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Abstract

Communication latencies and delays are a major source of performance degradation in parallel com-
puting systems. It is important to “mask” these communication delays by overlapping them with
useful computation in order to obtain good parallel performance. This paper proposes speculative
computation as a technique to mask communication latencies. Speculative computation is discussed
in the context of synchronous iterative algorithms. Processors speculate the contents of messages
that are not yet received and perform computation based on the speculated values. When the mes-
sages are received, they are compared with the speculated values and, if the error is unacceptable,
the resulting computation is corrected or recomputed. If the error is small, the speculated value
is accepted and the processor has masked the communication delay. The technique is discussed in
detail and is incorporated on to a N-body simulation example; the techniques result in a perfor-
mance improvement of up to 34%. An empirical performance model is developed to estimate the
performance of speculative computing. Model and measured values are compared and shown to be
in good agreement.

Keywords: Speculative computation, communication latency masking, performance model, syn-
chronous iterative algorithms, N-body simulation.

1 Introduction

Several compute intensive problems in science and engineering have found in parallel processing an
attractive solution to their high computing needs[6]. The problem is appropriately partitioned and
mapped on to the available processors and the processors cooperate to solve the problem. One of
the major sources of performance degradation in parallel computing is the communication delay.
The data and control dependency between different sections of the application often result in com-
munication between the processors assigned to the various sections. If the associated delays are

*This research has been sponsored in part by funding from the NSF grant CCR-9021041 and ARPA contract
DABT-93-C0057.



large, the processors are poorly utilized, resulting in poor parallel performance. This paper proposes
speculative computation and associated communications “masking” as an approach to overcoming
these delays. The techniques are implemented on a parailel N-body simulation example to illustrate
the potential performance benefits of this approach.

A recent trend in computing is to use networks of high performance workstations as a concurrent
computing resource. The workstations are typically connected by standard interconnects like ether-
net, FDDI or ATM networks and operate under programming environments such as PVM(Parallel
Virtual Machine)[9]. The communication delays in such systems are significant and often subject
to large variations due to non-deterministic network traffic. Overcoming communication delays in
parallel algorithms has become increasingly important in such distributed computing systems.

A number of algorithmic improvements have been proposed to overcome communication delays
in parallel algorithms. Saltz et.al[7, 8] suggest several techniques to develop robust algorithms for
solving partial differential equations on hypercube machines. They propose partitioning strategies to
reduce cominunication traflic, eflicienl convergence check mechanisins and concurrent execution of
multiple time-steps. While their techniques are shown to be effective, they are limited to hypercube
machines and to a small class of algorithms. Techniques such as asynchronous algorithms(1, 11]
and rollback synchronization{1] mask communication delays but are applicable only to a very small
set of applications. Overcoming communication delays in message passing systems is analogous
to the problem of overcoming memory access delays in shared memory systems. There has been
considerable work on developing and analyzing techniques for overlapping remote memory access
delays in medium to large scale shared memory systems[5]. Coherent caches, data prefetching and
multithreading have been proposed and implemented in some systems.

Speculative computing overcomes communication delays by effectively overlapping the commu-
nication time with useful computation. While waiting for a message, the processor speculates the
contents of the message and uses the speculated values in its computation. Consider an example
where two processors P1 and P2 cooperate to solve a problem. They exchange messages comprised
of certain partial results of their computation. Suppose P1 needs some data from P2 and cannot
proceed with its computation until the datais received. P1 expects a message from P2 and blocks {or
waits) till the message is received. If the communication delays are large, this dependency between
P1 and P2 results in significant performance degradation. If instead, P1 speculates the value of
the data it needs and proceeds with its computation using the speculated data, then communication
and computation are overlapped. When the message from P2 arrives, the speculated and actual
values are compared. If the error in speculation is large, the resulting computation is corrected or
recomputed. If the error is “small”, the resulting computation is accepted, and P1 has effectively
“masked” the communication delay.

Speculative computation has been proposed[2] and implemented[10] to incorporate parallelism
into inherently serial algorithms. Work is performed before it is known whether it is needed or not.
If the work is needed, it has already been performed, thus speeding up the computation time. Some
work may never be needed and thus is wasted. To gain from speculative computation it is critical to
identify future work which is likely to be needed. Burton[2] proposes a simple functional language to
incorporate speculative computation in inherently serial algorithms. Witte et.al[10) apply speculative
computing to the simulated annealing algorithm. The resultant parallel implementation, based on a
tree of speculative computations, yields a speedup of about logp on p processors.

