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Professor Young-Shin Jun, Chair 

 
 

Geologic CO2 sequestration (GCS) is considered a promising method to reduce 

anthropogenic CO2 emission. Assessing the supercritical CO2 (scCO2)–gas or liquid phase water 

(g, l)–mineral interactions is critical to evaluating the viability of GCS processes. This work 

contributes to our understanding of geochemical reactions at CO2–water (g, l)–mineral interfaces, 

by investigating the dissolution of aluminosilicates in CO2-acidified water (l). Plagioclase and 

biotite were chosen as model minerals in reservoir rock and caprock, respectively. To elucidate 

the effects of brine chemistry, first, the influences of cations in brine including Na, Ca, and K, 

have been investigated. In addition to the cations, the effects of abundant anions including sulfate 

and oxalate were also examined. Besides the reactions in aqueous phase, we also examine the 

carbonation of silicates in water (g)-bearing supercritical CO2 (scCO2) under conditions relevant 

to GCS. For the metal carbonation, in particular, the effects of particle sizes, water, temperature, 

and pressure on the carbonation of wollastonite were systematically examined. 

For understanding the cations effects in brine, the impacts of Na concentrations up to 4 M 

on the dissolution of plagioclase and biotite were examined. High concentrations of Na 

significantly inhibited plagioclase dissolution by competing adsorption with proton and 
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suppressing proton-promoted dissolution. Ca has a similar effect to Na, and their effects did not 

suppress each other when Na and Ca co-existed. For biotite, the inhibition effects of Na coupled 

with an enhancing effect due to ion exchange reaction between Na and interlayer K, which cracked 

the basal surfaces of biotite. The K in aqueous phase significantly inhibited the dissolution. If the 

biotite is equilibrated with NaCl solutions initially, the biotite dissolved faster than the original 

biotite and the dissolution was inhibited by Na and K in brine. The outcomes improve our current 

knowledge of silicates dissolution to the high salinity conditions in subsurface environments. 

In addition to cations, the role of anions in geochemical reactions in subsurfaces are 

important. This study investigated the anion effects by studying sulfate and oxalate. Sulfate formed 

monodentate surface complexes with the Al sites on plagioclase surface and enhanced the 

dissolution. Oxalate was also found to enhance the plagioclase dissolution. Co-existing oxalate 

and sulfate suppressed the effects of sulfate on plagioclase dissolution. This information provides 

useful insights for understanding the roles of sulfate and organic compounds on the CO2–water–

mineral interactions during scCO2 enhanced oil recovery. The results also aid in formulating a 

scientific guideline of the proper amount of SO2 co-injection with CO2.  

Water in GCS sites can exist in water-bearing scCO2 in addition to the aqueous phase in 

brine. Thus, it is important to understand the effects of water-bearing scCO2 on the carbonation of 

silicates. To address the gap between the nano- and micro-sized particles used in the laboratory to 

the large grains in field sites, we utilized wollastonite and investigated the effects of particle sizes 

on the wollastonite carbonation in water-bearing scCO2. The thickness of the reacted layer on the 

particle surfaces was found to be constant for different sized particles. The amorphous silica layer 

formed act as a diffusion barrier for water-bearing scCO2. In addition, the reaction extent was 

higher with more water, lower temperature, and higher pressure. Further, higher water saturation 
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percentage and lower temperature can lead to the formation of more permeable amorphous silica 

layers.  

This thesis included the investigations of both liquid phase and vapor phase water that 

contacted with scCO2, and the effects of cations and anions on both formation and caprock 

minerals. The findings from this work improve our knowledge of the geochemical reactions at 

CO2–water–mineral interfaces, which will help us design a safer GCS operation and assess the 

impacts of GCS on the environmental safety and quality.
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Geologic CO2 Sequestration 

Geologic CO2 sequestration (GCS) is a promising strategy to alleviate the adverse impacts 

of global climate change.1-6 GCS operations can decrease the CO2 emissions from large point 

sources like power plants by capture, injecting, and sequestrating CO2 in geologic formations. The 

potential storage sites include deep saline aquifers, depleted oil and gas reservoirs, and basalt 

formations.5 Among these candidates, the deep saline aquifer option has been estimated to have 

the largest storage capacity.3-5, 7 

The reservoir rocks in GCS sites need to be porous to provide space for CO2 storage, and 

also has to be permeable to allow transport of CO2 in the pores.8 To efficiently use these storage 

spaces, CO2 is usually stored in the supercritical phase, which has higher density than CO2 in the 

gas phase.9 Thus, the temperature and pressure in the GCS sites should be at least higher than 31 

oC and 73 atm, which is the critical point of CO2. The temperature and pressure in GCS sites could 

vary with the depth of the reservoir. The relationship can be roughly estimated based on T (oC) = 

15 + 33d (depth in kilometer) and P (atm) = 1 + 100d.9 Globally, conditions of GCS sites range 

from 31 to 110 oC and from 73 to 592 atm.10 Injected CO2 would tend to migrate upward due to 

buoyance, because the density of supercritical CO2 (scCO2) is smaller than the density of brine 

under most of the GCS conditions.11 To prevent the leakage of CO2 to atmosphere, the storage 

sites require an impermeable caprock layer above the reservoir rock. The caprock hindered the 

upward migration of CO2, which results in structural or stratigraphic trapping. CO2 is also trapped 
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as bubbles in the pores of reservoir rock, which is known as residual trapping. Solubility trapping 

happens when CO2 dissolves in brine. The dissolved CO2 can further react with cations in brine 

and trapped in carbonate minerals, which is named mineral trapping.5  

1.1.2 Dissolution and Precipitation at CO2–Water–Rock Interfaces 

The economic efficiency and environmental safety of GCS processes can be affected by 

the interactions among CO2, brine, and rocks.12 At the CO2–water–rock interfaces, the injection of 

CO2 would cause dissolution of minerals in storage and may result in precipitation of secondary 

minerals.13 The wettability, pore structures, permeability of pre-existing rock, and the pH and 

compositions of brine could be changed.6 These changes can affect the seal of CO2, the capacity 

of storage, the injectivity of wells, and the transport of CO2.14  

Silicates and aluminosilicates are abundant minerals in sandstone, shale, and basalts, which 

are found often in GCS sites and other subsurface operation sites.15 Considering the abundance 

and reactivity of silicates and aluminosilicates, their dissolution and subsequent precipitation can 

be important for understanding and predicting the capacity of storage and the seal of CO2. In 

addition, these reactions also provide a driving force for the mineral trapping of CO2. Therefore, 

this dissertation investigated the reaction of several representative silicates and aluminosilicates: 

Plagioclase is chosen as a model of minerals in reservoir rock and biotite is used as a model of 

minerals in caprock. 

Plagioclase is the Na-Ca series feldspar. Feldspar is the most abundant mineral group and 

makes up 60% of the earth’s crust. Plagioclase is one of the main components of sandstone,10, 16, 

17 and the main components of basalt.13, 18, 19 Dissolution of plagioclase would affect the porosity 

of sandstone, and thus the capacity of storage. Plagioclase dissolution increases the pH and release 
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Ca. The brine pH affects the solubility of CO2 in brine, and dissolution and precipitation of various 

minerals. Release of Ca from the dissolution of pre-existing minerals provides cations for the 

formation of CaCO3, which contributes to the mineral trapping and could change surface properties, 

porosity, and permeability of rocks. 

Biotite is the Mg and Fe-containing mica. Mica is a typical sheet silicate and is abundant 

in the caprock. Dissolution of biotite could change the vertical permeability of caprock, and thus 

affect the structural trapping. Biotite dissolution can lead to the mobilization of small sheet 

particles from the silicate sheets.20 Release of Fe from biotite dissolution can lead to precipitation 

of Fe-(hydr)oxides.20 

In addition to the dissolution and precipitation in the aqueous phase, this work also 

investigated the reactions in absence of liquid phase water. In subsurface environments, there can 

be contacting areas between CO2 and caprock without the presence of brine.21 In addition, the 

higher diffusivity and lower capillary entry pressure of scCO2 allows it to diffuse in rocks easier 

than brine and enter the small pores that brine cannot enter. While CO2 without dissolved water 

does not show significant reactivity,22-27 water dissolved in CO2 has higher reactivity than water 

in the aqueous phase.21, 28, 29 Thus, water-bearing supercritical CO2–mineral reactions are at least 

as important as reactions in aqueous phase.21 

To investigate silicates reacting with water-bearing scCO2, Wollastonite (CaSiO3) was 

chosen as a model due to its simple compositions and high reactivity.27, 30 Wollastonite has a 

similar structure with pyroxene, which is one of the main components of basalt.18, 19 It could also 

be a representative of Ca-bearing and chain structural silicates. Wollastonite carbonation also traps 

CO2 in carbonate. The carbonate and amorphous silica formed during the reaction cover the surface 
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of wollastonite, which can lead to changes in wettability. In addition, because the densities of the 

carbonate and amorphous silica are different from the density of wollastonite, when dissolution of 

wollastonite and secondary mineral precipitation occurs, it can cause volume change, and thus it 

is relevant to fracture opening or healing. 

1.1.3 Co-sequestration of CO2 and SO2 

A special situation considered in this work is the co-sequestration of CO2 and SO2. In 

carbon capture and sequestration (CCS), the cost of separating CO2 and gas impurities and 

compressing the resultants have been estimated to account for 75% of the total cost of the 

process.31 Sulfur dioxide is one of the main gas impurities, especially in emissions from 

hydrocarbon combustion.31 Lowering the cost of acid gas separation by allowing a certain amount 

of impurities like SO2 can, therefore, dramatically lower the overall cost. However, allowing too 

much SO2 may cause unexpected impacts on the environmental safety of GCS operations. 

Therefore, scientific guidelines for the co-injected SO2 are needed, and they require a better 

understanding of the potential effects of SO2 co-injection on GCS operations.  

1.1.4 Enhanced Oil Recovery 

The cost of GCS can be further reduced when GCS is combined with enhanced oil 

recovery.5 CO2 is used to displace the oil, and improve the oil production. After oil extraction, CO2 

can be stored in the oil reservoir. The efficiency of EOR are strongly affected by wettability and 

porosity.32 Therefore, the dissolution of silicates and aluminosilicates and precipitation of 

carbonates could affect not only the performance of GCS, but also the recovery of oil. Compared 

with the saline aquifer, the oil reservoir is more abundant with organic compounds.  In addition, 

scCO2 is a better solvent for organic compounds, compared with water.33 The injection of CO2 
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could extract large amounts of organic compounds, and increase their concentrations in brine. A 

recent report from the Frio formation suggested that 34 days after the termination of scCO2 

injection, the concentrations of several organic compounds increased by a factor of 100.34 It is 

critical to understand the impact of organic compounds on the geochemical reactions at CO2–

water–rock interfaces. 

 

Figure 1.1. Schematic diagram of the system considered in this work. Left side is a diagram depicting CO2-
SO2 co-sequestration in saline aquifer. a. Silicate carbonation in water-bearing scCO2; b. Caprock 
dissolution in CO2-acidified brine; c. Sandstone dissolution in CO2-acidified brine. Right side is a schematic 
diagram of enhanced oil recovery. The reservoir is more abundant with organic compounds. 

1.2 Research Objectives  

1.2.1 Limitations of Previous Studies  

Our current understanding of geochemical reactions at CO2–water–rock interfaces is far 

from enough to predict their chemical impacts on GCS processes. Previous studies have 

investigated the reaction of rock from selected field site under simulated GCS conditions.35, 36 

However, because the mineral compositions vary between different reservoirs. Those results have 

very limited applicability to other field sites. In addition, because the rock contains many different 



6 
 

minerals, it is hard to deconvolute the role of each mineral species. Consequently, these studies of 

multi-mineral systems cannot contribute to a database of geochemical reactions at the CO2–water–

rock interfaces. Due to the lack of accurate database, the geochemical modeling suffers from large 

uncertainties in predicting the pathways and the kinetics of reactions experimentally observed.37 

For these reasons, the approach of current studies is to study the reaction of single silicate and 

aluminosilicate under simulated GCS conditions.  

For the dissolution of aluminosilicate in brine (with liquid phase water), the effects of 

cations are not well understood. Previously, the dissolution of aluminosilicates has been 

extensively studied because the weathering of aluminosilicates is an important geochemical 

process.38-40 In those studies, the dissolution rate is usually modelled as a function of pH, 

temperature, and ∆G.39 One of the limitations of these previous studies is that they focused on the 

surface environment conditions. A major difference between the surface environment conditions 

and the GCS conditions is the high salinity in the brine in subsurface environments. A previous 

study has shown that Na can significantly affect dissolution of plagioclase.41 However, the 

concentration applied in previous study is limited to < 0.1 M.41 In contrast, the Na concentrations 

can vary between 0.01–3 M in formation brine.42 Thus, a knowledge gap exists since we do not 

know the effect of high concentration Na on dissolution of plagioclase. In addition, Ca is also 

abundant in formation brine with 0–1 M concentrations reported.42 However, information on the 

Ca effects on plagioclase dissolution and how Ca would impact the Na effects when coexisting is 

limited.  

The cations effects on biotite dissolution also remain unclear. Previous studies showed that 

1 M Na can enhance dissolution compared to DI water.20 However, effects of other Na 

concentrations still remained unclear. Furthermore, Na was found to affect biotite dissolution 
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through ion-exchange with K.20 The ion-exchange is also affected by K. Information on the K 

effect on biotite dissolution is also very limited. Another situation that has not been considered in 

previous studies is that the biotite in geologic formations may contact with formation brine and 

reach equilibrium with the Na in brine before CO2 injection. The potential difference between the 

Na-equilibrated biotite and original K-biotite causes uncertainties in predicting the biotite 

dissolution in GCS sites. 

Besides cations effects, more information about anions effects on geochemical reactions 

with minerals at GCS sites is needed. Previous studies on the SO2 co-sequestration have predicted 

a decrease of pH and a formation of sulfate anions due to the dissolution and oxidation of SO2.43-

46 While the reduction of pH was discussed,47, 48 interestingly, the effects of sulfate anion were 

ignored. Sulfate is also naturally abundant in formation brine with concentrations up to 0.05 M 

reported. Its concentration can further increase with SO2 co-injection.43-46 Considering the 

significant effects of sulfate on the dissolution of Al- and Fe-(hydr)oxides reported in previous 

studies under surface environmental conditions (i.e., ambient pressure and temperature),49-52 it is 

critical to understand the sulfate effects on plagioclase dissolution. In addition, previous studies 

found that carboxylic acid ligands such as oxalate can enhance the dissolution of plagioclase by 

surface complexation.53 However, the potential competence between oxalate and co-existing 

anions like sulfate has not been considered.  

Compared to the mineral dissolution in CO2-acidified liquid phase water, fewer studies 

examined the carbonation of silicates in water-bearing scCO2. Previous studies used different size 

particles.30, 54-62 Without knowing the effects of particle sizes, the results obtained in previous 

studies are not comparable. More importantly, previous studies used nano- or micro-sized 

particles.30, 54-62 It is uncertain whether the findings can be applicable to different sized mineral 
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grains in field sites. Further, there is a lack of systematical investigation of different parameters 

including temperature, pressure, and water saturation conditions. Moreover, the minerals in field 

sites can experience varying conditions, because the temperature, pressure, and water saturation 

would change during and after CO2 injection. To address this knowledge gap, this study sought to 

understand the historic effects of samples reacted in one condition to another different condition 

on their net mineral dissolution. 

1.2.2 Specific Objectives 

The overall objective of this study was to improve our understanding of CO2–water–rock 

interactions. Specifically, Objective 1 was to elucidate the impact of cations (e.g., Na, Ca, and K) 

in brine on the dissolution of plagioclase and biotite. Objective 2 was to investigate the influence 

of anions (i.e. sulfate and oxalate) in brine on the dissolution of plagioclase. In addition to effects 

of ions in brine, in Objective 3, water-bearing scCO2 systems were tested to study the carbonation 

of silicates. In the water-bearing scCO2 systems, we focused on improving our understanding of 

the role of particle sizes, water, temperature, and pressure on the carbonation of wollastonite. 

Objective 1: Elucidate effects of cations on plagioclase and biotite dissolution under GCS 

conditions.  

Hypothesis 1.1: Na inhibits dissolution of plagioclase by competing with proton adsorption on 

mineral surfaces. Ca competes with Na when co-existed. 

Hypothesis 1.2: Na enhances dissolution of biotite by ion-exchange with interlayer K. Aqueous 

phase K suppress the Na-K ion-exchange and inhibit the biotite dissolution. 
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Objective 2: Investigate effects of anions on plagioclase dissolution and subsequent secondary 

precipitation under GCS conditions. 

Hypothesis 2: Sulfate and oxalate can enhance plagioclase dissolution by surface complexation 

with Al on surface and inhibit secondary precipitation by aqueous complexation with Al3+ and 

decrease the saturation ratio of Al-containing mineral. Oxalate will suppress the effect of sulfate 

when co-existed. 

Objective 3: Examine effects of particle sizes, water saturation conditions, temperature, and 

pressure on wollastonite carbonation in water-bearing scCO2 under GCS conditions. 

Hypothesis 3: Reaction extent of wollastonite in water-bearing scCO2 is controlled by the kinetics 

of the hydrolysis of wollastonite and will be higher with smaller particle size, more water, and 

higher temperature and pressure. 

1.3 Dissertation Overview    

In pursuit of the three objectives above, three tasks were completed. Task 1 corresponds 

to Objective 1, examining the impacts of high concentration Na and other cations including Ca 

and K on the dissolution of plagioclase and biotite. The outcomes extend the findings in previous 

studies on silicates weathering in surface environment to the high salinity conditions in formation 

brine.  Task 2 addressed Objective 2 and elucidates the role of sulfate anions and oxalate on the 

plagioclase dissolution. The findings improve our knowledge on the CO2–water–rock interactions 

during CO2–SO2 co-sequestration and EOR. Task 3 corresponds to Objective 3 and systematically 

investigated the effects of particle sizes, water, temperature, and pressure and their alteration 

history of experimental conditions on the wollastonite carbonation in water-bearing scCO2. The 



10 
 

results link the findings in previous studies to the field sites and provide fundamental information 

on silicate carbonation for CO2 storage and utilization as metal carbonate formation. 

Task 1 is addressed in Chapter 2 and 3. The dissolution rates of plagioclase and biotite 

powders were measured using batch reactor at 35–90 oC and 100 bar, conditions relevant to GCS. 

Na concentrations of 0–4 M have been used to represent the high Na concentrations in formation 

brine. For plagioclase dissolution, Ca concentrations from 0–1 M was used. For biotite dissolution, 

K concentrations from 0–10 mM was applied. Na-biotite were prepared by extracting interlayer K 

from biotite powders using NaCl solutions. In addition to the powder samples, biotite flake 

samples were used to allow surface characterization using atomic force microscopy (AFM). The 

secondary precipitations were characterized using transmission electron microscopy (TEM). 

Task 2 is addressed in Chapter 4. Effects of 0.05 M sulfate anion on plagioclase 

dissolution were investigated at 90 oC and 100 bar. The surface complexation between sulfate and 

plagioclase surfaces was measured using attenuated total reflection-Fourier transformed infrared 

spectroscopy (ATR-FTIR). The results were compared to the prediction based on density 

functional theory (DFT) calculations. The secondary precipitations were characterized using 

scanning electron microscopy (SEM) and TEM. In addition, the effects of 10 mM oxalate on 

plagioclase dissolution were investigated at 90 oC and 100 bar. The co-existing oxalate and sulfate 

were also examined.  

Task 3 is addressed in Chapter 5 and 6. To investigate the particle size effect, the 

carbonation of five different size wollastonite particles at 60 oC and 100 bar have been quantified. 

Experiments at 35–93 oC, 25–125 bar, and 0–14×Sw water saturation (Sw represents the amount of 

water needed for 100% saturation in scCO2), have been conducted using selected particle size. To 
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examine the role of varying conditions, sample initially reacted at 35 oC was resubmitted to the 

reaction at 60 oC, and the sample initially reacted at 60 oC further reacted at 35 oC. Similar to the 

varying temperatures, varying pressure and water saturation were also investigated using 50 and 

100 bar, and 100% and 45×Sw water saturation. 

 

Figure 1.2. Summary of Tasks in this dissertation. 

Finally, in Chapter 7, the main conclusions and implications of the current studies are 

summarized and future directions are suggested. 
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Reproduced with permission from [Yujia Min and Young-Shin Jun. Anorthite Dissolution under 

Conditions Relevant to Subsurface CO2 Injection: Effects of Na+, Ca2+, and Al3+. Environmental 

Science & Technology, 2016, 50 (20), 11377-11385.] Copyright [2016] American Chemical 

Society.  
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Chapter 2: Anorthite Dissolution under 
Conditions Relevant to Subsurface CO2 
Injection: Effects of Na+, Ca2+, and Al3+ 

Results of this chapter have been published in Environmental Science & Technology, 2016, 50 

(20), 11377-11385. 

Abstract 

Supercritical CO2 is injected into subsurface environments during geologic CO2 

sequestration and CO2-enhanced oil recovery. In these processes, the CO2-induced dissolution of 

formation rocks, which contain plagioclase, can affect the safety and efficiency of the subsurface 

operation. In subsurface brines, Na+ and Ca2+ are naturally abundant, and Al3+ concentration 

increases due to acidification by injected CO2. However, our current understanding of cation 

effects on plagioclase dissolution does not provide sufficiently accurate prediction of plagioclase 

dissolution at such high salinities. This study investigated the effects of up to 4 M Na+, 1 M Ca2+, 

and 200 µM Al3+ on anorthite (as a representative mineral of Ca-containing plagioclase) 

dissolution under conditions closely relevant to subsurface CO2 injection. For the first time, we 

elucidated the inhibition effects of Al3+ on anorthite dissolution in far-from-equilibrium systems, 

and found that the Al3+ effects were enhanced at elevated temperature. Interestingly, Na+ inhibited 

anorthite dissolution as well, and the effects of Na+ were 50% stronger at 35 oC than at 60 oC. Ca2+ 

had similar effects to those of Na+, and the Ca2+ effects did not suppress Na+ effects when they 

coexisted. These findings can contribute to better predicting plagioclase dissolution in geologic 

formations and will also be helpful in improving designs for subsurface CO2 injection. 



14 
 

2.1 Introduction 

Several energy-related engineering processes inject CO2 into subsurface environments. For 

example, geologic CO2 sequestration (GCS) is a promising method to mitigate global climate 

change. In GCS, CO2 is captured from point sources, such as large power plants, then pressurized 

and injected into geologic formations, including deep saline aquifers and depleted oil and gas 

reservoirs.5 As a more economically viable option, CO2–enhanced oil recovery (EOR) injects CO2 

into oil reservoirs to improve oil production.3  

These subsurface engineering processes can be affected by the CO2-induced dissolution of 

minerals, such as plagioclase, in field sites.14 Plagioclase forms 39% of the Earth’s crust and occurs 

in sandstone and basalts, which are potential formations for CO2 storage.10, 13 For instance, the 

reported fractions of plagioclase are 19.8% and 12.3% in the Frio and Sleipner CO2 injection sites, 

respectively.63, 64 The chemical formula for plagioclase is Na1-xCaxAl1+xSi3-xO8, where x is 

anorthite content. Anorthite is the plagioclase member with x > 0.9. While Na-rich members of 

plagioclase, such as albite, occur in sedimentary rocks, Ca-rich members of plagioclase, such as 

anorthite, are more abundant in basic igneous rock, and are important in Ca release during various 

geochemical processes.65 Simultaneously releasing cations, their dissolution can increase pH, 

leading to secondary mineral precipitation and promoting mineral trapping of CO2.66 More 

importantly, in even less time than required for CO2 mineral trapping, dissolution of plagioclase 

and subsequent secondary mineral precipitation can occur and change the wettability and porosity 

of reservoir rocks,67 in turn affecting the transport of CO2, oil, and gas. Therefore, the dissolution 

of plagioclase is important in understanding the safety and efficiency of CO2 injection in 

subsurface environments. 
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High concentrations of cations in naturally existing brine in formations (e.g., reported 

maximum concentrations of 3.4 M Na+ and 1.2 M Ca2+)42 can affect the dissolution of plagioclase. 

In our previous studies of mica dissolution under conditions relevant to GCS, we observed that 

Na+ and Ca2+ can significantly enhance the dissolution of phlogopite and biotite.29, 68 Furthermore, 

with the injection of CO2, the brine pH in formations can decrease to as low as 3–5,15 which can 

sustain higher concentrations of Al3+(aq) than neutral pH. More specifically, according to our 

thermodynamic calculations using Geochemist's Workbench (GWB, Release 8.0, RockWare, 

Inc.), at 25 oC and pH 3 and 6, the maximum concentrations of aqueous Al3+ without precipitation 

are 0.23 molal and 1.26 nano-molal, respectively. 

However, information about the effects of cations on plagioclase dissolution available in 

recent literature is not sufficient to accurately predict the situations in geologic formations. 

Stillings and Brantley reported that dissolution of plagioclase was significantly inhibited by Na+ 

at 25 oC and pH = 3,69 because Na+ adsorption competed with proton adsorption on the surface of 

plagioclase, and thus inhibited the proton-promoted dissolution. They predicted that other cations 

can have similar effects.41 Thus, it can be expected that Ca2+ inhibits the dissolution of anorthite 

in the same way as Na+, because Ca2+ adsorption on the mineral surface is preferred over Na+ 

adsorption.70 In contrast, Oelkers and Schott reported that dissolution of anorthite was not 

significantly affected by Ca2+ at 45–95 oC and pH 2.4–3.2.71 Moreover, the Na+ and Ca2+ 

concentrations used in these previous studies were limited to < 0.1 M.41, 69, 71-73 However, high 

ionic strengths will affect the activity of cations and the Gibbs free energy (ΔG) of plagioclase 

dissolution, suppress the electric double layer, and change water structures on mineral surfaces.74-

76 With these potential uncertainties, it is unclear whether results obtained in previous studies can 

be extended to high ionic strength ranges.   
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Another complication concerning the effects of Na+ and Ca2+ on plagioclase dissolution is 

the co-existence of Na+ and Ca2+. A previous study on quartz dissolution found that Ca2+ 

dominated the overall effect when it co-existed with Na+.77 However, to the best of our knowledge, 

no similar study can be found for plagioclase. Therefore, an improved understanding of the effects 

of co-existing Na+ and Ca2+ on the dissolution of plagioclase is needed to predict the dissolution 

rates in complex brine chemistries.   

An additional uncertainty lies in the effects of Al3+ and ΔG on anorthite dissolution. Al3+ 

is a product of plagioclase dissolution and can affect the ΔG of the dissolution. Oelkers and Schott 

found the dissolution rate of anorthite is not affected by Al3+ in a ΔG range from -115 to -65 kJ/mol 

at 45–95 oC and pH 2.4–3.2.71 This finding is different from the decreasing dissolution rate with 

ΔG > -200 kJ/mol at 50 oC and pH 2.7–3.0 observed by Sorai and Sasaki.78 Such different 

observations lead to difficulties in understanding and predicting the effects of Al3+ and ΔG on 

anorthite dissolution.  

The goal of this study is, therefore, to elucidate the effects of Al3+ and ΔG, and the effects 

of high concentrations of Na+ and Ca2+ and their co-existence on anorthite dissolution. We 

investigated the effects of 0–200 µM Al3+, 0–4 M Na+, and 0–1 M Ca2+ on the dissolution of 

anorthite at conditions closely relevant to subsurface CO2 injection scenarios. The results can 

contribute to advancing our knowledge of plagioclase dissolution in many subsurface engineering 

operations where high salinity is present. 
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2.2 Experimental Section 

2.2.1 Minerals and chemicals 

Natural anorthite samples (Miyake Island, Izu Archipelago, Tokyo Prefecture, Japan) were 

purchased in cm size pieces coated with lava. The specimens were crushed to mm size pieces. 

Pieces without coating were picked out manually, cleaned by sonication in water, dried in nitrogen, 

then ground and sieved. Particles with sizes between 53 to 106 microns were used. Based on X-

ray fluorescence, the chemical formula was determined to be Na0.04Ca0.95Al1.94Si2.06O8 (Table 2-

S1). The specimens were characterized by high resolution X-ray diffraction (HR-XRD) in our 

previous studies.79 According to BET measurement (AX1C-MP-LP, Quantachrome Instruments), 

the specific surface area was 0.1707 m2/g.  

All chemicals used in this study were at least ACS grade, and all the solutions were 

prepared using ultra purified water (Barnstead, resistivity > 18.2 MΩ•cm). Na+ and Ca2+ were 

added as NaCl (BDH) and CaCl2 (BDH) solutions. Al3+ and Si were added as AlCl3 (Alfa Aesar) 

solution and sodium silicate solution (Sigma-Aldrich). Trace metal HCl (BDH) was used to adjust 

the pH.  

2.2.2 Dissolution experiments under simulated GCS conditions 

Dissolution experiments were conducted in a 300 mL Hastelloy C-276 vessel (Parr 

Instruments, Moline, IL), used in our previous studies.80 A pH probe (Corr Instrument, TX) that 

can function under 1–136 atm and 20–120 oC was used to monitor in situ pH. For most 

experiments, duplicate experiments were conducted for up to 80 hours. Descriptions of the high 

pressure and temperature reactor system and the pH probe calibration and measurement are 

available in S1 and S2 of the Supporting Information.  
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The conditions (35–90 oC and 100 atm CO2) used in this study are within the range of 

conditions in subsurface CO2 injection sites (31–110 oC, 73.8–600 atm).10  For example, 37 oC and 

100 atm were observed at the Sleipner site,64 65 oC and 150 atm in the Frio formation,34 and 63 oC 

and 140 atm at the Weyburn field site.81 The experimental conditions are also comparable with the 

30–130 oC and 90 atm used in a recent laboratory study by Carroll and Knauss on water–

plagioclase interactions.82 Carroll and Knauss also suggested that elevated CO2 pressure affects 

plagioclase dissolution indirectly by changing pH.82 Thus, we can focus on the effects of cations 

by using the same pH and same pressure for different concentrations of cations. For chosen sets, 

while all other conditions were maintained, we tested temperature effects. The concentrations of 

Na+, Ca2+, and Al3+ used in the current study were 0–4 M, 0–1 M, and 0–200 µM, respectively, 

while we kept the experimental pressure the same (i.e., 100 atm CO2).  

To make sure the pH conditions were the same, HCl was added to the solutions. The 

measured pH was tuned to 3.10 and 2.94 for the Na+ and Ca2+ experiments, respectively. These 

pH values are the in situ pH values of 1 M NaCl and 1 M CaCl2 without added HCl at 35 oC and 

100 atm CO2. We chose these pHs for the following reasons: First, a pH of 3 is more related to the 

early period of CO2 injection, which starts the mineral dissolution process, or to sites close to 

injection wells, while the pH in field sites would be buffered to 4.5 to 5.5 after a long time. Second, 

to thoroughly investigate the effects of cations on dissolution, we need a system without 

precipitation, which is difficult to achieve for pH > 4, because Al precipitation forms very easy. 

Third, pH ~3 is the in situ pH of CO2 acidified brine without any additional salts. To increase pH 

to 4.5 to 5.5, we would need to add base solutions, which would introduce extra cations. It would 

be difficult to deconvolute the effects of the cations we want to study and the extra cations used to 

tune the pH.  We expect that a similar mechanism of cation effects would happen for both the pH 
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~3 used in the current study and other acidic pH conditions. Within 80 hours, no significant change 

(± 0.02) in pH was observed at the highest solid to liquid ratio applied in this study. For Al 

experiments, pH was tuned to same value, 2.97, for the same reason as above, and this will also 

prevent any precipitation.  

To obtain proper solid/liquid ratios (mass to volume ratio) to investigate Na+ and Ca2+ 

effects, solid/liquid ratios from 0.005 to 0.05 g/L were tested. For all conditions used in this study, 

the tested solid/liquid ratios were low enough that no secondary precipitation formed.80 While we 

did not attempt to simulate the solid/liquid ratios at field sites, by using such low solid/liquid ratios, 

we could focus on cations effects on the dissolution without influence from secondary 

precipitation.  

