user modeling.
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To achieve this research goal, we model users’ actions and their latent interests with a

hidden Makov model. We will use hidden states to represent the latent interests of users

and observable states to describe the actions of the user (e.g.. mouse clicks, mouse hovers,

eye gaze data, etc.). Figure 2.1 shows an overview of the hidden Markov model used. We

represent users’ interests as a sequence of latent variables. The conditional distribution of

each observation depends on the state of the corresponding latent variable. In the following

section, we provide details for this approach and how we may automatically infer hidden

user intent from passive observation.

2.2 Constructing a Probabilistic Model

First, we define a discrete time index t associated with interactions with a visualization. At

the start of exploring the dataset, we define t = 0. This index will then increment every time

a participant interacts with a visual element. Our model will presume that there is a hidden,

unobserved state zt representing the intent of the user at time t. We will assume that we can

map the sequence of observed interactions {ot} to this hidden sequence of intentions. The

task we consider here is how to infer the hidden intent of the user by observing their sequence

of interactions. Our approach will be to construct a probabilistic model of the user’s intent

and their interactions, which we will use to drive the inference procedure. This model will

be a hidden Markov model, presuming the user’s intention evolves under a Markov process

(that is, the intention at a particular time only depends on the intent at the previous time

step), and interaction events are generated conditionally independently given this sequence

of intents. To specify this model, we need to define the following:

• Unobservable States: A space of the possible intents.

• Observable States: A space of possible interactions.

• Dynamical Model: A model of the evolution of the user’s intent over time.

• Observation Model: A model of how intent gives rise to observed actions.

We will discuss each of these in turn at a high level below, before considering an explicit

construction of our proposal on a scatter plot.

7



Figure 2.2: Visual marks and channels.

2.2.1 Defining Unobservable and Observable States

A crucial component of the probabilistic model is the specification of a hidden state space,

which will represent the interest/intent of the user at a given time. In general, we propose

that designers can tailor this space for a given scenario. One mechanism for reasoning about

this intent is to reason about the aspects of a visualization that could be related.

For a given visualization, we define M as the mark space that specifies the types of visual

marks and channels used in the visualization. Visual marks are geometric elements, and there

are four primitive types: points, lines, areas, and volumes [9]. Visual channels describe the

graphical properties of visual marks such as position, size, color, luminance, shape, texture,

and orientation [9]. Together with Card et al.’s data-mapping principles [18] these design

guidelines can be used to describe any existing visual representation [17]. We create M by

decomposing the visualization into its primitive visual marks and channels.

In many scenarios, we may reasonably assume the users’ interest at a given time to be related

to some weighted subset of visualization marks, for example, dots of a particular size, color,

8



Class Description Example
U Unstructured (can only distinguish presence or absence) ErrorFlag
N Nominal (can only distinguish whether two values are

equal)
1,2,3

O Ordinal (can distingush whether one value is less or
greater but not difference or ratio)

<Small, Medium, Large>

I Interval (can do substraction on values, but no natural
zero and cannot compute ratios)

[10 Dec. 1978–4 Jun. 1982]

Q Quantitative (can do arithmetic on values) [0–100] kg
Qs —Spatial variables [0–20] m
Qm —Similarity [0–1]
Qg —Geographical variables [30oN–50oN]Lat.
Qt —Time variables [10–20] sec

Table 2.1: Card et al.’s data-mapping principles states any visual channel can be mapped
to following data classes.

shape or in a specific location. In such a case we may define the latent intent space, I, as a

subspace of M.

In contrast to the hidden intent space, the space of observed actions is typically easy to

define. We may define ot to be an observation of the user at time t, where this observation

will be an interaction with visual elements (e.g., mouse clicks, mouse moves, eye gaze, etc.).

We will represent each observation as a vector specifying the visual attributes of ot.

2.2.2 Dynamical Model

The full specification of a hidden Markov model requires defining a probabilistic model of

the dynamics of the hidden state space, that is how the user’s latent intent changes from one

time-step to the next. This is given by defining a probability distribution p(zt+1 | zt). We

propose that this model should be reasonably easy to define in most visualization settings. In

general, it is unlikely that the user’s intent will change rapidly from one interaction event to

the next. Therefore we can often choose this dynamics model to represent a simple random

diffusion in the latent space:

zt+1 = zt + ε,

9



where ε is some appropriate noise distribution. This model suggests that the user’s intent

tends to stay the same from time-step to time-step, perhaps with some slow drift as the user

continues to interact with the system.

If a visualization setting may comprise a sequence of separate tasks, we may also construct

dynamical models that loosely encode that user’s intent may change in one of two ways:

either the current task has not yet completed, in which case we may assume a simple drift

model as described above. Otherwise, if the task has completed, we might model the intent

at the next time step as being drawn from some broad distribution over the space of possible

intents. In such a construction our dynamical model would be a mixture distribution with

two components corresponding to the continuation of a task or beginning a new task.

2.2.3 Observation Model

We must also specify an observation model p(ot | zt), which defines how latent user intent

generates interactions. We must take care to define such an observation model appropriately

for a given scenario, and we will demonstrate how we might construct an explicit example

in our user study below. In a visualization setting, defining a reasonable choice for such a

model is relatively straightforward. If a user’s intent is represented by some values in the

same space as the visual elements in the visualization, we may often construct an observation

model that loosely specifies that “users click on objects related to their hidden intent.” We

will show an explicit construction of such a model in our scatter plot visualization case study

below.