The concept of speculative computation to overcome communication delays can be applied to
a host of parallel algorithms. However, in this paper, we focus on applying the technique to a



class of synchronous iterative algorithms(l, 3]. Section 2 describes the synchronous iterative al-
gorithm model employed. Section 3 discusses the speculative computing technique and associated
performance benefits. In section 4, we develop an empirical performance model to estimate the
performance of speculative computation. Section 5 describes the paraliel N-body simulation exam-
ple which is used to illustrate the speculative computing technique. Qur example, implemented on
a network of SUN/Sparc workstations, showed a significant performance improvement (up to 34%
on 16 processors) with speculative computation. The model and measured performance are then
compared.

2 Synchronous Iterative Algorithms

Synchronous iterative algorithms[1, 3] include most of the compute intensive numerical methods used
in science and engineering applications. Iterative techniques to solve linear and non-linear equations,
solution of partial differential equations, numerical integration, particle simulation, etc., are some
examples. These algorithms require frequent communication between processors and their perfor-
mance is highly sensitive to communication delays. Techniques that reduce or mask communication
delay effects potentially yield significant performance improvement for this class of applications.

Synchronous iterative algorithms proceed in synchronous steps or iterations. The work associated
with each iteration is distributed over some or all of the available processors. The processors are
synchronized either by means of a barrier operation or by message exchanges at the end of each
iteration. The next iteration begins only after all the processors complete the current iteration.

In this study, a general and widely applicable model for synchronous iterative algorithms[1] is
used. The model is used for ease of illustration and does not limit the applicability of the principal
ideas which apply broadly to a host of other algorithms.

An application problem is defined as consisting of a set of n variables, X = {z;, 22, #3....z,} that
are evaluated each iteration according to some vector function F = {f;(X), f2(X) ... fo(X)} of their
values in previous iterations. Each variable may represent a single value or a complex data structure.
This can be represented as follows:

X(t+1) = FX(£),X(t - 1), X(t~2)...) (1)

Each of the variables can be evaluated independently if the values of all the variables for previous

iterations are known.
zi{t+1) = fi(X({), X{t-1),...) (2) .

If there are p processors available, the set X is partitioned into p subsets and each subset is allocated
to a processor. The p subsets may not have equal cardinality since, in general, the functions f; may
be of unequal complexity and the processors may be of unequal power. Load balancing considerations
will thus lead to unequal partitions. Let X; be the set of variables allocated to processor j. The sets
X; are disjoint subsets of X (|J; X; = X and X; N X = 0,7 # k). Processor j is now responsible
for evaluating all elements of X; using equation 2. Note that each variable z; can potentially be a
function of all other variables. This implies that all computation associated with iteration ¢ should
be completed before iteration £ 4+ 1 can begin. Also, in a parallel implementation, each processor
sends the newly evaluated values of all its variables to all the other processors and has to wait till
it receives such messages containing the variable values from all the other processors before it can
proceed to the next iteration. The parallel algorithm for a general synchronous iterative algorithm



begin
Read z;(0) Vi
Partition and Distribute X
X; = set of variables allocated to processor j
fori =0to MAX
Each processor j, Do:
begin
send X;(¢} to all processors
receive Xi(t) VYk#j
compute: z;(t+ 1) = fi(X(t),X(t—-1)...), Vz; € X;
end
end

Figure 1: Synchronous Herative Algorithms

is given in pseudocode form in Figure 1. In this formulation, it is assumed that each variable is a
function of every other variable.

The rate at which the algorithm executes therefore depends on the computation speeds of all the
processors, the partitioning, and the communication time to exchange messages between processors.
Figure 2a shows the execution of a synchronous iterative algorithm on two processors where ideal
load balancing has been achieved and the complexity of F' is not a function of ¢. The figure shows
the effect of a slow communication channel. The execution rate is slowed down by communication
delays which are large and often unpredictable in distributed workstation based networks.

