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ABSTRACT OF THE THESIS 

 
 

Enzymatic Enhancement of Water Removal in the Dry Grind Corn to Ethanol Process 

by 

Ana Beatriz Henriques Thomas 

Doctor of Philosophy in Energy, Environmental, and Chemical Engineering 

Washington University in St. Louis, 2009 

Research Advisors: Professor Muthanna Al-Dahhan, Professor Milorad Dudukovic,  

and Dr. David Johnston 

 
 
The removal of water from coproducts in the fuel ethanol process requires a significant 

energy input. The drying of the coproducts is responsible for as much as 32% of the total 

utilities cost of the process. In this study, improvements in the energy and water balances of 

the corn to ethanol process and a decrease in ethanol production costs were achieved. 

Significant reductions in water-binding capacity of whole stillage were found for two, 

commercially available, cell wall degrading enzymes, GC220 and MGC. The addition of a 

protease, GC106, during fermentation was found to significantly enhance ethanol 

production rates as well as reduce the water binding capacity of the mash. Improvements in 

fermentation rates were achieved by the addition of GC106 with either GC220 or MGC. To 

achieve both enhanced dewatering and increased fermentation rates, it was recommended 

that a plant dose their fermentors using either a MGC/GC106 volume combination of 

0.02/0.02 mL or a GC220/GC106 combination of 0.015/0.01 mL. 
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A plant trial was conducted to evaluate the scale-up of enhanced water removal from whole 

stillage by enzyme addition. Enzymes added during this trial proved to be effective, and an 

increase in the amount of water being removed during centrifugation was observed during 

the trial. The firing rate of the drier decreased significantly during enzyme addition, resulting 

in 12% less natural gas required to produce one gallon of ethanol. DDGS composition was 

not affected by the enzyme addition.  

 

Process simulation results from the enzymatic dewatering model showed a decrease in utility 

consumption compared to the conventional model. A sensitivity analysis showed a tradeoff 

between the enzyme cost and the drier’s natural gas savings. Because of the non-linear 

nature of enzyme activity, as the amount of enzyme added was linearly decreased, its 

resulting effects on the process were non-linear. Even if maximum dewatering effects are 

not achieved, significant savings in natural gas cost could still be obtained. 
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Chapter 1 – Introduction and Objectives 
 

1.1 An Overview of Fuel Ethanol 
 

Ethanol as an automobile fuel has been considered as a viable option as far back as 1908, 

with the design and production of the Ford Model T car by Henry Ford’s Motor Company 

(Jones 2007). The car’s engine was capable of running on both gasoline and ethanol (English 

2008), and Henry Ford is often quoted as saying:  

 

We have found that 160-proof alcohol works very well in the ordinary gas engine on 
our cars and tractors… Using alcohol in an ordinary Ford car, we are able to get 15 
per cent more power than with the present gasoline… (Detroit Evening Journal 
1916) 

 

However, at that time, with Prohibition and the decreasing cost of gasoline in the United 

States, the cars that were sold were not capable of operation using ethanol. Despite these 

obstacles, sometime later events started to take place that eventually led to the ethanol 

revolution seen in the 21st century.  

 

First, the Arab Oil Embargo of 1973 was the first oil supply disruption to lead to a 

worldwide energy crisis. Second, there was an increase in oil prices due to a shift in 

production to less secure parts of the Middle East (EIA 1998). Third, there was the Energy 

Tax act of 1978, in which car manufacturers began to pay a tax on cars sold that did not 

meet a combined fuel economy of at least 22.5 mpg. This was also the first time that 
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Gasohol was officially defined as a blend of gasoline with 10% ethanol by volume, with the 

requirement that ethanol had to be produced from a renewable resource (EPA 2006). At the 

same time, countries around the world started to look elsewhere for a more stable, self-

sufficient fuel. In 1992, the US Congress passed the Energy Policy Act in an attempt to 

increase US energy independence and improve air quality by encouraging the use of 

alternative transportation fuels. This included the requirement that 75% of a new federal 

fleet must run on an alternative fuel (DOE 2005). All of these measures led to the need for a 

renewable energy source and the production of an alternative fuel that could directly 

compete with gasoline in the marketplace. 

 

The United States was not the only country affected by the energy crisis. Brazil quickly 

realized that it too needed to gain its energy independence. In the early 1980s, large scale 

plants were built to produce ethanol from sugar cane. After two decades of research, 50% of 

the Brazilian automotive fleet was running on ethanol and approximately 70% of all cars 

sold in Brazil were flex fuel (Valdes 2007). More recently, in October of 2002, Neiva, the 

subsidiary of the Brazilian aviation company, Embraer, presented the first airplane to run on 

ethanol. The airplane is called the EMB-202 Ipanema, and was designed for the agricultural 

sector. It uses an American motor that was redesigned to run on ethanol at one of the 

Embraer’s factories. It is estimated that the airplane will save its owner about US$39,000 per 

year compared to a conventional airplane (Embraer 2002). These savings are attributed to 

the price difference between jet fuel and ethanol.  
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1.2 History of Fuel Ethanol from Corn 
 

In the US, fuel ethanol is primarily produced from corn. Production of ethanol from corn 

was pioneered by corn refiners after WWII. During the postwar time, fuel had a 

characteristic low price and commercial fuel ethanol production was almost non-existent. At 

the time corn refiners and farmers who had a need for fuel ethanol to run their machines 

and tractors began to rustically produce ethanol from corn, a practice that has led to today’s 

corn to ethanol production process. In the 1970s, most of the ethanol produced from corn 

was used either by the beverage industry or for industrial processes. The Solar Energy 

Research, Development, and Demonstration Act of 1974 was the first legislative action to 

promote ethanol as a fuel produced from an organic raw material. In 1975, as the US began 

phasing out lead in gasoline, ethanol from corn began to be seen as a possible replacement 

octane booster. Finally in 1979, approximately US $1 billion was handed out in grants for 

research in biomass for fuel ethanol production, including the production of ethanol from 

corn (EIA 2003).  

 

According to the latest report by the Renewable Fuels Association (RFA), total yearly 

ethanol production capacity in the United States was 10.5 billion gallons as of January 2009. 

By comparison, in 1980, 2000, and 2001, the total production capacities were 175 million, 

1.6 billion, and 1.77 billion gallons per year, respectively (RFA, How ethanol is made 2009). 

There are currently 170 operating corn to ethanol biorefineries in production with 24 more 

under construction (Figure 1.1) (RFA, Biorefinery locations 2009). 
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Figure 1.1: Map of corn to ethanol plants in the United States 
 

1.3 Ethanol Production from Corn 
 

Ethanol from corn can be produced by either of two methods: dry grind or wet milling. 

Approximately 82% of ethanol production facilities use the dry-grind corn to ethanol 

process while the rest use wet milling (Hardy 2009). The main difference between the two 

processes is the fractionation of the corn kernel in the wet milling process. This separates the 

kernel into its major components, starch, gluten, fiber and germ, which are then individually 

processed into 4 main products, ethanol, gluten meal, gluten feed and oil, respectively. 
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Furthermore, the starch component can be processed into many other products such as 

dextrose, thickening agents, adhesives and even as one of the cooling agents for superheated 

oil drilling bits (CRA 2007).  

 

1.3.1 Wet Milling 
 

The wet milling process for ethanol production has a higher initial capital cost due to the 

added complexity in the front end of the process reserved for the corn kernel fractionation. 

A schematic of the wet milling process with its six major products and co-products can be 

seen in Figure 1.2 (RFA, How ethanol is made 2009). 
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Figure 1.2: Simplified schematic diagram of the wet milling corn to ethanol process 

 

The corn kernels are soaked in a solution of water and sulfurous acid and then separated into 

the main components: starch, gluten, gluten feed and germ. This preparation of the kernels 

for fractionation can be done chemically, by pre-treating the kernels with sulfur dioxide in 

water, or, as recently proposed by Johnston and Singh, by the addition of specific enzymes 

to break down the protein matrix in the endosperm of the kernels. In both cases, the kernels 

are prepared for separation in subsequent steps of the process (2005). The latter is called 

enzymatic milling or E-milling. Each component then goes through a series of processes to 

be converted to one or more of six primary marketable products: corn oil, wet feed, gluten 

meal, ethanol, high fructose corn syrup, and corn starch. The conventional wet milling 
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process uses sulfur dioxide, seen by many as a hazardous chemical, making the e-milling 

approach more desirable. Although the e-milling process has not been adopted by current 

wet milling plants, plant trials have been successfully conducted in Malaysia by Johnston and 

Singh (2005). 

 

1.3.2 Dry Grind 
 

The dry-grind process is less complex and has only three products and co-products: ethanol, 

distillers dried grains with solubles (DDGS), and CO2 (Figure 1.3).  
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Figure 1.3: Simplified schematic diagram of the dry milling corn to ethanol process 
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The reason the dry grind process is more prevalent is that it has a few key advantages over 

the wet milling process. Up front, the dry grind process requires a significantly smaller initial 

capital cost investment, which makes it easier for companies to get sufficient investment 

funding to build a plant. The process is also less complex and requires fewer unit operations 

because the corn kernel is processed as a whole instead of being fractioned into different 

components as is necessary in the wet milling process. In the dry grind process, the corn is 

first milled in a hammer mill and screened. The screened corn is then mixed with water and 

α-amylase and passed through cookers where the starch in the grain is gelatinized and 

hydrolyzed into dextrins, also known as liquefaction, at 110ºC and a pH of about 5.5 (Wang 

et al. 2007). With the addition of gluco-amylase the liquefied starch is converted via 

saccharification into fermentable sugars, glucose, at a pH of about 4.5 (Muller 2000). At the 

same time, yeast is added to the mash to ferment the glucose into ethanol in a process called 

simultaneous saccharification and fermentation (SSF). The operating temperature during the 

SSF process is held between 32 and 35ºC.  

 

In general, SSF takes place in batch fermentors. It is known that some fermentors have a 

single bottom lift agitator and that others are equipped with multiple impellers on a single 

shaft. In either case, a recirculation pump continuously circulates the mash at the bottom of 

the fermentor which increases mixing and therefore mass transfer performance (Shukla et al 

2000). In the case of aerobic fermentations, it is important to have large areas of gas-liquid 

interface to ensure that the gas reaches the surface of the growing yeast cells (Levenspiel 

1974). Without adequate mass transfer, glucose to ethanol conversion will not be completed. 
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The approximate residence time of the fermentation process, in the actual fermentor, in a 

corn to ethanol plant is about 50 hours. However, fermentation can start to happen before 

the mash reaches the fermentor, in the yeast propagation tank, and continues to happen after 

the mash leaves the fermentor and enters the beer well. It is believed that fermentation can 

occur for as long as 65 hours before the yeast cells become inactive once the mash reaches 

the distillation part of the process. Furthermore, the amount of CO2 produced during 

fermentation enhances mixing by adding a third type of motion in the fermentor which also 

increases the mass transfer. In this case the CO2 gas bubbles up through the mash much like 

having a sparger in the fermentor (Levenspiel 1993). 

 

The yeast used in this step consists of commercially available strains of Saccharomyces cerevisiae 

and most ethanol plants will use one of these during this stage of the process. After SSF, the 

mash goes through a distillation and dehydration process where the alcohol is removed from 

the solids and water (SIUE 2001). On a weight basis, about 66% of the processed corn is 

converted to fuel ethanol and CO2 via this process (Bothast and Schlicher 2005). The 

remaining third is processed and becomes what are known as distillers dried grains and are 

sold to farmers as high-protein feed for livestock, swine, and poultry. 
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1.4 Motivation 
 

Processing DDGS is an energy intensive part of the dry grind corn to ethanol process. The 

non-fermentable material left over after SSF is referred to as “whole stillage” and is delivered 

from the beer well to either a conventional or a solid bowl decanter centrifuge (Figure 1.4). 
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Figure 1.4: Process flow diagram of the dry milling corn to ethanol process 
 

The centrifuge separates the whole stillage into liquid and solid fractions, which are the thin 

stillage and wet distillers grains (WDGs), respectively. The WDGs are mixed with the 

concentrated stillage (syrup) coming from the triple effect evaporator, with the resulting 
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mixture containing approximately 65-70% moisture. As shown in Figure 1.4, the 

WDGs/stillage mixture is then fed to a ring dryer that reduces the moisture content to about 

10% (SIUE 2001). The dried co-product is called Distillers Dried Grains with Solubles or 

more frequently DDGS. 

 

The DDGS are sold, for the most part, as animal feed for ruminants, but can be also 

consumed by the swine and poultry industries. Cattle farmers prefer to feed their livestock 

DDGS that have a color that is in the "golden" range. This can be difficult to achieve since 

DDGS are easily burned in the drier due to excessive residence times and high operating 

temperatures. The burned DDGS cause a reduction in the ruminant’s digestive abilities 

(Shurson 2006). Figure 1.5 shows the color variation of the DDGS from facility to facility. 

 

 

Figure 1.5: DDGS samples from various US ethanol plants, showing that color variation is 
significant from plant to plant 
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According to an economic analysis performed by the United States Department of 

Agriculture (USDA), the drying step is responsible for 32% of the cost of utilities for the 

entire process (Kwiatkowski et al. 2006). That accounts for roughly US $3.2 million/year for 

a 40 million gal/year dry grind corn to ethanol plant. 

 

Therefore, by increasing the amount of moisture removed during centrifugation, it will be 

possible to reach the necessary moisture content in the DDGS using a lower temperature 

and a shorter residence time in the drier. This will save energy and ultimately reduce the 

production cost of ethanol. Although wet distillers grains (WDGs), which contain 65-70% 

moisture, are more economical and perform as well or better than DDGS, the transportation 

and storage requirements for wet feed present many difficulties such as a short shelf life and 

flow-ability problems (Ganesan et al. 2006). Furthermore, according to the economic model 

of fuel ethanol production published by Kwiatkowski et al., decreasing the amount of water 

removed from the DDGS in the dryer, which would result in a decrease in the retention time 

in the dryer, presents an important economic benefit that can save up to 6.2% in utility usage 

in the overall production process (2006). Historically, the sale price of the dry feed has 

fluctuated between $80 and $140 per ton (Figure 1.6) (USDA 2009). 
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Figure 1.6: Monthly average prices for distillers dried grains 

 

Currently, the average sale price of wet feed (70% moisture) is $46 per ton, while the average 

sale price of dry feed is $135 per ton (University of Missouri 2009; USDA 2009). Less drying 

would result in reduced energy requirements for the process, helping to lower the cost of 

DDGS and make them more attractive in the marketplace (Miller 2000). 

 

DDGS are composed mainly of fiber, protein, and fat, but also include small amounts of 

water, amino acids, ash, calcium, and phosphorus (Shurson 2004) (Table 1.1). 
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Table 1.1: High quality DDGS nutrient composition 

Component 
Content                

(% dry wt basis)1 

Fiber 55.4 

Crude Protein 30.6 

Crude Fat 10.7 

Lysine 0.83 

Methionine 0.55 

Threonine 1.13 

Tryptophan 0.24 

Calcium 0.06 

Phosphorous 0.89 

1 Data from Spiehs et al. 2002 

 

Fiber can be defined as the portions of the cell wall of the DDGS that are made up of 

cellulose and lignin, both of which are major polysaccharides. The bonds created between 

water molecules and polysaccharides during hydrolysis can form in a number of different 

ways and have varying strengths. Maximum water-binding capacity occurs when water 

molecules share exactly one hydrogen bond with a polysaccharide. In this configuration the 

greatest hydrophylicity is manifested due to an increase in water concentration in the 

presence of a polysaccharidic carboxylate group (Chaplin 2003). If this rigid hydrogen 

bonding structure was disrupted, the centrifugal force of the centrifuge would cause the 

water molecules to be released from these water-binding components resulting in the 

retention of less water in the solids phase during centrifugation. 
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1.5 Objectives 
 

In this research we test the hypothesis that the use of cell wall degrading enzymes, such as 

cellulase, xylanase, and β-glucanase, to hydrolyze and cleave cellulose, and hemi-cellulose is a 

way to disrupt the ordered environment of hydrogen bonds found between the 

polysaccharidic chains and water molecules. We do this via an experimental investigation of 

the ability of cell wall degrading enzymes to hydrolyze the polysaccharidic chains, which 

make up the un-fermentable fiber component of the corn kernel, into smaller molecules. We 

expect that the enzymes will cause these chains to rearrange inter-molecularly and form 

bonds between chains resulting in the release of water molecules and the weakening of 

water-to-polysaccharide bonds. There is no information in the literature regarding the use of 

these enzymes to enhance the dewatering of the DDGS in the dry grind corn to ethanol 

process and we will conduct such a study.  

 

On the other hand, proteolytic enzymes (proteases), known for their ability to hydrolyze 

proteins, are already commonly used in the dry grind process to decrease fermentation time, 

as described later in Section 3.4 (Eckhoff and Tso 1991; Spanheimer et al. 1972; Roushdi et 

al. 1981; Johnston and Singh 2001; Johnston and Singh 2004; Johnston et al. 2003). 

Proteases will be studied for their ability to work synergistically with the cell wall degrading 

enzymes to not only improve dewatering, but also to decrease fermentation time and to 

increase final ethanol yields.  
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Cell wall degrading and proteolytic enzymes are also known for their ability to decrease the 

slurry’s viscosity, as described in Sections 2.1 and 3.1 (Harkonen et al. 1996; Bouvier et al. 

1992; Karlsson et al. 2001; Ponte et al. 2004; Tahir et al. 2005). It is believed that a decrease 

in slurry viscosity will have a direct impact on the centrifuge’s solids-liquid separation 

efficiency. Reports in the literature show that there is a relationship between the centrifuge 

differential speed and performance due to changes in slurry viscosity, as described in Section 

6.4.7 (Leung 2001; Beiser et al. 2000; McCabe 2001; Leung 1998). We will attempt from our 

experimental investigation to establish a relationship between changes in the differential 

speed of the centrifuge due to enzyme addition and the amount of water removed during 

centrifugation.  

 

The success in proving the above hypothesis will be useful in the scale-up of the proposed 

enzyme addition, which will directly affect the economics of the process. Not only would 

less energy be required during the drying step, an increase in the plant’s production 

capabilities would also be seen. An economic analysis of the dry grind corn to ethanol 

process can readily establish this and will be done.  

 

1.5.1 Outline of Specific Tasks  
 

The following is an outline of the specific tasks necessary to support the hypothesis stated 

above. 

1. i) Investigate cell wall degrading enzymes for their ability to dewater the  
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  distillers grains after centrifugation. 

ii) Study the selected cell wall degrading enzymes for minimum dosage 

requirement that will cause the desired dewatering of the distillers grains. 

2. Investigate proteolytic enzymes for their ability to dewater the distillers grains after 

centrifugation and increase the final fermentation ethanol yields. 

3. i) Assess the combination of the selected cell wall degrading and proteolytic  

  enzymes to maximize dewatering and ethanol yield. 

 ii) Investigate the minimum dosage requirements of the selected cell wall  

degrading and proteolytic enzymes that will improve dewatering and ethanol 

production. 

4. Study the effect of enzyme addition on the differential speed and performance of the 

centrifuge 

5. i) Perform large scale testing, with the cooperation of Center Ethanol,  

            Genencor and USDA, by implementing the developed process in a dry-grind  

           corn to ethanol facility in order to investigate production scale results. 

 ii) Perform economic analysis around co-product processing unit operations to 

determine viability of the developed process and its industrial 

implementation. 
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Chapter 2 – Cell Wall Degrading Enzymes 
 

2.1 Introduction 
 

Corn is mainly composed of 13% water, 8% protein, 68% starch, 8% fiber and 7% fat 

(Schroeder et al. 1997) (Figure 2.1). 
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Figure 2.1: Schematic of average of whole mature corn kernel composition on a weight basis 
 

The major components of corn fiber are polysaccharides that consist mainly of cellulose, 

hemi-cellulose, and lignin (Chaplin 2003; Sugawara et al. 1994). In general, cell wall 

polysaccharides are responsible for 90% of the cell wall composition and are classified into 3 

groups: cellulose, hemi-cellulose, and pectin (McNeill et al. 1984). Cellulose is the most 

abundant and consists of a linear polymeric chain that gives the cell wall its rigid structure. 

Hemi-cellulose is also a polymer and can be classified as different types of polymeric chains. 
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These chains include, but are not limited to, xylan, arabinose, and xyloglucans (de Vries et al. 

2001; Gaspar 2007). Pectins are the least abundant and they contain two regions: “smooth” 

and “hairy” (de Vries et al. 1982; Perez et al. 2000). When combined, cellulose, hemi-

cellulose, and pectin create a rigid structure that gives the cell wall its strength. 

 

Polysaccharides can bind water molecules in 3 different ways: intra-molecularly, through a 

double bond to a water molecule, or through a single bond to a water molecule. The third 

configuration is known to provide the polysaccharide with “maximum hydration” since it 

has the largest freedom of movement, thus showing the greatest hydrophilicity. 

Furthermore, the polysaccharide intra-molecular bonding can form a double hydrogen 

bonding bridge to a water molecule, thereby also becoming hydrated to a certain extent 

(Chaplin 2003). These water-to-polysaccharide bonds are the mechanism by which the 

distillers grains become hydrated. If a way could be found to disrupt these bonds, then the 

physical nature of the distillers grains could be changed, facilitating the removal of the water 

molecules. 

 

Cellulases, xylanases, and β-gluconases are some of the enzymes capable of hydrolyzing 

these polysaccharides. Cellulases will be examined in detail here as they are the most 

effective at hydrolyzing cellulose, the main component of the corn cell wall. There are four 

classes of cellulases that are classified according to the method by which they cleave β-1,4-

glucosidic linkages, whether they hydrolyze bonds between the main chain and a substitute 

or whether they cleave bonds at the end of the chain (de Vries et al. 2001; Johnston 2002). 
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Table 2.1 shows the four classes and their functionality as well as their enzyme commission 

(EC) number (Whitaker 1994).  

 

Table 2.1: Cellulases divided by class and functionality 
Class Name EC Number Function 

Endoglucanases 3.2.1.4 Split internal bonds 

Exo-

cellobiohydrolases 
32.1.91 Release cellobiose1 from non-reducing 

end of cellulose chain 

Exo-glucohydrolases 3.2.1.74 Release glucose from non-reducing end 
of cellulose chain 

β-glucosidases 3.2.1.21 Cleave β-1,4,-glucosidic linkages in 
cellobiose to produce glucose molecules 

        1 Cellobiose is a disaccharide that can be hydrolyzed by bacteria to give glucose 
 

All of the functions described above would result in the breaking of bonds between the 

polysaccharide chains and the molecule bonded to it. By cutting these chains into smaller 

chains through the cleaving of β-1,4,-glucosidic linkages, it could be expected that the 

hydrogen bond between the water molecules and the polysaccharide would be weakened or 

even broken, thus making water more easily extracted by an external force. 

 

Cellulases, as well as xylanases, have long been used in the detergent, textile, pulp and paper, 

and food processing industries (Johnston et al. 1998). These enzymes play an important role 

in baking due to their ability to keep dough soft by decreasing the dough’s “water-binding 

capacity” as well as reducing the dough’s viscosity (Harkonen et al. 1996). In the juice-
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making process, these enzymes are used to reduce the loss of oil during the fiber press and 

clarification steps by hydrolyzing the cellulase and pectin found in the crude juice (Bouvier et 

al. 1992; Karlsson et al. 2001). They have been widely used as a supplement to the diet of 

mono-gastric animals such as poultry for their ability to improve the animal’s digestion by 

hydrolyzing the non-starch polysaccharides (NSP) found in their feed, thereby decreasing the 

viscosity of the digestive contents (Ponte et al. 2004; Tahir et al. 2005). These enzymes are 

also used in the textile industry for their ability to abrade denim jeans and other fabrics. 

Cellulases that are added to the jeans during the washing process help to provide the denim 

with an array of different shades by hydrolyzing the fibers that contain the fabric’s dye, 

thereby reducing the processing time, minimizing damage to processing equipment, and 

aiding in the processing of waste (Sariisik 2004). In the agricultural sector, these enzymes 

have been used to improve starch yields with a reduction in the protein content of the starch 

in maize and sorghum (Perez-Carrillo and Serna-Saldivar 2006; Serna-Saldivar and Mezo-

Villanueva 2003). Experimentally, they have also been used to enzymatically pretreat 

sorghum bran for ethanol production (Corredor et al. 2007), and to hydrolyze glucose 

obtained from biomass to produce molecular hydrogen all by means of polysaccharide 

hydrolysis (Woodward 1997). Unfortunately, no research has been done to examine the ways 

in which these enzymes could affect the hydration of polysaccharides to aid in the 

mechanical removal of water from distillers grains. 
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2.2 Scope 
 

The purpose of these experiments is to study how commercially available, cell wall degrading 

enzyme preparations can be used in the corn to ethanol process to enhance water removal of 

the whole stillage by improving centrifugation. The enzymes used were chosen based on 

their activity under the operating conditions of the SSF portion of the process including a 

temperature of 30ºC and a pH of 4.5. The enzymes’ activities were provided by the enzyme 

manufacturer. Initially, the enzymes were pre-screened in a preliminary experiment that was 

conducted with the primary focus of determining the feasibility of the work presented in this 

thesis without emphasis on statistical significance. The enzymes that showed highest water 

removal capability were chosen and used in detailed subsequent experiments to investigate 

reproducibility and repeatability of the results observed, including statistical analyses. 

 

2.3 Experimental Work 
 

2.3.1 Materials and Methods 
 

The enzymes used in this research were donated by Genencor International (a Danisco 

Company, Palo Alto, CA) and Novozymes (Franklinton, NC). The corn used was a single 

hybrid variety (33A14) grown at the University of Illinois during the 2004 season. All 

chemicals used in this study were of analytical grade or better. 
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2.3.1.1 Mash Preparation 

 

To prepare the mash, a mixture of ground corn and water, 1 kg of corn was removed from 

the cold room and equilibrated to room temperature. The corn was then ground in a Wiley 

laboratory mill equipped with a 20-mesh screen. Erlenmeyer flasks (250 mL) were labeled 

and their tare weights were recorded. Stoppers were also weighed together with 21 gauge 

1.5” needles (Figure 2.2). 
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Figure 2.2: Schematic diagram of the fermentation apparatus used in the experiments. 
 

Micro-centrifuge tubes used for collecting samples were labeled with fermentation date, 

identification number, and sample number. A rubber stopper and a needle were assigned to 

each fermentation flask. The needle was inserted into the rubber stopper. Each flask closed 

with a rubber stopper with needle was weighed as an assembly.  
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Ground corn weighing 227 g (corn weight was adjusted using moisture content to give the 

desired final solids content of 25% which was the most common concentration found in the 

literature) was added to 640 mL of water in 1-L beaker and adjusted to pH 5.8 ± 0.1 by 

adding 1M HCl solution. This pH is suggested by the α-amylase enzyme manufacturer to 

maximize the enzymatic activity. Spezyme Fred α-amylase (1 mL) was added to each flask, 

which was then placed on a preheated hot plate at 90°C with the stirring rate set to 120 rpm. 

These were the operating parameters commonly found in the literature, and are similar to 

current industrial practices (Wang et al. 2006; Singh et al. 2006; Singh 2008). The slurry was 

liquefied at 90°C for 1 hr. The slurry temperature was brought to 60°C using a water bath 

and 0.77 g of urea was added to each flask. The urea is added as a nitrogen source for the 

yeast which improves yeast performance (Narendranath et al. 2000). This amount of urea 

provides the yeast with 280 to 290 mg N/L of mash (Thomas and Ingledew 1995; Thomas 

and Ingledew 1990). The slurry was adjusted to pH 4.5 ± 0.1 by adding 1M HCl solution and 

0.4 mL of Optidex L-400 gluco-amylase was added to the mash which was then saccharified 

at 60°C for 1 hr. Here, again, the operating parameters chosen were based on the gluco-

amylase’s manufacturer suggestions to maximize enzymatic activity. Furthermore, this step 

does not necessarily need to be done separately from the fermentation step. Many corn to 

ethanol plants combine the saccharification step with fermentation in a process known as 

Simultaneous Saccharification and Fermentation (SSF). Subsequent experiments, which are 

presented in the following chapters, will not have a separate saccharification step and will 

follow experimental parameters of the SSF process. 
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2.3.1.2 Mash Fermentation 

 

The mash was cooled to 30°C, and 100 g was transferred to the previously weighed 

Erlenmeyer flasks. This temperature is in accordance to industrial practice and is believed to 

be optimal for yeast performance (Narendarath et al. 2000). Yeast suspension (Fleischmann’s 

Active Dry Yeast, Fenton, MO) was prepared by mixing 3.3 g of yeast in 30 mL of distilled 

water and mixing for 10 min at room temperature. The suspension had a viable cell count of 

≈1.8 × 106 cells/mL. Each flask was then inoculated with 1 mL of yeast suspension (0.11 g 

of dry yeast/100 mL of mash). The dewatering enzymes were added to each flask at the 

indicated amounts. A control flask was also prepared without enzyme addition. All flasks 

were then sealed with the stopper, the needle was inserted and flasks were moved to a 

temperature-controlled shaking incubator (30°C at 200 rpm) for 93 hr. 

 

2.3.1.3 Analytical Techniques 

 

Nine samples (1 mL) were taken from each of the flasks throughout the fermentation 

process. The samples were centrifuged (model 5415 D, Eppendorf, Westbury, NY) for 2 

min at 16,110 × g and the supernatant (water removed after centrifugation) was filtered using 

a 0.2-µm syringe filter (model 4455T, Pall, Ann Harbor, MI) into labeled 1-mL micro-

centrifuge tubes and frozen until ready for HPLC analysis.  
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Samples were thawed and injected (5 µL) into a HPLC (model 2350, ISCO, Lincoln, NE) 

equipped with an Aminex HPX-87H Biorad (Hercules, CA) ion-exclusion column. 

Compounds were eluted from the column with an aqueous solution of 5 mM sulfuric acid, 

detected with a refractive index detector (model 1047A, Hewlett Packard, Palo Alto, CA) 

and quantified by HPLC software (Chrom Perfect Spirit v.4.17, Justice Laboratory Software, 

Fife, UK) using external standard calibrations.  

 

At the end of fermentation, a 40-mL representative sample was taken from each of the 15 

flasks and transferred to a 50-mL centrifuge tube (Corning, cat no. 430290, 29.1 mm o.d.). 

