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Abstract

Traditional computation models such as Turing machines, A-calculus, Markov’s
normal algorithms, are not suitable models for visual programming languages because
they are all based on one-dimensional text strings and visual programming uses two-
dimensional graphic diagrams. We propose a two-dimensional computation model,
called Boxgraph, that requires no text. The syntax of the model consists of nested boxes
connected by arrows, and the semantics consists of dataflow and the concept of
consistency. The expressive power of the model is demonstrated by constructing
representations of a binary full adder, the Fibenacci function, and the GCD function. The
model, with a small extension to make it a practical visual programming language, has
been implemented using the Oberon operating system running on a SPARCstation
equipped with a pen-tablet and under the PenPoint operating system running on an EO-
440 pen computer.

1. Introduction

Traditionally computational processes are specified by one-dimensional text strings. Visual
programming, in contrast, uses two-dimensional diagrams and icons for specifying such processes.
For many compuier users, especially those who can draw but cannot type well, visual
programmiing is an attractive alternative to traditional computer programming. Since using a
mouse fo create diagrams is rather awkward, difficult, and time consuming for novices, the
potential advantages of visual programming have not been fully appreciated. Recent advances in
pen-based interfaces have changed the situation. The drawing and composition of a visnal
program has become easier and more natural [1].

A variety of visual programming languages have been proposed, developed, or
commercialized [6]. Recent visual programming langnages use dataflow as their semantic base
and directed graphs as their syntactic base. Each node represents an operation and each arc
represents a data communication path. Even though a variety of visual programming languages
have been introduced, there are still many unsolved syntactic, semantic, and pragmatic research
problems in the area of language design. Because no formal 2D grammar (similar to the phrase

structure grammar for textual languages) has been developed, a mechanical parsing of visual
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programs is not yet a reality [4]. Even though dataflow is now more widely used than control-
flow as a semantic base for visual languages, there is still some question as to which semantic base
is most suitable. One important pragmatic problem is finding visual abstraction mechanisms
which make complex diagrams easy to understand, the so-called scaling-up problem of visual
programming [8].

Historically, two-dimensional notations and languages have been used freely in mathematics
and in symbolic logic. For example, Frege [3] introduced notations based on binary trees to
represent structures of various judgements. Peirce’s system of existential graphs [14] is a
diagrammatic system for first order logic. It is similar in syntax to the model presented in this
paper. More recent related work is in Harel’s concept of Higraphs [5].

In this paper we construct a computational model that serves as a semantic base for visual
prograimuning languages such as Show and Tell [8]. Our model, Boxgraph, Is based on
transformations of configurations of nested boxes on the two-dimensional plane. Traditional
computation models, such as Turing machines, A-calculus, and Markov’s normal algorithms, are
not suitable for visual programming languages because they are all based on transformations of
one-dimensional text strings. The notions of concatenation, deconcatenation, string matching and
string substitution are fundamental components underlying these models. Extension of these
concepts to two-dimensional space is not easy nor natural.

We have two goals in the construction of our model. First, we try to minimize the number of
concepts in the model and yet make it computationally complete, i.e., 'make it as simple as
possible, but not simpler.’ Second, we try to make the model as close to a practical visual
programiming language as possible. With a small extension of the Boxgraph model to include an
abstraction mechanism for iteration, a simple but practical language, Simple Hyperflow (SHF),
has been designed and implemented using the Oberon operating system [12] running on a
SPARCstation with a pen-tablet. SHF is also a part of Hyperflow [9,10], a visual shell langunage
for a children’s workstation implemented on an EQO-440 pen tablet running the PenPoint operating
system [2].

We present our computation model in several stages. First, in the next section, we define a
part of the model that is equivalent to Propositional Logic. Then, in Section 3, we define the
Recussive Boxgraph model that is computationally complete.  Section 4 defines SHF by
introducing an iteration construct into the Boxgraph. In Section 5, two SHF programs, one for the
Fibonacci function and the other for the GCD (Greatest Common Divisor) function, are

constructed, and it is shown that Fibonacci and GCD are visually *inverse’ of each other,