2.2.4 Predicting Movement

Our goal at each time stamp is to predict the user’s possible next interactions given the set

of the user’s previously observed interactions. To approach this goal, we will use our hidden

Markov model to infer the intent of the user at time t, zt, given the interactions up to time

t, Ct = {ci}ti=1. Unfortunately, this inference is usually not possible in closed form, but we

can use a particle filter. Particle filter is a well-established technique for inferring the hidden

states of dynamical systems such as ours [34, 57].
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We represent our belief about the latent state zt given the previous clicks Ct with a set of

m particles {z(i)t }mi=1, each particle a point in the intent space. These particles represent

samples from the posterior distribution p(zt | Ct). Suppose for induction that we have a set

of such particles. Particle filtering proceeds by repeating the following steps:

• We push the particles through the dynamical model p(zt+1 | zt) by sampling a new

value for each particle:

z
(i)
t+1 ∼ p(zt+1 | zt = z

(i)
t ).

• We observe the next interaction event ct+1 and weight the particles according to the

agreement with the observation by evaluating the observation model:

w(i) = p(ct+1 | zt+1 = z
(i)
t+1).

• We sample a new set of m particles by sampling with replacement from the set of

existing particles with probability equal to the weights {w(i)}.

This set of resampled particles will represent a sample from the distribution p(zt+1 | Ct+1),

and we may proceed inductively.

For each timestamp, we can get p(zt | Ct), which is the particle given all previous clicks.

However, particles can be at any location on the visualization. Our goal is to find possible

visual element users are going to interact with at the next time stamp.

To do this, we need one extra step. We treat every mark on the visualization as a potential

candidate for the next interaction. We sum the weight every particle contribute to that

candidate (where the observational model computes weight). A subset of marks with highest

weights, α, will be considered as predictions. Notice that the size of α at this point is

arbitrary.

d∗ = arg max
d∈D

∑
p∈P

P(d|p)
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2.3 Explaining By Example

We now apply this model to a visualization interface. Using the simple scatter plot in

Figure 2.3, we demonstrate how to define the hidden state space and discuss choices for the

dynamical and observation models. In this example, we assume that users interact with

visual marks by clicking on them.

Figure 2.3: We use a simple scatter plot to demonstrate the approach.

2.3.1 Defining Unobservable and Observable States

We define ct to be the click event at time t, which we will represent as a three-dimensional

vector ct = (x′t, y
′
t, k
′
t), where (x′t, y

′
t) is the x-coordinate and y-coordinate of the click and k′t

is the color of the circle clicked, represented by a discrete integer-valued index ranging over

12



Notation Data Class Description Visual Structure
x′t Q x-coordinate → x-axis
y′t Q y-coordinate → y-axis
k′t N category → color

Table 2.2: Data mapping for the sample visualization.

the three possible values ({1, 2, 3}). Note that we use prime symbols to indicate quantities

associated with a click event.

Next, we will define a hidden state space modeling the intent of the user. Each point in this

hidden space is a vector specifying (1): a location (x, y) of interest, (2): a mark color k of

interest, and (3): a trade-off parameter indicating the relative importance of location and

mark color. For this example, we represent the trade-off parameter as a number π ∈ [0, 1],

with 1 indicating a complete focus on location and 0 indicating a complete focus on mark

color. A point in this latent intent space is thus a four-dimensional vector z = (x, y, k, π).

Our model assumes that at every discrete time step t in the interaction process (each time

the user makes a click), the user has an underlying intent zt corresponding to a vector in the

intent space defined above. We seek to infer the intent of the user through observing the

sequence of click events {ct}. We will approach this inference problem via creating a hidden

Markov model and performing inference with particle filtering.

Our model is fully specified by a dynamical model p(zt | zt−1) describing how the hidden state

evolves and an observation model p(ct | zt) describing how a hidden intent vector generates

click events. We define each of these below.

2.3.2 Dynamical Model

For the dynamical model of the hidden state p(zt | zt−1), we adopt a simple stationary

diffusion model. We assume that the intent at time t+ 1 is typically similar to the intent at

the previous time step t; that is, that intent does not change rapidly over time. We further

assume that the four components of the intent vector evolve independently:

p(zt+1 | zt) = p(xt+1 | xt)p(yt+1 | yt)p(kt+1 | kt)p(πt+1 | πt).

13



We model the evolution of the continuous location and location–color trade-off parameters

with a simple Gaussian drift:

p(xt+1 | xt, σx) = N (xt+1;xt, σ
2
x);

p(yt+1 | yt, σy) = N (yt+1; yt, σ
2
y);

p(πt+1 | πt, σπ) = N (πt+1; πt, σ
2
π).

The expected value of these parameters is equal to the previous value, with zero-mean Gaus-

sian diffusion with parameter-dependent variance added. We will select these parameters

σx, σy, and σπ. Notice also that these three parameters are all also bounded values: the

locations x and y indicates a position on the scatter plot and must lie in its domain, and

the tradeoff parameter π must lie in the interval [0, 1]. Therefore, we need to deal with cases

when the diffused value steps outside the boundary. Here we simply adopted a rule that

whenever a diffused value steps outside the boundary for a variable, we move it onto the

boundary in the direction of diffusion. For example, if πt+1 diffuses to value greater than

1, we will set it to 1; likewise if the diffused location (xt+1, yt+1) lies beyond the width and

height of the scatter plot, we will project onto the nearest point on the canvas boundary.