Each tube was then centrifuged in a bench-top centrifuge (model Z320, Hermle, 

Woodbridge, NJ) for 10 min at 1,400 × g to analyze the water-binding capacity of each 

enzyme treatment. The supernatant (water removed after centrifugation) from each flask was 

weighed, placed in a 55°C oven for 48 hr, moved to a 135°C oven for 2 hr, and then 

weighed again. The same was done with the solid pellets (wet grains) obtained after 

centrifugation. 

 

2.3.1.4 Experimental Design 

 

The procedure described above was used in three experiments. The first experiment had 16 

fermenting flasks; one control flask and 15 flasks containing 15 different commercial enzyme 

preparations. This experiment was used only as a screening to find the enzymes, if any, that 

would most likely enhance the water removal of mash during centrifugation. The second 
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experiment used six out of the 15 enzymes used in the screening experiment and a control. 

The six preparations were chosen based on the highest dewatering capability (largest amount 

of water removed). Each of the six enzyme preparations was added in volumes of 0.1, 0.5, 

and 1 mL/100 g of mash. This experiment was done in duplicate to show statistical 

significance. The last experiment used two out of the six enzymes used in the second 

experiment. Again, the two preparations chosen had the highest quantity of water removed 

after centrifugation. The mash volume was increased to 250 mL and the enzyme preparation 

amounts were scaled accordingly. This experiment was done in triplicate to verify 

repeatability, reproducibility and statistical significance. 

 

2.3.1.5 Statistical Analyses 

 

A two-way analysis of variance (ANOVA) was used to compare the mean amount of water 

removed after centrifugation for each enzyme treatment and volume, as well as for the 

control. A one-way ANOVA (Appendix A) was used to compare the mean amount of water 

removed after centrifugation for the triplicate experiment. The t-test (Appendix B) was used 

for each pair of enzyme treatments to compare the mean amount of water removed (SPSS 

for Windows, Chicago, IL). The level selected to show statistical significance was 1% (P < 

0.01). 
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2.4 Results and Discussion 
 

Initially, fifteen commercial enzyme preparations were screened for the ability to dewater the 

whole stillage (Table 2.2). These preparations were chosen based on marketed activities, as 

well as temperature and pH range.  

 

Table 2.2: Key indicating enzyme preparations used in this study 
Enzyme Key Enzyme Name 

A GC 220 

B AD9990209 

C AD990210 

D AD990208 

E AD990211 

F Multifect Xylanase 

G Multifect GC 

H GC 880 

I GC 440 

J GC 710 

K Protease 899  

L Pulpzyme 

M Multifect B 

N Multifect P3000 

O Viscozyme 
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Single fermentations at high enzyme dosages (1 mL of enzyme/100 g of mash) were used in 

this experiment to identify enzyme preparations with the greatest dewatering potential. 

Significant improvements in dewatering were observed, with some enzyme preparations 

showing up to 14% more water removed than the control (Figure 2.3).  

 

90

95

100

105

110

115

A B C D E F G H I J K L M N O

Con
tro

l

Enzyme Treatment

A
m

ou
nt

 o
f 

W
at

er
 R

em
ov

ed
 (

Su
pe

rn
at

an
t)

 
 (

%
)

 

Figure 2.3: Weight of water removed (supernatant) after centrifugation as a percentage of 
control for each enzyme treated mash for a 40 g subsample of mash; control with the lowest 

amount of water removed taken as 100%. 
 
 

The weight of some the dry solid pellets obtained after centrifugation show some reduction 

in the enzyme treated fractions when compared with the control sample (Figure 2.4). In 
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Figure 2.5, the dry solid pellet weights are shown as a percentage of the control as the 

dewatering data was presented above. 
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Figure 2.4: Dry solid pellet weights per 40 g of mash shown for each enzyme treated mash 
and control. Weights were measured from a 40 g sub-sample of the 100 g mash. 
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Figure 2.5: Dry solid pellet weights per 40 g of mash shown for each enzyme treated mash 
and control. Control taken to be 100%, all others are calculated based on the control. 

 

In the cases where the pellet was smaller than the control, a portion of the solid phase was 

solubilized by the enzyme preparation during fermentation. This increase of solubles in the 

liquid phase was relatively small, up to 0.5 g with enzyme treatment A, compared with the 

increase in water removal, which was on average 5 g. In an ethanol facility, the solubilized 

material will move downstream with the liquid phase and end up in the evaporator. In the 

evaporator, the water is removed and the soluble solids become concentrated into what is 

called the syrup. The syrup is then mixed and dried with the distillers grains (insoluble solids) 

to produce the distillers dried grains with solubles. Six enzyme preparations were chosen to 

be the most promising in terms of their ability to dewater the whole stillage. Enzyme 
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preparations A, E, G, H, I, and M had the highest amounts of water removed after 

centrifugation as well as yielding the lowest wet pellet weights after centrifugation. 

 

The same experiment was repeated for the enzyme preparations that were screened in the 

first part of this investigation. However, this time, the experiment was done using three 

different enzyme additions of 0.1, 0.5, and 1 mL for each enzyme treatment. All 

concentrations of enzyme preparation showed significant improvement over the control 

(Table 2.3). 
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Table 2.3: Amount of water removed after centrifugation; final ethanol yield and dry pellet 
weights given for enzyme treated mashes and control; values followed by the same letter in 

the same column are not significantly different (P < 0.01) 

Enzyme 
Volume 
Added 

H2O Removed1,2 Ethanol Yield1,2 
Dry Pellet 

Wt.1,2 

 (ml) (%control) (%v/v) (g) 

A 0.1 112 ± 0.188a 13.60 ± 0.11 1.80 ± 0.09c 

 0.5 115 ± 0.154a 13.50 ± 0.19 1.96 ± 0.19b 

  1 114 ± 0.101a 13.68 ± 0.35 1.77 ± 0.02c 

E 0.1 105 ± 0.055b 13.60 ± 0.33 2.17 ± 0.09b 

 0.5 112 ± 0.185a 13.34 ± 0.28 1.96 ± 0.09b 

  1 114 ± 0.242a 13.53 ± 0.18 1.92 ± 0.16b 

G 0.1 114 ± 0.372a 14.25 ± 0.02 2.08 ± 0.06b 

 0.5 112 ± 0.299a 14.32 ± 0.07 2.05 ± 0.06b 

  1 114 ± 0.120a 14.01 ± 0.28 1.87 ± 0.03c 

H 0.1 111 ± 0.27c 14.21 ± 0.31 2.08 ± 0.12b 

 0.5 115 ± 0.079a 13.87 ± 0.09 1.98 ± 0.04b 

  1 110 ± 0.143c 14.27 ± 0.21 1.84 ± 0.10b 

I 0.1 113 ± 0.204a 14.12 ± 0.11 2.38 ± 0.13b 

 0.5 112 ± 0.198a 14.10 ± 0.45 2.06 ± 0.10b 

  1 114 ± 0.173a 14.06 ± 0.16 1.88 ± 0.12b 

M 0.1 115 ± 0.264a 14.25 ± 0.13 2.07 ± 0.12b 

 0.5 112 ± 0.071a 14.42 ± 0.15 2.05 ± 0.11b 

  1 116 ± 0.308a 14.41 ± 0.16 2.00 ± 0.08b 

Control3 -- 100 ± 0.28d 14.03 ± 0.28 2.67 ± 0.08a 
1 Mean ± standard deviation 
2 Duplicate samples 
3 Control had 26.66 ± 0.27 g of water per 40 g of mash removed 

 

The statistical analysis revealed a significant main interaction, F(2,12) = 14.38. Up to 15% 

more water was removed compared with the control for the mashes treated with A, H, and 

M. An increase in the amount of water removed during centrifugation was observed for both 
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H and E with an increase in enzyme preparation addition. As the enzyme preparation E 

addition was increased from 0.1 to 1 mL, the amount of water removed increased from 4.9 

to 14.2% compared with the control. In enzyme preparations G, A, M, and I, the difference 

observed was not significant when comparing 0.1 to 1 mL. The dry solid pellet weights of 

the enzyme-treated mashes all showed a significant reduction relative to the untreated 

control (Figure 2.6). 

 

 

Figure 2.6: Picture of centrifuged samples. The two tubes on the left show solid pellet of 
control mash with no enzyme treatment. The ones on the right show solid pellet of enzyme 

treated mash. 
 

At lab scale, this reduction in pellet weight resulted in a reduction in the amount of DDGS 

co-product produced, but at plant scale this loss in material would not result in a decrease in 

co-product production. In the corn to ethanol plant the material lost to the liquid phase 

during centrifugation would be mixed back into the process and dried in conjunction with 

the distillers grains. It is believed that at the enzyme levels used in this experiment, excessive 

hydrolysis of the polysaccharides has occurred. Therefore, the loss in solid material was 
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higher than what is expected to be seen when this process is implemented in a plant at lower 

enzyme levels.  

 

Final ethanol yields were not found to be significantly different for enzyme-treated mashes 

when compared with the control (Table 2.3). Also, there were no significant differences 

between the final ethanol yields for each enzyme-treated mash at the different enzyme levels. 

Thus, adding additional enzyme preparation to the mash would not aid in increasing the final 

ethanol production.  

 

The enzyme preparations that showed similar water removal ability at different enzyme 

additions were deemed favorable due to the need for smaller amounts of enzymes to achieve 

the best water-removal results. These enzymes removed the water as expected and showed 

that the dosage could be reduced while maintaining the dewatering results. This would help 

improve the economics of the process by minimizing additional enzyme costs. Enzyme 

preparations A and G had this characteristic and were therefore chosen as the most efficient 

for whole stillage water removal. In enzyme preparations A and G, an enzyme addition of 

0.5 mL per 100 g of mash showed the best efficiency in terms of highest water removal and 

this dosage was chosen to be used in the next experiment. 

 

A third set of fermentations was performed in which the above experiment was repeated in 

triplicate at a larger scale. The two most efficient enzyme preparations from the previous 

experiment (A and G) were used to treat the mash of 500 mL with an enzyme addition of 
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2.5 mL. Both preparations again showed a statistically significant greater amount of water 

removed relative to the control, F(2,3) = 46.13. Enzyme preparation A had an average of 

30.4 g of water removed, G had 30.0 g, and the control had only 26.4 g (Table 2.4) from the 

40-g subsamples.  

 

Table 2.4: Average weight of H2O removed; solid pellet and final ethanol yield for mash 
treated with enzyme A and G; values followed by the same letter in the same column are not 

significantly different (P < 0.01) 

Enzyme H2O Removed1,2 Wet Pellet Wt.1,2 Dry Pellet Wt.1,2 
Ethanol 
Yield1,2 

  Avg. (% control) Avg. (% control) Avg. (% control) (% v/v) 

A 115 ± 0.26a 65.39 ± 0.18 79.82 ± 0.04 14.17 ± 0.11a 

G 114 ± 0.68a 69.74 ± 0.11 90.30 ± 0.39 13.97 ± 0.29a 

Control 100 ± 0.91b3 100 ± 0.994 100 ± 0.075 14.19 ± 0.13a 
1 Mean ± standard deviation 
2 Triplicate samples 
3 Control had 26.41 ± 0.91 g of water per 40 g of mash removed 
4 Control had wet pellet weight of 11.47 ± 0.96 g 
5 Control had dry pellet weight of 2.52 ± 0.07 g 

 

For A, this translated into an improvement of 15% more water removed after centrifugation 

than in the control. The wet solid pellet sizes were also smaller (30–35%) compared with the 

control. The dry pellet weights were reduced (10–20%) when compared with the control. 

The standard deviations calculated for each triplicate set showed that this experiment was 

reproducible and repeatable in terms of the amount of water that was removed after 

centrifugation and the solid pellet size that was left after the water was removed.  
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There were no significant differences in the final ethanol yields for the enzyme-treated 

mashes compared with the control for these runs (Table 2.4). The final ethanol production 

from the triplicates also proved to be reproducible. 

 

2.5 Conclusions 
 

A significant reduction in water-binding capacity of whole stillage was found for a number 

of enzymes tested in the initial screening. Average dewatering improvements in whole 

stillage of 15 and 14% were observed for enzymes A and G, respectively, with 500-mL 

fermentations done in triplicate. The enzymes were able to disrupt the corn cell wall and 

release water bound within the grains. The addition of different enzyme amounts to the 

mash had varying effects, potentially allowing an optimization of enzyme cost with energy 

savings. In some cases, an enzyme dosage of 0.5 mL/100 g of mash worked as well, if not 

better, than a 1 mL/100 g of mash dosage. In enzyme A, there was a maximum effect shown 

with the lowest dose tested, indicating that a significantly smaller amount of this enzyme 

could be used and still cause a strong dewatering effect. Lower concentrations would be 

more economical due to a lower enzyme cost. 

 

The addition of these water-removing enzymes during fermentation of the dry grind corn to 

ethanol process will help in the dewatering of the whole stillage during centrifugation. 

Furthermore, there will be no capital cost associated with the added enzymes. By removing 

more water during centrifugation the energy cost of the DDGS drying process could be 
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significantly reduced, which would translate directly into lower energy consumption, 

improved energy balance, and reduced ethanol production costs as presented in Chapter 7. 
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Chapter 3 – Proteolytic Enzymes 
 

3.1 Introduction 
 

Corn contains about 8% protein that is not fermentable by the yeast used for ethanol 

production. These proteins are mainly divided into albumin (10%), glutelin (40%), globulin 

(9%) and zein (41%) (Parris et al. 2006; Tsai et al. 1980). Zein and glutelin serve as a nitrogen 

(N) sink in the corn kernel. They contain as much as 80% of the total N found in the kernel. 

This is an important function because an increase in plant yield is directly related to an 

enhancement in the movement of sucrose from the leaves of the corn plant to the kernels. 

This enhancement in sucrose transport is given by a large assimilation of N in the kernel 

(Tsai et al. 1980). This matrix of proteins can also interact with the starch chains and prevent 

them from being converted into sugars and then into ethanol during the SSF step (Vidal et 

al. 2009; Wang et al. 2009). Proteolytic enzymes, also known as proteases, can hydrolyze 

proteins into peptides and their amino acid building blocks. They may help release the starch 

found in corn by weakening the protein matrix that is interacting with the starch chains 

making them more accessible for saccharification. Proteases are very specific in terms of the 

peptide bond found in the protein that they hydrolyze. In order for the protein to be 

hydrolyzed it must be denatured first either by high temperature, low pH treatment or by 

processing. Proteases are divided into four different groups based on the active site: serine 

proteases (EC 3.4.21), cysteine proteases (EC 3.4.22), metalloproteases (EC 3.4.24), and 

aspartic proteases (EC 3.4.23) and each of these groups have a different function and will 
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hydrolyze proteins at different peptide bond locations (Whitaker 2003). Serine proteases 

have an optimum pH of 8, while sulfhydryl and metal-containing proteases work most 

efficiently in a pH range of 6 to 7.5. Aspartic proteases are the only ones that have an 

optimal pH between 2 and 5, which is in the range at which fermentation operates. Typically 

commercial enzymes are not pure. They usually contain a mixture of enzymes but are 

categorized according to the enzyme that is predominant in the preparation. Since SSF is run 

at a pH of about 4.5, only enzymes that have optimal activity near this pH will be useful. The 

enzyme preparations chosen to be used in these studies were selected according to their pH 

activity range. Those that matched best the pH of SSF were deemed most favorable. 

 

Proteases have a variety of applications and are used in many different industries. They have 

previously been used in the production of glucose for medical applications by decreasing the 

amount of protein found in the starch of corn grains (Roushdi et al. 1981). In the detergent 

industry proteases are used as an ingredient in the composition of detergents for their ability 

to remove soil containing proteins, oils, and grease (Kottwitz et al. 1997). Different studies 

have looked at the addition of proteases, such as pepsin, papain, bromelain, and trypsin, to 

whole corn grains, but there was no decrease in the protein content of the starch that was 

produced. However, a decrease in the amount of protein found in the starch was observed 

for experiments in which the corn grains were broken (Roushdi et al. 1981). Research 

involving proteases has also been done to look at modifications of the wet milling 

pretreatment process (Spanheimer et al. 1972), as well as methods for decreasing drying 

effects on the starch-gluten separation in the wet milling process (Eckhoff and Tso 1991). 
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David Johnston and Vijay Singh have improved the wet milling process by using proteases 

to reduce steep time and sulfur dioxide requirements, and also to improve starch and protein 

separation by hydrolyzing the proteins attached to the starch particles (2001; 2003; 2004). 

Furthermore, proteases are known to increase the rate of fermentation by break down the 

protein into amino acids. These molecules have been observed to increase ethanol yields 

during fermentation by serving as a nitrogen source to the yeast cells that consume it as a 

metabolic nutrient (Lantero and Fish 1993). 

 

3.2 Scope 
 

The purpose of this experiment was to identify one or more enzymes that could improve the 

fermentation rates and potentially enhance the water removal in the corn to ethanol process. 

All of the enzymes investigated were chosen based on their enzymatic activity at 

fermentation conditions. The enzymes had to be active and relatively stable at fermentation 

pH of 4.5 and a temperature of 30ºC. There were 5 commercially available proteolytic 

enzymes that fit these conditions according to the data sheets provided by the 

manufacturers. The experiment was designed to quantify the fermentation rates, water 

removal, and final ethanol yields for each enzyme treatment as well as the amount of enzyme 

needed to produce these results. 
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3.3 Experimental Work 
 

3.3.1 Materials and Methods 
 

The corn and enzymes used in this section were the same as described in Section 2.3. All 

chemicals used were of analytical grade or better. 

 

3.3.1.1 Mash Preparation and Liquefaction 

 

The mash was prepared as previously described in Section 2.3.1.1. In short, corn (30% w/w) 

was ground and mixed with water. The pH was adjusted to 5.8 ± 0.1 by adding 1M HCl 

solution and the corn mixture was liquefied with the addition of 1.1 mL of Spezyme Fred 

(1.1 L total mash) for 1 hr at 90ºC. 

 

3.3.1.2 Simultaneous Saccharification and Fermentation 

 

The slurry temperature was cooled to 30°C using a water bath and 1.44 g of urea was added 

to the slurry. The slurry was adjusted to pH 4.5 ± 0.1 by adding 1 M HCl solution, and then 

0.75 mL of Optidex L-400 gluco-amylase was added. Using a scale, 100 (± 0.6) g of slurry 

were transferred to each previously weighed Erlenmeyer flask. In order to accomplish this, 

each flask was placed on the scale, one at a time, and the scale was zeroed. Then the slurry 

(that was kept well mixed) was slowly poured into each flask until the weight reading on the 
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scale reached 100 g. Yeast suspension (Fleischmann’s Active Dry Yeast, Fenton, MO) was 

prepared as previously reported in Section 2.3.1.2. Each flask was then inoculated with 1 mL 

of yeast suspension (0.11 g dry yeast/100 mL mash). Five proteases at two different amounts 

were added to each flask according to Table 3.1. A control flask was also prepared without 

enzyme addition. A duplicate flask was prepared for each condition tested. All flasks were 

then sealed with the stopper, a 22 gauge needle inserted and moved to a temperature-

controlled shaking incubator, (30ºC at 200 rpm) for 72 hours. 

 

Table 3.1: Key indicating enzyme preparations used in this study 
Enzyme Key Enzyme Name 

P Bromelain 

Q GC 106 

R GC 710 

S Protease 899 

T Fungal 500000 

 

3.3.1.3 Analytical Techniques 

 

Throughout the fermentation process, the flasks were periodically taken out of the incubator 

and their weights were recorded. 

 

At the end of the fermentation process, a 1 mL sample was taken from each of the flasks. 

The samples were centrifuged (model 5415 D, Eppendorf, Westbury, NY) for 2 min at 

16,110 x g and the supernatant was then filtered using a 0.2 µm syringe filter (model 4455T, 
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Pall, Ann Harbor, MI) into labeled 1 mL microcentrifuge tubes and stored frozen until ready 

for HPLC analysis. Samples were thawed and analyzed by high-performance liquid 

chromatography (HPLC) as described in Section 2.3.1.3. 

 

In addition, two 40 mL representative samples were taken from each of the 11 flasks and 

transferred to a 50 mL centrifuge tube (Corning, cat no. 430290, 29.1 mm OD). Each tube 

was then centrifuged in a bench top centrifuge (model Z320, Hermle, Woodbridge, NJ) for 5 

min at 1,100 x g to analyze the water-binding capacity of each enzyme treatment. The 

supernatant (water removed after centrifugation) from each flask was weighed, placed in a 

55ºC oven for 48 hrs, moved to a 135ºC oven for 2 hrs, and then weighed again. The same 

was done with the solid pellets (wet grains) obtained after centrifugation. 

 

3.3.1.4 Experimental Design 

 

The procedure described above was used in two separate experiments. The first experiment 

had 11 fermenting flasks; one control flask and 10 flasks containing 5 different commercial 

enzyme preparations at two different amounts. Each of the five enzyme preparations were 

added in volumes of 0.5 and 1 mL/100 g of mash. The second experiment had 10 

fermenting flasks; 2 control flasks and 8 flasks containing 4 different volumes of one 

commercially available enzyme. The volumes were as follows: 0.01, 0.015, 0.02 and 0.03 mL 

of enzyme/100 g of mash. Two samples were taken from each fermenting flask in each 

experiment to generate duplicate data for statistical analyses. 
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3.3.1.5 Statistical Analyses 

 

SPSS software was used to compute a two-way analysis of variance (ANOVA) to compare 

mean water amount removed after centrifugation for each enzyme treatment and the control 

as well as for the different enzyme volumes and the control (SPSS for Windows, SPSS Inc., 

Chicago, IL). A one-way ANOVA was used to compare mean fermentation rates of each 

enzyme treatment at each enzyme volume added. T-tests were used for each pair of enzyme 

treatment to compare the means of water amount removed and fermentation rates. The level 

selected to show statistical significance was 5% (P < 0.05). 

 

3.4 Results and Discussion 
 

In the corn to ethanol process, the starch found in the corn kernel must be converted to 

glucose first before ethanol can be obtained. Starch is converted into glucose via an 

enzymatic reaction called saccharification. In this reaction, amylases will bind to the starch 

molecules and produce glucose. Theoretically, it is known that 0.9 g of starch will 

approximately produce 1 g of glucose, via enzymatic hydrolysis (Equation 3.1), which can be 

fermented to yield CO2 and ethanol (Brandam et al. 2002; Ingledew 1993).  

 ( ) ( ) ( )61262n5106 OHCn                     OHn                     OHC →+  ( 3.1 ) 
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During fermentation, ethanol is produced by the following chemical reaction (Equation 3.2): 

 Yeast, 30°C 

 
ethanol                   dioxide carbon                    glucose

OHH2C                     2CO                     OHC 5226126 +→
 ( 3.2 ) 

In this case, one mole of glucose will give 2 moles of CO2 and 2 moles of ethanol (Luong 

1985).  

 

A relationship between the amount of starch present and the amount of CO2 produced can 

now be determined. For example, in 100 g of mash that is 30%/w corn flour there are 30 g 

of corn flour. From the literature, it is known that the starch content of corn has a small 

variability with authors reporting values anywhere between 70.6 and 71.8 % w/w (Belyea et 

al. 2004; Watson 1987; NRC 1982). Assuming that, on average, corn has a starch content of 

70%/w then it can be said that there are 21 g of starch present in the mash. Using the 

relationship between starch and glucose mentioned above, it is calculated that 21 g of starch 

would give 23.3 g of glucose. Using reaction 3.2, in the presence of yeast, the glucose would 

be converted into 11.9 g of ethanol and 11.4 g of CO2.  

 

In this experiment, each mash containing flask had a needle inserted in its stopper. This 

needle allowed the CO2 produced during fermentation to escape. When the flasks were 

weighed during the fermentation process, a decrease in their weight was observed due to the 

loss of the gas to the atmosphere. Knowing the weight of CO2 lost allows the amount of 

ethanol produced to be calculated (disregarding the small amount of water vapor). Since the 
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weights were taken over a period of time, an estimate of the fermentation rate could be 

obtained from the observed data. Figure 3.1 shows the weight loss of the flasks throughout 

fermentation. 
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Figure 3.1: Average weight loss for flasks with no enzyme and with 0.5 mL/100 g of mash of 
5 different enzymes, P, Q, R, S and T. Weight loss data has been normalized with respect to 

the control. 
 

Most corn to ethanol plants have a fermentation residence time of 50 hours. This is an 

approximate time because there is a difficulty in stating the exact start and stop times of 

fermentation. Furthermore, this time does not include the additional, and somewhat variable, 

residence time in the beer well or in the seed fermentor. It can be said that, in total, 

fermentation can occur for as long as 65 to 70 hours when all of the above variable residence 

times are taken into account. At the end of fermentation, 72 hours, none of the enzymes 

treatments were statistically different. The control was statistically different from all of the 

enzyme treatments. According to Figure 3.1 at 50 hours the control was at 88% of its final 

weight loss whereas the flasks with Bromelain, GC 106, Protease 899 and Fungal 500000 
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were at 98% completion and 97% for GC 710. Furthermore, at 37 hrs, the control had only 

reached 76% of its final weight loss whereas the enzyme treated mashes had on average 

reached 93% of its final weight loss. This means that for all the protease tested the 

fermentation rate was accelerated and final ethanol yields could be achieved more quickly, 

which could translate into a higher ethanol throughput in a plant (Wang et al. 2006). 

 

Preliminary experiments showed that protease Q (GC 106) had more promising water 

removal capability when compared to the other proteases tested. GC 106 was able to remove 

at least 2% more water than the other proteases and 9% more water than the control. Based 

on these results an experiment was designed to look at how various amounts of GC 106 

would affect water removal and fermentation rates. 

 

This second experiment tested GC 106 at volumes of 0.01, 0.015, 0.02 and 0.03 mL/100 g 

of mash. Figure 3.2 shows the fermentations rates for GC 106 at the different enzymes 

volumes. 
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Figure 3.2: Average weight loss for flasks with no enzyme and with GC106 enzyme treated 
mash. Weight loss data has been normalized with respect to the control. 

 

As can be seen in Figure 3.2, at around 50 hours the flasks containing GC 106 has reached 

the same weight loss level but the control is on average 2.5 g behind. The enzyme treated 

flasks reached on average 98% of the final weight loss at 50 hours whereas the control had 

only reached 86.5%. The average (± standard deviation) final weight loss for each enzyme 

treatment of 0.01, 0.015, 0.02 and 0.03 mL of enzyme/100 g of mash was 10.245 (± 0.007) 

g, 10.29 (±0.099) g, 10.265 (±0.035) g and 10.27 (±0.014) g, respectively. The control had an 

average final weight loss of 10.215 (±0.007) g. From these results it was concluded that an 

increase in enzyme volume would not necessarily translate into a faster fermentation, but 
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adding GC 106 to the mash would improve fermentation rate by at least 12% compared to a 

mash that had not been treated with the enzyme. 

 

An increase in the amount of water removed during centrifugation was observed with an 

increase in enzyme volume. All volumes of enzyme GC 106 showed a statistically significant 

improvement relative to the control (Table 3.2). 

 

Table 3.2: Amount of water removed after centrifugation; final ethanol yield and dry pellet 
weights given for GC106 enzyme treated mashes and control; values followed by the same 

letter in the same column are not significantly different (P < 0.05) 

Volume Added 
H2O 

Removed1,2 Ethanol Yield1,2 

(ml) (%control) (%v/v) 

0.01 108.2 ± 0.480a 13.58 ± 0.007 

0.015 110.4 ± 0.159b 14.63 ± 0.099 

0.02 111.2 ± 0.136b 13.60 ± 0.035 

0.03 111.4 ± 0.81b 13.61 ± 0.014 

control3 100 ± 0.352c 13.54 ± 0.007 

1 Mean ± standard deviation   

2 Duplicate samples   

3 Control had 24.50 ± 0.352 g of water/40 g of mash 
 

Up to 11% more water was removed compared with the control for the mash treated with 

0.02 and 0.03 mL of GC 106/100 mL of mash. As the enzyme volume was increased from 

0.01 to 0.03 mL, the amount of water removed increased from 8.2 to 11.4% compared to the 

control. When statistically comparing the different enzyme amounts and the amount of 

water removed, there was only a difference between 0.01 mL and the other amounts. Here 
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the significance was t(2) = 33.21. There was no statistical difference between 0.015, 0.02 and 

0.03 mL of enzyme. Thus, adding more than 0.015 mL/100 g of mash would not 

significantly improve dewatering and would also increase the cost to the ethanol facilities. 

From the results above it can be concluded that a GC 106 enzyme dosage of 0.015 mL is the 

ideal dosage to be used in the corn to ethanol plant process. This would help improve the 

economics of the process by minimizing additional enzyme costs. 

 

Furthermore, Table 3.2 also shows the final ethanol yields for the enzyme treated mashes 

and the control. Statistically, there were no differences in the amounts of ethanol produced 

during fermentation for the enzyme treated mashes and the control. The samples were taken 

from the flasks at the end of fermentation at 72 hours. Thus, adding GC 106 to the mash in 

any amount would not aid in increasing the final ethanol production unless fermentation had 

a residence time of 53 hours of less. In the case of a corn to ethanol plant it can be said that 

if fermentation time is kept at 50 hours then it would be advantageous to add the enzyme in 

order to increase ethanol yields. It is important to point out that actual increases in 

throughput will most likely not be possible due to limits in the downstream processing such 

as distillation and pressure swing adsorption (PSA). However, more complete fermentations 

would be expected resulting in more ethanol produced per corn processed. 

  

When comparing enzyme amounts, there was no statistically significant difference in the dry 

pellet weights as the enzyme volume was increased from 0.01 to 0.03 mL/100 g of mash. 

The only statistically significant difference was seen when comparing the dry pellet weight of 
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the control to the enzyme treated mashes, t(2) = 5.85. Figure 3.3 shows the average pellet 

weights for the enzyme treated mashes and the control. 
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Figure 3.3: Average dry solid pellet weights per 40 g of mash shown for each GC106 enzyme 
treated mash and control. Weights were measured from a 40 g sub-sample of the 100 g 

mash. 
 

The average (± standard deviation) dry solid pellet weights were as follows: 3.07 (± 0.05), 

2.99 (± 0.04), 3.01 (± 0.06), 2.99 (± 0.05) and 3.18 (± 0.04) g for 0.01, 0.015, 0.02, 0.03 mL 

of enzyme and control respectively. No trends were observed for the dry pellet weights from 

the enzyme treated mashes. Thus, adding more of the enzyme to the mash will not affect the 

amount of solids remaining after fermentation. The small difference between the dry pellet 

weight of the control and the enzyme treated mashes could be attributed to some of the 

solids being solubilized into the liquid phase during fermentation. However, since a portion 

of the liquid stream leaving the centrifuge is recycled back into the process in a corn to 
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ethanol plant, the amount of solids lost would be negligible and would not translate into a 

decrease in the amount of DDGS co-product produced by the plant.  