3 Speculative Computation

3.1 The Concept

In this development, we apply speculative computation in the context of synchronous iterative al-
gorithms. In synchronous iterative algorithms, each processor has to wait for messages from every
other processor (in the general case) before it can proceed with its computation and therefore, a
slow communication channel can introduce large communication delays degrading the performance.
With speculative computation, in each iteration, each processor j sends a copy of its variables to all
other processors. Next, it checks its message queue and incorporates any messages that have arrived.
It then speculates the values of all variables that are not yet received based on some speculation
function. For example, say that in iteration ¢, X (¢) has not been received. The speculation function
for X(t) might be a weighted sum of its past values, Xy(t — 1), Xy(t — 2),..., which have been
stored on processor j from previous messages(i.e., 27 (¢) = wiz:(E — 1) + woz;(t —~ 2)...,Vz; € X,
where wy, wy, ... are the weighting factors). Using the received values and the speculated values, it
computes the next values of its variables (the set X;). It then waits for messages that have not yet
been received. When a message is received, it compares the received values of the variables with the
speculated values. If the error is beyond a certain predefined threshold, it calls a correction function
to correct its computation, or in some cases, recomputes its variables. The synchronous iterative
algorithm (Figure 1) modified to incorporate speculative computation is presented in Figure 3.
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Figure 2: Speculative Computation: An example
Computation based on speculated values are marked with a *

Figure 2 shows speculative computation applied a two processor synchronous iterative algorithm
example where a slow communication channel results in poor performance. The time taken to
execute the first three iterations are shown for each case. For case (a), the processors wait for
messages each iteration resulting in poor utilization. For cases (b) and (c), the processors use
speculative computing to mask the communication delay. In (b), every speculated value is good and
acceptable. The execution time for this case (Tspec.good) is, therefore, much smaller than the time
for the no speculation case (Tno.spec). In {c), the speculated values are each found unacceptable and
the variables have to be recomputed. This incurs a small penalty and as a result, the execution
time for(Typec.nogood) I8 greater than the time for the no speculation case. When speculated values
are acceptable, speculative computation overlaps communication delays but incurs the overhead of
speculation, error checking and correction. In section 4 we develop a performance model that takes
into account the computation/communication overlap, the speculation and checking overhead and
the penalty for erroneous speculations.

3.2 Speculation Windows

If the communication times are greater than the computation time per iteration, speculative com-
putation for a single time value of X; (i.e., X;(t + 1)) can only partially mask the communication
delay. The remaining idle time may be used to speculate and compute subsequent iterations (i.e.,
X;(t+2),X;(t+3)...). We define a “forward window” (FW) as the maximum number of iterations
into the future that may be speculated. In the example in Figure 2, the processors speculate one
iteration into the future and the forward window, FW = 1. Speculating for and computing more



begin
Read z;(0), Vi
Partition and distribute X
(X; = set of variables allocated to processor j )
fort=0to MAX
Each processor 7, Do:
begin
send X;(t) to all processors
for each &k £ ;
if (msg from k arrived)
receive X, (1)
else
speculate X} (t)
compute: z;(t + 1) = fi(X(t), X(t—-1)..), Vz; € X;
for each k # j
if (msg from k not yet received)
receive X (i)
error = compare(Xy(t}, X} (t))
if (error > threshold)
correct(X;(¢ + 1))
end
end

Figure 3: Synchronous Iterative Algorithms: With Speculative Computing
(Speculated values are shown with a * superscript)
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than one iteration is particularly beneficial in situations where the computation and communication
times are likely to vary with each iteration. For example, in a workstation network environment, mes-
sages may occasionally experience excessive delays due to network traffic or the background load on
timeshared processors may slow down the computation phase. These delays, though transient, bring
about significant performance degradation. In situations like this, a larger FW helps in overcoming
the transient delays. However, speculating values too far into the future introduces inaccuracies.
Speculated values farther into the future are more likely to exceed the error bounds and may have
to be discarded. The FW is chosen based on an estimate of the communication and computation
times and the accuracy of the speculation function.

Figure 4 illustrates the effect of FW when there is an excessive but transient delay along one
communication path. The example is similar to the example Figure 2, but the first message from P1
to P2 is delayed in transit (shown by dashed line). Figure 4a shows the execution with no speculation
(FW = 0). The communication delay is greater than the time to speculate for and compute one
iteration. Due to the extralong P1— P2 delay path, the #W = 1 case (Figure 4b} can only partially
mask the communication delay. In the FW = 2 case (Figure 4c), the idle time is used to speculate
and compute two iterations into the future. If the speculated values are found accurate, this yields
additional performance improvement.