For each sample, 1–2 mL solution was collected and immediately acidified with 20 μL of 

67–70% nitric acid (BDH). Samples were analyzed using an inductively coupled plasma-optical 

emission spectrometer (ICP-OES) (Perkin Elmer, Optima 7300DV). The concentrations of Si, Al, 

and Ca are shown in Table 2-S3. In this study, overall, steady-state congruent dissolution of 

anorthite was obtained. Detailed information about the determination of the dissolution rate is 

available in S3 of Supporting Information. The activities of aqueous species, ΔG, and pH were 

calculated using the THERMO.com.v8.r6+ database in Geochemist's Workbench (GWB, Release 

8.0, RockWare, Inc.), which uses the B-dot equation for the calculation of activity coefficients of 

aqueous species with ionic strengths up to 3 M. The solubility of CO2 was calculated according to 

a published model by Duan and Sun, which can be applied to up to 4.5 molal NaCl and 

CaCl2.83 More details about ΔG calculations are also available in the Supporting Information (S4). 
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2.3 Results and Discussion 

In the following sections, to determine suitable solid/liquid ratios to investigate cation 

effects, we first investigated the effects of solid/liquid ratios on anorthite dissolution rate. Then, to 

explain the observed effects of the solid/liquid ratio, we investigated the effects of Al3+ and ΔG on 

dissolution. By doing so, we found that the Al3+ effect, rather than ΔG effect, was more responsible 

for the solid/liquid ratio effect. Finally, with an optimized solid/liquid ratio that minimized the 

effects of Al3+, we examined the effects of Na+ and Ca2+. 

 

Figure 2.1. (A) The Si-based dissolution rate of anorthite at different solid/liquid ratios at 35, 60, 75, and 
90 oC and 100 atm CO2. The error bars show the results of duplicate experiments. At 35 oC, the dissolution 
rate is not significantly affected by the solid/liquid ratio within 0.005 to 0.05 g/L. At 60 oC, 0.005 and 0.01 
g/L do not show significant differences in dissolution rate, while the dissolution rate decreases beyond 0.01 
g/L. At 75 and 90 oC, the dissolution rate decreases significantly with a larger solid/liquid ratio. The 
horizontal lines are the dissolution rates at different temperatures without the Al3+ effect, calculated by 
applying the activation energy determined in this study. (B) The Si-based dissolution rate of anorthite at 
different concentrations of Al3+ at 60 oC, 100 atm CO2, and a solid/liquid ratio of 0.005g/L. The rate is 
almost not affected by < 25 µM Al3+. Beyond 25 µM Al3+, the log rate gradually becomes linearly 
decreasing with log Al3+ activity. (C) The Si-based dissolution rate of anorthite at different Al3+ activities 
corresponding to the solid/liquid ratios in (A).  
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2.3.1 Inhibited anorthite dissolution at high solid/liquid ratios  

To identify the optimum solid/liquid ratio for investigating cation effects, we measured the 

Si-based dissolution rates at different temperatures, using solid/liquid ratios from 0.005 to 0.05 

g/L (Figure 2.1). At 35 oC, the dissolution rate was not significantly affected by the solid/liquid 

ratios that we used. At 60 oC, 0.005 and 0.01 g/L showed similar dissolution rates. But as the 

solid/liquid ratio was further increased, the dissolution rate gradually decreased. At 75 oC, the 

dissolution rate at a solid/liquid ratio of 0.01 g/L was 22% lower than that at 0.005 g/L. At 90 oC, 

the effects of the solid/liquid ratio became even more significant: the dissolution rate at a 

solid/liquid ratio of 0.01 g/L was 39% lower than that at 0.005 g/L, and the dissolution rate became 

even lower than those at 60 and 75 oC. These trends can be explained by different solid/liquid 

ratios leading to different concentrations of Al3+ and different ΔG. 

2.3.2 Inhibited anorthite dissolution by Al3+  

To explain the effect of solid/liquid ratios on anorthite dissolution rates, we investigated 

the effects of Al3+ on anorthite dissolution by adding up to 200 µM Al3+. This concentration is the 

maximum Al3+ concentration that does not lead to precipitation at pH 3 and 60 oC, based on the 

prediction of GWB. The smallest fixed solid/liquid ratio (0.005 g/L) was used. The dissolution 

rate of anorthite decreased with increasing Al3+ activity (Figure 2.1B). Within our batch reactor, 

the Al3+ concentrations changed by Al release from anorthite. The Al3+ activities were calculated 

based on the average concentrations before and after reaction, which can better reflect the actual 

Al3+ concentrations in our batch system during the sampling period. The changes in Al3+ 

concentrations were within 12.5 µM. We also found that Al3+ concentrations < 25 µM did not have 

significant effects on anorthite dissolution, while inhibition effects were evident with > 25 µM 

Al3+ (Figure 2.1B). This observation is different from the absence of Al3+ effect on anorthite at 
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45–95 oC observed by Oelkers and Schott.71 In this study, we found that 200 µM Al3+ decreased 

the dissolution rate by approximately 50% compared with no Al3+ addition (Figure 2.1B). Such a 

difference in dissolution rate is within the error range in Oelkers and Schott’s work. Another 

potential reason for the different observations between Oelkers and Schott’s work and ours is the 

different pH used. The pH in Oelkers and Schott’s work was 2.5 to 2.6, which is lower than the 

value of 2.97 used in our work. With 237–295% more abundant protons, we expect 

correspondingly more Al3+ is needed to achieve the same extent of inhibition effect. As a result, 

the Al3+ effect may have been even weaker in Oelkers and Schott’s study, and thus hidden in the 

error range. Another possible explanation is the different anorthite species used. We used 

specimens with 94% anorthite content (Na1-xCaxAl1+xSi3-xO8, x = 0.94), while 96% anorthite 

(Hokkaido, Japan) was used in Oelkers and Schott’s study. A slight change in anorthite content 

within 90% and 100% can lead to significant changes in the kinetics of dissolution.84 It is possible 

that the Al3+ effect was weaker in Oelkers and Schott’s study due to a slightly higher anorthite 

content.  

Understanding Al3+ effects on anorthite dissolution provides valuable insight on the 

dissolution mechanism of the plagioclase series. Recent studies found that Al3+ can significantly 

inhibit the dissolution of plagioclase.85, 86 Chen and Brantley explained the effects of Al3+ on 

plagioclase dissolution by competing adsorption with protons.85 In contrast, Oelkers and Schott 

explained the Al3+ effects on most plagioclase dissolution, except anorthite, by the back reaction 

of Al3+.86 The dissolution rate was thought to be controlled by precursors consisting of the Si 

structure left in plagioclase by the dissolution of Al sites, and the dissolution of Al sites in 

plagioclase was considered as being reversible. So high concentrations of Al3+ would enhance the 

back reaction, decrease the surface concentrations of precursors, and in turn decrease the 
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dissolution rates. Later, Oelkers and Schott observed the absence of Al3+ inhibition effects on 

anorthite and explained that the concomitant dissolution of Si with Al was responsible.71 In 

anorthite, the Al/Si ratio is nearly 1:1. All of the four neighbor cations of almost every Si are Al. 

Thus, after Al sites are dissolved, all four chemical bonds connected to the Si sites are broken. The 

Si sites are concomitantly dissolved, with no precursors left. Oelkers and Schott concluded that 

the dissolution rate of anorthite is controlled by the dissolution of Al sites, rather than by the 

precursor, as in the case of other plagioclases with smaller Al/Si ratios.87 However, specimens with 

100% anorthite content are quite rare in natural environments. For many real anorthite samples, 

the Al/Si ratio is not exactly 1:1.71, 78 Not all the Si sites dissolve concomitantly with Al sites. 

There is still Si structure left, which is similar to the precursor in other plagioclases. Thus, a recent 

modeling study has reported that these small amounts of Si precursor must be considered to predict 

anorthite dissolution rate.84 In other words, although the role of Si sites in anorthite dissolution is 

relatively small compared with other plagioclases, anorthite dissolution is not solely determined 

by Al sites. This suggests that the dissolution mechanism of anorthite is not fundamentally 

different from other plagioclases, and that Al3+ inhibition effects are applicable to the whole 

plagioclase series. In addition, it is necessary to point out that the different bond strengths of Al 

and Si sites do not mean their overall release rates would be incongruent. The dissolution of Si 

precursor is the rate-controlling step, which limits the progress of plagioclase–water interfaces 

and, therefore, controls the contact between Al sites and water. Thus, congruent dissolution would 

be reached. Furthermore, based on our experimental data (Figure 2.1C), the Al3+ effects can 

explain the observed effects of solid/liquid ratios. At higher solid/liquid ratios, the Al3+ 

concentration is higher, and thus has stronger inhibition effects. 
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Constant dissolution rates at ΔG < -107 kJ/mol. However, Al3+ effects may not be the 

only explanation for the observed trend of anorthite dissolution rates as a function of the 

solid/liquid ratio. The effects of solid/liquid ratios may also result in changes in ΔG. Al3+ is one of 

the products of anorthite dissolution, and the addition of Al3+ can also change the ΔG of the 

dissolution reaction. Sorai and Sasaki reported ΔG can affect the anorthite dissolution rate even 

when ΔG is as small as -200 kJ/mol at 50 oC and pH 2.7–3.0.78 If a similar situation was present 

in our system, the effects of Al3+ and the solid/liquid ratio that we observed could be attributed to 

the ΔG effect. 
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Figure 2.2. (A) The Si-based dissolution rate of anorthite at different ΔG at 60 oC and 100 atm CO2. The 
ranges from -infinite to -131.7 kJ/mol and from -infinite to -121.3 kJ/mol are the ΔG at the beginning and 
the end of experiments with 0.005 and 0.01 g/L solid to liquid ratios, respectively. The -123.2 to -115.1 
kJ/mol data was achieved by the addition of 12.5 µM Al3+, 50 µM SiO2(aq), and 12.5 µM Ca2+. The -114.1 
to -107.2 kJ/mol data was achieved by the addition of 12.5 µM Al3+, 100 µM Si, and 100 µM Ca2+. The 
similar dissolution rates at different ΔG mean that the rate is not affected by ΔG < -107 kJ/mol at 60 oC. 
(B) The apparent activation energy of anorthite dissolution at pH 3.1. The calculation is based on dissolution 
rates determined within 40 hours at 35, 45, and 60 oC. The Ea is determined to be 46 kJ/mol. 

To study the effects of ΔG on anorthite dissolution, the dissolution products of anorthite, 

Al3+, Ca2+, and SiO2(aq), were added to our system to make different ΔG. According to the Al3+ 

effects we measured, the addition of < 25 µM Al3+ will not significantly decrease the dissolution 

rate at 60 oC. When we added 12.5 µM Al3+ + 50 µM SiO2(aq) + 12.5 µM Ca2+, the initial ΔG was 

-123.2 kJ/mol;  for 12.5 µM Al3+ + 100 µM SiO2(aq) + 100 µM Ca2+, the initial ΔG was -114.1 
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kJ/mol. At the end of the experiments, the ΔG were -115.1 and -107.2 kJ/mol, respectively. The 

dissolution rates are the same for these two ΔG ranges, and also the same as the rates measured 

using solid/liquid ratios of 0.005 and 0.01 g/L without any additional cations (Figure 2.2A). For 

these two solid/liquid ratios, the ΔG started with - infinite and ended with -131.7 and -121.3 

kJ/mol, respectively. Our results suggest that the dissolution rate of anorthite is not affected when 

ΔG < -107.2 kJ/mol at 60 oC and pH 3 (Figure 2.2A).  

Our observations of no significant ΔG effect are different from the ΔG effect observed at 

50 oC and pH 2.7–3.0 in a recent study by Sorai and Sasaki.78 Unfortunately, the specific 

concentrations of Al3+, Ca2+, and SiO2(aq) used in their study are not available. While it is hard to 

make direct comparisons, potentially the decrease of dissolution rate at different ΔG observed in 

their study could be actually due to the different Al3+ concentrations. Another possible reason for 

the different observations is that the dissolution rate determined by surface characterization in their 

paper is very specific to the {001} crystal surface, unlike the rate measured by analyzing cation 

concentrations, which provides average values from dissolution of anorthite powder samples.  

Based on the discussion above, we conclude that the effects of the solid/liquid ratio we 

observed at different temperatures are attributed to different Al3+, rather than different ΔG. The 

injection of CO2 will acidify the formation brine and cause dissolution of Al-containing minerals. 

The potential increase in Al3+ concentration could have significant effects on mineral dissolution. 

Hence, the information obtained in this study can help evaluate the impact of Al3+ on anorthite 

dissolution at CO2 injection sites. In addition, the ΔG effect findings can help predict anorthite 

dissolution at field sites with a certain ΔG range.  
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Apparent activation energy of anorthite dissolution. As mentioned previously, the effects 

of Al3+ were not significant at 35 oC for solid/liquid ratios of 0.005, 0.01, and 0.05 g/L. At 60 oC, 

solid/liquid ratios of 0.005 and 0.01 g/L showed similar dissolution rates. Therefore, we assume 

that the effects of Al3+ are also not significant at an intermediate temperature, 45 oC, for solid/liquid 

ratios of 0.005 and 0.01 g/L. With the dissolution rates measured at these temperatures, we 

obtained the activation energy of anorthite dissolution without significant influence from Al3+ 

(Figure 2.2B). The 46.0 ± 2.2 kJ/mol obtained in this work is higher than the 18.4 kJ/mol measured 

in Oelkers and Schott’s paper.71 Most silicate dissolution reactions have activation energies 

ranging from 40 to 80 kJ/mol. Diffusion-controlled reactions have activation energies < 20 kJ/mol, 

and kinetic-controlled reactions have activation energies > 20 kJ/mol.88 Plagioclase dissolution in 

a far-from-equilibrium system is controlled by surface reactions, so the activation energy we 

obtained is reasonable. The new apparent activation energy obtained can be useful in predicting 

the dissolution rates of anorthite at different depths, and thus different temperatures at field sites. 

With the activation energy we obtained, we calculated the dissolution rate without effects 

of Al3+ at 75 and 90 oC (Figure 2.1; more details about activation energy calculation are available 

in Supporting Information S5). Combined with the dissolution rate we measured, it is obvious that 

the inhibition effects of Al3+ are more significant at higher temperatures. Unfortunately, we cannot 

provide quantitative information, because it is difficult to achieve the low solid/liquid ratio 

necessary for investigating Al3+ effects at > 60 oC. However, the rapid enhancement of the Al3+ 

inhibition effect at elevated temperatures indicates that Al3+ effects are particularly important for 

understanding plagioclase dissolution in high temperature energy-related subsurfaces.  
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2.3.3 Inhibited anorthite dissolution by Na+ 

 

Cations and 
temperature k×106 KH KM n R2 

Na, 35 oC 5.16 20.57 16.37 1* 0.9930 

Na, 60 oC 10.34 35.22 7.76 1* 0.9780 

Ca, 35 oC 5.45 18.42 23.78 1* 0.9950 
*value fixed 

Figure 2.3. The Si-based dissolution rates of anorthite at different concentrations of Na+ and Ca2+ at 35 and 
60 oC and 100 atm CO2 for 40 hr experimental time. The dissolution rates decrease significantly with 
increasing Na+ activity. The Na+ effects at 35 oC are stronger than the Na+ effects at 60 oC. The effects of 
Ca2+ are very similar to the effects of Na+. Ca2+ did not suppress the effects of co-existing Na+. These effects 
are better predicted with the competing adsorption model with an index of n = 1 than by a recent model 
with an index of 0.5. The table shows the parameters of the fittings. 

Based on our experimental results (Figure 2.1), the Al3+ effect on dissolution is not 

significant at low temperature. Thus at 35 and 60 oC, we can minimize the influence of Al3+, and 

focus on Na+ and Ca2+ effects. By further minimizing the Al3+ effect by using a low solid/liquid 
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ratio (Table 2-S2), we tested the effect of Na+ on the dissolution rate of anorthite at 35 and 60 oC 

(Figure 2.3). NaCl concentrations of 0.001, 0.01, 0.1, 1, 2, and 4 M were used. The dissolution 

rates decreased significantly with increasing Na+ activity, especially for Na+ concentrations > 0.1 

M NaCl. At 35 oC, the dissolution rates without any added Na+ were 2.45 times faster than the 

rates with 0.1 M Na+, and were 35.8 times faster than the rates with 4 M Na+. At 60 oC, the 

dissolution rates without any added Na+ were 1.89 times faster than the rates with 0.1 M Na+, and 

were 24.6 times faster than the rates with 4 M Na+. Apparently Na+ effects at concentrations > 0.1 

M NaCl are important in predicting the dissolution rates of plagioclase in CO2 injection sites with 

high salinity. These results also showed that the effects of Na+ become less significant with 

increasing temperature. This trend is different from the increasing effects of Al3+ with temperature. 

We postulate that this difference results from adsorption competition between cations and protons. 

Recent studies found that adsorption of alkali cations on oxides is mainly outer-sphere, and 

adsorption of transition metal cations and proton is inner-sphere.41, 77 The formation of inner-

sphere complexes needs to extensively disrupt the hydration sphere of cations, which usually has 

positive net enthalpy and entropy changes. The formation of outer-sphere complexes involves less 

disruption of hydration spheres, and has negative net enthalpy and entropy changes.89 Thus, it is 

likely that the adsorption of Na+ may be less sensitive to temperature, while the adsorption of 

protons is more temperature-sensitive. Hence, Na+ inhibition effects became weaker at higher 

temperature. In contrast, Al3+ effects are more significant with increasing temperature, which 

suggests the adsorption of Al3+ increases more than the adsorption of protons at higher 

temperature, or that Al back reactions are favored at higher temperature. These suggested trends 

are consistent with a previous study that found a stronger adsorption of Al3+ than protons on 

plagioclase at higher temperature.85 The different trends of Na+ and Al3+ effects with temperature 
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observed in this study provide new information for predicting the impact of Na+ and Al3+ on 

plagioclase dissolution at different reservoir depths and at sites with different temperatures. 

To test the applicability of a recent feldspar dissolution model based on < 0.1 M NaCl data 

to the high concentration conditions, we fitted our results with a competing adsorption-based 

dissolution model described in Brantley and Stillings’ paper, which suggested n = 0.5.41 The fitting 

was conducted using the curve fitting toolbox in Matlab, which used least square non-linear fitting. 

The n values were fixed at 0.5 and 1. The values of k, KH, and KM were obtained from the fitting 

process. 

݁ݐܽݎ ൌ ݇ሺ ಹಹ
ଵାಹಹାಾಾ

ሻ                                                                                                         (2.1) 

where k is the rate coefficient, KH and KM are the adsorption constants for proton and 

cations, and aH and aM are the activities of proton and cation (M). This model is based on 

competing Langmuir adsorption between protons and M. KHaH represents the proton adsorbed 

sites, and KMaM represents the cation adsorbed sites. The 1 in the bracket of the equation represents 

sites with no adsorption. So the term in bracket is the fraction of proton adsorbed sites, which is 

responsible for plagioclase dissolution in acidic conditions.41  

The fitting results of dissolution rates using this model are shown by the dotted line in 

Figure 2.3. The fitting using n = 0.5 is good at concentrations < 0.1 M NaCl. However, at higher 

concentrations, the fitting is less satisfactory (R2 = 0.9603 and 0.9487 for 35 and 60 oC, 

respectively). The fitting is better with n = 1, shown by the solid line in Figure 2.3 (R2 = 0.9930 

and 0.9780 for 35 and 60 oC, respectively). The k, KH, and KM obtained using n = 1 are shown in 

the inset table in Figure 2.3. Due to the limited number of data points, rather than providing a 

correlation analysis among the parameters k, KH, and KM, the values obtained were applied only to 
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describe the trend of cation effects on plagioclase dissolution observed in this study. We noticed 

that Equation (2.1) with n = 1 is the same as the competing adsorption-based mineral dissolution 

model suggested in a recent paper by Ganor and Lasaga, which described the general inhibition 

mechanism of inhibitors, including cations, on mineral dissolution.90 This model with n = 1 was 

also mentioned in Brantley and Stillings’ paper.41 They suggested that the index n should be 1 if 

only the sites at plagioclase–water interfaces contribute to the dissolution. Otherwise, the index n 

should be 0.5 if sites throughout the hydration layer on the plagioclase surface contribute to the 

dissolution, and if diffusion across the hydration layer plays a role. In our study, the fitting results 

are best when the index n is 1, indicating that the dissolution is surface reaction-controlled, with 

no significant diffusion-limited process included. In other words, the dissolution of anorthite in 

our experimental system should be limited to plagioclase–water interfaces, and not all the sites 

throughout the hydration layer contribute to the dissolution.  

In Brantley and Stillings’ study,41 the index of 0.5 was suggested since the index of 0.5 can 

also conveniently be used to explain the pH dependence of plagioclase dissolution. Because the 

KHaH term is usually small, the index of n is coincidently equal to the pH dependency if KMaM is 

constant. However, to explain the overall plagioclase dissolution, we found that the index n in the 

equation (2.1) should be treated separately from the pH dependence of plagioclase dissolution. 

Furthermore, the 0.5 pH dependence is applicable only to plagioclase with anorthite content < 

0.76. It is reported that pH dependence increases with anorthite content.38 When the anorthite 

content increases to 0.76, pH dependence is 0.75.91 When the anorthite content increases to nearly 

1, the pH dependence of anorthite is 1.5, based on Oelkers and Schott.71 In the current work, we 

estimated the pH dependence of anorthite to be 1.14, based on dissolution rates measured at 2.94 

and 3.10 without any additional cations. The 1.14 obtained here is consistent with 1.12–1.14 at pH 
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= 2–5, 25–70 oC, as determined by several recent publications.92-94 To describe the pH dependence 

of plagioclase dissolution, we recently reported the pH dependence of plagioclase dissolution by 

relating it to the anorthite content and the ordering state of the plagioclase crystal.84, 91, 95 Because 

equation (2.1) did not include these factors (e.g., anorthite content and crystal ordering), it can 

properly describe only cations effects, not pH dependency. Therefore, we suggest that an index of 

1 should be applied in equation (2.1) when one describes the Na+ effect on anorthite dissolution in 

high ionic strength systems. Furthermore, we propose that because the dissolution mechanism of 

anorthite is not fundamentally different from other plagioclases, other plagioclases can also use 

the index of 1 to predict the Na+ effect on their dissolutions. 

2.3.4 Inhibited anorthite dissolution by Ca2+ and its co-existence with Na+ 

To investigate Ca2+ effects on anorthite dissolution, we first measured the dissolution rate 

of anorthite with the addition of 0.001, 0.01, 0.1, 0.33, and 1 M CaCl2, at 35 oC without significant 

influence of Al3+ (Figure 2.3). The results suggested that the effects of Ca2+ on anorthite were very 

similar to the effects of Na+. Then, we found that the effects of 1 M CaCl2 at 60 oC were also 

similar to the effects of Na+ at the same activity and temperature. Note that Ca is naturally abundant 

in anorthite. The Ca2+ could have additional effects besides competing with proton adsorption. 

High concentrations of Ca2+ may cause back reaction, just like the Al3+ back reaction suggested 

by Oelkers and Schott.87 In addition, high concentrations of Ca2+ can inhibit the diffusion of 

dissolved Ca2+ through the hydration layer to the aqueous phase, due to the smaller concentration 

gradient. However, the similar effects of Ca2+ and Na+ observed in our study indicated that the 

influences of back reaction and inhibited diffusion of Ca2+ on anorthite dissolution were not 

significant. This is reasonable for two reasons: Ion exchange between Ca2+ and protons can be 

thermodynamically favored, as supported by observations in previous studies that Ca2+ dissolves 
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rapidly due to exchange reactions with protons.87 Hence, the back reaction of Ca2+ incorporation 

is not significant although the Ca2+ concentration is high. Furthermore, because diffusion across 

the hydration layer does not affect the dissolution of anorthite in our experimental systems, the 

potential inhibition of Ca2+ diffusion in the hydration layer does not affect the dissolution rate.  

The finding that Ca2+ and Na+ have similar effects on plagioclase dissolution helps us 

understand the impact of Ca2+ on anorthite dissolution in subsurface CO2 injection sites, because 

formation brines are often contain up to 1.2 M Ca2+.42 The concentration of Ca2+ can further 

increase due to calcium carbonate or dolomite dissolution after CO2 injection. Thus, this 

information can also be beneficial in understanding calcium-abundant formations, such as 

carbonate oil reservoirs.96 

Furthermore, comparing the effects of Ca2+ and Na+ on anorthite dissolution enables us to 

check the applicability of several mechanisms suggested in previous studies. First, the similar 

effects of Ca2+ and Na+ suggest that the free water mechanism is not applicable to plagioclase 

dissolution.97 Finneran and Morse suggested that the different inhibition effects of Na+ and K+ on 

calcite dissolution are due to less free water.97 In the aqueous phase, cations are hydrated. The 

effective numbers of water molecules for the hydration of Na+, K+, and Ca2+ are about 3.9, 1.7, 

and 12, respectively.98, 99 Previously, the stronger effect of Na+ than K+ on calcite dissolution was 

explained by the larger amount of water attracted to cations and thus the smaller amount of free 

water left. According to this mechanism, Ca2+ should have a much stronger inhibition effect on 

mineral dissolution than Na+. However, for the plagioclase studied here, the similar effects of Na+ 

and Ca2+ at same activity indicate the inhibition effects of Na+ and Ca2+ are not due to decreasing 

amounts of free water.  
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Second, similar to the free water mechanism, high ionic strengths could also affect the 

mineral dissolution by decreasing the activity of water. A certain amount of water is reactant in 

the plagioclase dissolution reaction. The dissolution rate should depend on the activity of the water. 

However, the inhibition effect of 1 M CaCl2 is much weaker than that of 1 M NaCl, while the 

activity of water is much smaller at 1 M CaCl2. We infer that the water activity effect is not the 

main reason for the inhibition effect observed in this study. 

A third potential mechanism is related to water structure on the surface. A recent study 

related the inhibition effect of high ionic strengths on dolomite dissolution to the breaking of 

water–water interactions.76 The rate-limiting step of plagioclase dissolution should be the 

detachment of metal cations from the crystal structure,87 rather than the breaking of H-bonds in 

the aqueous phase. Ruiz-Agudo et al. also explained the inhibition effects of ionic strength on the 

dissolution of dolomite and calcite by changes in interfacial energy and in water structure on 

dolomite and calcite surfaces.74, 75 Considering the higher ionic strength and weaker Ca2+ effect 

compared with same concentration of Na+, these mechanisms may not be the main reason for the 

Na+ and Ca2+ inhibition of anorthite dissolution found in our study.  

In sum, we concluded that the main mechanism of the Na+ and Ca2+ effects observed in the 

current work is competing adsorption with protons, rather than changing the ionic strength. 

However, there is a caveat that at a high ionic strength, the suppressed electric double layer on the 

mineral surface can inhibit the adsorption of cations as well. 

After investigating the Ca2+ effect, we studied the co-existence of Na+ and Ca2+. Dove et 

al. investigated the effects of Na+ and Ca2+ on quartz dissolution.77 They found that Na+ and Ca2+ 

enhanced quartz dissolution, and that the effects of Na+ were stronger than the effects of Ca2+. 
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Still, when Na+ and Ca2+ co-existed, even though the concentration of Na+ was three times higher 

than Ca2+, the overall effects were dominated by Ca2+. This observation was explained by the 

stronger adsorption of Ca2+ on mineral surfaces. To test the effects of co-existing Na+ and Ca2+ on 

anorthite dissolution, we chose 1 M NaCl and 0.33 M CaCl2, because their ionic strength are 

similar. The concentration of Ca2+ is usually lower than Na+ in field sites,42 and 0.33 M is high 

enough to show any possible competing effect with 1 M Na+. It is very clear in Figure 2.3 that 0.33 

M Ca2+ did not dominate over the effect of 1 M Na+. Because the Ca2+ effect is very similar to the 

Na+ effect, the overall effect can be predicted by simply adding their activities. The activity 

coefficient of Ca2+ can be much smaller than that of Na+ at high ionic strengths. As a result, for 

plagioclase, Na+ effects can be dominant, which is different from the situation of quartz. Because 

Na+ and Ca2+ are the most abundant cations in field sites, this finding is important in predicting 

plagioclase dissolution during CO2 injection. 

2.4 Environmental Implications: Subsurface CO2 Injection 

GCS is an important environmental engineering process which is closely linked to 

environmental sustainability as well as environmental quality. CO2–water–rock interactions play 

a significant role in assessing the viability of GCS,13 and are critical to site selection, risk 

assessment, and public acceptance.100 Among CO2–water–rock interactions, mineral dissolution is 

a key process. For example, due to an insufficient understanding of silicate dissolution and 

precipitation kinetics, the rate and extent of CO2 mineralization are uncertain.37 Recent studies on 

natural CO2 reservoirs and on interactions between core samples from field sites and simulated 

brines have reported the importance of the dissolution of minerals, including plagioclase, and the 

subsequent formation of precipitates, including carbonate and clay minerals.36, 101 These reactions 

can enhance mineral trapping of CO2 and change the wettability of mineral surfaces, which is 
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crucial for residual trapping. Furthermore, based on a previous study, 22–81% of the total pore 

volume of sandstones had radii less than 100 nm.102 Hence, if plagioclase dissolution and 

subsequent secondary precipitation happen at pore throats, they can change the porosity of 

reservoir rocks and the permeability of geological formations. These changes could affect the 

transport of CO2, oil, and gas. Therefore, a better understanding of mineral–fluid interactions is 

vital in predicting the performance of subsurface CO2 injection processes. 

However, reservoir rocks contain multiple kinds of minerals. Considering the 

heterogeneous nature of the mineralogies in various field sites, the results obtained in a multi-

mineral system can be applicable only to specific sites under specific conditions. For a multi-

mineral system, it is difficult to attribute the increased concentrations of metal cations to each 

single kind of mineral. Single mineral experiments, as shown in this study, can aid in filling this 

knowledge gap. Recent modeling work predicted the dissolution rates of many minerals as a 

function of temperature, pH, and ΔG,103, 104 but few models considered the role of cations critically. 

The results obtain in this study showed that subsurface-abundant cations can inhibit proton-

promoted dissolution. With high concentrations up to 4 M in formation brines, the effects can be 

comparable to the effects of temperature, pH, and ΔG. Thus these findings contribute to building 

an accurate database of mineral dissolution kinetics as inputs for geochemical modeling. As with 

plagioclase, the dissolution of most aluminosilicates in acidic conditions involves proton-

promoted dissolution of Al–O–Si linkages.79, 95, 105 Hence our findings may provide valuable 

insights for other minerals, such as potassium feldspar and clay minerals. Cations effects can be 

an important aspect to be consider for multi-mineral systems in the future. 

Furthermore, the effect of CO2 on plagioclase dissolution is mainly an indirect effect 

through the low pH condition, so cation effects are not limited to CO2-related processes. Our 
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findings can provide broader implications for understanding of other energy-related subsurface 

engineering processes (e.g., energy production/extraction, subsurface storage of energy, and 

subsurface waste disposal and environmental remediation) where plagioclase dissolution in high 

salinity brine is involved. In addition, the release of heavy metals and other contaminants from 

formation rocks, such as aluminosilicate, could be strongly affected by cations. Thus, an improved 

understanding of cation effects on aluminosilicate is important for evaluating environmental 

impacts. Furthermore, the weathering of plagioclase in the environment is crucial for the global 

carbon cycle.106, 107 Previous studies have discussed why dissolution rates observed in the field are 

much slower than rates measured in the laboratory.38 These differences in dissolution rate can also 

be partially explained by cation effects. 
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Supporting Information for Chapter 2 

Contents: Experimental details 

     Two figures 

     Three tables 

S2.1. High pressure and high temperature experimental setup 

Anorthite dissolution experiments were conducted in a 300 mL vessel (Parr Instruments, 

IL), made of Hastelloy C-276. The temperature was controlled by a temperature controller working 

together with thermocouple and cooling loop. The cooling loop provided an efficient way to 

decrease the temperature, so that the temperature control could be more stable. The pressure in the 

vessel was maintained by a syringe pump (Teledyen Isco Inc.), connected to a gas cylinder. The 

solution in the vessel was mixed by a magnetic stirrer. Samples were collected by a dip tube 

mounted with a 2.2 µm filter, both made of Hastelloy C-276. During sampling, the gas inlet valve 

(7 in Figure 2-S1) was closed, and the liquid outlet valve (8 in Figure 2-S1) was opened. 

Approximately 1 mL solution was driven out through the dip tube, then the liquid outlet valve was 

closed and the gas inlet valve was opened. The pressure loss during sampling was recovered in 

several seconds. The reactor also equipped an in situ pH probe to monitor the pH during reaction. 

A more detailed description of the pH probe is available below. A diagram of the reactor setup is 

shown in Figure 2-S1. 
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Figure 2-S1. Experimental setup. 1, In situ sampling tube; 2, Cooling loop; 3, pH probe; 4, Stirrer; 

5, Thermocouple; 6, Teflon liner; 7, gas inlet valve; 8, liquid outlet valve. This schematic diagram 

was adopted from our previous publication.80 Reprinted from Min, Y.; Kubicki, J. D.; Jun, Y.-S. 