2. Basic Boxgraph
The Boxgraph model of computation consists of a set of diagrams in the two-dimensional
plane and a set of transformation rules. A boxgraph is an acyclic directed graph of hierarchically
nested boxes. The primitives are boxes, arrows, and nothing else. Particularly, no text is needed.
Figure 1 and 2 show examples of boxgraphs. Figure 1 represents the logical functions AND,
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OR, and XOR, where the logical values, True (T) and False (F), are represented by a double box
without arrows and a single box without arrows, respectively. Figure 2(a) shows the boxgraphs
before and after the computation of F = AND(F,T), and Figure 2(b) shows the same for T =
AND(T,T). During the computation a box may become inconsistent, when two different values
iry to occupy the same box causing a conflict. This is shown by shading the inconsistent box.
When a box becomes inconsistent, all the arrows incident with the box become non-existent for
the remainder of the computation. A box can be either open or closed in terms of limiting the
scope of inconsistency propagation. An open box, framed by dotted lines as in Figure 1(c), allows
the inconsistency flow out to its surrounding environment, i.e, when an open box becomes
inconsistent, the smallest box containing it also becomes inconsistent. A closed box framed by
solid lines, does not propagate inconsistency to its environment. The concept of inconsistency
will be defined in more exact terms later.

A box partitions the 2D space into two parts, the interior and the exterior of the box. For
example, consider the boxgraph of Figure 3(a). The box A divides the boxgraph into its interior
Figure 3(b), and its exterior, Figure 3(c). The interior defines the functionality of the bex and the
exterior defines the usage of the box. A different usage of the same box A is shown in Figure
3(d). The boxgraph of Figure 3(e} represents the same computation as Figure 3(a) while the
graphic layouts are different.

The iocation, the size, and the shape of a box is insignificant. Indeed a box can be replaced by
any simple closed curve, For example, Figure 3(f) is isomorphic to Figure 3(a). Even though our
implementations of the medel allow boxes only, we use both boxes and other shapes in this paper,
as later in Figure 6(a). Similarly, the size and the shape of an arrow is insignificant. The location
of an arrow, however, is significant in terms of which boxes the arrow intersects. Figures 4{a) and
4(b) are two different boxgraphs.

No two boxes may intersect with each other, but an arrow may intersect with other arrows and
with boxes. Two boxes of different hierarchical levels can be connected by an arrow that crosses
layers of box boundaries, as long as no cycle is formed among the boxes of the same hierarchical
level. The graph in Figure 5(a) is not a boxgraph because boxes A and B are on the same
hierarchical level and form a cycle with the line segments b and d.  On the other hand, the
boxgraph of Figure 3(a) is acyclic because the four boxes of Figure 3(c) are acyclic and the
interior three boxes in the box A of Figure 3(b) are also acyclic. Note that if we were to consider
box A to be at the same hierarchical level as the three interior boxes in Figure 3(b), then the four
boxes form a cycle by a path from A to itself through the three boxes, In order to avoid such
unwanted cycles, we consider, by definition, the arrows connecting a box to its interior boxes to
be at the the same level as the exterior boxes, therefore they do not count when testing the interior
boxes for cycles.

A boxgraph containing no arrow is called frivial and represents a value such as T and F in
Figure 1. A box may contain either nothing, a trivial boxgraph, or a non-trivial boxgraph, but not
both. Figure 5(b) illustrates a non-boxgraph which violates this rule. A box containing a non-
trivial boxgraph, such as box A in Figure 3(h), is called an operarion box. Note that a box

containing only arrows, as in Figure 5(c), is also an operation box. An empty box or a box
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containing a trivial boxgraph is called a memorybox. In our intended semantics, an operation box
receives input values from its exterior and returns output values to the exterior. Arrows which
arrive at the box boundary from the exterior are referred to as in-arrows. Arrows which start at
the box boundary are refeired to as ous-arrows. Establishing the association between the in-
arrows and the out-arrows is analogous to parameter binding in traditional programming. The
boxgraph model uses the following positional binding rule:

Rank all the in-arrows from the exterior by lexicographical ordering of the

(x,y) coordinates of their intersection points with the box. Then do the

same for all the out-arrows to the interior. Bind an in-arrow with an out-

arrow of the same rank.

The same binding rule applies to in-arrows from the interior and out-arrows to the exterior.
For example, In Flgure 3{e}, arrows a and b are bound with arrows ¢ and 4, respectively, and
arrow e is bound with arrow £ An operation box defines an environment for the computations
carried out by its interior boxes and controls propagation of consistency to its outer environment.
In that sense it defines a two-dimensional block structure.