Lastly, because mark color is a categorical value, we cannot directly apply normal diffusion to

it. Here we used a discrete analog of that diffusion. We define a transition probability q and

assume that with probability q the latent mark color of interest does not change. Otherwise,

a new mark color of interest is chosen from all possible values with equal probability:

p(kt+1 | kt, q) = qδ(kt) + (1− q)U(K),

where δ is a Kronecker delta distribution and U(K) is a uniform distribution over the mark

colors. Again this choice models our assumption that intent typically changes slowly over

time.

2.3.3 Observation Model

We must also specify an observational model p(ct | zt) modeling the probability of a click

event ct = (x′ty
′
t, k
′
t) given the intent zt = (xt, yt, kt, πt) at time t. A brief summary of this
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observational model is that we flip a coin with heads probability equal to the location–color

tradeoff parameter πt. If the coin lands heads, we assume the user is focusing on location

and will probably click somewhere near the location in (xt, yt). If not, we assume the user is

focusing on mark color and will click on a mark of the color kt. Specifically, we define:

p(ct | zt, σx, σy) = πN (x′t;xt, σ
2
x)N (y′t; yt, σ

2
y) + (1− π)U(k′t; kt),

where U(k′t; kt) denotes a uniform distribution over the available marks of color kt. This above

model therefore assumes that that if the user is interested in position (with probability πt),

she will click on a position on the scatter plot with probability proportional to a Gaussian

distribution centered on (xt, yt) with diagonal covariance [σ2
x, 0; 0, σ2

y]. Again, we will specify

these parameters.

Predicting Movements

To prediction movements, we can apply particle filter as described in Section 2.2.4. Based on

the visual marks, we assume that a user performs one of three possible kinds of task at each

time step. They are either interested in points based on their position on the scatter plot,

or they are interested in points based on their color, or they are interest in the both position

and color. When performing inference with our model, we expect that the inferred values of

π will converge appropriately in each case to: 1 if the participant is doing a position-based

task, 0 if they are performing an color-based task, and to a medial value in a mixed task.

Figure 2.4 shows an simulation of the algorithm when applied to a simple scatter plot. The

simulated user begins by clicking on blue dots at the center of the projection, and within

a few clicks, interest predictions converge to circles of the representative color with similar

locations. At t = 4, the user selects a different color circle in the same region, and subsequent

predictions update to include circles of different colors in a more tightly defined area.
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Figure 2.4: A simulation of the algorithm when applied to a simple scatter plot.
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Chapter 3

Experiment

To test our approach, we designed a user study to track and analyze interactions. While we

strive to create a method that is visualization agnostic, we choose a single visualization and

dataset to reduce variability and complexity of the data collection.

3.1 Visualization

Figure 3.1 shows the experiment stimulus. We chose a map for our study because of its

broad application and use. The dataset presented on the map were reported crimes in the

city of St. Louis for March 2017 and that we gathered from the St. Louis Metropolitan

Police Department’s database [108]. The dataset contained 20 features and 1951 instances

of reported crime with eight different categories: Homicide, Theft-Related, Assault, Arson,

Fraud, Vandalism, Weapons, and Vagrancy.

To visualize the crime instances, we used a single visual mark (we represented each crime

as a circle on the map). The visual channels used were position and color which denoted

the location and type of crime respectively. To separate intentional from unintentional

interaction, users interacted with the map by clicking on crime instances which triggered a

tooltip displaying information about the type of crime and when it occurred.
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Figure 3.1: The interface used in our experiment. Participants used their mouse to pan and
zoom the map. A tooltip displayed information about the crimes on click.

3.2 Participants

We recruited 30 participants via Amazon’s Mechanical Turk. Participants were 18 years or

older and were from the United States. Each participant had a HIT approval rate greater

than 90% with at least 50 approved HITs. We paid a base rate of $1.00, an additional $0.50

for every correct answer plus $1.00 for each of the two optional post-surveys they completed.

The maximum reward was $6.00.

There were 17 women and 13 men in our subject pool with ages ranging from 21 to 56 years

(µ = 33.5 and σ = 10). Sixty percent of the participants self-reported to have at least a

college education.
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Interest Task No. of instances

Geo-Based
Count the number of crimes that occurred during
7:00 AM and 12:30 PM in the red-shaded region.

29

Count the number of crimes that occurred during
AM in the red-shaded region.

43

Type-Based
One case of Homicide differs from the others with
regard to time. What is the time of that case?

5

How many cases of Arson occurred during PM? 14

Mixed
There are four types of Theft Related Crimes:
Larceny, Burglary, Robbery, and Motor Vehicle
Theft. Count the number of cases of Robbery in
the red-shaded region.

85

There are two types of Assault: Non-Aggravated
and Aggravated. Count the number of Non-
Aggravated Assaults in the red-shaded region.

37

Table 3.1: The tasks used in our experiment.

3.3 Task

In the main portion of the study, participants interacted with the crime map through pan-

ning, zooming and clicking to complete six search tasks and their associated question (see

table 3.1). We divided these questions into three different task conditions. The three ques-

tion types were meant to represent simple lookup tasks for which the participant had to

consult the visualization. The questions were simplified versions of real-world tasks that

represented a potential interest:

• Geo-Based: Different types of crime that are constrained to a specific geographical

region.

• Type-Based: Same types of crime across the entire map.