Plagioclase Dissolution during CO2–SO2 Cosequestration: Effects of Sulfate. Environ. Sci. 

Technol. 2015, 49 (3), 1946-1954. Copyright © 2014 American Chemical Society. 

S2.2. In situ pH probe calibration and measurements (adapted from our recent publication,80 

with permission from Copyright © 2014 American Chemical Society) 

In situ pH values in the reaction system were measured using a pH probe (Corr Instruments, 

TX) that can function under 1–136 atm and 20–120 oC. The tubing of the electrode was made of 

HC alloy C-276. The probe showed mV values, which could be converted to pH using calibration 

curves. Standard solutions were made using NaCl, CaCl2, and HCl. The pH values of standard 

solutions were calculated by Geochemist's Workbench (GWB, Release 8.0, RockWare, Inc.). A 

linear relationship was found between the calculated pH of the standard solution and the mV values 

measured. Applying the calibration curve measured under different conditions, the in situ pH was 

calculated based on mV values measured. In 80 hours, no significant change (± 0.02) in pH was 

observed with the highest solid-to-liquid ratio applied in this study. The error between replicates 

of the pH measurement was ± 0.01.  
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S2.3. Steady-state dissolution of plagioclase  

In this study, steady-state congruent dissolution of anorthite was obtained. We monitored 

the metal cations’ concentrations, and found their concentrations increased linearly with reaction 

time (An example is available in Figure 2-S2). In other words, a zero-order reaction was observed. 

The zero-order steady-state dissolution is due to the low solid/liquid ratio applied in this work. 

Based on the prediction of Geochemist’s Workbench Standard 8.0 and our previous study using 

the same conditions,80 no secondary precipitation would form at the highest solid/liquid ratio used 

in this study. Therefore, the cation release rate was equal to the dissolution rate, and the dissolution 

rate was not significantly affected by the small changes in pH. The dissolution rates of Ca, Al, and 

Si were about 0.5:1:1, which is the stoichiometric ratio of anorthite (Figure 2-S2). Congruent 

dissolution of anorthite has been observed in recent studies.71, 80 Usually, for plagioclase 

dissolution, the Si rate is used to represent the mineral dissolution rate, because Si suffers less from 

complex reactions in the aqueous phase, and its dissolution represents the breakdown of the 

framework in the crystal structure of plagioclase. So in this study, we always used the Si-based 

dissolution rate. The dissolution rates can be calculated using the Si slope (concentration vs. time) 

divided by the BET surface area, solid/liquid ratio, and stoichiometric ratio of Si in anorthite. 

Duplicate experiments were conducted for up to 80 hours for most experimental conditions. 
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Figure 2-S2. Steady-state congruent dissolution of anorthite was observed in this study. The 

concentrations of Al, Si, and Ca are measured during anorthite dissolution at 35 oC and 100 atm 

CO2. The data shows very good linearity within 5 to 80 hours, which indicates steady-state 

dissolution of anorthite. The Ca concentration multiplied by a factor of 2 shows very similar values 

to Al and Si, which means the dissolution of anorthite is congruent. 

S2.4. ΔG calculations in Geochemist’s Workbench Standard 8.0 

The GWB calculates the ΔG of anorthite dissolution based on the following equations: 

݁ݐ݄݅ݐݎ݊ܣ  ାܪ8 ൌ ଶାܽܥ  ଷା݈ܣ2  2ܱܵ݅ଶሺܽݍሻ   ଶܱ                                                  (2-S1)ܪ4

ܩ∆ ൌ ܴ݈ܶ݊ሺ
ಹమೀ
ర ೌమశಲయశ

మ ೄೀమሺೌሻ
మ

ಹశ
ఴ ሻ                                                                                       (2-S2) 

ܭ݈݃ ൌ 31.21 െ 0.1978ܶ  0.0004466ܶଶ െ 5.704 ൈ 10ିܶଷ  9.918 ൈ 10ିଵଵܶସ          (2-S3) 
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y = 0.9175x + 2.7059
R² = 0.9963
 

y = 0.8948x + 1.896
R² = 0.9989
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For example, at T= 35 oC (i.e., 308K), pH = 3.10, when aCa
2+ = 2.5×10-5 and aAl

3+ = aSiO2(aq) = 

5×10-5, ΔG will be -128.6 kJ/mol. 

S2.5. Activation energy calculations  

The apparent activation energy is calculated based on this equation: 

ܧ ൌ ܴሺడ୪୬	ሺሻ
డሺభ


ሻ
ሻ                                                                                                                         (2-S4) 

where r is the rate of dissolution, and R is 8.134 J × mol-1 × K-1. So the activation energy is the 

slope obtained by plotting ln(r) × R with 1/T. The rate at other temperatures can be predicted 

based on the plot.  
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Table 2-S1. X-ray fluorescence (XRF) analysis of anorthite used in this study (in weight %).80 
(adapted from our recent publication,80 with permission from Copyright © 2014 American 
Chemical Society) 

 Anorthite  Number of ions on the basis of 8 O   
SiO2 44.09 Si 2.042 
CaO 19.07 Ca 0.946 

Al2O3 35.13 Al 1.917 
TiO2 0.00 Ti 0.000 
Fe2O3 0.57 Fe 0.020 
MnO 0.00 Mn 0.000 
MgO 0.64 Mg 0.044 
Na2O 0.43 Na 0.039 
K2O 0.01 K 0.010 
P2O5 0.00 P 0.000 

Loss on ignition 0.06   

The Mg and Fe may originate from the lava coating of the anorthite specimens. We broke the 

specimen into mm size pieces and manually picked out pieces without observable coating. As we 

did not observe significant impurities in XRD, we do not expect these small amount impurities 

affected the dissolution rate. 
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Table 2-S2. Dissolution rates of anorthite obtained using Si slope (µM vs hours) divided by the 

BET surface area, solid/liquid ratio, and stoichiometric ratio. (Rate in mol×m-2×s-1). 

Experi
ments No. 

T/o

C 
pH Added cations Solid/liq

uid 
(g/L) 

Slope Rate 
Na/M Ca/M Al/µM Si/µM 

Solid/l
iquid 
ratio 

1 
35 3.10 

N/A N/A N/A N/A 

0.01 0.1905 7.73E
-08

2 
35 3.10 0.01 0.2108 8.58E

-08

3 
35 3.10 0.025 0.4737 7.71E

-08

4 
35 3.10 0.025 0.5272 8.58E

-08

5 
35 3.10 0.05 0.8948 7.28E

-08

6 
35 3.10 0.05 0.9175 7.47E

-08

7 
60 3.10 0.005 0.4103 3.34E

-07

8 
60 3.10 0.005 0.3735 3.04E

-07

9 
60 3.10 0.01 0.7978 3.25E

-07

10 
60 3.10 0.01 0.8159 3.32E

-07

11 
60 3.10 0.02 1.3382 2.72E

-07

12 
60 3.10 0.025 1.2259 1.99E

-07

13 
60 3.10 0.025 1.5433 2.51E

-07

14 
60 3.10 0.05 2.1473 1.75E

-07

15 
75 3.10 0.005 0.6035 4.91E

-07

16 
75 3.10 0.01 0.9453 3.85E

-07

17 
90 3.10 0.005 0.5335 4.34E

-07

18 
90 3.10 0.01 0.6466 2.63E

-07
Al 
effect 
 

19 
60 2.97 0 0.005 0.6202 5.05E

-07

20 
60 2.97 0 0.005 0.6156 5.01E

-07

21 
60 2.97 25 0.005 0.6056 4.93E

-07
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22 
60 2.97 25 0.005 0.5894 4.80E

-07

23 
60 2.97 50 0.005 0.5413 4.40E

-07

24 
60 2.97 50 0.005 0.4829 3.93E

-07

25 
60 2.97 100 0.005 0.4028 3.28E

-07

26 
60 2.97 100 0.005 0.4572 3.72E

-07

27 
60 2.97 150 0.005 0.3419 2.78E

-07

28 
60 2.97 150 0.005 0.3626 2.95E

-07

29 
60 2.97 200 0.005 0.2946 2.40E

-07

30 
60 2.97 200 0.005 0.3041 2.47E

-07
Chemi
cal 
affinit
y 

31 
60 3.05 12.5E-5 12.5 50 0.01 0.9559 3.41E

-07* 

32 
60 2.94 12.5E-5 12.5 50 0.01 1.4247 3.78E

-07*

33 
60 2.94 1E-4 12.5 100 0.01 1.2997 3.45E

-07*

34 
60 2.94 1E-4 12.5 100 0.025 3.4789 3.69E

-07*

45 oC 
35 

45 3.10 

N/A N/A N/A 

0.01 0.3918 1.59E
-07

36 
45 3.10 0.01 0.4349 1.77E

-07
Na 
effect 
 

37 
35 3.10 0.001 0.01 0.1903 7.74E

-08

38 
35 3.10 0.001 0.05 0.8204 6.68E

-08

39 
35 3.10 0.01

N/A N/A N/A 

0.01 0.186 7.57E
-08

40 
35 3.10 0.1 0.01 0.0912 3.71E

-08

41 
35 3.10 0.1 0.01 0.086 3.50E

-08

42 
35 3.10 1 0.25 0.5894 9.59E

-09

43 
35 3.10 1 0.05 0.1203 9.79E

-09

44 
35 3.10 2 0.25 0.3664 5.96E

-09

45 
35 3.10 2 0.25 0.356 5.79E

-09
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46 
35 3.10 4 1 0.623 2.53E

-09

47 
35 3.10 4 0.5 0.309 2.51E

-09

48 
60 3.10 0 0.01 0.818 3.33E

-07

49 
60 3.10 0 0.01 0.8159 3.32E

-07

50 
60 3.10 0.001 0.01 0.652 2.65E

-07

51 
60 2.94 0.001 0.025 2.4567 2.61E

-07*

52 
60 3.10 0.01 0.01 0.5306 2.16E

-07

53 
60 3.10 0.1 0.01 0.4341 1.77E

-07

54 
60 3.10 0.1 0.01 0.4321 1.76E

-07

55 
60 3.10 1 0.01 0.1277 5.20E

-08

56 
60 2.94 1 0.025 0.517 5.48E

-08*

57 
60 3.10 2 0.25 1.5971 2.60E

-08

58 
60 3.10 2 0.25 1.7607 2.87E

-08

59 
60 3.10 4 0.25 0.832 1.35E

-08

60 
60 3.10 4 0.25 0.8847 1.44E

-08
Ca 
effect 
 

61 
35 2.94 

N/A 

0 0.025 0.7265 7.71E
-08*

62 
35 2.94 0 0.025 0.7209 7.65E

-08*

63 
35 2.94 0.001 0.025 0.702 7.45E

-08*

64 
35 2.94 0.001 0.025 0.793 8.41E

-08*

65 
35 2.94 0.01 0.025 0.6554 6.95E

-08*

66 
35 2.94 0.01 0.025 0.6702 7.11E

-08*

67 
35 2.94 0.1 0.05 0.8752 4.64E

-08*

68 
35 2.94 0.1 0.05 0.7968 4.23E

-08*

69 
35 2.94 0.33 0.05 0.5191 2.75E

-08*
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70 
35 2.94 0.33 0.05 0.4818 2.56E

-08*

71 
35 2.94 1 0.25 1.5238 1.62E

-08*

72 
35 3.10 1 0.25 1.1066 1.79E

-08

73 
60 3.13 1 0.05 1.1309 9.90E

-08*

74 
60 3.13 1 0.05 1.2565 1.10E

-07*

Na + 
Ca 

75 
35 2.94 1 0.33 0.5 1.3253 7.03E

-09*

76 
35 2.94 1 0.33 0.5 1.253 6.65E

-09*

* rate is normalized to pH 3.10 

Table 2-S3. Concentrations of Si, Al, and Ca measured at different elapsed times. The experiment 

No. corresponds to Table 2-S2. For some experiments, Ca cannot be measured, because the high 

concentrations of Ca in some samples affected the ICP-OES. For this reason, some experiments 

measured only Si, or Al and Si. 

No. Hours Si /µM Al /µM Ca /µM No. Hours Si /µM Al /µM Ca /µM 

1 

5 1.21 1.29 0.901 

2 

5 3.16 2.14 

N/A 
10 1.98 1.98 1.61 10 4.14 3.05 
24 4.75 4.65 2.64 22.5 7.02 5.87 
32 6.55 6.28 3.37 33 8.97 7.68 

3 

5 2.93 3.68 1.72 

4 

5 2.33 3.70 2.48 
10 5.86 5.63 3.00 10 5.12 6.58 4.55 
23 12.0 11.8 6.26 25 12.9 13.4 8.15 
31.5 15.7 16.2 8.01 32 16.6 17.3 9.76 

5 

5 6.07 6.45 4.51 

6 

5 8.04 7.82 4.32 
10 9.83 9.86 8.03 10 10.5 10.5 9.39 
24 23.4 22.9 13.0 20 20.4 19.6 11.5 
32 32.0 30.7 16.5 30.5 31.8 30.3 21.4 
48.5 46.1 44.4 22.7 45 44.9 42.7 23.2 
57 52.8 50.7 30.7 55.5 54.1 51.8 28.9 
70 64.3 61.6 34.6 74 67.6 64.7 37.2 
80 72.8 69.1 36.1 80 77.9 74.4 38.3 

7 

5 2.91 2.55 

N/A 8 

5 1.51 3.19 2.09 
10 4.76 4.08 10 3.43 3.25 1.86 
20 8.17 7.33 23 7.89 7.88 5.80 
31 13.7 12.6 31 11.4 11.1 6.12 

9 
6 2.68 3.78 8.24 

10 
5 4.62 3.80 

N/A 10 5.57 6.00 5.77 10 7.22 7.12 
23 15.0 13.7 9.72 22 17.7 17.1 
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33 24.5 19.7 16.7 33 27.0 24.2 

11 

6.5 9.93 9.17 6.10 

12 

5 7.09 6.06 9.16 
10 14.3 13.0 8.07 10 13.3 11.4 13.6 
23 33.0 29.5 18.5 22 27.7 24.6 19.4 
32.5 44.2 40.0 25.0 32 40.3 38.1 29.2 

13 

5 8.91 8.50 7.25 

14 

5 17.7 16.1 10.9 
10 17.2 15.7 11.1 10 31.7 29.6 19.1 
22.5 36.8 32.0 20.1 21 55.0 51.9 28.9 
33 52.1 44.8 30.7 30 78.0 72.6 39.3 

 
45.25 107.6 100.4 52.6 
55 125.1 116.2 62.6 

15 

4 2.54 2.59 4.56 

16 

5 6.20 5.62 

N/A 
10 5.83 5.21 6.20 10 11.6 9.84 
21 12.2 10.0 9.96 21 22.0 18.4 
31 18.8 15.5 13.1 32 31.9 26.9 

17 

4.5 2.90 2.82 2.25 

18 

5 1.92 5.25 6.75 
10 6.19 5.31 4.00 10 7.91 9.26 11.8 
22.5 12.3 10.7 10.1 22 14.3 16.6 22.4 
33 18.3 14.9 9.64 31 22.0 22.3 26.6 

19 

5.5 8.94 5.26 

N/A 

20 

6 5.23 4.43 

N/A 
10.5 13.0 8.77 11 7.95 7.45 
21 19.3 14.6 21 13.8 12.3 
31 25.1 19.5 31 20.6 18.5 

21 

5 5.76 28.0 

22 

21.5 13.6 

N/A 
13 10.8 32.8 30 19.0 
23 17.3 38.5 45 28.1 
33 22.6 42.6 55 33.4 

23 

5 4.31 

N/A 

24 

5 3.33 54.24 3.76 
10 7.25 10 5.34 56.77 6.09 
22.5 14.7 20 10.6 60.9 7.60 
32.5 19.0 30 15.2 66.5 11.8 

25 

4.5 3.33 

26 

6 2.36 

N/A 

9.5 6.28 10 4.43 
23 12.7 23 10.3 
33 20.1 33 14.6 

27 

5 3.21 

28 

5 3.90 
11 4.77 10 6.52 
22 9.14 23.5 11.2 
32 12.2 34.5 14.9 

29 

5.5 2.6 

30 

5 3.36 
10.5 4.74 10 5.36 
22.5 7.86 22 8.84 
32.5 10.8 35 12.5 

31 

5 57.6 13.5 17.7 

32 

5 57.6 20.2 

N/A 
10 62.7 17.1 18.7 10 64.7 26.1 
20 73.3 22.0 23.0 20 78.0 39.1 
30 81.2 32.1 26.3 30 93.4 53.5 
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33 

5.25 110.2 13.9 108.9 

34 

5 118.0 29.0 
10 114.9 17.6 112.2 10 133.6 43.6 
23.5 130.5 27.9 117.1 20 168.6 76.3 
33.5 147.3 38.6 120.4 37.5 220.7 126.9 

 
47 261.3 164.5 
57 301.9 202.8 

35 

5 2.61 

N/A 36 

5 4.58 

N/A 
10 4.80 10 6.96 
24 10.5 24 13.2 
31 12.7 31 15.8 

37 

5 0.210 1.34  

38 

10 11.0 9.66 

N/A 

10 0.885 2.52 21 18.1 17.6 
22.5 3.28 4.80 29.5 25.5 25.1 
32.5 5.04 6.60 45.5 38.3 38.0 
 55 45.5 45.6 

39 

5 2.31 3.39 

N/A 

40 

5 1.54 1.04 
10 3.43 3.51 10.5 2.02 1.47 
23 6.28 5.63 21.5 3.00 2.23 
33 8.28 7.81 32 4.00 3.06 

41 

5 0.637 0.801 

42 

10 9.85 

N/A 

10 0.886 1.28 21 16.7 
22.5 2.06 2.20 30 20.9 
32 2.74 3.10 46 30.1 
 55 36.8 

70 45.1 
81.5 51.9 

43 

10 2.52 

N/A 
44 

5 6.92 5.09 

N/A 

20 3.68 10 8.93 7.23 
30 5.25 20.5 12.0 10.1 
45 6.86 30 15.3 13.4 
55 7.87 45.5 22.2 19.7 
 55 24.9 22.9 

45 

10 5.40 6.08 14.7 

46 

5 10.7 

N/A 

20 8.32 9.97 14.3 10 17.8 
30 11.7 14.3 18.3 21.5 22.2 
45.5 17.4 21.4 21.1 30 29.3 
55 21.0 27.2 25.0 45 37.9 
 55 43.1 

47 

5 2.69 2.28 1.96 

48 

5 4.46 4.69 2.79 
10 4.89 4.08 3.28 10 8.17 10.5 5.57 
23 8.65 7.63 6.10 21.5 16.5 18.8 9.88 
32 11.6 10.1 6.36 32 26.8 31.1 14.9 
47 15.4 13.8 7.10  
57 19.1 17.2 9.76 

49 
5 2.79 4.48 3.42 

50 
5 3.28 4.75 

N/A 10 7.10 7.97 5.90 10 7.19 7.91 
24 16.9 17.2 11.4 22.5 13.5 14.0 
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32 25.6 25.3 15.3 30 20.4 20.7 

51 

5 15.5 12.6 

N/A 52 

5 1.93 4.29 2.70 
10 27.4 23.5 10 4.48 7.71 4.14 
22 56.0 50.8 20 9.85 13.9 6.87 
34 83.8 77.1 32 16.2 21.4 10.2 
48 118.6 111.7 

 
56.5 143.6 133.5 

53 

6 4.11 4.49 3.23 

54 

5 4.33 4.98 2.49 
11 6.81 5.99 4.12 10 6.74 7.24 3.62 
23 12.0 12.1 6.60 22.5 11.9 12.4 6.22 
33 16.0 15.5 7.91 31 15.7 16.5 8.25 

55 

5 0.737 2.86 

N/A 
56 

5 3.24 2.86 

N/A 

10 1.53 5.31 10 6.09 5.31 
24 3.39 12.6 23 12.7 12.6 
33 4.31 16.3 33 18.1 16.3 

 
47 25.1 22.1 
57 30.2 26.7 

57 

5 14.1 11.9 

N/A 58 

5 9.16 9.11 
10 23.1 18.9 10 18.0 19.35 
20 47.0 34.4 22.5 37.9 43.1 
30 62.4 46.4 34.5 60.5 67.7 
45.25 82.9 66.8 47 80.2 90.2 
55 93.5 76.6 57.5 102.5 117.6 

59 

5 6.85 

N/A 60 

5 4.24 4.78 3.04 
10 11.5 10 8.47 8.47 5.81 
20 19.6 23.5 20.4 18.5 12.1 
30 27.8 33 27.5 25.7 16.6 

61 

6 4.74 5.30 

N/A 

62 

5 4.70 5.01 3.61 
11 8.20 9.45 10 7.93 8.12 5.70 
23 16.8 17.0 21.5 15.1 15.0 9.50 
33 24.4 24.8 31 23.1 22.5 13.7 

63 

5 6.32 5.84 

64 

6 5.74 6.58 3.79 
10 9.79 10.1 10 10.4 10.6 5.73 
21.5 18.5 19.0 22 20.3 18.7 10.3 
30 23.6 24.2 30 25.4 23.4 11.9 

65 

5 3.94 4.47 

66 

5 3.44 3.66 

N/A 

10 8.87 9.05 10 6.88 6.67 
23 16.2 18.0 26 16.7 15.4 
33 23.0 27.5 35 23.0 20.9 
 47 31.2 28.7 

58.5 39.3 35.7 

67 

5 6.46 4.84 

68 

5 6.72 

N/A 

15 13.7 14.6 11 11.5 
24 21.8 26.2 22 20.7 
33.5 31.4 39.9 36 32.0 
 49 41.6 

58 49.2 
69 5 4.41 3.60 70 5 2.93 2.63 2.66 
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11 8.79 6.86 10 5.80 4.99 4.43 
23 14.5 12.5 22 11.6 9.50 7.14 
31 18.2 15.1 32 16.2 13.1 8.66 

71 

7 15.3 17.4 

72 

6.5 10.8 10.3 

N/A 

13 30.6 30.7 11.5 17.5 15.4 
23 39.8 41.3 23.5 31.9 29.0 
33 55.0 58.3 33.5 44.3 40.0 

73 

5 4.78 4.90 

74 

5 9.56 12.0 
10 10.5 9.00 10 13.3 19.2 
22 25.2 20.5 22.5 30.9 33.0 
33 36.1 30.1 32 41.1 46.5 

75 

5 13.0 12.9 

76 

5 8.46 7.90 
10 20.4 19.6 10 13.2 12.3 
23 36.6 35.2 22 28.3 26.2 
32 49.3 47.4 34 39.8 37.8 
 48 55.7 51.8 
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Chapter 3: Effects of Na+ and K+ Exchange 
in Interlayers on Biotite Dissolution under 

Geologic CO2 Sequestration Conditions 

 

Abstract 

The performance of geologic CO2 sequestration (GCS) is affected by CO2-induced 

dissolution of the caprock in geologic formations. The dissolution of biotite, a model mica mineral 

that can exist in the caprock, is strongly affected by Na+ and K+ in formation brine. However, it is 

unclear how the effects of Na+ and K+ on the dissolution of biotite depend on these cation 

concentrations. This study investigated the dissolution of biotite with 0–4 M Na+ and 0–10 mM 

K+ at 95 oC and 100 bar CO2. Na+ replaced K+ in the biotite interlayer and enhanced the biotite 

dissolution at < 0.5 M concentration. In > 0.5 M range, however, the enhancing effect of Na+ was 

mitigated by an inhibition effect caused by competing sorption between Na+ and proton. With a 

Na+ concentration of 0.5 M, co-existing K+ significantly inhibited the biotite dissolution, with high 

sensitivity at even lower K+ concentrations, such as 0.1–0.5 mM. In addition, for the first time, we 

reported the dissolution of Na-treated biotite, which mimics the biotite naturally equilibrated with 

Na+-abundant brine. Na-treated biotite dissolved faster than natural K-containing biotite and 

during dissolution, it transformed to vermiculite. Aqueous Na+ inhibited the dissolution of Na-

treated biotite by suppressing the release of interlayer Na+, and aqueous K+ inhibited the 

dissolution by replacing the interlayer Na+. These findings contribute to better understanding of 

biotite dissolution in the presence of potassium-containing clay swelling inhibitor and different 

salinities at GCS sites.   
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3.1 Introduction 

In Chapter 2, we investigated the dissolution of plagioclase, which is a model of the 

minerals in sandstone. In this chapter, biotite, a kind of mica, is chosen to represent the minerals 

in caprock. Mica is a common aluminosilicate group abundant in many GCS sites. For example, 

the weight fraction of mica in the caprock is 30% at the Sleipner site,9 and 10–30% at the Venture 

site.10 The interactions among CO2, brine, and mica can affect the integrity of caprock and the 

potential for CO2 leakage. During mica dissolution, small particles can peel off from the surface 

of mica, and secondary mineral phases like illite can precipitate as nanoparticles.11, 12 These small 

particles can plug pore throats and decrease the permeability of formations. Surface roughness can 

be changed during biotite dissolution and affect the wettability of biotite surface, which eventually 

affect the transport of CO2.13 In addition, the interactions between micas and Na+ and K+ in the 

brine can affect the frictional strength of faults, which change the mechanical integrity of geologic 

formation.14  

Although the caprock in field sites contains multiple minerals, studies using single mineral 

can help delineate the role of each mineral component in the dissolution of caprock and contribute 

to an accurate database of mineral dissolution kinetics. In this study, we chose biotite 

(K(Mg,Fe)3AlSi3O10(OH,F)2) as a representative of the mica group minerals. Biotite is more 

reactive than other micas, such as muscovite. Thus, it can better show the dissolution of mica in 

laboratory studies on a scale of several days. The crystal structure of biotite is formed by 

aluminosilicate layers, and each layer contains two tetrahedral sheets occupied by Al and Si and 

an octahedral sheet occupied by Mg and Fe. Interlayer K+ cations weakly bound these 2:1 layers 

together. The surfaces along the layers are called basal surfaces, and the surfaces perpendicular to 
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the layers are called edge surfaces. The dissolution of edge surfaces is 30–300 times faster than 

that of basal surfaces.15 

Recent studies on the dissolution of biotite and other micas under GCS conditions found 

that the Na+ in the brine can ion-exchange with the interlayer K+.12, 16, 17 The Na+-K+ exchange 

caused swelling of the interlayer spaces, and built up stress, leading to the formation of cracks on 

the basal surfaces. The dissolution rates of biotite were significantly enhanced by 1 M NaCl 

compared to deionized water, which was explained by the formation of cracks.11, 18, 19 However, 

this information is not enough to accurately predict the dissolution of biotite in GCS sites, because 

the concentration of Na+ in the brine in geologic formations varies from 0.01 to 3 M.20 To predict 

how dissolution rates depend on Na+ concentrations, we need to extend recent findings to field 

sites containing various Na+ concentrations, beyond simply water and 1 M NaCl.  

Na+-K+ ion-exchanges are affected not only by Na+ concentration, but also by K+ 

concentration. K+ can be released from biotite during dissolution, and can also naturally exist in 

formation brine, with 0.08–170 mM concentrations reported.20 However, the information in the 

literature on the effects of K+ on biotite dissolution is limited and contradictory. Gilkes and Young 

found that adding K+ inhibited the dissolution of biotite in 0.1 M HCl.21 However, Malmstrom and 

Banwart reported that the dissolution rates of biotite were similar in 0.5 M Na+ and 0.05–0.5 M K+ 

solutions.22 Further study on the K+ effects on biotite dissolution is required to elucidate these 

complicated observations. 

In addition, in field sites, a certain portion of biotite in the caprock can be naturally in 

contact with the formation brine. Considering the high Na+ concentrations in formation brine, a 

certain portion of K+ in the biotite (K-biotite) can be replaced by Na+ (called Na-biotite). Although 

some previous studies investigated the Na+-K+ exchange reactions in biotite, their findings focused 
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only on structure changes.23-25 The influence of ion-exchange on the dissolution is unclear. Little 

information on the dissolution of Na-exchanged biotite is available in the literature. With extensive 

exchange reactions taking place before dissolution, the dissolution of Na- biotite can be 

significantly different from that of the original K-biotite, and can play an important role in mineral 

dissolution and transport in GCS sites. 

Therefore, the objective of this study is to investigate the effects of 0–4 M Na+ and 0–10 

mM K+ on the dissolution of original biotite and biotite treated with NaCl (Na-biotite) at conditions 

closely relevant to GCS. The outcomes provide new information on how cation effects on 

dissolution depend on the cations’ concentrations, and how they couple with interlayer ion-

exchange reactions. The results can contribute to understanding the dissolution of biotite and other 

micas in subsurface environments containing various concentrations of Na+ and K+. 

3.2 Experimental Methods 

3.2.1 Minerals sample preparation and chemicals 

Biotite specimens from Bancroft, Ontario, Canada were obtained from Ward’s Natural 

Science, NY. Based on XRF analysis (Siemens SRS-300), the chemical formula was 

K0.91Na0.08Ca0.005(Mg0.57Mn0.02Fe0.37Ti0.04)3(Al1.00Si3.00)O10(F0.51(OH)0.49)2. Biotite flakes with 0.5 

cm × 0.5 cm basal surfaces and 0.32 ± 0.01 mm thickness were washed with ethanol, acetone, and 

isopropanol to remove organic matter, and rinsed with deionized water (>18.0 MΩ∙cm). In addition 

to flakes, powder samples were prepared by grinding and sieving to obtain 53–106 µm particles. 

The powder samples were also washed with the same method as the flake samples to remove 

organic matter, and were rinsed with water for 8 times to remove most attached tiny particles. 
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To mimic biotite that is naturally equilibrated with brine in field sites, 0.1 g biotite powder 

was mixed with 40 mL 0.5 M NaCl solution at 95 oC and atmospheric pressure. Because the brine 

pH was neutral, no significant dissolution of biotite powder was expected during treatment. After 

every 2 hours, the powder and the solution were separated by centrifugation. An inductively 

coupled plasma-optical emission spectrometer (ICP-OES) (Perkin Elmer, Optima 7300DV) was 

used to detect cations in the solutions. The powder was mixed with fresh NaCl solution until no 

K+ was detected in the solution. Mg, Fe, Al, and Si were not detectable. This sample is referred to 

as “Na-biotite.” The Na-biotite powder was collected by centrifugation, washed thoroughly with 

DI water, and dried in nitrogen. To observe the morphology and elemental composition changes, 

the Na-biotite powder was analyzed using scanning electron microscopy (SEM, JEOL 7001LVF 

FE-SEM), coupled with energy dispersive X-ray spectrometry (EDS). To examine the swelling of 

the interlayer space caused by Na+-K+ exchange, the Na-biotite powder was analyzed using X-ray 

diffraction (XRD). The specific surface area of the Na-biotite powder was measured using the BET 

method (Nova 2000e, Quantachrome Instruments). To quantify the amount of Na+ newly 

incorporated into the biotite, a reverse extraction using 10 mM KCl solution was conducted at 95 

oC and atmospheric pressure. The solutions were replaced with fresh KCl solutions every 2 hours 

until no Na+ was detected in the solution. The accumulated Na+ concentration detected in the 

solutions was used to quantify the amount of interlayer Na+ in the Na-biotite powder. 

All solutions used in this study were prepared using ultra-purified deionized water (>18.0 

MΩ∙cm) and ACS grade NaCl and KCl (BDH). The pH was adjusted using HCl (BDH).  

3.2.2 Dissolution experiments under simulated GCS conditions 

Biotite dissolution experiments were conducted using a high temperature and high pressure 

reaction system modified from our previous work.26-30 Each biotite flake or 0.01 g biotite powder 
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was reacted with 4 mL solution in a PTFE tube. PTFE tubes with biotite samples were put in a 

reaction vessel (Parr Instruments, IL). CO2 was injected into the vessel using a high pressure 

syringe pump (500D, Teledyne Isco.). A schematic diagram of the setup is available in Figure S1 

in the Supporting Information. The PTFE tubes were capped and small holes in the wall of the 

tubes allowed CO2 to enter and dissolve in the solutions. The pressure was controlled at 100 bar. 

Notably, 95 oC is a relatively higher temperature than typical field site conditions (37 oC and 100 

bar at the Sleipner site,31 65 oC and 150 bar in the Frio formation,32 and 63 oC and 140 bar at the 

Weyburn field site.33). However, the relatively high temperature allowed us to accelerate the 

reaction kinetics. Even so, these conditions are within the ranges reported for GCS sites: 31–110 

oC and 74–600 bar.34  

The in situ pH of the solutions in the reactor was calculated using the 

THERMO.com.v8.r6+ database in Geochemist's Workbench (GWB, Release 8.0, RockWare, Inc.). 