 

3.5 Conclusions 
 

A small but significant reduction in water-binding capacity was found for a number of 

enzymes tested in the initial screening. Average dewatering improvements in whole stillage 

of 10% was observed for enzyme GC 106, with 100-mL fermentations done in duplicates. It 

is thought that the enzyme was able to disrupt the bonding network between protein and 

water molecules, thus releasing more water during centrifugation. The addition of different 

enzyme amounts to the mash had a small effect on the dewatering of the mash and the 

fermentation rate. An enzyme volume of 0.015 ml/100 g of mash proved to be ideal. At this 

dosage, the fermentation rate reached 98% completion at around 50 hours whereas the 

untreated mash was only at 86% completion at the same time. At this same enzyme volume, 

dewatering was increased by 10% compared to the untreated mash. A dosage of 0.015 mL of 

GC 106 could potentially allow for an optimization of enzyme cost with energy savings.  

 

The addition of this rate-improving enzyme during fermentation of the dry grind corn to 

ethanol process will not only help in improving ethanol yields, but also in the dewatering of 

the whole stillage during centrifugation. Corn to ethanol plants can add this enzyme to their 

process with minimal added capital cost and at the same time reduce their fermentation 

times and enhance water removal during centrifugation of the whole stillage. By improving 
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fermentations rates and removing more water during centrifugation, the plant’s ethanol 

production per corn processed could potentially be increased. At the same time the energy 

input for the DDGS drying process could be reduced by about 14%. This would translate 

directly into lower energy requirements and higher ethanol production, resulting in a 

reduction of ethanol production costs that will be looked at in detail in Chapter 7. 
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Chapter 4 – Dosage Optimization 
 

4.1 Introduction 
 

As discussed earlier, cell wall degrading enzymes have been identified as the most effective 

for enhancing water removal. Thus, it is necessary to investigate the optimal amount of 

enzyme needed to achieve the results observed but at the same time ensure that such 

enzyme ‘dosage’ is economically viable. Enzyme activity is not linear, thus adding more 

enzymes to the process will only increase dewatering up to a certain point. After that point is 

reached, adding more enzymes will not be beneficial. Clearly too high of an enzyme dosage 

will reflect negatively on the economics of the process due to the high cost of the enzymes. 

For purposes of this study, an optimal amount of enzyme was defined as the minimal 

volume of enzyme needed to maximize water removal. The goal of this study is to ensure 

that the amount of enzyme needed, and therefore the cost to purchase that enzyme, will not 

be higher than the savings observed in the drier operation by reducing the energy input 

needed for water removal. Figure 4.1 shows schematically the process used to analyze the 

data collected and optimize the amount of enzyme used in the plant trial presented in 

Chapter 6 and the economic analysis described in Chapter 7. 
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Figure 4.1: Optimization chart used to analyze the data collected during the experiments 
presented in this chapter. 

 

The optimization process is pretty simple. Each sample collected will be analyzed for 

dewatering. The sample with the highest amount of water removed will be checked first. If 

that sample has a dewatering value that is statistically different from the control and the 

other samples than the enzyme dosage at which that sample was treated will be checked for 

economic feasibility. The enzyme dosage that proves to be most effective at dewatering and 

economically viable will be selected as the optimal dosage. An understanding of how the 

enzyme dosage affects the results observed in the previous chapters will be paramount to the 



 

   
 
 59 

success of this research. Overdosing the process with enzymes is not beneficial and might 

not necessarily result in maximum effectiveness of water removal and increased fermentation 

rates.  

 

4.2  Scope 
 

The purpose of the experiments outlined below is to investigate how different dosages of 

cell wall degrading enzymes added to the mash affects the amount of water removed during 

centrifugation. In these experiments two enzymes, which were identified in Chapter 2, will 

be used. The cell wall degrading enzymes to be used are Multifect GC (MGC) and GC220. 

The experiments can be divided into two parts. The first experiment uses GC220 in the 

mash at the amounts of 0.005, 0.01, 0.015, 0.02, and 0.05 mL per 100 g of corn mash. The 

second experiment uses MGC in the same amounts listed above. The selected enzyme 

volume ranges were based on the preliminary dosage experiments described in Chapter 2. 
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4.3 Experimental Work 
 

4.3.1 Materials and Methods 
 

The enzymes and corn used in this section were the same as described in Section 2.2. All 

enzymes are commercially available preparations. All chemicals used were again of analytical 

quality. 

 

4.3.1.1 Mash Preparation and Liquefaction 

 

The mash was prepared as previously described in Section 2.3.1.1. In short, corn (30% w/w) 

was ground and mixed with water. The pH was adjusted to 5.8 and the corn mixture was 

liquefied with the addition of 1.3 mL of Spezyme Fred (1.3 L total mash) for 1 hr at 90ºC. 

 

4.3.1.2 Simultaneous Saccharification and Fermentation 

 

The slurry temperature was brought to 30°C using a water bath, and 1.25 g of urea (280-290 

mg N/L) was added to the slurry for each experiment (Thomas and Ingledew 1995). The 

slurry was adjusted to pH 4.5 ± 0.1 by adding 1M HCl solution, and 0.65 mL of Optidex L-

400 gluco-amylase was added. Approximately 100 g of slurry were transferred to each 

previously weighed Erlenmeyer flask. Yeast suspension (Fleischmann’s Active Dry Yeast, 
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Fenton, MO) was prepared as previously reported in Section 2.3.1.2. Each flask was then 

inoculated with 1 mL of yeast suspension (≈1.8 × 106 cells/mL). The cell wall degrading 

enzymes, MGC or GC220 were then added to their set of flasks as per Table 4.1. A control 

flask was also prepared without enzyme addition for each experiment. 

 

Table 4.1: Key indicating experimental design used in this section 

Experiment 1 Experiment 2 

Flask GC220 Volume 
(mL/100 g mash) 

MGC Volume 
(mL/100 g mash) 

1 0.005 0.005 

2 0.005 0.005 

3 0.01 0.01 

4 0.01 0.01 

5 0.015 0.015 

6 0.015 0.015 

7 0.02 0.02 

8 0.02 0.02 

9 0.05 0.05 

10 0.05 0.05 

11 None None 

12 None None 

 

The experiments were done in duplicates. All flasks were then sealed with the stopper, 

needle inserted, and moved to a temperature-controlled shaking incubator, (30ºC at 200 

rpm) for 72 hours. 
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4.3.1.3 Analytical Techniques 

 

The two experiments followed the analytical techniques described in Section 2.3.1.3 except 

for the last part. In the case of these experiments, at the end of fermentation, only one 40-

mL representative sample was taken from each of the 12 flasks and transferred to a 50-mL 

centrifuge tube (Corning, cat no. 430290, 29.1 mm o.d.). Each tube was then centrifuged in a 

bench-top centrifuge (model Z320, Hermle, Woodbridge, NJ) for 5 min at 1,400 × g to 

analyze the water-binding capacity of each enzyme treatment. The supernatant (water 

removed after centrifugation) from each flask was weighed, placed in a 55°C oven for 48 hr, 

moved to a 135°C oven for 2 hr, and then weighed again. The same was done with the solid 

pellets (wet grains) obtained after centrifugation. The samples were placed in a low-

temperature oven first to slowly evaporate the water without causing the equipment to 

smoke. After most of the liquid had evaporated, the samples were placed in the high-

temperature oven to completely remove their water content. 

 

4.3.1.4 Statistical Analyses 

 

SPSS was used to compute a one-way analysis of variance (ANOVA) to compare the means 

of the water amount removed after centrifugation for each enzyme volume and the control 

(SPSS for Windows, SPSS Inc., Chicago, IL). Tukey’s HSD (honestly significant difference) 

multiple comparison test was used to compute the minimum difference between the two 

means that is required for the means to differ significantly for each pair of enzyme volume. 



 

   
 
 63 

The levels tested were the amount of water removed and the weight of the solid pellet. The 

water removed was separated from the solid pellet after centrifugation and the two parts 

were then weighed. The level selected to show statistical significance was 5% (P < 0.05). 

 

4.4 Results and Discussion 
 

The first experiment investigated the effectiveness of different GC220 enzyme doses on the 

amount of water removed during centrifugation. The enzyme dosage range chosen for this 

experiment was based on the results described in Section 2.3. All concentrations of the 

GC220 enzyme preparation showed significant improvement over the control (Table 4.2).  

 

Table 4.2: Amount of water removed after centrifugation and final ethanol yields given for 
GC 220 enzyme treated mashes and control; values followed by the same letter in the same 

column are not significantly different (P < 0.05) 

Volume Added H2O Removed1,2 Ethanol Yield1,2

(ml) (%control) (%v/v)

control3 100 ± 0.115d 14.33 ± 0.14a
0.005 110 ± 0.158a 14.05 ± 0.15a
0.01 113.5 ± 0.022b 14.50 ± 0.12a
0.015 115 ± 0.059c 14.32 ± 0.28a
0.02 115.8 ± 0.202c 14.20 ± 0.14a
0.05 115.7 ± 0.321c 14.34 ± 0.31a

1 Mean ± standard deviation
2 Duplicate samples
3 Control had 24.72 ± 0.115 g of water/40 g of mash 
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Figure 4.2: Amount of water removed after centrifugation at different GC220 dosages. 
Values are presented as a percentage of the control where the control is taken to be zero. 

Error bars represent one standard deviation from the mean. 
 

An increase in the amount of water removed during centrifugation was observed with an 

increase in enzyme preparation dose. As the enzyme preparation dose was increased from 

0.005 to 0.05 mL, the amount of water removed increased from 10 to 15.7% compared with 

the control. When the enzyme dose was increased from 0.015 to 0.05 mL per 100 mL of 

mash, the difference observed in the amount of water removed was not statistically 

significant when compared to one another. Using the optimization chart designed for this 

experiment, the enzyme dosage that resulted in the maximum dewatering that was 

statistically different from the control and the lower dosages was 0.015 mL/100 g of mash, 
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F(10,11) = 146.48. Based on these results, it is concluded that the minimum amount of 

enzyme needed for optimal water removal was an enzyme dose of 0.015 mL/100 g of mash 

(0.5 kg/MT of corn). In general, enzymatic activity shows nearly linear effects up to a 

specific enzyme concentration, above which diminishing returns are observed. The data 

shown in Figure 4.2 is representative of this saturation effect that is typically observed in a 

system in which enzymes are present.  

 

The dry solid pellet weights of the mashes treated with 0.02 and 0.05 mL of enzyme were the 

only ones that were found to be significantly reduced in weight relative to the untreated 

control (Figure 4.2). 
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Figure 4.3: Dry Reduction in dry solid pellet weights per 40 g of mash shown for each 
GC220 enzyme treated mash compared to the control. Weights are shown as a percentage of 
the control where the control. Error bars represent the standard deviations from the means. 
 

However, the only treated mash that showed a significant difference in the dry solid pellet 

weight when compared to other treated mashes was the one with an enzyme volume of 0.05 

mL, F(10,11) = 9.12. When comparing enzyme additions, there was no significant difference 

in the dry solid pellet weight for the mash treated with enzyme dose between 0.005 and 0.02 

mL. This means that an enzyme dose of 0.015 mL/100 g of mash will not affect the amount 

of solids removed during centrifugation, but it will still maximize the amount of water 

removed. In a corn to ethanol plant this would translate into an increase in centrifugation 

efficiency while still maintaining the DDGS production rates. The relatively smaller solid 
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pellet weights will not cause a loss in final DDGS production rates since the solids that are 

centrifuged out with the water is recycled back into the process via the process condensate. 

 

Final ethanol yields were not significantly different for enzyme-treated mashes compared 

with the control (Table 4.3). Also, there were no significant differences between the final 

ethanol yields for each enzyme-treated mash at the different enzyme levels. Thus, adding 

more enzyme preparation to the mash would not affect the final ethanol yields of 

fermentation.  

 

The lowest enzyme dose that showed statistically the same water removal ability as the larger 

doses was deemed most favorable due to the need of smaller amounts of enzymes to achieve 

the best water-removal results. This would help improve the economics of the process by 

minimizing enzyme costs. An enzyme dose of 0.015 mL of GC 220/100 g of mash had this 

characteristic and was therefore chosen as the most efficient for whole stillage water 

removal. 

 

The second experiment investigated the effectiveness of different MGC enzyme doses on 

the amount of water removed during centrifugation. The enzyme dosage range chosen for 

this experiment was based on the results described in Section 2.3. Just as was observed with 

GC220, all concentrations of the MGC enzyme preparation showed significant improvement 

over the control (Table 4.3 and Figure 4.4).  
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Table 4.3: Amount of water removed after centrifugation; final ethanol yield and dry pellet 
weights given for MGC enzyme treated mashes and control; values followed by the same 

letter in the same column are not significantly different (P < 0.05) 

Volume Added H2O Removed1,2 Ethanol Yield1,2

(ml) (%control) (%v/v)

control3 100 ± 0.031d 13.88 ± 0.078a

0.005 115.2 ± 0.180a 13.87 ± 0.021a

0.01 116.8 ± 0.197a 13.92 ± 0.011a

0.015 119.8 ± 0.207b 14.01 ± 0.010b

0.02 119.9 ± 0.142b 13.59 ± 0.013c

0.05 123.2 ± 0.038c 14.21 ± 0.056d
1 Mean ± standard deviation
2 Duplicate samples
3 Control had 22.53 ± 0.031 g of water/40 g of mash 
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Figure 4.4: Amount of water removed after centrifugation at different MGC dosages. Values 
are presented as a percentage of the control where the control is taken to be zero. Error bars 

represent one standard deviation from the mean. 

 

An increase in the amount of water removed during centrifugation was observed with an 

increase in enzyme preparation dose. As the enzyme preparation dose was increased from 

0.005 to 0.05 mL, the amount of water removed increased from 15.2 to 23.2% compared 

with the control. For dosages of 0.005 and 0.01 mL/100 g of mash, there was no statistically 

significant difference between the resulting water removal values. Similarly, the same lack of 

a statistically significant difference was observed for dosages of 0.015 and 0.02 mL/100 g of 

mash. However, in contrast with the results for GC220, the MGC dosage experiment 

showed that there was a statistically significant difference in the water removal at the highest 
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dosage of 0.05 mL/100 g of mash, F(10,11) = 44.94. Nevertheless, as is explained later in 

Chapter 7, using an enzyme dose of 0.05 mL would not be economically viable due to the 

cost of the enzyme. At this highest dosage, the dewatering effect of 23.2% will not provide 

enough savings to the processing plant to offset the cost of the enzymes. Furthermore, as it 

is also shown in Chapter 7, the dosage with the highest dewatering effect may not necessarily 

be optimal. The savings obtained from using a cell wall degrading enzyme is linear with 

respect to the amount of enzyme and therefore dewatering. Meanwhile, the dewatering 

effect observed in non-linear with respect to the enzyme dosage used. Using this rationale, a 

dosage of 0.05 mL was deemed unfavorable as the optimal amount of MGC to be used in 

industrial practices. The next dosage considered was 0.02 mL but at this level the amount of 

water removed was statistically the same as the one obtained with 0.015 mL of MGC. A 

MGC volume of 0.015 mL was selected as the optimal dosage according to the conditions 

and parameters defined in this chapter as the most favorable. 

 

As found before with GC220, the dry solid pellet weights of the mashes treated with 0.02 

and 0.05 mL of enzyme showed a significant reduction relative to the untreated control 

(Figure 4.5).  
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Figure 4.5: Reduction in dry solid pellet weights per 40 g of mash shown for each GC220 
enzyme treated mash compared to the control. Weights are shown as a percentage of the 
control where the control. Error bars represent the standard deviations from the means. 

 

If cell wall degrading enzymes worked perfectly, no loss of material would be observed and 

only water would be removed during centrifugation. However, it is believed that at the 

higher enzyme doses of 0.02 and 0.05 mL, the enzyme is solubilizing some of the material 

into the liquid phase of the mash which would cause a loss of solid material during 

centrifugation but not to the process as a whole. The only enzyme dosage that showed a 

statistical difference in the dry solid pellet weight compared to the other dosages was the 

mash with 0.05 mL of enzyme, F(10,11) = 20.09. The mashes treated with an enzyme dosage 

in the range of 0.005 and 0.02 mL per 100 g of mash were not statistically different. This 
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means that the optimal dosage presented above will not affect the amount of solids removed 

during centrifugation in the solid phase and will at the same time maximize the amount of 

water removed. Even though a decrease in solids removed after centrifugation will not affect 

the production of DDGS. 

 

When comparing final ethanol yields between the enzyme-treated mashes and the control, 

there were a few statistically significant differences (Figure 4.5). The final ethanol yield for 

the control and the mashes treated with 0.005 and 0.01 mL of MGC were not different from 

one another but were different from the yields from the mashes treated with 0.015, 0.02 and 

0.05 mL. Furthermore, the yields for the 3 highest enzyme dosages were also different from 

one another. A definite trend in the ethanol yields was not observed in this data set. The 

final amount of ethanol obtained did not increase or decrease with increasing enzyme 

dosage. These differences in final ethanol yields could be attributed to relatively small 

differences in the initial amount of starch in the mash and/or the incomplete conversion of 

starch to glucose during saccharification. It is not believed that once implemented in a 

processing plant that the enzyme will impact fermentation yields.  
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4.5 Conclusions 
 

A significant reduction in water-binding capacity was found for both cell wall degrading 

enzymes (GC220 and MGC) at each enzyme dose tested. Whole stillage dewatering 

increased from 10 to 15% as GC220 enzyme volume increased from 0.005 to 0.05 mL/100 g 

of mash, and from 15 to 23% as MGC enzyme volume increased from 0.005 to 0.05 

mL/100 g of mash. Since the addition of different enzyme amounts to the mash showed a 

change in the dewatering effect, it will allow for the optimization of enzyme cost with energy 

savings in Chapter 7.  

 

In the case of GC220, enzyme dosages above 0.015 mL/100 g of mash gave diminishing 

returns where dewatering capability was concerned. At this dosage, the curve obtained from 

plotting enzyme dosage versus water removed reached its leveling off point. Thus, 0.015 mL 

was determined to be the optimal dosage when using this particular enzyme preparation. In 

contrast, for MGC, the same trend of diminishing returns was not observed. The maximum 

dewatering effect was found to be at the highest dosage of 0.05 mL. However, from the way 

optimization is defined in this work and taking into account economic factors, presented in 

Chapter 7, a dosage of 0.05 mL/100 g of mash was deemed unfavorable. After analyzing the 

results for a dosage of 0.02 mL and 0.015 mL, it was determined that there was not statistical 

difference between the two. Using the optimization chart presented at the beginning of this 

chapter the optimal enzyme dosage for MGC was determined to be 0.015 mL/100 g of 

mash.  
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Final ethanol yields did not significantly differ for the different enzymes amounts and for the 

control for GC220. For MGC, differences in the final ethanol yield were observed. There 

were no definite trends for the ethanol yields relative to the enzyme dosage used. The 

differences were attributed to incomplete starch to glucose conversion or relatively small 

differences in initial starch content in the mash. It is believed that the glucose to ethanol 

conversion went to completion in all cases. This means that, with either GC220 or MGC, 

dry grind corn to ethanol plants could keep the production rates the same and at the same 

time improve centrifugation efficiency, positively impacting the economics of the process. 

 



 

   
 
 75 

Chapter 5 – Enzyme Combination 
 

5.1 Introduction 
 

There are no studies in the open literature that investigate and report the use of both cell 

wall degrading and proteolytic enzymes in a fermentation process to enhance dewatering and 

fermentation rates. Some researchers have looked at the addition of multiple enzymes such 

as cellulases, xylanases, and proteases to increase starch yield or decrease the steeping time 

during the wet milling corn to ethanol process (Caransa et al. 1988; Hassanean and Abdel-

Wahed 1986; Moheno-Perez et al. 1999). Unfortunately, no one has examined how these 

enzymes can be used in the dry grind corn to ethanol process to reduce the costs of DDGS 

handling by affecting the amount of water that is removed during centrifugation, and at the 

same time by decreasing fermentation times of SSF.  

 

5.2 Scope 
 
 

The purpose of the experiments outlined below was to investigate how cell wall degrading 

and proteolytic enzymes could be added to the corn to ethanol process in an attempt to 

enhance both water removal of whole stillage and final ethanol yields of the process. 

Previous experiments have shown that cell wall degrading enzymes can be added to increase 

water removal by disrupting the bonding network between the polysaccharides and the water 
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molecules. The addition of proteases has been proven to increase fermentation rates and 

decrease fermentation times, allowing for an overall increase in ethanol production rate 

(Thomas and Ingledew 1990; Thomas and Ingledew 1995; Johnston and Singh 2001; Perez-

Carrillo and Serna-Saldivar 2006). Individually, these enzymes showed that they could 

enhance dewatering and fermentation rates. It was important to see if by adding them 

together, the results of the separate experiments could be observed in a single experiment. 

 

5.3 Experimental Work 
 
 

5.3.1 Materials and Methods 
 

The enzymes used in this research were donated by Genencor International (a Danisco 

Company, Palo Alto, CA). The corn used was donated by the University of Illinois, Urbana-

Champagne, and the National Corn to Ethanol Research Center (NCERC) at Southern 

Illinois University, Edwardsville (SIUE). All chemicals used were of analytical quality. 

 

5.3.1.1 Mash Preparation and Liquefaction 

 
 

Erlenmeyer flasks (250 mL) were labeled and their tare weights were recorded. Stir bars were 

also weighed together with stoppers and 21 gauge 1.5” needles. Micro-centrifuge tubes used 
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for collecting samples were labeled with fermentation date, ID, and sample number. A 

rubber stopper, a needle, and a stir bar were assigned to each fermentation flask. The needle 

was inserted into the rubber stopper. Each flask with a stir bar and rubber stopper with a 

needle was weighed as an assembly.  

 

To prepare the mash for each of the runs performed, 450 g of hammer milled corn (corn 

weight was adjusted using moisture content to give the desired final solids content of 30%) 

was added to 910 mL of water in 2-L flask and adjusted to pH 5.8 ± 0.1 by adding 1M HCl 

solution. Spezyme Fred α-amylase (1.3 mL) was added to the flask, which was then placed 

on a preheated hot plate at 90°C with the stirring rate set to 120 rpm. The slurry was 

liquefied at 90°C for 1 hr. 

 

5.3.1.2 Simultaneous Saccharification and Fermentation (SSF) 

 
 

Simultaneous saccharification and fermentation was carried out as previously reported in 

Section 4.3.1.2. The cell wall degrading enzymes, MGC and GC220, and the proteolytic 

enzyme, GC 106, were added to their respective set of flasks Table 5.1. A control flask was 

also prepared without enzyme addition for each run. The experiment was done in duplicates. 

All flasks were then sealed with the stopper, needle inserted, and moved to a temperature-

controlled shaking incubator (30ºC at 200 rpm), for 72 hours. 
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5.3.1.3 Analytical Techniques 

 
 

At the end of the fermentation process, a 1 mL sample was taken from each flask. The 

samples were centrifuged (model ICE Centra CL2, Thermo Electron Corporation, Waltham, 

MA) for 2 min at 16,110 x g, and the supernatant was then filtered using a 0.2 µm syringe 

filter (model 4455T, Pall, Ann Harbor, MI) into labeled 1 mL microcentrifuge tubes and 

stored frozen until ready for HPLC analysis.  

 

Samples were thawed and analyzed by high-performance liquid chromatography (HPLC) as 

described in Section 2.3.1.3. Here, the actual HPLC equipment used was from Agilent and 

model number 1100 (Santa Clara, CA) equipped with an Aminex HPX-87H Biorad 

(Hercules, CA) ion-exclusion column.  

 

For the final part of the data collection, the experiment followed the procedures described in 

Section 3.3.1.3 until the final step. In the case of this experiment, at the end of fermentation 

(72 hours), only one 40-mL representative sample was taken from each of the flasks and 

transferred to a 50-mL centrifuge tube (Corning, cat no. 430290, 29.1 mm o.d.). Each tube 

was then centrifuged in the bench-top centrifuge for 5 min at 1,400 × g to analyze the water-

binding capacity of each enzyme treatment. The supernatant from each flask was weighed, 

placed in a 55°C oven (model 6555, Thelco Laboratoty Oven, Thermo Electron 

Corporation, Waltham, MA) for 48 hr, moved to a 135°C oven for 2 hr, and then weighed 

again. The same was done with the solid pellets (wet grains) obtained after centrifugation. 
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5.3.2 Experimental Design 
 

The experiment performed in this section of the thesis was set up as a matrix design (Table 

5.1). There were 12 runs carried out using this matrix design. 

 

Table 5.1: Experimental setup of enzyme volumes for matrix experiment. 
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The shaker-incubator used here could not hold all the flasks needed to perform the matrix 

experiment, so the experiment had to be divided into different runs. The data for the run 

with only GC106 was performed separately and is presented in Chapter 3. The runs with 

only GC220 and only MGC were also performed separately and are described in Chapter 4. 

The other runs are outlined in Table 5.2. All runs were done in duplicates including a 

duplicate control for each run. 
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Table 5.2: Break down of selected runs used in the matrix design experiment. Each pair of 
enzyme volume was added to two flasks. Each run contained a duplicate control. All enzyme 

volumes are given for 100 g of mash. 

MGC GC106 MGC GC106 MGC GC106 MGC GC106 MGC GC106 GC220 GC106 GC220 GC106 GC220 GC106 GC220 GC106

(mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL) (mL)

0.01 0.015 0.015 0.01 0.05 0.01 0.005 0.01 0.01 0.01 0.005 0.03 0.01 0.03 0.02 0.01 0.05 0.02

0.02 0.01 0.02 0.015 0.015 0.015 0.05 0.015 0.005 0.015 0.015 0.01 0.015 0.015 0.05 0.03 0.005 0.02

0.015 0.02 0.005 0.02 0.05 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.01 0.01 0.01 0.015

0.05 0.03 0.01 0.03 0.02 0.03 0.005 0.03 0.015 0.03 0.05 0.01 0.005 0.015 0.015 0.02 0.015 0.03

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.005 0.01 0.01 0.02 0.02 0.015 0.05 0.015

n/a - not applicable to this run

Run 8Run 4 Run 5 Run 6 Run 7 Run 9 Run 10 Run 11 Run 12

 

 

5.3.3 Statistical Analysis 
 

SPSS was used to compute an ANOVA to compare the mean amount of water removed 

after centrifugation, the dry solid pellet weights, and the fermentation rates for each pair of 

enzyme volumes with the control (SPSS for Windows, SPSS Inc., Chicago, IL). A graphing 

technique showing the mean of each level tested was used to further investigate whether a 

statistical relationship was present in the data obtained for the amount of water removed and 

the dry solid pellet weights. For the fermentation rates, the post-hoc used to analyze the data 

was the t-Test for two samples assuming equal variances. The t-Test was performed to 

compare all pairs of two different enzyme combinations. The level selected to show 

statistical significance was 5% (P < 0.05). 

 



 

   
 
 81 

5.4 Results and Discussion 
 
 

As explained above, due to limitations in the equipment used for the work in this thesis, the 

experiment presented in this chapter had to be divided into different runs. Therefore, the 

data within each run is presented as a percentage of the control of that run. The variability of 

the controls within a run was much less than the variability of the controls between each run. 

These differences are attributed to unpredictable variations that occurred during each run 

especially due to the time that elapsed between the runs. 

 

The effect of the different enzyme volumes on the amount of water removed from the 100 g 

of mash was determined by centrifuging a 40 g sub-sample. Figure 5.1 shows the amount of 

water removed after centrifugation for each enzyme combination as a percentage of the 

control. 
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Figure 5.1: Amount of water removed as a percent of the control given for the different 
volume combinations of GC220 and GC106. The control is taken to be 0%. Error bars 

represent one standard deviation from the mean.    
 

Each group of bars show the average amount of water removed as a percentage of the 

control at the different GC106 volumes for a given volume of GC220. In this case the 

control is taken to be zero percent and any value greater than zero represents an increase in 

water removed compared to the control. As can be observed from the graph, as the GC220 

enzyme volume increased so did the amount of water removed, up to a GC220 volume of 

0.015 mL. There was no statistically significant difference between the amount of water 

removed for the flasks containing 0.015, 0.02 and 0.05 mL of GC220. At a GC220 enzyme 

volume of 0.015 mL per 100 g of mash, a maximum effect was seen at 0.02 mL of GC106. 
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The statistical analysis revealed a significant main interaction of GC220 and GC106 volumes, 

F(2,12) = 3.34. At this combination the amount of water removed was on average 18.57 (± 

0.351) % of the control. This shows that adding more than 0.015 mL of GC220 may not be 

beneficial when trying to maximize the effects observed from the enzyme addition.  

 

Furthermore, in terms of the amount of GC106 added to the mash, there is no clear trend 

for the amount of water removed after centrifugation. No data group showed either an 

increase or decrease in the amount of water removed during centrifugation as the GC106 

amount was increased from 0.01 to 0.03 mL. This indicates that GC106, when added in 

conjunction with GC220, will not have an adverse effect on the amount of water removed. 

In the case of a GC220 volume of 0.05 ml, there was no statistical difference in the amount 

of water removed for all volumes of GC106 added with the greatest amount being on 

average 18.066 (± 0.033) % of the control at 0.015 mL of GC106. When GC220 was at 0.02 

mL level, only the amount of water removed at 0.015 mL of GC106 was statistically 

different than water removal at other levels of GC106. At this enzyme combination, the 

amount of water removed was on average 18.914 (± 0.031) % of the control.  

 

When comparing the dewatering at an enzyme combination of 0.015 mL of GC220 and 0.02 

mL of GC106 to the dewatering obtained with only 0.015 mL of GC220 (14.97 ± 0.059 %), 

an increase of 3.6% in the amount of water removed is observed for the mash that contained 

the enzyme combination. The dewatering obtained at this enzyme combination was higher 

and significantly different from the dewatering observed at all levels of only GC220. The 
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same was observed for the amounts of water removed obtained from the mashes with 

GC106 only. The highest dewatering for this group was 11.39 (± 0.81) % observed at 0.03 

mL of GC106. Some dewatering was observed for all of the GC106 volumes added to the 

mash without GC220 but none of the results was higher than the results observed for the 

mash containing both GC220 and GC106 as well as with only GC220.  