An informal semantics of the boxgraph model can be presented in an imperative (prescriptive)
form as follows: A trivial boxgraph represents a datum or a value. A non-trivial boxgraph
represents an operation. An arrow represents a data communication path, i.e., dataflow. A value
flows from the starting box of an arrow to the ending box. The data transfer may be carried out
anytime asynchronously. Since no cycle exists, once a box is filled by a value, the value stays
there. A memory box becomes inconsistent if the incoming value is different from the value
already existing in the box, i.e., when a conflict occurs in the box, it becomnes inconsistent. When
a box becomes inconsistent, all arrows intersecting with the box become ineffective, i.e., no data
may flow on those arrows. If an open memory box becomes inconsistent, the smallest operation
box containing the open box also becomes inconsistent. If the operation box is also open, then the
smallest box containing the open operation box becomes inconsistent, and so on. A computation
halts when all empty boxes are filled with values. If a boxgraph has an empty box with no in-
arrows, then it is called fiee, otherwise it is called bound. There exists no compuatation for a free
boxgraph.

In order to make the above semantics more precise, we now present them in a declarative
(descriptive} form. In the declarative semantics, a boxgraph defines a logical constraint among the
box contents. A boxgraph is consistent if the content of each box satisfies the constraints imposed
by the neighboring box contents. A computation is defined as a process to find the set of values
for filling in the empty boxes without violating the consistency of the boxgraph. Formally a
boxgraph is consistent if there exists an elaboration, otherwise it is inconsistent, where an
elaboration of a boxgraph is an assignment of values, including the null value (L), to all the
arrows such that the constraints imposed by each box as defined below may be satisfied. The
concept of elaboration is similar to the concept of interpretation in mathematical logic, where a set
of propositions are defined to be consistent if there exists a model (interpretation) for which all

propositions are satisfied. As in logic, the consistency of a boxgraph depends on the existence of
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an elaboration and not on how the elaboration is constructed. L.ocal constraints imposed by a box
on the values of the incident arrows are defined as follows (Figure 6):

Let A= {ay, a, ..., a_} be the set of values on the in-arrows to a box, and

B = {b}, by, ..., b,} be the set of values on the out-arrows from a box.

(1} When the box is a memory box with ¢ (L, if it is empty) as its content:

(1.1 If Au{c} has no non-null value, then B = {L}.

(1.2)  If Au {c} has exactly one non-null value a, then B = {a}.

(1.3) If Au {c} has more than one non-null value and the box is closed, then B = {1}.
(2) When the box is an operation box with § as its content:

(2.1) 3 bound with A and B is consistent.

(2.2)  If the box is closed and P bound with A and B is inconsistent, then B = { L }.

If a boxgraph is consistent and an elaboration is found, then the computation of filling the
empty boxes can be carried out by transferring the values on the in-arrows into the empty boxes.
As an example, for computing T=XOR(F,T), using the boxgraph of Figure 1{c), an elaboration is
given in Figure 7. The result of a computation is unique if the elaboration is unique. Since all
boxgraph are acyclic, using structural induction on the partial ordering on the boxes, we can prove
that if a finite boxgraph is bound and consistent, then its efaboration is unique. A proof is similar
to those given in [7] for demonstrating the determinancy of the Show and Tell visual
programming language.

In order to demonstrate the power of the boxgraph model presented so far, a binary full adder
is constructed in Figure 8. With x, y, and ¢ as a Boolean input, the Boolean output values, s and
¢’, are computed by: s =x@y®c and ¢’ = xy+yc+xc. In Figure 8(a), a black dot represents an
empty memory box. The symmetries of s and ¢’ are illustrated in Figure 8(b) by separate

constructions of circuits for s and for¢’.

3. Recursive Boxgraph

The computational power of the model presented in the previous section is limited to that of
Boolean circuits or that of Propositional Logic. In this section we introduce naming, numbers, the
successor operation, and the predecessor operation, into the boxgraph model. We call the
extended model a recursive boxgraph.

A name of a boxgraph is any icon (bitmap) of any size. Any rendering of a text can be used
as a proper name of a boxgraph. A declaration of a name and its denotation is represented by a
meta-expression connecting the name icon and a boxgraph by an ’=’ sign. A recursive definition
of a boxgraph is allowed; thus a box may contain either nothing, a trivial boxgraph, a non-trivial
boxgraph, or a name of a boxgraph. In Figure 1, T’ and °F' are used as the names of two trivial
boxgraphs. When a box contains the name of an operation box, we equate the frame of the named
operation box with that of the box containing the name. For example, if we name the operation
box of Figure 3(a) by A’ as in Figure 9(a), then Figure 3(b) and 3(c) can be represented by Figure
9(b) and Figure 9(c), respectively. We also vse an boxed icon as a name for an operation box.