The B-dot equation was used for the calculation of the activity coefficients of aqueous species with 

ionic strengths up to 3 M. The solubility of CO2 in brine containing up to 4 M NaCl was calculated 

according to a model by Duan and Sun.35 The calculated pH was also verified using a in situ pH 

probe (Corr Instruments.), which could be used at 20–120 oC and 1–136 atm. Details on the in situ 

pH measurement are available in S1 in the Supporting Information. The in situ pH of 1 M NaCl 

solution at 95 oC and 100 bar CO2 was measured to be 3.20 ± 0.02. To prevent any pH effect and 

to focus on the effects of cations, the pH of all solutions were pre-tuned to selected values so that 

after CO2 was injected into the reactor, the initial in situ pH of all solutions were 3.20 ± 0.02. We 

chose this pH because it is related to the starting period of CO2 injection at the given experimental 

pressure and temperature. In addition, pH 3.2 can also mimic locations close to the injection well. 

On the other hand, in field sites, the pH can increase to 4.5 to 5 due to mineral dissolution after a 
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long time. However, tuning the pH to 4.5 to 5 would have introduced extra cations into the systems, 

making it difficult to deconvolute the extra cations used to tune pH from the cations we want to 

study. In addition, a high pH system would cause more extensive precipitation in our batch system, 

while this study mainly focused on dissolution of biotite.  

The experiments lasted for 3, 24, 48, and 72 hours. After reaction, the vessel was cooled 

and depressurized over 30 mins. The solutions in the PTFE tubes were filtered using 0.22 µm 

PTFE filters, acidified using 40 µL concentrated nitric acid, and analyzed using ICP-OES. The 

solid samples were rinsed with DI water and dried in nitrogen. The basal surfaces of reacted flakes 

were analyzed using contact mode atomic force microscopy (AFM, Nanoscope, Veeco). The 

mineral phase changes of reacted powders were analyzed using XRD. To identify the phase of 

precipitates further, high resolution transmission electron microscopy (HRTEM, JEOL JEM-

2100F field emission) with electron diffraction was utilized. For the HRTEM sample preparation, 

the reacted powders were sonicated in ethanol to detach the precipitates on the surface. A drop of 

the ethanol was placed on Cu grid for imaging.  
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3.3 Results and Discussion 

3.3.1 Dissolution of biotite flakes 

 

Figure 3.1. The concentrations of (A) K, (B) Mg, (C) Fe, (D) Al, and (E) Si, released from biotite flakes 
after 3 to 72 h reaction with 0 to 1 M NaCl. All concentrations were normalized to the stoichiometric ratios. 
The K concentrations were higher in presence of higher concentration NaCl. For Mg, Fe, Al, and Si, the 
concentrations were similar and increased with NaCl concentrations from 0 to 0.5 M. However, the 
concentrations were significantly low in presence of 1 M NaCl. 
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To study the Na+ and K+ effects, dissolution of biotite at 95 oC and 100 bar CO2 was 

demonstrated using flake samples. Figure 1 shows the concentrations of elements released during 

biotite flake dissolution at different Na concentrations. The concentrations of Mg, Fe, Al, and Si 

were found to be similar after being normalized by their stoichiometric ratios of elemental 

components based on XRF analyses. Their concentrations generally increased linearly within 3 to 

72 h. In contrast, the concentration of K+ was much higher than other elements. The release of K+ 

was rapid in the first 3 hours, and then gradually slowed down. Our observation is consistent with 

findings in the literature that K+ dissolution is faster than that of other elements, because the 

chemical bonding between K+ and the silica sheets of biotite is relatively weaker than the bonding 

of other elements within the sheets.25 The dissolution of K+ from biotite occurs mainly through 

ion-exchange reactions with proton and other cations in solutions.12 This reaction is diffusion-

controlled,11 so the rate increases with the concentration of other cations and decreases with the 

concentration of K+ in solution. In our batch system, the K+ concentration increased due to K+ 

dissolution, so that the ion-exchange reactions slowed after the first 3 hours. This explanation is 

also consistent with the observation that K+ release was significantly enhanced with higher Na+ 

concentrations (Figure 1A).  
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Figure 3.2. (A) The Si concentrations for biotite flakes, biotite powder, and Na-biotite powder reacted in 
different concentrations of NaCl for 24 hours. (B) The Si concentrations for biotite flakes, biotite powder, 
and Na-biotite powder reacted in different concentrations of KCl for 24 hours. (C) The Mg, Al, Si, and Fe 
concentrations for biotite powder reacted in 4 mL water, and Na-biotite powder in 4 and 40 mL water for 
24 hours. For powder samples, concentrations were normalized based on the BET surface area. 
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Effects of Na on biotite dissolution. Figure 1 shows that the concentrations of Mg, Fe, Al, and Si 

do not increase for all Na+ concentrations, and may in fact decrease. Because these elements 

dissolved congruently, we selected the Si concentration to represent the dissolution kinetics. As 

shown by the red diamond in Figure 2A, from 0 to 0.5 M Na+, the Si concentrations measured at 

24 h increased with higher Na+ concentrations. Na+ caused significant ion-exchange reactions with 

interlayer K+ and cracked the basal surfaces, which in turn enhanced the biotite dissolution. 

Evidence can be found in the AFM images of the basal surfaces reacted in DI water and 0.5 M 

NaCl. Figure S2 shows that many cracks can be seen on the sample reacted in 0.5 M NaCl while 

the sample reacted in DI water was relatively intact. The formation of cracks on basal surfaces 

created more reactive surface areas, by creating more edge surfaces. Further, because edge surfaces 

are 30 to 300 times more reactive compared to basal surfaces,15 the dissolution rates can be 

significantly increased.  

However, interestingly, from 0.5 to 4 M Na+, the Si concentrations gradually decreased 

(Figure 2A). These observations indicate that besides the enhancing effect by the cracking basal 

surface, Na+ has another effect in inhibiting the dissolution. This effect can be explained by the 

inhibition effect of cations observed in our previous study on plagioclase (CaAl2Si2O8) 

dissolution.36 The dissolution of silicates, including plagioclase and biotite, is usually enhanced by 

protons. In our previous study, we found that the adsorption of protons on plagioclase surfaces 

competes with the adsorption of cations, such as Na+.36 Similarly, Na+ should also compete with 

protons at the surface and the interlayer space of biotite. High concentrations of Na+ can suppress 

proton sorption in biotite and inhibit proton-promoted dissolution. Thus, we suggest that the Na+ 

effects on biotite dissolution are combined with an enhancing effect by Na+–K+ exchange and an 

inhibition effect by Na+–H+ competing sorption. Our previous study found that the Na+ inhibition 
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effect on plagioclase was weak at < 0.1 M concentrations, but was particularly strong at > 0.5 M 

concentrations.36 This trend is consistent with this current observation: at < 0.5 M concentrations, 

the inhibition effect by Na+–H+ competing sorption was still weak, so that the Si concentrations 

kept increasing with Na+ concentrations due to enhancing effect of the Na+–K+ exchange. Because 

the Na+–K+ exchange is diffusion-limited, the enhancing effect became less sensitive to Na+ 

concentration in a high concentration range. Conversely, the inhibition effect became stronger at 

high concentration ranges. Therefore, Si concentrations significantly decreased with > 0.5 M Na+. 

Because the enhancing effect occurs by cracking the basal surfaces, the transition concentration 

point (i.e., 0.5 M in our system) should depend on the ratio between basal and edge surfaces. If the 

dissolution of the basal surface plays a more significant role in the overall dissolution, the transition 

point could move to higher Na+ concentrations. 

Effects of K on biotite dissolution. Na+ affect biotite dissolution by Na+–K+ exchange, which is 

also affected by K+. To investigate the effect of K+, 10 mM KCl was added to either DI water or 

0.5 M NaCl. Figure 2B shows that Si concentration released in DI water in 24 hours was 

approximately 5 times higher than that in 10 mM KCl (black triangles), which suggests that K+ 

significantly inhibited the dissolution of biotite. With a background NaCl concentration of 0.5 M, 

the Si concentration without 10 mM KCl was around 20 times higher than in the solution of 0.5 M 

NaCl + 10 mM KCl. These results are surprising, because K+ can have a significant inhibition 

effect at a concentration much smaller than the Na+ concentration, and this effect of K+ was not 

suppressed even in a much higher background concentration of Na+.  

As we mentioned above, the inhibition effects caused by competing surface adsorption 

between cations and protons are not significant at < 0.1 M range.36 The strong effect of 10 mM K+ 

is not likely due to competing surface adsorption with protons. Note that after several hundred µM 
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of K was released during dissolution, the release of K+ slowed significantly (Figure 1A), which 

indicated that several hundred µM of K+ could inhibit the Na+–K+ exchange reactions in our system. 

Therefore, K+ concentrations as high as 10 mM can strongly suppress these ion-exchange reactions. 

Figure S2 shows that with 10 mM KCl, no cracks can be observed on the basal surface of biotite 

flakes reacted in either water or 0.5 M NaCl. We speculate that K+ inhibits biotite dissolution by 

suppressing the ion-exchange. In DI water, the ion-exchange reactions were between protons and 

K+. The 10 mM K+ suppressed these H+–K+ reactions and limited the access of protons to the 

interlayer space, so that the proton-promoted dissolution of silica sheets was inhibited. In 0.5 M 

NaCl, not only H+–K+ exchange, but also the Na+–K+ exchange was suppressed. Consequently, 

with addition of 10 mM KCl, the formation of cracks in 0.5 M NaCl was completely inhibited. 

These observations show that the interlayer spaces in biotite have a strong preference for K+ over 

Na+, so that a small concentration of K+ can suppress Na+–K+ exchange and significantly inhibit 

dissolution in a high background concentration of Na+. 

To provide more information on the K+ effect, we also investigated the dissolution of 

biotite in other K+ concentrations within the range of 0–10 mM with 0.5 M background NaCl. As 

shown by the red diamond in Figure 2B, the K+ effect was highly sensitive to the concentrations. 

The Si concentrations were similar within 0–0.1 mM, rapidly decreased between 0.1–0.5 mM, and 

then gradually reached a plateau beyond 1 mM. In addition, K release was still faster than other 

elements and followed a similar trend as Si (Figure S3). The K+ concentration range in the 

subsurface environments was reported to be 0.08 to 170 mM, which covers the sensitive range of 

0.1–0.5 mM. These findings mean that to accurately predict biotite dissolution, we need accurate 

information on the K+ concentrations in specific sites. These observations also indicate a critical 

Na+/K+ range where changes in the Na+/K+ ratio have a strong influence on the Na+–K+ exchange 
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reaction. At 95 oC and pH 3.2, the critical range is approximately 1000–5000. When the Na+/K+ 

ratio is too large or too small compared to the critical range, the inhibition effect of K is not 

significant or is maximized.  

3.3.2 Dissolution of biotite powder 

While biotite flakes mimic the biotite in caprocks, biotite powder samples can simulate 

mobilized biotite particles detached from the caprock. We initially thought that the powder would 

dissolve much faster than the flake, because of its larger surface area and more edge surfaces 

exposed to brine. Interestingly, Figure 2A shows that the Si concentrations released from the 

powder sample were not much higher than those from the flake sample. We suggest that the 

reactive surface area during the dissolution process is different from the BET or geometric surface 

area. Most of the reactive surface area during dissolution of biotite may be created by the release 

of K+ from the interlayer spaces, which is followed by dissolution reactions in interlayer spaces. 

The reactive surface area would depend on the extent of ion-exchange reactions of K+ with protons 

and Na+ in solutions. With same amount of protons and Na+ in the solutions, the extent of ion-

exchange reactions would be similar for flakes and powders. Thus, the dissolution rates of flakes 

and powders would be similar, as we found.  

In addition, the Na-enhancing effect on the powder sample was weaker than for the flakes. 

As shown in Figure 2A, for biotite powder, the maximum Si concentration was approximately 3 

times higher than the Si concentration in DI water, compared to the 5 times higher concentration 

for flakes. The smaller influence of Na+ on the dissolution of powder can be explained by two 

reasons: First, Na+ enhanced biotite dissolution by cracking the basal surfaces, while the powder 

samples contain more edge surfaces than flake samples. Because of the faster dissolution of edge 

surfaces, the role of basal surfaces in the dissolution of powder was relatively small. Thus, the 
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influence of Na+ was weak. Second, because the particles were small, swelling caused by Na+–K+ 

exchange may lead to exfoliation of biotite sheets rather than formation of cracks. The exfoliation 

would only create more basal surfaces, which are less reactive than the edge surfaces created by 

cracking.  

Besides the Na+ enhancing effect, the inhibition effect of K+ was also weaker for powder, 

as shown in Figure 2B. With more edge surfaces, powder samples have larger surface area for ion-

exchange than flakes. The ion-exchange reactions were easier so that inhibition by K+ was smaller. 

Another reason is that K+ inhibited the dissolution of biotite in NaCl by suppressing the Na+-

enhancing effect. Because Na+-enhancing effect was found to be weak for the powder samples, 

the role of K+ became less important. The weak enhancing effect of Na and weak inhibition effect 

of K on powder samples can help explain the similar dissolution rate in Na and K solutions reported 

in a recent study by Malmstrom and Banwart.22 These findings show that the shape and size of 

biotite in geologic formations need to be considered when predicting their dissolution. Because 

the kinetics of ion-exchange change with the size of the biotite specimens, the effects of Na+ and 

K+ were different for flakes and powder samples. 
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3.3.3 Dissolution of biotite powder pretreated with NaCl solution 

 

Figure 3.3. XRD patterns of (A) biotite PDF card #01-80-1106 (B) original biotite sample, (C) Na biotite 
sample reacted with 0.5 M NaCl + 10 mM KCl for 24 h, (D) pretreated Na biotite sample, (E) Na biotite 
sample reacted with 0.5 M NaCl for 24 h, (F) Na biotite sample reacted with water for 24 h, and (G) 
vermiculite PDF card #00-060-0341. The y axis is the intensity of peaks, which have been normalized to 
the intensity of the highest peak of each pattern. Compared to the K biotite, pretreatment with NaCl caused 
left shift of (001) peaks from 10 to 12.2 Å, which indicates that ion exchange of K by Na caused the 
expansion of interlayer spaces. Na biotite maintained its structure after reaction with 0.5 M NaCl, 
transformed to vermiculite after reaction with water, and recovered the biotite structure after reaction with 
0.5 M NaCl + 10 mM KCl. 

Besides biotite flakes and powder samples, we also investigated the dissolution of Na-

biotite. To understand the dissolution of biotite naturally equilibrated with formation brine, we 

pretreated biotite with NaCl solutions to replace the interlayer K+ with Na+. The (001) peak shifted 

from 10 Å to 12.2 Å after treatment (Figure 3B and 3D). This swelling of the interlayer space was 

consistent with the observations in literature.22 From the EDS analysis, K was not detected after 

treatment, while Na was detected (Figure S4). By reversing the Na+–K+ exchange using KCl 
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solutions, the amount of Na+ in 0.01g Na-biotite was found to be 0.36 mg, which means 71 % of 

the interlayer cations was Na+ (Details in S2 in the Supporting Information). This observation is 

consistent with the observation in a recent study that the charge deficiency of silica sheets in biotite 

decreases during NaCl treatment, thus the number of interlayer cations needed to compensate for 

the charge deficiency also decreases.24 SEM images show that the pretreatment using the NaCl 

solution did not significantly change the morphology of the biotite particles (Figure S4). However, 

the specific surface area measured by BET increased from 0.94 ± 0.01 to 2.68 ± 0.01 m2/g, which 

may result from the exfoliation of biotite particles. 

The dissolution of Na-biotite in DI water was significantly different from the original K-

biotite. The in situ pH of original K-biotite reacted for 1 hour was 3.20 (Table S1). In contrast, the 

in situ pH of Na-biotite reacted for 1 hour increased to 3.96. Such a quick increase of pH is likely 

due to the rapid release of Na, because 0.23 mg of Na was detected after 1 h reaction, which means 

most of the Na in Na-biotite had been released. In addition, after 24 h reaction, no Na can be 

detected in the EDX analysis (Figure S4). The high pH is likely to decrease the dissolution rate of 

Na-biotite. The dissolution rate of biotite was found to be a function of (H+)0.58,37 which means the 

dissolution rate at pH 3.96 would be 2.7 times lower than that at pH 3.20. However, much larger 

Si concentrations for Na-biotite have been observed (Figure 2A and 2C), even after normalization 

by BET surface area. This observation indicates that the intrinsic dissolution rate of Na-biotite 

biotite is much faster than that of the original K-biotite. The extensive Na+–K+ exchange during 

pretreatment may create many defects in the crystal structure of biotite, enhancing dissolution. 
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Measured 
d-spacing 

hematite
Crystal 
plane 

maghemite
Crystal 
plane 

3.69 3.68552 102 3.73066 210 
2.53 2.51900 110 2.51521 113 

2.21 2.20838 113 2.22949 321 

1.86 1.84276 204 1.82037 421 
1.73 1.69662 116 1.70280 224 
1.47 1.45435 300 1.47467 440 

Figure 3.4. TEM image of small particles detached from Na-biotite powder reacted for 24 h in water. 
Nanoparticles rich in Fe was observed. The electron diffraction pattern showed the d-spacing (Å) matched 
with hematite and maghemite. 

Furthermore, the high pH caused by Na release led to the formation of secondary 

precipitations. Figure 2C shows that for Na-biotite, dissolution was not congruent, and the 

concentrations of Mg, Al, and Fe were significantly lower than Si. In our previous studies on mica 

dissolution under GCS conditions, secondary precipitation containing Al, including kaolinite, 

gibbsite, and boehmite, were observed.17 In this work, by TEM analysis, we observed some nm 

size particles rich in Fe on the biotite surfaces (Figure 4). By matching the d-spacings determined 

by electron diffraction, the particles could be hematite or maghemite. Because the formation of 
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hematite needs a long time of aging, the precipitation in our system is more likely to be the 

metastable phase maghemite. These precipitations can explain the low Al and Fe concentrations 

observed. A unique observation of the Na-biotite is the low concentration of Mg. Mg may 

precipitate as Mg-substituted Al and Fe hydroxides. In addition, we suggest that Mg can precipitate 

as vermiculite (Mg
0.7

(Mg, Fe, Al)
6
(Si, Al)

8
O

20
(OH)

4
 · 8H

2
O). Figure 3F shows that the Na-biotite 

after 24 h reaction in water transformed into vermiculite, which has a similar structure to biotite. 

The main difference is that the interlayer cations in vermiculite are hydrated cations like Mg2+ 

instead of K+. It is likely that the removal of K+ in biotite and rapid release of Na+ facilitate the 

formation of vermiculite. Further evidence of these precipitations can be found in additional 

experiments which used 40 mL water instead of 4 mL. As larger volumes of water were used, the 

concentration of released Na would be smaller and the pH would be lower. Thus, smaller amount 

of precipitations formed and we detected larger Mg and Fe concentrations, as shown in Figure 2C. 

In contrast to the enhancing effect on original K-biotite, Na+ inhibited the dissolution of 

Na-biotite, based on the Si concentrations in Figure 2A. The absence of the Na+ enhancing effect 

is because there is no interlayer K+ and thus no cracking of basal surfaces caused by the Na+–K+ 

exchange. The inhibition effect is probably because the high Na+ concentrations in solutions can 

suppress the release of interlayer Na+ from Na-biotite: the in situ pH after 1 h reaction in 0.5 M 

NaCl was 3.35 for 0.5 M NaCl, compared to 3.96 for DI water (Table S1). In addition, after 24 h 

reaction in 0.5 M NaCl, the XRD patterns of Na-biotite have broader peaks but the same locations 

(Figure 3D and 3E), which means the formation of vermiculite was inhibited. 

 Figure 2B shows that the inhibition effect of K+ on the dissolution of Na-biotite was 

weaker than on the dissolution of original K-biotite. The Si concentrations decreased with higher 

concentrations of K+ within 1–10 mM. The inhibition was not significant with < 1 mM K+. There 
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was no critical concentration range, compared to the 0.1–0.5 mM range for original K-biotite. For 

K-biotite, K+ inhibits dissolution by suppressing the release of interlayer K+. For Na-biotite, the 

interlayer K+ is replaced by Na+, and so, K+ did not show an inhibition effect at low concentrations. 

Figure 3C shows that after reaction with 10 mM KCl, the Na-biotite recovered the structure of the 

original K-biotite. As mentioned above, K+ is strongly preferred over Na+ as interlayer cation for 

biotite. K+ concentrations as high as 10 mM can replace the interlayer Na+ in Na-biotite, even in 

0.5 M NaCl. Because the dissolution of the original K-biotite is slower than Na-biotite, such a high 

concentration of K+ can inhibit the dissolution. These findings show that the cations effects on the 

dissolution of Na-biotite are very different from those on the original K-biotite, providing insights 

into the dissolution of biotite equilibrated with formation brine. 

3.4 Environmental Implications 

Silicate dissolution rates in GCS sites are usually modelled as a function of pH, temperature, 

and ∆G. Our previous study pointed out that, considering the high Na concentrations in geologic 

formations, the Na inhibition effect can be as important as the effect of the pH and temperature.36 

The findings in this work further showed that for silicate with the potential of significant ion-

exchange reactions, the overall effects of Na can be more complicated. To accurately predict the 

silicate dissolution kinetics in GCS sites, the cations concentrations in specific sites need to be 

examined.  

In addition, the ion-exchange between interlayer cations and cations in formation brine can 

also lead to different dissolutions of biotite. This information contributes to understanding the 

dissolution of biotite and other micas and the subsequent secondary precipitation. These reactions 
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can change the permeability of the caprock in GCS sites, which has to be considered when 

evaluating the environmental safety and economic efficiency of GCS operations.  

Similarly, the results of this study can provide insights for other energy-related 

geoengineering processes injecting CO2 into the subsurface environment, including CO2 enhanced 

oil recovery and hydraulic fracturing. For example, this study can help understand the interactions 

between Na+ and mica, which were found to cause permeability damage in oil fields.38 In addition, 

the fracturing fluid often contains Na+ and K+ as swelling inhibitors, with 500–2000 ppm 

concentrations reported.39 The drilling fluid used in well drilling also contains 3 to 20 wt% KCl as 

a swelling inhibitor.40 This fluid can mix into the formation brine, which eventually affects the 

dissolution of minerals like biotite. Our results show that these chemical additives can have 

significant impacts on the dissolution of minerals in subsurface environments. 

Besides subsurface environments, similar Na+ and K+ effects can potentially be found 

during the dissolution of biotite in surface environments. For example, the Na+ and K+ in soil 

solutions may affect the weathering of biotite in soil environments in a similar way. Biotite 

weathering is an important step in the formation of soil,41 which in turn shapes landscapes, 

withdraws atmospheric CO2, affects watershed chemistry, and controls the supply of soil 

nutrients.42 Furthermore, the findings also provide hints for the dissolution of sheet silicates other 

than micas. For example, clays such as montmorillonite, which are also abundant in caprocks and 

other subsurface environments, also have a strong capability for ion exchange and swelling. Thus, 

similar effects of cations reported in this work may be applicable to other clay minerals. 
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Supporting Information for Chapter 3 

Contents: Experimental details 

     Four figures 

     Three tables 

 

Figure 3-S1. Experimental setup. 1, Gas inlet and outlet; 2, PTFE liner; 3, PTFE tubes containing 

solutions and biotite flakes or powder samples. Pressure gauge and thermocouple are installed, but 

not shown.  
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S3.1. In situ pH probe calibration and measurements (adapted from our recent publication,80 

with permission from Copyright © 2014 American Chemical Society) 

In situ pH values in the reaction system were measured using a pH probe (Corr Instruments, 

TX) that can function under 1–136 atm and 20–120 oC. The tubing of the electrode was made of 

HC alloy C-276. The probe showed mV values, which could be converted to pH using calibration 

curves. Standard solutions were made using NaCl and HCl. The pH values of standard solutions 

were calculated by Geochemist's Workbench (GWB, Release 8.0, RockWare, Inc.). A linear 

relationship was found between the pH values of the standard solutions and the voltage measured 

in mV. Applying the calibration curve measured under different conditions, the in situ pH was 

calculated based on mV values measured. The error between replicates of the pH measurement 

was ± 0.01. For flake samples, our previous study found that changes were within ±0.1 for 72 

hours.20 The in situ pH for powder samples were measured using 0.5 g powder and 200 mL 

solutions. The results are shown in table: 

Table 3-S1. In situ pH of solutions containing powder samples 

In situ pH from 
1h to 24h  

in water  in 0.5 M NaCl  

K biotite 2.96 to 3.11 3.15 to 3.29 
Na biotite 3.96 to 4.00 3.35 to 3.61 
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S3.2. Reverse extraction of Na from Na-treated biotite powders  

To quantify the amount of Na in Na-treated biotite powders, 1 mg of Na-treated biotite powders 

was used to mix with 5 mL 10 mM KCl solution at 95 oC and atmospheric pressure. The solution 

was replaced with fresh 10 mM KCl solution every 2 hours. The solutions were filtered with 0.22 

µm PTFE filter, diluted 10 times, and measured using ICP-MS. Results are shown below: 

Table 3-S2. Na concentration during reverse extraction 

Times of 
Extraction  

Na (µM) 

1 22.9 
2 6.46 
3 1.65 
4 0.70 
5 0.12 

6 0.00 
total 31.83 

 

Based on these concentrations, the amount of Na in 1 g of Na-treated biotite powder was 36 mg. 

The molecular weight is 457, based on XRF results. Thus, the stoichiometric number of Na in Na-

treated biotite powder is 0.71.  
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Figure 3-S2. Contacting mode AFM images (50×50 µm) of basal surfaces for (A) biotite sample 

reacted with water, (B) biotite sample reacted with 0.5 M NaCl, (C) biotite sample reacted with 1 

M NaCl, (D) biotite sample reacted with 10 mM KCl, and (E) biotite sample reacted with 0.5 M 

NaCl +10 mM KCl, for 72 hours. The height scale is 50 nm. The surface was fractured after 

reaction in 0.5 M NaCl, while the surface was intact in other conditions.  



78 
 

 

Figure 3-S3. The K concentration during biotite flake dissolution in 0.5 M NaCl for 24 h with 

different additional K concentration. The K released from biotite was calculated by subtracting 

added K from detected concentrations.  
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Figure 3-S4. SEM images and EDX results of (A) K-biotite powder, (B) Na-treated powder, and 

(C) Na-treated powder reacted with water. All particles maintained flake shape. The Na-treated 

powder contains Na rather than K, showing that Na treatment was properly conducted. After 

reaction with water, little amount of Na and K was detected.  
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Table 3-S3. X-ray fluorescence (XRF) analysis (Siemens SRS-300) of biotite used in this study 
(in weight %).  

 Biotite  Number of ions on the basis of 10 O   
SiO2 39.0 Si 3.00 
CaO 0.10 Ca 0.005 

Al2O3 11.1 Al 1.00 
TiO2 2.19 Ti 0.12 
FeO 17.5 Fe 1.11 
MnO 0.84 Mn 0.06 
MgO 13.9 Mg 1.71 
Na2O 0.60 Na 0.08 
K2O 9.40 K 0.91 

Others 5.37   
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Reproduced with permission from [Yujia Min, James D. Kubicki, and Young-Shin Jun. 

Plagioclase Dissolution during CO2-SO2 Co-sequestration: Effects of Sulfate. Environmental 

Science & Technology, 2015, 49 (3), 1946-1954.] Copyright [2015] American Chemical Society.  
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Chapter 4: Plagioclase Dissolution during 
CO2-SO2 Co-sequestration: Effects of Sulfate 

Results of this chapter have been published in Environmental Science & Technology, 2015, 49 

(3), 1946-1954. 

Abstract 

Geologic CO2 sequestration (GCS) is one of the most promising methods to mitigate the 

adverse impact of global climate change. The performance of GCS can be affected by mineral 

dissolution and precipitation induced by injected CO2. Co-sequestration with acidic gas such as 

SO2 can reduce the high cost of GCS, but it will increase the sulfate’s concentration in GCS sites, 

where sulfate can potentially affect plagioclase dissolution/precipitation. This work investigated 

the effects of 0.05 M sulfate on plagioclase (anorthite) dissolution and subsequent mineral 

precipitation at 90oC, 100 atm CO2, and 1 M NaCl, conditions relevant to GCS sites. The 

adsorption of sulfate on anorthite, a Ca-rich plagioclase, was examined using attenuated total 

reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and then simulated using density 

functional theory (DFT) calculations.  We found that the dissolution rate of anorthite was enhanced 

by a factor of 1.36 by the formation of inner-sphere monodentate complexes between sulfate and 

the aluminum sites on anorthite surfaces. However, this effect was almost completely suppressed 

in the presence of 0.01 M oxalate, an organic ligand which can exist in GCS sites. Interestingly, 

sulfate also inhibited the formation of secondary mineral precipitation through the formation of 

aluminum–sulfate complexes in the aqueous phase. This work, for the first time, reported the 

surface complexation between sulfate and plagioclase which can occur in GCS sites. The results 
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provide new insights for obtaining scientific guidelines for the proper amount of SO2 co-injection, 

and finally for evaluating the economic efficiency and environmental safety of GCS operations. 

4.1 Introduction 

Chapter 2 and Chapter 3 discussed cation effects on the dissolution of aluminosilicate. In 

this chapter, anion effects are studied, with consideration of SO2 co-injection and enhanced oil 

recovery. Co-sequestration of SO2 during GCS can alleviate the cost of separating SO2 in flue gas 

from coal-fired power plants and reduce the amount released to the atmosphere.44, 46, 48, 128, 129 

However, the high chemical reactivity of co-injected SO2 with CO2 can trigger potential 

dissolution of pre-existing reservoir rocks and secondary mineral precipitation, resulting in 

changes in the porosity and permeability of the reservoirs. These changes can further impact the 

stability of porous formations and caprock integrity.44, 48, 128 Therefore, the feasibility of SO2 co-

injection can be affected by its compatibility with the mineralogy of storage sites.128 

Recent studies found that co-injected SO2 can form sulfuric acid in the presence of 

oxidants.43-46, 130, 131 A previous report by Xu et al. predicted a pH as low as 0, and a sulfate 

concentration as high as 0.8 M in brine (1 M NaCl) with 3.6 wt% SO2 co-injection.46 While recent 

studies have debated the extent of pH reduction in reservoirs,47, 48 discussions on the effects of 

sulfate have been limited to only the formation of sulfate minerals.132, 133 However, it is necessary 

to recognize the effects of sulfate on mineral dissolution under GCS conditions. For example, the 

dissolution rate of gibbsite was enhanced ten times by 5 mM sulfate at pH 2 and 5oC over that 

without sulfate.51 A better understanding of the effects of sulfate on mineral dissolution under 

conditions relevant to GCS is critical to establish allowable amounts of SO2 co-injection. 

Furthermore, sulfate is also one of the most naturally abundant anions in GCS sites. A maximum 



84 
 

sulfate concentration of 1000 mg/L (i.e., 0.01 M) in oil field brine has been reported.42  Thus, even 

without SO2 co-sequestration, sulfate exists in significant amounts which can strongly affect 

mineral dissolution during GCS. However, experimental studies simulating GCS conditions and 

focusing on the role of sulfate on mineral dissolution are sparse. 

In GCS sites, plagioclases often exist in formation rocks as well as caprocks.13 In this study, 

plagioclase was chosen as representative of rocks in GCS sites, because it is one of the main 

components of sandstones and basalts.10, 13 Moreover, Ca-rich members of plagioclase, such as 

anorthite, play an important role in calcium release in geochemical processes, and calcium is 

important for mineral trapping of injected CO2 during GCS.65, 66 To the best of our knowledge, 

there has been no experimental work on the effects of sulfate on plagioclase dissolution under 

conditions relevant to GCS sites.  

Furthermore, predicting the effects of sulfate on plagioclase dissolution is not 

straightforward. It is expected that sulfate will form aqueous phase complexes with metal cations, 

such as Al,134 and increase the apparent solubility of plagioclase and secondary precipitates. These 

effects will enhance the dissolution of plagioclase. However, the potential effects of sulfate surface 

adsorption cannot be ignored. Previous studies reported inhibition effects of sulfate on the 

dissolution of Fe (III) (hydr)oxides, and predicted that sulfate would have similar inhibition effects 

on aluminosilicates.135, 136 On the contrary, several studies reported that sulfate can enhance the 

dissolution of gibbsite,49-52 and predicted that potential enhancing effects of sulfate may be found 

on other aluminum containing minerals.51 Thus the prediction by previous studies using iron 

hydroxides differed from the prediction by previous studies related to gibbsite, because the effects 

of adsorption depend on the type of surface complexation.  
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In general, the inhibition effects of sulfate were attributed to the formation of binuclear 

bidentate surface complexes between sulfate and metal on mineral surfaces.135, 136 Because the 

binuclear surface complexes formed by divalent ligands are uncharged, they do not enhance 

surface protonation.135 In addition, the simultaneous detachment of two metal centers from the 

surface needs to overcome a high activation energy.136 As a consequence, the mineral dissolution 

can be inhibited. In contrast, the formation of a mononuclear complex will lead to enhancing 

effects by causing nucleophilic interactions with metal ions and facilitating surface protonation.135, 

137 However, information about the type of sulfate adsorption on the plagioclase surface is lacking. 

As a consequence, the prediction of sulfate effects on plagioclase dissolution is challenging. 

