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Professor Pratim Biswas, Chairperson 

 
 The correlation between energy consumption and human development illustrates 

the importance of this societal resource.  We will consume more energy in the future.  In 

light of issues with the status quo, such as climate change, long-term supply and security, 

solar energy is an attractive source.  It is plentiful, virtually inexhaustible, and can 

provide more than enough energy to power society.   However, the issue with producing 

electricity and fuels from solar energy is that it is expensive, primarily from the materials 

(silicon) used in building the cells.  Metal oxide semiconductors are an attractive class of 

materials that are extremely low cost and can be produced at the scale needed to meet 

widespread demand.  An industrially attractive thin film synthesis process based on 

aerosol deposition was developed that relies on self-assembly to afford rational control 

over critical materials parameters such as film morphology and nanostructure.  The film 

morphology and nanostructure were found to have dramatic effects on the performance of 

TiO2-based photovoltaic dye-sensitized solar cells.  Taking a cue from nature, to 

overcome the spatial and temporal mismatch between the supply of sunlight and demand 

for energy consumption, it is desirable to produce solar fuels such as hydrogen from 



 xii

photoelectrochemical water splitting.  The source of water is important -- seawater is 

attractive.  The fundamental reaction mechanism for TiO2-based cells is discussed in the 

context of seawater splitting.  There are two primary issues with producing hydrogen by 

photoelectrochemical water splitting using metal-oxide semiconductors: visible light 

activity and spontaneous activity.  To address the light absorption issue, a combined 

theory-experiment approach was taken to understand the fundamental role of chemical 

composition in determining the visible light absorption properties of mixed metal-oxide 

semiconductors.  To address the spontaneous activity issue, self-biasing all oxide p/n 

bulk-heterojunctions were synthesized and the nanostructure was systematically varied to 

understand the fundamental role of various characteristic length scales in the 

nanostructured region of the device on performance.  The conclusion of this work is that 

solar energy harvesting by metal oxide semiconductors is highly promising.  All of the 

scientific concepts have been proven, and steady gains in efficiency are being achieved as 

researchers continue to tackle the problem. 
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1.1 Overview 

There is a pressing need for abundant, environmentally benign renewable energy.  

Concepts developed by aerosol science, nanotechnology, biomimicry and quantum 

chemistry provide an opportunity to develop new tools to attack this problem, which has 

been lingering since the 1970s.  The territory is in the early stages of exploration, and this 

thesis serves to identify main challenges and provide successful examples of how 

relatively recent concepts can provide new tools and vistas on pressing technological 

issues.  This thesis presents work at many different scales and across disciplines, with 

different challenges requiring different approaches.  Thus detailed literature reviews 

identifying the specific knowledge gaps are presented in the individual chapters. 

1.2 Problem Statement 

The world is consuming an ever-increasing amount of energy.  The increase is 

driven by population growth and improvement in human development around the world.  

Chapter 2 describes the relationship between energy consumption and human 

development in a pseudo quantitative manner.  It then goes on to estimate the increase in 

energy consumption resulting from the developing world increasing its quality of life, 

and also estimates the efficiency gains that can be reasonably achieved in the developed 

world.  The net result is that efficiency gains in the developed world cannot provide 

enough energy to meet the needs of the developing world, and thus global consumption 

will likely increase, potentially resulting in a more than doubling of global energy 

consumption.   
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In light of climate change, where this energy will come from is of utmost 

importance.  The main anthropogenic driver of climate change is the carbon dioxide that 

is released to the atmosphere through the combustion of fossil fuels1.  Interestingly, 

despite the intimate relationship of energy consumption to human development, it 

appears as though there is no correlation between human development and the carbon 

dioxide intensity of a country's primary energy mix (Chapter 2).  The important 

parameter is the amount of primary energy consumed.  It appears as though the source of 

the energy is less important.  To meet growing demand and reduce anthropogenic CO2 

emissions, we must develop zero-emission sources.   

One approach is to capture and sequester the carbon produced through the 

combustion of fossil fuels, in carbon capture and storage (CCS) systems.  Implementing a 

worldwide CCS system would be a formidable undertaking, requiring a global 

infrastructure to be developed that is nonexistent at the moment.  Approximately 40 % of 

global CO2 emissions come from the combustion of petroleum products (Chapter 2).  

Unfortunately, carbon capture is virtually impossible from personal automobiles.  Thus a 

fossil-fuel based zero-emission system would also require the use of electric vehicles so 

the combustion byproducts could be captured at the point source (power plants).  

Another approach is nuclear fission to produce electricity, coupled to the use of 

electric vehicles.  This is a very attractive approach, except for one critical issue: the 

long-lived radioactive waste that is produced.  A palatable solution for the waste issue 

has yet to be developed.  There are also logistical concerns about building the nuclear 

power plants fast enough to meet demand2.  
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While energy will undoubtedly continue to be produced from a mixture of sources 

in the future, by far the most attractive solution is renewable energy.  Of the renewable 

sources, the most plentiful is solar energy.  More energy in sunlight is incident on the 

earth in an hour than the entire global society consumes in a year3.   Harvesting this 

resource would require large areas to be covered, but they are finite.  For instance, if solar 

energy is harvested directly by photovoltaic panels, the area required to meet the United 

States energy needs would be less than 1/4 of the total area covered by roads and streets 

in the country3.  The main issue is the cost of the energy produced by current 

photovoltaic technology is 5 to 10 times higher than fossil fuel alternatives.   

Approximately half of the cost of the incumbent solar energy technology comes 

from the crystalline silicon in photovoltaic panels, which produce electricity when 

illuminated by sunlight.  The majority of the remainder of the cost comes from human 

labor, which can be assumed to come down with economies of scale.  Thus an effective 

way to attack the cost issue is by exploring alternative materials. 

1.3 Approach 

Metal oxide semiconductors are an attractive class of materials.  They are very 

low cost, typically quite stable and can be made in large volumes.  For instance, titanium 

dioxide (TiO2) is produced in quantities of tons per hour by flame-based processes4 for 

use as paint pigment.  Meanwhile, silicon is produced in relatively small quantities for 

high-technology applications like the microelectronic chips in personal electronics.  For 

economical widespread solar energy harvesting, it is clear that the materials should more 

closely resemble paint than highly refined electronics.  For solar cell applications, metal 
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oxide semiconductors are typically immobilized as a thin film with a thicknesses on the 

order of 100 nanometers to 10 micrometers.   

The synthesis of metal oxide thin films is discussed in Chapter 3.  Upon review of 

the literature, it was determined that existing synthesis processes for metal-oxide thin 

films were not amenable for industrial production of materials for solar energy 

harvesting.  This motivated the development of a flame aerosol reactor (FLAR), which is 

simple, scalable, high throughput and affords rational control over nanostructure.  The 

FLAR was used to synthesize TiO2 thin films with well-controlled morphology and 

thickness as an example, although the process can be used to synthesize a variety of metal 

oxide materials for which suitable precursors are available.   

Nanostructuring affords a powerful tool for tuning device performance.  In 

Chapter 4, the FLAR was used to synthesize TiO2 films for use in photovoltaic dye-

sensitized solar cells5, 6 and photo water splitting cells with controlled nanostructure.  It 

was found that the power conversion efficiency of these solar cells can change by a factor 

of 10 to 50 depending on the nanostructure, underscoring the need to rationally control 

this property and the potential as a tool to extract higher performance out of low cost 

materials. 

Taking a cue from nature, it is highly desirable to store the energy in sunlight in 

chemical bonds so it can be used on demand.  One way to do this is by splitting water 

into hydrogen and oxygen, which is typically accomplished using a wide-gap photo 

catalyst such as TiO2
7, 8.  An example of a research photocell for water splitting is 

presented in Figure 1-1.  The photoanode is composed of TiO2 deposited on an 
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electrically conductive substrate, which is connected through an external circuit to a 

counter electrode (cathode).  Upon illumination by photons with an energy greater than 

the band gap (3.0 eV for TiO2), which are in the UV portion of the spectrum for TiO2, 

water is oxidized by photo-generated holes at the TiO2 surface, and aqueous protons are 

reduced to hydrogen gas at the counter electrode. A small electrical bias is applied in the 

external circuit to enhance the extraction of electrons from the TiO2 film.  The energy 

inputs to the cell are the photons from the lamp and electrical energy from the applied 

voltage, with the energy output being hydrogen gas.  There are several fundamental 

issues that need to be addressed to scale up such a device, which are discussed below.

 

Figure 1-1: Schematic diagram of a research water splitting photocell. 
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For widespread production of hydrogen by photo water splitting, the source of 

water is important.  Chapter 5 discusses the reaction mechanism of photo-induced water 

splitting on TiO2, and its relationship to the composition of the aqueous electrolyte, in the 

context of using seawater as a chemical feedstock. 

One of the principal challenges in achieving efficient, which means greater than 

10% sunlight-to-hydrogen power conversion efficiency8, photocatalytic water splitting  

via metal oxide semiconductors is driving the reaction using visible light.  There are no 

known materials that can do it.  Researchers are increasingly exploring mixed metal-

oxide photocatalysts.  Taking a combined theory-experiment approach, Chapter 6 

discusses the role of chemical composition in the electronic band structure of mixed 

metal oxide materials, which determines the light absorption properties of a 

semiconductor and its thermodynamic ability to split water. 

Another key challenge in splitting water by metal oxide photocatalysts is 

eliminating the need for external electrical biases (Figure 1-1), which are used to enhance 

charge collection and prevent parasitic processes such as charge recombination.  It has 

been reported for cost-intensive non-oxide materials that monolithic p/n junction devices 

can be used to provide an internal bias to eliminate the need for external inputs.  Indeed, 

this approach has yielded one of the most efficient self-biased devices reported to date9.  

Chapter 7 discusses the synthesis of a nanostructured all-oxide p/n junction between n-

TiO2 and p-Cu2O towards these ends.  The structures are explored as photovoltaics to 

determine their charge separation characteristics, although they could serve as "building 

blocks" for fabricating a monolithic watersplitting device in the future, as both materials 

meet the thermodynamic requirements to split water.  Also in Chapter 7,  nanostructuring 
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is again found to improve the device performance and the critical parameters are 

identified. 

1.4 Conclusion 

While a device configuration that yielded greater than 10% sunlight-to-hydrogen 

conversion efficiency was not identified over the course of this work, fundamentally new 

concepts and design tools were developed that lay the foundation for future work to 

venture into new areas in which, perhaps, the big breakthrough is hidden. 
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Chapter 2: 

Human Development and the Energy-

Environment Nexus 
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2.1 Abstract: 

 Energy consumption is intimately related to human development and quality of 

life.  To improve quality of life, the developing world will consume much more energy 

than it does today.  A detailed understanding of how much the developing world will 

need is critical, especially in light of climate change.  A saturation model is developed to 

relate the human development index (HDI), which describes the education level, health 

care and material wealth of a nation in a pseudo-quantitative manor, to per capita primary 

energy resource consumption.  It is found that the HDI saturates at a per capita energy 

consumption of 52,430 kWh year-1 capita-1.  The life expectancy and education indices 

saturate at a lower per capita primary energy consumption than the GDPpc index.  Strong  

evidence is presented that  the amount of primary energy that will be required in the 

developing world will result in a more than doubling of current global capacity, by far 

exceeding gains that can be achieved by energy efficiency improvements in the 

developed world.  However, since the developed world currently consumes the most 

energy, implementing efficiency improvements can have immediate impacts on 

emissions, providing a bridge while a comprehensive plan for the developing world is 

formulated. The results are discussed in the context of carbon dioxide emissions, which is 

a critical driver in dealing with these issues.  
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2.2 Introduction 

 Energy use is critical to all forms of life, and especially to human societies.  

Biologically we need the energy in food to stay alive and reproduce.   The human body 

needs on average 2,000 kcal person-1 day-1 (2.36 kWh person-1 day-1) of energy to sustain 

itself.  In the United States (and many other developed nations) people consume as much 

as 229,000 kcal person-1 day-1 (266 kWh person-1 day-1) of primary energy resource.  

From a macroscopic perspective, this extra energy consumption has been attributed to the 

thermodynamic requirement to maintain the complex organization of modern societies1, 

which are far from the equilibrium disordered state.  In terms of people in the society, this 

extra energy consumption represents an improvement in quality of life, which means 

better access to education, longer life spans and higher income. 

 Much of the world is energy impoverished.   Out of 6.7 billion people in the word, 

1.6 billion people are living with no access to electricity, and approximately 2.4 billion 

people are using wood, charcoal and dung as their principle source of energy2.   As 

people in the developing world strive to improve their quality of life, they will consume 

more energy.  Indeed, as China has brought 400 million people in its own country out of 

poverty over the last 30 years3, it has come with a commensurate increase of 11,000 kWh 

year-1 capita-1 (320% increase) in primary energy consumption and an additional 3.1 

metric tons year-1 capita-1 of CO2 emission over the same time period.  As the world's 

poor climb out of poverty, a detailed understanding of the additional energy resources 

that will be consumed is needed, so the process can be guided to be efficient and to avoid 

adverse environmental impacts. 
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 The developed world need not decrease its quality of life, only operate more 

efficiently and switch to environmentally benign sources of energy.  Accounting for 

roughly 22% of the global primary energy consumption, the United States (US) is 

conspicuous on the global energy stage.  The average density in metropolitan areas with 

total populations greater than 500,000 (50% of the population) in the United States is 

1,100 people  km-2, while in Japan it is 10,900 people km-2, and Western Europe is 7,700 

people km-2.4 Low population density leads to additional transportation expenditures.  

The average automobile fuel economy in the United States is  11 km  liter-1 (25 miles 

gallon-1), while in Europe and Japan it is approximately 17 km liter-1 (40 miles gallon-1)5, 

leading to increased petroleum consumption over the long transportation distances that 

are required by the large metropolitan areas.  The net result is an approximately two times 

higher per capita energy consumption in the US (97,100 kWh year-1 capita-1) compared to 

other developed nations such as Japan (52,000 kWh year-1 capita-1) and Germany (51,600 

kWh-1 year-1 capita-1.  The distribution of where this energy comes from in the US and 

globally is illustrated in Figure 2-1. 

 

Figure 2-1: Different primary energy resources in the energy mix of the United States 
and globally. 
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 The role of energy in development is not well understood.  It is, however, well 

known that the Gross Domestic Product (GDP) of a nation is correlated to total energy 

consumption.  And since the majority of the primary energy consumed globally comes 

from fossil fuels (Figure 2-1), GDP is also correlated to CO2 emission.    While GDP is 

related to the development of a nation, use of this quantity as the only indicator provides 

a distorted picture.  A better measure, although still not perfect, is the Human 

Development Index (HDI).   

 The HDI is a pseudo quantitative measure that was first proposed in 19906.  The 

HDI quantifies human development by considering school enrollment and literacy rates 

as a measure of education, life expectancy as a measure of health care, and per capita 

GDP based on purchasing power parity (ppp) as a measure of material wealth.  The HDI 

is an average of three component indices: the education index (EDUI), life expectancy 

index (LEI) and per capita gross domestic product index based on purchasing power 

parity (GDPpcI)7: ܫܦܪ ൌ ாூାாூାீூଷ                                                    (2-1) 

Each index takes a value between 0 (minimum development) and 1 (maximum 

development).  The education index is calculated according to the following equation: ܫܷܦܧ ൌ 1 3ൗ ቀீ௦௦ ா௧ ூௗ௫ିଵି ቁ  2 3ൗ ቀௗ௨௧ ௧௬ ூௗ௫ିଵି ቁ                  (2-2) 

Where the gross enrollment index is the percentage of the school-aged population in a 

given country that is enrolled in school, and the adult literacy index is the percentage of 

the adult population that can read and write.  The life expectancy index for a given 

country is calculated by: ܫܧܮ ൌ ቀ  ா௫௧௬ିଶହ ௬௦଼ହ ௬௦ିଶହ ௬௦ ቁ                                           (2-3) 
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Where 85 years the goalpost for average human life expectancy, and 25 years is the lower 

limit.  The GDPpc index is calculated by: ܫܿܲܦܩ ൌ ቀ୪୭ሺீሻି ୪୭ ሺଵሻ୪୭ሺସ,ሻି ୪୭ ሺଵሻቁ                                             (2-4) 

Where GDPpc is the per capita GDP ($US ppp) of a given country.   The use of a log 

scale is used to calculate GDPpcI because an unlimited productivity is not necessary to 

achieve a higher human development level8. 

 A few studies have been conducted that correlate HDI to energy consumption8-10.  

Pasternek observed there is a saturation in HDI after a critical electricity consumption 

level by fitting a logarithmic growth function, and then calculated the cost in terms of 

increased electricity consumption to shift the world to this level9.  However, it is more 

relevant to correlate HDI to primary energy consumption, as energy is used in more 

forms than just electricity.  Dias et al.8 and Martinez and Ebenhack10 observed a similar 

trend of HDI saturation with increased total energy consumption.  In addition, Dias et al.8 

noted that a net global energy savings of approximately 30% could be achieved by 

shifting all nations to an energy consumption level with a commensurate HDI of 0.9.    