 

From the results above, it can be said that most favorable results in terms of dewatering 

were obtained at a GC220 dosage of 0.015 mL in conjunction with a GC106 volume of 0.02 

mL per 100 g of mash. 

 

A similar data set as the one presented above can be seen in Figure 5.2 but for enzyme 

volume combinations of MGC and GC106. 
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Figure 5.2: Amount of water removed as a percent of the control given for the different 
volume combinations of MGC and GC106. The control is taken to be 0%. Error bars 

represent one standard deviation from the mean. 
 

As was the case for the data from the GC220 and GC106 runs, each group of bars show the 

average amount of water removed as a percentage of the control at the different GC106 

volumes for a given volume of MGC. Here again, each control is taken to be zero percent 

and any value greater than zero represents an increase in water removed compared to the 

control. The graph shows that as the MGC enzyme volume is increased from 0.005 to 0.05 

mL, so is the amount of water removed for the different volumes of GC106. The statistical 

analysis showed that there was no significant difference in the amount of water removed 

between MGC enzyme volumes of 0.01 and 0.015 mL, as well as no difference between 0.02 
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and 0.05 mL. This means that a maximum effect can be observed at 0.02 mL of MGC per 

100 g of mash, and that going up to a volume of 0.05 mL would not significantly increase 

the amount of water removed. The analysis revealed a significant interaction of MGC and 

GC106 volumes, F(2,12) = 20.58. At a MGC enzyme volume of 0.02 mL per 100 g of mash, 

the highest amount of water removed (29.276 ± 0.215 g) was observed at a GC106 volume 

of 0.03 mL. However, the statistical results showed that there was no significant difference 

between the amount of water removed at 0.03, 0.02 and 0.01 mL of GC106. The only 

statistically significant difference was seen for 0.015 ml of GC106 (27.225 ± 0.281 g) but that 

weight was smaller when compared to the other weights. This shows that adding more than 

0.02 mL of MGC per 100 g of mash and 0.01 mL of GC106 per 100 g of mash may not be 

beneficial when trying to maximize the effects observed from the enzyme addition. 

 

When examining the amounts of water removed with a given volume of MGC, no trends 

were observed for the different volumes of GC106. None of the data groups showed either 

an increase or a decrease in the amount of water removed as the volume of GC106 was 

increased from 0.01 to 0.03 mL. As was observed in the first experiment, adding GC106 to 

the mash in conjunction with MGC did not have a detrimental effect on the amount of 

water removed after centrifugation. Looking at a MGC volume of 0.02 mL, and from the 

results of the statistical analysis for the different GC106 volumes presented above, it can be 

seen that adding more than 0.01 mL of GC106 to the mash does not significantly increase 

the amount of water removed. In this case, even though the maximum effect was not seen at 

this enzyme volume, adding more than this amount is not effective. At this enzyme 
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combination of 0.02 mL of MGC and 0.01 mL of GC106, the amount of water removed 

was on average 15.921 (± 0.139) % of the control. 

 

The data set given for MGC and GC106 differed from the set given for GC220 and GC106 

in regard to how much water was removed from the mash with only MGC compared to the 

mash with only GC220. The results obtained for the mash with only MGC was significantly 

higher than the water removed with any other enzyme dosage combination of MGC and 

GC106 as well as with only GC106. In this case the addition of the GC106 to the mash had 

a detrimental effect in the dewatering of the whole stillage. The effects observed with only 

GC106 and only MGC were not additive when the enzymes were combined in the same 

mash. This was not the case for the run with GC106 and GC220 as described above.  

 

Based on the results presented above, the best water removal will be obtained when using a 

MGC enzyme volume of 0.02 mL in conjunction with a GC106 enzyme volume of 0.01 mL 

per 100 g of mash. If the only desired effect is dewatering, best results are observed when 

using only MGC, and optimal results are obtained at 0.015 mL per 100 g of mash as 

presented in Chapter 4. However, increase in ethanol production rates are also a desired 

effect, and therefore the results for this parameter must also be examined before a final 

conclusion can be reached. 

 

As the 40 g sub-samples were centrifuged and water removal data was collected, the weights 

of the solids present in the mash after centrifugation were also recorded. As was previously 
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shown in Section 2.3, the unfermentable solids become a pellet that can be removed from 

the centrifuged tube, dried and weighed. Figure 5.3 and Figure 5.4 show the reduction in dry 

solid pellet weights for the GC220 and GC106 runs and MGC and GC106 runs, 

respectively.  
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Figure 5.3: Reduction in dry solid pellet weights compared to the control given for the 
different volume combinations of GC220 and GC106. Control is taken to be 0%. Error bars 

represent one standard deviation from the mean. 
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Figure 5.4: Reduction in dry solid pellet weights compared to the control given for the 
different volume combinations of MGC and GC106. The control is taken to be 0%. Error 

bars represent one standard deviation from the mean. 
 

The graphs show the reduction in dry solid pellet weights as a percentage of the control. In 

the case of both graphs the control is given as 0% and since all other measured weights were 

smaller than the measured weight of the control, all of the percentages shown are positive. 

As can be seen on the graphs, all dry solid pellet weights from all enzyme volume 

combinations were smaller than the control. As for the data shown in Figure 5.3 and Figure 

5.4, the reduction in the pellet weight increases as the amounts of GC220 and MGC 

increase. This effect is more evident in the case of MGC and could be due to the different 

enzymatic activities present in each of the two enzyme preparations. The increased reduction 
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of pellet weight is attributed to the fact that as the MGC and GC220 volume increases so 

does the enzymatic activity and more of the solid material is solubilized. Therefore, when the 

samples are centrifuged more of this soluble material ends up in the liquid phase.  

 

In a dry grind corn to ethanol plant, the solubilized material would be sent to the 

evaporators where, after the water is driven off, the syrup that is left would contain the 

solubilized material. This material would then be recycled back into the process by mixing it 

with the WDGs before going into the drier. In this way, no material (co-product) would be 

lost during the process. Data collected during the plant trial portion of this work, and 

presented in Chapter 6, will show that this hypothesis is correct. 

 

When looking at Figure 5.3, for a given volume of GC220, the smallest reduction in pellet 

weight was observed when there was no GC106 present in the mash. This presence of this 

protease will result in the break down of protein present in the mash. These smaller protein 

chains can also end up in the liquid phase after centrifugation. As the GC106 volume was 

increased no definite trend resulted for the measured pellet weight. In the case of MGC and 

GC106, a similar result to the GC220 and GC106 run was observed for the reduction of the 

pellet weight. For a given volume of MGC, there was no trend in the pellet weight reduction 

as the GC106 enzyme volume increased from 0.01 to 0.03 mL. 

 

Fermentation rates were measured by periodically weighing the flasks during fermentation as 

explained in Section 3.4. For purposes of these experiments a conversion parameter was 
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formulated to evaluate whether or not the fermentation rates were affected by the enzyme 

additions. This parameter is defined as the total weight loss at 31 hr as a percentage of the 

total weight loss at the end of fermentation (72 hr) for each flask. In this case, 31 hr was 

selected because at this point most of the mash containing the enzymes had reached an 

asymptotic point to the leveling off of the weight loss curve. This curve has a characteristic 

S-shape as presented in Chapter 3, and the leveling off occurs after the curve presents the 

rapid conversion period, also known as the exponential phase. 

 

Table 5.3 shows the percent increase in weight loss for the MGC/GC106 treated mashes in 

comparison to the control. 

 

Table 5.3: Data represents increase in weight loss at 31 hrs as a percentage of total weight 
lost (72 hr) compared to the control. The control is taken to be 0%. Values followed by the 

same letter in the same row are not significantly different (P < 0.05). 

0 0.01 0.015 0.02 0.03

0 0 15.04 ± 1.47a 22.35 ± 0.560b 26.79 ± 0.180c 28.82 ± 1.01d

0.005 0.67 ± 0.230a 15.86 ± 0.49b 14.24 ± 0.282c 14.59 ± 0.071c 16.88 ± 0.058d

0.01  -(0.06 ± 0.211)a 13.08 ± 0.398b 14.68 ± 0.142c 14.56 ± 0.032c 14.68 ± 0.142c

0.015 0.10 ± 0.660a 14.09 ± 0.211b 14.3 ± 0.094b 14.97 ± 0.075c 14.86 ± 0.071c

0.02 0.40 ± 0.136a 12.56 ± 2.17b 14.68 ± 0.142c 16.51 ± 0.647d 14.6 ± 0.000c

0.05 1.36 ± 0.796a 15.0 ± 0.131b 16.63 ± 0.372c 14.8 ± 0.278b 15.03 ± 0.109b

Percent Increase in Weight Loss

GC106 (mL)

M
G

C
 (

m
L

)

 

 

As can be observed, the percent conversion values given in the table were all larger than the 

average value observed for the control. In the case of the mash with only MGC, there was 
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no statistically significant difference in the percent increase in weight loss as the enzyme 

volume increased from 0.005 to 0.02 mL compared to the control. There were also no 

statistically significant differences when those enzyme dosages were compared to one 

another. The only difference was observed at the highest MGC dose of 0.05 mL. It is 

believed that this could have happened because MGC may have a small amount of 

proteolytic activity in its preparation. MGC is a commercially available enzyme preparation 

and due to its proprietary nature it is not possible to know its exact composition. However, 

when the MGC enzyme was added at such a high volume, the proteolytic activity was more 

pronounced and a small difference was seen. When the GC106 enzyme was added by itself 

there was a significant increase in the percent increase in weight loss as the volume was 

increased from 0.01 to 0.03 mL. The highest percent increase observed was 28.82% at 0.03 

mL. This increase in weight loss was also higher than the increase observed for all of the 

other enzyme combinations. This could have resulted from a change in the batch of corn 

used in this experiment. Corn is donated by different sources and once the sample received 

is exhausted more corn needs to be obtained. During the matrix experiment a batch of corn 

had been obtained from the University of Illinois but by the time the GC106-only run was 

performed that batch had been used up and more corn was obtained, this time from 

Southern Illinois University. As explained earlier in this thesis, corn composition can differ 

and depending on the hybrid that was harvested, experimental results could be affected.  

 

Statistically, there were differences in the increase in weight loss as the GC106 enzyme 

volume increase for a given volume of MGC. At MGC volumes of 0.005 and 0.01 mL, the 



 

   
 
 93 

highest increase in fermentation rates was observed at 0.03 and 0.015 mL, respectively. 

However, the percent increase at these volumes was only 2.64 and 1.6% higher than the 

lowest percent increase at 0.015 and 0.01 mL of GC106, respectively. It is believed that at a 

GC106 enzyme volume of 0.01 mL/100 g of mash, the enzyme activity is already 

asymptotically reaching its equilibrium phase and the results obtained at this enzyme dosage 

would be enough to improve the residence time of fermentation in a corn to ethanol 

processing plant. At the higher volumes of MGC, similar effects are observed. At 0.015 mL 

of MGC, the difference between the highest and lowest percent increase in weight loss is 

0.77%, while at 0.02 and 0.05 mL this difference is 3.95 and 1.83%, respectively. It is 

believed that in order to obtain more significant results regarding the increase in 

fermentation rates, another matrix experiment needs to be done to look at GC106 volumes 

smaller than 0.01 mL. However, at these smaller volumes, the dewatering effect may not be 

as evident and the results observed above may not be detected. 

 

From the run that combined volumes from both enzymes, which had the flask that showed 

the highest percent increase in weight loss, it is known that, at 31 hr, that flask had reached 

94.78 (± 0.058) % loss in weight compared to the total weight lost at 72 hr. At 31 hr, the 

control of this run had only reached 77.90 (± 0.007) % in weight loss. This could translate 

into a decrease in fermentation residence time in a corn to ethanol plant where fermentation 

is approximately kept at 50 hr or longer under normal plant operating procedures. From the 

results presented above, it would be possible to achieve the same ethanol production rates at 

a smaller residence time, between 30 to 36 hr, thus increasing the plant’s throughput. This, 
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of course would depend on the plant’s ability to also improve residence times downstream 

of fermentation.  

 

The calculated percent increase in weight loss for the experiment with GC220 and GC106 

can be seen in Table 5.4. 

 

Table 5.4: Data represents percent increase in weight loss at 31 hrs as a percentage of total 
weight lost (72 hr) compared to the control. The control is taken to be 0%. Values followed 

by the same letter in the same row are not significantly different (P < 0.05). 

0 0.01 0.015 0.02 0.03

0 0 15.04 ± 1.47a 22.35 ± 0.560b 26.79 ± 0.180c 28.82 ± 1.01d

0.005 0.74 ± 0.237a 15.05 ± 0.403b 14.92 ± 0.050b 14.75 ± 0.164b 17.15 ± 0.007c

0.01  -(0.16 ± 0.129)a 13.78 ± 0.971b 13.78 ± 0.97b 14.74 ± 0.175b 15.26 ± 0.072c

0.015 0.08 ± 0.158a 14.62 ± 0.124b 14.76 ± 0.110b 14.73 ± 0.121b 14.73 ± 0.121b

0.02 0.15 ± 0.211a 14.59 ± 0.421b 14.68 ± 0.142b 14.72 ± 0.306b 14.83 ± 0.339b

0.05 0.36 ± 0.438a 15.0 ± 0.131b 14.72 ± 0.306b 14.59 ± 0.421b 14.75 ± 0.164b

Percent Increase in Weight Loss

GC106 (mL)

G
C

2
2

0
 (

m
L

)

 

 

The results observed for the mash containing only the addition of GC220 was not 

statistically different from the control. No improvements in fermentation rates were 

observed as the GC220 volume was increased from 0.005 to 0.05 mL. At GC220 volumes of 

0.005 and 0.01 mL, an increase in fermentation rates was observed at the highest GC106 

volume of 0.03 mL. The percent increase at the other GC106 volumes of 0.01, 0.015 and 

0.02, were not statistically different from one another. The difference between the highest 

and the lowest percent increase in weight loss, for the different GC106 volumes, was 
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calculated to be 2.4 and 1.48% for MGC volumes of 0.005 and 0.01 mL, respectively. For 

the higher GC220 volumes of 0.015, 0.02 and 0.05 mL, no differences in the percent 

increase in weight loss was observed as the GC106 volume was increase from 0.01 to 0.03 

mL. As was the case for MGC and GC106 data set, using a GC106 volume of 0.01 mL will 

result in improvements in the fermentation rates. Here again, it is probable that at lower 

volumes of GC106, less than 0.01 mL/100 g of mash, increase in fermentation rates will still 

be observed and more definite conclusions could be drawn from the results. However, it is 

expected that a decrease in the dewatering effect will also be observed.   

 

The enzyme volume combination that showed the highest percent increase in weight loss 

was 0.03 mL of GC106 and 0.005 mL of GC220. In this run, at 31 hr, the flasks containing 

this enzyme combination had lost on average 94.02 (± 0.007) % of the total weight lost 

compared to 76.87 (± 0.330) % observed for the control. These results were not statistically 

different from the results observed at the same MGC and CG106 volumes as described 

above. If GC220 is selected as the dewatering enzyme to be used in the plant together with 

GC106, similar reduction in fermentation residence times, 30 to 36 hr total fermentation 

times, can be expected as was projected for MGC. 

 

Taking into account both dewatering and percent increase in weigh loss results for this 

experiment, it is suggested that a plant uses either 0.02 mL of MGC with 0.02 mL of GC106 

per 100 g of mash, or 0.015 mL of GC220 with 0.01 mL of GC106 per 100 g of mash.  
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HPLC data was also collected during this experiment. Table 5.5 and Table 5.6 show the 

HPLC average results for selected compounds for the duplicate flasks fermented in all of the 

runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   
 
 97 

Table 5.5: HPLC data given for selected compounds for the MGC and GC106 run. Data 
presented is the average of the duplicate flasks. Data for the controls is denoted by the 

absence of enzyme volumes for both MGC and GC106. 

MGC GC106
DP4+ 

(%w/v)

Glucose 

(%w/v)

Glycerol 

(%w/v)

Ethanol 

(%v/v)

0 0 0.368 0.038 0.750 15.038

0 0 0.333 0.050 1.018 15.097

0 0 0.365 0.030 1.050 14.442

0 0 0.400 0.040 1.115 14.840

0 0 0.325 0.010 1.100 15.184

0 0 0.373 0.034 0.958 14.120

0 0 0.134 0.043 1.111 15.714

0 0.01 0.470 0.078 0.968 15.208

0 0.015 0.420 0.049 0.918 15.330

0 0.02 0.343 0.032 0.852 15.837

0 0.03 0.437 0.058 0.876 15.723

0.005 0 0.234 0.017 0.911 15.549

0.01 0 0.288 0.039 0.720 15.224

0.015 0 0.403 0.036 0.781 15.591

0.02 0 0.566 0.043 0.709 15.275

0.05 0 0.542 0.040 0.896 15.442

0.005 0.01 0.500 0.040 0.930 14.867

0.01 0.01 0.480 0.015 0.940 15.501

0.015 0.01 0.595 0.020 0.900 14.195

0.02 0.01 0.555 0.025 0.940 14.867

0.05 0.01 0.655 0.030 0.795 14.994

0.005 0.015 0.460 0.020 0.925 15.558

0.01 0.015 0.530 0.030 0.900 14.816

0.015 0.015 0.585 0.020 0.855 14.861

0.02 0.015 0.555 0.030 0.880 14.785

0.05 0.015 0.625 0.040 0.870 15.323

0.005 0.02 0.518 0.023 0.753 14.851

0.01 0.02 0.475 0.020 0.910 15.684

0.015 0.02 0.550 0.025 0.870 14.582

0.02 0.02 0.595 0.040 0.880 15.380

0.05 0.02 0.635 0.030 0.820 14.829

0.005 0.03 0.530 0.040 0.875 15.368

0.01 0.03 0.515 0.025 0.845 14.823

0.015 0.03 0.515 0.010 0.885 15.469

0.02 0.03 0.595 0.020 0.835 14.797

0.05 0.03 0.630 0.030 0.850 14.620

Enzyme Volume 

(mL/100 g mash)
Compound

HPLC Data
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Table 5.6: HPLC data given for selected compounds for the GC220 and GC106 run. Data 
presented is the average of the duplicate flasks. Data for the controls is denoted by the 

absence of enzyme volumes for both GC220 and GC106. 

GC220 GC106
DP4+ 

(%w/v)
Glucose 
(%w/v)

Glycerol 
(%w/v)

Ethanol 
(%v/v)

0 0 0.265 0.060 0.830 15.240

0 0 0.240 0.020 0.705 15.233

0 0 0.230 0.040 0.880 15.018

0 0 0.130 0.035 0.643 15.426

0 0 0.373 0.118 0.809 15.676

0 0 0.307 0.035 0.765 15.168

0 0.01 0.470 0.078 0.968 15.208

0 0.015 0.420 0.049 0.918 15.330

0 0.02 0.343 0.032 0.852 15.837

0 0.03 0.437 0.058 0.876 15.723

0.005 0 0.438 0.041 0.805 15.233

0.01 0 0.410 0.070 0.794 15.231

0.015 0 0.368 0.061 0.762 15.005

0.02 0 0.400 0.058 0.828 15.085

0.05 0 0.377 0.051 0.832 15.072

0.005 0.01 0.525 0.060 0.830 15.255

0.01 0.01 0.425 0.030 0.705 15.135

0.015 0.01 0.460 0.025 0.860 15.150

0.02 0.01 0.485 0.060 0.820 15.140

0.05 0.01 0.515 0.050 0.775 14.895

0.005 0.015 0.470 0.035 0.875 15.135

0.01 0.015 0.425 0.030 0.845 15.005

0.015 0.015 0.488 0.040 0.800 14.940

0.02 0.015 0.487 0.026 0.880 15.240

0.05 0.015 0.488 0.029 0.995 15.233

0.005 0.02 0.487 0.029 0.658 15.447

0.01 0.02 0.539 0.038 0.661 14.979

0.015 0.02 0.544 0.039 0.669 14.983

0.02 0.02 0.569 0.040 0.880 15.018

0.05 0.02 0.565 0.042 0.784 14.935

0.005 0.03 0.562 0.041 0.723 15.114

0.01 0.03 0.571 0.039 0.801 14.926

0.015 0.03 0.576 0.052 0.693 15.035

0.02 0.03 0.573 0.048 0.712 15.335

0.05 0.03 0.581 0.290 0.825 14.850

HPLC Data

Enzyme Volume 
(mL/100 g mash)

Compound
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There were no statistically significant differences for the ethanol and glucose contents in the 

samples obtained at the end of fermentation for the mashes including the controls in all the 

runs. It is concluded that sugar to ethanol conversion rates were not affected by the addition 

of GC220, MCG, and GC106, and that glucose depletion remained the same in all runs. 

Glycerol was measured because it can indicate whether or not the yeast is under stress in the 

mash. Higher glycerol levels represent a higher level of stress for the yeast. For the most part 

glycerol levels were not statistically different for the mashes. Five out of seven controls, in 

Table 5.5, showed an increase in glycerol level compared to the mash that contained the 

enzymes. In Table 5.6, none of the controls showed this behavior. An increase in glycerol 

level could be attributed to the lack of certain nutrients that are necessary for proper yeast 

growth and the presence of compounds that are harmful to the yeast and can influence the 

metabolic pathways carried out by the cells. An increase in DP4+ levels were observed for 

the enzyme treated mashes, in both cases, compared to the controls. DP4+ indicates how 

much there is all components that are soluble and elutes in the first part of the HPLC 

column. Most of the time, for a corn to ethanol processing plant, this is an important value 

because it indicates how much of the dextrins present in the mash are not being hydrolyzed 

into glucose. Usually, the higher the DP4+ level, the lower the final ethanol yield. However, 

in this case since there were no differences in final ethanol yields and unfermented glucose, it 

is believed that the increase in DP4+ value was due to the hydrolysis of unfermentable 

material, mainly soluble fiber such as xylooligosaccharides from xylans and manna-

olygosaccharides from yeast cell walls, by the enzymes added to the mash and not due to a 

decrease in ethanol production (Zhu et al. 2006; Zentek, Marquart and Pietrzak 2002). 
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5.5 Conclusions 
 

In conclusion, optimal for water removal were obtained at a GC220 dosage of 0.015 mL in 

conjunction with a GC106 volume of 0.02 mL per 100 g of mash, and a MGC enzyme 

volume of 0.02 mL in conjunction with a GC106 enzyme volume of 0.01 mL per 100 g of 

mash. At these enzyme combinations it would be possible to keep a relatively smaller mash-

to-enzyme ratio while still maximizing dewatering of whole stillage. The cost-effectiveness of 

using different dosages of the cell wall degrading enzymes will be examined in the economic 

analysis presented in Chapter 7. 

 

Furthermore, there was a decrease in the dry solid pellet weights for all of the mashes 

containing the enzymes. This will not be detrimental to the process since this the presence of 

a recycle stream after centrifugation will mix in the solubilized solids with the wet grains 

before this material is sent to the drier. There would be no reduction in the co-product 

production of the plant. 

 

As for the results from the fermentation rates, it can be concluded that adding GC106 in 

conjunction with either GC220 or MGC will positively affect the fermentation rates. For the 

GC220/GC106 run, at 31 hr, the flasks containing 0.005 mL of GC220 and 0.03 mL of 

GC106 had lost on average 94.02 (± 0.007) % of the total weight lost compared to 76.87 (± 

0.330) % observed for the control. In the case of the MGC/GC106 run, the flasks 
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containing the same enzyme volumes as the previous run, had reached 94.78 (± 0.058) % 

loss in weight compared to 77.90 (± 0.007) % in weight loss observed for the control.  

 

This means that while a plant that runs without enzymes would be only at approximately 

77% completion during fermentation at 31 hrs, the ones that add the enzymes could see an 

improvement to 94% completion at that same time, potentially decreasing the plant’s 

fermentation residence times. When both enhanced dewatering and increase in fermentation 

rates are desired, it is recommended that a plant doses their fermentors using either a 

MGC/GC106 volume combination of 0.02/0.02 mL per 100 g of mash or a GC220/GC106 

combination of 0.015/0.01 mL per 100 g of mash. 

 

HPLC results showed that there were no statistically significant differences in the final 

ethanol yields and glucose levels for all of the flasks fermented in the experiment presented 

in this section. Furthermore, small differences in the glycerol levels were observed for some 

of the controls in the MGC/GC106. This increase in the glycerol levels was not enough to 

affect yeast performance since ethanol yields were not impacted. An increase in DP4+ levels 

were observed with an increase in cell wall degrading enzyme volume added to the mash. It 

is believed that this increase was a reflection of the increase in unfermentable material 

hydrolyzed by the enzymes. There was no evidence that this increase in DP4+ level was due 

to an increase in dextrins that were not converted into ethanol during fermentation. 
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Chapter 6 – Plant Trial 
 

6.1 Introduction 

 

Based on the results presented in the previous chapters, the use of cell wall degrading 

enzymes to enhance water removal during centrifugation is very promising. Laboratory-scale 

experimental results show that there are statistically significant differences in the process 

when these enzymes are used. It was shown that water removal was enhanced by 18% when 

commercially available cell wall degrading enzymes, such as GC220 and Multifect GC, were 

added to the mash. These enzymes worked to improve water removal at relatively low mash-

to-enzyme ratios, about 0.7 kg/MT of corn. 

 

The results obtained prior to the plant trial were from lab-scale experiments done for the 

most part in 250 mL Erlenmeyer flasks. At this stage it is important to understand how the 

results obtained will scale up when the process is implemented into a conventional corn to 

ethanol plant. Moreover, it is critical to understand how the addition of these enzymes 

affects the energy input of the process, and whether a decrease in the energy usage of the 

plant will be immediately observed.  

 

Center Ethanol Company, LLC, is a dry grind corn to ethanol plant located in Sauget, IL. 

The plant currently uses approximately 19.2 million bushels of corn annually to produce 



 

   
 
 103 

about 54 million gallons of ethanol per year as well as 172,000 tons of DDGS and 1.5 

million gallons of corn oil annually. This facility was chosen for conducting a plant scale 

experiment to determine what scale-up problems, if any, would be seen if the process 

proposed in this thesis was implemented at full scale. 

 

6.2 Scope 

 

The purpose of the plant trial was to demonstrate, at plant scale, that the separation of the 

liquid from the whole stillage during centrifugation can be improved by treatment of the 

corn mash during fermentation with an enzyme preparation that disrupts the water binding 

capacity of the corn fiber components. Furthermore, the trial was used to study the effects 

of dewatering enzyme addition on the mass balance surrounding the decanter centrifuge, as 

well as the drier’s energy requirement and the plant’s natural gas usage. 

 

6.3 Plant Scale Experimental Design 

 

The plant trial was setup to run in three phases. The first phase consisted of collecting 

baseline data for about 10 days (Baseline I). The second phase involved the addition of the 

enzymes to the process and data collection. The final phase was simply a repeat of the first 

phase after the enzymes were cycled out of the process (Baseline II). It is important to 

understand that the time at which the enzymes are cycled out of the process is not the same 
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as the time that the last enzyme-treated fermentor is emptied out. The mash in the fermentor 

takes about 1.5 hr to enter and exit the beer well and another 0.5 to 1 hr to reach the 

centrifuge. So for purposes of this plant trial the beginning of the enzyme addition part of 

the trial is taken to be 2.5 hr after the first enzyme-treated fermentor is emptied. 

Furthermore, the end of the enzyme addition part of the trial is defined as 2.5 hr after the 

last enzyme-treated fermentor is emptied. The last phase of the trial, Baseline II, was 

primarily carried out to show that the data after enzyme removal would be similar to that of 

the first phase.  

 

Genencor®, a Danisco Division, is the company that produces and commercializes the 

enzymes that were found in earlier laboratory experiments to be the most effective at 

removing water and shortening fermentation times. The company agreed to provide the 

amount of enzyme necessary to carry out the plant trial discussed above. 

 

6.3.1 Baseline Data 

 

Baseline data was collected for five complete fermentations prior to enzyme addition, and 

for three complete fermentations after enzyme addition was concluded. A complete 

fermentation is defined as the time at which the fermentor begins to fill to the time at which 

the fermentor is emptied. Lab data and process data were collected in an identical manner 

for the baseline and enzyme addition portions of the trial. 
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During baseline data collection, the Beer Well fill level was reduced to less than 50% (37% is 

the minimum level for this tank without level alarms being activated). This reduction allowed 

for a minimization of the volume of enzyme treated beer needed to flush out the 

downstream processing steps and tanks. Since the downstream tanks are significantly smaller 

than the beer well, it was not necessary to make changes to the other tank fill levels. 

 

6.3.2 Enzyme Addition Phase 
 

The estimated dose for maximal dewatering effect based on laboratory results was 0.75 

kg/MT of corn. For purposes of this plant trial, a slight overdosage was decided upon to 

ensure that the results observed in the lab could indeed be seen at plant scale. During the 

enzyme addition phase of the trial, 1.0 kg/MT of corn was used. Genencor® provided 4400 

kg of a special preparation that had enzymatic activity identical to the preparation used in the 

lab. This amount of enzyme was sufficient to treat 5 fermentors with the enzyme at the 1.0 

kg/MT of corn dosage level. The enzyme was added to the fermentors through the yeast 

propagation tank in one dose. This was done during the first half of the fermentor filling to 

maximize the enzyme reaction time and mixing. 
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6.3.3 Analytical Tests 

 

The following list shows the analytical tests that were performed in the QC lab of the plant: 

1. Spin test on whole stillage 

2. Spin test on thin stillage 

3. WDGs moisture content 

4. HPLC mash composition 

5. Total solids of whole stillage 

6. Total solids of thin stillage 

7. Corn moisture 

8. % solids of pre-fermentation mash 

All analytical tests, unless otherwise noted, were performed 8 times per day at 3 hour 

intervals. The standard operating procedures (SOPs) for each test can be found in Appendix 

C. Daily samples of DDGS were also taken for subsequent compositional analysis 

(Appendix D). 

 

6.3.4 Process Data Collection 

 

In order to better understand how the enzyme addition affects centrifuge operation and 

therefore water removal, process data was collected from the centrifuge control panel. 

Certain centrifuge parameters, such as bowl speed, pinion speed, and differential speed, are 
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known to affect centrifuge performance and will change when there are process changes 

(McCabe et al. 2001). Therefore, during the plant trial, the three speeds mentioned above 

were recorded from the control panel of each of the four centrifuges. The data was recorded 

as close to every 3 hours as possible. 