• Mixed: Same types of crime and constrained to a specific geographic region.

The Geo-Based questions asked the participants to count the number of crimes within a

specified geographical location that had a specific property. For example, “Count the number

of crimes that occurred during AM in the red-shaded region.” Participants clicked on every
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crime instance (a total of 43 dots) in the specified region (see figure 3.2 below). They then

chose their response from a series of multiple choice options.

Unlike the Geo-Based questions, the Type-Based tasks were not bounded to a specific region.

These questions required participants to explore the entire map and search for a specified

category of crime. For instance, “How many cases of Arson occurred during PM?”. To

answer the question correctly, the participant would click on each instance of Arson (a total

of 14 violet dots) to count the number of cases that occurred during PM.

For Mixed tasks, participants interacted with points of the same category of crime in a spec-

ified area. For example, “There are four types of Theft Related Crimes: Larceny, Burglary,

Robbery, and Motor Vehicle Theft. Count the number of cases of Robbery in the red-shaded

Figure 3.2: An example of a map shown for Geo-Based and Mixed tasks.
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region.”. Participants click on blue dots in the red-shaded area to reveal the tooltip (a total

of 85 dots) and recorded the instances of Robbery.

While we used the same dataset throughout the experiment, each task focused on a different

area of the map and a different type of crime. To correctly answer the questions, the design

of the task required the participant to click on every valid point in the dataset. This was

done to ensure a reasonably rich and large interaction dataset. Table 3.1 summarizes the

tasks used in the study and well as the number of points participants interacted with for

each.

3.4 Procedure

After selecting the task on Mechanical Turk, participants consented per [redacted for anonymity]

IRB protocol. They then read the instructions for the study.

The main portion of the study began with a short video demonstrating the features of the

interface. Specifically, we showed instructions for panning and zooming, and how to activate

the tooltip. The participant then completed the six search tasks and entered their answers

for each by selecting the appropriate multiple choice response. The order of the six tasks

was counterbalanced to prevent ordering effects. Once the tasks were done, they completed

two optional surveys (a paper folding task that measured spatial ability and a personality

survey) then a short demographic questionnaire.

3.5 Data Collection and Cleaning

During the experiment, we recorded every mouse click event. We tracked the data point,

its coordinates and a timestamp for the mouse event. Each participant completed 6 tasks

(see table 3.1), resulting in 180 trials. To ensure the best quality data for our analysis, we

filtered participants with incorrect answers. We further removed tasks with less than five

mouse click events. After cleaning, 78 trials remained (23, 27, and 28 trials for Type-Based,

Mixed and Geo-Based tasks respectively).
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Figure 3.3: The average prediction accuracy across the three type of tasks (Geo-Based,
Type-Based, and Mixed) for varying values of the prediction set size, α. For α = 100 our
algorithm successfully predicted the users’ next click, on average, 88% of the times. The
technique was particularly effective at predicting for Type-Based tasks, even for small values
of α. For α = 10, the algorithm achieves an accuracy of 72% for type-based tasks.

3.6 Applying the Model

3.6.1 Defining Unobservable and Observable States

We represented each click as a three-dimensional vector ct = (x′t, y
′
t, k
′
t), where (x′t, y

′
t) is

the latitude and longitude of the click and k′t is the type of crime clicked, represented by

a discrete integer-valued index ranging over possible values from the set K = {1, 2, · · · , 7}.
Each point in this hidden space is a vector specifying (1): a location (x, y) of interest, (2):
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a crime type k of interest, and (3): a trade-off parameter indicating the relative importance

of location and crime type. To specify the tradeoff parameter, we use a number π ∈ [0, 1],

with 1 indicating a complete focus on location and 0 meaning full focus on the type of crime.

Therefore, a point in this latent intent space is a four-dimensional vector z = (x, y, k, π).

3.6.2 Dynamical and Observation Model

Similar to scatter plot example in Section 2.3, we adopt a simple stationary diffusion model

for the dynamical model of the hidden state p(zt | zt−1). We assume that intent does

not change rapidly over time and that the four components of the intent vector evolve

independently. Our implementation for the study replicates the dynamical and observation

models described in Sections 2.3.2 and 2.3.3. For the location diffusion parameters, we took

sx = sy = 0.02, where this value was as a fraction of the width and height of the map.

3.6.3 Predicting Movement

To predict movements, we applied particle filter as described in Section 2.2.4. Based on the

experiment design, we assume that a user performs one of the three possible kinds of tasks

at each time step: Geo-Based, Type-Based or Mixed. While the choice for α (the size of

the prediction set) can be adapted for the application, our goal was to have a prediction set

that is small, relative to the size of the dataset. We set α = 100 which represents 5% of the

dataset used in the study. This means that for a given timestep t, the algorithm chooses

100 points with the highest likelihood of being clicked at t + 1. For our evaluation, we also

considered smaller values of α, namely 1, 5, 10, 20, and 50.

The parameters were set as σx = σy = 0.1, σπ = 0.05. The location scale parameters were

again a fraction of the width and height of the map. The probability of maintaining the

same type of crime as the users’ intent q was defined to be 0.95.
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3.7 Results

3.7.1 Prediction Accuracy

After gathering the data, we analyzed our model’s ability to observe mouse clicks and predict

interactions before they occur. For each type of task (Geo-Based, Type-Based, and Mixed)

we measured the overall predictive accuracy across all available clicks for all users. To allow

time for the algorithm to learn users’ intent, we begin our predictions at t = 3.