While some preliminary observations have been made, a detailed understanding of the 

relationship of primary energy consumption to HDI has not been developed.  

Furthermore, the consequences for global development and CO2 emission remains absent 

from the literature.  

 

2.3 Methods 

 The goal of this paper is to elucidate the role of energy consumption in the 

development process.  Energy data was collected from the Energy Information Agency11, 
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population data from the United States Census Bureau12 and HDI data from the annual 

reports of the United Nations Development Program7.  The term energy consumption 

refers to primary energy consumption which is the amount of primary energy resource 

such as, petroleum, natural gas or coal, that is consumed by a given country.  Primary 

energy consumption is in contrast to the useable energy produced (e.g. electricity, 

transportation) which is lower than the primary energy consumption by an efficiency 

factor.  Unless otherwise stated, all parameters in this paper are reported per capita 

(person) to facilitate comparisons between countries with different populations. 

 Here it is proposed to use a new saturation model (Equation 2-5) to describe the 

increase in HDI with per capita primary energy consumption.  This model is widely used 

in biology to model growth that experiences saturation, and also in chemistry to model 

saturation-limited adsorption phenomena.  ܫ ൌ ூೞாାா                                                     (2-5) 

where I is the value of the index (HDI, EDUI, LEI or GDPpcI) at an energy consumption 

E, Is is the saturation value of the index at large energy consumptions and KI is an energy 

constant that is defined as the energy at which the index I has attained 50% of its 

maximum value (i.e I = 0.5 Is when E =KI).  At small values of E, I increases linearly 

with a slope of Is,/KI; and at large vales of E, I is constant, independent of E and equal to 

Is.   

 

2.4 G20 Nations 

 The HDI is plotted as a function of per capita primary energy consumption for the 

G20 nations in Figure 2-2, along with a regression performed using equation (2-5).  The 
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HDI increases with per capita energy consumption until reaching a saturation point, after 

which it remains roughly constant.  The three outliers (South Africa, Russia and Saudi 

Arabia) were excluded from the data for the regression.  Fitting equation (2-5) gave a 

better R2 value (2 parameter, 0.93) than either an exponential rise to maximum function 

(2 parameter, R2 = 0.67) or a logarithmic growth function (2 parameter, R2 = 0.91).  The 

results of the fit are presented in Table 2-1. 

 

Figure 2-2: HDI as a function of per capita primary energy consumption for the G20 
nations. 
 

 Once the fit parameters have been obtained for equation (2-5), the saturation point 

can be rigorously defined.  The saturation point is defined as the energy value at which 

the index I has obtained 95% of its maximum value.  The energy at which saturation 

occurs is proportional to the energy constant KI, and can be calculated using the 

following equation: 
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ூܧ ൌ .ଽହ.ହ  ூ                                                      (2-6)ܭ

Inserting the values for the HDI from Table 2-1 yields a saturation energy of 52,430 kWh 

year-1 capita-1,  which corresponds to an HDI value of 0.93.  There are several countries 

in the G20 that are operating near the saturation point: France, Germany, Japan, Korea 

(south) and the United Kingdom, while  several countries are operating at energy 

consumptions much higher than the saturation energy: Australia, the United States, 

Canada, Saudi Arabia and Russia.  There are many countries that are consuming less than 

the saturation energy, including the three highly populous countries: China, India and 

Indonesia.   

 Different development activities have different energetic requirements.  In other 

words, different levels of energy consumption are required in order to saturate different 

aspects of human development.  The saturation energies for the different components of 

the HDI can be determined by fitting equation (2-5) to each of the HDI component 

indices separately (Figure 2-3, Table 2-1).  The saturation energies of the education index 

and the life expectancy index are similar.  However, the saturation energy for the GDPpc 

index is much larger.  Assuming that the indices are independent, this result could mean 

that achieving a high level of education and high life expectancy in a country requires 

lower energy consumption than achieving a large GDPpc.   
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Figure 2-3: Saturation energies for the components of the HDI as a function of per capita 
primary energy consumption: (a) education index, (b) life expectancy index and (c) 
GDPpc index.  (d) Comparison of the different saturation energies for each index.  
 
 
 
Table 2-1: Summary of the parameters for equation (2-5) obtained from saturation curve 
fitting to the G20 data 

Index 

(I) 
Is 

KI                           

(kWh year-1 capita-1) 

EI 

(kWh year-1 capita-1) 

R2 of 

fit 

HDI 0.98 ± 0.01 2,759 ± 266 52,430 ± 5,060 0.93 

EDUI 1.0 ± 0.00 2,248 ± 290 42,706 ± 5,500 0.88 

LEI 0.93 ± 0.01 2,047 ± 259 38,891 ± 4,930 0.88 

GDPpcI 1.0 ± 0.02 4,427 ± 560 84,122 ± 10,000 0.91 
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2.5 Global Perspective 

 Nations can be categorized according to their energy consumption relative to the 

saturation energy and according to their HDI values (Figure 2-4).  It is evident that the 

developing world is seeking to improve its quality of life, which is reflected in ever-

increasing HDI values and per capita primary energy consumption.  Plotted in Figure 2-5  

is HDI as a function of per capita primary energy consumption for India, China, Portugal, 

South Korea and the United States over the time period from 1991 to 2006.  These 

countries follow the saturation curve towards higher development levels by increasing 

their energy consumption, until reaching a high development level (the United States) 

when the per capita primary energy consumption remains roughly constant. 

 

Figure 2-4: Human development index as a function of per capita primary energy 
consumption for 170 nations.  The parameters for the saturation curve were taken from 
the G20 fit. 
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Figure 2-5: HDI as a function of per capita primary energy consumption for select 
nations over the time period from 1991 to 2006. Each point corresponds to a single year. 
 

 At this point, one can ask the question: what will it take for the entire world to be 

developed?  One way to answer this question is in terms of the primary energy 

consumption that would be required if every person in the world lived in a country that 

had a per capita primary energy consumption equal to the saturation energy.  The shift in 

primary energy consumption for every nation to move to the saturation energy can be 

calculated by the following equation: ∆ܧ ൌ ∑ ܲሺܧுூ െ ሻ ௧௦ܧ                                      (2-7) 

Where ∆ܧ is the total shift in global primary energy consumption, ܲ is the population 

and ܧ is the per capita primary energy consumption of country i.  The shift in primary 

energy consumption for the different groups of countries is plotted in Figure 2-6.  From 

Figure 2-6, it can be seen that to develop the entire world to the saturation energy, the 

increase in consumption in the developing world would be larger than efficiency gains 
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that could be achieved in the developed world by bringing the energy-rich countries 

down in energy consumption to the saturation point.  

 

Figure 2-6: Shift in total global primary energy consumption required to bring the world 
to the saturation energy, corresponding to an HDI value of 0.93. 
 

 The total additional primary energy consumption required for every nation in the 

world to shift to the saturation energy is approximately 210 x 1012 kWh year-1, which is 

1.6 times higher than the total global primary energy consumption today.  This means 

that global primary energy consumption would have to more than double for every nation 

to develop to the saturation point, at current population levels.   

 One can ask a second question:  what is the shift in total global primary energy 

consumption for the world to move to an arbitrary HDI value?  Solving equations (2-5) 

and (2-7) yields: ∆ܧ ൌ ∑ ܲሺܧ െ ሻ ௧௦ܧ ൌ ∑ ܲ ቀ ಹವכுூுூೞିுூ െ ቁ ௧௦ܧ               (2-8) 
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The energy shift as a function of global HDI is plotted in Figure 2-7.  It can be seen from 

this plot that every nation in the world could shift to an HDI value of 0.87 with no 

additional primary energy consumption.  If every nation in the world shifted to an even 

lower HDI, then the global population could actually consume less energy than it does 

today.  Looked at another way, if in the future the world’s primary energy consumption is 

forced down too far by resource scarcity, or some other driver, it can be expected that the 

global community will start reducing its development level, illustrating the critical 

importance of developing sustainable sources of primary energy.      

 

Figure 2-7: Shift in total global primary energy consumption as a function of global 
HDI.  Negative values correspond to energy savings and positive values correspond to 
increases in energy consumption. 
 

 Further complicating the picture is the world population.  The global population is 

projected to grow from its current value of 6.7 billion people to a 8 billion in 2028, and 9 
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billion in 204812.  Thus the total global energy consumption will increase from 

development to the saturation point (210 x 1012 kWh year-1 for the current population) 

and from population growth (282 x 1012 kWh year-1 for 9 billion people in 2048).   

 

2.6 Carbon Dioxide Emissions 

 The increase in energy consumption presents a significant challenge in light of 

climate change.  Currently, the global community derives its primary energy from fossil 

fuels, which adversely affect global climate change.  While the carbon intensity depends 

on the specific type of fuel, the average carbon intensities for coal, petroleum and natural 

gas are 322 g CO2 kWh-1, 244 g CO2 kWh-1 and 181 g CO2 kWh-1 respectively13 .  Carbon 

dioxide emission as a function of primary energy consumption for the countries of the 

world is plotted in Figure 2-8.  It can be clearly seen from Figure 2-8 that as primary 

energy consumption goes up, so does CO2 emission, due to the fossil fuels that are 

consumed.   

 

Figure 2-8: Per capita CO2 emission as a function of per capita primary energy 
consumption for 170 nations. 
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 Part of this CO2 comes from the combustion of coal.  As part of the "Clean Coal" 

movement, it has been proposed to sequester the emissions from coal plants. By 

subtracting off the contribution of coal-derived CO2 from total CO2 emission, the effect 

of these sequestration policies on CO2 emission can be examined.  The global population-

averaged per capita CO2 emissions under different sequestration scenarios for coal are 

presented in Figure 2-9.  Sequestration of 50% of all coal-derived CO2 yields a 22% drop 

in global CO2 emissions, while 100% sequestration of coal-derived CO2 yields a 44% 

drop.   Large amounts of petroleum and natural gas are consumed (Figure 2-1), and even 

though the carbon intensity of natural gas and petroleum are smaller than coal, the net 

emissions are equal to or greater than that of coal.  Thus the focus of CO2 remediation 

efforts must be expanded beyond coal if the CO2 emission from fossil fuels is to be 

addressed.  Transferring transportation energy consumption from individual automobiles 

to centralized CCS-equipped electric plants while using electric cars or biofuels, which 

typically require large energy inputs14, could have large benefits to displace the CO2 

emitted by petroleum. 
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Figure 2-9: Global average per capita CO2 emissions under different coal sequestration 
scenarios 
 

 Not all of the countries in the world have high CO2 intensities.  Indeed, there are 

several countries that have large amounts of carbon-free energy in their energy mix 

(Figure 2-10).  Iceland has large contributions from geothermal power, Norway has large 

amounts of hydroelectric, Sweden has large contributions of renewable energy and 

nuclear, and France has large amounts of nuclear.  In many cases, these countries can 

supply such a large fraction of their primary energy from renewable sources due to 

relatively small populations.  However, it appears as though there is no correlation 

between CO2 intensity and human development (Figure 2-11).   
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Figure 2-10: Fraction of fossil fuels in the primary energy mix of select nations. 
 

 The critical factor in determining HDI is the amount of per capita primary energy 

consumed.  The world is developing, and more energy will be consumed in the future 

than is today.  Nuclear fission plants could continue to be developed, although there are 

logistical concerns and very daunting challenges about what to do with the waste.  Of the 

renewable sources, solar energy is the most attractive one that is capable of meeting, and 

even exceeding global energy demands15.  More energy in the form of sunlight strikes the 

earth in an hour than is consumed by the global society in a year16.    The resource is 

diffuse, however, necessitating large areas to be covered.  There is also both a temporal 

and spatial mismatch between the supply of sunlight and energy demand, necessitating 

storage and transportation of the energy.  While manufacturing and sales of photovoltaic 

solar panels are growing exponentially, they still provide less than 1% of the energy 
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consumed globally.  The main barrier to widespread implementation is the cost of the 

energy produced, which remains 5-10 times higher than fossil alternatives15.  Bringing 

the cost of solar-produced energy down and addressing the storage and transport issues 

through innovative materials and designs based on nano- and bio-technology remains an 

active area of research. 

 

Figure 2-11: HDI as a function of CO2 intensity for 170 nations showing no correlation. 
 

2.7 Efficiency in the United States 

 Facing large future energy needs in the developing world, it is also important to 

focus on today.  In the United States, the major consumers of primary energy are the 

transportation sector (29%; 27,811 kWh year-1 person-1), residential buildings (21%; 

20,777 kWh year-1 person-1) and commercial buildings (18%; 17,612 kWh year-1 capita-

1).  Of transportation, approximately 63% is consumed by gasoline vehicles (18% of the 
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total; 17,607 kWh year-1 capita-1).  Based on population densities and average automobile 

fuel economies in Europe compared to the United States, the reduction in consumption if 

European practices were adopted in the United States can be estimated using the 

following equation: 

ߟ ൌ ට ഐೆೄಲഐಶೠೝ൬ಾುಸಶೠೝಾುಸೆೄ ൰ ൌ 0.24                                          (2-9) 

Where ߩௌ is the average population density in the US (1,100 people km-2), ߩா௨ is 

the population density in Europe (7,700 people km-2), ܩܲܯௌ is the average fuel 

economy in the US (25 miles gallon-1) and ܩܲܯா௨ is the average fuel economy in 

Europe (40 miles gallon-1).  Thus it is estimated that the consumption of the gasoline-

powered transportation sector (17,607 kWh year-1 capita-1) could be reduced to 4,226 

kWh year-1 capita-1 by following European or Japanese urban design and automobile fuel 

economy standards.  

 There is much work to do in the United States on constructing more energy 

efficient buildings.  By addressing heating and cooling, which constitute a large fraction 

of a building's energy use (Figure 2-12), preliminary studies suggest that using different 

design practices and standards could reduce the energy consumption of buildings in the 

US to 50% of the baseline17, 18.  It is estimated that building energy consumption can be 

reduced by 50%, reducing residential energy consumption to 10,389 kWh year-1 capita-1 

and commercial consumption to 8,807 kWh year-1 capita-1.  However, the financial cost 

of this is unclear.  Efficiency gains in buildings and the transportation sector together 

could reduce US per capita primary energy consumption to 64,457 kWh year-1 capita-1, 
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approaching the saturation value.  All of the technology and design practices are 

available; it is primarily a question of time, cost and political will. 

 

Figure 2-12: Total consumption of household energy for different end uses averaged 
over the United States. 
 

2.8 Conclusions 
 
  Human development increases with primary energy consumption.  There is an 

energy consumption level after which only small gains in development are achieved for 

additional primary energy consumption,  called the saturation energy.  Efficiency gains 

made by reducing consumption of energy-rich nations to the saturation energy are not 

enough to make up for the ever-growing needs of the developing world.  Carbon Capture 

and Storage programs for fossil fuels along with nuclear fission and low-cost solar must 

be implemented on a global scale to address climate change.  Efficiency programs in 

energy-rich developed nations should be implemented immediately; to bridge the time 

gap while comprehensive solutions for the developing world are formulated. 
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3.1 Abstract 

A flame aerosol reactor (FLAR) system was used to deposit nanostructured 

photoactive films of titanium dioxide with well controlled morphologies.   Nanoparticles 

were generated in the aerosol phase and then deposited onto a water-cooled substrate via 

thermophoresis.  Two important parameters that influenced film characteristics were the 

titanium precursor feed rate and substrate temperature, through their effect on particle 

sintering dynamics on the substrate.   The size of the particles as they arrived at the 

substrate was controlled by varying the titanium precursor feed rate.  When the size was 

below approximately 8 nm, sintering was completed in the time available to obtain films 

with columnar nano-structures. Larger particle sizes resulted in granular, particulate 

films.  The temperature of the substrate was also an important parameter as it controlled 

the sintering rate and the resultant crystal phase of the film.  The thickness of the films 

was controlled by varying the precursor feed rate and deposition time.  The performance 

of the as-synthesized photocatalytic films was established by measuring the resultant 

photocurrents.  Well-sintered columnar morphologies and thicker films (in the range of 

40 to 900 nm) resulted in the largest photocurrents.   
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3.2 Introduction 

Coatings are applied as films to surfaces for a variety of different applications, 

such as to form a protective layer to prevent corrosion, to enhance appearance of the base 

material, for electronics applications, in magnetic media, and in engineered reactors for 

catalytic applications.   The chemical and physical characteristics of the film, such as 

composition, thickness, and morphology, have to be controlled for specific applications. 

For example, continuous, non-porous, ceramic films were used to provide corrosion 

protection to steel surfaces1.  In contrast, nano-porous, open morphology films were used 

in photochemical reactors for synthesis of partial-oxygenates by environmentally benign 

routes2.  Nanostructured films allow the possibility of obtaining high surface area 

coatings with tailored characteristics suitable for applications in catalytic reactors3.   