Defining an appropriate speculation function for an application is important in realizing the
performance benefits of speculative computation. Speculation is most useful in applications where the
variables generally follow a relatively slow changing trend that can be detected. In some applications,
each variable is associated with some information revealing its trend. For example, in particle
simulations, each variable (a particle) has an associated mass, position and velocity. The velocity
indicates how the position of the particle is likely to change in the near future. The trend can also



Table 1: Model Definitions

N Total number of variables

N; No. variables allocated to processor ¢

M; No. operations per second on processor 4
(a measure of processor capacity)

Jeomp No. operations to compute a variable

Sapec No. operations to speculate a variable

Feheck No. operations to check a variable

tcomm (p) | Communication time on a p processor system
(assumed constant over all processors)
tiotai(p) | Total time per iteration on p processors

(no speculation)

ftom[(p) Total time per iteration on p processors
(with speculation, FIW = 1)

k % recomputations due to speculation error

be detected by examining the history of the variable,

In this context, we define a “backward window” (BW), as the maximum number of past values of
the variables used in the speculation function. The speculated value of a variable is an extrapolation
of its present value and previous BW values. A larger BW generally implies a more accurate
speculated value. It also implies a more complex speculation function and requires more memory to
store the past values. The selection of an optimal value for the BW reflects the tradeoff between
accuracy and complexity of speculation. F'W and BW are tuned for a given algorithm and computing
platform to maximize performance.

4 Performance Model

In this section, an empirical performance model is developed which quantifies the benefits of spec-
ulative computation. The model estimates the execution time of a synchronous iterative algorithm
with and without speculation and examines the effect of speculation accuracy on the performance.
The model is used to predict the execution times for the N-body simulation example of section 5 and
the predictions are compared with measured values.

Consider a synchronous iterative algorithm that involves the evaluation of N variables every
iteration. The computing platform consists of p processors that may be of unequal computing
abilities. The N variables are distributed over the p processors such that each processor is allocated
workload (number of variables) proportional to its computing abilities. The computation on each
processor is therefore balanced and takes equal amount of time. It is assumed that the communication
times are equal over all processors and that computation and communication times remain constant
over all iterations.

Table 1 defines the model parameters. N; is the number of application variables allocated to
processor i. feomps fspec aNd fereck, respectively, are the number of operations required to compute,
speculate and check for each variable. teomm(p) is the communication time between processors in a
p processor implementation. f1,t01(p) and tso1i(p) are the total time per iteration with and without



speculation, respectively, for a p processor execution.

Let P = {P1, P2, ...} denote the set of available processors, ordered with respect to their
computing abilities. If the computing abilities of processor Pi, expressed as the number of operations
performed per unit time, is given by M;, the set P is ordered such that My > My, > M3z > ... A
p—processor execution of the application implies that the application is run on the fastest p processors
available, (i.e., on the first p processors {P1, P2, ... Pp} of the set P).

When the algorithm is run on a single processor (P1), the total time per iteration is equal to the
time to evaluate the N variables and is given by,

ttotal(P) = N X (fcomp/Ml) (3)

For a p processor implementation, the N variables are distributed such that the number of
variables allocated to each processor, N;, is proportional to its computing ability, M;. With ideal
load halancing, (i.e., equal computation time per iteration on each processor), the following two
conditions are satisfied:

N; N; .

—M—; — ﬂ[[j’ VZ:J (4)
r
Y N;=N (5)
fu=1

The total time per iteration (no speculation case) is the same on all p processors and is given by the
sum of computation and communication times:

ttotal(p) = Ni X (fcomp/Mi) + teomm (p): r> 1 (6)

With speculative computation, the computation and communication times are overlapped and
the time per iteration has the general form:

total time = max| (speculation time + computation time), communication time ]
L N (7)
+ error checking time + Y%error X recomputation time.

The maximum term reflects the potential overlap between computation and communication. The
final two terms deal with the time to check whether the speculated variable values were correctly
predicted, and for the instances where error limits are exceeded, to perform a recomputation.