In the recursive boxgraph model, we represent the set of natural numbers by a tally system
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where the number zero is represented by an empty box and the successor of number n is
represented by a box containing the representation of number n. There are two primitive number
operation boxes; the successor box and the predecessor box, named by *T* and * 1", respectively.
The semantics of the primitives are illustrated in Figure 10. Note that the predecessor box is
inconsistent if its input is zero.

The standard set of arithmetic operations are defined in Figure 11 {a) through (g). Recursive
definitions of the Fibonacci function and the GCD function are given in Figure 12(a) and (b).

4, Simple Hyperflow

The recursive boxgraph is capable of representing any computable functions, i.e., the model is
computationally complete. It also can be used as a visual programming language. However, it is
not necessarily a practical visual language, because it has limited abstraction mechanisms for
complexity management, i.e., only naming. Naming simplifies representation of hierarchically
nested boxgraphs. It provides the capability of vertical abstraction. In two dimensional
languages there exists another type of abstraction, called horizontal abstraction, which was first
introduced in the Show and Tell Language [8] as an iteration box. We introduce the iteration box
into the recursive boxgraph and we call the resulting model a Simple Hyperflow (SHF), because it
serves as the semantic foundation of a practical visual programming language such as Hyperflow
[9,10].

The iteration box is denoted by an operation box with a thick frame as in Figure 13(a). It
represents an abstraction of folding a horizontally spreading boxgraph of Figure 13(b) into one
place. Small circles indicate the connecting points of horizontal concatenation of operation boxes.
When an iteration box is executed, it is unfolded dynamically until the operation box becomes
inconsistent,

A usage of the iteration box and the power of visual abstraction can be demonstrated by
constructing an iterative definition of the Fibonacci function, which is much simpler than the
recursive definition given in Figure 12(a). Figure 14(a) visually represents the one essential step
of computing the Fibonacci sequence. Figure 14(b) gives a boxgraph for computing a segment of
Tibonacci sequence, which is a horizontal iteration of an identical boxgraph, enclosed in the dotted
gray box. By folding the sequence into a single box, Figure 14(c) represents an unbounded
boxgraph for computing the Fibonacci sequence. The execution of Figure 14(c) will not terminate
since the content of the iteration box never becomes inconsistent. The boxgraph of Figure 14(d)
introduces a condition that causes inconsistency. It computes the largest Fibonacci number less
than 1600.

5. GCD = Fibonacci-l
In this section we demonstrate a merit of visual programming. We construct a visual
program for the GCD function as a "visual inverse’ of a visual program for the Fibonacci function.
Corresponding to Figure 14(a}, the one essential step for computing the GCD is represented

by Figure 15(a), where the ’-’ operation is the symmetric difference defined in Figure 11(c).
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Using the same abstraction mechanism as for Fibonacci, a boxgraph of Figure 15(b) can be
constructed for GCD. It is an "inverse’ of Figure 14(c) in the sense that the arrow directions are
reversed, the vertical position is inverted, and the addition operation is inverted into the symmetric
difference operation. The termination condition is also inverted from the upper bound testing in
Figure 14(d) to the lower bound testing in Figure 15(c).
The relationship between the GCD and the Fibonacci functions is indicated by the following
representations using Guarded Commands:
FIB= x=0y=1;
do x2y=y:=y+xll
Yy>x=>x:i=x+y od;
GCD = x:=a;y:=b;
do x<y=2yw=y-x |l
YySEX=X:=X-¥y od;
However, it is easier to see the exact relationship between the two programs in the visual form

than in textual form.

6. Oberon Implementation

SHE has been implemented on a SPARCstation IPX running the SPARC-Oberon System
created by Tempt! [15]. SPARC-Oberon is an implementation of both the Oberon System [21] and
the programming language Oberon [20] for SPARC processors. The SPARCstation is equipped
with a WACOM HD-648 A pen tablet [18] which is used as the interface for SHF. The tablet
sends pen position information to the system via a serial port connection. The display portion of
the tablet is controlled by a Vigra V810 video adapter card [17] which has been added to the
SPARCstation. Integrating the pen tablet into the SPARC-Oberon environment involved creating
two small shared object libraries of code written in C, one library for retrieving input from the
tablet’s digitizer and another for displaying output on the tablet’s screen. These libraries were then
opened and used by Oberon modules designed to allow easy access to the tablet. One module was
written for each of the two libraries. The approach taken in the design of these modules was to
write only enough code in C to allow access to the tablet. The significant drawing algorithms
were written in Oberon.