Titanium dioxide is a wide band-gap semiconducting, ceramic oxide that has been 

used as a coating material in several different applications for air and water purification, 

for sulfur removal4, for toxic metals capture5, 6, destruction of bacteria and viruses, self 

cleaning building materials, and superhydrophillic fog free films7.  It is the most widely 

used photocatalyst because it is relatively safe, inexpensive and stable to photocorrosion.     

Another exciting application is the production of hydrogen by a photosplitting reaction of 

water, which could provide an environmentally benign and sustainable source of 

hydrogen fuel for the energy industry8.  Photosplitting of water and many other solar-

energy applications of TiO2 require that the semiconductor be immobilized as a film.   

The morphology of the film is an important parameter in establishing the overall 

effectiveness; for example, a high surface area is desirable if localized chemical reactions 

are to be promoted, while low internal resistance to mobility of photogenerated charge 

carriers is also important if these are to be extracted and transported through an external 
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circuit8-10.    Several studies have identified relationships between film characteristics 

such as: thickness, morphology and feature size, and the resulting photocatalytic 

performance2, 11-14. Film characteristics are primarily determined by the synthesis 

technique.     

 There are many synthesis processes used for the deposition of titanium dioxide 

films.  Many of the existing techniques are multi step and require long synthesis times to 

produce high performance films with desirable morphologies, making them unattractive 

for industrial scale up.  Typical film synthesis processes consist of a deposition step 

followed by an annealing step.  The entire multi step process can take from several hours 

to a day to complete.  Limmer et. al.15 describe a 3 to 6 hour electrophoretic sol-gel 

process to synthesize TiO2  nanorods on alumina and polycarbonate substrates for high 

surface-area applications.  For dye sensitized solar cells, dip-coating-annealing processes 

have been described to synthesize films in 2 hours; but the resultant granular films have 

limited photoactivity due to electron-hole migration barriers at particle-particle 

interfaces16.  For photosplitting of water, Varghese et al.12 describe a 2-step, 17 to 24 

hour Ti-foil anodization process to produce TiO2 nanotubes with controlled thickness; 

which is used to increase the light to hydrogen conversion efficiency by creating thicker 

films.  To better understand and optimize film performance for important applications 

like photocatalytic hydrogen production, it is essential to have robust methods to 

synthesize films with well controlled characteristics.    

Flame aerosol reactors, which have been an industrially successful route to 

synthesize nanomaterials, provide a single step process for deposition of nanostructured 

films1.   Madler et. al.3 have used FLAR systems for depositing highly porous films 
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relying on thermophoretic deposition.  Palgrave and Parkin17 have described systems 

using nanoparticle precursors for the synthesis of nanocomposite thin films.  Detailed 

deposition models have also been developed to predict both the film morphology and 

other characteristics18-20.  Some studies have demonstrated control over film 

characteristics through the application of external forces such as electrical fields21.  

However, due to the complex interactions of different process parameters such as 

precursor concentration, time-temperature history in the flame, deposition rate, time-

temperature history on the substrate and many others, there are few studies that relate 

process conditions to resultant film parameters obtained from single-step flame aerosol 

reactors. Specifically, conditions that result in characteristics that are important to 

photocatalytic applications, such as hydrogen production have not been studied in detail.  

A more systematic demonstration is essential if practical applications are to be realized. 

In this paper, a flame aerosol reactor (FLAR) to deposit nanostructured films of 

titanium dioxide with controlled morphology and thickness is described.  An 

understanding of the various process parameters that affect film growth, such as 

precursor feed rate and deposition time, is established.  The crystal phase and grain size 

of the film are established as a function of the process parameters.  The resultant 

photocurrents generated in the films upon exposure to UV irradiation, which is a measure 

of photoelectric film properties that are important to photocatalytic hydrogen production 

efficiency, is determined and related to film characteristics.  
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3.3 Experimental Methods 

3.3.1 System 

  The experimental unit consisted of a precursor feed system, a flame aerosol 

reactor (FLAR) and a temperature controlled deposition substrate (Figure 3-1).  The 

precursor feed system consisted of a bubbler containing titanium tetra-isopropoxide 

(TTIP, Aldrich: 205273, 97% purity) through which argon (Grade 4.8) was bubbled at 

varying flow rates.  The temperature of the bubbler was maintained at 30 oC.   To prevent 

condensation of the TTIP, the lines leading up to the flame reactor were heated to 

approximately 50oC.  The TTIP feed rate was calculated based on the saturation pressure 

and assumed proportional to the argon flow rate through the bubbler22.  An additional 

argon line was added so the total argon flow rate could be held constant at 2.0 lpm (liters 

per minute at STP) while varying the flow through the bubbler.  The FLAR was a 

premixed methane – oxygen burner made of a 3/8 “ O.D. stainless steel tube with three 

1/8” cylinders packed into the middle to achieve an optimal outlet velocity (450 cm/s)  

through a 0.16 cm2 area which prevented flame blow off and extinction.  The methane 

flow rate was fixed at 0.5 lpm (liters per minute at STP) and the oxygen flow rate was 

fixed at 1.5 lpm, above the stochiometric value of 1.0 lpm for complete combustion.  The 

additional oxygen was provided to ensure complete oxidation of TTIP to produce 

stoichiometric TiO2.  All gas flow rates were controlled by digital mass flow controllers 

(MKS Instruments, Wilmington MA), and the four gas streams were combined and sent 

through the burner to the flame region (Figure 3-1).   
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Figure 3-1: Schematic diagram of the experimental setup for deposition of 
nanostructured TiO2 films.  

 

 The flame temperature distribution was measured using a type R thermocouple 

(Pt-Rh:Pt 2mm bead) and corrected for radiation from the thermocouple bead.  The 

average flame temperature was 2200 K ± 100 K.   A temperature controlled substrate was 

used wherein the titanium dioxide particles formed in the flame were deposited.    The 

substrate used was a square piece of optically polished silicon, 1.5 cm on a side.  The 

silicon substrate was attached to a water-cooled substrate holder to control the 

temperature of the substrate and the resultant crystal phase of the film (anatase versus 

rutile).   Intimate thermal contact was established between the substrate and heat sink by 

applying a small amount of silver thermal paste (Arctic Silver, Visalia CA).    
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The substrate temperature was controlled by tailoring the thermal resistance of the 

interface between the substrate and heat sink.  If the silicon substrate was pasted directly 

to the heat sink, the temperature was approximately 700 K, as measured by a small-bead 

type K thermocouple cemented to the substrate surface.  The thermal resistance of the 

substrate to heat-sink interface was increased by inserting an intermediate piece of high-

temperature glass (Ace-Glass, Vineland NJ).  Under these conditions, the resulting 

temperature of the substrate was 910 K.  An even higher temperature was achieved by 

inserting a second piece of glass which increased the substrate temperature to 

approximately 1080 K.   However, unless otherwise stated, only one intermediate piece 

of glass was used and particles were deposited at a substrate temperature of 910 K.  The 

substrate temperature is important to control because it alters the morphology of the 

particle-deposit by altering the sintering rates as discussed in detail in the Results section.  

 

3.3.2 Characterization  

Particles in the aerosol phase in the flame region (in the absence of the deposition 

substrate) were characterized by transmission electron microscopy (TEM) and online 

scanning mobility particle spectrometry (SMPS) measurements.  The particle size 

distribution was obtained from TEM (JEOL 1200 120 kV )  and SMPS (Platform 3080, 

Nano-DMA 3085, TSI Corp., Shoreview MN )  measurements.  It should be noted that 

the TEM and SMPS measured two different particle size distributions.  From TEM 

images, the primary particle size distribution was obtained, which is the important 

quantity for dynamic processes such as sintering. The SMPS measured the mobility 

equivalent aerosol size distribution.  The mean size measured by the SMPS could be 
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larger than the primary particle size, especially if agglomeration is prevalent in the 

system23, 24. 

After deposition, the TiO2 films were characterized by scanning electron 

microscopy (SEM) and x-ray diffraction (XRD).  The as-produced films were viewed in 

an SEM (Hitachi model S-4500 field emission electron microscope operating at 15 kV) to 

determine the film thickness and morphology.   For thickness measurements the silicon 

substrates were cleaved down the middle of the film and attached vertically to the SEM 

specimen mount.  The films were then imaged along a line of sight parallel to the 

substrate surface to obtain side view images.  The crystalline phase and grain size of the 

films were determined using a Rigaku DMax x-ray diffractometer.    

Finally, the photoelectric properties of the films were characterized by 

photocurrent measurements.  The films were deposited onto electrically insulating high-

temperature glass substrates (Borosilicate, ACE Glass, Vineland NJ) at a slightly elevated 

temperature of 1000 K.  Under UV irradiation from a 100 watt 360 nm lamp (Blak-Ray, 

Model B-100A), the photocurrent was measured by applying a voltage of 22V to two 

silver electrodes (SPI supplies, West Chester PA) that were painted 1 cm apart on the 

film surface. The current between the electrodes was measured using a picoammeter 

(Keithly Instruments, Cleveland OH).   

 

3.3.3 Test Plan 

Two independent process parameters that affect film characteristics are the TTIP 

feed rate and deposition time.  These parameters were independently varied to determine 

the effects on the aerosol phase particle size distributions, film grain size, growth rate, 
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film thickness, crystalline phase, and photocurrent.  A summary of the experimental 

parameters and results is presented in Table 3-1. 

Table 3-1: Summary of experimental parameters and results.  Constants: methane flow 
rate = 0.5 lpm; oxygen flow = 1.5 lpm; total argon flow = 2.0 lpm; deposition height = 2 
cm above burner; TTIP bubbler temp = 30oC.  The column “Photocurrent” corresponds to 
current measured at 22 V applied voltage. 

 
 

3.4 Results and Discussion 

 The gas phase precursor was rapidly oxidized in the high temperature 

environment to form nanoparticles.  These nanoparticles were then directed by 

thermophoretic forces from the hot gas to the water-cooled substrate and deposited to 

form a film.  There are two important process steps that influence the final film 

characteristics.  The first is formation of TiO2  particles by oxidation of the TTIP in the 

high temperature flame environment.  The second is restructuring of the particles once 

  Experimental 
Conditions 

Aerosol phase 
Measurements Film Measurements 

Exp. 
Deposition 

Time     
(sec) 

TTIP 
Feed 
Rate     

(mmol/hr) 

Average 
Dp from 

TEM 
(nm) 

Average 
Dp from 
SMPS 
(nm) 

Film 
Thickness 
from SEM   

(nm) 

Crystalline 
Phase 

from XRD 

Grain 
Size 
From 
XRD 
(nm) 

Average 
Growth 
Rate 

(nm/sec) 

Photo-
Current 

(nA) 

1 90 0.27 - 10.8 180 - - 2.00 - 

2 180 0.069 4.5 4.3 79 Anatase 47.3 0.44 46.86 

3 180 0.14 - 7.2 213 Anatase 49.1 1.18 22.10 

4 180 0.27 - 10.8 322 Anatase 40.7 1.79 0.64 

5 180 0.55 8.0 13.1 2010 Anatase 9.0 11.17 2.53 

6 360 0.069 4.5 4.3 233 - - 0.65 - 

7 360 0.27 - 10.8 730 - - 2.03 - 
8 60 0.14 - 7.2 42 Anatase - 0.70 - 
9 90 0.14 - - 64 Anatase - - 2.6 

10 120 0.14 - 7.2 86 Anatase - 0.72 - 
11 240 0.14 - 7.2 204 Anatase - 0.85 - 
12 360 0.14 - - 311 Anatase - - 1200 
13 480 0.14 - 7.2 417 Anatase - 0.87 - 
14 760 0.14 - - 692 Anatase - - 15000 
15 960 0.14 - 7.2 889 Anatase - 0.93 - 
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they have been deposited onto the substrate via thermophoresis.  The influence of these 

two steps on the final film characteristics is presented in the following sections. 

 

3.4.1 Aerosol Phase Dynamics 

The timescales for different process occurring in the aerosol phase, such as 

chemical reaction of the precursor and aerosol dynamics, can affect the final film 

morphology as illustrated in Figure 3-2.  If the characteristic time for the reaction of the 

TTIP precursor ( rxnτ  ) is larger than the residence time, a chemical vapor deposition 

(CVD) process would be expected25.  This would result in TTIP molecules being 

transported to the substrate and react therein to form the titanium dioxide film.  

Alternatively, if the characteristic reaction time is less than the residence time, the 

precursor will react to form particles.  Other important time scales in the aerosol phase 

are the particle-particle characteristic collision time6 ( collτ  ) and the particle sintering 

time26 ( sinτ  ).    Depending on different combinations as illustrated in Figure 3-2, the 

deposition process would either be individual particle deposition (IPD) or agglomerated 

particle deposition (APD).  
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Figure 3-2: Characteristic time conditions for different film deposition processes: 
chemical vapor deposition (CVD) individual particle deposition (IPD) and aggregate 
particle deposition (APD). 
 

To determine which deposition process was dominant, the various aerosol phase 

characteristic times were estimated (Table 3-2).  The residence time in the flame was 

estimated by assuming that the flame cross-section was equal to the burner outlet area (no 

jet expansion or ambient fluid entrainment), gases immediately reached the flame 

temperature and the path-length was equal to the burner-substrate distance of 2 cm.  

Using these assumptions, a residence time ( resτ  ) of 0.59 ms was calculated.  The 

calculated characteristic reaction time of the TTIP thermal decomposition was 0.12 ms, 

which was less than the residence time, meaning the TTIP rapidly reacts to form TiO2 
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particles in the flame.  The characteristic particle-particle collision time assuming 5 nm 

particles and a TiO2 molecular concentration calculated from the TTIP feed rate 

(~1015cm-3) was ~ 0.1 ms, while the sintering time for the 5 nm particles was 7.4 x 10-5 

ms, implying that particles are present as individual spheroids in the flame.  Under the 

flame conditions used in this study, IPD was the dominant process for deposition.  Later, 

the dynamics in the particle-deposit that result in specific morphologies of the film and 

the relationship of those morphologies to photocurrent generation will be illustrated.  

Table 3-2: Summary of estimated characteristic times encountered in the aerosol phase.     
Characteristic Time Symbol Value Reference 

Residence Time in Flame resτ  0.59 ms This Work 

Thermal Decomposition Reaction of TTIP to form TiO2 rxnτ  0.12 ms 
Wu and 
Biswas6 

5 nm Particle-Particle Collisions colτ  ~ 0.1 ms 
Wu and 
Biswas6 

5 nm Particle Sintering at 2200 K sinτ  7.4 x 10-5 ms Kobata et al.26 
 

The effect of TTIP feed rate on the particle size distribution is illustrated in Figure 

3-3.  The aerosol size distribution was measured online with the SMPS.  The primary 

particle size distribution was measured from TEM images by measuring the diameters of 

approximately 130 particles.  A log-normal curve fit was performed using Origin 

(Microcal, v 4.1) to determine distribution parameters.  The particle size increased from a 

mean of 4.5 nm at a TTIP feed rate of  0.069 mmol/hr (Test 2) to 8.0 nm at a TTIP feed 

rate of 0.55 mmol/hr (Test 5), as measured by TEM.  For the lower TTIP feed rate the 

SMPS measurement agreed well with the TEM.  However, at the higher TTIP feed rate, 

the SMPS measured a larger diameter than the one obtained from TEM.  The discrepancy 

between the particle size measured from TEM and SMPS at the higher feed rate was 

likely due to biases that resulted from agglomeration in the dilution probe during 
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sampling.  Despite this small discrepancy, the measurements clearly illustrated the trend 

of increasing particle size with increasing TTIP feed rate. 

 

Figure 3-3: Size measurements of particles in the aerosol phase for two TTIP feed rates.  
(a) For TTIP =  0.069 mmol/hr and (b) for  TTIP = 0.55 mmol/hr. (1) TEM image of 
particles; (2) particle size distribution from TEM images; and (3) aerosol size distribution 
measured from the SMPS.   
 

The increase in particle size as a function of TTIP feed rate was due to enhanced 

coagulational growth in the flame region.  At the flame temperature, the reaction to form 

TiO2 molecules from TTIP was fast ( rxnτ  = 0.12 ms, Table 3-2).  Once formed, the TiO2 

molecules collided to form particles that subsequently grew through a coagulational 

growth process27.  The sintering time ( sinτ = 7.4 x 10-5 ms, Table 3-2) was much smaller 
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than the collision time ( collτ  ~ 0.1 ms, Table 3-2) under these conditions, ensuring that 

near spherical particles resulted from the aerosol phase particle growth process.  For a 

constant residence time, the final size of the coagulational growth process scaled with the 

initial concentration of TiO2 molecules, or TTIP feed rate.  Through the TTIP feed rate, 

the size of particles as they arrived at the substrate was tuned to control the restructuring 

dynamics on the substrate, which is discussed in the following section.  