Equation 7 can be rewritten by first assuming that processor % speculates and check all variables
not allocated to it (i.e., N — N; variables). The processors are allocated variables such that the
computation phase (the most time consuming phase) is equal on all processors. Speculation and
checking phases are, however, not equal and this leads to a small load imbalance. The iteration time
on processor ¢ is given by:

£§:;)tul(fp) Tomex [ (N - Nf) X (.fspec/%) + N;x (fcomp/Mi)) teomm (P)] (8)
+ (N - N‘l) X (fcheck/Mi) + kEx Ni X (fcomp/Mi):

where, k is the percentage of variables that need to be recomputed due to speculation errors. The
total time per iteration on p processors with speculative computation, f;40(p), is the maximum
iteration time over all processors:

frotar(p) = max  £).,(p) (%)
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Figure 5: Speculative Computation: Performance Model

Speedups are relative to the fastest single processor case(P1). Maximum
speedup reflects computing power of the p-processor set relative to P1,

The speedup obtained through parallel execution is a good measure of the parallel algorithm and
system performance. In the model and experimental results presented in this paper, speedup for a
p-processor implementation refers to the ratio of the execution time on processor P1 to the execution
time on the first p processors in the set P.

Execution time on P1
Execution time on the set {P1,P2...Pp}’

speedup(p) =

Since the processors do not have equal computational power, and the parallel execution times are
compared against the fastest processor, it is not possible to obtain linear speedup through parallel
execution. The maximum speedup that can be obtained on a p-processor execution, speedupmgqr(p)
is given by the ratio of the computing abilities of the p-processor set to that of the fastest processor,
Pl:
i=]

M

The performance models developed above are now applied to a synchronous iterative algorithm
example with N = 1000. Consider a computing platform consisting of up to 16 processors. The
processor computing abilities vary linearly with the fastest processor, P1, being 10 times faster than
the slowest processor, P16 (i.e., My = 10 X Myg). In a p processor implementation, the N variables
are distributed over the first p processors of set P in accordance with the conditions in equations 4
and 5. The speculation and checking functions are assumed to be small compared to computation
(foomp = 100 X fapec = B0 X foneck)- It is also assumed that the communication time per iteration,
tcomm increases linearly with the number of processors used in the implementation. t.omm is set
equal to the computation time per iteration in the 16-processor case. The parameters chosen are
reasonable and are close to the measured values for the N-body simulation example presented in
section 5.

Figure 5 shows the speedup versus number of processors predicted by the model with and without
speculation for the case where the percentage of recomputations, & = 2%. Speculative computation

P M
speedupq(p) = S4=L2,

10
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has very little impact for small processor systems (2 to 5 processors). This is because the communi-
cation delays are relatively small and do not degrade performance significantly. For larger systems,
speculative computation yields significant performance benefits, up to 25% on 16 processors. Note
that in the “no speculation” case, performance begins to decrease after about 10 processors. This
is because the communication costs increases with the number of processors and results in lower
performance.

Figure 6 shows the effect of the speculation error on the performance for an 8-processor system.
The figure shows the speedup on 8 processors versus the percentage of recomputations, k. Speculation
yields performance gain over the no speculation case for errors less than 10%. A large error percentage
increases the overhead of recomputing the variables and results in poorer performance. Thus, unless
variables can be predicted reasonably well, there is no gain with this method. In many practical
applications, however, predicting within a 10% error margin is not difficult. The N-body application
discussed next illustrates this.

5 Case Study: Parallel N-body simulation

To illustrate the ideas and performance benefits of speculative computation, the technique was imple-
mented on a simple O(N?) N-body simulation example!, The parallel algorithm was written under
the PVM programming environment using the message passing paradigm. The algorithm runs on
SUN/Sparc workstation network using up to 16 workstations.

The N-body problem involves a system of V particles where each particle exerts a force on every
other particle. The evolution of such a system can be solved only by numerical simulation methods{for
N > 3). The simulation proceeds in timesteps, each timestep computing the force between every
pair of particles, the resultant force on each particle and updating its position and velocity based
on the resultant force. The force between any two particles is given by Newton’s universal law
of gravitation. The resultant force on a particle is the vector sum of all its pairwise forces. The

'A more efficient O(Nlog N) is possible and has been implemented in the past[4]. Our objective here, however, is
to illustrate the effectiveness of speculative computation, and the simpler O(N?) implementation is employed.