Another potential effect of sulfate on plagioclase dissolution is competing adsorption with 

carboxylic acids. The dissolution of plagioclase can be strongly affected by carboxylic acid ligands, 

including oxalate.53 Carboxylic acids are abundant in oil and gas reservoirs,42 which are potential 

sites for GCS and enhanced oil recovery (EOR). A concentration of as much as 5.6 mM oxalate in 

subsurface water has been reported.42 Sulfate adsorption is known to compete with low molecular 

weight carboxylic acids adsorption in soil environments.138 Hence, sulfate could affect plagioclase 

dissolution in GCS sites by competing adsorption with carboxylic acids. However, the effects of 

sulfate co-existing with carboxylic ligands on plagioclase dissolution have not been systematically 

investigated yet. 

This study, for the first time, investigated the type of sulfate adsorption on plagioclases, 

using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and it 

elucidated the effects of sulfate surface adsorption on plagioclase dissolution under GCS 

conditions. Furthermore, we studied the influence of oxalate on the surface adsorption of sulfate 

and adsorption’s effects on plagioclase dissolution. This new information can be helpful when 
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predicting plagioclase dissolution with high concentrations of sulfate. The plagioclase dissolution 

can cause significant changes in the permeability of rocks, if it takes place at pore throats of 

reservoir rocks. Therefore, the outcomes can be useful in accurately evaluating the subsequent 

wettability, porosity, and permeability changes, and in predicting the transport of CO2. Ultimately, 

this study contributes to our understanding of the role of sulfate in GCS sites and in predicting the 

impact of SO2 co-injection with CO2. 

4.2 Experimental Methods 

4.2.1 Minerals and chemicals 

All chemicals used in this study were at least ACS grade. All the solutions were prepared 

using ultra purified water (Barnstead, resistivity > 18.2 MΩ•cm). Anorthite samples (Miyake 

Island, Izu Archipelago, Tokyo Prefecture, Japan) were thoroughly characterized using high 

resolution X-ray diffraction (HR-XRD) in our previous study.79, 95, 105 The specimen was coated 

with a thin layer of clay. To remove the clay coating, the specimen was crushed to mm size, and 

the specimen pieces without coating were picked out manually. Selected specimen pieces were 

ultra-sonicated in ultra-purified water for 15 min and then dried in nitrogen. Finally, specimen 

pieces were ground, and sieved without further treatment. Particles with sizes between 53 to 106 

microns were used. Using X-ray fluorescence (Table 4-S1) and the BET method (AX1C-MP-LP, 

Quantachrome Instruments), the chemical formula and specific surface area were determined to 

be Na0.04Ca0.95Al1.94Si2.06O8 and 0.1707 m2/g.  

4.2.2 Dissolution experiments at simulated GCS conditions 

Dissolution experiments were conducted in a 300 mL high pressure and high temperature 

reactor (Parr Instruments, Moline, IL) used in our previous studies.79, 95, 105, 120, 139 A schematic 
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diagram of the reaction system setup is available in the Supporting Information (Figure 4-S1). The 

conditions (90oC, 100 atm CO2, and 1 M NaCl) are within the range of conditions observed in 

GCS sites (31–110oC, 73.8–600 atm, and 0.01–2 M NaCl).10  For example, the typical conditions 

are 65oC and 150 atm in the Frio formation,34 and 63oC and 140 atm in the Weyburn field site.81  

These conditions are also comparable with the 30–130oC and 90 atm values used in a recent 

laboratory study about water–plagioclase interactions without sulfate under GCS conditions.82 A 

sulfate concentration of 0.05 M was used to simulate the sulfate concentration during SO2 co-

injection. The SO2 in CO2 emissions from most power plants in the US is between 0.5 and 1 

vol%.128 According to Crandell et al.,47 the co-injection of 1 vol% SO2 would result in an 

equilibrium sulfate concentration of 0.1 M. Considering that sulfate concentration is also affected 

by the heterogeneity of specific field sites’ mineralogies, especially the carbonate minerals in 

injection sites, 0.05 M sulfate in the current work is a conservatively appropriate starting 

concentration to investigate the effect of sulfate on plagioclase dissolution. An oxalate 

concentration of 10 mM was used to simulate the carboxylic acid ligands’ concentration in GCS 

sites. In addition, oxalate can represent ligands with similar structures, such as malonate, with a 

concentration of 24.9 mM reported.42 This oxalate concentration is close to the 5.6 mM reported 

in natural conditions, although a little bit higher than the maximum concentration. Furthermore, 

higher organic concentrations can occur after CO2 injection due to the superb solvent capability of 

scCO2 for organic compounds.33 A recent study also reported that the concentration of organic 

compounds was increased by a factor of 100 after CO2 injection.34  

To investigate the effects of sulfate on plagioclase dissolution in a far-from-equilibrium 

system, a low solid/liquid ratio of 0.05 g/L was used. Then, to study the effects of sulfate on 

secondary mineral precipitation, a high solid/liquid ratio of 0.25 g/L was applied. Although the 
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solid to liquid ratio can be different from real field site situations, the knowledge obtained here 

can help us elucidate the mechanisms of sulfate–plagioclase interactions.  

A sampling tube equipped with a 2.2 μm HC alloy-276 filter prevented solid loss during in 

situ sampling. A Teflon® liner was installed in the reactor to avoid contamination. The solution 

was stirred using a magnetic stirrer at 600 rpm. For each sample, 1–2 mL of solution was collected 

and immediately acidified with 20 μL 67–70% nitric acid (BDH). All solution samples were 

analyzed with an inductively coupled plasma-optical emission spectrometer (ICP-OES) (Perkin 

Elmer, Optima 7300DV). The solubility of CO2 was calculated according to a published model by 

Duan and Sun.83 The THERMO database in Geochemist's Workbench (GWB, Release 8.0, 

RockWare, Inc.) was used, which uses the B-dot equation for the calculation of activity 

coefficients of aqueous species. In situ pH values in the reaction system were obtained using a 

special pH probe (Corr Instrument, TX) that can function under 1–136 atm and 20–120 oC. In 80 

hours, no significant change (± 0.02) in pH was observed at the highest solid to liquid ratio applied 

in this study. The error between replicates of pH measurement was ± 0.01. The pH of the 

experimental system without the addition of sulfate was measured to be 3.10. Considering the 

effects of SO2 and pre-existing highly soluble minerals, such as carbonate and feldspar,14 the 

choice of pH 3.1 can be a starting point to achieve a better understanding of the effect of sulfate 

on plagioclase dissolution. The method of pH probe calibration is described in the Supporting 

Information and in our previous study using similar conditions.110  

4.2.3 Fourier transform infrared (FTIR) spectroscopy analyses and dynamic 
light scattering measurements 

To investigate which types of surface complexes are formed between sulfate and mineral 

surfaces, FTIR analyses are often applied.140, 141 Attenuated total reflectance (ATR)-FTIR, which 
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allows measurement without drying the sample, is usually used to avoid unintended changes of 

surface complexes by drying.142, 143 The ATR-FTIR spectra were collected using a Thermo 

Scientific, Nicolet Nexus 470 spectrometer and a horizontal Ge ATR crystal (Pike Technologies). 

To magnify the specific surface area, anorthite was ground using a high energy ball mill (SPEX 

SamplePrep) with an alumina ceramic vial. The ground powder was suspended in ultra-purified 

water and centrifuged at 5000 rpm for 10 min. The volume mean size of particles in the supernatant 

was 520 nm, measured by dynamic light scattering (Malvern, Zetasizer, nano series) immediately 

after ultrasonication. The measurement was done within 3 min. The preparation of anorthite 

deposition was similar to previous studies.141-143 Briefly, the supernatant was evenly spread on the 

Ge crystal and allowed to dry in nitrogen gas. We did not expect any changes in composition 

during drying due to the slow reaction kinetics of feldspar.71 The dried deposit was rinsed with 

ultra-purified water to remove loosely attached particles, so that the deposit that remained was 

stable and the background of the spectra would not be altered during changing solutions. Before 

each measurement, the film was coated with a different solution. 

The solutions, also used in dissolution experiments, were (a) 1 M NaCl, (b) 0.89 M NaCl 

+ 0.05 M Na2SO4, (c) 0.98 M NaCl + 0.01 M Na2C2O4, and (d) 0.88 M NaCl + 0.01 M Na2C2O4 

+ 0.05 M Na2SO4. All solution ionic strengths are maintained as 1 M. The pH of the solutions was 

tuned to 3.1, which is same as the in situ pH under 90oC, 100 atm CO2, and 1 M NaCl, using trace 

metal hydrochloride acid (J.T.Baker). The pH after measurements remained at 3.1. An average of 

400 scans with a resolution of 2 cm-1 was used. The spectrum with solution (a) was used as 

background and was automatically subtracted when collecting other spectra. Spectra were 

deconvoluted using the Omnic 8.2. Gaussian function, which performs better than Voigt and 

Lorentizians, was used to simulate the peaks. To show the effects of sulfate adsorption on the zeta-
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potential (similar to surface potential) of anorthite particles, the ground particles were well mixed 

with the solutions described above and injected into the zeta cell (DTS1060C, Malvern Instruments) 

after ultrasonication. Zeta-potentials were measured immediately using DLS.  
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4.2.4 DFT calculations 

 

Calculated Frequency Intensity Mode 
981 462 S–O– (Al) 
997 568 Al–O– (Si) 

1074 244 S–O– (symm) 
1115 417 S–O– (symm), S–O–(Al), S–O–H  
1140 327 S–O– (asymm), S–O–H 
1212 302 S–O– (asymm), S–O–H 
1268 154 S–O–H, Si–O–H 
1451 157 S–O–H, Si–O–H 

 

Figure 4.1. (Top) (Si(OH)3)3Al-HSO4
- and (Si(OH)3)3(OH2)2Al-HSO4

- surface models. (Middle) Calculated 
frequencies of Q3-[4]Al-HSO4

-·13(H2O). (Bottom) Correlation between observed and calculated frequencies. 
Lines are linear fittings of frequencies. Peaks at 981, 997, 1074, 1115, 1140, 1212, 1268, and 1451 cm-1 
were predicted, corresponding to symmetric and asymmetric S–O stretching vibrations and S–O–H 
vibrations. The tetrahedral model (R2 = 0.999, slope = 0.91, intercept = 88 cm-1) showed a better correlation 
with ATR-FTIR observations than the octahedral model (R2 = 0.989, slope = 0.84, intercept = 183 cm-1). 
Peaks in high frequencies were not observed. 
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DFT calculations were performed using the program Gaussian 09.144 The B3LYP  

exchange-correlation function,145, 146 was used along with the 6-31G(d) basis set.147 Surface 

models of the tetrahedral Al, (Si(OH)3)3Al, and octahedral Al, (Si(OH)3)3(OH2)2Al, were derived 

from Criscenti et al..148 Models of the HSO4
- surface complexes were constructed manually, using 

the Visualizer module of Materials Studio (Accelerys Inc., San Diego, CA). To account for 

solvation effects (i.e., H-bonding) on the vibrational frequencies of the HSO4
-, 10 and 13 H2O 

molecules were added to the (Si(OH)3)3Al-HSO4
- and (Si(OH)3)3(OH2)2Al-HSO4

- surface models, 

respectively (Figure 4.1). Atoms were allowed to freely relax during energy minimizations without 

constraint or imposition of symmetry. Analytical frequencies were calculated and scaled by 

0.9614,149 to account for anharmonicity and computational error.150 

4.2.5 Secondary mineral phase identification  

After the reaction at 90oC and 100 atm CO2, solid samples were collected, rinsed with 

ultrapure deionized water and ethanol, and dried in nitrogen. Scanning electron microscopy and 

energy-dispersive x-ray spectroscopy (SEM-EDX, Nova NanoSEM 230) were used to observe the 

morphology and the elemental compositions of precipitates. Samples were coated with AuPd to 

increase their conductivity, and 10.00 kV was the electron accelerating voltage. The working 

distance was 5−6 mm. High resolution transmission electron microscopy (HR-TEM, JEOL JEM-

2100F field emission) was also used to identify the ex situ phase of the secondary minerals. Solid 

samples after reactions at 90oC and 100 atm CO2 were sonicated in ethanol for 10 min to detach 

precipitates. A drop of suspension was placed on a Formar/carbon coated-Cu grid, dried, and stored 

under nitrogen gas. By matching the d-spacings in electron diffraction patterns of samples, 

potential phases of secondary minerals were identified. There are, however, caveats that some 
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small quantity of secondary mineral phases or poorly crystalline phases cannot be detected by this 

identification procedure, and the ex situ phase can be different from the in situ phase. 

4.3 Results and Discussion 

4.2.1 Effects of sulfate on plagioclase dissolution 

 

Figure 4.2. Dissolved ion concentrations at 90oC, 100 atm CO2, and in 1 M NaCl. In situ pH values were 
all controlled at 3.1. Error bars are the ±% difference between dissolution rates of duplicate experiments. 
At a solid-to-liquid ratio of 0.05 g/L, the addition of 0.05 M sulfate enhances dissolution. With the addition 
of 0.01 M oxalate, sulfate does not show any effect. At a solid-to-liquid ratio of 0.25 g/L, similar enhancing 
effects were observed in the first 30 hours. The blue line shows the linear fitting of Si data in first 30 hours. 
Beyond 30 hours, without sulfate, the dissolution rate slows down. In contrast, with sulfate, the slope does 
not change within 80 hours. The observation is attributed to the formation of aqueous phase Al–sulfate 
complexes, which inhibit secondary precipitation and enhance apparent dissolution. Rates and 
concentrations of other elements are available in Table 4-S2 and 4-S3. 

Within 80 hours, the Si concentrations increased with time according to zeroth order 

kinetics (Figure 4.2). The dissolution rates based on Si, Ca, and Al are available in the Supporting 

Information (Table 4-S2). The dissolution of Ca, Al, and Si were congruent, except at the high 

solid- -to-liquid ratio (0.25 g/L), in which secondary precipitation formed. For other experiments, 

good linearity was maintained from 5 to 80 hours, indicating that the dissolution rates reached 

steady-state. The slope was used to calculate the dissolution rates. The rate of anorthite dissolution 

(based on the Si release rate of 1.82 × 10-7 mol·m-2·s-1, divided by the stoichiometric ratio of Si, 
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2.06) without sulfate ions was 8.86 × 10-8 mol·m-2·s-1, which is comparable with a previous study 

by Oelkers et al. under 45–95 oC and pH 2.4–3.2.71 On the other hand, 0.05 M sulfate was found 

to have a 36% enhancement on the dissolution rate of anorthite.  

This enhancing effect supports the prediction of previous studies using gibbsite.51 However, 

the extents of enhancements are different. Bloom and Erich reported 50 times faster dissolution of 

gibbsite in the presence of sulfate than of nitrate at 25 or 40oC.151 Packter and Dhillon found 15–

30 times faster dissolution in the presence of sulfate than that in perchloric acid solution at 20 to 

65oC.50 However, as pointed out in Ridley et al.’s study,51 these studies did not maintain the same 

pH and ionic strength.  In our systems, in situ pH and ionic strength were maintained at 3.1 and 

1 M ionic strength. Ridley et al. reported 10 times faster dissolution in the presence of sulfate than 

in the presence of chloride at 5oC at pH 2 and 0.1 m ionic strength, and these effects were related 

to aqueous complexation between sulfate and Al3+(aq).51 In contrast, in our experimental system, 

reactions were far-from-equilibrium. According to thermodynamic calculations using GWB, the 

chemical affinity was greater than 98.9 kJ/mol for all the experiments in this study. In this regime 

(ΔG/RT < -4.6), the dissolution rate is not a function of the saturation ratio of the system. This is 

because the thermodynamic term in the dissolution rate equation, expressed by {1-exp(ΔG/RT)}n, 

is almost equal to 1 in our experimental system, where n is a positive constant given by empirical 

data fitting.88, 152 Therefore, aqueous complexation cannot explain our observations. Dietzel and 

Bohme observed similar effects of sulfate on gibbsite, but they explained the effects using surface 

adsorption.49 We hypothesized that the enhancing effect we observed was also owing to sulfate 

adsorption on mineral surfaces. In previous studies, the formation of binuclear bidentate surface 

complexes between sulfate and iron hydroxides was used to explain the inhibition effects.135, 136 

However, binuclear complexes are not expected on plagioclase because there are no Al sites close 
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to each other, due to the Al avoidance principle.153 On the other hand, monodentate surface 

complexes can enhance dissolution by increasing the pH of zero net proton charge (pHpznpc, the 

condition when the surface concentration of adsorbed proton is equal to surface concentration of 

adsorbed OH-.), facilitating surface protonation.137 Thus it enhances proton promoted dissolution, 

which is the dominant dissolution mechanism of plagioclase at pH 3.38 Therefore, the formation 

of monodentate complexes between sulfate and anorthite could occur. To test this hypothesis, zeta 

potential analyses, ATR-FTIR experiments, and molecular simulations were conducted and are 

described in the following section. 

4.2.2 Adsorption of sulfate on anorthite surfaces 

To test the adsorption of sulfate on anorthite, we first conducted zeta potential analyses of 

samples. The zeta potential of the anorthite system in the presence of sulfate at pH 3.1 was found 

to be 0.23 mV, compared to 4.1 mV in the absence of sulfate. This difference indicates that the 

adsorption of sulfate decreased the surface potential of the anorthite. Owing to the specific 

adsorption of sulfate, the fixed surface charge became less positive. The binding of sulfate led to 

the release of OH- from anorthite surfaces, which increased the pHpznpc. This kind of anion 

adsorption increases the concentration of surface protons,137 and can change the apparent pH 

dependency and facilitate dissolution.  



96 
 

 

 

Figure 4.3. (Top) ATR-FTIR spectra of anorthite contacted with 0.89 M NaCl + 0.05 M Na2SO4 at pH 3.1. 
Spectra of anorthite contacted with 1 M NaCl was used as background. By deconvolution of peaks in the 
spectrum, the peak of aqueous sulfate at 1100 cm-1 was shown. Peaks at 975, 1079, and 1122 cm-1 were 
attributed to the monodentate surface complexes. Shoulders at 995 and 1185 cm-1 were attributed to the 
effects of Na and protons. The spectrum of anorthite is available in Supporting Information. (Bottom) The 
red line is the ATR-FTIR spectrum of anorthite contacting with 0.88 M NaCl + 0.05 M Na2SO4 + 0.01 M 
Na2C2O4 at pH 3.1. The spectrum of anorthite contacting with 0.98 M NaCl + 0.01 M Na2C2O4 was used 
as background. The blue line is the spectrum of a solution of 0.89 M NaCl + 0.05 M Na2SO4 at pH 3.1. A 
solution of 1 M NaCl was used as background. The red and blue lines are similar: in each only the main 
peak in 1100 cm-1 was observed, which indicates that sulfate adsorption was suppressed by oxalate. 
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The specific type of surface complexation was investigated using ATR-FTIR. According 

to recent studies,141-143 two vibrations of S–O bonds are accessible: symmetric stretching and 

asymmetric stretching. For aqueous sulfate, symmetric stretching is not active, and only 

asymmetric stretching at 1100 cm-1 is shown. If sulfate is outer spherically adsorbed, symmetric 

stretching at 975 cm-1 will be active. If sulfate ions form monodentate complexes with metal 

cations on mineral surfaces, asymmetric stretching will split into two bands. For goethite or Al 

oxides, the two bands are located at 1070 and 1030 cm-1.141 We observed peaks at 1100 and 975 

cm-1, which indicated aqueous sulfate and outer spherically complexed sulfate (Figure 4.3). We 

also observed broadening of the 1100 cm-1 peak. By deconvolution, two peaks at 1079 and 1122 

cm-1 were shown. These peaks suggest monodentate complex formation. There are also two 

shoulders at 995 and 1185 cm-1. These peaks are comparable with 1000 and 1170 cm-1 shoulders 

observed in sulfate–goethite systems,143 which are attributed to monodentate HSO4
- and NaSO4

- 

adsorption on anorthite surfaces. This attribution is consistent with the low pH 3.1 and high 

concentration of Na in our solutions.  

Because recent experimental studies used goethite or Al oxide instead of plagioclase,141, 143 

we conducted simulation work to confirm our ATR-FTIR observations. Simulations for 

monodentate and bidentate surface complexation of sulfate with Al sites on the anorthite surface 

were conducted.  Bidentate, mononuclear surface complexes were found to be unstable, forming 

monodentate, mononuclear surface complexes during energy minimization. This result is 

consistent with the fact that we did not observe the existence of bidentate, mononuclear surface 

complexes from ATR-FTIR spectra. Therefore, results obtained using monodentate surface 

complexation models were compared with ATR-FTIR observations. The scaled calculated 

frequencies from the DFT calculations (981, 997, 1074, and 1115 cm-1, corresponding to 
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symmetric and asymmetric S–O stretches) for the tetrahedral (Si(OH)3)3Al–HSO4
- model show a 

good correlation (Figure 4.1 Bottom, R2 = 0.999, slope = 0.91, intercept = 88 cm-1) with our 

observed frequencies (Figure 4.1C, 975, 995, 1079, and 1122 cm-1), despite the fact that the high 

frequencies in the calculated results (1212, 1268, and 1451 cm-1, corresponding to S–O–H 

vibrations) were not observed. In a recent study of phosphate adsorption on goethite, the high 

frequencies were also not observed.154 Furthermore, the octahedral (Si(OH)3)3(OH2)2Al–HSO4
- 

model resulted in a poorer correlation (R2 = 0.989, slope = 0.84, intercept = 183 cm-1) of calculated 

versus observed frequencies. The S–O–H bending modes in this model were different from the 

tetrahedral model —1224 and 1406 cm-1. The differences are likely due to H-bonding differences 

between the models, which may explain why the higher frequency modes are not observed. The 

models produce only one H-bonding configuration, but the samples may contain a wide variety of 

H-bonding configurations that tends to broaden the mode intensity. 

These simulation results provide direct support for our hypothesis that sulfate formed 

monodentate complexes with tetrahedral Al sites (although octahedral Al sites cannot be 

completely ruled out without 27Al NMR studies) on the anorthite surface. Based on ATR-FTIR 

data and DFT calculation results, we concluded that the adsorption of sulfate on anorthite is 

monodentate. Previous studies using gibbsite suggested that monodentate complexation by 

bivalent anions can enhance dissolution.49, 137 This conclusion suggests that sulfate is likely to 

enhance plagioclase dissolution under atmospheric conditions. It is also consistent with the 

enhanced dissolution effects we observed under conditions relevant to GCS.  

There is a caveat that the FTIR and DLS analysis were conducted under room temperature 

and atmospheric pressure. Because references about the relationship between sulfate adsorption 

on anorthite and temperature are generally not available, we cannot estimate the potential 
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differences between the high pressure and high temperature situations and our FTIR and DLS 

observations under atmospheric conditions. However, as the experimental observations and 

simulated results of adsorption are consistent with the promoted dissolution, we suggest that the 

mechanisms can be similar under GCS conditions.  

4.2.3 Effects of sulfate on plagioclase dissolution in the presence of oxalate  

Further evidence for sulfate adsorption was observed in the presence of oxalate. The 

adsorption of sulfate on anorthite can compete with the adsorption of oxalate, which can co-exist 

in GCS sites. A total oxalate concentration of 0.01 M was found to enhance the dissolution of 

anorthite by a factor of 7.02, compared with 1.36 by 0.05 M sulfate (Figure 4.2). With a much 

weaker dissolution promotion, the competing adsorption of sulfate on reactive surface sites will 

surely weaken the effects of oxalate. However, with coexistence of sulfate and oxalate, we 

observed a factor of 7.27, which is similar to the 7.02 with only oxalate. This observation indicates 

that sulfate does not compete with oxalate on the reactive surface sites, probably because oxalate 

forms bidentate mononuclear complexes and a five member ring with aluminum,155 which would 

be much more stable than monodentate complexing by sulfate. This explanation may also explain 

the much stronger dissolution enhancement induced by oxalate than sulfate (Figure 4.2). Because 

sulfate is too weak to compete with oxalate, its adsorption is mitigated by a large concentration of 

oxalate. This reasoning is consistent with our ATR-FTIR observations that only the peak of 

aqueous sulfate at 1100 cm-1 can be detected in presence of oxalate (see Figure 4.3), which 

indicates that adsorption of sulfate on anorthite was suppressed by oxalate. Competing adsorption 

indicates that the observed enhanced dissolution effects of sulfate were due to interactions with 

plagioclase surfaces. Sulfate and oxalate are absorbed on the same sites, which are suspected to be 
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aluminum sites.53 Therefore, the role of sulfate in plagioclase dissolution is highly dependent on 

the relative abundance of organic ligands in CO2 storage sites. 

4.2.4 Effects of sulfate on secondary mineral precipitation  

 

Measured d-spacing boehmite Ref.156 Crystal plane 
6.12 6.11350 200 
3.17 3.16541 210 
3.06 3.05675 400 
2.36 2.35657 410 
2.33 2.34439 301 
2.05 2.03783 600 
1.86 1.86026, 1.85000 501, 020 
1.76 1.77070 220 
1.67 1.66202 511 

Figure 4.4. Scanning electron microscopy image of anorthite particle after 80 hours reaction in 1 M NaCl 
at 90oC and 100 bar CO2. Small particles were found on the surface of bulk particles. The energy dispersive 
x-ray spectroscopy analysis of the background (red arrow) and a small particle (yellow arrow) showed that 
the Al/Si ratios were 0.86 and 1.52 respectively. By matching the electron diffraction pattern, the small 
particle was identified as boehmite (γ–AlOOH). The Si signal likely results from background. 

To investigate the effects of sulfate on subsequent mineral precipitation, a higher solid-to-

liquid ratio of 0.25 g/L was applied, instead of the 0.05 g/L used above. For the high solid-to-liquid 

ratio experiments, we focused on the effect of anorthite reactions in the presence and absence of 

sulfate with no oxalate present. In the absence of sulfate, the net ion release rates decreased 
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significantly as the reaction time increased to 80 hours (Figure 4.2C). During the first 30 hours of 

reaction, the linearity of Si concentration as a function of time is generally good. The sulfate was 

found to increase the net Si release rate by a factor of 1.4, which is consistent with the 36% 

enhancement observed in low solid-to-liquid ratio conditions. Between 40 and 80 hours, the net 

ion release rates decreased rapidly. The significant decrease of the net ion release rates could be 

attributed to the formation of secondary mineral precipitates. As a high solid-to-liquid ratio was 

applied, the activities of aqueous metal cations could reach a higher level. Although the activity of 

cations is not high enough to significantly decrease the chemical affinity, they could lead to 

formation of secondary mineral precipitation if saturation was reached. The accumulated 

concentration of aluminum increased slower than the concentration of silicon (Table 4-S2), which 

suggests the formation of precipitation with an Al/Si ratio larger than 1. By SEM and TEM data, 

we identified boehmite as the precipitate phase formed on the anorthite surface (Figure 4.4). 

Although GWB calculations predict that boehmite is under-saturated under our conditions, the 

anorthite surface could act as a substrate for heterogeneous nucleation, which requires a lower free 

energy than homogeneous nucleation.157 Formation of boehmite and kaolinite was suggested in 

different studies about CO2–water–plagioclase interactions under GCS conditions.65, 158-160 While 

kaolinite has a Al/Si ratio equal to 1, boehmite contains only aluminum, and is thought to form 

earlier than kaolinite.159 In this study, no evidence for the formation of kaolinite or other precipitate 

phases was identified. However, the existence of an amorphous phase which cannot be identified 

by electron diffraction is possible. The decreased release rates of Ca and Si can also result from 

the surface coverage of secondary precipitation, surface adsorption, or incorporation into boehmite. 

A recent work on anorthite dissolution reported the incorporation of Si in boehmite.159  
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Interestingly, in the presence of sulfate, the dissolution rate did not change significantly 

within 80 hours, which is attributed to the absence of secondary precipitation. Sulfate could form 

aqueous complexes with aluminum, decrease its activity, and thus lower the apparent saturation 

indices of precipitates. At 90oC, 100 atm CO2, 1 M NaCl, and 0.05 M sulfate, more than 92% of 

aluminum forms aluminum–sulfate complex (Figure 4-S2). No precipitation was identified in 

experiments with sulfate. As a result, with increasing concentration of dissolved Al cations, the 

aqueous complexation between Al cations and sulfate can strongly affect the apparent dissolution 

rate of plagioclase. 

4.4 Environmental Implications 

In this study, for the first time, we have reported that sulfate forms monodentate surface 

complexes with Al sites on anorthite surfaces at pH 3.1 and 1 M NaCl concentration. The 

adsorption of sulfate can facilitate the dissolution of anorthite. However, both of these effects will 

be suppressed in the presence of oxalate. For high solid-to-liquid ratios, the effects of sulfate on 

apparent plagioclase dissolution are dominated by the formation of aqueous phase complexes with 

Al3+(aq). This new information indicates that both the concentration of sulfate and the 

concentration of organic ligands, such as oxalate, need to be known in order to better predict the 

dissolution of plagioclases. Plagioclase dissolution can result in significant changes in the 

permeability of rocks, particularly if it occurs in pore throats, as a previous study pointed out that 

most of the pore throats in sandstone have nm sizes.102 Plagioclase dissolution and subsequent 

secondary precipitation could also lead to changes in wettability,161 which is a critical factor 

affecting the transport of CO2. Thus, the findings here could be helpful in predicting the transport 

of CO2 and the impact of SO2 co-sequestration. They may also be applicable to other aluminum-

containing minerals and studies of other areas which involve sulfate and plagioclases, including 
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corrosion caused by acid rain, acid mine drainage, interaction between seawater and oceanic ridges, 

and reactions on ancient Mars, where sulfuric acid and plagioclases were abundant.  

Acknowledgments 

This work is supported by the National Science Foundation’s CAREER Award (EAR-1057117) 

and Washington University’s Consortium for Clean Coal Utilization and. We would like to 

acknowledge Dr. Yi Yang for training the reaction system and valuable discussion, Ms. Jessica 

Ray for HR-TEM analysis, and Ms. Qingyun Li for SEM-EDX analysis. Computational support 

was provided by the Research Computation and Cyberinfrastructure group at the Pennsylvania 

State University. 

  



104 
 

Supporting Information for Chapter 4 

Contents: Experimental details 

     Three figures 

     Three tables 

S4.1. In situ pH measurements 

In situ pH values in the reaction system were obtained using a pH probe (Corr Instruments, 

TX). The glass-based probe was coupled with an Ag/AgCl reference electrode that can function 

under 1–136 atm and 20-120oC. The tubing of the electrode was made of HC alloy C-276. The 

method of pH probe calibration was described in our previous study using similar conditions.110 

Standard solutions made by NaCl and HCl were used to make calibration curves. The pH values 

of standard solutions were predicted by Geochemist's Workbench (GWB, Release 8.0, RockWare, 

Inc.). Combined with the mV values measured by the probe, a linear function relationship was 

found between the pH and mV values. Based on the mV values, the pH of the solutions can be 

calculated. In 120 hours, no significant change (± 0.05) in pH was observed with the highest solid-

to-liquid ratio applied in this study. The error between replicates of pH measurement was between 

± 0.01. The pH of the experiment without the addition of sulfate was measured to be 3.10.  
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Table 4-S1. X-ray fluorescence (XRF) analysis of anorthite used in this study (in weight %). 