 

3.4.2 Dynamics After Particle Deposition onto the Substrate  

Through its influence on the particle arrival size, which changed the film 

restructuring dynamics, the TTIP feed rate affected the final film grain size and 

morphology. The influence of particle arrival size on the film restructuring dynamics can 

be explained by particle sintering on the substrate.  Sintering results in two small particles 

combining to form a larger structure with a volume equal to the sum of the two initial 

volumes.  At constant temperature, the characteristic time for two TiO2 particles of the 

same initial size to completely sinter is proportional to particle diameter to the fourth 

power 26,28.  From 3-3, the arrival size of particles at the substrate was approximately 4.5 

nm and 8.0 nm for TTIP feed rates of 0.069 mmol/hr (Test 2) and 0.55 mmol/hr (Test 5) 

respectively.  The characteristic sintering time for the higher TTIP feed rate was an order 

of magnitude longer than for the lower TTIP feed rate, thus changing the sintering 

dynamics and final film morphology.  This difference in morphology can be seen in 

Figure 3-4.  
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Figure 3-4: Film morphology for two TTIP feed rate for films deposited for a fixed time 
of 180 seconds. (a) High magnification side view SEM image for TTIP = 0.14 mmol/hr.  
(b) For TTIP = 0.55 mmol/hr, (b1) low and (b2) high magnification side view SEM 
images.  

 

 For small particle arrival size, or fast sintering dynamics, a columnar structure 

was observed.  The sintered columnar morphology was characterized by continuous 

vertical columns, observed in the SEM, and large average grain size, measured from 

XRD peak broadening using the Scherrer equation.  As small particles, which were 4.5 

nm in the aerosol phase, sintered, they combined to form larger structures that had longer 

range crystalline order, hence the 47 nm grain size observed in the XRD (Test 2).   

Alternatively, for large particle arrival size, or slow sintering dynamics, a granular 

particulate morphology was observed.  The particulate morphology was characterized by 

fractal structures, observed in the SEM and a small average grain size.  Due to the slow 

sintering dynamics, the large particles did not combine and instead remained isolated 

with approximately the same grain size as was present in the original particle before it 

deposited.  This can be seen by comparing the average grain size of the unsintered film 

deposited at 0.55 mmol/hr TTIP feed rate (Figure 3-5) to the aerosol phase particle size 
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like structure with a small average grain size.  The photocurrent is related to grain size, 

but also depends on interfacial properties and can change for slight alterations of the film 

morphology.  For instance, it is more difficult for free charge carriers to migrate to the 

electrodes in particulate films with small grain size because of particle-particle interfacial 

migration barriers16.  In continuous and well-sintered films with larger grain size, free 

charge carriers encounter fewer migration barriers and can freely flow to the electrodes.  

This result is in agreement with other work that has found a higher electron drift mobility 

in columnar films, compared to granular particulate films29. 

 

Figure 3-8:  Measured photocurrents as a function of: (a) TTIP feed rate for a fixed 
deposition time of 180 sec. and (b) deposition time (film thickness) for a fixed TTIP feed 
rate of 0.14 mmol / hr.   
 

The photocurrent was larger for the thicker films (longer deposition times), while 

maintaining the well-sintered, columnar morphology.  As the thickness of the sintered 

columnar film was increased, it intercepted more light, thus generating an increased 

number of free charge carriers.  The increased number of free charge carriers resulted in 

an increase in the measured photocurrent.  It should be noted that there may be an upper 

limit on thickness beyond which the photocurrent could saturate due to no further 
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increase in light absorption (due to geometrical effects) . These photocurrent 

measurements illustrate that the deposited films are photoactive and there are clear trends 

in the photoactivity as a function of controllable film characteristics. 

 

3.5 Conclusions 

 A robust system consisting of a flame aerosol reactor (FLAR) for the deposition 

of TiO2 films has been developed.  The ability to synthesize films with well-controlled 

morphology in a single-step process was described.  Two important process parameters 

that influence the film morphology are TTIP feed rate and the substrate temperature.  

These parameters influence the final film morphology through their effect on particle 

sintering dynamics on the substrate.   The range of particle arrival sizes was varied from 

4.5 nm to 8.0 nm.  Smaller particle arrival sizes ensure faster sintering after deposition 

resulting in the formation of well-sintered, columnar morphology films.  For larger 

particle sizes, the sintering on the substrate is much slower, leading to a granular 

morphology.   Good control of the film thickness was demonstrated, and the relationship 

to deposition time and precursor feed rate established. 

 The titanium dioxide films were demonstrated to be activated by light.  The 

resultant photocurrents were measured and the performance of the well-sintered, 

columnar morphology films was found to be superior to the granular films.  Similarly, 

thicker films in the range of 42 to 890 nm were demonstrated to have higher 

photocurrents.  These photocurrent results are a measure of the photoelectric properties of 

the films, which are likely critical to applications such as photocatalytic hydrogen 
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production by watersplitting.  Work is currently underway to apply these films to 

photocatalytic watersplitting.   

 The FLAR could likely be scaled up and applied to the deposition of many metal-

oxide films for which suitable precursors are available.  Fe2O3 films have been 

synthesized by switching the precursor in the bubbler from TTIP to Fe(CO)5, and is the 

subject of a future paper.   

This study provides insights into design parameters and operating conditions 

necessary to obtain desired film morphologies.      For example, if well-sintered columnar 

films are desired, the particle arrival size and the substrate temperature would have to be 

within a certain range.  The particle arrival size is controlled by the flame operating 

conditions and feed rate of the precursor.  The results indicate that beyond a certain feed 

rate, the resultant particle size would be large so that well-sintered columnar 

morphologies would not be obtained.   
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Chapter 4: 
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the Performance of Dye-Sensitized Solar 

Cells and Photo Water Splitting 
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Nanostructured TiO2 films with controlled morphology synthesized in a single step 

process: Performance of dye-sensitized solar cells and photo watersplitting, Elijah 

Thimsen, Neema Rastgar and Pratim Biswas Journal of Physical Chemistry C 2008, 112, 

(11), 4134-4140.  
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4.1 Abstract 

Nanostructured titanium dioxide (TiO2) films were synthesized with controlled 

morphology and thickness in an ambient pressure single-step flame aerosol reactor 

(FLAR) for use in water splitting photocells and dye-sensitized solar cells.  Two different 

morphologies were studied:  a granular morphology and a highly-crystalline columnar 

morphology. The granular morphology consisted of nanoparticles, approximately 10 nm 

in diameter, aggregated into fractal structures on the substrate. The granular morphology 

contained a large number of grain boundaries and other interfacial defects. The columnar 

morphology consisted of single crystal structures, approximately 85 nm in width, 

oriented normal to the substrate.  The well-controlled deposition process was used to 

deposit films with thicknesses in the range from 98 nm to 12 μm to establish the 

relationship to water splitting and dye-sensitized solar cell performance.  It was found 

that for water splitting there was an optimum thickness (~1.5 μm), which was a tradeoff 

between light absorption and electron transport losses, where the conversion efficiency 

was maximized.  Due to differences in electron transport and lifetime in the TiO2 film, 

for both applications the columnar morphology outperformed the granular morphology, 

achieving a UV-light to hydrogen conversion efficiency of 11% for water splitting and a 

visible light to electricity conversion efficiency of 6.0 % for the dye-sensitized solar cell.   
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4.2 Introduction 

Nanostructured films find application in a number of areas, such as catalysis, 

microelectronics, and solar energy harvesting.  A key aspect of effective, next-generation 

solar energy technology is the ability to synthesize films with controlled morphology.  

Titanium dioxide (TiO2) is a semiconductor that has been extensively utilized in next-

generation solar energy technology as an inexpensive alternative to silicon-based solar 

cells and in environmental photocatalytic applications.  In its pristine state, TiO2 absorbs 

only UV-light due to its wide band-gap (~ 3.2 eV).  However, many researchers have 

developed visible-light active TiO2 through doping1-5 and adsorption of light-absorbing 

organic molecules6-9, giving this material potential as a means to inexpensively harvest 

solar energy.  Photocatalytic reactors based on TiO2 have been employed to reduce CO2 

to more useful hydrocarbons such as methane10, 11 and methanol10, 12, which in the future 

could lead to novel hydrocarbon-based CO2 sequestration techniques.  Titanium dioxide 

has also been extensively explored as a material to photosplit water13, for the generation 

of solar-hydrogen as a sustainable source of fuel3.  However, the most prominent role 

TiO2 has played in the solar energy community is in photovoltaic dye-sensitized solar 

cells.  It is the electron conduction layer in these solar cells that are an inexpensive and 

economically viable alternative to conventional silicon-based technology7.  Titanium 

dioxide-based solar energy technology is in the nascent stages of commercialization, but 

for significant breakthroughs to occur, device efficiencies must be improved. 

Film morphology has been identified as an important, efficiency-limiting aspect 

of TiO2 films. For water splitting cells, it has been reported that crystalline structures 

oriented normal to the substrate have superior performance relative to irregular 
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disordered strucutres14.  In addition, TiO2 nanotubes have the highest reported UV-light 

to hydrogen conversion efficiency due to their morphology15.  However, a systematic 

comparison of morphologies synthesized by the same process has not been performed. 

 Morphology can also affect the performance of dye-sensitized solar cells.  Dye-

sensitized solar cells rely on a nanostructured interpenetrating interface between an 

electron-conducting layer (TiO2
6

 or ZnO16), a light-absorbing layer (Ru-based dye17, 

porphyrins8, quantum dots18) and a hole-conducting layer (redox electrolyte17, hole-

conducting polymer19, p-type semiconductor20) to generate and separate charge.  Electron 

conduction layers made of TiO2 have typically been used because electron transfer 

between the light-absorber and TiO2 is more efficient than other materials such as ZnO16.  

The electron-conducting TiO2 layer serves two important functions.  First, it provides a 

large surface area onto which the light-absorbing agent is immobilized, while maintaining 

short transport distances to the substrate (~μm).  Second, the TiO2 conducts electrons 

generated by light-absorbing layer to the substrate where they are collected.  Surface 

area, electron transport and electron lifetime are critical to device performance21.  

Nanoparticles are typically used to fabricate films for TiO2 solar cells, owing to their high 

specific surface area6, 7.  However, recent studies have found that TiO2 films fabricated 

using larger particles, which are believed to have better electron transport properties, 

resulted in improved device performance22, 23.  In addition, inclusion of larger particles 

has also been found to improve optical properties of the titania film17, 24.  Overall, 

previous research has shown that control over morphology is critical, as it can be used to 

optimize conversion efficiency.  Morphology is ultimately determined by the synthesis 

process.   
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 A variety of synthesis techniques have been employed to synthesize TiO2 films.  

These synthesis methods include: thermal oxidation1 and anodization25 of titanium foils,  

dip-coating26, screen-printing27, sol-gel processes28, sputtering14, spray-pyrolysis29 and 

chemical vapor deposition30, among others.  High-performance film morphologies can be 

obtained through these processes, but the synthesis is either difficult to control, involves 

multiple time-consuming steps, or the use of expensive processing equipment.  The use 

of such time-consuming and expensive processing is undesirable for the widespread 

industrial production of films that would be required to harvest a meaningful amount of 

solar energy.  There is a need for a robust, inexpensive synthesis process to fabricate 

high-performance films in a single step that provides rational control over film 

morphology.    

 Flame aerosol reactors (FLAR) are an attractive way to synthesize TiO2 films. 

Flame aerosol reactors are single step, gas-phase, most commonly atmospheric pressure, 

and allow rapid processing31, 32.  Flame-based processes are commonly used in industry 

to synthesize nanomaterials, and produce millions of tons per year of carbon black, paint 

pigments, optical fibers and many other valuable products.  Detailed models have been 

developed to predict morphology and other characteristics of films produced by these 

processes33-35.  Recently, a premixed flame reactor was used to synthesize TiO2 films 

with controlled morphology and thickness, where both had a significant impact on 

photocurrent  generation31.  The controlled morphology of TiO2 films produced in the 

FLAR can take two forms, granular and columnar, which can be used to optimize the 

film architecture to meet the needs of specific applications.     
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For this study, a premixed methane-oxygen flame aerosol reactor was used to 

fabricate TiO2 films with controlled morphology and thickness. These films were then 

used for two different applications, photocatalytic water splitting and photovoltaic dye-

sensitized solar cells.  The relationship of nanostructured film morphology and thickness 

to performance was systematically studied, using films deposited by a single step 

synthesis process. 

 

4.3 Experimental Methods 

4.3.1 Film Synthesis  

A detailed description of the flame aerosol reactor is presented elsewhere31; a 

brief summary of the experimental parameters is presented here.  A schematic of the 

reactor is presented in Figure 4-1.  The titanium dioxide films were deposited onto ITO 

coated aluminosilicate glass substrates (Delta Technologies, Stillwater MN).  The 

thickness of the ITO coating was about 200 nm.  The substrates were used as received.  

During deposition, intimate thermal contact was established between the substrate and 

substrate holder through the application of a small amount of silver thermal paste (Arctic 

Silver, Visalia CA) to the backside of the substrate.   Titanium tetra-isopropoixde (TTIP, 

>98% purity, Sigma-Aldrich) was the Ti precursor, and was used as received. The 

substrate temperature was monitored online by a type K thermocouple embedded in the 

holder about 1/8” behind the backside of the substrate.  The distance from the outlet of 

the burner to the substrate, or burner-substrate distance, was used as a process parameter 

to simultaneously vary the residence time in the flame and substrate temperature.  The 

burner-substrate distance was varied in the range from 1.7 cm to 6.0 cm. 
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Figure 4-1: Schematic of the flame aerosol reactor (FLAR) system used to deposit 
nanostructured TiO2 films with controlled morphology in a single step.   

The process gasses for the flame were controlled using digital mass flow controllers 

(MKS Instruments, Wilmington MA). The following sets of process parameters were 

used for films synthesized for water splitting and the dye-sensitized solar cells.  For water 

splitting, the total argon, oxygen and methane flow rates were held constant at 4.0 lpm 

(liters per minute at STP), 2.7 lpm and 0.9 lpm respectively.  Using a home-made 

bubbler, The TTIP feed rate was held constant at approximately 1.2 mmol hr-1. The 

burner outlet area was about 0.14 cm2.  The films for the dye-sensitzed solar cells were 

synthesized at slightly different conditions.  The flow rates of argon, oxygen and methane 

were 6.0 lpm, 4.0 lpm and 1.35 lpm respectively.  The TTIP precursor feed rate was 

approximately 1.2 mmol hr-1 and the burner outlet area was about 0.178 cm2.  Due to the 

highly oxidizing conditions and the elevated temperatures in the flame region, no 

partially oxidized carbonaceous products are expected in this system36.  
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The arrival size of particles at the substrate is an important process parameter that 

influences the film final morphology.  For size analysis, particles were extracted from the 

flame at the deposition point using a custom-made dilution probe and then deposited onto 

lacey carbon transmission electron microscope (TEM) grids.  A JEOL 2100 FEG TEM 

operating at 200 kV was used to image the particles.  From the images, the average 

particle size was determined by measuring the diameters of approximately 250 particles. 

4.3.2 Film Characterization  

The nanostructured TiO2 films where characterized using several analytical 

techniques.  The crystalline phase was determined by x-ray diffraction using a Rigaku 

DMax x-ray diffractometer.  Anatase was the dominant crystalline phase for all of the 

films in this study.  Example XRD patterns are presented in Figure 4-4.  No preferred 

orientation was observed for the films in this study.  The average grain size was measured 

from the broadening of the 2θ = 25.6o anatase peak using the Scherrer equation. The 

morphology and film thickness were determined from scanning electron microscopy 

(SEM) using a Hitachi model S-4500 field emission electron microscope operating at 15 

kV.  The SEM specimens were prepared by first cleaving the substrate down the middle 

of the area occupied by the TiO2 film. The cleaved films were then mounted vertically on 

specimen mounts and subsequently coated with a 5 nm layer of gold to prevent charging.  

The films were imaged from the side in the SEM to verify morphology and measure 

thickness.  Alternatively, a JEOL 2100 FEG TEM operating at 200 kV was used for TEM 

analysis of the films.  TEM specimens were prepared by mechanically removing film 

elements from the substrate using a scalpel, and placing them onto lacey carbon grids 

(Ted Pella, Redding CA).     
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4.3.3 Photo Water Splitting   

Water splitting performance was characterized using a standard 2 electrode 

photocell3 with a platinum wire counter electrode and 1 M KOH electrolyte.  The pristine 

TiO2 films were illuminated with a UV-light (λ < 400nm) light intensity of 24 mW cm-2 

from a 400W Xe arc lamp (Oriel), as measured by a spectroradiometer with a NIST-

traceable calibration (International Light, Peabody MA).  The measured light irradiance 

was not corrected for intensity losses at the quartz walls of the photocell.  In the external 

circuit, a constant bias (0.8 V vs. platinum) was applied using a DC power supply to 

enhance the extraction of electrons from the TiO2 film1.  The current through the external 

circuit was measured using an ammeter (Keithley), normalized by the macroscopic 

substrate area occupied by the film, and assumed proportional to the hydrogen production 

rate.  The current without illumination was about 30 μA cm-2.   