11



begin
Distribute particles to processors
fort=1to MAX
On each processor, 7, Do:
begin
send X; to all processors
num_recvd = 0
while num_recvd < (p— 1)
begin
receive a message
k = sender processor id
compute force due to X
num. recnd = num. recod 4+ 1
end
update velocity, position, Vz; € X;
end
end

Figure 7: The N-body simulation (no speculation case)

change in position and velocity of a particle due to the resultant force is given by Newton’s laws of
motion. Since all pairwise forces are computed, simulation of N particles results in a computational
complexity of O(N?%).

The experiment utilized a network of up to 16 SUN/Sparc workstations connected by a stan-
dard ethernet. The processors differ widely in their computing abilities. The fastest worksta-
tion(SparcStation 10/1) is rated 120 MIPS and the slowest(SUN 4/10) is 10 MIPS. To determine
a processor’s capacity, a small sequence of several operations was executed on each processor and
the runtime on the processor was measured. The runtime divided by the number of operations is a
measure of the processor’s capacity, M;.

The N particles simulated are distributed over the p processors such that each processor is allo-
cated workload (i.e., number of particles) proportional to its computing ability. Each processor is
responsible for computing the resultant force and updating the velocity and positions of the particles
allocated to it. At the start of each iteration (or timestep), each processor sends the current position
and velocity of all its particles to all other processors. It then waits to receive such messages from
other processors and, when the particle information is received, computes the forces on its particles
due to all the particles in the system. Once the resultant forces are computed, it updates the velocity
and position of its particles based on the forces and proceeds to the next iteration.

Figure 7 describes the algorithm in pseudocode form using the same notation as in section 2 for
synchronous iterative algorithms. p is the number of processors and z; refers to a particle (i.e., its
mass, position, velocity and other attributes}, X; refers to the set of particles allocated to processor
j-

The algorithm requires each processor to wait for messages and then compute the resultant forces.
A considerable amount of time (e.g., 40% for a 1000 particle simulation on 16 processors) is spent
in communication and most of this time is spent waiting for messages. Speculative computation was
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Figure 8: N-body simulations with speculative computation

Speedups are relative to the fastest single processor case{P1). Maximum
speedup reflects computing power of the p-processor set relative to P1.

incorporated into the algorithm of figure 7. While a processor is waiting for a message containing
particle information from another processor, it speculates the remote particle positions and computes
forces based on the speculated values. When the message is received, the speculated and real values
are compared; if the error is unacceptable, the resultant force is recomputed.

The position of a remote particle is speculated based on its previous position and velocity, as-
suming that the velocity remains constant for one timestep. This introduces a small error since the
resultant forces on the particle may have altered its velocity. If the position of the remote particle a
is given by the vector 7, and the velocity by 4,, the speculated position at iteration ¢ is given by

FE(E) = Falt — 1) + Ga(t — 1) x At, (10)

where, At is the timestep size. The force between a local particle & and the particle a at iteration ¢
is computed using the speculated position of a, 7,*(t).

When the message containing the actual position of @ is received, the speculation error and the
effect of this error on the force computations are calculated. The speculation error for particle a is
given by the difference between the speculated and the actual values. The effect of this error on the
force exerted on particle b is (approximately) proportional to the ratio of this error and the distance
between particles a and b.

”Fa*(t) — T?ﬂ(f’)” (11)
IFa(t) — ()}

The computation using the speculated value is considered acceptable if this ratio is less than a
predefined threshold, 8.