Figure 3.3 shows the model’s accuracy across different values of α (1, 5, 10, 20, 50, and 100)

for each of the three tasks. Overall, we found that the model performs particularly well for

type-based tasks, even with small prediction sets. For instance, when limited to only five

guesses for the next click, we see an average accuracy of 50% across all participants for the

type-based task. The average accuracy increases to 72% when the set size is 10 (0.005% of

the size of the full dataset).

Unsurprisingly, we see a direct correlation between accuracy and the size of the prediction

sets. For α = 100 (5% of the dataset), our technique attained an average of 88% at predicting

the users’ next clicks across all three task type (µ = 97.8% for Geo-Based, µ = 87.5% for

Type-Based, and µ = 79.53% for Mixed tasks). In other words, with high accuracy, we can

predict that the next click will be within a small set of data points, relative to the dataset.

3.7.2 Accuracy Over Time

Our second analysis sort to evaluate our algorithm’s performance as a function of the number

of clicks observed. For each type task, we measure the prediction accuracy (set size = 100)

for the first 20 clicks observed. We split the first 20 clicks into 4 observation windows. Each

window has five predictions and we average the prediction accuracy within each window.

Consistent with our previous analysis, we begin our predictions at t = 3. Figure 3.4 summa-

rizes our findings. Our analysis reveals that the technique promptly achieves high prediction

accuracies and performance remains constant with more observations.
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Figure 3.4: The average accuracy over time for the three types of tasks in the study. Af-
ter learning from 3 click interactions, the algorithm immediately achieves high prediction
accuracy. We found that prediction accuracies remain fairly constant over time.

3.8 Concatenating Trials

As we have shown previously, our model works fairly well for all three different types of tasks.

While these tasks were designed based on realistic scenarios, they assume that the user has

a specific and unchanging goal when they interact with the visualization. It’s possible that

user’s interest change while interacting with the data. Therefore, a question arises: is the

model robust enough to handle such a change in intention?
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XXXXXXXXXXXXTarget
Prior

Type-Based Mixed Geo-Based

Type-Based 0.0258 0.0516 0.0710
Mixed 0.0132 0.0132 0.0132

Geo-Based 0.0020 0.0068 0.0078

Table 3.2: Accuracy of target trial when α = 1

XXXXXXXXXXXXTarget
Prior

Type-Based Mixed Geo-Based

Type-Based 0.3161 0.4258 0.4129
Mixed 0.0680 0.0662 0.0788

Geo-Based 0.0224 0.0351 0.0205

Table 3.3: Accuracy of target trial when α = 5

3.8.1 Prediction Accuracy

We conducted a further analysis on the user data we collected. Our goal is to see how our

model can infer the new intention from a different prior belief. To be more specific, For each

trial (target trial) in specific type, we attach interactions of a trial from a different task (prior

trial) to it . We first run our algorithm on the prior trial. After that, without resetting our

belief, we apply our model directly to the target trial and calculate the prediction accuracy.

The way we decide how to concatenate task is by the task type. For instance, for a type-

based target trial, we then pick three prior trials from all three types and conduct three

separate analysis. Notice that the prior trial and target trial should come from two separate

tasks because the beliefs for the same task are almost identical. When prior trial and target

trial have the same task type, they have to come from different task of that type (recall that

we have two tasks for each type).

Note in Table 3.2 - 3.7, each accuracy is only the accuracy of target trial instead of the

accuracy of concatenated trial. And just like in Section 3.7.1, we begin our prediction 3

clicks into the trial.

From these results, we can tell that concatenating tasks have almost no effect on type-based

task. However, Geo-Based tasks are most susceptible to concatenation. Our interpretation
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XXXXXXXXXXXXTarget
Prior

Type-Based Mixed Geo-Based

Type-Based 0.6903 0.7355 0.6581
Mixed 0.1480 0.1432 0.1637

Geo-Based 0.0566 0.0771 0.0400

Table 3.4: Accuracy of target trial when α = 10

XXXXXXXXXXXXTarget
Prior

Type-Based Mixed Geo-Based

Type-Based 0.8387 0.9161 0.8258
Mixed 0.2659 0.2443 0.2768

Geo-Based 0.1746 0.2449 0.1454

Table 3.5: Accuracy of target trial when α = 20

XXXXXXXXXXXXTarget
Prior

Type-Based Mixed Geo-Based

Type-Based 0.8903 0.9355 0.8387
Mixed 0.5090 0.4290 0.5054

Geo-Based 0.4263 0.5415 0.4537

Table 3.6: Accuracy of target trial when α = 50

XXXXXXXXXXXXTarget
Prior

Type-Based Mixed Geo-Based

Type-Based 0.8903 0.9355 0.8452
Mixed 0.6925 0.5776 0.6504

Geo-Based 0.5424 0.6420 0.6322

Table 3.7: Accuracy of target trial when α = 100
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is in our model it’s easier for the type of a particle to flip than for a particle to move from a

location to another location that’s far away.

3.8.2 Accuracy Over Time

Similar to Section 3.7.2, we evaluate our algorithm’s performance as a function of the number

of clicks observed on concatenated tasks. For each type task, we measure the prediction

accuracy (set size = 100) from the beginning of the target trial. The prior trial only serves

as a distraction, therefore it’s accuracy will not be recorded. Consistent with our previous

analysis, we discard our first three predictions. Figure 3.5 - 3.7 summarizes our findings.