 Anorthite 

SiO2 44.09 
CaO 19.07 

Al2O3 35.13 
TiO2 0.00 
Fe2O3 0.57 
MnO 0.00 
MgO 0.64 
Na2O 0.43 
K2O 0.01 
P2O5 0.00 

Loss on ignition 0.06 
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Table 4-S2. Dissolution rates of different elements and error range between replicates. (R in mol 
× m-2 × s-1) 

Experiment 
RAl 

× 
107 

Erro
r ±% 

RCa × 
107 

Error 
±% 

RSi × 
107 

Erro
r ±% 

R2 Al/Si Ca/Si 

Solid/Liquid = 
0.05 g/L in 1 M 
NaCl 

1.80 0.8 9.65 0.1 1.82 7.0 0.9895 0.99 0.53 

Solid/Liquid = 
0.05 g/L in 0.89 
M NaCl + 0.05 
M Na2SO4 

2.17 1.3 1.13 1.8 2.47 2.2 0.9980 0.88 0.46 

Solid/Liquid = 
0.05 g/L in 0.98 
M NaCl + 0.01 
M Na2C2O4 

12.7 5.3 5.72 5.0 12.7 4.2 0.9956 1.00 0.45 

Solid/Liquid = 
0.05 g/L in 0.88 
M NaCl + 0.01 
M Na2C2O4 + 
0.05 M Na2SO4 

12.7 0.4 6.98 0.6 13.2 0.3 0.9999 0.96 0.53 

Solid/Liquid = 
0.25 g/L in 1 M 
NaCl 

1.01 11.2 0.59 10.8 1.25 4.0 0.9399 0.81 0.47 

Solid/Liquid = 
0.25 g/L in 0.89 
M NaCl + 0.05 
M Na2SO4 

2.79 11.5 1.45 8.4 3.20 5.6 0.9952 0.87 0.45 
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Table 4-S3. Concentrations of Al, Si, and Ca in aqueous samples. (Concentrations in µM) 

Solid/Liquid = 0.05 g/L  
1 M NaCl 

Solid/Liquid = 0.05 g/L  
0.89 M NaCl + 0.05 M Na2SO4 

Hours Al (µM) Si (µM) Ca (µM) Hours Al (µM) Si (µM) Ca (µM) 

5 22.85 18.29 14.00 5 14.39 14.79 6.50 

10 35.13 26.16 12.92 10 22.24 23.35 9.47 

20 45.63 35.01 19.26 20 40.42 43.67 20.47 

30 58.77 49.61 26.85 30 53.20 57.58 25.72 

45 77.41 71.86 40.37 45 72.07 76.35 33.55 

55 84.08 72.17 49.88 55 85.91 93.34 39.39 

70 100.54 87.16 49.71 72.5 103.33 112.40 51.95 

80 106.33 96.37 52.84 79.75 119.89 131.44 60.68 

Solid/Liquid = 0.05 g/L  
0.98 M NaCl + 0.01 M Na2C2O4 

Solid/Liquid = 0.05 g/L  
0.88 M NaCl + 0.01 M Na2C2O4 + 0.05 M Na2SO4

Hours Al (µM) Si (µM) Ca (µM) Hours Al (µM) Si (µM) Ca (µM) 

5 57.41 49.25 19.35 5 43.90 45.37 31.74 

15 136.12 130.01 57.02 10 83.49 86.57 58.07 

25 223.79 207.49 91.49 22 175.13 180.51 100.30 

40 330.34 316.96 136.30 30 241.23 247.81 142.53 

50 433.88 425.89 192.52 46.5 366.21 381.45 212.30 

Solid/Liquid = 0.25 g/L  
1 M NaCl 

Solid/Liquid = 0.25 g/L  
0.89 M NaCl + 0.05 M Na2SO4 

Hours Al (µM) Si (µM) Ca (µM) Hours Al (µM) Si (µM) Ca (µM) 

5 58.99 58.76 22.39 5 92.94 111.76 33.05 

10.5 88.78 90.74 28.89 10 120.44 130.99 48.97 

20 146.15 147.41 54.95 20 217.52 236.16 90.32 

30 197.81 204.31 77.39 30 348.11 372.79 149.93 

45 243.34 267.37 102.58 45 512.40 537.32 230.84 

55 268.82 295.63 118.90 55 605.33 647.41 285.18 

73 265.54 317.12 130.58 70 686.61 760.30 338.62 

80.25 264.28 334.28 144.38 80 792.99 865.55 384.88 
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Figure 4-S1. Experimental setup. 1, In situ sampling tube; 2, Cooling loop; 3, pH probe; 4, Stirrer; 

5, Thermocouple; 6, Teflon liner.  

 

 

Figure 4-S2. The fraction of aluminum species at different pH (0 < pH < 5) in the presence of 0.05 

M sulfate. All calculations were conducted using GWB at 100 bar CO2 and 1 M NaCl, and 90oC. 

More than 92% of Al is complexed with sulfate at pH 3.1. This effect is not significantly changed 

by temperature and pressure. At 25 oC and atmospheric pressure, the fraction of Al complexed 
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with sulfate is 90%.  Although GWB did not considered all possible species,162 the calculation 

suggested that presence of sulfate can significantly decrease the activity of Al3+. 

 

Figure 4-S3. ATR-FTIR Spectra of dry anorthite particles using a dry Ge crystal as background. 

All the observed peaks were assigned to asymmetric Si–O stretching vibrations.163 The 

deconvolutions of spectra were conducted using the Omnic 8.2. Voigt function, which performs 

better than Gaussian and Lorentzian, was used to simulate the peaks. 
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Chapter 5: Wollastonite Carbonation in 
Water-bearing Supercritical CO2: Effects of 

Particle Size  
 

Abstract 

Geologic CO2 sequestration (GCS) is considered an important option for mitigating the 

adverse impacts of global climate change. The performance of GCS can be affected by CO2 

mineralization and changes in the permeability of geologic formations resulting from interactions 

between water-bearing supercritical CO2 (scCO2) and silicates in reservoir rocks. However, 

without understanding size effects, the findings in previous studies using nanometer or micrometer 

size particles cannot be applied to the bulk rock in field sites. In this study, we report the effects 

of particle sizes on the carbonation of wollastonite (CaSiO3) at 60 oC and 100 bar in water-bearing 

scCO2. After normalization by the surface area, the thickness of the reacted wollastonite layer on 

the particle surfaces was independent of particle sizes. After 20 hours, the reaction was not 

controlled by the kinetics of surface reactions, but by the diffusion of water-bearing scCO2 across 

the product layer on wollastonite particle surfaces. Among the products of reaction, amorphous 

silica, rather than calcite, covered the wollastonite surface and acted as a diffusion barrier to water-

bearing scCO2. The product layer was not highly porous, with 10 times smaller specific surface 

area than the altered amorphous silica formed at the wollastonite surface in aqueous solution. 

These findings can help us evaluate the impact of mineral carbonation in water-bearing scCO2 on 

GCS operations. 
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5.1 Introduction 

In Chapters 2, 3, and 4, we investigated aqueous phase dissolution. In the following 

chapters, we will discuss a reaction in the non-aqueous phase, the carbonation of silicate in water-

bearing CO2.  While most previous studies on scCO2–water–rock chemical interactions focused 

on mineral dissolution and precipitation in the presence of bulk aqueous phase,14 recent studies 

have revealed the following importance of interactions between scCO2 and minerals in the absence 

of aqueous solutions.13, 29, 100 First, because injected scCO2 will displace brine, most of the contact 

areas between scCO2 and caprocks and a certain portion of the contact areas between scCO2 and 

formation rocks, are in the absence of bulk aqueous solution.164 Second, scCO2 has higher 

diffusivity, lower viscosity, and thus lower capillary entry pressure than aqueous phase fluid (i.e., 

CO2-dissolved brine).21 Therefore, scCO2 can enter smaller pore throats which brine cannot enter. 

Third, recent studies reported that water dissolved in scCO2 has higher reactivity on mineral 

surfaces than that of water in the aqueous phase.21, 28, 29 Based on these considerations, the reactions 

of minerals with water-bearing scCO2 are at least equally, if not more, important than reactions of 

mineral with aqueous solutions.21, 56 

Our current understanding of water-bearing scCO2–mineral interactions focuses on the 

carbonation of various Ca-, Mg-, or Fe-bearing minerals, including wollastonite,30, 54, 59, 62 

forsterite,55-58, 61, 164 fayalite,60 dolomite,165 and phlogopite.29 While these studies investigated the 

effects of the water saturation percentage of CO2,56, 57, 59, 61, 166 temperature,55, 59, 60, 62 and organic 

ligands,58 on carbonation reactions, we need a better understanding of the dependency of water-

bearing scCO2–silicates reactions on particle sizes. There are several knowledge gaps: First, 

previous studies mostly used micrometer or even nanometer size particles,30, 54-62 a far cry from 

the bulk rock in field sites. Without understanding the effects of particle sizes, we cannot know 



112 
 

whether the outcomes obtained with small particles are applicable to bulk rock in field sites. 

Second, findings from different studies are not directly comparable due to the different particle 

sizes used. Thus, results from previous studies on water-bearing scCO2–silicate reactions cannot 

be combined. Third, investigating the effects of particle sizes can reveal the mechanisms of mineral 

carbonation reactions. For example, a recent study of metal oxide carbonation (i.e., CaO) in dry 

CO2 found that the reacted fraction is constant for different particle sizes and concluded that the 

reaction extent of CaO carbonation is determined by the porosity of CaO particles.167 Similarly, 

investigating the effects of particle sizes on silicate carbonation in water-bearing scCO2 can inform 

us about whether the reaction is controlled by the porosity of silicates or other limiting factors, 

such as the kinetics of silicate dissolution in water films. However, to the best of the authors’ 

knowledge, there have been no studies on the effects of particle sizes on water-bearing scCO2–

silicate interactions. 

The goal of this study is, therefore, to understand the effects of particle size on the 

carbonation of wollastonite in water-bearing scCO2. We chose wollastonite because it has been 

frequently used as a representative of silicates in previous studies on silicate reaction in scCO2 and 

in aqueous solutions.59, 62, 168, 169 While not necessarily abundant in field sites, wollastonite has a 

similar structure to pyroxene, which is abundant in mafic rocks and some GCS sites.170 More 

importantly, compared to other silicates, such as plagioclase, the reaction extent of wollastonite 

can be detectable even with relatively large particle sizes in a short time scale, which makes it 

highly suitable for investigating effects of particle sizes systematically and thoroughly. We 

hypothesize that the reaction is controlled by the kinetics of wollastonite hydrolysis, so that the 

reaction extent of different size particles should be similar after normalization to surface area. To 

test this working hypothesis, particles with five different size ranges were reacted at 60 oC and 100 



113 
 

bar, conditions closely relevant to GCS. The information provided can contribute to better 

understanding the water-bearing scCO2–silicate reactions and scaling up findings in laboratory 

studies using small size mineral particles to the larger scale bulk rock formations.  

5.2 Experimental Methods 

5.2.1 Minerals 

Natural wollastonite particles with five different size ranges were purchased from NYCO 

Company (Willsboro, NY).  By using X-ray powder diffraction (XRPD, Bruker D8), its structure 

was identified to be wollastonite-1A, the most common polymorph in the natural environment.171 

The size distribution and shape for each size range were determined by laser diffraction and image 

analysis (Microtrac Inc.) performed by NYCO Company. Most particles were in cylindrical shape 

(Figure 5-S1). The spherical equivalent volumetric mean diameters were 3.8, 5.2, 11.1, 17.8, and 

82.0 µm, and the respective typical aspect ratios were 3:1, 3:1, 3:1, 4:1, and 15:1. The detailed size 

distribution is available in the Supporting Information (Figure 5-S1). These size ranges were 

chosen because they can provide detectable and significantly different reaction extents. Using N2 

as adsorbate and 11 points on the isotherm in the BET method (AX1C-MP-LP, Quantachrome 

Instruments), the specific surface areas were determined to be 4.46±0.01, 3.61±0.01, 1.95±0.01, 

1.45±0.01, and 0.54±0.01 m2/g, respectively, for 3.8, 5.2, 11.1, 17.8, and 82.0 µm particles. The 

error ranges are based on duplicate measurements. X-ray fluorescence (Table 5-S1) showed that 

the Ca/Si ratio was 0.959. Thermogravimetric analysis (TGA, Q5000IR, TA Instruments) showed 

0.45 % mass loss between 150–780 oC. As shown by the XRD patterns in Figure 5-S5, the 

unreacted sample contains aragonite, which is estimated to be 1 wt%, based on 0.45% mass loss 

in TGA. No further treatment was performed after the wollastonite were obtained from the vendor. 
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5.2.2 Carbonation in water-bearing scCO2 at simulated GCS conditions 

Carbonation experiments were conducted in a 300 mL high pressure and high temperature 

reactor (Parr Instruments, Moline, IL) modified from the reactor used in our previous studies.79, 80, 

95, 105, 120 A schematic diagram of the reaction system setup is available in the Supporting 

Information (Figure 5-S2). The conditions (60 oC and 100 bar CO2) are similar to typical conditions 

at GCS sites: 65 oC and 150 bar in the Frio formation,34 37 oC and 100 bar at the Sleipner site,64 

and 63 oC and 140 bar at the Weyburn field site.81 To investigate carbonation of wollastonite in 

the absence of aqueous phase, wollastonite particles were placed in 10 ml Teflon tubes, while 

ultra-purified deionized water (Barnstead, > 18.2 MΩ·cm) was added outside the tubes. After 

scCO2 was injected into the vessel, water dissolved in the scCO2 and generated water-bearing 

scCO2. Five PTFE tubes were placed in the reactor during each test. Considering the volume taken 

up by tubes and liners in the reactor, the volume of CO2 during the experiment was 201 mL. The 

tubes were capped, but have small holes allowing contact between the wollastonite and water-

bearing scCO2. The solubility of water in CO2 was predicted using Spycher’s model.172 At 35 and 

60 oC, the mole fraction of 100% saturated water in 100 bar CO2 is 0.41 and 0.49%, which indicates 

234 and 117 µL water in the 201 mL scCO2. The solubility of water in scCO2 is affected by the 

salinity of water. As a starting point, ultra-purified water was used for simplicity. This result can 

serve as an important underpinning for understanding the effects of salinity on silicate carbonation 

in the future. Each sample contained 0.3 g particles. To check the possible influence of particle 

stacking inside the tubes on the reaction, results were compared with samples using 0.05 g particles. 

Selected samples were analyzed using XRPD. In this study, no attempt of XRPD quantitative 

analysis was made. Instead, the reaction extent was determined by TGA analysis. Previous studies 
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have shown that the results from XRPD quantitative analysis are comparable with the results from 

TGA analysis.59 

5.2.3 Determination of the reaction extent 

The reacted fraction of wollastonite was determined based on TGA results. After the 

sample was recovered from the reactor, the samples were stored at atmospheric pressure and 

analyzed within 24 hours. The powder sample was briefly mixed using a plastic spatula, and 

approximately 10 mg was used for each TGA analysis. At least duplicate samples were analyzed. 

Samples were heated to 900 oC with a ramp of 20 oC/min under N2 flow (25 ml/min). Wollastonite 

and amorphous silica were stable below 900 oC, while calcium carbonate completely decomposed 

into CaO and CO2.59 The amount of CO2 was measured by the mass loss between 150-780 oC 

during TGA (Figure 5.1B). Given the amount of CO2, the reacted fraction of the original 

wollastonite was derived using this equation: 
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where mL is the mass loss during TGA, which is the mass of CO2 from CaCO3 

decomposition. According to equation (5.2), the mass loss is equal to the mass of CO2 consumed 

during reaction with water-bearing scCO2, so the mass of wollastonite consumed as reactant can 

be calculated using mL and the molecular weight of CO2 and wollastonite; mo is the mass of the 

sample reacted with water-bearing scCO2, which includes the mass of the original wollastonite 

(wollastonite before reaction with CO2) and the mass of sorbed CO2 on wollastonite (equal to mL); 

and M is the molecular weight of different species. Given the 0.45% mass loss in unreacted 
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wollastonite, the detection limit of this method is estimated to be 1%. The reacted fraction of the 

largest particle size used (82 µm) is 7.8%, so the uncertainty of the reaction extent determined 

using this method is no more than 15%. 

5.2.4 Calculation of the reacted thicknesses of wollastonite samples 

Based on the reacted fraction, we calculated the thicknesses of the reacted layer by using a 

shrinking core model. The schematic diagram in Figure 5.2A shows the geometry. Before the 

reaction, each particle was assumed to be cylindrical in shape, with aspect ratio R and diameter D, 

calculated using equation (5.3) based on the spherical equivalent diameter (Deq) measured by laser 

diffraction by the NYCO Company. During the reaction, a shell with thickness L was consumed 

as the reactant, and according to the model, the wollastonite particle shrank to a cylindrical shape 

core with diameter D-2L. The volume fraction of the shell is the reacted fraction of the particle. 

By integrating all the size intervals shown in the size distribution (Figure 5-S1), the reacted fraction 

of each size range was calculated. The reacted thickness L was obtained by solving equation (5.4), 

which equated the calculated reacted fraction and the reacted fraction determined by TGA.  
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In Equations 5.3 and 5.4, L is the thickness of the reacted layer, F is the reacted fraction, 

Deq is the spherical equivalent diameter of each size range from laser diffraction results provided 

by NYCO Company, D is the cylindrical equivalent diameter of each size range, and R is the aspect 

ratio. L was obtained by solving this equation. For small particle size ranges, in which (R × D – 2 
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× L) < 0, the volume measured by laser diffraction was used to replace the calculated value, 

because these particles are so small that the reacted fraction is 100%. 

5.2.5 Determination of the amounts of structural water in reacted samples  

The mass loss determined by TGA can be affected by potentially existing structural water 

in reacted samples, which would lead to an overestimation of the reacted fraction. To check 

whether large amounts of structural water existed in reacted samples, 0.3 g reacted sample (3.8 

µm) were dissolved in 5 mL 1 M nitric acid (BDH), and the dissolved solutions were weighed. 

The Ca concentration in dissolved solutions was analyzed using ICP-OES (Figure 5-S3), which 

confirmed that the particles were completely dissolved in solution. The mass change was compared 

with the mass loss predicted based on TGA. If the mass loss is similar with the prediction, then the 

amount of structural water is not significant enough to affect the reacted fraction determined by 

TGA. 

5.2.6 Amorphous silica layer formed in aqueous solution  

When recent studies on wollastonite carbonation in water-bearing scCO2 discussed the 

amorphous silica formed, references to wollastonite dissolution in the aqueous phase were cited to 

support their points.30, 59 However, it is unclear whether the amorphous silica layers formed in 

aqueous solution and in water-bearing scCO2 are comparable. To compare the amorphous silica 

layers formed in an aqueous solution and in water-bearing scCO2, an amorphous silica layer was 

produced on wollastonite surface by a preferential dissolution of Ca in acidic solution. Specifically, 

2 g of unreacted wollastonite (17.8 µm) were reacted in 200 mL nitric acid solution with initial pH 

= 1 for 1 hour. A control sample was reacted with ultra-purified water. Liquid samples were filtered 

using 0.22 µm PTFE filters, and analyzed using ICP-OES. Solid samples were washed with ultra-
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purified water, centrifuged at 5000 rpm for 30 minutes, dried in N2, and reacted with water-bearing 

scCO2. The reaction extents of the pretreated sample and control sample were compared to show 

differences between the amorphous silica layers formed in aqueous solution and in water-bearing 

scCO2. 

5.2.7 SEM imaging 

To observe the cross-section of the surface product layer, wollastonite particles were 

embedded into a resin (Eponate 12) and sectioned using an ultramicrotome (Leica EM UC7). The 

cross-sections were analyzed using scanning electron microscopy (SEM, JEOL 7001LVF FE-

SEM), coupled with energy dispersive X-ray spectrometry (EDS) to obtain the elemental 

composition. Both SEM and EDS were operated in low vacuum mode (10 Pa), with an accelerating 

voltage of 10.00 kV and a probe current of 16 μA. The working distance was 10 mm. 
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5.3 Results and Discussion 

5.3.1 carbonation of wollastonite in water-bearing scCO2 formed calcite and 
amorphous silica secondary mineral phases 

 

Figure 5.1. (A-B) XRPD pattern and TGA analysis of wollastonite particles reacted for 40 h with 45 times 
more water than needed for saturation (45×Sw), at 60 oC and 100 bar CO2. (C) Mass loss of two duplicate 
samples of wollastonite particles reacted for 40 h at 45×Sw, 60 oC, and 100 bar CO2, during dissolution in 
nitric acid and TGA. (D) Reacted fraction of wollastonite particles with volumetric mean diameters of 3.8 
and 17.8 µm, reacted for 20 h with the addition of different amounts of water. Both sizes showed no 
dependency on the amount of water at 45×Sw. 

Among the products of the reaction, calcite was the dominant crystalline phase identified 

by XRPD (Figure 5.1A and 5-S5-S9). This observation is consistent with previous studies,30, 54, 59, 

62 in which the carbonation of wollastonite was described as equation 5.2.	The other product 

reported is amorphous silica, whose broad peak cannot be clearly shown in an XRPD pattern. 

Based on XRPD results, the amounts of aragonite and vaterite were not significant. Although the 

existence of amorphous calcium carbonate (ACC) is possible, it is likely that ACC transformed to 
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more stable phases during ex situ treatment. The difficulty in determining in situ phases of CaCO3 

does not affect the determination of reaction extent, because the formations of ACC and calcite 

consumed the same amount of wollastonite.  

To investigate the effects of particle size on wollastonite carbonation in water-bearing 

scCO2, we conducted experiments to ensure that the potential existence of structural water in the 

reaction product did not affect the accuracy of the reacted fraction determined using TGA. It is 

important to check because ACC or amorphous silica contain structural water, which would 

enhance the mass loss and, therefore, lead to an overestimation of the reacted fraction. However, 

the TGA curve (Figure 5.1B) is smooth between 150 and 600 oC, indicating no significant amount 

of structural water in the reacted samples. To further investigate the potential influence of 

structural water on the accuracy of determined reacted fraction, the mass loss in TGA was 

compared with the mass loss when the reacted sample was dissolved in nitric acid, which is 

affected only by CO2 (Figure 5.1C). The mass changes were similar, which suggests that no 

significant amounts of structural water existed in the reaction product. Even if a small amount of 

structural water existed, it was not enough to affect the accuracy of the reaction fraction of 

wollastonite determined using equation (5.1).  

Besides determining the reacted fraction, we investigated the effects of the amount of water 

added in our system. The model we used to calculate the solubility of water in scCO2 did not 

consider the presence of minerals.172 In addition, some water will adsorb on the mineral surfaces. 

Consequently, even though the same amount of water was added, different sizes of particles could 

possibly experience a different extent of water saturation. To ensure that different particle sizes 

were reacted under the exact same conditions, we studied the dependencies of the reacted fraction 

on the amount of water added to the reactor (Figure 5.1D). Our data suggested that the reacted 
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fraction increased with the amount of water, and is more dependent on water saturation for small 

particle sizes. However, for different particle sizes, plateaus were reached with 20 times more 

water than needed for saturation in CO2 (For simplicity, 20×Sw, where Sw represents the solubility 

of water in CO2). When higher than 20×Sw, the reacted fractions of different size particles do not 

have a strong dependency on water saturation. Therefore, to elucidate the effects of particle sizes, 

45×Sw was chosen as the main condition used. 
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Figure 5.2. (A) Diagram of the shrinking core model used to calculate reacted thickness. The orange part 
is the unreacted core of wollastonite. The green part represents the wollastonite consumed during the 
reaction with water-bearing scCO2. L is the reacted thickness, D is the diameter of the particle, and R is the 
aspect ratio of cylindrical shape particle. (B) Reacted fraction of wollastonite particles with a volumetric 
mean diameter of 3.8 µm after 40 hours at 45×Sw, 60 oC, and 100 bar CO2. Samples containing 0.3 g and 
0.05 g of particles showed the same reacted fraction. (C) Reacted fraction of wollastonite particles with 
volumetric mean diameters of 3.8, 5.2, 11.8, 17.8, and 81.0 µm reacted for 5, 10, 20, 30, and 40 hours with 
45×Sw at 60 oC and 100 bar CO2. Error bars are the differences among three replicates. (D) The thickness 
of the reacted wollastonite layer calculated based on the reacted fraction. The thickness of the reacted 
surface layer is similar for different particle sizes, 177 ± 11 nm. (E) Reacted thicknesses of wollastonite 
particles with volumetric mean diameters of 3.8 and 17.8 µm at different water saturation percentages. 
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Next, the potential influence of CO2 diffusion through interparticle spaces was investigated. 

Experiments using 0.3 g and 0.05 g particles (i.e., different packing heights and thus different path 

lengths) showed the same reacted fraction (Figure 5.2B). The top part and bottom part of the 

sample also showed the same reacted fraction (Figure 5-S4).  This finding indicates that water-

bearing scCO2 easily reached the bottom of the tube, even though particles were packed inside the 

tubes, and each particle experienced exactly the same reaction condition. This observation also 

suggests that the ratio between mineral and water-bearing scCO2 fluid will not affect the extent of 

reaction in the range of the experimental conditions. In our system, the small amount of water 

adsorbed on the mineral surface cannot change the water saturation percentage in CO2 fluid, 

because 45×Sw was added. If a certain amount of water originally dissolved in CO2 was adsorbed 

on the mineral surface, the loss of water in CO2 fluid could be compensated quickly by the 45×Sw 

added. However, it is worthwhile to note that in field sites, low water saturation conditions can 

exist. The adsorption of water on the mineral surface may change the water saturation percentage 

in CO2 and therefore affect the carbonation of silicates. 

5.3.2 Reacted fractions of wollastonite decreased with larger particle sizes  

The reacted fractions of wollastonite were measured after 5, 10, 20, 30, and 40 hours 

reaction at 60 oC and 100 bar with 45×Sw. The reacted fractions did not keep increasing with time, 

but fluctuated in certain error ranges (Figure 5.2C). This observation shows that the reaction extent 

reached a plateau. To explain this trend, several limiting factors of mineral carbonation were 

considered. 

First, a recent study using wollastonite suggested that the plateau results from the limited 

availability of water.62 In our system, 45×Sw was added. Thus, the plateau is not due to limited 

water availability during the reaction. As we have shown above, no significant amount of structural 
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water existed in the reaction products, so the reaction did not consume large amounts of water. 

The water acted more likely as a catalyst for the overall reaction. After the reaction, there were 

significant amounts of water left in the aqueous phase, though the amount was not quantified.  

 

Figure 5.3. SEM images of wollastonite particle cross-sections. (A) Unreacted wollastonite particles with 
a volumetric mean diameter of 17.8 µm. (B) Unreacted wollastonite particles with a volumetric mean 
diameter of 3.8 µm. (C) Wollastonite particles with a volumetric mean diameter of 17.8 µm reacted for 40 
hours with 45×Sw, at 60 oC and 100 bar CO2. (D) Wollastonite particles with a volumetric mean diameter 
of 3.8 µm reacted for 40 hours with 45×Sw, at 60 oC and 100 bar CO2. The thickness of product layer is 
similar to that of the 17.8 µm size particles. The red bars are 300 nm. (E) Wollastonite particles with a 
volumetric mean diameter of 17.8 µm reacted for 40 hours with 45×Sw, at 35 oC and 100 bar CO2. The 
unreacted wollastonite, with Ca/Si = 0.86 as determined by EDS, is surrounded by a darker layer, with 
Ca/Si = 0.12, which was attributed to amorphous silica. Outside the amorphous silica layer, discrete calcite, 
Ca/Si = 5.33, can be observed. (F) Wollastonite particles with a volumetric mean diameter of 17.8 µm 
pretreated with nitric acid. 
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Second, besides the availability of water, other controlling mechanisms for mineral 

carbonation have also been suggested. For example, a recent study of CaO carbonation in dry CO2 

found that the reacted fraction is independent of particle sizes and concluded that carbonation of 

CaO is not limited by reaction at the surface, but happens throughout the entire particle.167 We 

show, however, that the reacted fraction of wollastonite decreased significantly with larger particle 

sizes (Figure 5.2B). From the SEM images (Figures 5.3 C and D), larger particles have much larger 

unreacted core than smaller particles, instead of keeping a constant reacted fraction. This finding 

confirms that carbonation of wollastonite in water-bearing CO2 is substantially different from 

carbonation of CaO in CO2. The wollastonite carbonation is limited to the surface. 

Other studies also suggested that hydrolysis of the mineral can be the controlling step.57, 

166 Water adsorbs on the mineral surface and forms a thin film. Hydrolysis of silicates within the 

water film releases cations, such as Ca2+ and Mg2+, which form carbonate later with the CO2 

dissolved in the water films. We hypothesize that this mechanism is applicable to our system: The 

extent of reaction is limited by the slow kinetics of wollastonite hydrolysis. This hypothesis is 

consistent with our observations of the reacted fraction: Smaller particles have larger surface area, 

which enhanced the kinetics of wollastonite hydrolysis, and thus led to a larger reacted fraction. 

5.3.3 The reacted thickness is constant for various particle sizes 

If the dissolution rate of the mineral phase is the limiting factor, it should be possible to 

observe differences in the thickness of the reacted wollastonite layer, because particles with 

different sizes may have different combinations of crystal surfaces, which can have different 

dissolution rates. To compare the thicknesses of the reacted layer on different particle sizes, we 

applied equation (5.4) and calculated the reacted thicknesses. Interestingly, the reacted thickness 

was constant for different particle sizes (Figure 5.2C). Because five different size ranges have been 
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used, the constant thickness from these samples is not a coincidence. We admit that the model used 

to calculate the thickness has simplifications: Ideal cylindrical shapes of particles are assumed, 

and the heterogeneity in shape and surface roughness of actual particles have been omitted. 

However, the thickness obtained with this model is a statistically averaged result, and thus it is not 

significantly affected by heterogeneity in shape and surface roughness. More specifically, the size 

used in the calculations is a volumetric equivalent, and hence already considers the heterogeneity 

in shape and surface roughness. 

Because the reacted layers from different size samples have a constant thickness, the 

thickness of the product layer should also be constant: the particles share the same chemical phase 

and should produce the same products. This conclusion is proven by the similar thickness of the 

product layer observed in Figures 5.3 C and D. Thus, we suggest that the thickness of the reacted 

layers should be used to represent the extent of reaction, rather than reacted fraction of samples, 

or the weight fraction of CO2 and carbonate in the samples after reaction. Because the thickness 

of the reacted layer is independent of particle size, such a replacement of the term can make the 

results obtained with different particle sizes directly comparable.  

We also found that after converting the reacted fraction into the reacted thickness, the 

reacted thickness of different particle sizes showed the same dependency on the water saturation 

percentage (Figure 5.2D). Therefore, besides 45×Sw used above, at various water saturation 

conditions, the reacted thickness is independent of particle size. If the reacted fraction or other 

size-dependent indexes are used to represent reaction extent, smaller particles tend to have larger 

apparent dependency on the water saturation percentage (Figure 5.1D). However, using the reacted 

thickness, the reaction extents of various particle sizes have the same actual dependency on the 

water saturation percentage.  
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Furthermore, the constant reacted layer thickness suggests that particle size has no 

significant effects on the reaction extent if normalized by its surface area. These results show that 

the anisotropic reactivities of different crystal faces may not be significant. Another possibility is 

that the reactivity of wollastonite does not affect the reaction extent in water-bearing scCO2–

silicate reaction after 20 hours. The reaction is not controlled by the kinetics of mineral hydrolysis, 

but by the diffusion of water-bearing scCO2 across the surface product layer. We observed that the 

product layer containing amorphous silica and calcite covered the surface of the wollastonite and 

thus could act as a diffusion barrier to water-bearing scCO2. This mechanism explained why the 

reaction reached a plateau, which cannot be explained by mineral hydrolysis alone. The constant 

thickness of the product layer is strong evidence to support this mechanism. Although the 

reactivities of different crystal surfaces and different surface sites varied, various surfaces and 

particles tend to form a product layer with the same thickness. In addition to the conditions 

affecting the diffusivity of water-bearing scCO2, such as temperature and pressure, the thickness 

and the permeability of the product layer are controlling factors for silicate carbonation in water-

bearing scCO2.  

Earlier we have described that the reaction reached a plateau after 20 hours (Figure 5.2C). 

For all particle sizes, the pseudo-equilibrium reacted thickness was 177 ± 11 nm with 45×Sw, 60 

oC, and 100 bar CO2. These results can be directly applied to bulk rocks at field sites. Provided a 

long enough reaction time, other silicates may follow the same mechanism, although their kinetics 

of hydrolysis can be much slower than for wollastonite. It could take longer than 20–40 hours 

before the reaction becomes diffusion-controlled. So within the time scale of days or weeks in 

laboratory experiments, other silicates may not reach plateau. Thus, wollastonite can be a good 

model for investigating the long-term state of silicate carbonation in water-bearing scCO2.   
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5.3.4 Amorphous silica acts as a diffusion barrier for water-bearing scCO2 

Furthermore, based on our understanding of the reacted layer, we can provide an insight 

into the identity of the diffusion barrier of wollastonite reaction with water-bearing scCO2. A 

recent study on wollastonite carbonation in water-bearing scCO2 claimed that the calcite formed 

on the surface of wollastonite acted as diffusion barrier, because the amorphous silica looked 

highly porous.54 Another study argued that the amorphous silica layer should be the diffusion 

barrier, because in their SEM images, the calcite particles were discontinuous and did not 

substantially cover the surface of the wollastonite particles.59 Both studies cited references 

reporting wollastonite dissolution in the bulk water phase to support their points. However, 

whether the amorphous silica layer formed during silicate dissolution in the bulk solution acts as 

a diffusion barrier is still controversial.173, 174 Previous studies found that the structure and degree 

of polymerization of silica layers formed in aqueous solutions are affected by the substrate and the 

solution chemistry, thus can be either passivating or nonpassivating.175-178 Schott et al. found that 

for wollastonite, the amorphous silica layer is not a diffusion barrier for aqueous species.173 Even 

if we know the answer in the presence of the bulk solution, there is still no evidence to show that 

the amorphous silica layer formed in exposure to water-bearing scCO2 can be analogous to the 

amorphous silica layer formed in bulk solution.  