4.3.4 Dye-sensitized solar cell   

Dye-sensitized solar cells were constructed using conventional procedures and 

components17, 24.  A Ru-based dye (Ruthenium 535-bisTBA, Solaronix, Aubonne 

Switzerland) was used to sensitize the TiO2 films to visible light.  Before dye adsorption, 

the TiO2 films were heated to 120 oC for about 30 minutes, to remove water from the film 

surface.  While still warm, the films were placed into a 0.3 mM anhydrous ethanol-dye 

solution and soaked overnight (~12 hours), to adsorb dye onto the film surface.  Counter-

electrodes were fabricated by sputter-coating a ~150 nm platinum film onto ITO-coated 

glass substrates.  The photoelectrode (dye-TiO2) and counter electrode (Pt) were 

sandwiched together using multiple layers of a commercially available sealant (SX 1170, 

Solaronix).  The two electrodes were separated by about 0.5 mm of electrolyte, which 
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was introduced into the cell through two small filling holes. An acetonitrile-based 

electrolyte (AN-50, Solaronix) with I-/I3
- as the redox couple was used to transfer 

electrons from the platinum counter electrode to complete the circuit by regenerating 

oxidized dye molecules on the TiO2 film surface.   

Several solar cell parameters were measured.  Before cell construction, the 

amount of dye on the TiO2 film surface was measured by desorbing the dye using a 1 

mM KOH solution and measuring the light absorption of the desorbed dye solution with a 

calibrated UV-vis spectrometer24 (Perkin-Elmer, Waltham MA).  The amount of dye on 

the film surface was normalized by the macroscopic substrate area occupied by the film 

(~1cm2).  For completed cells, under backside illumination by a Xe arc lamp equipped 

with both an AM1.5G filter and water filter, at a measured intensity of 124 mW cm-2 

(1.24 Suns), the current-voltage (I-V) characteristics were measured to determine the 

open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF) and conversion 

efficiency17, 24.  The solar cells were masked to define an active area of about 0.2 cm2.  

Lastly, to obtain information about the electron lifetime in the TiO2 films, photovoltage 

transient measurements were performed on unmasked cells by monitoring the decay of 

the open-circuit voltage after a 60 μs, 5000 mJ pulse from a Xe flash-lamp (Newport, 

Stratford CT).   

4.4 Results and Discussion 

4.4.1 Film synthesis   

Films with two different morphologies were synthesized for this study.  The first 

morphology was granular and consisted of nanoparticles caked onto the substrate. This 

morphology is illustrated by the electron micrographs in Figure 4-2.  For the granular 
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morphology, nanoparticles were deposited from the aerosol-phase to form fractal 

structures on the substrate and underwent little or no restructuring once deposited31.  In 

Figure 4-2, low and high resolution TEM images are presented for a granular fractal that 

was mechanically removed from the substrate.  It can be seen from the rings in the 

diffraction pattern that the granular morphology was polycrystalline anatase, with grains 

that were about 10 nm in size. This size agreed with the 13 nm average crystal size 

measured from XRD peak broadening using the Sherrer equation (Figure 4-4).  The 

granular morphology contained a large number of grain boundaries and other defects 

located at particle-particle interfaces.  These interfacial defects are known to inhibit 

charge-carrier transport and promote recombination in the TiO2 film37, 38.   

 

Figure 4-2:  Side-view SEM image (upper right) of a granular film deposited at a burner-
substrate distance of 4.1 cm, low resolution (lower left) and high resolution (lower right) 
TEM images of a granular fractal mechanically removed from the substrate.  The inset 
shows the Fast Fourier Transform (FFT) of the high-resolution TEM image, exhibiting  
polycrystalline electron diffraction rings corresponding to the (101), (004), (200), (105) 
and (205) reflections of anatase, moving from the center outwards. 
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The second morphology was columnar, which consisted of highly crystalline 

structures oriented normal to the substrate (Figure 4-3).  For the columnar morphology, 

nanoparticles were deposited out of the flame onto the substrate where they completely 

sintered to form continuous column-like structures31. From the XRD pattern (Figure 4-4), 

the average grain size of the columnar morphology was about 85 nm, which corresponds 

to the approximate width of the columns, as seen in Figure 4-3.  High resolution TEM 

analysis of single columns scraped off the substrate revealed that the individual columns 

had long-range crystalline order.  In many cases the columns were single crystals.  There 

were a reduced number of grain-boundaries and interfacial defects in the columnar films. 

 

Figure 4-3: Side-view SEM image (upper right) of a columnar film deposited at a 
burner-substrate distance of 1.7 cm, low resolution (lower left) and high resolution (lower 
right) TEM images of a highly-crystalline single column mechanically removed from the 
substrate.  The inset shows the Fast Fourier Transform (FFT) of the high-resolution TEM 
image, exhibiting single crystal electron diffraction from the (103) and (101) planes of 
anatase. 
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The film morphology, granular vs. columnar, is determined by the particle 

sintering behavior on the substrate31. For slow sintering dynamics, granular films are 

formed.  Alternatively, the columnar morphology is formed when sintering dynamics are 

rapid. Sintering, a solid state diffusion process, is a strong function of both initial particle 

diameter and temperature.  The characteristic time for two particles of the same initial 

diameter to completely sinter into an equivalent-volume sphere scales with initial 

diameter to the forth power and exponentially decreases with increasing temperature39, 40.  

Thus, for smaller particles and higher temperatures sintering is rapid; and for larger 

particles and lower temperatures sintering is slow.  The arrival size of particles at the 

substrate and the substrate temperature are parameters that can be rationally varied to 

precisely control the film morphology through their influence on sintering dynamics.  

 

Figure 4-4: Example x-ray diffraction patterns for two as-prepared films, a 7.5 μm 
granular (blue) and a 6.9 μm columnar (red).  The grain size measured from the peak 
broading using the Scherrer equation was approximately 13 nm for the granular film and 
85 nm for the columnar film. 
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The sintering behavior on the substrate was controlled by systematically altering 

the arrival size of particles at the substrate and the substrate temperature.  These 

parameters were varied simultaneously though the burner-substrate distance.  It is known 

that particle size increases with residence time in particle synthesis processes41, 42, which 

in this case changed with the burner-substrate distance.  In addition, the temperature 

distribution in the premixed flame was a function of axial position and was used to tune 

the substrate temperature through its influence on heat transfer to the water-cooled heat 

sink (Figure 4-1).  The particle size and substrate temperature were measured at two 

burner-substrate distances, 1.7 cm and 4.1 cm.  The measured substrate temperature was 

190 oC and 130 oC for 1.7 cm and 4.1 cm respectively.  It should be noted that the 

measured substrate temperature was much lower than the actual surface temperature of 

the substrate, due to resistance-induced temperature drops between the substrate surface 

and measurement location, which was 1/8” behind the substrate (Figure 4-1).  The 

average particle size, measured from TEM images of particles extracted from the flame, 

was 3.1 nm and 3.9 nm at 1.7 cm and 4.1 cm.  For the shorter burner-substrate distance, 

smaller particles were deposited at a higher substrate temperature, resulting in rapid 

sintering dynamics on the substrate and the formation of TiO2 films with the columnar 

morphology (Figure 4-3).  At the longer burner-substrate distance, slightly larger 

particles were deposited at a reduced substrate temperature, resulting in slower sintering 

dynamics and films with the granular morphology (Figure 4-2).  The final film 

morphology proved important to control, as it significantly affected the performance of 

the TiO2 films. 
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4.4.2 Photo Water Splitting   

The water splitting photocurrent was measured for columnar and granular films of 

varying thickness.  Columnar films were deposited at a burner-substrate distance of 1.7 

cm with thicknesses in the range from 100 to 3000 nm; while granular films were 

deposited at 4.1 cm in the thickness range 600 to 12000 nm.  The film thickness was 

controlled by varying the deposition time in the range from 30 seconds to 17 minutes, 

longer deposition times corresponding to thicker films31.   

A new equation was used to determine the energy conversion efficiency because 

the conventional equations1, 15 are known to inaccurately estimate43 the contribution of 

the DC power supply.  The efficiency was estimated from the photocurrent by performing 

an energy balance on the water splitting cell.  Energy entered the cell in the form of UV-

light and electrical work, and left the cell in the form of hydrogen gas.  The ratio of 

energy-output to energy-input was taken as the efficiency, using the following equation: 

   
apppo

o
Hp

VjI
Ej

+
=η                                                   (4-1)   

where pj  is the measured photocurrent )( ,, darkplightpp jjj −= , o
HE  is the standard 

reduction potential of water formation from hydrogen and oxygen (1.23 V), oI  is the 

incident light intensity (24 mW cm-2) and appV is the output of the power supply  (0.8 V).  

Both thickness and morphology had a significant effect on the water splitting 

performance.  Water splitting photocurrent and conversion efficiencies are presented in 

Figure 4-5.   
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The photocurrent increased with thickness, until reaching a critical value, and 

then decreased for thicker films.  This behavior was observed for both morphologies. The 

critical thickness was an optimum balance between light absorption and charge transport 

losses.  As the film thickness increased, more light was absorbed.  However, after a 

certain point the light absorption saturated.  Any increase in thickness beyond the critical 

value increased the time it took for charge-carriers to migrate through the film, making 

recombination processes more competitive with transport.  Both morphologies have a 

similar critical thickness, because this is the system-specific material-dependent point 

where light absorption is maximized. Along these lines, photocurrent-thickness plots, 

such as the ones in Figure 4-5 can be divided into two different regions.  Films thinner 

than the critical value are light-absorption limited, while thicker films are transport 

limited.   

 

Figure 4-5: Water splitting photocurrent as a function of film thickness for the columnar 
films deposited at a burner-substrate distance of 1.7 cm (red); and granular films 
deposited at 4.1 cm (blue).  The hydrogen conversion efficiency, calculated using 
equation 4-1, is in parenthesis next to each point. 
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The photocurrent was also a strong function of film morphology.  It can be seen 

from Figure 4-5, the columnar films deposited at 1.7 cm had a maximum conversion 

efficiency approximately 50 times higher than the granular films deposited at 4.1 cm.   

The columnar films had higher photocurrents because of their superior electronic 

properties.  For FLAR-produced TiO2 films, the columnar morphology has been found to 

have a higher photoconductivity relative to the granular morphology31.  Also, it has been 

reported that particle-particle interfaces in granular films present migration barriers for 

electrons, increasing the time it takes for electrons to be transported in the film and thus 

making recombination more competitive with transport44.  Additionally, it is known that 

for films produced by different synthesis processes, electron drift velocities are higher in 

films with columnar morphologies than in granular films37.  However, other oriented 

morphologies, such as TiO2 nanotubes, have been found to have similar transport 

characteristics to granular films.  Despite the similar electron transport characteristics, 

TiO2 nanotubes were found to have an order of magnitude longer electron lifetime 

relative to granular films38.   Experimental results from transient photovoltage 

measurements performed on dye-sensitized solar cells presented later in this paper 

suggest that the electron lifetime is longer in the columnar films than in the granular, 

resulting in superior electronic properties and performance.   While dye-sensitized solar 

cells are a different system than water splitting cells, it is reasonable to conclude that in 

the case of water splitting, the highly crystalline columnar films have generally superior 

electronic properties (longer charge carrier lifetimes and shorter transport times) to the 

granular films, resulting in higher photocurrents, and greatly improved water splitting 

performance. 
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4.4.3 Dye-sensitized Solar Cell   

Solar cells were constructed using 3 different TiO2 films, 2 columnar films and 1 

granular film.  The columnar films were of different thicknesses, 1.9 μm and 6.9 μm.  

The granular film had a thickness of 7.5 μm.     

  The I-V characteristics for the three solar cells are presented in Figure 4-6, and 

the measured cell parameters are presented in Table 4-1.  All three of the cells have 

similar open-circuit voltages and fill factors.  The primary difference between the cells is 

in the short-circuit current.   

 

Figure 4-6:  Dye-sensitized solar cell performance characteristics – photocurrent as a 
function of operating voltage for a 1.9 μm columnar film (dotted-red), 6.9 μm columnar 
(solid-red) and a 7.5 μm granular film (dashed-blue). 

 
 The current generated by the solar cells was a function of TiO2 film thickness, 

through its influence on total surface area of the columnar films.  For the columnar 

morphology, the 6.9 μm film generated 20.2 mA cm-2 of current at short circuit 

conditions, while the 1.9 μm film only generated 6.55 mA cm-2. This difference is a result 

of light absorption.  In dye-sensitized solar cells, the dye molecules on the film surface 

absorb light and inject electrons into the TiO2 film.  It can be seen from Table 4-1 that the 
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6.9 μm film adsorbs about 2.70 x 10-8 mol of dye while the 1.9 μm film only adsorbs 1.05 

x 10-8 mol.  Keeping in mind that these films have a columnar nanostructure, the 

difference is due to a larger total surface area present on the 6.8 μm film, compared to the 

1.9 μm film.   Assuming that the dye is present as a monolayer on the TiO2 film surface, 

more dye molecules will result in an increased number of electrons injected into the TiO2 

film, resulting in more current generated by the solar cell.  If the thickness were further 

increased, the light absorption would eventually saturate, and then decay in a similar way 

to the water splitting trend with thickness.   

Table 4-1:  Summary of the dye-sensitized solar cell performance metrics for cells 
constructed using different TiO2 films.   

 

morphology 

film 
thickness 

(μm) 

dye 
adsorbed 
(10-8 mol 

cm-2) Voc (V) Isc (mA cm-2) FF η 

columnar 1.9 1.05 0.83 6.55 0.48 2.1% 

columnar 6.9 2.70 0.74 20.2 0.49 6.0% 

granular 7.5 3.27 0.75 1.71 0.59 0.6% 

 

The performance of the solar cells was also a strong function of morphology.  

From Table 4-1, the 6.9 μm columnar film produced 20.2 mA cm-2 of current at short-

circuit conditions, while the 7.5 μm granular film only generated 1.71 mA cm-2.  In this 

case, the two films had a similar amount of dye adsorbed onto the film surface, 3.27 x 10-

8 mol for the granular compared to 2.7 x10-8 mol for the columnar.  Therefore, these two 

cells absorbed similar amounts of light.  The columnar film generated more current in 

part because of longer electron lifetimes. 

 The electron lifetime was measured using transient voltage measurements, for the 

6.9 μm columnar and 7.5 μm granular film.  The electron lifetime, which is a function of 
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the open-circuit voltage, can be estimated from the transient photovoltage characteristic 

using the following equation21, 45: 

( ) 1−−
= dt

dV
e

Tkb
lifetimeτ                                          (4-2) 

where dt
dV  is the time derivative of the photovoltage transient at a given Voc , kb is the 

Boltzmann constant, T is the solar cell temperature and e is the unit charge.  The 

measured photovoltage transients and the calculated electron lifetimes are plotted in 

Figure 4-7.   It can be seen from Figure 4-7 that at a given open circuit voltage, the 

electron lifetime in the granular film is about a factor of 10 shorter than the lifetime in the 

columnar film.  

 

Figure 4-7:  Measured photovoltage transients (left) and electron lifetimes (right).  The 
lifetimes were calculated using equation 4-2, as a function of open circuit voltage for 
solar cells using columnar (red) and granular (blue) films. 

 
The difference in electron lifetime is an explanation for the lower photocurrent 

measured in the granular film.  In the granular film, electron recombination was faster, 

which influenced the number of electrons collected at the substrate.  It took a finite 

amount of time for electrons to be transported through the film and be collected at the 
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substrate.  For electrons to be collected, the transport time must be less than the 

corresponding lifetime.  Considering there was a distribution of electron lifetimes and 

transport times, for a given amount of injected electrons, a lower fraction were collected 

at the substrate in the shorter-lifetime granular case, resulting in a lower short-circuit 

current and poorer conversion efficiency.  This result further supports the hypothesis that 

for water splitting and dye-sensitized solar cells the granular morphology has generally 

inferior electronic properties when compared to the columnar morphology. 

 

4.5 Conclusions 

 A robust single step film synthesis process allowed the deposition of films with 

well controlled characteristics.  Two different morphologies of TiO2 films were prepared 

at ambient pressure, using this single step process. The first morphology was 

polycrystalline and granular, which consisted of fractal structures of nanoparticles on the 

substrate.  Second, a columnar morphology was studied that consisted of single crystal 

columns of anatase TiO2 oriented normal to the substrate surface.  The performance of 

these films was tested in two different devices, water splitting and dye-sensitized solar 

cells.  For both devices, the columnar morphology outperformed the granular by a factor 

of 10 or more.  Morphology was found to have a dominant effect on photo conversion 

efficiency.  The single step synthesis methods demonstrated that the morphology could 

be readily controlled in the FLAR system. 

 This result has implications to novel material design.  Many researchers are 

attempting to fabricate efficient, visible-light active oxide materials.  Attention must be 

paid to the morphology of these materials, as the morphology can affect performance 
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over orders of magnitude.  The flame aerosol reactor is a valuable tool to study novel 

material synthesis.  It can be used to control the morphology of the film, and can also 

rapidly synthesize different materials by simply choosing appropriate gas-phase 

precursors. 
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5.1 Abstract 

Despite extensive research in photocatalytic water splitting, electrolyte usage 

varies greatly across different photocells.  Photocatalytic water splitting continues to be 

performed in a wide range of electrolytes, from very acidic to very basic, with incomplete 

understanding of how the electrolyte composition affects performance.  This study 

provides guidelines for electrolyte selection in water splitting applications.  To determine 

properties that comprise an ideal electrolyte for photocatalytic electrolysis, the effects of 

several parameters were studied: pH, dissolved oxygen, conductivity, and composition. 