 

6.3.4.1 Mass Balance 

 

In order to calculate how much water was coming off the centrifuges in the plant before and 

during the enzyme addition, a mass balance was performed around those unit operations. 

Figure 6.1 shows how the centrifugation step of the process was setup at Center Ethanol. 
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Figure 6.1: Process flow diagram of the centrifugation process at Center Ethanol. 
 

The best way to evaluate the amount of water coming off of the four centrifuges was to 

perform a mass balance around the centrifuges. There were no mass flow meters present at 

the outlet of each centrifuge so it was not possible to perform a mass balance at each 

centrifuge. Since the four streams coming off the centrifuges met before they went into the 

Thin Stillage Collection Tank, it was easier to calculate the total flow entering the tank. 

Furthermore, according to the process control scheme of the plant, the Thin Stillage 

Collection Tank had a level controller that kept the level of the tank at a setpoint of 50%. 

The process control scheme can be seen in Figure 6.2. 
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Figure 6.2: Process and instrumentation diagram for the Thin Stillage Collection Tank unit 
operation. 

 

In order for the level of the tank to stay at the desired 50%, the valve at the outlet of the 

tank had to open or close to allow for more or less thin stillage to exit the tank. The level 

controller (LIC-51136) read the tank level and sent a message to the valve, telling it to open 

or close. For purposes of the plant trial, it was assumed that the amount of thin stillage 

entering the tank was going to increase due to the enhanced water removal caused by the 

enzymes. Under this assumption, the level of the tank would increase and the valve would 

then correct that by increasing its percent open position to allow for a higher outlet flow and 

to maintain the level at the setpoint. At the same time, to keep the level of the tank constant 

at the desired setpoint, the inlet flowrate must equal to the outlet flowrate. By calculating the 

outlet flowrate, then the inlet flowrate would be known. Since there was no mass flow meter 

at the exit of the tank, the equation for the flow across a valve (Equation 6.1) was used. 

 
G

∆P
CvQ ×=  ( 6.1 ) 
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Here, Q is the flowrate (gpm), Cv is the valve flow coefficient, ∆P is the pressure drop across 

the valve (psi), and G is the specific gravity of the liquid going through the valve. The 

specific gravity is defined as the ratio of the liquid density (lb/in3) going through the valve to 

the density of water (lb/in3), and is therefore dimensionless. 

 

The Cv is dependent on how much the valve is open, or more specifically the percent 

opening of the valve. In Figure 6.2 the percent opening is given as the OUT variable in the 

level control loop (LIC-51136) box. The percent opening data was recorded and stored by 

the Digital Control System (DCS) of the plant. The valve’s flow coefficient was obtained 

from the valve’s manufacturer. In the valve’s manual, a data table (Table 6.1) is given that 

relates the Cv to the percent opening of the valve. 
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Table 6.1: Valve’s flow coefficients given for specific percent openings of valve. In this case 
the valve’s size is 6” and the port is 0.4 Cv reduced port. 

 

 

Using the information given for the 6”, 0.4Cv Reduced Port, the following graph (Figure 6.3) 

was created to show the linear relationship between Cv and percent opening. 
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Figure 6.3: Graph of data obtained from valve’s manual. Cv as a function of the valve’s 
%opening. Linear trend shown by dashed line. Equation for fitted linear trend and R2 value 

shown on graph. 
 

On the graph a linear trend is fitted to the data (Equation 6.2) and its R2 value is obtained. 

The equation is given as,  

 5091018276 .(%open).Cv +×=  ( 6.2 ) 

Using this equation, it was possible to calculate the Cv given a specific %open value. 

 

The pressure drop across the valve was calculated by measuring the pressure at the valve’s 

inlet (P1) and the pressure at the outlet (P2) and subtracting the two numbers. These 
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pressures were measured by two pressure gauges that were installed at the inlet and outlet of 

the valve. Both pressures were recorded throughout the trial in three hour intervals.  

 

The specific gravity of the thin stillage was a constant and was estimated to be 0.975 based 

on the plant’s valve sizing documentation. Using the information above and Equation 6.1, 

the valve’s flowrate (Q) was calculated. Since the DCS records the percent opening value 

every second, a Matlab® program (Appendix E) was developed to automatically take the 

percent opening data from the DCS and calculate the valve’s flowrate creating a graph that 

shows the flowrate versus time. 

 

6.3.4.2 Process Parameters 

 

Besides the data mentioned above, a set of process parameters were collected from the DCS 

of the plant to ensure that some of the operating conditions were optimal for enzyme 

activation as well as to see how they related to the experimental conditions. Some of the 

parameters were also collected to be used in the economic analysis described in Chapter 7. 

Table 6.2 shows the parameters that were recorded. 
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 Table 6.2: Parameters that were collected during the plant trial. Parameters have been 
divided into 4 main areas of the ethanol process. Actual values recorded for the listed 

parameters can be found in Appendix F. 
Area of Ethanol Plant Parameter 

Grain Handling and Milling 
1. amount of corn 
2. amount of water 

Starch to Sugar Conversion 

1. amount of ammonia 
2. amount of α-amylase 
3. amount of gluco-amylase 
4. amount of sulfuric acid 
5. amount of water 

Fermentation 

1. fermentor volume 
2. fermentor temperature 
3. fermentor pH 
4. fermentor pressure 
5. fermentor residence time 
6. fermentor inlet mash flowrate 
7. amount of yeast 
8. fermentor outlet flowrate 
9. ethanol production rate  

Co-Product Processing 

1. centrifuge inlet flowrates 
2. centrifuge residence time 
3. centrifuge liquid flowrates 
4. centrifuge solid flowrates 
5. evaporator inlet flowrates 
6. evaporator recycle flowrates 
7. dryer inlet flowrate 
8. dryer temperature 
9. dryer residence time 
10. dryer outlet flowrate 
11. dryer energy input 
12. DDGS production rate 

 

6.3.4.3 Statistical Analysis 

 

For all the data presented in this chapter, a t-test, assuming equal variances, was used to 

compare the means from the two baseline periods of the trial to the enzyme addition data 
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(SPSS for Windows, Chicago, IL). The level selected to show statistical significance was 5% 

(P < 0.05). 

 

6.4 Results and Discussion 
 

6.4.1 QC Lab Data 
 

Samples were taken from each fermentor just before the fermentors were emptied and the 

fermented mash was sent to the beerwell. Each sample was analyzed by HPLC according to 

the SOP in Appendix A. Table 6.3 details the results from the HPLC compositional analysis. 

 

Table 6.3: Average percentage of ethanol and glucose found in the samples collected at the 
end of each fermentation for the different trial periods, values followed by the same letter on 

the same row are not significantly different (P < 0.05) 

Baseline Enzyme

Ethanol 13.76 ± 0.41a 14.03 ± 0.16a

Glucose 0.0751 ± 0.017a 0.0774 ± 0.016a 

DP4+ 0.574 ± 0.025a 0.835 ± 0.014b

1
 Average ± standard deviation

Compound (%w/v)
Period of Plant Trial

1

 

 

Ethanol, glucose, and DP4+ were the main compounds examined during the plant trial. It 

was important to see whether the ethanol and glucose concentrations were different during 

the different phases of the trial. There were no statistically significant differences in the final 
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ethanol yields and glucose counts between the baseline and enzyme addition parts of the 

trial. This means that the addition of the enzymes did not affect the ethanol production and 

glucose to ethanol conversion went unchanged during fermentation. The glucose 

concentration for the enzyme addition part of the trial was, on average, 0.0774 (± 0.016) % 

v/v. Glucose concentrations of less than 1% w/v are well within the range accepted by the 

plant’s quality control guidelines. Higher dextrins are usually called DP4+ but DP4+ is more 

than that. They can be defined as any component that is soluble and dilutes in the first part 

of the HPLC gel filtration column. In a plant, if the DP4+ value is too high it could mean 

that the dextrins are not being hydrolyzed into glucose. This would result in a decrease in 

ethanol yield. In the case of the enzyme addition part of the trial, the DP4+ was higher than 

the baseline value, t(13) = 1.77. However, since the ethanol yields were not significantly 

different between the two parts of the trial, this increase in DP4+ can be attributed to the 

hydrolysis of cellulose, hemi-cellulose and xylan by the cell wall degrading enzymes. 

 

Moisture content analysis was also performed on different samples collected throughout the 

plant trial. The analysis followed the SOP found in Appendix A. Samples from the whole 

stillage and thin stillage tanks were collected daily, along with WDGs samples from the 

centrifuges and samples from the syrup mixer tank (Figure 6.1). The data presented in Table 

6.4 reflect the average dry matter content for the samples during each part of the trial. 
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Table 6.4: Average dry content from the whole stillage, thin stillage, wet cake and wet cake 
plus syrup samples collected during the plant trial; values followed by the same letter on the 

same row are significantly different (P < 0.05) 

Baseline Enzyme

Whole Stillage 17.36 ± 0.55a 17.73 ± 0.79b

Thin Stillage 10.67 ± 0.45a 11.76 ± 0.55b

Wet Cake 34.50 ± 0.70a 36.19 ± 0.56b

Wet Cake + Syrup 34.65 ± 0.71a 36.66 ± 0.69b
1
 Average ± standard deviation

Dry Content                

(% /w)
Period of Plant Trial

1

 

 

All samples, except for the whole stillage, were significantly different when comparing the 

means from the baseline to the enzyme addition portion of the trial. The differences for thin 

stillage, wet cake and wet cake plus syrup were t(115) = -10.14, t(92) = -10.68 and t(99) = -

12.22, respectively. During the enzyme addition part of the trial, the whole stillage had, on 

average, 82.27% by weight moisture content compared to 82.64% for the baseline samples. 

For the results obtained from the wet cake and wet cake plus syrup samples, the average 

moisture content was smaller for the enzyme addition part of the trial compared to the 

baseline. On average the samples had 63.81 and 63.34 %/w moisture for the wet cake and 

wet cake plus syrup, respectively, during the enzyme addition part. The baseline had average 

moisture content of 65.5 and 65.35 %/w for the wet cake and wet cake plus syrup, 

respectively. That means the reduction in moisture content was approximately 2% when the 

plant was running with enzymes. This difference is analogous to the results observed from 

the centrifuge mass balance presented later in Section 6.4.5. 
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6.4.2 Drier Firing Rate 
 

The drier firing rate is defined as the percent open of the natural gas supply valve that 

provides natural gas to the DDGS drier during its operation. Corn to ethanol plants monitor 

the firing rate, in addition to temperature, in order to determine whether the drier is working 

properly, and to make sure that there are no fire hazards. Also, it helps to ensure that the 

distillers grains are drying evenly. The firing rate also gives an instant indication of how 

much natural gas is being consumed by the drier. The amount of natural gas being 

consumed depends on how moist the incoming distillers grains are compared to how moist 

they need to be when they exit the drier. If the grains are too moist it will take a higher 

temperature, or more natural gas, to drive the water off and bring the moisture content 

down to the desired 8 to 11%/w. 

 

The plant’s DCS automatically keeps track and records the firing rate of the drier. Figure 6.4 

shows the data obtained from the records of the DCS of the plant. 
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Figure 6.4: Firing rate of the drier given as the percent opening of the natural gas valve to 
the drier. Data that shows a percent opening of zero corresponds to a plant shutdown due to 

a mechanical problem on a conveyor belt. 
 

The percent opening of the natural gas valve is directly proportional to the natural gas usage. 

As the percent opening decreases so does the amount of natural gas being used by the drier. 

As it can be seen in the figure, during the enzyme addition part of the plant trial the percent 

opening decreased compared to the two baseline periods. In fact, when a statistical analysis is 

done on the data, the average percent opening for the enzyme addition period was 

statistically different from the average percent opening of the baselines, t(1994) = -22.39. On 

average the valve was 70.87 (± 3.31) % open during the enzyme addition compared to 82.41 

(± 3.61) % open during the baselines. That is a 14% reduction in the valve percent opening 



 

   
 
 120 

and will results in a significant decrease in the amount of natural gas used by the plant as 

described in Section 6.4.2. 

 

It is important to point out that during the enzyme addition part of the plant trial, on the 

afternoon of November 7th, the control system of the plant shutdown the drier because the 

controller that monitors the heat source of the drier, known as fire-eye, stopped functioning. 

Without this controller, the safety interlocks automatically go into effect to prevent a fire 

from happening. Furthermore, late afternoon on November 8th, the plant had to be 

shutdown due to a malfunction of the conveyor belt taking the WDGs from the centrifuges 

over to the drier. These shutdowns explain why the valve opening suddenly drops to zero 

twice during the enzyme addition period. 

 

6.4.3 Natural Gas Usage 
 

The next parameter that is closely monitored in a corn to ethanol plant is the amount of 

natural gas being used by the unit operations. It is important to record this parameter in 

order to assess the plant’s energy balance in an attempt to optimize it. This parameter is also 

monitored and recorded by the DCS of the plant. In the DCS there is a totalizer that 

calculates how much natural gas has been used by the plant every 24 hours. This 24 hr 

period begins at 6 am and ends at 6 am the following day. Figure 6.5 shows the totalizer data 

for the baselines and enzyme addition periods. 
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Figure 6.5: Graph shows natural gas used by the plant on a daily basis during the trial; black 

bars denote days in which plant was running with enzymes  
 

The amount of natural gas is given in millions of standard cubic feet. As can be observed 

from the graph, during the enzyme addition period there was a decrease in the overall natural 

gas usage of the plant. When comparing the mean average natural gas usage for each plant 

trial period there is a statistically significant difference seen in the data. On average, the plant 

used 1.89 (± 0.11) mmscf of natural gas during the baseline periods compared to 1.62 (± 

0.23) mmscf used during the enzyme addition period. That amounts to a 14.11% reduction 

in the amount of natural gas used by the plant when the plant was running with the enzymes. 

Since there were two short shutdowns during the enzyme addition part of the trial, it can be 

argued that some of the reduction seen in natural usage can be attributed to the plant’s 
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shutdown; therefore, in Section 6.4.4, results will be shown for the natural gas usage on a 

gallon of ethanol produced basis. When the plant shuts down less natural gas is used but at 

the same time less ethanol is produced. 

 

6.4.4 Production of Ethanol and DDGS 
 

It was important to make sure that during the plant trial the ethanol production remained 

the same when the enzymes were added to the process, when comparing it to the production 

during the baseline periods. The volume of ethanol produced on a daily basis can be seen on 

Figure 6.6. 
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Figure 6.6: Daily ethanol production for baseline and enzyme addition periods of the plant 
trial; ethanol production given in 1000 x gallons; black bars denote days in which plant was 

running with enzymes  
 

The data presented above was collected from the DCS of the plant. A totalizer recorded the 

amount of ethanol produced every 24 hrs so the time chosen to signal the enzyme addition 

is approximate. This approximation was adjusted to reflect as close as possible the time at 

which the enzyme treated mash reached the centrifuge. It can be clearly seen in the graph 

that during the enzyme addition part of the trial there was a slight decrease in production on 

November 9th. This decrease was due to the plant shutdown that occurred late afternoon on 

November 8th. When the t-test was performed on the data presented on the graph, there was 

no statistically significant difference between the volumes of ethanol produced during the 
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enzyme addition period compared to the baseline periods. On average, 155,124 (± 4,582) gal 

of ethanol were produced during the enzyme addition part of the trial compared to 159,468 

(± 10,875) gal of ethanol produced during the baselines. It can be said that there were no 

changes to the plant’s ethanol production when the enzymes were added to the process, 

which is consistent with lab results obtained and described in Chapter 2. 

 

In order to better compare the volume of ethanol produced and natural gas used, a graph 

was created to show the ratio of natural gas used to gallon of ethanol produced (Figure 6.7).  
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Figure 6.7: Ratio of natural gas used by the plant per gallon of ethanol produced during the 
plant trial; black bars denote period in which enzyme was added to the process  
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The graph shows the three phases of the plant trial. The black bars show the volume of 

natural gas used per gallon of ethanol produced during the enzyme addition part of the trial. 

Statistically there is a significant difference between the mean natural gas to ethanol ratio for 

the enzyme addition period compared to the mean of the baselines. On average the volume 

of natural gas used per gallon of ethanol produced for the enzyme addition period was 10.46 

(± 0.85) scf of natural gas/gal of ethanol while for the baselines the mean was 11.87 (± 

0.54). This means that when the plant was running with the enzymes less natural gas was 

required to produce one gallon of ethanol. This will result in energy savings for the plant as 

explained in Chapter 7. 

 

Center Ethanol does not keep track of the amount of DDGS produced during its operation. 

A rule of thumb is used by the plant manager that says that 30% of the ethanol production is 

equivalent to the number in tons of DDGS produced. Since the ethanol production was not 

affected by the addition of the enzyme, it was assumed that there was also no change to the 

production of DDGS. Furthermore, the plant’s lead engineer did not observe any changes in 

the amount of distillers grains going through the drier and into the DDGS storage mound. 

 

6.4.5 Mass Balance 
 

A mass balance was performed around the centrifuges and the TS collection tank to better 

understand how the addition of the enzymes affected the flowrates in that area. The mass 
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balance was set up so that the four centrifuges were seen as just one unit operation, (1) in 

Figure 6.8. 
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Figure 6.8: Ratio of natural gas used by the plant per gallon of ethanol produced during the 
plant trial; black bars denote period in which enzyme was added to the process  

 

The flowrate at the inlet of (1), Qi, is the summation of the flowrates of the four individual 

centrifuges. This combined flowrate was calculated by a totalizer in the DCS of the plant and 

recorded in its historian file (Figure 6.9).  
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Figure 6.9: Centrifuges’ inlet flowrate over time; flowrate given as summation of the inlet of 
the four individual centrifuges  

 

Approximately two hours after the beerwell containing whole stillage treated with the 

enzymes started to be emptied, the DCS started to record a 4% decrease in the flowrate to 

the centrifuges. It is believed that this decrease in flowrate is a result of Center Ethanol’s 

process design. At this plant the whole stillage leaves the beerwell and goes into a first effect 

evaporator before it enters the centrifuges. If the theory is correct, the enzymes have 

changed the structural and bonding nature of the polysaccharides present in the slurry, thus 

allowing for more water to be driven off as it goes through the first effect evaporator. Then, 

when the slurry gets to the centrifuges, it has already been dewatered by about 4%/v. The 

amount of solids entering the centrifuges did not change during the different portions of the 

trial. The solids flowrate remained at about 84 gpm during the baseline and enzyme addition 
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portions of the trial, which showed that no solid material was lost as the amount of 

evaporated water increased with the enzyme addition. The small increase in flowrate after it 

goes to zero during the shutdown was due to the restart of the process and the flushing of 

the downstream pipelines.  

 

The flowrate at the outlet of (2), Qo, was calculated as described in Section 6.3.4.1. This 

flowrate is equivalent to the flowrate called Thin Stillage at the inlet of (2). The wet cake 

flowrate calculation was performed by subtracting Qo from Qi. The valve, located at the 

outlet of (2), percent open data was also collected from the DCS’ historian and is shown in 

Figure 6.10. 
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Figure 6.10: TS collection tank outlet valve %open values versus time; data obtained from 
the DCS’ historian  

 

The valve percent open value fluctuates somewhat during periods when the plant is in an 

unsteady state. However, an increase in the percent open value can be observed during the 

enzyme addition part of the trial. In fact, when a t-test is performed on the data the average 

percent open value for the baselines, 44.74 (±2.07) %, is statistically different from the 

average of the enzyme addition part, 47.09 (±1.45) %. This represents a 5.25 % increase in 

the valve opening. Using this data in Equations 6.1 and 6.2, the average pressure drop across 

the valve, 35 psig at P1 and 28 psig at P2, and a specific gravity of 0.975, the Matlab® 

program was used to calculate Qo over time (Figure 6.11). 
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Figure 6.11: Calculated TS collection tank outlet flowrate; data goes to zero when plant is 
shutdown  

 

The graph shows an increase in the flowrate during the enzyme addition part of the trial 

which correlates to the increase in the percent open value of the thin stillage valve. The 

average flowrates for the baselines and enzyme addition parts of the trial, 327.61 gpm and 

337.55 gpm, respectively, were shown to be significantly different. This corresponds to a 3% 

increase in the amount of water removed during centrifugation. Average flowrates were 

calculated without including the data from the periods in which the plant was shutdown. 

This number may not be the actual increase for two main reasons: (1) the fluctuations in the 

data seen as large spikes on the graph due to the periods during which the process was in an 

unsteady state, and (2) the decrease in centrifuge inlet flowrate described above. 
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6.4.6 DDGS Composition Profile 
 

Another important aspect of the plant trial was to ensure that the DDGS composition 

remained the same during the enzyme addition and baseline parts of the trial. It was 

important to make sure that the enzymes did not alter the composition of the DDGS since 

its nutritional value is very important to the ruminant’s diet and its monetary value as a co-

product as explained in Chapter 1. Table 6.5 shows the DDGS composition during the 

baselines and enzyme addition portions of the trial. 

 

Table 6.5: Data shows the compositional analysis of the DDGS samples collected daily 
during the baseline and enzyme addition periods; there were no significant differences for 

the values in the same row (P < 0.05) 

DDGS Composition
1

(% w/w) Baseline Enzyme

Moisture 11.00 ± 0.37 10.71 ± 0.63

Ash 4.97 ± 0.17 5.03 ± 0.05

Protein 29.80 ± 0.74 29.99 ± 0.69

Starch 5.63 ± 0.39 5.12 ± 0.58

NDF
2 31.43 ± 2.89 32.32 ± 1.38

NDICP
3 12.30 ± 1.09 11.67 ± 2.40

OIL 10.72 ± 0.51 10.97 ± 0.35

NFC
4 35.38 ± 3.41 33.36 ± 1.68

1
 Average ± standard deviation

2
 Neutral detergent fiber

3
 Neutral detergent insoluble nitrogen expressed as crude protein

4
 Non-fiber carbohydrate

Plant Trial Period
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No significant changes were observed in the composition of the DDGS when the enzyme 

was present in the process. After t-tests were performed on the data, there were no statistical 

differences found between the DDGS components before and during the enzyme addition. 

NDF is highly digestible and provides a good source of energy for the ruminant, whereas 

NFC in quantities greater than 40%/w can be harmful to the ruminant and cause ruminal 

acidosis (Hippen and Garcia 2007; Kaiser 2005). Ruminal acidosis is a condition in which the 

base component of the ruminant’s bodily fluids is in excess when compared to its acid 

component and it can cause lethargy, diarrhea and anorexia (Owens 1998). The starch 

content remained the same during the periods of the trial, which means that the starch to 

glucose conversion in the fermentor was not affected by the addition of the enzymes. All 

other DDGS components remained in the range previously reported in the literature as well 

as within the range suggested for ruminant diet (Belyea et al. 2004; Todd et al. 2006; 

Kleinschmit et al. 2007; Liu 2008; Singh et al. 2005). The use of these enzymes in a dry grind 

corn to ethanol plant will not affect the nutritional quality of the DDGS, but could 

potentially increase the digestibility of the feed by limiting the breakdown of the amino acids 

found in the protein via a reduction in temperature of the heat source of the drier. 

 

6.4.7 Centrifuge Modeling 
 

Decanter centrifuges (Figure 6.12) have been widely used in the agricultural, food, and 

mineral sectors for the dewatering of slurries (Leung 2002). 
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Figure 6.12: Schematic diagram of a decanter centrifuge 
 

Frequently, decanter centrifuges are preferred over other continuous sedimenting 

centrifuges, mainly disk centrifuges and disk-stack decanter centrifuges, because of their 

ability to separate a broader range of particle sizes and both dilute and concentrated slurries 

(Leung 1998). The decanter centrifuge is able to separate small particles, greater than 0.02 

mm, while other centrifuges, like the screw press centrifuge, are not capable (Moller et al. 

2002). Predicting centrifuge performance based on experimental data is very challenging and 

frequently requires significant experience in centrifuge operation, since scaling up can not be 

performed only on a correlation basis (Beiser et al. 2000).  

 

In a decanter centrifuge, the slurry is introduced into the centrifuge through a stationary feed 

pipe (feed inlet) in the hub of the conveyor where it is accelerated before being fed into the 

cylindrical section of the bowl. In this section of the bowl, the solids are separated from the 

liquid as a result of differences in specific gravity coupled with the centrifugal force being 
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generated by the rotation of the bowl. The heavier solids are forced to the bowl wall while 

the lighter liquid forms a layer above the solids. The height of this layer is regulated with 

adjustable weirs at the large end of the centrifuge. The liquid flows toward the large end, 

allowing the finer particles sufficient time to settle, and is then discharged over these weirs. 

The solids that have settled against the bowl wall are conveyed in the opposite direction by 

the scroll conveyor. The conveyor moves the solids toward the conical or tapered section of 

the bowl, where further dewatering of the settled solids takes place. Solids are conveyed out 

of the liquid pool onto a beach area where residual liquid is drained away prior to the 

discharge of the solids out of the bowl. A differential speed between the bowl and conveyor 

is accomplished by a planetary gear unit or variable speed drive system. The pitch of the 

conveyor and differential speed between the bowl and conveyor set the retention time of the 

solids within the bowl (Leung 1998; McCabe 2001). 

 

Usually the plant will set a target wet cake moisture exiting the centrifuge and vary its torque 

setting to meet that target set point. Wet cake moisture readings are collected on a regular 

basis and the torque is adjusted accordingly depending on how far off the moisture is 

compared to the desired value. The plant uses four Alfa Laval decanter centrifuges, type 

CHNX944B-31G, which are designed with a torque specification of 12 kN-m. However, 

during the plant trial the control system of the centrifuges was changed, the centrifuges’ 

load, or torque, was set to 25% of the rated value which results in a load of 3 kN-m, or 

2212.69 lb-ft, and the cake moisture setting was left variable. This was done so that any 

changes in the cake moisture as a result of the enzymes being added to the process would be 
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noticed and quantified in the lab. This modified control system was implemented before data 

started to be collected during the baseline part of the trial.  

 

In a decanter centrifuge the torque provides the necessary acceleration to maintain the 

centrifuge at a certain speed regardless of any resistance that it may encounter. The 

differential speed at which the centrifuge operates at allows for the particulates to be 

conveyed from one end of the centrifuge to the other. The differential speed is the 

difference in rpm between the speed at which the bowl rotates compared to the speed of the 

screw. The torque (Tsp) for cake conveyance is defined as 

 
∆

LCfGms
Tsp

×××
=  ( 6.3 ) 

Where ms is the cake solids rate on a dry basis, Cf is the coefficient of friction, L is the length 

of the bowl of the centrifuge, and ∆ is the differential speed (Leung 1998). As described 

above, during the plant trial, the value for Tsp was set to 3 kN-m. The centrifugal 

acceleration is set at 3039 ft/sec2 and the bowl length is 8 ft given by the centrifuge’s 

manufacturer. The coefficient of friction was calculated for this specific plant system in 

conjunction with the manufacturer and was found to be around 0.013. Using this 

information, and setting the differential speed value between 0.01 and 0.05 in increments of 

0.005 rps, the corresponding wet cake solids rate (ms) values were calculated. Figure 6.13 

shows the results of this calculation. 
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Figure 6.13: Calculated wet cake flowrate (dry basis) as a function of differential speed given 
by the centrifuge’s torque formula; data points show the actual flowrates observed during the 

plant trial from the baseline and enzyme addition parts of the trial 
 

The differential speed observed during the baseline part of the plant trial was 17.7 rpm, or 

0.295 rps. According to the results, at a differential speed of 0.295 rps, the solids flowrate 

should be 14.24 gpm on a dry basis. Here the solids flowrate is given in gpm because the 

calculation is done based on the flowrate of the slurry, both the solid and liquid phases. The 

liquid portion of the slurry is then subtracted from the total flow to give the solids flowrate. 

The solids flowrate value measured during the baseline portion of the trial was 14.02 gpm 

which differed by only 1.5% from the calculated value (Table 6.6). 
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Table 6.6: Comparison of theoretical centrifuge modeling data to experimental data obtained 
during the plant trial 

Theoretical 14.24 65.7
a 81.75 ---

Plant Trial

Baseline 14.02 65.7 80 2.1

Enzyme Addition 12.5 63.8 87.9 7.5
1
 Values calculated based on a differential speed of 0.295 rps

2
 Given for the Thin Stillage flowrates, plant trial values compared to the theoretical value

a
 Assumed moisture content based on conventional process (plant trial - baseline)

Difference
2
 (%)

Wet Cake Mositure 

Content (%)

Wet Cake Outlet 

Flowrate
1
 - Dry 

Basis (gpm)

Thin Stillage   

Flowrate (centrate) 
(gpm)

 

 

The value obtained during the enzyme addition phase was 12.5 gpm, a 12.22% decrease 

compared to the calculated value, t(354) = 27.86. However, when the enzyme was added to 

the process the differential speed decreased from 0.295 rps to 0.248 rps. At this differential 

speed the calculated solid flow fraction was 12.07 gpm which was only a 2.66% difference 

from the experimental value of 12.5 gpm. The decrease in the differential speed was given by 

an increase in the screw conveyor speed while the bowl speed remained constant. This 

change may be explained by a possible decrease in the viscosity of the medium, which the 

enzyme used is known to cause, as explained in Chapter 3. Equation 6.4 shows how viscosity 

is inversely proportional to the terminal velocity (Vsg) and will therefore enhance the rate at 

which the particles settle in the slurry. 

 
µ

dgρ)(ρ
Vsg s

×
××−

=
18

2

 ( 6.4 ) 

Here, (ρs – ρ) is the difference in density between the particle and the liquid, g is gravity, d is 

mean particle size diameter and µ is the viscosity. Assuming that the enzymes added to the 
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process have indeed decreased the viscosity of the medium, the settling velocity would 

increase and as a result the centrifuge would not need to rotate as fast to maintain the target 

setpoint torque (Leung 1998). 

 

Using the solid phase flowrate data obtained above, and by measuring the wet cake moisture 

content of 65.7% during the baseline part of the trial, the total wet cake flowrate was 

calculated to be 40.75 gpm. Applying a mass balance around the centrifuge, and given the 

inlet flowrate was 122.5 gpm, the centrate is given by 

 csin QQQ +=  ( 6.5 ) 

where Qin is the inlet flowrate, Qs is the wet cake flowrate, and Qc is the centrate flowrate, all 

in gpm. This gives a thin stillage flowrate, or centrate, of 81.75 gpm, which only differ by 

2.1% from the observed value of 80 gpm (Table 6-6). Following the same procedure for the 

enzyme addition phase of the trial, and given that the cake moisture was observed to be 

63.8%, a 1.9% decrease in moisture compared to the baseline, the thin stillage flowrate was 

calculated to be 81.75 gpm compared to the observed value of 87.9 gpm.  