Based on this study, we suggest that the amorphous silica layer should be the diffusion 

barrier for water-bearing scCO2. The sample reacted at 35 oC was used to clearly show the relative 

distribution of calcite and amorphous silica (Figure 5.3E), and it has a much thicker product layer 

than the 60 oC samples that allowed us to do more accurate EDS analysis. We assumed the the 

distribution of calcite and amorphous silica was the same at 35 and 60 oC. From the SEM results 

(Figure 5.3E), we learned that the calcite presents as discrete particles or aggregates, which did 
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not fully cover the surface of wollastonite. Thus, it is less likely that calcite can be the diffusion 

barrier. However, the amorphous silica layer substantially covered the surface of the unaltered core 

of wollastonite. This observation is consistent with the findings in the study of Miller et al..59 In 

contrast, Daval et al. observed alternating layers of amorphous silica and calcite on wollastonite 

surfaces.30 We suggest that the 60 oC and 100 bar conditions used in our study are similar to the 

50–70 oC and 90–160 bar used in Miller et al.’s study,59 and lower than the 90 oC and 250 bar used 

in Daval et al.’s work.30 In addition, Daval et al. conducted water-saturated CO2 experiments 

together with bulk aqueous phase experiment in one reactor.30 An unlimited amount of water was 

in their system and could potentially migrate to the wollastonite surface, which may explain the 

different observations in their work and in this study. In addition, analysis using the BET method 

indicated that the particles after reaction have a smaller specific surface area of 1.02±0.08 m2/g, 

compared to 1.57±0.13 m2/g for the unreacted sample. The decrease in surface area suggests that 

the average particle size may become larger and the amorphous silica layer may not be highly 

porous. Therefore, we concluded that the amorphous silica layer forms a diffusion barrier in our 

experimental systems. 



130 
 

 

Figure 5.4. Schematic diagram of surface layers on a control and a sample pretreated with nitric acid. (A-
C) Wollastonite particles reacted for 40 hours with 45×Sw, at 60 oC and 100 bar CO2. According to the 
measured reacted fraction, a 199 nm thick layer of wollastonite on the surface was reacted (dotted layer) 
(B). 270 nm product layer formed by calcite and amorphous silica (C). (D-F) Sample pretreated in nitric 
acid has a 274 nm highly porous amorphous silica layer on its surface (D), based on calculations using ICP 
results. A 202 nm thick layer of wollastonite was reacted after 40 hours with 45×Sw, at 60 oC and 100 bar 
CO2 (E). Compared to the 199 nm layer of the control sample, the same amount of wollastonite reacted, 
indicating that the porous amorphous silica layer formed in the aqueous phase cannot act as diffusion barrier 
for water-bearing scCO2. 
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To demonstrate the differences between the amorphous silica layer formed in the bulk 

aqueous phase and that formed in water-bearing scCO2 (Figure 5.4), we conducted the following 

experiments. As a control sample, wollastonite particles with a volumetric mean diameter of 17.8 

µm were reacted for 40 hours with water-bearing scCO2 with 45×Sw at 60 oC and 100 bar. Based 

on TGA results, 17% of the raw wollastonite was consumed in the reaction with water-bearing 

scCO2, which corresponds to a layer of wollastonite with a thickness of 199 nm, based on Equation 

5.4. The products were calcite and amorphous silica, which formed a layer on the unaltered 

wollastonite core. According to the stoichiometry of the reaction (Equation 5.2), the thickness of 

the product layer was calculated to be 270 nm (Figure 5.4C), based on the reported densities of 

quartz, wollastonite, and calcite, i.e., 2.65, 2.90, and 2.71 g/cm3, respectively.179 We used the 

density of quartz for the vitreous amorphous silica, because the apparent density of vitreous 

amorphous silica depends on its porosity, which can vary significantly for different samples. The 

thickness of the product layer obtained is not the actual thickness, and is used only to compare the 

amount of surface layer on different samples. The details on the calculation of product layer 

thickness are shown in S1 in the Supporting Information.  

In contrast, another sample with the same particle size was pre-reacted with nitric acid 

solution (initial pH = 1) to generate amorphous silica layer on the surface of the wollastonite. 

Based on the Ca and Si concentrations measured by ICP-OES, the thickness of this amorphous 

silica layer was calculated to be 274 nm (Figure 5.4D), assuming that the density of amorphous 

silica is 2.65 g/cm3. Such a thickness is comparable with the thickness of the product layer formed 

on the control sample after reaction in water-bearing scCO2. Therefore, if amorphous silica formed 

in the aqueous phase could act as diffusion barrier, the sample pretreated with nitric acid should 

not further react with water-bearing scCO2 due to diffusion-limited reaction. However, when 
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pretreated wollastonite was reacted with water-bearing scCO2 under the same conditions as the 

control sample, 21% of the sample had reacted, and the thickness of the reacted wollastonite layer 

was calculated to be 202 nm (Figure 5.4E). Such a small enhancement in the reacted fraction (17% 

to 21%) is due to the shrinkage of the particle during the reaction with nitric acid, and is consistent 

with the calculation using our shrinking core model (Equation 5.4). The similar reacted thicknesses 

(199 nm and 202 nm) show that the amorphous silica formed during the aqueous phase dissolution 

of wollastonite does not act as a diffusion barrier for water-bearing scCO2 at all, while the 

amorphous silica layer formed in water-bearing scCO2 can be a diffusion barrier. The specific 

surface areas of samples pretreated with nitric acid after reaction with nitric acid and after 

additional reaction with water-bearing scCO2 were 14.16±0.80 and 13.87±1.20 m2/g, respectively. 

These values are much larger than 1.572±0.126 m2/g for the original wollastonite sample. This 

observation indicates that the amorphous silica layer formed in the aqueous phase is highly porous 

(Figure 5.3F) compared to that formed in water-bearing scCO2 (Figure 5.3C), which is further 

confirmed by SEM images. It shows that the amorphous silica layer formed in water-bearing 

scCO2 and those formed in aqueous phase may have substantially different porosities, which is 

likely due to the different chemistries in the thin water film. The low porosity amorphous silica 

layer formed during water-bearing scCO2–mineral interaction can act as diffusion barrier for 

water-bearing scCO2. 

5.4 Environmental Implications 

We found that the amorphous silica layers formed in water-bearing scCO2 and those 

formed in aqueous solutions have different morphologies. The altered amorphous silica layers 

formed in aqueous solutions have 10 to 100 times larger BET surface areas than those formed in 

water-bearing scCO2. These results help to understand the differences between silicate reactions 
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in water-bearing scCO2 and in aqueous solutions. They also provide insights into the role of water 

on the silicate carbonation in water-bearing scCO2. In addition, our observations suggest that the 

carbonation of wollastonite in water-bearing scCO2 was limited by the diffusion barrier of the 

amorphous silica layer. The thickness of the reacted wollastonite layer was determined to be 177 

± 11 nm with 45×Sw at 60 oC and 100 bar CO2. This thickness was found to be independent of the 

particle sizes used. Therefore, the reacted thickness should be used to represent the extent of 

reaction, instead of any other parameter that changes with particle size. These findings allow us to 

compare the results of previous studies using different particle sizes directly after normalization 

by surface area. Moreover, the work can be a good first step to fill the knowledge gap between 

small size particles used in the laboratory and the bulk rock in real GCS systems. Because we have 

shown that the equilibrium reacted thickness does not change with particle size, the thickness 

measured using small particles can be applicable to larger sizes of rocks.  

Other Mg- or Fe-containing silicates also produce corresponding carbonate and amorphous 

silica during their reactions with water-bearing scCO2. We suggest that the low porosity of 

amorphous silica layers formed in water-bearing scCO2 is due to an insufficient amount of water 

compared to aqueous solutions. Thus, it is likely that the amorphous silica layers formed on other 

minerals in water-bearing scCO2 are also diffusion barriers. However, there is a caveat that the 

substrate mineral may affect the structure of silica layers. The results obtained using wollastonite 

can be potentially applicable to other silicates. In addition, the plateau we observed in this study 

is not the real equilibrium. Provided a long enough reaction time, the crystallization of amorphous 

silica in water-bearing scCO2 can possibly change the permeability of the amorphous silica layer. 

This process can determine the reaction extent on a geologic time scale. 
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The carbonation of silicates can lead to a change of wettability, as the silicates are usually 

more hydrophilic than carbonate.180 It can also result in volume change, because the densities of 

reaction products are different from the original silicates. The carbonation can also contribute to 

CO2 mineralization, which is the most permanent way to trap CO2. With these considerations, the 

reacted thickness can be the most important factor in understanding water-bearing scCO2 –mineral 

reactions. In short, the new insights provided in this work can help us predict both the stability of 

silicate in water-bearing scCO2 and the impact of water-bearing scCO2–silicate reactions on 

subsurface scCO2 injections. Furthermore, the water-bearing scCO2–silicates reaction can 

potentially be applicable to CO2 capture and ex situ mineralization. The results of this work can 

benefit understanding all of these environmental processes. 
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Supporting Information for Chapter 5 

Contents: Experimental details 

     Nine figures 

     Two tables 

Table 5-S1. X-ray fluorescence (XRF) analysis of wollastonite used in this study (in weight %). 

 Wollastonite  Number of ions on the basis of 3 oxygen
SiO2 51.0 Si 0.991 
CaO 45.7 Ca 0.951 

Al2O3 0.60 Al 0.014 
TiO2 0.05 Ti 0.001 
Fe2O3 0.67 Fe 0.010 
MnO 0.15 Mn 0.002 
MgO 0.80 Mg 0.023 
Na2O 0.20 Na 0.008 
K2O 0.03 K 0.001 
P2O5 0.03 P 0.000 

Loss on ignition 0.80   
 

S5.1. Calculation of product layer thickness 

The thickness of the product layer is calculated based on this equation: 

ܮ ൌ ܮ ൈ
ఘೢ
ெೢ

ൈ ሺெ

ఘ
 ெೞ

ఘೞ
ሻ                                                                                                       (5-S1) 

where the Lp is the thickness of the product layer, Lr is the reacted thickness, and ρw, ρc, and ρs 

are the densities of wollastonite, calcite, and SiO2(am), respectively. Mw, Mc, and Ms are the 

molecular weights of wollastonite, calcite, and SiO2(am), respectively. 

This equation is based on the stoichiometric ratio of wollastonite: calcite: amorphous silica is 1: 1: 

1. For example, in Figure 5.4, the control sample has a 199 nm reacted thickness, and the thickness 

of the product layer is 270 nm. For comparison, on the pretreated sample, we made an amorphous 

silica layer with a similar thickness (274 nm vs. 270 nm) by aqueous phase dissolution. After 

reaction with water-bearing CO2, a similar thickness of wollastonite in the pretreated sample (202 

nm vs. 199 nm) was reacted and formed calcite and amorphous silica, which was coincidentally 
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274 nm. The thickness of the product layer is used only to compare the amount of product formed. 

The actual thickness would be different because of different porosities.  
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Figure 5-S1. Size distributions measured by laser diffraction and SEM images for the five size 

fractions used in this study. Commercially obtained wollastonite particles were provided by NYCO 

Company (Willsboro, NY). Please note that the size distributions show the spherical equivalent 

diameter. The volumetric mean sizes are 3.8, 5.2, 11.1, 17.8, and 82.0 µm. The sizes show in the 

SEM images may appear larger than the spherical equivalent size due to the cylindrical shape, but 

are consistent with the trend.  
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Figure 5-S2. Experimental setup. 1, Gas inlet and outlet tube; 2, Cooling loop; 3, Water; 4, Teflon 

tube; 5, Teflon liner; 6, Thermocouple.  
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Figure 5-S3. Ca concentrations measured by ICP-OES compared to the prediction based on XRF 

results. 0.5 g calcium carbonate (Mallinckrodt Chemicals.), unreacted wollastonite (3.8 µm), and 

selected reacted sample (3.8 µm) were dissolved separately in 10 mL 67-70% nitric acid (BDH). 

The solutions were diluted 240 times before being analyzed. The similar concentrations indicate 

that the particles were completely dissolved. 

 

Figure 5-S4. Reacted fraction of wollastonite particles with mean diameter of 3.8 and 82 µm after 

20 hours at 45×Sw, 60 oC, and 100 bar CO2. The top and bottom regions of the sample showed the 

same reacted fraction. Samples containing 0.3 g and 0.05 g of particles showed the same reacted 

fraction. 
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Figure 5-S5. XRD pattern of unreacted wollastonite particles with mean size of 3.8 µm. 

 

Figure 5-S6. XRD pattern of wollastonite particles with mean size of 17.8 µm, reacted for 40 

hours at 45×Sw, 60 oC, and 100 bar. 
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Figure 5-S7. XRD pattern of wollastonite particles with mean size of 11.2 µm, reacted for 40 

hours at 45×Sw, 60 oC, and 100 bar. 

 

Figure 5-S8. XRD pattern of wollastonite particles with mean size of 5.6 µm, reacted for 40 hours 

at 45×Sw, 60 oC, and 100 bar. 
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Figure 5-S9. XRD pattern of wollastonite particles with mean size of 82.1 µm, reacted for 40 

hours at 45×Sw, 60 oC, and 100 bar. 

Table 5-S2. Experimental conditions and results. 

Experiment 
number # 

T 
(oC) 

Duration 
(h) 

Sw 
(100%)

Mass 
(g) 

Size 
(µm) 

BET 
surface 

area 
(m2/g) 

Mass 
loss 

(%) 

Reacted 
fraction 

(%) 

Reacted 
thicknes
s (nm) 

1 60 20 0.5 0.3 3.8 
4.46±0

.01 
4.14±
0.47 

10.1±1.
15 

27.8 

2 60 20 1 0.3  3.8 
4.46±0

.01 
8.57±
0.69 

23.3±1.
85 

89.6 

3 60 20 5 0.3  3.8 
4.46±0

.01 
12.3±
0.70 

35.6±2.
12 

119 

4 60 20 10 0.3  3.8 
4.46±0

.01 
13.7±
0.19 

40.3±0.
57 

153 

5 60 20 20 0.3  3.8 
4.46±0

.01 
14.4±
0.56 

42.8±1.
62 

167 

6 60 20 30 0.3  3.8 
4.46±0

.01 
15.6±
2.22 

47.2±6.
56 

193 

7 60 20 45 0.3 3.8 
4.46±0

.01 
15.3±
1.21 

45.9±3.
78 

185 

8 60 20 0.5 0.3 17.8 
1.45±0

.01 
1.64±
0.18 

3.17±0.
56 

22.6 

9 60 20 1 0.3 17.8 
1.45±0

.01 
4.04±
0.15 

9.81±0.
42 

97 

70605040302010

Calcite PDF 00-005-0586

Wollastonite PDF 04-011-2265
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10 60 20 5 0.3 17.8 
1.45±0

.01 
4.63±
0.10 

11.5±0.
29 

117 

11 60 20 10 0.3 17.8 
1.45±0

.01 
5.18±
0.55 

13.1±1.
58 

138 

12 60 20 20 0.3 17.8 
1.45±0

.01 
5.73±
0.20 

14.7±0.
56 

175 

13 60 20 30 0.3 17.8 
1.45±0

.01 
6.37±
0.49 

16.6±1.
52 

185 

14 60 20 45 0.3 17.8 
1.45±0

.01 
6.04±
0.55 

15.6±1.
57 

182 

15 60 20 2.5 0.3 3.8 
4.46±0

.01 
11.39
±0.62 

32.4±1.
85 

N.D. 

16 60 20 0.5 0.05 3.8 
4.46±0

.01 
3.95±
0.50 

9.56±1.
57 

N.D. 

17 60 20 1 0.05 3.8 
4.46±0

.01 
9.93±
0.78 

27.6±2.
10 

N.D. 

18 60 20 2.5 0.05 3.8 
4.46±0

.01 
10.9±
0.34 

30.8±0.
93 

N.D. 

19 60 20 5 0.05 3.8 
4.46±0

.01 
12.3±
0.74 

35.6±2.
01 

N.D. 

20 60 20 10 0.05 3.8 
4.46±0

.01 
13.0±
1.67 

37.7±4.
56 

N.D. 

21 60 20 45 0.05 3.8 
4.46±0

.01 
14.8±
0.03 

44.2±0.
09 

N.D. 

22 60 20 45 0.05 82.0 
0.54±0

.01 
2.37±
0.42 

5.15±1.
18 

N.D. 

23 60 5 45 0.3 3.8 
4.46±0

.01 
12.5±
1.33 

36.2±3.
99 

N.D. 

24 60 10 45 0.3 3.8 
4.46±0

.01 
13.4±
1.57 

39.3±4.
74 

N.D. 

25 60 30 45 0.3 3.8 
4.46±0

.01 
14.0±
3.04 

41.5±9.
19 

176 

26 60 40 45 0.3 3.8 
4.46±0

.01 
16.3±
1.66 

49.6±5.
06 

226 

27 60 5 45 0.3 5.6 
3.61±0

.01 
10.7±
0.81 

30.0±2.
28 

N.D. 

28 60 10 45 0.3 5.6 
3.61±0

.01 
12.9±
1.70 

37.5±5.
66 

N.D. 

29 60 20 45 0.3 5.6 
3.61±0

.01 
11.8±
1.46 

33.7±4.
39 

168 

30 60 30 45 0.3 5.6 
3.61±0

.01 
13.6±
1.85 

39.9±5.
57 

211 

31 60 40 45 0.3 5.6 
3.61±0

.01 
11.9±
1.77 

34.2±5.
35 

171 

32 60 5 45 0.3 11.1 
1.945±

0.01 
5.42±
0.49 

13.8±1.
38 

N.D. 

33 60 10 45 0.3 11.1 
1.945±

0.01 
7.40±
0.70 

19.7±1.
85 

N.D. 
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34 60 20 45 0.3 11.1 
1.945±

0.01 
8.12±
1.82 

21.9±4.
86 

171 

35 60 30 45 0.3 11.1 
1.945±

0.01 
8.83±
1.41 

24.1±3.
77 

193 

36 60 40 45 0.3 11.1 
1.945±

0.01 
8.41±
2.30 

22.8±6.
15 

180 

37 60 5 45 0.3 17.8 
1.45±0

.01 
4.35±
0.56 

10.7±1.
40 

N.D. 

38 60 10 45 0.3 17.8 
1.45±0

.01 
4.77±
1.26 

11.9±3.
22 

N.D. 

39 60 30 45 0.3 17.8 
1.45±0

.01 
6.87±
1.84 

18.1±4.
84 

214 

40 60 40 45 0.3 17.8 
1.45±0

.01 
6.54±
1.12 

17.1±2.
93 

202 

41 60 5 45 0.3 82.0 
0.54±0

.01 
2.92±
0.30 

6.69±0.
70 

N.D. 

42 60 10 45 0.3 82.0 
0.54±0

.01 
2.63±
0.46 

5.89±1.
08 

N.D. 

43 60 20 45 0.3 82.0 
0.54±0

.01 
3.40±
0.77 

8.01±1.
87 

194 

44 60 30 45 0.3 82.0 
0.54±0

.01 
3.71±
0.98 

8.90±2.
42 

220 

45 60 40 45 0.3 82.0 
0.54±0

.01 
2.81±
1.03 

6.38±2.
43 

173 

46 35 180 45 0.3 17.8 
1.45±0

.01 
14.9±
1.13 

44.5±3.
54 

N.D. 

47 60 20 45 0.3 17.8 
1.57±0

.13 
6.47±
0.58 

16.9±1.
52 

199 

48 60 20 45 0.3 17.8 
14.16±

0.80 
8.31±
1.76 

22.5±4.
97 

202 

N.D. = not determined 
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Chapter 6: Wollastonite Carbonation in 
Water-bearing Supercritical CO2: Effects of 
Water Saturation Conditions, Temperature, 

and Pressure 
 

Abstract 

The carbonation of silicates in water-bearing supercritical CO2 (scCO2) can affect the 

performance of subsurface CO2 injection. This study investigated the effects of water, temperature, 

and pressure on the carbonation of wollastonite (CaSiO3) in water-bearing scCO2 at 35–93 oC, 25–

125 bar, and from dry conditions to 140 times more water than needed for saturation (140×Sw). 

The extent of reaction increased with more water, higher pressure, and interestingly, lower 

temperature. In addition, for the first time, we report on water-bearing scCO2–silicate reactions for 

samples with varying prior histories of water saturation conditions, temperature, and pressure. For 

a sample initially reacted at 100% water saturation (1×Sw) and then with 45×Sw, the final reaction 

extent was smaller than the sample reacted only with 45×Sw. Similarly, for a sample initially 

reacted at 60 oC and then at 35 oC, the reaction extent was smaller than for a sample reacted only 

at 35 oC. In contrast, for a sample initially reacted at 50 bar and then at 100 bar, the reaction extent 

was the same as for a sample reacted only at 100 bar. These findings help us understand the extent 

to which water-bearing scCO2–silicates reactions depend on environmental conditions and the 

reactions’ impacts on subsurface CO2 injection. 
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6.1 Introduction 

In Chapter 5, we elucidated the effects of particle sizes on wollastonite carbonation in 

water-bearing scCO2. In this chapter, we discuss the effects of reaction conditions, including water, 

temperature, and pressure. The information on the effects of water saturation conditions, 

temperature, and pressure on the carbonation of wollastonite in water-bearing scCO2 is still limited. 

Miller et al. used experimental conditions, such as 50 oC and 90 bar, 55 oC and 120 bar, and 70 oC 

and 160 bar, and found that the extent of reaction increased as temperature and pressure became 

higher59. However, it is difficult to deconvolute the effects of temperature and pressure, as they 

were increased at the same time. Also, the amount of water was limited to < 5 times more water 

than needed for saturation in scCO2 (< 5×Sw, where Sw represents 100% water saturation in scCO2), 

and the effects of higher water saturation conditions remained unknown59. Whitfield and Mitchell 

reported that carbonation of wollastonite was faster at higher temperature and there was no effect 

of pressure on it. However, in their study, liquid phase bulk water was added directly to the mineral 

and the amount is not specified62. Consequently, the reactions may have happened in the aqueous 

phase, rather than in water-bearing scCO2. Still studies using other silicates, such as forsterite 

(Mg2SiO4), fayalite (Fe2SiO4), and antigorite ((Mg, Fe)3Si2O5(OH)4), investigated the effects of 

water, temperature, and pressure on the extent of reaction and phase and morphology of reaction 

products55, 56, 60, 164, 166, 181. However, carbonation reactions of these minerals in water-bearing 

scCO2 have relatively slow kinetics and cannot reach equilibrium in a short time period. 

Consequently, the long term effects of water, temperature, and pressure on silicate carbonation in 

water-bearing scCO2 are still unclear.  

Moreover, the effects of varying water saturation conditions, temperatures, and pressures 

on silicate carbonation in water-bearing scCO2 are also unknown. It is crucial to think about the 
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fact that while most studies on silicate carbonation in water-bearing scCO2 fixed the water 

saturation percentage, temperature, and pressure at certain values, the minerals in field sites can 

experience a series of conditions. For example, the injection of CO2 will first produce a 

dehydration front, then create a high water saturation percentage regime by the diffusion of water 

in scCO2 fluid28. The temperature near the wellbore can temporarily decreased during CO2 

injection, and then recover in long run182. Pressure is also affected by the injection of CO2, and can 

be changed by CO2 leakage. The information obtained using fixed conditions may not be accurate 

enough to capture reactions undergoing dynamic conditions and can create discrepancies in 

predicting reactions under varying conditions. In Chapter 5, we found that the extent of reaction is 

limited by the surface coverage of the amorphous silica layer formed on the surface of 

wollastonite183. Similar situations could happen for other silicates after the reaction reaches a 

plateau. The surface coverage of the product layer formed at the initial conditions may influence 

subsequent reactions when conditions change. Elucidating the effects of varying conditions will 

allow us to more accurately predict water-bearing scCO2–silicates reactions in field sites. 

To address these knowledge gaps, this study investigated the carbonation of wollastonite 

in water-bearing CO2 at 35, 60, and 93 oC, 25–125 bar, and 0–140×Sw. In addition, for the first 

time, the effects of varying water saturation condition, temperature, and pressure have been studied. 

Although this study is single mineral study, it provides useful insights for better understanding 

multiple mineral systems. The new information obtained helps understand water-bearing scCO2–

silicate reactions under various subsurface conditions. 
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6.2 Materials and Methods 

6.2.1 Minerals 

Natural wollastonite particles were obtained from NYCO Minerals, Inc. (Willsboro, NY). 

Two different size ranges, with volumetric mean diameters of 3.8 and 17.8 µm, were used.  The 

size distributions of these two size ranges are available in Figure 6-S1 in the Supplementary 

Content. The structure was identified to be wollasonite-1A using X-ray diffraction (XRD)171. Our 

X-ray fluorescence measurement (Table 6-S1) showed that the Ca/Si ratio was 0.959. 

6.2.2 Carbonation in water-bearing scCO2 at simulated GCS conditions 

Carbonation experiments were conducted in a 300 mL HastelloyC-276 vessel (Parr 

Instruments, Moline, IL) modified from the reactor used in our previous studies79, 80, 95, 105, 120, 121. 

The CO2 was injected using a syringe pump (Teledyne, ISCO). The temperature was maintained 

using a temperature controller (Parr Instruments, Moline, IL). Typical GCS conditions, 60 oC and 

100 bar were used. When investigating effects of temperature and pressure, the conditions were 

varied between 35, 60, and 93 oC, and 25–125 bar CO2. These conditions are within the range of 

the conditions in GCS sites (31–110 oC, 73.8–600 bar)10.  For example, the typical conditions are 

35 oC and 100 bar at the Sleipner site64, 65 oC and 150 bar in the Frio formation34, and 63 oC and 

140 bar at the Weyburn field site184.  

To investigate water-bearing scCO2 reactions, minerals and liquid phase water were 

separated. Water was added in the PTFE liner of the vessel. Mineral particles were added in PTFE 

tubes. The tubes were capped, but had small holes allowing contact between the wollastonite and 

water-bearing scCO2. After CO2 was injected into the vessel, water was dissolved in scCO2. The 

water-bearing scCO2 entered the tube and reacted with the mineral. A schematic diagram of the 
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reaction system setup is available in Figure 6-S2 in the Supplementary Content. The solubility of 

water in scCO2 can be affected by the salinity of the water. In field sites, salinity is largely different 

from site to site, varying between 0.5 g/L and 400 g/L42, 185. Therefore, for simplicity, in this work, 

ultra-purified water was used, which serves a good starting point. The solubility of water in CO2 

was predicted using Spycher’s model172. In addition, in Chapter 5, we found that the stacking of 

particles in the PTFE tubes did not affect the reaction, which was checked by comparing the extents 

of reaction using 0.3 g and 0.05 g particles183. 

6.2.3 Determination of reacted fractions and reacted thicknesses 

The fractions of wollastonite that reacted with water-bearing scCO2 were determined based 

on thermogravimetric analysis (TGA, Q5000IR, TA Instruments) results. Samples were heated to 

900 oC, with a ramp of 20 oC/min under N2 flow (25 ml/min). Wollastonite and amorphous silica 

were stable below 900 oC, but CaCO3 completely decomposed into CaO and CO2
59. Chapter 5 

showed that the amount of structural water was not significant183. So the mass loss between 150 

and 780 oC during TGA was attributed to CO2 resulting from CaCO3 decomposition (Figure 6.1A), 

and used to derive the reacted fraction of original wollastonite, based on equation 5.1 developed 

in Chapter 5.	Based on the reacted fraction, the thickness of the reacted layer on the surface of 

particles can be calculated by normalization to geometry surface area. The thickness of the reacted 

layer was calculated using equation 5.3 and 5.4 developed in Chapter 5. 

This method assumed an ideal cylindrical shape for each particle. This assumption is 

reasonable because the results obtained are statistically averaged thickness. Although information 

on the heterogeneity of particles, including the shape, reactivity, and surface roughness, is not fully 

captured, in Chapter 5 we found that the reacted thickness can more accurately represent the extent 

of reaction than reacted fraction does. Reacted fraction is size-dependent, and thus is not 
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comparable among studies using different particle sizes. In contrast, the reacted thickness is 

independent of particle size, and provides directly comparable information on the extent of 

reaction. For this reason, in this study, the reacted thickness was used to show the extent of reaction. 

Specific reacted fraction results are available in the Supplementary Content (Figure 6-S3-S5). 

6.3 Results and Discussion 

6.3.1 Effects of water saturation conditions on wollastonite carbonation in 
water-bearing scCO2 

The reaction extents increased linearly with water saturation percentages between 30% and 80% 

at 60 oC and 100 bar. 

As shown in Figure 6.1A, the sample reacted with dry scCO2 showed < 1% mass loss 

during TGA analysis. This very small loss is consistent with conclusions of previous studies that 

dry scCO2 cannot react with silicates29, 57, 59, 166, 181. Recently, the role of water in water-bearing 

scCO2–silicate interactions was emphasized26, 56, 57, 59, 181, because water vapor was found to form 

a water film on the mineral surface166, enhance the kinetics and extents of reaction, and change the 

phase of the reaction product55, 59, 166, 181. As shown in Figure 6.1B, in our study, calcite was the 

dominant crystalline phase identified as the product of reaction. No significant amounts of 

aragonite and vaterite were observed. The formation of amorphous CaCO3 is possible, but the ex 

situ analysis may cause phase transformation to more stable phases. Nevertheless, the potential 

phase transformation of CaCO3 does not affect the determination of reaction extent. 
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Figure 6.1. (A) TGA analysis of wollastonite particles with a volumetric mean size of 3.8 µm. Mass losses 
of 15.5%, 9.4%, 3.4%, and 1.0% were observed for samples reacted for 40 hours at 60 oC and 100 bar CO2 
with 30×Sw, 1×Sw, 0.5×Sw, and no water added, respectively. (B) XRD pattern of wollastonite particles 
with a volumetric mean size of 17.8 µm reacted for 180 hours under 45×Sw, 35 oC, and 100 bar CO2. The 
presence of calcite was identified.  

Considering the importance of water in reactions, we measured the dependency of reaction 

extent on the water saturation percentage, as shown in Figure 6.2A. Wollastonite particles with a 

volumetric mean size of 3.8 µm were reacted at 60 oC and 100 bar CO2 with different amounts of 

water added. Small particles were used to better show the large reacted fraction. Each sample was 

reacted for 40 hours, so that the reaction could reach a plateau. We found that the minimum water 

saturation percentage required to have a detectable reaction was 30%. Between 30% and 80%, the 
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reacted thickness increased linearly with the water saturation percentage. These results indicate 

that the formation of a water film on the wollastonite surface requires a minimum amount of water, 

measured to be 30% water saturation. This conclusion is consistent with previous studies which 

suggested the formation of water film is possible even below 100% water saturation56, 186. 

 

Figure 6.2. (A) Reacted thickness of wollastonite particles with volumetric mean size of 3.8 µm reacted 
for 40 hours with different water saturation percentages, at 60 oC and 100 bar CO2. At least 30% water 
saturation is needed for reaction. The reacted thickness increased linearly between 30 to 80% water 
saturation, kept increasing even after 100% water saturation, and became less sensitive to water saturation 
beyond 20×Sw. (B) The reacted thickness of wollastonite particles with volumetric mean size of 3.8 µm 
reacted for 40 hours at varying water saturation conditions, 60 oC, and 100 bar CO2. The reacted thicknesses 
were similar for the control sample reacted only with 45×Sw, and the sample reacted at 1×Sw after initial 
reaction with 45×Sw (shown as 45×Sw + 1×Sw). The sample reacted with 45×Sw after initial reaction at 
1×Sw (shown as 1×Sw + 45×Sw) had larger reacted thickness than the sample reacted only at 1×Sw (shown 
as 1×Sw), but smaller than the sample reacted only with 45×Sw. 
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The reaction extents further increased with excess water beyond 100% saturation (Sw).  