The photoactive anode was a nanostructured thin TiO2 film synthesized by a flame 

aerosol process.  The photocatalytic conversion efficiency increased with both pH and 

conductivity, but changes in dissolved oxygen levels had no discernable effect.  The 

electrolyte composition was adjusted using selected salts and bases.  Although the effect 

of the cation was negligible, anions were found to reduce efficiencies if their oxidation 

potential makes them thermodynamically favored over water molecules for oxidation.  

The results of these studies were applied in an analysis of the prospects for splitting 

seawater to produce hydrogen. 
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5.2 Introduction 

Photocatalytic water splitting is a promising candidate for the clean, renewable, 

and cost-effective production of hydrogen.  This pathway was originally demonstrated in 

the 1970’s by Fujishima and Honda1, then ignored for awhile after the end of the energy 

crisis, but has gained substantial focus in recent years.  One of the most commonly 

studied photocatalysts for this method is TiO2.  This material is promising for many 

reasons.  Most importantly, it has suitable conduction and valence band positions to 

catalyze the water-splitting reaction2.  However, TiO2 does have one major drawback – it 

is a wide gap semiconductor (Eg ~ 3.2 eV) that can only absorb 4 % of the energy in 

sunlight3.  This limitation can be partially overcome by doping4, but increasing the visible 

light response remains an active area of research.  Despite this absorption limitation, 

pristine TiO2 remains an excellent model photocatalyst to study surface reactions.  In 

addition, the resources for TiO2 are abundant and relatively cheap, and the compound is 

highly stable5, which also make it an attractive system to study. 

Most research in photocatalytic oxidation has been material-based6-13.  Few have 

looked into the effects of the electrolytic environment on photocatalytic efficiency, and 

those studies generally focused on photocatalytic oxidative pollutant degradation14-16.  

Those who investigated the effect of dissolved oxygen found system based results.  In 

some studies, it reduced the overall efficiency of photocatalytic oxidation14 , in others 

improved it17, or had no significant effect15.  Some researchers have looked at the effect 

of pH and found that electrolytes at high pH are more effective in promoting 

photocatalytic oxidation15, 16.   Authors have noted, as well, that a change in pH shifts the 

valence band and conduction band edges of the material2, 15, 18.  However, the causes of 
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these effects have not been analyzed in detail.  In addition, studies have not been carried 

out for the photocatalytic water splitting reaction.   

This study focuses on the effect of electrolyte composition on photocatalytic 

splitting of water, developing a fundamental understanding of the role of ionic species in 

the reaction.  The role of ionic species in determining photocatalytic water splitting 

performance is discussed in terms of their role in reaction kinetics and thermodynamics, 

as well as their influence on charge transport in the photoelectrochemical cell.  To 

determine these roles and effects, four electrolyte properties were examined for their 

impact on the hydrogen evolution rate: (1) pH, (2) dissolved oxygen, (3) electrolyte 

conductivity, and (4) electrolyte composition.  In addition to looking at these properties’ 

individual effects, this paper analyzes how they overlap, which factors dominate, and 

which considerations are most important in selecting an electrolyte for this application.  

Furthermore, it examines how these findings affect the prospects for seawater splitting.  

Seawater provides an abundant resource for industrial-scale photoelectrolysis, and the 

results of this study elucidate some issues that must be addressed in order for the 

practicability of seawater splitting to be properly evaluated. 

 

5.3 Experimental Methods 

5.3.1 Materials 

 The experimental setup is illustrated in Figure 5-1.  The reaction cell contains 

400 mL of electrolyte and a small amount of headspace for gas flow.  The cell body is 

composed of optical grade quartz glass with a stainless steel top bearing all ports, 
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including a gas inlet, outlet, and a port for each electrode.  All connections were made 

gas-tight so that the environment could be strictly controlled. 

 
 

Figure 5-1. Schematic diagram of the experimental setup for water splitting. 

The photocatalytic anode used in all experiments was a nanostructured TiO2 thin 

film deposited on an ITO-coated glass substrate (Delta technologies, Stillwater MN).  

The TiO2 film was synthesized by a premixed flame aerosol reactor (FLAR), the details 

of which are described in our earlier papers5, 19.  The flow rates of process gases were: Ar 

= 12.0 liter per minute at standard temperature and pressure (lpm), O2 = 8.0 lpm, CH4 = 

2.2 lpm. The feed rate of the titanium precursor (87% titanium tetra-isopropoxide, Sigma 

Aldrich) was controlled by feeding 1.0 lpm of Ar through a homemade bubbler 

maintained at 43 oC.  The burner-substrate distance was 1.5 cm. The measured substrate 

temperature was 212 oC, which corresponded to an approximate surface temperature of 
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600 oC.  The film consisted of single-crystal TiO2 columnar nanorods oriented normal to 

the substrate19.  The crystal phase was anatase with an average grain size of 100 nm, as 

measured by X-ray diffraction.  The nanorods were approximately 1 μm in thickness and 

100 nm in width, as measured by side-view scanning electron microscope (SEM) images.   

The macroscopic area of the film on the substrate was 1.3 cm2.  A platinum wire 

(Bioanalytical Systems, MW-1032) was used as the counter electrode. 

5.3.2 Data Collection 

The entire film was illuminated with a columnated beam from an Oriel 66021 UV 

Lamp with a UV light intensity of 40 mW cm-2 at the surface of the film.  The irradiance 

was measured by a spectroradiometer (RPS900-R, International Light, Peabody MA) and 

was not corrected for losses at the cell walls.  A bias of 0.8 V was applied using a 

Hewlett Packard E363-A power supply.  Current was measured with a Keithley 6485 

Picoammeter.  The current data was acquired using a Keithley KUSB-488A GPIB data 

acquisition card and Keithley Excel-Linx software. 

The accuracy of the current measurements was confirmed in selected experiments 

using gas chromatography to ensure that the measured current corresponded to hydrogen 

production.  The effluent gas from the cell was analyzed using an Agilent 6895N Gas 

Chromatograph (GC).  The GC signal was calibrated by blending two gas streams – 

hydrogen standard at 2000 ppm (balance nitrogen) and pure nitrogen – and feeding them 

through the reaction cell.  The stream was fed directly from the cell to an automatic gas 

sampling valve in the GC.  Nitrogen was used as the carrier gas in both the reaction cell 

and the GC.  The sample was fed through a Supelco Carboxen 1010 PLOT column and 

analyzed using a thermal conductivity detector (TCD). 
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5.3.3 Electrolytes 

The electrolytes were created by adding various amounts of NaOH (97+% ACS, 

Sigma-Aldrich), NaCl (99+% ACS, Sigma-Aldrich), HCl (37%, Fisher), KOH (85+% 

ACS, Sigma-Aldrich), KCl (99.7%, Fisher) and KI (99.6%, Mallinckrodt) to 400 mL of 

deionized water (Millipore).  The conductivity of each solution was measured using a 

Thermoelectron Orion 162A conductivity probe.  Measurements were carried out 

primarily at basic pH values.  Acidic conditions were rarely used for several reasons.  

First, there is a possible risk of damage to the photocatalyst at low pH3.  Furthermore, 

high pH was of greater interest, because the photocurrent was higher under basic 

conditions. 

5.3.4 Procedure 

 Before each experiment, an inert nitrogen atmosphere was created by bubbling 

nitrogen gas through the electrolyte.  The flow of nitrogen through the cell was controlled 

by a mass flow controller (MKS instruments).     After purging the atmosphere with 

nitrogen at a flow rate of 200 cm3 min-1 for 10 minutes, the flow rate was reduced to 20 

cm3 min-1.  In addition to removing dissolved oxygen and carbon dioxide from solution, 

the flowing gas allowed the effluent to be analyzed with the GC using an automated gas 

sampling valve, which yielded more reproducible results than syringe samples. 

The film was then irradiated for 5 minutes, and the steady state current was 

determined.  During GC analysis, the film was irradiated for approximately 1 hour until 

the GC signal reached steady state. 

The effects of the following electrolyte parameters were investigated: (1) pH, (2) 

dissolved oxygen, (3) conductivity, and (4) composition.  Table 1 provides an outline of 
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the experimental parameters in each set of experiments.  The pH was varied between 3 

and 14, controlled through the addition of various strong bases (NaOH and KOH) and 

acids (HCl).  The reaction cell was not equipped for in situ pH measurement, so reported 

values are based on the assumption that all dissolved carbon dioxide was purged from 

solution.  Thus the electrolytes could be assumed to contain only deionized water, 

protons, hydroxide ions, and any added salts, bases, or acids.  Slight deviations from 

reported pH values may be present in the case of 0 M and 1 M NaOH.  Dissolved oxygen 

levels were controlled by adjusting the oxygen content in the reaction cell carrier gas.  

Experiments were performed with pure nitrogen carrier gas and pure oxygen carrier gas.  

Conductivity was controlled through the addition of bases and salts.  In general, NaOH 

was used as the base and NaCl as the salt.  However, for the experiments on electrolyte 

composition, KOH, KCl and KI were used to examine the effect of the cation and anion 

on the water splitting reaction.  In this method, the roles of the cation and anion species 

were studied independently. 

Table 5-1. Experimental outline. 
 

 
Set Parameter Salt Acid / Base Purge 

Gas pH 

      
I [OH-] NaCl (0.0-0.5 M)

NaCl (0.5 M)
NaOH (0.0-1.0 M)
HCl (10-4-10-3 M)

N2 
N2 

7-14
3-4

      
II Conductivity NaCl (0.0-0.5 M) NaOH (0.0-1.0 M) N2 7-14
      

III Dissolved 
Oxygen 

-
-

NaOH (1 M)
NaOH (1 M)

N2 
O2 

14
14

      

IV Cation / Anion 
Species 

-
NaCl (0.5 M) 

- 
KCl (0.0-0.5 M) 

KI (0.5 M)

NaOH (0.0-1.0 M)
NaOH (0.0-1.0 M) 

KOH (0.01 M, 1.0 M) 
KOH (0.0-1.0 M) 
KOH (0.0-1.0 M)

N2 
N2 
N2 
N2 
N2 

7-14
7-14 
12,14 

7, 12, 14 
7, 12, 14
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5.4 Results and Discussion 

5.4.1 Effect of OH- 

While others15, 16  have researched the effect of pH on photocatalytic oxidation, 

this study focuses specifically on water splitting and conducts a more systematic 

investigation of desirable electrolyte properties.  Most notably, this study concurrently 

investigates the effect of electrolyte composition and concentration on photocurrent, 

which are discussed further in subsequent sections. 

The trend of photocurrent with pH was studied at various concentrations of NaCl 

(0 M, 0.005 M, 0.05 M, and 0.5 M) in previously deionized water.  The pH of the 

electrolyte was controlled by adding NaOH (for basic electrolytes) or HCl (for acidic 

electrolytes).  GC analysis was used, in some cases, to confirm that the photocurrent 

readings corresponded to hydrogen production.  The GC analysis was performed with 0.5 

M NaCl at pH 7, 0.5 M NaCl at pH 14, and salt-free electrolyte at pH 14.  All GC 

experiments confirmed that the photocurrent readings corresponded to hydrogen 

production. 

The data in Figure 5-2, which illustrates the hydrogen production rate as a 

function of pH for various concentrations of NaCl, indicate that high pH substantially 

improves the photocatalytic hydrogen production rate.  With 0.5 M NaCl, the 

photocurrent is nearly 4 times greater at pH 14 than it is at pH 10.  The effect of 

increasing pH is strongest between pH 11 and pH 13, meaning that the photocurrent 

increases most rapidly with the addition of hydroxide ions in that pH region.  After pH 

13, this effect begins to diminish, but photocurrent still increases with pH through pH 14.  

Below pH 10, however, the concentration of hydroxide ions has little impact on the 
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photocurrent.  These results are similar to those found by others in the investigation of 

photocatalytic oxidative pollutant degradation.16,17 

 
 

Figure 5-2.  Hydrogen production rate as a function of pH.  The pH was controlled in all 
cases by NaOH except acidic conditions in which HCl used. 

 

Nakamura and Nakato have proposed mechanisms for oxygen evolution from 

water on rutile TiO2 surfaces.20  At low pH, the proposed initiation step is the 

simultaneous attack of a Ti-O-Ti site by a water molecule and a hole to produce 

neighboring Ti-O and Ti-OH•.20 While at high pH, the critical intermediate is neighboring 

Ti-O and Ti-O groups.20 There are multiple proposed pathways in which these species 

may subsequently react to evolve oxygen.  While these steps provide insight into the 

oxygen evolution reactions once radicals are formed, the initiation mechanism does not 

account for the effect of pH witnessed in this study. This motivates the development of an 

alternative to the “nucleophilic attack” and “surface-OH photooxidation” models. 
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The effect of pH can be understood in terms of surface reactions on the TiO2 film.  

Below a proposed reaction scheme is presented for the pathways believed to be dominant 

under the conditions tested.  One pathway is the oxidation of water molecules.  First, a 

water molecule adsorbs to the TiO2 surface. 

 TiIV + H2O ↔ TiIV-H2O                                            (5-1) 

Then a hole is trapped, a hydroxyl radical formed, and a proton released. 

 TiIV-H2O + h+ ↔ TiIV-OH• + H+                                   (5-2) 

Then radicals react in two irreversible steps to form water and oxygen. 

 2 TiIV-OH• → TiIV-O + TiIV + H2O                                 (5-3) 

 2 TiIV-O → 2 TiIV + O2
                                           (5-4) 

The net oxidation reaction consumes water to produce protons (which are subsequently 

reduced at the cathode) and oxygen gas. 

 2 H2O + 4 h+ → 4 H+ + O2
                                         (5-5) 

Another pathway is the oxidation of hydroxide ions.  First, a hydroxide ion 

adsorbs to the surface. 

 TiIV + OH- ↔ TiIV-OH-                                        (5-6) 

Then a hole is trapped and a hydroxyl radical formed. 

 TiIV-OH- + h+ ↔ TiIV-OH•                                       (5-7) 

The radical reactions are identical to those in water oxidation (reactions (5-3) and (5-4)).  

The net oxidation reaction consumes hydroxide ions to produce oxygen gas and water. 

 4 OH- + 4 h+ → 2 H2O + O2
                                   (5-8) 

The oxidation mechanisms in each pathway are very similar.  Both water 

molecules and hydroxide ions adsorb to the TiO2 surface.  These adsorbed species trap 
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holes and form adsorbed hydroxyl radicals that react irreversibly in two steps to form 

oxygen.  The radical reactions to evolve oxygen gas are identical in both pathways.  The 

two reactions that differ between the two oxidation pathways are the adsorption and hole 

trapping reactions.  When considering just adsorbed species, the difference is the hole 

trapping mechanism.   

The photocurrent is greater at higher pH, and therefore oxygen evolves more 

rapidly.  Also, the number of adsorption sites occupied by hydroxide ions increases with 

pH until saturation21, 22.  Therefore, hydroxide ions must evolve oxygen quicker than 

water molecules.  Because the step that differentiates the oxygen evolution mechanisms 

of adsorbed hydroxide ions and water molecules is the hole trapping step, hydroxide ions 

must trap holes more efficiently than water molecules.  This is reasonable, considering 

that the electrostatic interaction between a negative hydroxide ion and positive hole is 

much greater than that between a neutral water molecule and positive hole. 

The net reaction that occurs in both cases is water splitting.  Hydrogen evolution 

driven by oxidation of water molecules contains three main steps: (1) photon adsorption 

to create electron-hole pairs, 

 TiO2 + hν → TiO2 + e- + h+                                 (5-9) 

(2) anodic oxidation to form oxygen gas (reaction (5-5)), and (3) cathodic reduction to 

form hydrogen gas.  The reactions on the platinum surface are described below. 

 Pt + H+ → Pt-H+                                           (5-10) 

 Pt-H+ + e- → Pt-H                                            (5-11) 

 2 Pt-H → 2 Pt + H2
                                      (5-12) 
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The net half-reaction at the platinum cathode is the evolution of hydrogen through the 

consumption of protons, which are produced during anodic oxidation. 

 2 H+ + 2 e- → H2
                                           (5-13) 

The overall net reaction in the photocell is water splitting. 

 2 H2O + 4 hν → 2 H2 + O2
                                 (5-14) 

Hydrogen evolution from oxidation of hydroxide ions differs from the first 

pathway in two ways.  First, the anodic oxidation step is different (reaction (5-8)), which 

consumes hydroxide ions rather than water.  Second, the consumption of water occurs 

through an extra step – water dissociation.   

 H2O ↔ H+ + OH-                                       (5-15) 

To maintain equilibrium and satisfy charge neutrality, water molecules must dissociate as 

protons and hydroxide ions are consumed in the production of hydrogen and oxygen.  