 

The experimental results collected from the centrifuges during the plant trial were in 

accordance with the results calculated using some of the centrifuge operation modeling 

equations. Adding the enzymes to the process caused a direct effect in the performance of 

the centrifuge by lowering the differential speed, and as a result increasing the amount of 

centrate exiting the centrifuge. 
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6.5 Conclusions 
 

In this study, a plant trial was conducted to look at the scale-up of enhanced water removal 

from whole stillage by enzyme addition. The plant trial was divided into three phases: 

baseline I, enzyme addition, and baseline II. The trial was conducted at Center Ethanol 

Company, LLC, which is a 54 mmgpy nameplate plant, located in Sauget, IL.  

 

Final ethanol yield and final glucose concentration obtained from samples collected at the 

end of each fermentation were found to be statistically equal for the baseline and the enzyme 

addition portions of the trial. Furthermore, the data obtained for ethanol production showed 

that on average, 155,124 (± 4,582) gal of ethanol were produced during the enzyme addition 

part of the trial compared to 159,468 (± 10,875) gal of ethanol produced during the 

baselines. The difference between the two numbers was not statistically significant. Adding 

the enzymes to the plant did not affect the final fermentation ethanol yields or the glucose to 

ethanol conversion expected during this process.  

 

Wet cake samples collected from the outlets of the centrifuges during the three parts of the 

trial were statistically different. On average, a 2% reduction in moisture was observed for the 

wet cake samples taken during the enzyme addition phase. The same results were observed 

from the wet cake plus syrup samples collected from the syrup mixer tank. This resulted in a 

decrease in the drier’s natural gas usage.  
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The enzymes added during this trial proved to be effective, and a 3% increase in the amount 

of water being removed during centrifugation was observed during the trial. Additional water 

was also removed prior to centrifugation, during distillation and evaporation. This caused a 

decrease in the centrifuge inlet flowrate. The TS collection tank’s outlet valve had an increase 

of 5.25% in its percent open value which directly corresponded to the increase in the tank’s 

outlet flowrate.  

 

The firing rate (percent opening of the natural gas valve) of the drier decreased significantly 

during the enzyme addition part of the trial. There was a 14% reduction in the valve’s 

percent opening which resulted in a 14.11% reduction in the volume of natural gas used by 

the plant. On average, the plant used 1.89 (± 0.11) mmscf of natural gas during the baseline 

periods compared to 1.62 (± 0.23) mmscf used during the enzyme addition period. The ratio 

of natural usage per gallon of ethanol produced calculated for the three parts of the trial 

proved to be statistically different. During the enzyme addition period the average ratio was 

10.46 (± 0.85) scf of natural gas/gal of ethanol compared to 11.87 (± 0.54) for the baselines. 

Therefore, 12% less natural gas was required to produce one gallon of ethanol. 

 

The DDGS composition was not affected by the enzymes. There were no significant 

differences between the composition of the DDGS during the baselines and enzyme 

addition parts of the trial. All of the nutritional components of the DDGS were well within 

the range found in the literature and in accordance to the ruminant’s dietary guidelines. 
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Chapter 7 – Process Simulation and 
Economic Analysis 
 

7.1 Introduction 
 

A lot of work has been done in the area of corn-to-ethanol process modeling and economic 

feasibility. Many researchers have simulated the process using various modeling software to 

provide a basis for their economic analysis. Aspen PlusTM has been used as a modeling 

platform to look at the conversion performance of degermed corn to ethanol, and it was 

suggested that the process of germ-fiber separation from the corn kernel be improved upon 

as well as the oil recovery from the germ (Rajagopalan et al. 2004). Aspen PlusTM has also 

been used to simulate the dry grind corn-to-ethanol process by continuous fermentation and 

stripping using data collected during laboratory experiments. The simulation was then used 

to look at the economic viability of the process (Taylor et al. 2000). Neural networks have 

also been used to model the continuous fermentation process in an attempt to optimize 

productivity, conversion, and ethanol yield in the fermentor (Rivera et al. 2005). SuperPro 

Designer®, another simulation software program, was used to model the process and cost of 

fuel ethanol production using sensitivity analysis. In this study, the increase in ethanol 

production cost was studied as the price of feedstock increased and the corn’s starch content 

decreased. This simulation allowed for the observation of changes in the production cost of 

ethanol in a changing market (Kwiatkowski et al. 2006). 
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The economics of the dry grind corn-to-ethanol process has been looked at with exhaustion, 

and all of the studies done differ from one another in some ways. Some of the work shows a 

positive outlook for this process while others deem it not economically beneficial. There are 

two studies that suggest unfavorable process economics. The major differences between 

these studies and the ones that show a favorable economic analysis are that the unfavorable 

analyses do not include the co-products of the process in the energy output calculations, and 

use outdated data that does not reflect current industrial and agricultural practices (Patzek 

2004; Pimentel 2003). The other studies show favorable process economics but differ in the 

extent of that favorability. Some take into account the production of co-products as a 

positive energy output while others are able to show favorable economics by simply 

inputting more current data into their models (FAPRI 2005; Delucchi 2004; De Oliveira et 

al. 2005). Furthermore, Alexander Farrell et al. developed the Energy and Resources Group 

Biofuel Analysis Meta-Model (EBAMM) to look at the environmental impact, energy 

consumption, and greenhouse gases emission previously published in the literature to try to 

replicate their results and better understand why there is so much discrepancy amongst the 

studies (2006). Nevertheless, all of the studies mentioned above suggest that there is room 

for improvement in the process to make it more economically competitive. 

 

7.2 Scope 
 

The purpose of this work was to evaluate economically the process developed in this thesis. 

The plant trial results presented in Chapter 6 showed promising results, but it was necessary 
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to look in detail at the economics of the process in order to better understand its cost 

effectiveness. The main goal was to look at the cost of the enzymes and the energy savings 

that resulted from their addition. It was important to make sure that the energy savings were 

greater than the actual cost to buy the enzymes. Two different scenarios were examined in 

order to make an economical comparison: (1) conventional dry grind corn to ethanol 

process, and (2) modified process with cell wall degrading enzyme addition and its effects. 

Sensitivity analyses were done on the cost of the enzyme and the cost of natural gas to 

understand how the enzymatic dewatering process would behave in the daily changing 

market. 

 

7.3 Methods 
 

The dry grind corn to ethanol process simulation presented in this chapter was a 

modification of a simulation done at the United States Department of Agriculture (USDA)’s 

Agricultural Research Services – Eastern Regional Research Center in Wyndmoor, PA. The 

main contributors to the models presented in this chapter were Dr. David Johnston, Winnie 

Yee and Andy McAloon. The process simulation software chosen to perform the simulation 

was SuperPro Designer®, version 7.5, build 7 (SuperPro Designer®, Intelligen, Inc., Scotch 

Plains, NJ) mainly because of its ability to model more types of unit operations than any of 

the other programs available.  
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7.3.1 Process Model 
  

The existing model was developed to simulate a generic conventional dry grind corn to 

ethanol processing plant that nominally produces 40 million gallons per year (mmgpy) of 

ethanol with an input of 46350 kg/hr of corn. Since each corn to ethanol processing plant is 

unique in its design, the model is a generalization of most plants with universal processing 

equipment and does not reflect a specific plant’s design. This aspect of the model makes it 

versatile and applicable to different users. The simulation itself contains information such as 

characteristics and operating conditions of unit operations, streams’ composition and 

flowrates, including mass and energy balances. The model is divided into 5 major areas: grain 

handling and milling, starch to sugar conversion, fermentation, ethanol processing, and co-

product processing. Each of those areas is comprised of different unit operations that are 

analogous to what is found in a corn to ethanol processing plant (Table 7.1). 

 

 

 

 

 

 

 

 

 



 

   
 
 145 

 

Table 7.1: Breakdown of selected unit operations by major areas of the process model 

Area Equipment

Silo

Tanks

Conveyor Belt

Tanks

Hopper

Pumps

Hammer Mill

Heat Exchangers

Pumps

Reactors

Tanks

Fermentors

Tanks

CO2 Scrubber

Pumps

Heat Exchangers

Distillation Column

Tanks

Molecular Sieve

Pumps

Heat Exchangers

Evaporator

Pumps

Tanks

Thermal Oxidizer

Conveyor Belt

Drier

Centrifuge

Ethanol           

Processing

CoProduct         

Processing

Grain Handling & 

Milling

Starch to Sugar 

Conversion

Fermentation
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The information presented in Table 7.1 is only a summary of the main unit operations 

present in the model (Figure 7.1). 
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Figure 7.1: Simplified diagram of the enzymatic dewatering model.
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For a complete list of all unit operations present in the model please refer to Appendix G. 

Each unit operation has a tag that is made up of an identification number followed by a 

letter. The number refers to the area in which the equipment is found and the letter to the 

type of equipment that it represents. Table 7.2 shows the legend to understand each unit 

operation’s tag.  

 

Table 7.2: Legend to the process' unit operations tags 

Number ID Area of the Process Letter ID Equipment

V Vessel

100s Grain Handling and Milling P Pump

300s Starch to Sugar Conversion E Heat Exchanger

400s Fermentation T Tank

500s Ethanol Processing MH Conveyor

600s CoProduct Processing M Grinder

W Hopper
 

 

Using data collected during the plant trial presented in Chapter 6, changes were made to the 

model to reflect the results obtained when the enzymes were added to the process. Table 7.3 

summarizes in detail the specific changes made to each of the model’s major areas while 

Figure 7.1 shows in the highlighted areas where the changes were made. 
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Table 7.3: List of detailed changes made to the simulation divided by the main areas 

Main Areas Changes Made to the Simulation

1) A tank was added to store the enzyme

2) A pump was added to transfer the enzyme from the tank to the fermentor

3) Enzyme flowrate was set to 32.467 kg/hr

Ethanol Processing 1) Removed corn flowrate design specification

1) Centrifuge's solids concentration was set to 5.47 g/L

2) Evaporator's final solid mass fraction of water was set to 64%

3) Backset recycle ratio was set to 18.5%
1

Fermentation

1
 The same change was made to the original simulation of the conventional process done at the USDA

CoProduct Processing

 

 

In the fermentation area, the tank and the pump were added to provide a way for the 

enzymes to be stored and transferred to the fermentor. In the plant trial this was not 

necessary since the enzymes were pumped directly into the fermentors from the totes in 

which they arrived. The enzyme flowrate was set to 32.5 kg/hr because that corresponded to 

a dosage of 0.7 kg per metric ton of corn being processed by the plant. This dosage was 

selected for industrial practice based on the results described in Chapter 5 and Chapter 6. 

Only one change was made to the Ethanol Processing area, and that was the removal of the 

corn mass flowrate design specification. This change was optional and done to improve the 

simulation convergence rate. It was not absolutely necessary to have this specification since 

the corn input was set to the same amount as the one found in the conventional base case 

simulation. Furthermore, the presence of this design specification caused problems in the 

convergence of the model with the specific modifications being made.. Lastly, the changes 

made to the Co-Product Processing area were necessary to match the results of the 
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simulation to those obtained during the plant trial. The centrifuge solid’s concentration was 

decreased to 5.47 g/L to achieve the extra water removal after centrifugation observed 

during the plant trial. The evaporator final mass fraction of water was also changed to match 

results seen in the plant trial. The only change that had to be made to both the original 

model and the enzymatic dewatering model was the backset recycle ratio. The model was 

originally simulated with a backset ratio of 13.5% but in reality the plant recycles 18.5% of 

the thin stillage and process condensate streams. These changes not only affected the 

model’s simulation results but also the economics of the process. 

 

7.3.2 Economic Model 
 

Once the process models were adjusted and results matched what was observed during the 

plant trial, an economic analysis was performed. This economic model was created using the 

economic analysis capabilities of the software itself. However, a significant portion of the 

information used by the economic analysis package of the software was supplied by the 

USDA’s cost engineer. This information was based on data gathered from vendors, 

government agencies, and corn to ethanol processing plants, and also found in the literature. 

The economic model contains information such as equipment cost, utilities usage, raw 

materials and consumables costs, capital investment as well as labor and operating costs. The 

economic software package found in SuperPro follows cost engineering methods which are 

generally accepted in industry (Ramirez et al. 2009; AACE 1990). All of the figures, unless 

otherwise stated, used for the economic model were based on cost conditions of 2007. The 
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2007 figures were used because complete economic data for 2008 was not yet available when 

this work was carried out. Two sensitivity analyses were done on the enzymatic dewatering 

model to look at how the fluctuating price of natural gas and enzymes would affect the 

economics of the process. Since the main objective of the enzymatic dewatering process was 

to decrease the production cost of ethanol, it was necessary to know the point at which the 

energy savings observed broke even with the purchase cost of the enzymes. 

 

7.4 Results and Discussion 
 

7.4.1 Process Model 
 

Figure 7.1 shows schematically the process model described below. Please refer to this figure 

for further detail throughout this section. 

 

7.4.1.1 Grain Handling and Milling 

 

Corn, at 15% moisture, comes into the process and is moved to a silo where it is stored. 

Table 7.4 summarizes the annual consumption of selected bulk materials used by the process 

including corn.  
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Table 7.4: List of materials used in the process that remain the same in both models 

Bulk Material
Unit Cost

($/kg)

Annual Amount

(kg)

Annual Cost

 ($)

Corn 0.14 367,061,793 50,562,762

Lime 0.09 438,190 39,437

Liq. Ammonia 0.22 733,337 161,334

Alpha-Amylase 2.25 257,139 578,562

Gluco-Amylase 2.25 371,408 835,669

Sulfuric Acid 0.11 733,337 80,667

Caustic 0.01 18,423,742 223,296

Yeast 1.86 96,466 179,426
 

 

The silo has a continuous storage capacity of 10.8 days. The corn is then cleaned and 

transported to the hammer mill where it is ground and then stored is a surge tank. A batch 

scale weighs the ground corn before it is sent to the Starch to Sugar Conversion area of the 

process. 

 

7.4.1.2 Starch to Sugar Conversion 

 

In this section of the process, ground corn is mixed in a slurry mix tank with process 

condensate, lime and ammonia to adjust the pH, and α-amylase to hydrolyze the starch 

(Table 7.4). The mix tank has a continuous storage capability of 0.25 hr and is kept at a 

pressure of 1 bar. At this stage the slurry is 67% water. The slurry is then pumped and 

heated to 88ºC before it enters the liquefaction tank where it is liquefied at a temperature of 
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90ºC for almost an hour. The liquefied slurry goes through a series of heat exchangers until 

it reaches a temperature of 60ºC, at which point it enters the saccharification tank. Sulfuric 

acid, to adjust the pH, and gluco-amylase enzyme are also added to the tank (Table 7.4). The 

starch in the presence of water reacts with the enzyme to produce glucose at 60ºC for 20 hrs. 

 

7.4.1.3  Fermentation 

 

The saccharified slurry is cooled to 32ºC before it enters the fermentor where it is mixed 

with yeast suspension that is 95% water. This mixture is known as corn mash. The corn 

mash is kept at 30% solids via a design specification implemented in the model. This design 

specification manipulates the water input to the CO2 scrubber to ensure that the 30% solids 

target is met during the simulation. At this stage of the process, the first difference between 

the conventional model and the enzymatic dewatering model appears. Table 7.5 lists the 

main differences between the two models. These differences reflect actual changes made to 

the enzymatic dewatering model. 
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Table 7.5: Description of selected process equipment for modified process model and main 
differences to conventional process model1 

Enzymatic Dewatering Model Conventional Model

Description Differences

406V

Dewatering 

Enzyme 

Transfer Tank

336 hrs residence time                                                                                               

90% working volume                                                                                            

32 kg/hr outlet flowrate

Not Present

409V CO2 Scrubber
18017 kg/hr fresh water inlet flowrate                                                                           

59% removal of water                                                                                             

99.8% removal of ethanol

20507 kg/hr                                                                          

603 Centrifuge

5.43 g/L solids concentration in solids stream                                                                            

106654 L/hr volumetric throughput                                    

100% removal of starch, polysaccharides
a
 and ins. protein

b

5.66 g/L                                                                             

106491 L/hr 

607Ev Evaporator

64% final mass fraction of water at the inlet                                
4 effect evaporator                                                                  

95ºC steam temperature in 1
st
 effect                                                                         

79ºC solution temperature in 4
th

 effect

65%

610D Drier

Direct fired ring drier                                                                                                   
66 MMBTU of natural used/52980 lb of water evaporated                                                                     

20 (kg/hr)/m
3
 evaporation rate

b
 ins. = insoluble

Equipment      

Tag/Type

1
 Only the differences are noted under the conventional model column, all other parameters remain constant

a
 non-starch polysaccharides

 

 

In the enzymatic dewatering model, trial enzyme is added to the fermentor at a rate of 

32.467 kg/hr, or 0.7 kg per MT of corn. A transfer tank and a pump were added to the 

model so that the trial enzyme could be stored and transferred to the fermentor as needed. 

Fermentation takes place in the reactor at a temperature of 32ºC for 60 hrs. During this time 

the yeast cells convert glucose into ethanol and CO2 and reproduce and multiply. The CO2 is 

vented off to the CO2 scrubber while the ethanol, water, and non-fermentable components 

are transferred to the next area of the process. In the enzymatic dewatering model, the CO2 

scrubber operation is simulated differently from the conventional model. The difference is in 

the amount of fresh water that is brought into the process. Due to changes made in the 
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downstream portion of the model, as explained in Section 7.4.1.5, 14.14% less water is 

required in the enzymatic dewatering model compared to the conventional process (Table 

7.5). 

 

7.4.1.4 Ethanol Processing 

 

The mash goes through a series of heat exchangers until it reaches a temperature of 78ºC 

before it enters the beer column where the mash is distilled to a mixture of 50% ethanol and 

50% water at an operating temperature of 104ºC. The bottoms of the beer column, which is 

composed mainly of water and solids, is transferred to the whole stillage tank; whereas, the 

ethanol-water mixture is sent to the rectifier, where it is further distilled into a 10% water 

mixture at a temperature of 95ºC. The water removed in the rectifier is sent to a stripper 

where any remaining ethanol is removed and the water is recycled back into the process via 

the process condensate tank. The hot ethanol vapors recovered in the rectifier are used as 

energy to drive the evaporator, downstream of the process. The 10% water mixture is sent 

to the molecular sieves where a 99.6% pure ethanol product is removed, mixed with gasoline 

as a denaturant and stored before it leaves the process. Denatured ethanol as a final product 

is processed at a rate of 15048.64 kg/hr to meet an annual production of 40 mmgpy. Table 

7.6 shows the overall material balance for both the conventional and enzymatic dewatering 

process models. 
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 Table 7.6: Overall material balance of process models 

In Out In Out

(kg/hr) (kg/hr) (kg/hr) (kg/hr)

Corn 39659 39659

Water 29812 26795 27355 24238

Nitrogen 27063 27063 24415 24415

Carbon Dioxide 14056 14054

Sulfuric Acid 93 93 93 93

Octane 301 301 301 301

Oxygen 8216 8199 7412 7397

Ethanol 14690 14691

Yeast 3 571 3 570

DDGs 13378 13378

TOTAL 105146 105145 99237 99137

Enzymatic Dewatering Model

Component

Modified Model

 

 

The main differences observed in the overall material balance are the amount of water and 

nitrogen required by each process. In terms of water, as described above, the enzymatic 

dewatering process requires 14.14% less water than the conventional process due to a 

decrease in the hot air input of the drier as described in Section 7.4.1.5. This water 

requirement does not include the cooling water requirement of the process. The simulation 

estimates about 5.18 billion kg of cooling water per year required for the process in both the 

conventional and enzymatic dewatering models. 
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7.4.1.5 Co-Product Processing 

 

Co-product processing is the final stage of the corn to ethanol process. Whole stillage and a 

mixture of water, oil, and non-fermentable solids is stored in the whole stillage tank at 93ºC. 

The whole stillage tank has a residence time of 6.12 hrs with an outlet flowrate of 110699 

kg/hr. The whole stillage is pumped to the centrifuge where solid-liquid separation takes 

place. As seen in Table 7.5, the centrifuge operating parameter had to be changed to match 

liquid-solid separation results observed during the plant trial. In the conventional model, the 

centrifuge is designed with a solids concentration of 5.66 g/L in the solids stream (wet cake), 

which results in a solid stream moisture content of 65%. This moisture content differs by 

1.2% from the moisture content obtained during the plant trial. Table 7.7 summarizes the 

main streams found in the co-product processing section including the water content of each 

stream for both models.  

 

Table 7.7: Water flowrate in selected streams in the Co-Product Processing area 

Conventional Model Modified Model

Water (kg/hr) Water (kg/hr)

S-198 Thin stillage out of centrifuge 77092.50 79643.17

S-181 Wet cake 16627.14 14196.91

S-176 Thin stillage to evaporator 50205.39 52347.75

S-196 Backset 26887.11 27295.42

S-172 Syrup 9887.86 9862.30

S-166 Wet cake plus syrup 26514.99 24059.21

S-127 Process condensate 74140.67 73836.51

Stream                           
Tag

Description
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In order to achieve a moisture content of 63.8% in the wet cake stream of the enzymatic 

dewatering process, the solids concentration parameter was changed to 5.43 g/L (Table 7.5). 

By decreasing the moisture content in the solids stream, the moisture content of the liquid 

stream (thin stillage) was increased by 5% compared to the conventional model. After 

centrifugation, the thin stillage stream is divided into two streams; one that goes back into 

the process as backset and one that goes to the evaporator and eventually becomes part of 

the process condensate recycle stream. The backset stream flow was set to 18.5% of the 

combined thin stillage and process condensate flows, which matched the ratio from the plant 

trial. The wet cake is mixed with the syrup coming off of the evaporator before it enters the 

drier. The thin stillage, minus the backset flow, enters the evaporator where the water is 

evaporated, and the solids that remain, also known as syrup, leave the evaporator at 64% 

water content. In the conventional model the final mass fraction of water to exit the 

evaporator with the syrup is set to 65%. This 1% difference allows for the wetcake plus 

syrup stream that enters the drier to match the moisture content of the plant trial, in the case 

of the enzymatic dewatering model. The final moisture contents for the wetcake plus syrup 

stream is 66% and 63%, for the conventional and enzymatic dewatering models, respectively. 

This decrease in water content caused a decrease in the natural gas usage of the drier. In 

both cases the solids are dried to a 9% moisture setpoint but in the case of the enzymatic 

dewatering model, less natural gas is needed to achieve this setpoint since less water is 

present in the system. The dried solids, known as DDGS, are processed at a rate of 15300.7 

kg/hr which results in an annual production of 121000 MT. 
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It is important to point out that in the case of the enzymatic dewatering model, a higher 

amount of backset is recycled back into the process. This is a result of the enhanced 

dewatering achieved during centrifugation. When more water is removed during 

centrifugation, more water is evaporated and condensed to become process condensate. An 

increase in the flowrate of the process condensate and thin stillage streams will cause an 

increase in the flowrate of the backset stream to achieve a ratio of 18.5%, as explained 

above. In the case of the conventional process, the backset stream is set to 29700 kg/hr, 

compared to 30200 kg/hr in the enzymatic dewatering model. This means that in the case of 

the enzymatic dewatering model there is more water being recycled back into the process, 

but since during fermentation the mash is kept at 30% solids, there is a decrease in the fresh 

water requirement of the process as a whole. The greater the amount of water being recycled 

the smaller the need to add fresh water to the process. According to ethanol plants, a 40 

mmgpy corn to ethanol processing plant is required by federal, state and/or local permits to 

bring in at least 54 gpm of fresh water into the CO2 scrubber, otherwise the plant is not 

allowed to operate. In the enzymatic dewatering model that value is 79 gpm which means 

that the decrease in the fresh water feed to the scrubber observed in the enzymatic 

dewatering model still allows for the permit requirements to be met. 

 

7.4.2 Economic Model 
 

For the complete economic evaluation report (EER), please see Appendix H. 
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7.4.2.1 Annual Operating Costs 

 

The annual operating costs are similar between the conventional and enzymatic dewatering 

models (Figure 7.2). 

 

(a) (b)(a) (b)
 

Figure 7.2: Breakdown of annual operating costs for (a) conventional and (b) modified 
process models 

 

As can be observed, there is a 1% increase in the cost of raw materials in the enzymatic 

dewatering model, which is attributed to the purchase cost of the trial enzyme. For the 

purposes of these calculations, the purchase price used for the trial enzyme was $10/kg. Due 

to the proprietary nature of this commercially available enzyme and Genencor’s desire to 

keep the actual price from being public, this estimate was used based on some potential price 

range information provided by the company. Based on this information, it is believed that 

$10/kg is a conservative estimate of how much the enzyme would actually cost. The annual 

cost to purchase the enzyme for a 40 mmgpy plant that uses the enzyme at a rate of 0.7 kg 

per metric ton of corn is $2.57 million. Furthermore, even though the cost of raw materials 
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increase, the utilities consumption by the enzymatic dewatering process decreases by about 

1% compared to the conventional model. Labor dependent operating costs remain constant 

in both models as the facility dependent costs decrease in the enzymatic dewatering model. 

The decrease in facility dependent costs can be mainly attributed to a decrease in the 

purchase cost of the ring drier and the thermal oxidizer (TO). The increase in water removal 

during centrifugation caused a decrease in the sizing requirement of the drier and the TO. 

This resulted in a smaller moisture content in the inlet of the drier and a decrease in water 

and ethanol mass flowrate to the TO. The total annual operating cost for the enzymatic 

dewatering model was calculated to be $79.96 million compared to $77.97 million obtained 

with the conventional model. These operating costs do not include the cost of capital, 

corporation administration charges, tax credits, or marketing and distribution charges. 

 

7.4.2.2 Annual Utility Consumption and Costs 

 

Overall, there was a decrease in utility consumption in the enzymatic dewatering model. 

Table 7.8 shows the annual utility consumption and costs for both models. 
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Table 7.8: Annual utility consumption and cost for conventional and enzymatic dewatering 
models 

Annual Amount
Annual Cost 

($)
%

a Annual Amount
Annual Cost 

($)
%

a

Electricity 29872249 (kWh) 1,493,612 11.37 29247875 (kWh) 1,462,394 11.58

Natural Gas 11949842 (kg) 4,202,640 31.98 10781895 (kg) 3,791,885 30.03

Steam 257468235 (kg) 5,496,947 41.83 254167178 (kg) 5,426,469 42.97

Conventional Model Enzymatic Dewatering Model

Utility

a
 Value shown as a percentage of all utilities used by each process  

 

The consumption of electricity by the enzymatic dewatering model was decreased by 2.5% 

compared to the conventional model. This decrease can be attributed to a decrease in 

electricity input to the drier even though the evaporator showed an increase in its electricity 

requirement. The higher the amount of water being centrifuged out, the harder the 

evaporator has to work to drive off this water. However, the drier’s decrease in electricity 

consumption offsets the increase in the evaporator.  

 

Natural gas accounts for as much as 32.35% of all of the utilities consumed in the 

conventional model but a reduction to 30% is observed in the enzymatic dewatering model. 

When directly comparing only the natural gas consumption, the enzymatic dewatering model 

uses 12% less natural gas than the conventional model. This number is in accordance with 

the decrease observed during the plant trial presented in Chapter 6 (14%). In the enzymatic 

dewatering model, natural gas is consumed annually at a rate of 0.09 kg per kg of ethanol 

produced, whereas in the conventional model the rate is 0.102 kg of natural gas per kg of 

ethanol produced. 
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Even though the consumption of steam decreases in the enzymatic dewatering model, it is 

not significant and therefore does not affect the economics of the process as a whole. A 

decrease of 1.28% is not enough to significantly affect the economics of the process. 

Furthermore, in either the conventional or enzymatic dewatering models, the steam is 

treated as a commodity and is purchased at a certain price. The steam does not come from a 

boiler and therefore the amount of natural gas used by the models is specific to the drier 

operation.  

 

Using the information provided by the simulation, it is possible to calculate the amount of 

BTUs used to produce a gallon of ethanol. To make this calculation, the total energy 

consumed by the process was converted into BTUs and that number was divided by the 

total number of gallons of ethanol produced. For the conventional model this ratio was 

calculated to be 32,641 BTU/gal of ethanol, whereas for the enzymatic dewatering model, 

this number decreased to 31,039 BTU/gal. That is a 4.91% decrease in the amount of BTUs 

required to produce a gallon of ethanol. 

 

7.4.2.3 Unit Production Costs 

 

The last important parameter to examine is the unit production cost in each model. The cost 

to produce a gallon of ethanol is calculated taking the annual total operating cost subtracting 
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the value added by selling the DDGS and dividing that by the total gallons of ethanol 

produced by the plant (Equation 7.1). 

 
lnsOfEthanoTotalGallo

roductsValueOfCoptingCostTotalOpera
ionCostUnitPoduct

)( −
=  ( 7.1 ) 

Given that the price of natural gas fluctuates with the market and that there was no 

definitive enzyme cost, a sensitivity analysis was done to look at how price of natural gas and 

cost of the enzyme would affect the unit production cost. In this analysis the natural gas 

price was set between $3 and $15 per 1000 ft3 (1000 ft3 equals 1 MMBTU). The enzyme price 

ranged from $2 to $20 per kg. Each model was simulated using the price ranges above and 

the unit production cost was calculated for each case. The unit production cost obtained 

from the enzymatic dewatering model was then subtracted from the unit production cost of 

the conventional model in each case (Appendix I). Figure 7.3 shows the results of this 

sensitivity analysis.  
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Figure 7.3: Sensitivity analysis of enzyme cost and natural gas prices; a positive difference 
(cost in conventional model minus cost in enzymatic dewatering model) represents a 

reduction in the production cost of a gallon of ethanol in the enzymatic dewatering model. 
 