Our analysis reveals that our model have a smooth transition between tasks.
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Figure 3.5: The average accuracy over time for Type-Based task after concatenation. We
can see that, unlike unconcatenated tasks, concatenated Type-Based tasks need some more
time to correct the prior belief. However, they can still achieve high prediction accuracies
quickly.
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Figure 3.6: The average accuracy over time for Mixed task after concatenation. Concate-
nated Mixed tasks need some more time to correct the prior belief.
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Figure 3.7: The average accuracy over time for Geo-Based task after concatenation. Con-
catenated Geo-Based tasks need even more time to correct the prior belief than other con-
catenated tasks because they don’t reach stable accuracies by the end of 20 clicks.
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Chapter 4

Discussion

In this thesis, we introduce a hidden Markov model approach for representing a user’s inter-

est and for predicting future, unobservable interests by passively monitoring their actions.

The foundation of this approach is not novel. The hidden Marvok model is widely used for

modeling sequence data in areas such as natural language processing [79], speech recogni-

tion [71, 97], and biological sequencing [36, 106]. However, we demonstrate its utility for

modeling interest from interaction with a visualization system.

Our goal was to create a model that can be generalized to any visualization design. We

leverage data mapping principles and the notion that we can represent a visualization as a

set of primitive visual marks and channels. We argue researchers and designers can apply the

approach to any visualization that can be specified in this manner. The model assumes that

the visual marks are perceptually differentiable, and relies heavily on good design practices.

To specify a user’s interests and actions, we must first carefully define the mark space, M.

One way to improve this process is to automatically extract the visual marks and channels

from the visualization’s code. However, this is beyond the scope of the thesis.

We used a map visualization and real-world crime dataset to evaluate the feasibility of the

technique. By applying our model, we successfully predicted actions before they occurred

by observing users’ click behavior. For a prediction set of 100 (α = 100), we achieved an

overall accuracy of 88%. For α = 100, the algorithm was most accurate at predicting clicks

when users performed Geo-Based tasks that required them to explore points in the particular

region of the map. It is also notable that the technique attained high prediction accuracies

for Type-Based tasks even when α was small. For instance, when we limited the algorithm
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to only ten guesses for the users’ next click (effectively reducing the set of possible points of

interest by 99.99%) the average accuracy across all users was 72%.

Our analysis also showed that the approach was successful in making inferences in a short

period. After allowing a grace period of three observations for the algorithm to learn users’

interest, we found that the technique attained high accuracy at the first prediction of zt+1.

Furthermore, we observed little change in accuracy over time. Lastly, our model is able to

sustain a fairly high prediction accuracy for two type of tasks after the interference of a prior

trial. This finding demonstrates the potential of applying the approach to model interactions

for real-time applications.

4.1 Design Implications

The overall goal of this work is to create tools that can automatically learn user’s intent and

support them throughout the analysis process. The idea of tailoring an interface based on

users’ skills or needs has existed for many years in HCI [49], and researchers have explored

the tradeoff between providing support and minimizing disruptions [1, 89, 105, 115]. For

large datasets that may have overlapping points (see figure 2.3), a straightforward approach

can be to redraw the points in the prediction set. Doing so can make it easier for users to

interact with points that match their interests but may have initially been occluded by other

visual marks. For more passive adaptations, designers can use the approach in this thesis

to inform techniques for target assistance [5]. The bubble cursor technique, for example, do

not change the visual appearance of the interface but increases the click radius for the given

target, thereby making them more accessible [61]. Another possibility is target gravity which

attracts the mouse to the target [5].

The hidden Markov model is a general framework with many possible variations for the

model, the implementation, and parameters settings. Examples include choices for the dif-

fusion parameters, number of particles for the particle filter, and prediction set sizes. These

parameters can be tuned or customized based on the visualization or tasks and designers

can apply the technique to a wide range of applications. We see this as a strength of the

approach which can seed many opportunities for future work.
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4.2 Potential Application

Figure 4.1: When user clicks a bar, more bars in the area will show up, some coffee shops
disappear from the map.

When a user interacts with a visualization, especially for a map visualization, he or she

usually has a search goal in mind. Our model has the potential to improve many existing

visualizations. To be more specific, by inferring user’s intent, the system can automatically

prompt potential options, pre-fetching data points that are likely to be interacted later,

obscure irrelevant visual elements.

Most map visualization nowadays don’t have any adaptive feature. Even for Google Map, it

only has some simple adaptive features. For example, if a user clicks on a restaurant, Google

Map thinks the user is interested in restaurants in the area. Therefore, it will automatically

display more restaurants in the area. This is a very user-friendly feature. However, this is
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Figure 4.2: When user clicks Starbucks, more coffee shops in the area will show up , some
bars disappear from the map.

actually a quite naive algorithm and it may not have the capability to handle more complex

tasks. For instance, if the user is interested in both bar and coffee shop, the behavior will

mostly resemble that in Figure 4.1 and Figure 4.2. No matter how many times you click on

bars and coffee shops, the system will always assume you are only interest in one category -

emphasizing one and obscuring the other. In the mean time, many hotels still shows up on

the map even if the user never pays any attention to hotels.