Thus the net reaction in the system is the same (reaction (5-14)), and water splitting still 

occurs.  Therefore, hydroxide ions act as a catalyst for the photocatalytic water splitting 

reaction. 

In summary, two pathways can lead to water splitting.  Under neutral and acidic 

conditions, the water adsorption pathway dominates.  As the solution becomes more 

basic, the hydroxide pathway becomes more prevalent.  Because the hydroxide pathway 

evolves oxygen more rapidly, the rate of photocatalytic oxidation increases with the 

increased hydroxide concentration at higher pH. 
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5.4.2 Effect of Dissolved Oxygen 

In previous research, dissolved oxygen has been found to either inhibit 

photocatalytic oxidation14, promote it17, or have no significant effect15.   While these 

referenced studies also used TiO2 for the photoactive component, the application was not 

water splitting.  In this study, adjustment of dissolved oxygen levels was found to have 

no observable impact on the photocurrent.  However, it seems reasonable that dissolved 

oxygen would have a negative impact, considering dissolved oxygen’s role at the surface.  

The dissolved oxygen levels were controlled by adjusting the oxygen content in 

the reaction cell carrier gas.  The photocurrent was tested under two different 

atmospheres – one oxygen-rich and one oxygen-starved.  A 1 M NaOH solution was used 

as the electrolyte in both cases.  First, oxygen was purged from the system using pure 

nitrogen, and the photocurrent was tested under this pure nitrogen atmosphere.  Second, 

pure oxygen was used to purge the nitrogen from the cell, and the photocurrent was 

measured under a pure oxygen atmosphere.  Dissolved oxygen was found to have no 

discernable effect on the photocatalytic conversion efficiency.  The photocurrents of the 

oxygen-rich and oxygen-starved atmospheres were negligibly different, indicating a 

minimal impact of dissolved oxygen on this system. 

Although these experiments found no effect of dissolved oxygen on the 

photocurrent, it is reasonable that dissolved oxygen would inhibit – rather than promote – 

photocatalytic oxidation, considering oxygen’s role at the TiO2 surface.  Oxygen can 

adsorb to the surface and trap electrons.  While electron trapping prevents recombination 

of electron-hole pairs (potentially improving photo-oxidation17), it also keeps electrons 

static rather than allowing them to flow freely through the external circuit in order to 
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reduce protons at the cathode.  Additionally, by trapping electrons, oxygen occupies 

surface sites that could possibly be held by water molecules or hydroxide ions, both of 

which trap holes (thereby preventing recombination) and participate in subsequent 

reactions which lead to the evolution of oxygen.  Thus, while adsorbed oxygen may help 

prevent recombination, it occupies surface sites that could be held by molecules that are 

more effective in promoting oxygen evolution, which consumes holes and frees electrons.  

Thus, in two-electrode systems such as the present photocell, oxygen may deactivate 

surface sites and inhibit photocatalysis.  Furthermore, although dissolved oxygen had no 

significant impact on the photoanode in this study, it is possible that the oxygen could 

have been reduced at the platinum surface to react with protons and produce H2O2 – 

instead of H2 – without changing the photocurrent, an effect that would also be 

undesirable. 

 

5.4.3 Effect of Conductivity 

Solutions were prepared with 0.0-0.5 M NaCl and 0.0-1.0 M NaOH in order to 

study the effect of conductivity and its impact relative to pH.  The photocurrent increased 

with conductivity.  In electrochemical surface reactions, diffusion plays a large role.  

Anions diffuse to the surface and form intermediates that diffuse across the surface to 

form products that diffuse away from the surface.  Diffusion is facilitated by increasing 

conductance.  The more conductive the solution, the more effectively charge can be 

transported through the solution, including the shuttling of ions to and from electrode 

surfaces23.  
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Figure 5-3 illustrates the extent of conductivity’s effect and how it compares with 

the effect of pH.  The increased photocurrent due to additional conductivity from bases is 

always greater than or equal to that from salts, because bases increase the pH in addition 

to increasing conductivity.  In Figure 5-3, the salt-free (dashed) curve is the minimum 

conductivity at a given pH using NaOH as the base.  The solid curves extending from the 

dashed curve each correspond to increasing conductivity at a given pH, controlled 

through the addition of NaCl. At each pH, the hydrogen production rate increased with 

conductivity.  The effect of increasing conductivity is greatest from about 103 - 104 µS 

cm-1 (0.005 M – 0.05 M NaCl).  Although the extent of the effect begins to diminish 

above that region, photocurrent increased with conductivity throughout the investigated 

range.   

 
Figure 5-3. Hydrogen production rate as a function of conductivity.  The dashed curve 
represents salt-free electrolytes containing only NaOH and corresponds to the minimum 
conductivity at a given pH.  The curves extending from the dashed curve are at constant 
pH, and the conductivity increase corresponds to an increasing concentration of NaCl, 
which ranges from 0.0-0.5 M. 
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 At high pH, it appears that the effect of additional conductivity from NaCl is 

equal to that from NaOH, as the pH 13 curve in Figure 5-3 coincides with the dashed 

NaOH curve.  Thus, above pH 13, the effect of increased current with pH seems to be due 

mostly to increased conductivity rather than the increased hydroxide ion concentration.  

This indicates that, by pH 13, the TiO2 surface has become saturated with hydroxide ions.  

Therefore it may be unnecessary to operate at the highest pH possible (thus an extremely 

caustic environment) in order to achieve the greatest photocurrent.  Instead, one can use a 

basic electrolyte to set the pH at 13 and then use cheaper, neutral electrolytes to increase 

the photocurrent by increasing the conductivity. 

5.4.4 Effect of Cation and Anion Species 

Researchers investigating photocatalytic oxidation in water have used a variety of 

electrolytes, including H2SO4
9-11, KNO3

24, NaCl14, Sodium Acetate25, H3PO4
12, 26, 

NaClO4
13, and KOH19.  However, there has been little comparison between different 

electrolytes.  While all these studies had functional systems that produced photocurrents, 

it is possible that better electrolyte selection could have substantially improved reported 

efficiencies.  In the sections above, it has been shown that bases increase the photocurrent 

by increasing the concentration of hydroxide ions at the TiO2 surface, and salts can also 

increase the photocurrent by increasing conductivity.  This section analyzes which 

specific salts and bases are preferable by investigating the effect of the identity of the 

cation and anion species on the water splitting rate.  In order to avoid undesirable 

oxidation pathways, the oxidation potential of the anion is the most important factor to 

consider for an electrolyte. 
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 To investigate the effect of the cation, solutions of KOH were made at pH 12 and 

14, and solutions of 0.5 M KCl were made at pH 7, 12, and 14 (set by KOH).  These 

solutions all had the same ion concentrations as solutions in previous experiments, with 

the only change being the replacement of Na+ with K+.  As shown in Figure 5-4, this 

change yielded negligible differences in the photocurrent. 

 
 
Figure 5-4. Hydrogen production rate as a function of pH for multiple electrolytes.  All 
salts were at a concentration of 0.5 M.  Base was added in varying concentrations to 
increase the pH.  Only one cation was used in each solution.  For NaCl, NaOH was used 
as the base.  For KCl and KI, KOH was used as the base.  
 

 To investigate the effect of anion species, KCl was replaced by KI.  Solutions of 

0.5 M KI were made with pH values of 7, 12, and 14 (set by KOH).  During illumination, 

the solutions developed a slight yellow discoloration over time.  This indicated that 

iodide ions from the salt were being oxidized to I2.  Thus the presence of iodide in 

solution opens up a third oxidation pathway at the anode, in addition to water oxidation 

and hydroxide oxidation.   
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The reactions in the iodide oxidation pathway are as follows.  This analysis 

assumes iodide is the species involved in the surface reaction, although other species 

could be involved as well.  First, an iodide ion adsorbs to the TiO2 surface. 

 TiIV + I- ↔ TiIV-I-                                            (5-16) 

Then a hole is trapped and an iodine radical formed. 

 TiIV-I- + h+ ↔ TiIV-I•                                            (5-17) 

Then radicals react in a single irreversible step to form iodine. 

 2 TiIV-I• → 2 TiIV + I2
                                         (5-18) 

The net oxidation reaction consumes iodide ions to produce iodine. 

 2 I- + 2 h+ → I2
                                                  (5-19) 

Combining this reaction with photon adsorption and hydrogen evolution, the net reaction 

is the consumption of protons and iodide ions to produce elemental hydrogen and iodine. 

 2 I- + 2 hν + 2 H+ → H2 + I2
                                     (5-20) 

To preserve equilibrium, water may dissociate to regenerate protons and form hydroxide 

ions.  At pH 7, a water molecule will dissociate (reaction (5-15)) once every other time 

that a proton is consumed.  The net system reaction, with dissociation included, produces 

hydroxide ions and makes the solution more basic. 

 2 I- + 2 hν + H+ + H2O → H2 + I2 + OH-                            (5-21) 

 The KI solutions produced substantially lower photocurrents than respective KCl 

solutions due to the oxidation of iodide, which is thermodynamically favored over the 

oxidation of water (see Figure 5-5).  While standard reduction potentials are used here, 

the effect of pH on the energy levels is discussed in Appendix II.  The standard reduction 

potential for water, shown below, is 1.23 V/NHE. 
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 4 H+ + O2(g) + 4 e- ↔ 4 H2O                                       (5-22) 

The standard reduction potential for iodine is 0.54 V/NHE, less than that of water. 

 I2(s) + 2e- ↔ 2I-                                                 (5-23) 

Although iodide is thermodynamically favored over water for oxidation, water is favored 

over chloride.  The standard reduction potential of chlorine is 1.33 V/NHE. 

 Cl2(g) + 2e- ↔ 2Cl-                                              (5-24) 

The reduced photocurrent during iodide oxidation could be the result of two 

causes.  First, the iodide oxidation mechanism could be slower than the water oxidation 

mechanism, making the kinetics unfavorable despite favorable thermodynamics.  If this is 

true, the step that slows down oxidation must be the radical reaction.  As stated 

previously, hydroxide ions scavenge holes faster than water because of an electrostatic 

attraction between the positive hole and negative ion.  Because iodide is negatively 

charged, it has a similar attraction to the hole and should also scavenge holes faster than 

neutral water molecules.  However, it still produces less photocurrent than water does, so 

the radical reaction must be slower for iodine radicals than hydroxyl radicals. 

Second, the presence of iodide may deactivate the surface by reducing the 

likelihood of reaction and increasing the probability of trapped holes escaping.  With just 

water and hydroxide ions present, the only adsorbed radicals formed at the TiO2 surface 

are hydroxyl radicals.  Therefore, the probability of two radicals finding one another and 

reacting is relatively high.  In the presence of iodide ions in solution, the surface becomes 

covered by iodine radicals as well, decreasing the probability of two hydroxyl radicals 

reacting. 
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Even in the presence of iodide, the current increases with pH, indicating that 

hydroxide oxidation still increases with pH.  The standard reduction potential of 

hydroxide formation is 0.40 V/NHE, which means that hydroxide oxidation is 

thermodynamically more favorable than iodide oxidation. 

 2H2O + O2(g) + 4e-↔ 4OH-                                         (5-25) 

Hydroxide oxidation dominates at high pH, as evidenced by the elevated photocurrent.  

Because hydroxide oxidation does not dominate at pH 7 (10-7 M OH-), despite its 

thermodynamic favor, iodide oxidation must dominate because of its occupation of more 

surface sites as a result of its higher concentration.  Therefore, anodic oxidation must be 

determined by both electrode potential thermodynamics and competition for surface site 

adsorption. 

 
 
Figure 5-5. Energy level diagram indicating the valence and conduction band energy 
levels for TiO2 relative to certain standard reduction potentials28.  Excited electrons move 
down from the conduction band to reduce, while holes move up from the valence band to 
oxidize.  
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 The relative standard reduction potentials of the half-reactions also explain why 

the effect of the cation identity is negligible.  Protons are reduced at the cathode because 

of their strong thermodynamic favor.  The standard reduction potential for proton 

reduction to hydrogen gas is 0.00 V/NHE, as it is defined as the reference potential for all 

other half-reactions.   

 2H+ + 2e- ↔ H2(g)                                          (5-26) 

The standard reduction potential for sodium ion reduction to solid sodium is -2.71 

V/NHE, which is substantially more negative. 

 Na+ + e- ↔ Na(s)                                          (5-27) 

The standard reduction potential for potassium ion reduction to solid potassium is even 

more negative, -2.93 V/NHE. 

 K+ + e- ↔ K(s)                                           (5-28) 

Because the potential of proton reduction is more positive than that of either metal ion, 

proton reduction is substantially more thermodynamically favorable.  Moreover, K+ and 

Na+ reduction are at a more negative reduction potential than the TiO2 conduction band 

(see Figure 5-5).  Because electrons only move downward from the conduction band27, 

proton reduction is the only pathway that will occur at the cathode.  Thus all of the 

photocurrent goes toward hydrogen production, which the GC measurements confirm. 

 Reduction potential of dissolved species is an important consideration for 

electrolytes, especially in the case of seawater splitting, as seawater is a very complex 

electrolyte28.  Bromide ions present in seawater may be oxidized to bromine (see Figure 

5-5).  Dissolved organics may be favored for oxidation as well.  While most dissolved 
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species in seawater are present at low concentrations, these concentrations will increase 

over time as water is consumed.  While this accumulation would have the positive effect 

of increasing the conductivity of the solution, it would also present issues with undesired 

oxidation (possibly reduction as well) and precipitation.  Specifically, Mg2+ ions would 

consume catalytic OH- ions to form Mg(OH)2.  Thus some species may need to be 

filtered from seawater in order to prevent these issues, but minimal pretreatment is 

desirable economically.  The results of this study have important implications for 

seawater splitting and indicate the need for further investigation. 

5.5 Conclusions 

The effects of various electrolyte parameters on photocatalytic water splitting 

were tested using a thin TiO2 film, synthesized in a flame aerosol reactor, as the 

photoactive anode.  To determine the role and impact of OH- ions in water splitting, the 

pH was varied in solutions containing a variety of concentrations of NaCl.  In all cases, 

the water splitting rate was relatively constant with pH until after pH 10, at which point 

performance improved with increasing pH, which was attributed to the use of a more 

effective water splitting pathway through the direct oxidation of OH- ions rather than 

water molecules.  Although dissolved oxygen was found to have a negligible impact on 

this system, it is likely that the decreased performance observed in photocatalytic 

pollutant degradation15 is due to the deactivation of surface sites.  The water splitting rate 

increased with electrolyte conductivity due to the improved transport of ions.  Beyond pH 

13, it was found that the improved photocurrent from the addition of more base was due 

mostly to increased conductivity.  Thus the impact of increased pH above this point is 

minimal.  The cation species did not substantially affect the water splitting rate.  The 
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anion species, however, may reduce the water splitting rate if its oxidation potential 

makes it thermodynamically favorable over water.  This issue of anion oxidation 

complicates the idea of splitting seawater.  Furthermore, Mg2+ ions can consume 

hydroxide ions to precipitate base.  Other precipitates may present problems as well.  

Further investigation would help determine the extent of pretreatment necessary for 

efficient photoelectrolysis of seawater. 
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6.1 Abstract 

 Fuel production from sunlight using mixed metal-oxide photocatalysts is a 

promising route for harvesting solar energy.  While photocatalytic processes can operate 

with high efficiency using UV light, it remains a challenge of paramount importance to 

drive them with visible light.  Engineering the electronic energy band structure of mixed 

metal-oxides through judicious control of atomic composition is a promising route to 

increasing visible light photoresponse.  The goal of this paper is to develop a simple 

Mixed Metal-Oxide Band Structure (MMOBS) method to predict the electronic band 

structure of mixed metal-oxides.  Several materials in the Ti-Fe-O system that span the 

composition spectrum were considered in this study: anatase TiO2, Fe-doped anatase 

TiO2, ilmenite TiFeO3, Ti-doped hematite α-Fe2O3, and hematite α-Fe2O3.  The 

predictions by the MMOBS method for the Ti-Fe-O system were tested and confirmed 

using first-principles density functional theory (DFT) calculations and experimental UV-

visible absorption spectroscopy measurements.  The band gap energy of the compounds 

decreases with increasing Fe content until Fe and Ti are present in approximately the 

same concentration, and then the band gap energy remains constant and equal to that of 

hematite (~ 2.0 eV), independent of Ti content. The positions of the conduction and 

valence bands, which are critical to driving photocatalytic reactions, are also predicted 

using the MMOBS method.  Finally, the applicability of the MMOBS method to the 

rational design of photocatalysts for reduction-oxidation reactions in watersplitting is 

discussed. 
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6.2 Introduction  

   An attractive solution to global energy challenges is the conversion of solar 

energy to fuels such as hydrogen1-5.  Metal-oxides are increasingly being investigated for 

their potential in photocatalytic fuel production due to their demonstrated ability to 

convert UV light to fuels, chemical stability, and low production costs.  Many metal-

oxide semiconductors are stable in chemically aggressive environments, particularly in 

oxidative environments such as the atmosphere and aqueous media, which affords them 

long-term stability.  Furthermore, metal-oxides such as TiO2 and Fe2O3 are produced in 

quantities of millions of tons per year.  These materials are used in a variety of 

applications where low cost is critical due to the volume of material required, such as for 

house paint and building glass.  Thus, it is desirable to use these low-cost, industrially-

relevant materials for widespread solar energy harvesting. 