A positive difference in the unit production cost translates into a decrease in the cost of a 

gallon of ethanol using the enzymatic dewatering model. This means that at these specific 

combinations of enzyme and natural gas prices, it is more cost-effective to use the enzymatic 

dewatering process as opposed to the conventional process. However, there is a point at 

which the natural gas costs too much and the energy savings of the drier are not big enough 

to offset the purchase price of the enzyme. Given an enzyme cost of $6/kg or higher, the 

cost to produce a gallon of ethanol is actually higher in the enzymatic dewatering process. At 

an enzyme price of $4/kg, the natural gas price must be equal to or higher than $7.50 per 



 

   
 
 166 

1000 ft3 for the enzymatic dewatering process to be more cost-effective. Nevertheless, at an 

enzyme cost of $2/kg, any natural gas price within the range used in this study will result in a 

decrease in the unit production cost for the enzymatic dewatering process. The highest 

decrease is observed at an enzyme cost of $2/kg and a natural gas price of $15/1000 ft3. At 

these prices, the unit production cost in the enzymatic dewatering process is $1.72/gallon of 

ethanol compared to $1.76/gallon of ethanol in the conventional process. 

 

It is important to understand that unit production cost based on the enzymatic dewatering 

model can only be finalized when a plant trial involving optimal enzyme dosage is carried 

out. It is believed that similar dewatering results, and therefore natural gas savings, could be 

obtained at much smaller enzyme doses. Figure 7.4 shows the projection of possible natural 

gas savings at lower enzyme addition to the process. 
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Figure 7.4: Projection of possible natural gas savings at lower enzyme addition based on 
results from the plant trial and laboratory experiments; 100% represents total gas savings 

observed in the plant trial and at total enzyme addition of 0.67 kg/MT of corn 
 

Here the total natural gas savings observed in the plant trial is said to be 100% while the 

amount of enzyme added during the plant trial is also said to be 100%. Based on 

corresponding laboratory experiments presented in Chapter 4 of this thesis, a ratio between 

the amounts of enzyme added to each fermentation flask and the resulting dewatering is 

calculated (Table 7.9).  
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Table 7.9: Projection of natural gas savings based on lab-scale and plant-scale experimental 
results, maximum dewatering and natural gas savings shown as total dewatering and total 

natural gas savings observed in the plant trial 

0.005/0.16 0.01/0.33 0.015/0.50 0.02/0.67

Ratio                    

(Enzyme 
Addition/Maximum 

Enzyme Addition)

0.24 0.49 0.75 1.00

Enzyme Added              

(% of maximum)
24 49 75 100

Lab Dewatering Results 
(% of water removed)

10.0 13.5 15.0 15.8

Ratio                                

(% Water 
Removed/Maximum 

Water Removed) 

0.63 0.85 0.95 1.00

Nat. Gas Savings                      

(% of maximum)
63 85 95 100

Lab Enzyme Addition (mL/100 g of mash)/                                               
Enzyme Addition (kg/MT of corn)

 

 

This same ratio is applied to the maximum natural gas savings which results in a projection 

of what the natural gas savings would be if the amount of enzyme added was changed. As it 

can be observed from the graph, when the amount of enzyme decreases from 0.67 to 0.5 

kg/MT of corn, a 25% reduction, the natural gas savings decreases by only 5%. When 

comparing 0.67 to 0.16 kg/MT of corn that translates into a 76% reduction in the amount of 
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enzyme added but only a corresponding 63% decrease in the natural gas savings. This is 

possible because of the non-linear nature of enzyme activity. As the amount of enzyme 

added is linearly decreased, its resulting effects on the process changes nonlinearly. 

 

Furthermore, as explained previously, all of the enzymes used in this thesis are commercially 

available enzyme preparations that are currently used for other applications. These 

preparations have specific enzyme activities that are causing the increase in dewatering. The 

development of a new product that would contain only the necessary activities would not 

only serve as a means to maximize dewatering but also to hopefully decrease the purchase 

price. In the end, the companies that make these enzymes will set the price. 

 

7.5 Conclusions 
 

There are a few dry grind corn to ethanol process models in the literature. An enzymatic 

dewatering model based on the conventional model created at the USDA’s Eastern Regional 

Research Center in Wyndmoor, PA was developed. In the enzymatic dewatering model, a 

dewatering enzyme was added to the fermentor at a rate of 0.7 kg/MT of corn. Specific 

changes were made to the centrifuge and evaporator design specifications in order to match 

plant trial dewatering results. Moisture contents in the wet cake and the wet cake plus syrup 

streams were adjusted to remain equal to the moistures found during the enzyme addition 

part of the plant trial. In both the conventional and enzymatic dewatering models the 

backset recycle ratio was adjusted to 18.5% to correspond to the backset ratio target of the 
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plant. A decrease in the fresh water input of the enzymatic dewatering process was observed. 

Since more water was recycled back into the process in the enzymatic dewatering model due 

to the increase in dewatering during centrifugation, less water addition was required. The 

conventional model overall used 10% more water than the enzymatic dewatering model. 

 

Simulation results from the enzymatic dewatering model showed a decrease in utility 

consumption when compared to the results obtained with the conventional model. The 

consumption of natural gas, electricity, and steam at 50 psi, was decreased by 2.5%, 12%, 

and 5%, respectively. Annual operating costs also changed from the conventional model to 

the enzymatic dewatering model. The annual cost from raw materials increased by 1% in the 

enzymatic dewatering model due to the purchase cost of the enzymes, but at the same time 

the annual cost from utilities also decreased by 1%, mainly due to the decrease in utility 

consumption. 

  

A sensitivity analysis showed a tradeoff between the cost to purchase the enzyme and the 

natural gas savings in the drier. The cost to produce a gallon of ethanol (unit production 

cost) was calculated using different purchase prices for the enzyme and for the natural gas. A 

break-even point was observed at an enzyme price of $4/kg and a natural gas price of 

$7.50/1000 ft3. At this enzyme price, a decrease in the unit production cost was observed for 

natural gas prices above $7.50. Furthermore, a decrease in the unit production cost was also 

observed in the enzymatic dewatering model for an enzyme price of $2/kg for all natural gas 

prices used in the analysis. 
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Because of the non-linear nature of enzyme activity, as the amount of enzyme added is 

linearly decreased, its resulting effects on the process are non-linear. By relating the results 

observed in the laboratory experiments to the results of the plant trial, it was calculated that 

when the amount of enzyme decreases from 0.67 to 0.5 kg/MT of corn, a 25% reduction, 

the natural gas savings decreases by only 5%. This way, significant savings in natural gas cost 

can still be obtained even if the maximal dewatering effects are not achieved. 
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Appendix A – Sample Calculation for 
One-Way Analysis of  Variance (ANOVA) 
 

Table A.1: HPLC data for glucose content of samples collected at the end of fermentation 
during the plant trial. One sample was collected for each fermentor analyzed during each 

period of the trial. 

Baseline1
Enzyme 
Addition

Baseline2

0.072 0.079 0.108

0.066 0.07 0.104

0.065 0.065 0.064

0.068 0.104 0.065

0.067 0.069 0.072

HPLC Glucose Data (%w/v)

Period of the Plant Trial

 

 

Table A.2: Summary of results from the ANOVA analysis performed for the glucose data 
collected during the plant trial. 

Groups Count Sum Average Variance

Baseline1 5 0.338 0.0676 7.3E-06

Enzyme Addition 5 0.387 0.0774 0.000247

Baseline2 5 0.413 0.0826 0.000468  
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Table A.3: ANOVA results obtained for the glucose data collected during the plant trial. 

Source of Variation SS df MS F P-value F crit

Between Groups 0.0005801 2 0.0002901 1.204596 0.333618 3.885294

Within Groups 0.0028896 12 0.0002408

Total 0.0034697 14  

 

In Table A.3, the calculated F value, 1.205, is less than the critical F value, 3.885. Therefore, 

there is no statistical difference between the glucose content observed at the end of 

fermentation during the baselines and enzyme addition parts of the trial. 
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Appendix B – Sample Calculation for t-
Test Assuming Equal Variances 
 

Table B.1: Excel generated t-test for the thin stillage solids content data collected during the 
plant trial. 

Baseline EnzymeAddition

Mean 10.66914 11.7625

Variance 0.2010384 0.30575

Observations 93 24

Pooled Variance 0.2219807

Hypothesized Mean Difference 0

df 115

t Stat -10.135842

P(T<=t) one-tail 6.136E-18

t Critical one-tail 1.6582118

P(T<=t) two-tail 1.227E-17

t Critical two-tail 1.9808075  

 

The t-test presented here was performed for the thin stillage solids content data collected 

during the plant trial. Here, the t value obtained, -10.136, was smaller than the critical t value, 

-1.658, for a one-tail test. This means that there is a significantly statistical difference 

between the data collected during the baseline compared to the enzyme addition part of the 

trial. 
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Appendix C – Plant Trial SOPs for QC 
Lab 
 

Standard operating procedures (SOPs) for each test conducted at the QC lab during the 

plant trial. 

 

Spin Test On Whole Stillage 

1. For each sample weigh and label one 50ml centrifuge tube 

2. Take one 40ml sub-sample from each sample and put in the labeled 50ml centrifuge tube 

- Record weight of flask after each sampling 

3. Centrifuge all of the tubes in the bench top centrifuge for 5 min at 2200g (approximately 

4000 rpm)  

- Record the appearance of oil layer at the top of liquid phase 

4. Record the weight and volume of the solid and liquid phases obtained after centrifugation 

5. Perform vacuum filtration on the liquid phase using Buchner funnel and filter paper to 

remove any suspended solids and weight the filtrate 

6. Determine the water content of both solid phase and filtrate from above by using 

double oven method: 55oC until liquid evaporates and then 135oC for 2 hours. 
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Spin Test On Thin Stillage 

1. Fill a 15 mL centrifuge tube to the 10 mL mark and label with sample ID.  

2. Place the tube in the centrifuge and make sure it is balanced. Press play button to begin 

centrifuging. Verify the speed is set to 8000 rpm and centrifuge run time is 10 minutes. 

Use the “Up” and “Down” arrows to check/change settings for speed and time. 

3. After samples are done centrifuging, visually average the amount of solids collected at 

the bottom of the centrifuge tube using the marking scales located on the side. Record 

value. 

4. This is a visual approximation to see how much solids we are retaining in our stillage 

samples off our centrifuges in production.  

5. Please reset centrifuge run time back to 5 minutes after spins are complete. 

 

Moisture and Solids Content Analyzer 

APPARATUS: Moisture analyzer (Mettler HB43-S) and aluminum foil pans. 

SAFETY NOTES: Keep combustible materials away from the machine while it is being 

used. Make sure the top vent is clear and not covered. 

PRINCIPLE OF METHOD: Moisture content (as well as total solids) is measured based on 

the thermo-gravimetric principle, or by the method of “Loss on Drying.” At the start of the 

measurement, the Moisture Analyzer determines the weight of the sample; the sample is 

quickly heated by the integral halogen dryer and the moisture vaporizes. During the drying 

operation, the instrument continuously determines the weight of the sample and displays the 

result. On completion of drying, the result is displayed as % moisture content or as % solids. 
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The drying methods vary with different materials. A good method should be calibrated by 

oven method. 

PROCEDURE:  

1. Switch the instrument on with the “On/Off” key. 

2. Open lid to the sample chamber. Place a sample pan flat on the tray, press “O/T” key to 

tare it, and then close lid to tare. 

3. Open lid again, place your sample on a clean sample pan and select the appropriate 

method on the indicated balance (Table A-1). 

a. Method A (SLURRY) runs the following samples: Slurry, Liquefaction, 

Fermentation, Beerwell, Whole Stillage, Thin Stillage, Evaporators 1 & 3. A 1.7 

to 2.3 g sample size is recommended. Shake the thermos well to ensure the 

sample is homogeneous before placing the droplets evenly on the pan. Avoid 

large drops or running streaks when loading samples on pans.  

b. Method B (DDGS) runs the following samples: Wet cake, Wet cake + syrup, 

syrup, Evaporators 2, DDGS, and corn flour. A 1.7 to 2.3 g sample size is 

recommended. Place the sample evenly on the sample pan. Avoid large clumps 

of samples and ensure that solid particles are broken up before distribution on 

pan. 
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Table C.1: Method classification for sample type to be used with moisture analyzer 
Method A B 

Sample Whole Stillage 

Thin Stillage 

Slurry 

DDGS 

Corn Flour 

Wet Cake 

Wet Cake + Syrup 

Profile RAPID STD 

Steps 1: 202°C 

2: 150°C 

1: 125°C 

Target Weight 2.0 g 2.0 g 

Range 1.7 – 2.3 g 1.7 – 2.3 g 

 

4. Record information on data sheet located next to or in binder in Moisture Analyzer 

drawer. 

5. Close lid and analyzer will start automatically. 

6. The measurement will be finished when the heating is automatically shut off, the time is 

no longer running, the temperature is cooling, and the %DC is on the LED is shaded. 

There will also be an audible “beep” when the analyzer is finished. 

7. Results will appear on the screen as % DC (dry content), record information. 
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HPLC Mash Composition 

PRINCIPLE OF METHOD: By running samples using high pressure liquid 

chromatography, many different components of the sample can be detected and measured. 

These components include dextrin (DP4+), maltotriose (DP3), maltose (DP2), glucose 

(DP1), lactic acid, glycerol, acetic acid, and ethanol. A set of standards, which include these 

eight chemicals in various known concentrations, is prepared every three months. The 

standards are run with every sequence and are used to establish a calibration line for each of 

the eight components. By processing the data, the values of these components are 

automatically reported for each of the samples. 

APPARATUS:  

Dell Computer with Shimadzu Class VP software 

Shimadzu HPLC 

LC-20AT (Pump), DGU-20 A3 (Degasser), CBM-20A (Control Tower), SIL-20AC HT 

(Auto Sampler), RID-10A (Refractive Index), CTO-20A (Oven) 

REAGENTS: 0.005 N Sulfuric Acid (Mobile Phase) and Methanol Needle Wash Solution 

PROCEDURE: 

Pre-Sample Check: 

• Check waste bottle, mobile phase, and needle wash solution. 

• Make sure that the pump LC-20AT light is green and verify that psi is at about 300. 

• Make sure that the oven CTO-20A light is green and verify that it is at 80 degrees 

actual 
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• Make sure that green lights are lit under the following equipment: 

• DGU-20 A3 control light  

• LC-20AT remote and pump light 

• CBM-20A connect light 

• SIL-20AC HT remote and cooler  

• RID-10A temp cont and remote  

• CTO-20A oven, remote, and ready  

• Check hoses 

• If RID-10A is not balanced at 0, On software: control tab → direct control 

→ Zero (Dir A) 

On Hardware: 

• Open door of SIL-20 AC HT → pull out tray → remove lid → place vial in open 

slot and record the location→ replace lid → replace tray back in appropriate 

location. 

On Software: 

• Click on the blue arrow on the toolbar to start a single run. 

• Under run information, input the date, sample type, time, and user initials into the 

sample id box. Example is what is indicated between “  ”. 

Ex: “04012008 FERM1 0800 AK” 

Date: MMDDYYYY (01012008, 04152008, 12252008, etc.) 

Sample Type: PROP, FERM1, FERM2, FERM3, FERM4, BEERWELL 
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Time: TTTT (This will be the time of fermentation: 0800, 1600, 2400, 3200, etc.) 

User Initials: AK, TCB, PL, etc. 

• Make sure that the number of reps is set at 1. 

• Make sure that the print method report box is checked. 

• Under Autosampler, insert vial number from sample tray.  

• Click the start button, on CBM-20A check to make sure that green light under run 

is lit. Sample will take 25 minutes to run, report will print at conclusion. 
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Appendix D – Compositional Analysis of  
DDGS 
 

Procedures for the compositional analysis of the DDGS samples collected during the 

baseline and enzyme addition phases of the plant trial at Center Ethanol, LLC. 

 

Moisture 

Moisture values of DDGS samples were determined by drying 2 g samples at 135oC for 2 hr 

using American Association of Cereal Chemist’s (AACC) method 44-19. 

 

Ash 

The ash content was determined as outlined in AACC method 44-19 by heating DDGS 

samples in a muffle furnace at 550oC until a light gray ash is obtained (16-20 hr). 

 

Oil 

Approximately 1 g of sample was extracted with 40 mL of hexane by continuous stirring of 

the slurry at room temperature for 1 hr. The slurry was filtered through a sintered glass 

funnel and the filtrate was evaporated under a stream of nitrogen and the oil content 

determined gravimetrically in (1). 

(1) Moreau, R., K. Wayns, R. Flores, and K. Hicks. 2007. Tocopherols and tocotrienols in 

barley oil prepared from germ and other fractions from scarification and sieving of hulless 

barley. Cereal Chemistry. 84(6):587-592. 
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Starch 

DDGS samples (100 mg) were analyzed using a starch determination kit (Megazyme 

International Ireland Ltd., Bray Business Park, Bray, Co. Wicklow, Ireland) in accordance to 

the International Code Council (ICC) Standard Method no. 168, AACC method 32-32 and 

Association of Official Agricultural Chemists’ (AOAC) method 46-30. This method was 

modified by use of a YSI 2700 Analyzer (YSI Incorporated, Yellow Springs, Ohio) fitted 

with a YSI 2710 turntable for automated glucose determination of enzymatically hydrolyzed 

starch containing samples. 

 

Protein 

The protein content of DDGS samples was determined in accordance with AOAC method 

990.03, and AACC method 46-30 which outline the procedure for use of a combustion 

instrument and subsequent thermal conductivity detection of nitrogen for the estimation of 

protein using an appropriate conversion factor. A Flash EA 1112 Elemental Analyzer (CE 

Elantech Inc., 170 Oberlin Ave., Lakewood, NJ), calibrated with aspartic acid (%N 10.52) 

was used for the protein determinations. Samples sizes of 50-100 mg were run and the 

conversion factor used to obtain protein values for barley was 6.25 as outlined in AOAC 

method 14.067. 
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β-Glucan 

Barley β-glucan was analyzed using a kit (Megazyme International Ireland Ltd., Bray 

Business Park, Bray, Co. Wicklow, Ireland) in accordance to ICC standard method no. 168 

and instructions for the “streamlined method” provided by the manufacturer. This method 

conforms to AOAC method 995.16 and AACC method 32-23.  

 

Neutral Detergent Fiber 

NDF was determined with an Ankom 2000 fiber analyzer (Ankom Technology, 2052 O’Neil 

Road, Macedon, NY). Fiber was analyzed as per the methods supplied by the manufacturer. 

About 0.5 g of sample are sealed in a F57 filter bag and extracted with neutral detergent 

reagent supplied by Ankom. The filter bags are dried and weights are determined. The filter 

bag technology and extraction process for Crude Fiber is an approved AOAC method 

962.09 for the analysis of feeds and grains.  

 

Neutral Detergent Insoluble Crude Protein 

NDICP is determined by measuring the protein content of DDGS samples that have been 

extracted for the determination of NDF. The protein that is insoluble after the neutral 

detergent extraction process is measured using the same methodology as for total protein. 

The dried filter bags are simply opened and insoluble material contained within is sampled 

(50-100 mg) for analysis. 
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Non Fiber Carbohydrate 

NFC is defined as 100% dry matter minus % Crude Protein (CP) minus %Neutral Detergent 

Fiber (NDF) corrected for neutral detergent fiber insoluble crude protein (NDFICP) less the 

%Fat and %Ash as outlined in (2). 

(2) Hall, M. 2003. Challenges with nonfiber carbohydrate methods. Journal of Animal Science. 

81:3226-3232. B). 
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Appendix E – Centrifuge Mass Balance 
Program 
 

Below is a copy of a Matlab® script used for mass balance calculations. Program was used to 

calculate outlet flowrate and the ratio of inlet to outlet flowrates, as well as to plot inlet and 

outlet flowrates and the ratio between the two. A graphical user interface (GUI) was 

developed to automate both the importing of data collected from the DCS of the plant, and 

the calculations described in Section 6.3.4.1. 

 

SCRIPT: 

function varargout = Centrifuge_Mass_Balance_Calcul ator(varargin) 
% TO USE THIS GUI, ENTER THE FOLLOWING ON THE COMMA ND LINE: 
%   Centrifuge_Mass_Balance_Calculator 
% 
% Last Modified by GUIDE v2.5 09-Nov-2008 18:49:04 
 
% THIS IS THE INITIALIZATION FUNCTION 
% ************************************ DO NOT EDIT ************************************ % 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ...  
                   'gui_Singleton',  gui_Singleton,  ... 
                   'gui_OpeningFcn', @Centrifuge_Ma ss_Balance_Calculator_OpeningFcn, ... 
                   'gui_OutputFcn',  @Centrifuge_Ma ss_Balance_Calculator_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1});  
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State,  varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% ************************************************* ************************************ % 
 
% THIS FUNCTION ACTIVATES JUST BEFORE WE SEE THE GU I APPEAR ON THE SCREEN. 
% ************ ONLY EDIT DEFAULT NUMBERS FOR SPECIF IC GRAVITY AND DELTA P ************* % 
function Centrifuge_Mass_Balance_Calculator_Opening Fcn(hObject, eventdata, handles, 
varargin) 
handles.output = hObject; 
% INITIALIZE PERCENT OPEN VARIABLE 
handles.percentopen = []; 
% INITIALIZE SPECIFIC GRAVITY VARIABLE 
handles.specificgravity = 1.015; 



 

   
 
 187 

% INITIALIZE VALVE INLET PRESSURE VARIABLE 
handles.p1 = 35; 
% INITIALIZE VALVE OUTLET PRESSURE VARIABLE 
handles.p2 = 28; 
% PUT INITIALIZED VARIABLES IN THE GUI 
set(handles.edit_specificgravity,'String',num2str(h andles.specificgravity)); 
set(handles.edit_p1,'String',num2str(handles.p1)); 
set(handles.edit_p2,'String',num2str(handles.p2)); 
guidata(hObject, handles); 
% ************************************************* ************************************ % 
 
% THIS FUNCTION HANDLES ANY OUTPUTS FROM THE GUI TO THE COMMAND LINE AND IS NOT USED 
% ************************************ DO NOT EDIT ************************************ % 
function varargout = Centrifuge_Mass_Balance_Calcul ator_OutputFcn(hObject, eventdata, 
handles)  
varargout{1} = handles.output; 
% ************************************************* ************************************ % 
 
% THESE FUNCTIONS CREATE SOME OF THE GUI OBJECTS AND NEED TO BE LEFT IN 
% ************************************ DO NOT EDIT ************************************ % 
function edit_inletinputfile_CreateFcn(hObject, eve ntdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
  set(hObject,'BackgroundColor','white'); end 
function edit_specificgravity_CreateFcn(hObject, ev entdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
  set(hObject,'BackgroundColor','white'); end 
function edit_p1_CreateFcn(hObject, eventdata, hand les) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
  set(hObject,'BackgroundColor','white'); end 
function edit_p2_CreateFcn(hObject, eventdata, hand les) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
  set(hObject,'BackgroundColor','white'); end 
% ************************************************* ************************************ % 
 
% THESE FUNCTIONS ARE NOT USED BECAUSE WE NEVER MANUALLY EDIT THESE BOXES 
function edit_inletinputfile_Callback(hObject, even tdata, handles) 
function edit_outletinputfile_Callback(hObject, eve ntdata, handles) 
 
% THIS FUNCTION ACTIVATES WHEN THE 'BROWSE...' BUTT ON IS PUSHED FOR THE INLET 
function pushbutton_browseinletinputfile_Callback(h Object, eventdata, handles) 
  % 'UIGETFILE' BRINGS UP THE FILE DIALOG TO ALLOW THE USER TO CHOOSE THE FILE THAT 
  % CONTAINS THE TEST DATA. 'FILE' HOLDS THE FILENA ME, 'PATH' HOLDS THE PATHNAME, AND 
  % FILTER IS ASSIGNED A NUMBER BASED ON WHETHER TH E USER CHOOSES 'OPEN' OR 'CANCEL' IN  
  % THE DIALOG. IF THE USER CHOOSES 'CANCEL' (FILTE R == 0) THEN THE GUI DOES NOTHING. 
  % OTHERWISE, THE GUI PUTS THE FULL PATH NAME INTO  THE 'INPUT FILE' BOX, AND READS THE 
  % EXCEL SPREADSHEET TO RETRIEVE THE DATA. 
  % 
  % ********** UNCOMMENT THE FOLLOWING LINE TO USE EXCEL INPUT FILE ********** 
  [inletFile, inletPath, filter] = uigetfile('*.xls ', 'Pick Excel File Containing Data'); 
  % *********************************************** *************************** 
  % ********** UNCOMMENT THE FOLLOWING LINE TO USE TEXT INPUT FILE ********** 
%   [inletFile, inletPath, filter] = uigetfile('*.t xt', 'Pick Text File Containing 
Data'); 
  % *********************************************** ************************** 
  if filter ~= 0 
    % THE FOLLOWING STATEMENT SETS THE STRING PROPE RTY OF THE EDIT BOX TO THE FULL PATH 
    % NAME OF THE FILE CHOSEN BY THE USER. THE '[in letPath inletFile]' STATEMENT 
CONCATENATES THE 
    % TWO STRINGS TOGETHER TO FORM ONE LONG STRING.  
    set(handles.edit_inletinputfile,'String',[inlet Path inletFile]); 
    % 
    % IF USING EXCEL INPUT FILE:  
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    % --> 'Sheet1' CAN BE CHANGED TO REFLECT THE CO RRECT SHEET CONTAINING THE DATA 
    % --> 'A1:B100' CAN BE CHANGED TO REFLECT THE C ORRECT RANGE CONTAINING THE DATA 
    % ********** UNCOMMENT THE FOLLOWING THREE LINE S TO USE EXCEL INPUT FILE ********** 
    [num, txt] = xlsread([inletPath inletFile],'cen t inlet flow','A1:B65536'); 
    inletdatetime = txt(:,1); 
    handles.inletQ = num(:,1); 
    [num, txt] = xlsread([inletPath inletFile],'%op en valve','A1:B65536'); 
    outletdatetime = txt(:,1); 
    handles.percentopen = num(:,1)/100; 
    % ********************************************* ************************************ 
    % 
    [inletdate,inlettime] = strtok(inletdatetime); 
    [inlettime,inletampm] = strtok(inlettime); 
    % PARSE THE DATE CELL ARRAY TO CREATE USABLE DA TE DATA 
    [MM,inletdate] = strtok(inletdate,'/'); 
    [DD,inletdate] = strtok(inletdate,'/'); 
    [YY,inletdate] = strtok(inletdate,'/'); 
    clear inletdate; 
    inletdate = [str2double(YY) str2double(MM) str2 double(DD)]; 
    % PARSE THE TIME CELL ARRAY TO CREATE USABLE TI ME DATA 
    [H,inlettime] = strtok(inlettime,':'); 
    [M,inlettime] = strtok(inlettime,':'); 
    clear inlettime; 
    inlettime = [str2double(H)+str2double(M)/60]; 
    % CREATE THE TIME VECTOR 
    inlettimeMultiplier = 0; 
    if inletampm{1,1} == ' PM' & str2double(H{1,1})  < 12 
      inlettimeVector(1,1) = [inlettimeMultiplier*2 4+inlettime(1)+12]; 
    elseif inletampm{1,1} == ' AM' & str2double(H{1 ,1}) == 12 
      inlettimeVector(1,1) = [inlettimeMultiplier*2 4+inlettime(1)-12]; 
    else 
      inlettimeVector(1,1) = [inlettimeMultiplier*2 4+inlettime(1)]; 
    end 
    for i = 2:length(inletdate) 
      if inletdate(i,3) ~= inletdate(i-1,3) 
        inlettimeMultiplier = inlettimeMultiplier +  1; 
      end 
      if inletampm{i,1} == ' PM' & str2double(H{i,1 }) < 12 
        inlettimeVector(i,1) = [inlettimeMultiplier *24+inlettime(i)+12]; 
      elseif inletampm{i,1} == ' AM' & str2double(H {i,1}) == 12 
        inlettimeVector(i,1) = [inlettimeMultiplier *24+inlettime(i)-12]; 
      else 
        inlettimeVector(i,1) = [inlettimeMultiplier *24+inlettime(i)]; 
      end 
    end 
    % SAVE THE TIME AND PERCENT OPEN VARIABLES TO T HE HANDLES STRUCTURE 
    handles.inlettime = inlettimeVector; 
%     handles.inletQ = flowrate; 
    [outletdate,outlettime] = strtok(outletdatetime ); 
    [outlettime,outletampm] = strtok(outlettime); 
    % PARSE THE DATE CELL ARRAY TO CREATE USABLE DA TE DATA 
    [MM,outletdate] = strtok(outletdate,'/'); 
    [DD,outletdate] = strtok(outletdate,'/'); 
    [YY,outletdate] = strtok(outletdate,'/'); 
    clear outletdate; 
    outletdate = [str2double(YY) str2double(MM) str 2double(DD)]; 
    % PARSE THE TIME CELL ARRAY TO CREATE USABLE TI ME DATA 
    [H,outlettime] = strtok(outlettime,':'); 
    [M,outlettime] = strtok(outlettime,':'); 
    clear outlettime; 
    outlettime = [str2double(H)+str2double(M)/60]; 
    % CREATE THE TIME VECTOR 
    outlettimeMultiplier = 0; 
    if outletampm{1,1} == ' PM' & str2double(H{1,1} ) < 12 
      outlettimeVector(1,1) = [outlettimeMultiplier *24+outlettime(1)+12]; 
    elseif outletampm{1,1} == ' AM' & str2double(H{ 1,1}) == 12 
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      outlettimeVector(1,1) = [outlettimeMultiplier *24+outlettime(1)-12]; 
    else 
      outlettimeVector(1,1) = [outlettimeMultiplier *24+outlettime(1)]; 
    end 
    for i = 2:length(outletdate) 
      if outletdate(i,3) ~= outletdate(i-1,3) 
        outlettimeMultiplier = outlettimeMultiplier  + 1; 
      end 
      if outletampm{i,1} == ' PM' & str2double(H{i, 1}) < 12 
          outlettimeVector(i,1) = [outlettimeMultip lier*24+outlettime(i)+12]; 
      elseif outletampm{i,1} == ' AM' & str2double( H{i,1}) == 12 
          outlettimeVector(i,1) = [outlettimeMultip lier*24+outlettime(i)-12]; 
      else 
        outlettimeVector(i,1) = [outlettimeMultipli er*24+outlettime(i)]; 
      end 
    end 
    % SAVE THE TIME AND PERCENT OPEN VARIABLES TO T HE HANDLES STRUCTURE 
    handles.outlettime = outlettimeVector; 
    % 
    % THE FOLLOWING STATEMENT UPDATES THE HANDLES S TRUCTURE (WHERE ALL THE DATA IS STORED 
    % TO BE ACCESSED LATER) WITH THE NEW VARIABLES WE CREATED HERE --> 'handles.data' 
    guidata(hObject, handles); 
  end 
 