Since our model use particle filtering to monitoring the interaction on the fly, it would be

much more intelligent. If we apply our model to this problem, it’s likely that after a couple

of clicks, a substantial portion of the particles will either be related to bar or related to coffee

shop. As a result, more helpful information will be displayed and more irrelevant information

will be discarded.
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In conclusion, our model has the potential to make interfaces like these a lot more intelligent.
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Chapter 5

Future Work

Our preliminary work lays the foundation for creating next-generation visual analytics sys-

tems that can automatically learn users intentions to support the analysis process. We see

this as the beginning of a new era for visual analytics systems, and we believe that the work

in the thesis opens possibilities for future work toward more generalizable techniques for

real-world systems.

5.1 Complex Tasks

One possible path for future work is to explore the model’s performance for more complex

tasks. In our experiment, we controlled the tasks by instructing participants to either search

for a specific reported crime or identify a pattern in the dataset. However, the search patterns

we observed may not generalize to scenarios where the goal is to explore the dataset. Is it

also possible that there are some tasks that cannot be represented at as subspace of the

visualization marks. Future work can evaluate the approach with exploratory and open-

ended tasks.

5.2 Proof of Generalizability

The combination of visual marks and channels is an essential factor when defining the hidden

state space for our probabilistic model. The map used in our experiment was simplistic
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compared to other real-world visual analytics systems. Future work can test the model using

different combinations of visual variables and channels on a single map, or an entirely different

type of visualization. Varying the complexity of the visualization will test the generalizability

of the model. Future work can also vary the number of data points. For our proof-of-concept

experiment, we used only reported crimes for March 2017, and we minimized the number

of visual variables by grouping similar types of crimes to create categories (e.g., aggravated

and non-aggravated assaults were consolidated to form the Assault crime category). It is

essential to validate the technique by changing and increasing the size of the dataset, which

can result in the drastic changes in the appearance and number of visual marks.

5.3 Adaptive Visualization

One of our end goals is to use our model to create visualization that better support users.

We can proceed with our crime map case study and design possible adaptive features to

help user finish tasks. We can explore whether these features indeed help users obtain more

correct answers, faster speed and more pleasing interaction experience.
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Chapter 6

Conclusion

In this thesis, we have proposed a generalizable and design-agnostic approach to modeling

users’ interests and actions with a visualization system. We used a hidden Markov model

and represented users interests based on the primitive visual marks and channels of the

visualization design. We demonstrate, with a simple scatter plot, how to apply this approach

to a given visualization design.

To evaluate this technique, we conducted a user study and captured interaction data as

participants explored a map showing a real-world crime dataset. The results of the study

demonstrate that the approach is highly successful at modeling interaction and predicting

users’ next clicks. We observed an overall accuracy of 88% at guessing actions before they

occur. These results are exciting and contribute to our overall goal of creating intelligent

systems that learn about the user, her analysis process, and her task as she uses the system.

We believe that the work in this thesis is a significant step toward this goal and can act as a

catalyst for future work aimed at developing visual analytic systems that can better support

users.
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computational tasks: A survey. Computing in Science & Engineering, 10(3), 2008.
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pattern collections: A case study on a cocktail dataset. Proc. of KDD IDEA, pages
98–106, 2014.

[89] Evan M Peck. Designing Brain-Computer Interfaces for Intelligent Information De-
livery Systems. PhD thesis, Tufts University, 2014.

[90] Evan M Peck, Beste F Yuksel, Lane Harrison, Alvitta Ottley, and Remco Chang. To-
wards a 3-dimensional model of individual cognitive differences: Position paper. In
Proceedings of the 2012 BELIV Workshop: Beyond Time and Errors - Novel Evalua-
tion Methods for Visualization, BELIV ’12, pages 6:1–6:6, New York, NY, USA, 2012.
ACM.

[91] Evan M M Peck, Beste F Yuksel, Alvitta Ottley, Robert JK Jacob, and Remco Chang.
Using fnirs brain sensing to evaluate information visualization interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 473–482.
ACM, 2013.

[92] William Pike, Richard May, and Alan Turner. Supporting knowledge transfer through
decomposable reasoning artifacts. In System Sciences, 2007. HICSS 2007. 40th Annual
Hawaii International Conference on, pages 204c–204c. IEEE, 2007.

[93] William A Pike, John Stasko, Remco Chang, and Theresa A O’connell. The science
of interaction. Information Visualization, 8(4):263–274, 2009.

[94] Peter Pirolli and Stuart Card. Information foraging in information access environments.
In Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 51–58. ACM Press/Addison-Wesley Publishing Co., 1995.

[95] Peter Pirolli and Stuart Card. Information foraging. Psychological review, 106(4):643,
1999.

[96] Peter Pirolli and Stuart Card. The sensemaking process and leverage points for analyst
technology as identified through cognitive task analysis. In Proceedings of international
conference on intelligence analysis, volume 5, pages 2–4, 2005.

47



[97] Lawrence R Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition,
volume 14. PTR Prentice Hall Englewood Cliffs, 1993.

[98] Eric D Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen. Characterizing
provenance in visualization and data analysis: an organizational framework of prove-
nance types and purposes. IEEE transactions on visualization and computer graphics,
22(1):31–40, 2016.

[99] Jorma Rissanen. A universal prior for integers and estimation by minimum description
length. The Annals of statistics, pages 416–431, 1983.

[100] Julian B Rotter. Generalized expectancies for internal versus external control of rein-
forcement. Psychological monographs: General and applied, 80(1):1, 1966.