Figure 8 shows the speedup (based on measured execution times) versus the number of processors
for the N-body simulation example (of 1000 particles) for various (forward) speculation windows
with the error threshold, # = 0.01. For small number of processors (2 to 4 processors), speculative
computation has very little performance impact. This is because the communication delays are small
and do not affect performance to a great extent. As the number of processors increase, the effect of

erroryp =
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Table 2: Measured times for a 16-processor, 1000-particle simulation

FW | computation | communication | speculation check total
time(sec) time(sec) time(sec) | time(sec) | time(sec)

0 5.83 4.73 0 0 10.56

1 5.85 1.43 0.2 1.02 8.62

2 5.82 0.22 0.3 1.5 7.79

Table 3: Effect of error bounds on recomputations and computation error

[/ Incorrect | Max. error

speculations in force
0.1 < 1% 20 %
0.05 < 1% 10%
0.01 2% 2%
0.005 5% 1%
0.001 20 % 0.2 %

communication delays are more significant and speculative computation makes a sizable performance
impact. For 16-processors, 34% performance gain over the no speculation case is observed. The
speedup is within 20% of the maximum speedup on 16 processors. A window size of 0 corresponds
to the no speculation case.

The performance of an application with speculative computation is influenced by several factors.
Among them are the complexity of the speculation, error checking and correction functions, accuracy
of the speculation function and the error bounds defined by the user. In the current implementation
of N-body simulation, computing the force between a pair of particles involves about 70 floating
point operations, speculating the position of a particle takes 12 floating point operations, error
checking involves 24 operations. Table 2 shows the average time spent per iteration in the various
phases of the execution for a eight processor, 1000 particle simulation. The force computation,
communication, speculation, error checking and correction times are shown for speculation windows
of 0, 1 and 2. In the above example, the speculation and error checking time is small compared to
the computation times and the communication delay. Since the overheads for speculative computing
are small, significant performance improvement is observed.

The accuracy of the speculation function and the user defined error bounds also affect the per-
formance of speculative computation. Force computations using the speculated value are accepted
if the effect of the speculation error is less than a certain error threshold, #. Table 3 shows the
effect of & on the percentage of recomputations. As expected, lower bounds on @ directly result in a
lower error in the particle force calculations and in an increased number of erroneous speculations.
The table also shows the maximum error in the force computations for a given value of §. From the
table, a @ of 0.01 seems reasonable. In our implementation, the speculation function makes use of the
velocity information (first derivative) of each particle to speculate the next position of the particle.
Using higher order derivatives may increase the accuracy of speculation but make the speculation
function more complex. This tradeoff has not yet been studied in our current implementation.

The performance model developed in section 4 was parameterized to represent the N-body sim-
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Figure 9: Comparing model and measured performance
Solid lines indicate measured values. Dashed lines indicate model predictions

ulation example. In Figure 9, we compare the model predictions with the measured values. The
model predictions are within 10% of the measured values for 8 or fewer processors and within 25%
for 8 to 16 processors. The difference in model and measured values are mainly due to some of the
simplifying assumptions in the model. The communication time was assumed to remain constant
over all iterations and on'all processors. However, network traffic and processor loads cause signif-
icant variations in the communication times. In large processor systems (> 8 processors), network
contention (not accounted for in the model) causes additional communication delay and results in
significant performance degradation. Similarly, background processor loads cause the computation
times on processors to vary slightly with time.

6 Conclusions

Speculative computation has been proposed as a technique to mask communication latencies and
delays by overlapping them with useful computation. The technique potentially can yield significant
performance improvements particularly in distributed systems such as workstation networks where
communication delays are large and subject to considerable variation. The paper presented specu-
lative computation in the context of synchronous iterative algorithms. The performance benefits of
speculative computation are illustrated using an N-body simulation application. Up to 34% improve-
ment in performance over the no speculation case was measured . The speedups obtained using the
technique were within 25% of the maximum attainable speedup for the set of processors used. The
experiment was run on a network of SUN/Sparc workstations operating under the PVM environ-
ment. This shows that speculative computing is an effective technique to overcome communication
delays. The technique is likely to yield similar performance benefits for other applications.

An empirical performance model was developed to estimate the potential the performance benefits
of speculative computing. The model also illustrates the effect of speculation error on performance.
Comparison of the model and measured performance shows less than 10% error for small systems{< §
processors) and about 25% error for larger systems.
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Future work on speculative computation includes developing a more sophisticated performance
model that accounts for variations in computation and communication times of processors and dif-
ferent forward and backward window sizes for speculation. The model can be used to estimate
performance of the technique for a given application and computing system and in making design
decisions with respect to the various tradeoffs involved in its implementation. With the recent trend
in parallel computing favoring cost-effective networked computing systems, overcoming communica-
tion delays in parallel algorithms is crucial in obtaining good parallel performance.
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