Beyond 80% water saturation, the reacted thickness became less sensitive to the increasing 

water saturation percentage, as shown in Figure 6.2A. This result is likely due to the saturation of 

water adsorption sites on the mineral surface. However, the reacted thickness kept increasing with 

water saturation percentage even after 100% saturation (i.e., Sw) was reached. All the excess water 

existed in the liquid phase and did not directly contact with mineral particles. It is very interesting 

that reaction extent can be affected by the amount of liquid phase water, which is not in contact 

with the mineral particles. We suggest that the increasing reaction extent resulted from water vapor 

condensation from water-bearing scCO2. After Sw was reached, water vapor in scCO2 could 

condense into the liquid phase. The condensation of water vapor can happen at the surface of the 

liquid phase water added in the reactor. The same process may also happen at the water film on 

the mineral surface. In this way, even though the liquid phase water was separated from 

wollastonite particles in our reactor, the increasing amount of water beyond Sw could still increase 

the amount of water on the mineral surface. The underlying driving force for the partition of water 

to the mineral surface could be the hydrophilicity of the mineral surface and its reaction with water-

bearing scCO2. The water adsorbed on the mineral surface is electrostatically attracted by the 

mineral surface and the metal cations dissolved from the mineral surface. The lower activity of 

water bound on the mineral surface compared to that of the liquid phase water can promote the 

partitioning of water from the liquid phase to the mineral surface. In addition, as the reaction 

proceeds, more water would be attracted by the produced carbonate and amorphous silica. 

Therefore, more water would transport from water-bearing scCO2 to the mineral surface. If more 

liquid phase water is in contact with scCO2, the loss of water from water-bearing scCO2 can be 

compensated faster by the liquid water originally put in the reactor. In addition, another potential 
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contribution to the water adsorption and condensation is from the water–water interactions in 

water-bearing scCO2. According to modeling by Glezakou et al., the water molecules in water-

bearing scCO2 tend to attract one another and exist as clusters at high saturation percentages187. 

These water–water interactions could possibly contribute to the condensation of water vapor into 

the water film on mineral surfaces.   

The increasing extent of reaction beyond Sw has also been observed in several other 

studies26, 56, 57, 59, 181. Unfortunately, however, the implications of these observations have not been 

emphasized. In this study, we have shown that a further increase of water saturation over Sw can 

lead to an almost two times higher reacted thickness, as shown in Figure 6.2A. In field sites, while 

0–100% water saturation conditions can exist, conditions with an excess amount of water can also 

happen. In that case, condensation similar to that seen in our system could also happen in field 

sites. Thus, a better understanding of the transport of water in scCO2 fluid is important for 

predicting the impact of water-bearing scCO2–silicate interactions on the stability of geologic 

formations. 

An initial reaction at a low water saturation condition partially inhibits subsequent reactions at 

high water saturation condition. 

Before the transport of water vapor and CO2 reaches an equilibrium in field sites, it is 

possible that minerals in field sites can initially react with water-bearing scCO2 in one water 

saturation condition and then later be exposed to another. Although we know the reaction extent 

at certain water saturation conditions, the prediction of the actual reaction extent could also be 

difficult, because we do not know a full history of the water saturation conditions and the effects 

of previously exposed water saturation conditions. To elucidate how the reaction would be affected 
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by varying water saturation conditions, two situations have been investigated at 60 oC and 100 bar: 

For Sample A, samples were initially reacted with 45 times more water than needed for saturation 

(For simplicity, 45×Sw) for 20 hours, and then the same samples were reacted at 1×Sw for another 

20 hours. For Sample B, samples were initially reacted at 1×Sw for 20 hours, and then those 

samples were reacted with 45×Sw for another 20 hours. So only the sequences of water saturation 

were different. Figure 6.2B shows that the sample initially reacted with 45×Sw did not further react 

when the saturation was changed to 1×Sw. Because the product layer produced with 45×Sw is 

thicker than that formed at 1×Sw, the thicker product layer may prevent any further reaction in a 

less reactive condition (1×Sw). In contrast, when Sample B was initially reacted at 1×Sw first, and 

then reacted again with 45×Sw, the reaction occurred continuously but the final reacted thickness 

was smaller than the sample reacted only with 45×Sw for 40 hours or for Sample A. This 

observation suggests that an initial reaction at low water saturation conditions would partially 

inhibit the subsequent reaction. 

The findings provide new insights into mineral reactions under varying environmental 

conditions. Although a mineral is equilibrated at a high water saturation condition, if the mineral 

has previous experience with a lower water saturation condition before the high water saturation 

condition, the actual extent of reaction can be lower than predictions based on fixed conditions. 

The example of wollastonite described in this study is relatively simple, because the kinetics of 

wollastonite carbonation are fast so that the reaction reached pseudo-equilibrium in several hours. 

For other silicates in field sites with slower reaction kinetics, the water saturation conditions may 

vary before the reactions reach equilibria. In that case, predicting the effect of varying 

environmental conditions is even more complicated. The relationship between water transport and 

the kinetics of the water-bearing scCO2–mineral reaction can affect the extent of reactions.  
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Water saturation conditions affect the permeability of the surface product layer.  

While the extent of the water-bearing scCO2–mineral reaction is known to be related to the 

amount of water adsorbed on the mineral surface26, 56, 57, 59, 181, the underlying mechanism is still 

unclear. In studies using other minerals, such as forsterite, the extent of reaction is largely affected 

by the reaction kinetics57, 166. Because water is an important catalyst and reactant55, 59, 166, 181, 

reaction kinetics can be faster at higher water saturation conditions. For wollastonite, we found 

that the extent of reaction was determined by the reaction conditions (temperature, pressure, and 

water saturation) and the thickness and porosity/permeability of the surface product layer183. 

Furthermore, the product layer formed at a lower water saturation percentage could be a stronger 

diffusion barrier to water-bearing scCO2. In other words, a greater availability of water is not the 

only contribution of higher water saturation conditions. An indirect effect can be affecting the 

porosity and permeability of the reaction product layer. A few pieces of evidence support this 

postulation: For Sample A, a product layer was first produced at 1×Sw, and then another product 

layer was produced by further reaction with 45×Sw. The total thickness was smaller than for the 

control sample reacted at a fixed condition, 45×Sw. This finding indicates that the product layer 

produced at 1×Sw can inhibit the access of water-bearing scCO2 to the mineral surface more 

efficiently than the product layer produced at 45×Sw. This result can also explain why the layer 

thickness is smaller at lower water saturation percentages. In addition, it confirms that the water 

saturation conditions can affect the access of water-bearing scCO2 to the mineral surface, which 

should be achieved by changing the porosity and permeability of the reaction product layer. In 

Chapter 5 we found that the amorphous silica layer formed in the liquid phase is much more porous 

than that formed in the thin water film in water-bearing scCO2
183. This observation is consistent 

with the current finding that more abundant water will lead to more porous reaction product layer. 
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6.3.2 Effects of temperature on wollastonite carbonation in water-bearing 
scCO2 

 

Figure 6.3. (A) Reacted thickness of wollastonite particles with volumetric mean size of 17.8 µm with 
45×Sw at 35 oC (red diamond) and 60 oC (blue square), and 100 bar CO2. The reacted thicknesses reached 
plateaus after 140 hours and 20 hours, respectively. (B) Reacted thicknesses of wollastonite particles after 
reaction with 45×Sw at 35, 60, and 93 oC, and 100 bar CO2. The scales of the density of CO2 and water are 
not shown. The reacted thickness showed the same trend as the density of CO2, but was different from the 
trend of water density. (C) The reacted thickness of wollastonite particles with volumetric mean size of 3.8 
µm reacted for 40 hours at different water saturation percentages, 93 oC, and 100 bar CO2. The reacted 
thickness reached plateau beyond 30×Sw. (D) The reacted thicknesses of wollastonite particles with 
volumetric mean size of 17.8 µm reacted for 180 hours at varying temperatures, 45×Sw and 100 bar CO2. 
The reacted thicknesses were similar for the control sample reacted only at 35 oC and the sample reacted at 
60 oC after initial reaction at 35 oC. The sample reacted at 35 oC after initial reaction at 60 oC had larger 
reacted thickness than the sample reacted only at 60 oC, but smaller than the sample reacted only at 35 oC. 

Besides water saturation conditions, temperature can strongly affect the carbonation of 

wollastonite. While reacted thickness reached a plateau after 20 hours at 60 oC, Figure 6.3A shows 

that, for the 35 oC experiments, the reaction did not reach plateau until 140 hours. In addition, the 

reacted thickness decreased with increasing temperature, as shown in Figure 6.3B. This 

observation is surprising because the kinetics of mineral surface reactions, such as the hydrolysis 
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of silicates, should be enhanced at higher temperature. But, as shown in Chapter 5, for wollastonite 

the reaction quickly reached a plateau, and was no longer controlled by the kinetics of the surface 

reaction of wollastonite183. Instead, the diffusion of water-bearing scCO2 across the surface 

product layer limited the reaction. Thus, the smaller reaction extent at higher temperature could 

have several causes: First, the availability of scCO2 for the reaction is limited at higher temperature. 

Figure 6.3B shows that the reacted thickness follows the same trend as the density of CO2 

calculated using Peace Software (Peace Software, Inc.), a program for calculating gas properties. 

In addition, the solubility of CO2 in the water film on the mineral surface would be lower at high 

temperature, because the solubility of gases in water is usually lower at high temperature. Second, 

at high temperature, there is less water adsorption on mineral surfaces. From 35 oC to 60 oC, as 

shown in Figure 6.3B, the density of water (based on the density of CO2 and the mole fraction of 

water vapor in CO2, see Table 6-S2) decreased, and thus the availability of water vapor in scCO2 

is smaller. At 93 oC, although the density of water in water-bearing scCO2 increased due to 

increasing mole fraction of water in CO2 (Table 6-S2), the adsorption of water on wollastonite 

became more difficult. A recent study reported an activation energy of -148 kJ/mol for water 

adsorption on calico-olivine (Ca2SiO4)188. Although no study on wollastonite is available, we 

expect that water adsorption on wollastonite surface can similarly become more difficult at high 

temperature. We have investigated how the temperature affected the dependency of the reacted 

thickness of wollastonite on water saturation. Figure 6.3C shows that, at 93 oC, the reacted 

thickness became much smaller at low water saturation percentages, compared to the situation at 

60 oC, shown in Figure 6.2A. At 93 oC, the reacted thickness increased significantly between 5 to 

30×Sw. A plateau was reached after 30×Sw, which had appeared at 20×Sw in 60 oC experiments. 

These results suggest that the reaction needs more water at higher temperature, which can result 
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from less water adsorption on the mineral surface. Third, higher temperature also induces faster 

kinetics of reaction product formation. Thus, at higher temperature, the surface product layer 

formed and covered the wollastonite surface easily, and this layer can act as a transport barrier. 

These three reasons can potentially explain the longer time needed to reach a plateau at low 

temperature. 

The fourth reason is the effect of temperature on the permeability of the surface product 

layer. We investigated the effects of varying temperature histories at 100 bar with 45×Sw (Figure 

6.3D). Sample C was initially reacted at 35 oC for 180 hours, long enough for the reaction to reach 

plateau. Then, when we tried to react sample C again at 60 oC, it cannot further react, because 60 

oC is a less reactive condition for wollastonite carbonation than 35 oC. However, sample D, 

initially reacted at 60 oC for 40 hours, which was long enough for reaction to reach plateau, could 

further react at 35 oC. The final reacted thickness of sample D was smaller than for the sample 

reacted only at 35 oC for 180 hours. Similar to the varying water saturation situations, this finding 

indicates that the product layer produced at a lower temperature can be a weaker diffusion barrier 

for water-bearing scCO2. One of the potential explanation is that water adsorption on mineral 

surfaces is easier at lower temperature. As we mentioned above, the product layer produced with 

more water will be weaker diffusion barrier.  The weaker diffusion barrier at lower temperature 

can explain the higher reaction extent and the continuing reaction for a longer time before reaching 

a plateau.  

For broader implications of this finding, the effects of varying temperature history showed 

that the reaction extent measured at a fixed temperature may not accurately capture the information 

needed to predict the reaction in field sites. For example, minerals near the wellbore can experience 

a lower temperature due to the cooling effects of CO2 injection compared to other locations. Hence, 
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predictions based on the reservoir temperatures before injection will possibly underestimate the 

extent of reaction. The temperature change due to CO2 injection could be important for predicting 

water-bearing scCO2–silicate interactions. 
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6.3.3 Effects of pressure history on wollastonite carbonation in water-bearing 
scCO2 

 

Figure 6.4. (A) Reacted thicknesses of wollastonite particles with volumetric mean size of 3.8 µm for 40 
hours with 140×Sw, 60 oC, and different pressures of CO2. The scales of the density of CO2 and water at 
different pressure are not shown. The reacted thickness showed the same trend as the density of CO2 and 
water. (B) Reacted thicknesses of wollastonite particles with volumetric mean size of 3.8 µm for 40 hours 
at different water saturation percentages, 60 oC, and 75 bar CO2. The reacted thicknesses reached a plateau 
beyond 75×Sw. (C) The reacted thicknesses of wollastonite particles with volumetric mean size of 3.8 µm 
for 40 hours at varying pressures, 60 oC, and 140×Sw. The reacted thicknesses are similar for the control 
sample reacted only at 100 bar and the sample reacted at 50 bar after initial reaction at 100 bar. The sample 
reacted at 100 bar after initial reaction at 50 bar had larger reacted thickness than the sample reacted only 
at 50 bar, and was similar to the sample reacted only at 100 bar. 
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Besides water saturation conditions and temperature, pressure is another important factor 

affecting wollastonite carbonation in water-bearing scCO2. Figure 6.4A shows that the extent of 

reaction increased significantly with increasing pressure. This observation is different from the 

finding of a previous study reporting that the kinetics of wollastonite carbonation are independent 

of pressure62. The different observation could easily result from the fact that water was added 

directly to the mineral in the previous study. In contrast, in our study, liquid phase water was 

physically separated from the minerals, and only water vapor could directly contact with sample 

surfaces. Among other recent studies of water-bearing scCO2–silicate reactions, several added 

water directly to the mineral, so that liquid phase water directly contacted with the minerals56, 62. 

The reasoning is that in field sites, minerals are naturally contacted with water before CO2 injection. 

However, in this case, aqueous phase dissolution reactions in CO2-rich water could happen, and 

the results cannot be comparable with water-bearing scCO2–silicate reactions. Because a certain 

amount of minerals may not naturally be in contact with water before CO2 injection, or in the case 

of new fractured surfaces, the separated settings used in our work can also mimic the particular 

situations in field sites. 

The higher reaction extent with higher pressure can be explained by several reasons: First, 

Figure 6.4A shows that the reacted thickness showed a similar trend to the density of CO2. With a 

higher pressure, CO2 has a stronger ability to diffuse across the product layer and reach deeper 

wollastonite surfaces. Second, as shown in Figure 6.4A, pressure can also change the density of 

water in water-bearing scCO2. This result can be related to the changes in the dependency of the 

reacted thickness on the water saturation percentage at different pressures. We found that the trend 

of water dependency at 75 bar, as shown in Figure 6.4B, is similar to that for 100 bar, shown in 

Figure 6.2A. The reacted thickness increased quickly at low water saturation percentages, and then 
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slowly increased to a plateau. However, Figure 6.4B shows that at 75 bar, the plateau is reached 

after 75×Sw, compared to 20×Sw for 100 bar, as shown in Figure 6.2A. This observation indicates 

that a lower pressure reaction needs more water, which results from the smaller water density. A 

third possible explanation is the different hydrophilicity of mineral surfaces under different 

pressures of CO2. A previous study reported variation of wettability on mineral surfaces by 

different pressures of CO2 fluid189. Unfortunately, similar results for wollastonite are not available. 

However, it is necessary to point out the wettability change under different CO2 pressures could 

affect the water-bearing scCO2–silicate reactions, and, reciprocally, the reactions can alter the 

wettability as well. 

The effects of varying pressure history were also investigated at 60 oC with 140×Sw. The 

140×Sw was chosen so that the reaction extent would not be sensitive to the water saturation 

percentage, as shown in Figure 6.4B. Figure 6.4C shows that, sample E, initially reacted at 100 

bar for 20 hours, cannot further react at 50 bar, because 50 bar is a less reactive condition than 100 

bar. However, sample F, initially reacted at 50 bar for 20 hours, can further react at 100 bar. 

Different from varying water saturation and temperature, the final reacted thickness was the same 

for the sample reacted only at 100 bar for 40 hours. This observation suggests that product layers 

produced at different pressures have the same permeability to water-bearing scCO2.  

Although pressure cannot significantly affect the permeability of the product layer, the 

importance of varying pressure should not be neglected. To inject CO2 into a reservoir, pressure 

higher than the reservoir pressure must be applied. The prediction of water-bearing scCO2–silicate 

reactions based on the original reservoir pressure may not be accurate. 
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6.4 Conclusions 

Supercritical CO2–water–rock interactions play a significant role in evaluating the 

feasibility of GCS13. Compared to the water–rock interactions in CO2-rich brine, the information 

on water-bearing scCO2–mineral reactions is limited. This study investigated the effects of fixed 

and varying water saturation conditions, temperatures, and pressures, on the carbonation of 

wollastonite in water-bearing scCO2. The results provide useful insights for understanding water-

bearing scCO2–mineral reactions. In this study, we found a further increase of reaction extent 

beyond 1×Sw. This result is likely due to the condensation of water vapor on the mineral surface 

with excess amounts of water beyond 1×Sw in water-bearing scCO2. Understanding the transport 

of water in the scCO2 phase and the role of the mineral surface in this process is necessary for 

studying water-bearing scCO2–silicate interactions in the future. 

We also showed that the extent of reaction decreases with increasing temperature. This 

finding indicates that after the reaction reached plateau, water-bearing scCO2–silicate reactions 

were controlled by the diffusion of water-bearing scCO2 across the surface product layer, rather 

than controlled by the kinetics of mineral surface reactions.  These surprising results provide 

insights into water-bearing scCO2–silicate interactions. The impact of water-bearing scCO2–

mineral interactions on the reservoir rocks could be particularly significant in geologic formations 

with lower temperatures. 

Furthermore, for the first time, we reported the effects of varying water saturations, 

temperatures, and pressures on the water-bearing scCO2–silicate reaction. The outcomes show that 

the varying conditions in field sites can have significant impacts on water-bearing scCO2–silicate 

reactions. Results obtained only under fixed conditions are not adequate for understanding the 
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impacts of water-bearing scCO2–silicate reactions on the stability of silicates in field sites. The 

accurate prediction of a real situation requires a better understanding of the water transport in 

scCO2 fluid, the cooling effect of CO2 injection, and the pressure change due to CO2 injection. 

Other silicates also react with water-bearing scCO2 and form carbonate and amorphous 

silicate, which cover the mineral surface. Although these minerals have slow reaction kinetics with 

water-bearing scCO2 and may not reach a diffusion-controlled regime within the days or weeks 

scale of most studies, it is likely that the reaction will eventually reach plateau. Although there is 

caveat that these minerals may have different reactions, it is possible that the mechanisms similar 

to those found in this study could apply.  

The changes in wettability and potential pore closure induced by water-bearing scCO2–

silicate reactions (dissolution and re-precipitation) can significantly affect the permeability of 

reservoir rocks. The permeability of the geologic formation strongly affects many processes, such 

as geologic CO2 sequestration, scCO2–enhanced oil recovery, and scCO2–hydraulic fracturing. 

These engineering processes have great impacts on our environmental safety and quality, and the 

results of this study can benefit studies on subsurface CO2 injection and its environmental 

sustainability. 
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Supporting Information for Chapter 6 

Contents: Experimental details 

     Five figures 

     Two tables 

Table 6-S1. X-ray fluorescence (XRF) analysis of wollastonite used in this study (in weight %).190 

 Wollastonite  Number of ions on the basis of 3 oxygen
SiO2 51.0 Si 0.991 
CaO 45.7 Ca 0.951 

Al2O3 0.60 Al 0.014 
TiO2 0.05 Ti 0.001 
Fe2O3 0.67 Fe 0.010 
MnO 0.15 Mn 0.002 
MgO 0.80 Mg 0.023 
Na2O 0.20 Na 0.008 
K2O 0.03 K 0.001 
P2O5 0.03 P 0.000 

Loss on ignition 0.80   
 

Table 6-S2. The densities of CO2 and water shown in Figures 3 and 4 in main text. 

Temperature (oC) 
Pressure 

(bar) 
CO2 density 

(g/mL) 
Mole fraction of 

water (%) 
Water vapor density 

(mg/mL) 
35 100 0.653 0.407 1.087 
60 100 0.293 0.490 0.587 
93 100 0.201 1.374 1.130 
60 25 0.044 0.620 0.112 
60 50 0.098 0.360 0.147 
60 75 0.174 0.345 0.250 
60 125 0.447 0.540 0.983 
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Figure 6-S1. Size distribution and SEM images of the two size fractions used in this study. The 

volumetric mean sizes are 3.8 and 17.8 µm.190 The results were provided by NYCO Company and 

measured using laser diffraction. The SEM images shows consistently different particle sizes. 

Because 3.8 and 17.8 µm are spherical equivalent diameter, the particles in images can appear to 

be larger in size. 
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Figure 6-S2. Experimental setup. 1, Gas inlet and outlet tube; 2, Cooling loop; 3, Water; 4, Teflon 

tube; 5, Teflon liner; 6, Thermocouple.190   
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Figure 6-S3. Reacted fraction data used to calculate the reacted thickness in Figure 6.2 in the main 

text. (A) Reacted fraction of wollastonite particles with a volumetric mean size of 3.8 µm reacted 

for 40 hours at different water saturation percentages, 60 oC, and 100 bar CO2. (B) The reacted 

fraction of wollastonite particles with a volumetric mean size of 3.8 µm reacted for 40 hours at 

varying water saturation conditions, 60 oC, and 100 bar CO2. 
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Figure 6-S4. Reacted fraction data used to calculate the reacted thickness in Figure 6.3 in the main 

text. (A) Reacted fraction of wollastonite particles with a volumetric mean size of 17.8 µm with 

45×Sw at 35 oC (red diamond) and 60 oC (blue square), and 100 bar CO2. (B) Reacted fraction of 

wollastonite particles after reaction with 45×Sw at 35, 60, and 93 oC and 100 bar CO2. At 35 oC, 

17.8 µm particles were used, because 3.8 µm particles were almost completely reacted. At 93 oC, 

3.8 µm particles had to be used to obtain significant reacted fraction. At 60 oC, both 17.8 and 3.8 

µm particles were used, and the reacted thicknesses were the same, which means the reacted 

thickness obtained using different particle sizes were comparable. This conclusion is shown in 

Chapter 5.  (C) The reacted fraction of wollastonite particles with a volumetric mean size of 3.8 

µm reacted for 40 hours at different water saturation percentages, 93 oC, and 100 bar CO2. (D) The 

reacted fraction of wollastonite particles with a volumetric mean size of 17.8 µm reacted for 180 

hours at varying temperature, 45×Sw, and 100 bar CO2. 
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Figure 6-S5. Reacted fraction data used to calculate the reacted thickness in Figure 6.4 in the main 

text. (A) Reacted fraction of wollastonite particles with a volumetric mean size of 3.8 µm after 40 

hours’ reaction with 140×Sw, at 60 oC and different pressure of CO2. (B) Reacted fraction of 

wollastonite particles with a volumetric mean size of 3.8 µm reacted for 40 hours at different water 

saturation percentages, 60 oC, and 75 bar CO2. (C) The reacted fraction of wollastonite particles 

with a volumetric mean size of 3.8 µm reacted for 40 hours at varying pressures, 60 oC, and 

140×Sw. 
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Chapter 7: Conclusions and Future 
Directions 

7.1 Conclusions 

To evaluate the feasibility and performance of GCS processes, it is critical to understand 

the compatibility between injected CO2 and the mineralogy in storage sites. Currently, there are 

large uncertainties in the dissolution kinetics of aluminosilicates under GCS conditions. In 

addition, our knowledge on the silicate carbonation in water-bearing scCO2 is still limited. This 

dissertation contributes to a better understanding of the reactions at CO2–water–rock interfaces by 

investigating the dissolution of plagioclase and biotite in CO2-acidified liquid phase water and the 

carbonation of wollastonite in water-bearing scCO2. Particularly, by investigating the roles of 

sulfate anion and oxalate in the dissolution and subsequent precipitation at CO2–water–rock 

interfaces, the CO2–SO2 co-sequestration and the GCS combined EOR have been considered. 

Task 1 reported the effects of cations (e.g., Na, Ca, Al, and K) on the dissolution of 

plagioclase and biotite. Task 2 elucidated the influence of anions (i.e., sulfate and oxalate) on the 

plagioclase dissolution and subsequent precipitations. Task 3 investigated the effects of particle 

sizes of mineral grains, water, temperature, and pressure on the carbonation of wollastonite in 

water-bearing scCO2. 

In Task 1, Na inhibited the dissolution of plagioclase dissolution and the inhibition effects 

were particularly significant at > 0.1 M concentrations. Diffusion across the hydration layer on 

mineral surface did not affect the kinetics of dissolution in high salinity conditions. Ca also has a 

similar effect to Na at the same activities, and their effects did not suppress each other when Na 

and Ca coexisted. For biotite, Na enhanced dissolution by ion-exchange with interlayer K, which 
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caused swelling of interlayer spaces. This enhancing effect was coupled with an inhibition effect 

by competition for the adsorption of protons, which is similar to the Na inhibition on plagioclase 

dissolution. K is preferred as interlayer cations than Na in the biotite structure. K in aqueous phase 

can significantly suppress the Na-K ion-exchange in interlayer space and inhibit the dissolution of 

biotite. When biotite was pretreated with Na to replace the interlayer K with Na,  the Na-biotite 

released Na rapidly, dissolved faster than original K-biotite, and formed vermiculite. Na in 

aqueous phase can inhibit the dissolution of Na-biotite and the formation of vermiculite. K in 

aqueous phase can reverse the ion-exchange and recover the original K-biotite. These findings 

demonstrated that the effects of cations can be as important as other factors, such as pH and 

temperature. Our results provide helpful information to predict the cation effect on the dissolution 

of aluminosilicates. 

In Task 2, sulfate formed monodentate surface complexation with Al sites on plagioclase 

surface, which enhanced the dissolution. In the absence of sulfate, the Al dissolved from 

plagioclase precipitated as boehmite. Sulfate formed aqueous complexes with Al cations and 

suppress the boehmite formation. These observations help us understand the impacts of SO2 co-

sequestration. In addition, oxalate can suppress the sulfate effect when co-existed. These outcomes 

contribute to understanding the role of organic ligands in the dissolution of aluminosilicates. 

In Task 3, wollastonite reacted with water-bearing scCO2 and formed calcite and 

amorphous silica. The reaction occurs on the surface of wollastonite. The thickness of the reacted 

layer was similar for different size particles. The amorphous silica layer formed in water-bearing 

scCO2 was much less porous than that formed in aqueous phase, and act as diffusion barrier for 

water-bearing scCO2, which control the reaction extent. Higher extents of the reaction were 

observed at higher water saturation percentages, higher pressure, and lower temperature. Smaller 
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water saturation percentage and higher temperature produced less permeable amorphous silica 

layer, which can hinder further reactions when the water saturation percentage increased or 

temperature decreased. In contrast, the initial reaction at lower pressure did not affect further 

reactions at higher pressure. These results provide new insights for understanding silicate 

carbonation in water-bearing scCO2. 

This dissertation mainly focuses on the chemistry in GCS. The model minerals, 

plagioclase, biotite, and wollastonite, were chosen based on their reactivity and their relevance to 

GCS systems. We would like to point out that the results obtained using these minerals can also 

provide insights for other more abundant minerals in GCS field sites. For example, K-feldspar, 

which is a more abundant feldspar member, shares similar dissolution mechanisms with 

plagioclase. In addition, in our previous studies, we have elucidated how the dissolution kinetics 

of feldspars depend on their crystal structure.79, 95, 105 Thus, the cation and anion effects observed 

in the current studies should be similar on the dissolution of K-feldspar. Furthermore, proton-

promoted and ligand-promoted dissolution are common for aluminosilicates. Therefore, the 

competing adsorption between proton and cations, and the competing surface adsorption between 

organic and inorganic anions observed in this dissertation, should also affect the dissolution of 

other silicates.  

7.2 Future Directions 

In addition to the chemistry aspect in GCS, connecting with the geological preperties is 

important for further applications. Thus, a necessary step in future studies is to expand the 

investigation to more abundant but complex minerals. For example, using biotite, we have shown 

that interlayer ion-exchange reactions can strongly impact the dissolution of layered silicates. In 
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the future, more abundant micas, such as muscovite, and other phyllosilicates, such as smectite, 

should also be considered. 

This dissertation investigated the molecular scale interactions of cations and anions with 

aluminosilicates surfaces and the nanoscale reactions between water-bearing CO2 and silicates. 

There is a need to extend these studies to larger scale to know how these interfacial reactions can 

affect the pore scale and macroscale properties. An interesting future topic is to examine how 

geochemical reactions at CO2–water–mineral interfaces change mechanical properties and 

hydrological properties, such as the porosity and permeability of rocks and cements. In addition, 

to scale up current studies, we should consider the interactions among different mineralogy in 

multi-mineral systems, and also the influence of pore structure in the geologic setting on the 

dissolution and precipitation processes. 

This dissertation elucidated the impacts of dissolved SO2 on the dissolution and 

precipitation of silicates by examining the effects of sulfate anions on the dissolution of 

plagioclase. The next step to further understand the impact of gas phase SO2 co-sequestration could 

be investigating the effects of SO2 and potential O2 gas impurities on the carbonation of silicates 

in water-bearing scCO2. The SO2 impurities in CO2 would tend to dissolve in the thin water film 

on mineral surfaces. Considering the high reactivity of SO2, a greater extent of silicate hydrolysis 

and more carbonate and perhaps sulfate precipitations are expected. The reactions in water-bearing 

scCO2 can be more important when SO2 gas is co-injected with CO2.  

The dissertation also examined the influence of organic ligands on the aqueous phase 

reaction. In the future, the impact of organic compounds on the silicate carbonation should also be 

considered. For example, a previous study found that carboxylic acid ligands can dissolve into 
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water-bearing scCO2 and enhance silicate carbonation.58 Future studies can consider the less 

soluble organic compounds, because scCO2 is better solvent to these organics than water.  

In addition, we used wollastonite to elucidate the size effect and the equilibrium state of 

silicate carbonation, because wollastonite is the only natural mineral with enough reactivity within 

the short reaction time. The results obtained using wollastonite help understand the reaction 

mechanisms. However, to better predict understand the reaction in more abundant minerals, we 

will need to apply modeling approaches, which require a better understanding of the chemistry in 

thin water films on mineral surfaces. For example, an interesting future topic is to examine whether 

the formation of water films is necessary for reaction in water-bearing scCO2, or if the reaction 

can directly happen with water molecules in the gas phase. 

Considering the differences between reactions in the aqueous phase and non-aqueous 

phase, a critical future question is how we can improve CO2 injectivity while minimize certain 

type of reactions. Before we figure out the strategy of CO2 injection, further studies comparing the 

reactions of minerals in the aqueous phase and the non-aqueous phase water will be needed.  

Finally, future studies should not be limited to the background of GCS and EOR. Other 

energy-related subsurface engineering processes with similar conditions, including 

unconventional oil and gas production and geothermal system, should be considered. For example, 

in enhanced oil recovery and unconventional gas production, many chemical additives are injected 

into the subsurface environment. These organic compounds are used as surfactants, scaling 

inhibitors, clay stabilizers, etc. Potentially, these organic compounds can cause different reactions 

at CO2–water–rock interfaces and cause uncertainties in these industrial processes. Therefore, 
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future studies should consider the effects of chemical additives on the dissolution of silicate and 

aluminosilicates. 

In sum, this dissertation has provided insights on the impacts of several important aqueous 

species, including Na, K, and Ca cations, and sulfate and carboxylic acid ligands, on the dissolution 

of plagioclase and biotite in CO2-acidified liquid phase water. This work also includes a 

fundamental and systematical investigation on the effects of particle size, water, temperature, and 

pressure on silicate carbonation in water-bearing scCO2. The outcomes can contribute to a 

comprehensive understanding of chemical reactions at CO2–water–rock interfaces. Future 

directions of this work have been recommended to further improve our knowledge of the 

interactions among CO2, water, and rock, which help predict the safety and efficiency of GCS 

processes. 
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