[101] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

[102] Yedendra Babu Shrinivasan and Jarke J van Wijk. Supporting the analytical reasoning
process in information visualization. In Proceedings of the SIGCHI conference on
human factors in computing systems, pages 1237–1246. ACM, 2008.

[103] Pete B Shull, Wisit Jirattigalachote, Michael A Hunt, Mark R Cutkosky, and Scott L
Delp. Quantified self and human movement: a review on the clinical impact of wearable
sensing and feedback for gait analysis and intervention. Gait & posture, 40(1):11–19,
2014.

[104] Padhraic Smyth. Clustering using monte carlo cross-validation. In Kdd, volume 1,
pages 26–133, 1996.

[105] Erin Treacy Solovey, Francine Lalooses, Krysta Chauncey, Douglas Weaver, Margarita
Parasi, Matthias Scheutz, Angelo Sassaroli, Sergio Fantini, Paul Schermerhorn, Au-
drey Girouard, et al. Sensing cognitive multitasking for a brain-based adaptive user
interface. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 383–392. ACM, 2011.

[106] Erik LL Sonnhammer, Gunnar Von Heijne, Anders Krogh, et al. A hidden markov
model for predicting transmembrane helices in protein sequences. In Ismb, volume 6,
pages 175–182, 1998.

[107] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan. Web
usage mining: Discovery and applications of usage patterns from web data. ACM
SIGKDD Explorations Newsletter, 1(2):12–23, 2000.

[108] St. Louis Metropolitan Police Department. http://www.slmpd.org/crime_mapping.
shtml. Accessed November 13, 2017.

48



[109] Ben Steichen, Giuseppe Carenini, and Cristina Conati. User-adaptive information visu-
alization: using eye gaze data to infer visualization tasks and user cognitive abilities. In
Proceedings of the 2013 international Conference on Intelligent User Interfaces, pages
317–328. ACM, 2013.

[110] John Stutz and Peter Cheeseman. Autoclass-a bayesian approach to classification.
FUNDAMENTAL THEORIES OF PHYSICS, 70:117–126, 1996.

[111] Melanie Swan. Emerging patient-driven health care models: an examination of health
social networks, consumer personalized medicine and quantified self-tracking. Interna-
tional journal of environmental research and public health, 6(2):492–525, 2009.

[112] Melanie Swan. Sensor mania! the internet of things, wearable computing, objec-
tive metrics, and the quantified self 2.0. Journal of Sensor and Actuator Networks,
1(3):217–253, 2012.

[113] Melanie Swan. The quantified self: Fundamental disruption in big data science and
biological discovery. Big Data, 1(2):85–99, 2013.

[114] Dereck Toker, Cristina Conati, Ben Steichen, and Giuseppe Carenini. Individual user
characteristics and information visualization: Connecting the dots through eye track-
ing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems (CHI), pages 295–304. ACM, 2013.

[115] Erin Treacy Solovey, Daniel Afergan, Evan M Peck, Samuel W Hincks, and Robert JK
Jacob. Designing implicit interfaces for physiological computing: guidelines and lessons
learned using fnirs. ACM Transactions on Computer-Human Interaction (TOCHI),
21(6):35, 2015.

[116] Archie Tse. https://github.com/archietse/malofiej-2016/blob/ master/tse-malofiej-
2016-slides.pdf, 2016.

[117] Maria C Velez, Deborah Silver, and Marilyn Tremaine. Understanding visualization
through spatial ability differences. In Visualization, 2005. VIS 05. IEEE, pages 511–
518. IEEE, 2005.

[118] Fernanda B Viegas, Martin Wattenberg, Frank Van Ham, Jesse Kriss, and Matt McK-
eon. Manyeyes: a site for visualization at internet scale. IEEE transactions on visual-
ization and computer graphics, 13(6), 2007.

[119] Alan Wexelblat and Pattie Maes. Footprints: history-rich tools for information for-
aging. In Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, pages 270–277. ACM, 1999.

49



[120] Ling Xiao, John Gerth, and Pat Hanrahan. Enhancing visual analysis of network traffic
using a knowledge representation. In Proceedings of the IEEE Symposium On Visual
Analytics Science And Technology (VAST), pages 107–114. IEEE, 2006.

[121] Ji Soo Yi. Implications of individual differences on evaluating information visualization
techniques. 2010.

[122] Ji Soo Yi, Youn ah Kang, and John Stasko. Toward a deeper understanding of the
role of interaction in information visualization. IEEE transactions on visualization and
computer graphics, 13(6):1224–1231, 2007.

[123] Caroline Ziemkiewicz and Robert Kosara. Preconceptions and individual differences
in understanding visual metaphors. In Computer Graphics Forum, volume 28, pages
911–918. Wiley Online Library, 2009.

[124] Caroline Ziemkiewicz, Alvitta Ottley, R Jordan Crouser, Krysta Chauncey, Sara L Su,
and Remco Chang. Understanding visualization by understanding individual users.
IEEE computer graphics and applications, 32(6):88–94, 2012.

[125] Caroline Ziemkiewicz, Alvitta Ottley, R Jordan Crouser, Ashley Rye Yauilla, Sara L
Su, William Ribarsky, and Remco Chang. How visualization layout relates to locus of
control and other personality factors. IEEE transactions on visualization and computer
graphics, 19(7):1109–1121, 2013.

50


	Inferring Intent from Interaction with Visualization
	Recommended Citation

	tmp.1524626959.pdf.UF596