% THIS FUNCTION ACTIVATES WHEN THE USER ENTERS A NU MBER IN THE 'SPECIFIC GRAVITY' BOX 
function edit_specificgravity_Callback(hObject, eve ntdata, handles) 
  % WE ARE STORING THE SPECIFIC GRAVITY VARIABLE IN TO THE HANDLES STRUCTURE. THE 'GET' 
  % COMMAND GETS THE STRING PROPERTY OF THE SPECIFI C GRAVITY EDIT BOX. THE 'STR2DOUBLE' 
  % COMMAND CONVERTS THE STRING TO A NUMBER. 
  handles.specificgravity = str2double(get(handles. edit_specificgravity,'String')); 
  % THE FOLLOWING STATEMENT UPDATES THE HANDLES STRUCTURE WITH THE NEW VARIABLES WE 
  % CREATED HERE --> 'handles.specificgravity' 
  guidata(hObject, handles); 
 
% THIS FUNCTION ACTIVATES WHEN THE USER ENTERS A NU MBER IN THE 'VALVE INLET PRESSURE' BOX 
function edit_p1_Callback(hObject, eventdata, handl es) 
  handles.p1 = str2double(get(handles.edit_p1,'Stri ng')); 
  % THE FOLLOWING STATEMENT UPDATES THE HANDLES STRUCTURE WITH THE NEW VARIABLES WE 
  % CREATED HERE --> 'handles.p1' 
  guidata(hObject, handles); 
 
% THIS FUNCTION ACTIVATES WHEN THE USER ENTERS A NU MBER IN THE 'VALVE OUTLET PRESSURE' 
BOX 
function edit_p2_Callback(hObject, eventdata, handl es) 
  handles.p2 = str2double(get(handles.edit_p2,'Stri ng')); 
  % THE FOLLOWING STATEMENT UPDATES THE HANDLES STRUCTURE WITH THE NEW VARIABLES WE 
  % CREATED HERE --> 'handles.p2' 
  guidata(hObject, handles); 
 
% THIS FUNCTION ACTIVATES WHEN THE 'PLOT' BUTTON IS  PUSHED 
function pushbutton_plot_Callback(hObject, eventdat a, handles) 
   % CHECK TO MAKE SURE THERE IS DATA IN THE FLOWRA TE VARIABLE 
   if isempty(handles.flowrate) 
     msgbox('There was no inlet flowrate data','ERR OR!','error'); 
     return; 
   end 
   % CHECK TO MAKE SURE THERE IS DATA IN THE PERCEN T OPEN VARIABLE 
   if isempty(handles.percentopen) 
     msgbox('There was no outlet percent open data' ,'ERROR!','error'); 
     return; 
   end 
   % CHECK TO MAKE SURE THERE IS DATA IN THE SPECIF IC GRAVITY VARIABLE 
   if isempty(handles.specificgravity) 
     msgbox('There was no specific gravity entered' ,'ERROR!','error'); 
     return; 
   end 
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   % CHECK TO MAKE SURE THERE IS DATA IN THE INLET PRESSURE VARIABLE 
   if isempty(handles.p1) 

msgbox('There was no valve inlet pressure entered', 'ERROR!','error'); 
     return; 
   end 
   % CHECK TO MAKE SURE THERE IS DATA IN THE OUTLET  PRESSURE VARIABLE 
   if isempty(handles.p2) 

msgbox('There was no valve outlet pressure entered' ,'ERROR!','error'); 
     return; 
   end 
  % THERE WAS DATA, SO CONTINUE 
  % ******************* 
  % PLOT INLET FLOWRATE 
  % ******************* 
  % --> TELL MATLAB WHICH GUI AXIS WE WANT TO USE 
  axes(handles.axes_inletplot); 
  % --> TELL MATLAB TO PLOT THE DATA 
  plot(handles.inlettime,handles.inletQ,'-'); 
  % --> TELL MATLAB THE TITLE TO USE FOR THE PLOT 
  title('Inlet Flowrate vs Time'); 
  % --> TELL MATLAB THE LABEL FOR THE X AXIS 
  xlabel('Time (hrs)'); 
  % --> TELL MATLAB THE LABEL FOR THE Y AXIS 
  ylabel('Flowrate (gpm)'); 
  % --> TURN ON THE GRID 
  grid on; 
  % ******************** 
  % PLOT OUTLET FLOWRATE 
  % ******************** 
  % CALCUATE CV 
  handles.cv = 276.18 * handles.percentopen + 0.509 1; 
  % CALCULATE DELTA P 
  handles.deltap = abs(handles.p1 - handles.p2); 
  % CALCULATE Q 
  handles.outletQ = handles.cv * sqrt(handles.delta p / handles.specificgravity); 
  % PLOT Q VERSUS TIME 
  % --> TELL MATLAB WHICH GUI AXIS WE WANT TO USE 
  axes(handles.axes_outletplot); 
  % --> TELL MATLAB TO PLOT THE DATA 
  plot(handles.outlettime,handles.outletQ,'-'); 
  % --> TELL MATLAB THE TITLE TO USE FOR THE PLOT 
  title('Outlet Flowrate vs Time'); 
  % --> TELL MATLAB THE LABEL FOR THE X AXIS 
  xlabel('Time (hrs)'); 
  % --> TELL MATLAB THE LABEL FOR THE Y AXIS 
  ylabel('Flowrate (gpm)'); 
  % --> TURN ON THE GRID 
  grid on; 
  % ***********************************************  
  % PLOT RATIO OF (OUTLET FLOWRATE)/(INLET FLOWRATE ) 
  % ***********************************************  
  % CALCULATE RATIO Q 
  handles.ratioQ = handles.outletQ./handles.inletQ;  
  % --> TELL MATLAB WHICH GUI AXIS WE WANT TO USE 
  axes(handles.axes_ratioplot); 
  % --> TELL MATLAB TO PLOT THE DATA 
  plot(handles.inlettime,handles.ratioQ,'-'); 
  % --> TELL MATLAB THE TITLE TO USE FOR THE PLOT 
  title('Flowrate Ratio (Outlet/Inlet) vs Time'); 
  % --> TELL MATLAB THE LABEL FOR THE X AXIS 
  xlabel('Time (hrs)'); 
  % --> TELL MATLAB THE LABEL FOR THE Y AXIS 
  ylabel('Flowrate Ratio (Outlet/Inlet)'); 
  % --> TURN ON THE GRID 
  grid on; 
  assignin('base','inlettime',handles.inlettime); 
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  assignin('base','outlettime',handles.outlettime);  
  assignin('base','inletQ',handles.inletQ); 
  assignin('base','outletQ',handles.outletQ); 
  assignin('base','ratioQ',handles.ratioQ); 
  guidata(hObject, handles); 
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Appendix F – Plant Trial Process 
Parameters 
 

Table F.1: Summary of process parameters recorded during the baseline part of the trial 

 

Area of Ethanol Plant Parameter Values 
Grain Handling and 

Milling 
3. amount of corn 
4. amount of water 

132 klb/hr 
33.5% Solids 

Starch to Sugar 
Conversion 

6. amount of urea 
7. amount of α-amylase 
8. amount of gluco-amylase 
9. amount of sulfuric acid 
10. amount of urea 

2900 mL/min 
140 mL/min 
400 mL/min 
2600 mL/min 
2600 mL/min 

Fermentation 

1. fermentor volume 
2. fermentor temperature 
3. fermentor pH 
4. fermentor pressure 
5. fermentor residence time 
6. fermentor inlet mash flowrate 
7. amount of yeast 
8. fermentor outlet flowrate 
9. ethanol production rate  

695000 gal 
33ºC 
5.8 
N/A 
Approx. 50 hrs 
667 gpm 
20 kg/fermentor 
N/A 
60233 gal/day 

Co-Product Processing 

1. centrifuge inlet flowrates 
2. centrifuge residence time 
3. centrifuge liquid flowrates 
4. centrifuge solid flowrates 
5. evaporator inlet flowrates 
6. evaporator recycle flowrates 
7. dryer inlet flowrate 
8. dryer temperature 
9. dryer residence time 
10. dryer outlet flowrate 
11. dryer energy input 
12. DDGS production rate 

118.5 gpm 
N/A 
N/A 
N/A 
266 gpm to 3rd effect 
2700 gpm 
N/A 
358ºC 
N/A 
N/A 
3600 scfh 
N/A 
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Appendix G – Process Simulation 
Equipment Report 
 

List of all equipment used in the simulation. Table obtained from the Equipment Report 

(EQR) created by SuperPro Designer® for the 40MGY_March08_v75_version_J simulation. 

 

Table G.1: List of all unit operations used in the simulation of the enzymatic dewatering 
process. 

Name Type Units 
Standby/ 
Staggered 

Size 
(Capacity) 

  
Material of 

Construction 

Purchase 
Cost 

($/Unit) 

101MH Belt Conveyor 1 0/0 100.00 m CS 121,000 

102V Silo/Bin 1 0/0 18,538.87 m3 CS 979,000 

104M Grinder 1 0/0 46,208.14 kg/h CS 98,000 

105V Receiver Tank 1 0/0 76.90 m3 CS 32,000 

106W Hopper 1 0/0 100.92 m3 CS 51,000 

107V Receiver Tank 1 0/0 76.90 m3 CS 44,000 

307V Blending Tank 1 0/0 43.54 m3 SS304 130,000 

305V Hopper 1 0/0 4.02 m3 CS 9,000 

303V Receiver Tank 1 0/0 8.77 m3 CS 28,000 

301V Receiver Tank 1 0/0 12.19 m3 SS304 50,000 

302P Gear Pump 1 0/0 0.20 kW SS316 4,000 

310V Blending Tank 1 0/0 144.28 m3 SS304 163,000 

321V Stirred Reactor 1 0/0 53.15 m3 SS316 104,000 

317V Receiver Tank 1 0/0 17.58 m3 SS304 84,000 

319V Receiver Tank 1 0/0 18.86 m3 CS 19,000 

401E Heat Exchanger 1 0/0 202.06 m2 SS304 288,000 

402E Heat Exchanger 1 0/0 193.66 m2 SS304 86,000 

404P Gear Pump 1 0/0 0.06 kW SS316 7,000 

405V Fermentor 1 0/0 10,651.01 m3 SS316 2,844,000 

409V Absorber 1 0/0 13.41 m3 SS304 91,000 

410P Centrifugal Pump 1 0/0 2.88 HP-E CS 7,000 

413E Heat Exchanger 1 0/0 238.27 m2 SS304 335,000 

608T Receiver Tank 1 0/0 507.49 m3 CS 99,000 

411P Centrifugal Pump 1 0/0 50.00 HP-E SS316 16,000 
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501T Distillation Column 1 0/0 97.89 m3 SS304 602,000 

MX-101 Mixer 1 0/0 34,560.48 kg/h CS 0 

503T Distillation Column 1 0/0 113.57 m3 SS304 254,000 

507T Distillation Column 1 0/0 3.80 m3 SS304 170,000 

511V Flat Bottom Tank 1 0/0 481.39 m3 SS304 93,000 

509V Flat Bottom Tank 1 0/0 339.24 m3 SS304 34,000 

513V Flat Bottom Tank 1 0/0 3,392.22 m3 SS304 308,000 

601V Blending Tank 1 0/0 755.41 m3 SS304 197,000 

605V Blending Tank 1 0/0 481.39 m3 SS304 230,000 

604MH Belt Conveyor 1 0/0 100.00 m CS 56,000 

610D Rotary Dryer 1 0/0 1,173.80 m2 SS304 2,200,000 

612MH Belt Conveyor 1 0/0 100.00 m CS 123,000 

FSP-101 Flow Splitter 1 0/0 74,359.68 kg/h CS 0 

MX-103 Mixer 1 0/0 14,701.92 kg/h CS 0 

MX-104 Mixer 1 0/0 138,721.96 kg/h CS 0 

313E Heat Exchanger 1 0/0 33.66 m2 SS304 13,000 

312E Heat Exchanger 1 0/0 383.48 m2 SS304 219,000 

304P Gear Pump 1 0/0 0.25 HP-E SS316 4,000 

318P Gear Pump 1 0/0 0.25 HP-E SS316 4,000 

320P Gear Pump 1 0/0 0.02 kW SS316 4,000 

403V Blending Tank 1 0/0 2.97 m3 SS304 115,000 

611X Wet Air Oxidizer 1 0/0 12.21 m3 CS 877,000 

514P Gear Pump 1 0/0 1.79 HP-E SS316 40,000 

510P Gear Pump 1 0/0 5.00 HP-E SS316 5,000 

314V Receiver Tank 1 0/0 14.16 m3 SS304 174,000 

412V Flash Drum 1 0/0 14.62 m3 SS304 62,000 

408E Condenser 1 0/0 59.49 m2 SS304 19,000 

316E Heat Exchanger 1 0/0 413.84 m2 SS304 614,000 

308P Centrifugal Pump 1 0/0 14.25 kW SS316 25,000 

311P Centrifugal Pump 1 0/0 50.00 kW SS316 15,000 

322P Centrifugal Pump 1 0/0 50.00 HP-E SS316 15,000 

406P Centrifugal Pump 1 0/0 25.85 HP-E SS316 76,000 

407P Centrifugal Pump 1 0/0 13.02 HP-E SS316 15,000 

502P Centrifugal Pump 1 0/0 50.00 HP-E SS316 13,000 

506P Centrifugal Pump 1 0/0 20.00 HP-E SS316 7,000 

508P Centrifugal Pump 1 0/0 10.00 HP-E SS316 5,000 

505P Centrifugal Pump 1 0/0 0.36 HP-E SS316 4,000 

606P Centrifugal Pump 1 0/0 20.00 HP-E SS316 11,000 

602P Centrifugal Pump 1 0/0 50.00 HP-E SS316 13,000 

609P Centrifugal Pump 1 0/0 20.00 HP-E SS316 12,000 

512P Centrifugal Pump 1 0/0 10.00 HP-E SS316 5,000 
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315E Heat Exchanger 1 0/0 179.12 m2 CS 51,000 

306P Gear Pump 1 0/0 5.00 HP-E SS316 4,000 

MX-105 Mixer 1 0/0 15,048.64 kg/h CS 0 

309E Heat Exchanger 1 0/0 39.30 m2 CS 23,000 

MX-102 Mixer 1 0/0 37,989.83 kg/h CS 0 

607Ev Evaporator 1 0/0 620.09 m2 SS304 3,202,000 

103MH Flow Splitter 1 0/0 46,347.19 kg/h CS 61,000 

504X Component Splitter 1 0/0 19,469.66 kg/h CS 1,720,000 

603 Disk-Stack Centrifuge 1 0/0 1,777.57 L/min SS316 864,000 

split Component Splitter 1 0/0 110,699.29 kg/h SS316 0 

MX-106 Mixer 1 0/0 22,581.06 kg/h CS 0 

FSP-103 Flow Splitter 1 0/0 88,118.23 kg/h CS 0 

MX-107 Mixer 1 0/0 88,118.23 kg/h CS 0 

406V Receiver Tank 1 0/0 12.19 m3 SS304 50,000 

405P Gear Pump 1 0/0 0.20 kW SS316 4,000 
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Appendix H – Economic Evaluation 
Report 
 

Economic evaluation report (EER) created by SuperPro Designer® for the modified dry 

grind corn to ethanol model. 

 

Table H.1: Executive Summary 

Total Capital Investment 57153000  $ 

Capital Investment Charged to This Project 57153000  $ 

Main Product Rate 119185254 
 kg 
MP/yr 

Operating Cost 79963000  $/yr 

Unit Production Cost – Gallon of Ethanol 1.69  $/gal  

Main Revenue 77470000  $/yr 

Other Revenues 12659874  $/yr 

Total Revenues 90130000  $/yr 
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Table H.2: Major equipment specification and FOB cost (2007 prices) 

Quantity/ 
Standby/ 
Staggered 

Name Description 
Unit Cost 

($) 
Cost ($) 

Belt Conveyor 
1 / 0 / 0 101MH 

Belt Length = 100.00 m 
121,000 121,000 

Silo/Bin 
1 / 0 / 0 102V 

Vessel Volume = 18538.87 m3 
979,000 979,000 

Grinder 
1 / 0 / 0 104M 

Size/Capacity = 46208.14 kg/h 
98,000 98,000 

Receiver Tank 
1 / 0 / 0 105V 

Vessel Volume = 76.90 m3 
32,000 32,000 

Hopper 
1 / 0 / 0 106W 

Vessel Volume = 100.92 m3 
51,000 51,000 

Receiver Tank 
1 / 0 / 0 107V 

Vessel Volume = 76.90 m3 
44,000 44,000 

Blending Tank 
1 / 0 / 0 307V 

Vessel Volume = 43.54 m3 
130,000 130,000 

Hopper 
1 / 0 / 0 305V 

Vessel Volume = 4.02 m3 
9,000 9,000 

Receiver Tank 
1 / 0 / 0 303V 

Vessel Volume = 8.77 m3 
28,000 28,000 

Receiver Tank 
1 / 0 / 0 301V 

Vessel Volume = 12.19 m3 
50,000 50,000 

Gear Pump 
1 / 0 / 0 302P 

Power = 0.20 kW 
4,000 4,000 

Blending Tank 
1 / 0 / 0 310V 

Vessel Volume = 144.28 m3 
163,000 163,000 

Stirred Reactor 
1 / 0 / 0 321V 

Vessel Volume = 53.15 m3 
104,000 104,000 

Receiver Tank 
1 / 0 / 0 317V 

Vessel Volume = 17.57 m3 
84,000 84,000 

Receiver Tank 
1 / 0 / 0 319V 

Vessel Volume = 18.87 m3 
19,000 19,000 

1 / 0 / 0 401E Heat Exchanger 288,000 288,000 



 

   
 
 198 

Heat Exchange Area = 202.06 m2 

Heat Exchanger 
1 / 0 / 0 402E 

Heat Exchange Area = 193.66 m2 
86,000 86,000 

Gear Pump 
1 / 0 / 0 404P 

Power = 0.06 kW 
7,000 7,000 

Fermentor 
1 / 0 / 0 405V 

Vessel Volume = 10651.01 m3 
2,844,000 2,844,000 

Absorber 
1 / 0 / 0 409V 

Absorber Volume = 13.41 m3 
91,000 91,000 

Centrifugal Pump 
1 / 0 / 0 410P 

Power = 2.88 HP-E 
7,000 7,000 

Heat Exchanger 
1 / 0 / 0 413E 

Heat Exchange Area = 238.27 m2 
335,000 335,000 

Receiver Tank 
1 / 0 / 0 608T 

Vessel Volume = 507.49 m3 
99,000 99,000 

Centrifugal Pump 
1 / 0 / 0 411P 

Power = 50.00 HP-E 
16,000 16,000 

Distillation Column 
1 / 0 / 0 501T 

Column Volume = 97.89 m3 
602,000 602,000 

Mixer 
1 / 0 / 0 

MX-
101 Size/Capacity = 34560.48 kg/h 

0 0 

Distillation Column 
1 / 0 / 0 503T 

Column Volume = 113.57 m3 
254,000 254,000 

Distillation Column 
1 / 0 / 0 507T 

Column Volume = 3.80 m3 
170,000 170,000 

Flat Bottom Tank 
1 / 0 / 0 511V 

Vessel Volume = 481.39 m3 
93,000 93,000 

Flat Bottom Tank 
1 / 0 / 0 509V 

Vessel Volume = 339.24 m3 
34,000 34,000 

Flat Bottom Tank 
1 / 0 / 0 513V 

Vessel Volume = 3392.22 m3 
308,000 308,000 

Blending Tank 
1 / 0 / 0 601V 

Vessel Volume = 755.41 m3 
197,000 197,000 

1 / 0 / 0 605V Blending Tank 230,000 230,000 
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Vessel Volume = 481.39 m3 

Belt Conveyor 
1 / 0 / 0 604MH 

Belt Length = 100.00 m 
56,000 56,000 

Rotary Dryer 
1 / 0 / 0 610D 

Drying Area = 1173.80 m2 
2,200,000 2,200,000 

Belt Conveyor 
1 / 0 / 0 612MH 

Belt Length = 100.00 m 
123,000 123,000 

Flow Splitter 
1 / 0 / 0 

FSP-
101 Size/Capacity = 74359.68 kg/h 

0 0 

Mixer 
1 / 0 / 0 

MX-
103 Size/Capacity = 14701.92 kg/h 

0 0 

Mixer 
1 / 0 / 0 

MX-
104 Size/Capacity = 138721.96 kg/h 

0 0 

Heat Exchanger 
1 / 0 / 0 313E 

Heat Exchange Area = 33.66 m2 
13,000 13,000 

Heat Exchanger 
1 / 0 / 0 312E 

Heat Exchange Area = 383.47 m2 
219,000 219,000 

Gear Pump 
1 / 0 / 0 304P 

Power = 0.25 HP-E 
4,000 4,000 

Gear Pump 
1 / 0 / 0 318P 

Power = 0.25 HP-E 
4,000 4,000 

Gear Pump 
1 / 0 / 0 320P 

Power = 0.02 kW 
4,000 4,000 

Blending Tank 
1 / 0 / 0 403V 

Vessel Volume = 2.97 m3 
115,000 115,000 

Wet Air Oxidizer 
1 / 0 / 0 611X 

Vessel Volume = 12.21 m3 
877,000 877,000 

Gear Pump 
1 / 0 / 0 514P 

Power = 1.79 HP-E 
40,000 40,000 

Gear Pump 
1 / 0 / 0 510P 

Power = 5.00 HP-E 
5,000 5,000 

Receiver Tank 
1 / 0 / 0 314V 

Vessel Volume = 14.16 m3 
174,000 174,000 

Flash Drum 
1 / 0 / 0 412V 

Vessel Volume = 14.62 m3 
62,000 62,000 
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Condenser 
1 / 0 / 0 408E 

Condensation Area = 59.49 m2 
19,000 19,000 

Heat Exchanger 
1 / 0 / 0 316E 

Heat Exchange Area = 413.83 m2 
614,000 614,000 

Centrifugal Pump 
1 / 0 / 0 308P 

Power = 14.25 kW 
25,000 25,000 

Centrifugal Pump 
1 / 0 / 0 311P 

Power = 50.00 kW 
15,000 15,000 

Centrifugal Pump 
1 / 0 / 0 322P 

Power = 50.00 HP-E 
15,000 15,000 

Centrifugal Pump 
1 / 0 / 0 406P 

Power = 25.85 HP-E 
76,000 76,000 

Centrifugal Pump 
1 / 0 / 0 407P 

Power = 13.02 HP-E 
15,000 15,000 

Centrifugal Pump 
1 / 0 / 0 502P 

Power = 50.00 HP-E 
13,000 13,000 

Centrifugal Pump 
1 / 0 / 0 506P 

Power = 20.00 HP-E 
7,000 7,000 

Centrifugal Pump 
1 / 0 / 0 508P 

Power = 10.00 HP-E 
5,000 5,000 

Centrifugal Pump 
1 / 0 / 0 505P 

Power = 0.36 HP-E 
4,000 4,000 

Centrifugal Pump 
1 / 0 / 0 606P 

Power = 20.00 HP-E 
11,000 11,000 

Centrifugal Pump 
1 / 0 / 0 602P 

Power = 50.00 HP-E 
13,000 13,000 

Centrifugal Pump 
1 / 0 / 0 609P 

Power = 20.00 HP-E 
12,000 12,000 

Centrifugal Pump 
1 / 0 / 0 512P 

Power = 10.00 HP-E 
5,000 5,000 

Heat Exchanger 
1 / 0 / 0 315E 

Heat Exchange Area = 179.12 m2 
51,000 51,000 

Gear Pump 
1 / 0 / 0 306P 

Power = 5.00 HP-E 
4,000 4,000 

Mixer 
1 / 0 / 0 

MX-
105 Size/Capacity = 15048.64 kg/h 

0 0 



 

   
 
 201 

Heat Exchanger 
1 / 0 / 0 309E 

Heat Exchange Area = 39.30 m2 
23,000 23,000 

Mixer 
1 / 0 / 0 

MX-
102 Size/Capacity = 37989.83 kg/h 

0 0 

Evaporator 
1 / 0 / 0 607Ev 

Evaporation Area = 620.09 m2 
3,202,000 3,202,000 

Flow Splitter 
1 / 0 / 0 103MH 

Size/Capacity = 46347.19 kg/h 
61,000 61,000 

Component Splitter 
1 / 0 / 0 504X 

Size/Capacity = 19469.66 kg/h 
1,720,000 1,720,000 

Disk-Stack Centrifuge 
1 / 0 / 0 603 

Throughput = 1777.57 L/min 
864,000 864,000 

Component Splitter 
1 / 0 / 0 split 

Size/Capacity = 110699.29 kg/h 
0 0 

Mixer 
1 / 0 / 0 

MX-
106 Size/Capacity = 22581.06 kg/h 

0 0 

Flow Splitter 
1 / 0 / 0 

FSP-
103 Size/Capacity = 88118.23 kg/h 

0 0 

Mixer 
1 / 0 / 0 

MX-
107 Size/Capacity = 88118.23 kg/h 

0 0 

Receiver Tank 
1 / 0 / 0 406V 

Vessel Volume = 12.19 m3 
50,000 50,000 

Gear Pump 
1 / 0 / 0 405P 

Power = 0.20 kW 
4,000 4,000 

Unlisted Equipment   0 
  

  TOTAL 18,300,000 

 



 

   
 
 202 

Table H.3: Direct fixed capital cost (DFC) summary (2007 prices in $) 

Section Name DFC ($) 

Main Section 216,000 

Grain Handling & Milling 4,158,000 

Starch to Sugar Conversion 5,268,000 

Fermentation 11,880,000 

Ethanol Processing 9,779,000 

CoProduct Processing 23,652,000 

Common Support Systems 2,200,000 

Plant DFC 57,153,000 

 

Table H.4: Labor cost – process summary 

Labor Type 
Unit 
Cost 
($/h) 

Annual 
Amount (h) 

Annual 
Cost ($) 

% 

Operator 0 0 0 0 

Plant 
Operators 

52 39,600 2,059,200 100 

TOTAL   39,600 2,059,200 100 
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Table H.5: Material cost – process summary  

Bulk Material 
Unit 
Cost 

($/kg) 

Annual 
Amount (kg) 

Annual 
Cost ($) 

% 

Trial Enzyme 10.00 257,139 2,571,386 4.51 

Corn 0.14 367,069,713 50,563,853 88.77 

Lime 0.09 438,190 39,437 0.07 

Liq. Ammonia 0.22 733,337 161,334 0.28 

Alpha-
Amylase 

2.25 257,139 578,562 1.02 

Glucoamylase 2.25 371,408 835,669 1.47 

Sulfuric Acid 0.11 733,337 80,667 0.14 

Caustic 0.01 18,423,742 223,296 0.39 

Yeast 1.86 96,466 179,426 0.31 

Water 0.00 143,130,116 6,298 0.01 

Octane 0.72 2,383,705 1,722,465 3.02 

Air 0.00 252,066,822 0 0.00 

TOTAL   785,961,112 56,962,393 100.00 
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Table H.6: Utilities cost (2007 prices) – process summary 

Utility 
Annual 
Amount 

Reference 
Units 

Annual 
Cost ($) 

% 

Electricity 29247864 kWh 1,462,393 11.58 

Steam 4165920 kg 88,942 0.70 

Cooling Water 5184932086 kg 518,493 4.11 

Chilled Water1 0 kg 0 0.00 

Natural Gas 10781874 kg 3,791,877 30.03 

CT Water 5295747600 kg 370,702 2.94 

CT Water 
NoCost 

13179167159 kg 0 0.00 

CT Water 
35Cout 

366029013 kg 25,622 0.20 

CT Water 
31Cout 

3160422808 kg 221,230 1.75 

Well Water1 0 kg 0 0.00 

Steam 50 PSI 75063898 kg 1,602,614 12.69 

Steam 6258 
BTU 

32753326 kg 699,284 5.54 

Steam 2205 
BTU 

179103307 kg 3,823,856 30.28 

Rectifier OH1 80089532 kg 0 0.00 

Steam (High P) 1132400 kg 22,648 0.18 

TOTAL     12,627,661 100.00 
1 Limitations in the SuperPro® program restrict the use of heat 
integration techniques. Utilities with 0 annual costs are 
computational techniques used to work around the program’s 
limitations.    
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Table H.7: Annual operating cost (2007 prices) – process summary 

Cost Item Cost ($) % 

Raw Materials 56,962,000 71.24 

Labor-Dependent 2,059,000 2.58 

Facility-Dependent 8,313,000 10.40 

Consumables1 0 0.00 

Utilities 12,628,000 15.79 

Advertising/Selling 0 0.00 

Running Royalties 0 0.00 

Failed Product 
Disposal 

0 0.00 

TOTAL 79,963,000 100.00 
1 Facility related consumables costs are 
included in these estimates at 0.75% per year 
of the facility costs and are included under 
“Facility-Dependent” costs. These include 
depreciation, maintenance and other facility 
related charges. 
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Table H.8: Profitability analysis (2007 prices) 

A. Direct Fixed Capital 57,153,000.00  $ 

B. Working Capital 0.00  $ 

C. Startup Cost 0.00  $ 

D. Up-Front R&D 0.00  $ 

E. Up-Front Royalties 0.00  $ 

F. Total Investment (A+B+C+D+E) 57,153,000.00  $ 

G. Investment Charged to This Project 57,153,000.00  $ 

H. Revenue/Credit Stream Flowrates     

  Total flow in DDGS (Other Revenue) 121,181,553.00 
 

kg/yr 

  
Total flow of stream ETHANOL (Main 
Revenue) 

119,185,254.00 
 

kg/yr 

        

I. Annual Operating Cost     

  AOC 79,963,000.00  $/yr 

        

K. Selling / Processing Price     

  Total flow in DDGS 0.10  $/kg 

  Total flow of stream ETHANOL 0.65  $/kg 

        

L. Revenues     

  DDGS (Other Revenue) 12,660,000.00  $/yr 

  ETHANOL (Main Revenue) 77,470,000.00  $/yr 

  Total Revenues 90,130,000.00  $/yr 
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Appendix I – Sensitivity Analysis 
 

Figure I.1: Sensitivity analysis results. Unit production cost of a gallon of ethanol ($/gal) at 
different natural gas prices. 
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Figure I.2: Sensitivity analysis results. Unit production cost of a gallon of ethanol ($/gal) at 
different natural gas and enzyme prices. 
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