The current Oberon implementation of SHF includes a simple graphics editor which
incorporates a shape recognition algorithm [1]. The shape recognizer converts user inputs into the
two primitives of the Boxgraph model, recognizer converts user inputs into the two primitives of
the Boxgraph model, boxes and arrows. The editor allows the user to create, select, and delete
groups of and select groups of boxes and arrows. In addition, the user can save SHF programs to
an ASCII text file which can be read back into the system later. Provisions for dumping the
screen to a TIFE [16] file have also been added.

Also included is a reduction system which is used to execute programs written using the
system. In addition to the the simple box type, predecessor, successor, and iteration boxes have
been implemented. Figure 16(a) shows a screen dump of a binary full adder program written
using the system. Figure 16(b) shows the result of executing the program after supplying
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appropriate inputs. Figure 17 shows the Fibonacci function. Iteration boxes are shown as boxes
with a thick frame. Successor boxes and the predecessor boxes are shown containing an ’s’ and a
'p’ respectively. Since all inputs and outputs of the iteration boxes are connecting points for
horizontal concatenation, the small circles, used to differentiate these connecting points from other
points of entry into an iteration box in Figure 14, are not used in Figure 17.

The system was created using an object-oriented design. The implementation of this design
was made easier by the use of the Oberon-2 [11] extension to the Oberon programming language,
particularly type-bound procedures. Using type extension, the following hierarchy of types was
designed. Indentation is used to show the type/extension relationship; comments are shown, in

Oberon style, enclosed in "(*" and "#)",

Object
LocatedObject
Option (* Used to implement the option menu *)
Shape
Line
Arrow
Rectangle
HFBox (* Hyperflow Box *)
HFPredBox (* Predecessor Box *)
HFSuccBox {* Successor Box *)
BEFIterBox (* Iteration Box *)
SortedListNode (* Abstract List Type *)
ArrowListNode (* Instantiation of Abstract List Type #)
OptionListNode
TreeNode (* Abstract Tree Type *)
HFBoxTreeNode {* Instantiation of Abstract Tree Type for Hyperflow Boxes ¥)

HFIterBox TreeNode (* Iteration Box Tree *)

The arrows are maintained by the system as a sorted list; the boxes are maintained in a tree in
which the parent-child relationship corresponds to box containment.

Futuie plans for this system include the adding of a character recognition algorithm to allow
the user to input text-based data. Using the character recognition system, more extensive box
types could be designed allowing the user to enter Oberon programs which define the internal
workings of the box. Additional editor functions such as moving and resizing shapes, grouping

and ungrouping shapes, and adding patterns to the frames of boxes and the lines of arrows are also

planned.

7. Conclusions
It has been argued that communicative organizations utilize two types of communication
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modes, 'telephone’ (point-to-point) type and 'to-whom-it-may-concern’ (broadcasting) type [19].
The boxgraph model of computation has both, message passing by dataflow and broadcasting by
inconsistency propagation. Hyperflow, as a practical visual language, has another communication
mode called posting where the sender does not know who receives the posted message but the
receiver knows the location of the posted message. The concept of variable (memory cell) in the
traditional programming languages embodies the posting capability. Incorporation of posting into
the boxgraph model will be a future work.

Another extension of the model will be in the area of continucus data types. As multimedia
applications become a more significant genre of computer usage, processing of continuous data
types, such as audio and video signals, becomes more necessary. Traditional message passing
communication models are not suitable for that purpose, We helieve that dataflow-based
communication/computation models are better suited to deal with continuous data types. How can
the boxgraph model be extended to include continuous data types?

The concept of elaboration is also applicable to bidirectional constraint satisfaction problems.
For exampie, even though the boxgraph of Figure 18(a) cannot be solved simply by dataflow
execution because it requires the equation solving capabilities, there exists an elaboration to
satisfy the constraints, Figure 18(b). How to extend the boxgraph to a more general constraint

satisfaction model is another future work we intend to pursue,
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Figure 1: Logical Functions in Boxgraph



(a) Computation of F = AND(ET)

]
¥
A

(=]

1
Y
Y

(b) Computation of T = AND(T,T)

Figure 2: Computations of AND
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Figure 8(b): Symmetric Representation of 1-bit Full Adder
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Figure 15: Inversion of Fibonacci for GCD
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Figure 18 (a): Bidirectional Constraint
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