The main hurdle in photocatalytic fuel production is the efficient conversion of 

sunlight, which primarily contains photons at visible wavelengths.  Some materials have 

shown promising efficiencies for solar hydrogen production when driven by AM1.5G 

simulated sunlight, such as Fe2O3 (~2 %)6, 7 and WO3 (~4%)8, 9.  Unfortunately, these 

materials are not ideal for photocatalytic hydrogen production due to inherent limitations 

in their electronic structure10, so further improvements must be made.  A principal 

challenge is to develop novel materials that can drive photocatalytic fuel production using 

visible light with an efficiency of over 10%, which is the level at which the United States 

Department of Energy (DOE) predicts the technology will be economically viable2.   

 The conversion efficiency of metal-oxide semiconductors is highly dependent on 

photon absorption, which in turn is determined by the band gap of the material.  Photon 
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absorption results in the promotion of an electron from the filled valence band to the 

empty conduction band.  The difference in energy between these bands is the band gap, 

which determines the amount of sunlight a material will absorb and the maximum 

possible solar conversion efficiency.  The material will absorb photons in the solar 

spectrum with energies greater than or equal to the band gap, resulting in excited 

electron-hole pairs available for initiating photochemistry.  Most oxide semiconductors 

have band gap values greater than 3.0 eV, which lies in the UV portion of the spectrum.  

For photocatalytic hydrogen production, the optimum band gap is approximately 2.0 eV, 

which is small enough to absorb a significant amount of sunlight, but larger than the 

energy required to split a water molecule (1.23 eV)2, 9.  As mentioned previously, some 

oxides have band gap values in this range, such as Fe2O3 (2.2 eV) and CuO (1.7 eV).  

Unfortunately, these compounds have relatively low incident photon to current 

conversion efficiencies7 or experience photocorrosion11.  Thus, for widespread solar fuel 

production, there is a need to develop new materials that have a band gap more suitably 

matched to the solar spectrum. 

 Other factors controlling the photocatalytic activity of metal-oxides are the 

positions of the valence and conduction bands on a relative energy scale.  Photocatalytic 

reactions can be thought of as reduction-oxidation reactions with electrons in the 

conduction band as the reducing species and holes in the valence band being the 

oxidizing species.  In general, the conduction band must be at a higher energy (more 

negative reduction potential) than the potential of the reduction half reaction while the 

valence band must be at a lower energy (more positive reduction potential) than the 

oxidation half reaction.  For instance, in order to promote the watersplitting reaction, the 
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conduction band edge of the photocatalyst must be at a higher energy (more negative 

reduction potential) than the H2/H2O potential (0 V/NHE) while the valence band edge 

must be at a lower energy (more positive reduction potential) than the H2O/O2 potential 

(1.23 V/NHE). TiO2 is an example of a material that meets these criteria2, 9.  As new 

materials are explored, there is a need to control the positions (oxidation and reduction 

potentials) of the photocatalyst valence and the conduction bands. 

 Much work has already been done on developing new metal-oxide based 

materials for photocatalytic hydrogen production.  In particular, many researchers have 

worked with chemically-modified materials based on TiO2.  For instance, oxygen-

deficient TiO2, has been shown to increase the visible light photoresponse12, 13.  Perhaps 

the most common and successful route for extending the photo response of TiO2 into the 

visible spectrum is the addition of small amounts (< 10 atom %) of impurities into the 

semiconductor.  By doping TiO2 with nonmetals such as carbon14-16 and nitrogen17-21, 

efficient photocatalytic watersplitting can be achieved using visible light.  By doping 

with transition metals such as V22, 23, Fe23, 24 and Cr25, 26, similar enhancements in the 

photocatalytic performance have also been observed.  Some theoretical work based on 

first-principles density functional theory (DFT)16, 17, 19, 27 calculations has also been 

performed to investigate changes in band structure induced upon nonmetal and transition 

metal doping.  While the net effect varies depending on the dopant, the general consensus 

is that doping introduces additional energy levels (mid-gap states) into the TiO2 band gap 

that lowers the energy required to excite electrons from the valence to the conduction 

band; this allows photoactivation by visible photons.    Unfortunately, the light absorption 

in the visible spectrum for these doped materials still remains too low to efficiently 
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harvest sunlight.  This has recently led researchers to begin to explore new mixed metal 

oxides, such as the Ti-Fe-O24, Ti-Cu-O28 and Ti-W-O29 compounds.  These mixed metal 

oxides show great promise for photocatalytic fuel production, compared to their basis 

compounds.    

The current understanding of fundamental changes in electronic structure with 

atomic composition of metal-oxide semiconductors is insufficient to rationally design the 

atomic composition of new compounds.  Current research remains largely 

combinatorial30 or “guess-and-check” in nature.  To guide the search, a theoretical 

procedure is needed to rationally predict the band gap and band positions of mixed metal-

oxides.  First-principles DFT calculations may aid in this task, but they are 

computationally expensive and time-consuming for complex chemical systems.  

Experimental synthesis combined with UV-visible spectroscopy and electrochemical 

measurements can also be used to screen potential configurations, but the procedure is 

again time-consuming and costly.   

 The objective of this paper is to develop a simple Mixed Metal Oxide Band 

Structure (MMOBS) procedure to predict the band gaps and band positions of mixed 

transition metal-oxides using catalogued band position data.  The MMOBS procedure is 

used to predict the band structure of various Ti-Fe-O compounds with different 

compositions.  The Ti-Fe-O system is used as a model because of its promising 

performance in photocatalytic watersplitting24, 31 and the wealth of available data from 

prior characterization10, 11, 32.  The MMOBS procedure could likely be generally extended 

to other mixed metal-oxides.  In this study, the results of MMOBS predictions are 

corroborated by first-principles DFT calculations and experimental measurements on 
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nanostructured synthetic thin films.  The use of the MMOBS procedure to design the 

chemical composition of mixed metal oxide semiconductors for optimum photocatalytic 

watersplitting performance is also discussed. 

 

6.3 Methods 

6.3.1 Test Plan 

Five different oxides in the Ti-Fe-O system were studied: anatase TiO2, Fe-doped 

anatase TiO2, ilmenite TiFeO3, Ti-doped hematite α-Fe2O3 and hematite α-Fe2O3.  These 

compounds span the composition spectrum, from TiO2 to Fe2O3, with different amounts 

of Ti and Fe.  Pristine anatase TiO2 was chosen for its robust performance in UV light-

driven photocatalytic water splitting33, 34.  Fe-doped anatase TiO2 was chosen for its 

promise in enhancing visible light absorption20 and photocatalytic performance23.  

Ilmenite (TiFeO3) was chosen as the representative of a mixed metal-oxide that contains 

equal amounts of Ti and Fe.  In addition, relatively little characterization has been 

performed on TiFeO3.  Finally, Ti-doped hematite α-Fe2O3 and pristine hematite α-Fe2O3 

were chosen for their excellent light absorption characteristics in the visible region of the 

spectrum, moderate watersplitting ability6, 7, 11, 31, and completion of the composition 

series.   

6.3.2 MMOBS Analysis 

The prediction of the electronic structure of mixed metal-oxide compounds by the 

MMOBS method is based on the electronic structure of the basis compounds from which 

the mixed compound is formed. The basis compounds are the thermodynamically stable 

pristine oxides.  For the Ti-Fe-O system, the basis compounds are TiO2 and α-Fe2O3 
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(Figure 6-1).  The valence and conduction band positions for these compounds are readily 

available in the literature10, 11, 32.   The TiO2 valence band lies at a lower energy than the 

Fe2O3 valence band, while the TiO2 conduction band lies at a higher energy than the 

Fe2O3 conduction band (Figure 6-2). 

 

Figure 6-1: Crystal structures for the 5 model Ti-Fe-O compounds used in the DFT 
calculations. The pristine and Fe-doped anatase TiO2 supercells are positioned with the 
[001] direction perpendicular to the page.  The ilmenite and hematite crystal structures 
are positioned such that the c-axis points to the left and the long axis of the a-b plane is 
perpendicular to the page. 
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Figure 6-2:  Electronic band edge positions of the Ti-Fe-O compounds determined by the 
MMOBS analysis using experimental basis values.  The valence bands lie on the lower 
portion of the diagram while the conduction bands lie on the upper portion. 

 

The electronic band structure of mixed Ti-Fe-O compounds is a combination of 

the energy band structures of the respective basis oxides.  The energy levels in the mixed 

oxides have the same band positions as the respective basis pristine oxides.  This analysis 

assumes that the bonding present in the mixed phase is nominally the same as in the 

pristine compounds.  In other words, in the mixed phases, the Ti and Fe atoms are bonded 

to oxygen atoms with a similar coordination to the basis compounds.  If one metal species 

is present at over 90 % based on metal atoms, the compound is described as doped with 

the metal species present in dilute concentration.  The valence band in doped compounds 

has the same position as the valence band in the basis (majority) compound.  The 

conduction bands have the same positions as the conduction bands of both of the 

respective basis compounds.  Depending on the conduction band positions of the basis 
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compounds, the ones in doped compounds may mix, if they are close in energy, or remain 

isolated to form a mid-gap state, if they are sufficiently separated in energy.  If both metal 

species are present in roughly the same concentration, then the valence bands in the 

mixed compound have the same band positions as the valence bands in the basis 

compounds; and the conduction bands in the mixed compound have the same band 

positions as the conduction bands in the basis compounds.   

6.3.3 DFT Calculations 

The electronic band structures of five Ti-Fe-O systems (listed above) were 

calculated using density functional theory as implemented in CASTEP35. All crystal 

structures were taken from the American Mineralogist online database36.   A 

pseudopotential plane wave (PSPW) approach with a kinetic energy cutoff of 300 eV for 

the plane wave basis set was used, along with the generalized gradient approximation 

(GGA) of Perdew, Burke and Ernzerhof37 (PBE) for the exchange-correlation functional.  

This approach employed periodic boundary conditions and thus modeled an infinite 

(bulk) crystalline system.  Ultra-soft pseudopotentials38 were used to approximate the 

core electrons to reduce computational cost.  The geometry of each system was optimized 

using the BFGS algorithm to obtain lattice parameters and atomic positions 

corresponding to the ground state, or lowest energy configuration.   

In contrast to Γ-point calculations, which only calculate the energy states for one 

wave vector, k-point sets were used to characterize the behavior of the band structure at 

different wave vectors, since the valence band maximum and conduction band minimum 

can occur at k-points other than the Γ-point.  Thus, calculations at multiple k-points allow 
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the description of both indirect and direct band gaps, while Γ-point calculations can only 

describe direct band gaps. 

The density of states (DOS) and band structure were calculated to characterize the 

electronic structure of each material.   A smearing of 0.05 eV was used to generate the 

DOS plots.  All of the DOS plots were shifted such that the highest laying molecular 

orbital with predominant O 2p character was at zero energy, which was determined by 

inspection of the molecular orbital isosurfaces.  The band gaps were measured from the 

valence band maximum to the conduction band minimum in the band structure plots (not 

shown here).  

 

6.3.4 Model systems for DFT calculations  

The crystal structures for the 5 different Ti-Fe-O compounds are presented in 

Figure 6-1.  Pristine anatase TiO2 was modeled using a 2x2x1 48 atom supercell 

(tetragonal: a = 3.7842 Å, c = 9.5146 Å; I41/AMD symmetry group).  Calculations were 

performed using a 3x3x2 k-point set.  The supercell contained 16 Ti atoms and 32 O 

atoms.  The lattice parameters and atomic positions were optimized to find the lowest 

energy configuration.  The optimized lattice parameters (a = 3.7878 Å, c = 9.8386 Å) 

were in close agreement with the experimental values (≈ 2 %) and the atoms retained the 

experimental I41/AMD symmetry.   

Fe-doped anatase TiO2 was modeled by substituting one Ti atom in the 48 atom 

anatase supercell with an Fe atom to form Ti0.9375Fe0.0625O2.  Calculations were performed 

using a 3x3x2 k-point set.  The optimized lattice parameters were taken from the pristine 

anatase TiO2 calculations.  The effect of the Fe atom position in the crystal, as tested by 
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replacing different Ti atoms, on the total energy of the system and DOS plots was found 

to be minimal.  The initial magnetic spin of the Fe atom was set to the high spin state for 

Fe3+ and optimized during calculations, achieving a final spin state of +1.6 μB.  The 

atomic positions were optimized to find their lowest energy configuration.  Minimal 

distortion was observed around the Fe atom and the system largely retained I41/AMD 

symmetry.  The effect of oxygen vacancies was not considered in this study. 

Ilmenite TiFeO3 was modeled using a 30-atom unit cell (hexagonal: a = 5.1108 Å, 

c = 14.3566 Å; R-3 symmetry group), which is similar to the corundum (α-Fe2O3) 

structure.  Calculations were performed using a 5x5x1 k-point set.  Various initial 

magnetic configurations for the Fe atoms were screened to find the lowest energy 

configuration.  The lowest energy magnetic configuration was found to be ferromagnetic, 

with all spins at +1.83 μB in the (0001) basal plane39. The optimized lattice parameters (a 

= 5.1100 Å, c = 14.3819 Å) were in close agreement with the experimental values (≈ 2 

%), and the atoms retained the experimental R-3 symmetry.   

Ti-doped hematite α-Fe2O3 was modeled by substituting one Fe atom in the 

pristine hematite α-Fe2O3 unit cell (described below) with a Ti atom to form 

Fe1.834Ti0.166O3.  Calculations were performed using a 5x5x1 k-point set.  The optimized 

lattice parameters were taken from the pristine α-Fe2O3 calculation.  After minimization, 

the atoms retained both the R-3C symmetry and the antiferromagnetic configuration of 

hematite, save for the slight overall magnetic moment (+1.8 μB) due to the Fe in the unit 

cell.  

 Pristine hematite α-Fe2O3 was modeled using a 30-atom unit cell (hexagonal: a = 

5.038 Å, c = 13.772 Å; R-3C symmetry group).  Calculations were performed using a 
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5x5x1 k-point set.  The lowest energy magnetic configuration was found to be 

antiferromagnetic, with the spins (± 1.83 μB) ordered antiferromagnetically in the 

direction normal to the basal planes but ferromagnetically within the metal bilayers; this 

agrees well with experimental observations39.  The optimized lattice parameters (a = 

5.0665 Å, c = 13.9576 Å) were in close agreement with the experimental values ( ≈ 2 %) 

and the atoms retained the experimental R-3C symmetry group.   

6.3.5 Experimental 

Mixed oxide semiconductor films were synthesized using a premixed flame 

aerosol reactor (FLAR, Figure 6-3).  The details of the experimental setup have been 

published previously34, 40.   This synthesis reactor was chosen because it allows precise, 

rational control over film morphology and chemical composition, both of which are 

critical to device performance in applications of interest34. The FLAR can be used to 

form highly crystalline thin films in a single-step, taking approximately 10 to 30 minutes. 

The synthesis process is based on the deposition of nanoparticles out of the gas phase 

onto a temperature-controlled substrate.  

Metal-oxide nanoparticles were generated by thermal oxidation of metal-organic 

precursors in a premixed methane-oxygen flame.  As the nanoparticles traversed the 

flame, they grew to reach a controlled size (dp < 10 nm) as they arrived at the water-

cooled substrate.  There was a strong temperature gradient from the hot flame (T ~ 2000 

oC) to the water-cooled substrate, thus directing the particles to be deposited by 

thermophoresis.  Once on the substrate, due to the elevated substrate temperature (~ 600 

oC) and small particle size (< 10 nm), the nanoparticles sintered together to form large 
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structures with a bulk electronic band structure, mitigating potential errors due to 

quantum confinement. 

 
 

Figure 6-3:  Schematic of the FLAR synthesis reactor.  The Ti precursor was titanium 
tetraisopropoxide (TTIP) and the Fe precursor was iron pentcarbonyl (IPC).  Details of 
the synthesis reactor are provided in Thimsen et al 34, 40. 

 

The experimental reactor parameters included process gas feed rates of 2.2 lpm 

(liters per minute at STP) for CH4, 8.0 lpm for O2, and an argon flow rate of 12.0 lpm.  

The substrate was positioned approximately 1.7 cm from the burner outlet.  All films 

were deposited for 15 to 20 min onto indium-tin-oxide (ITO) coated aluminosilicate glass 

substrates (Delta technologies, Stillwater MN).  The measured substrate temperature was 

approximately 200 oC, corresponding to a surface temperature of approximately 600 oC34.    
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The films had thicknesses of approximately 1 µm, as measured by scanning electron 

microscopy. 

Mixed Ti-Fe-O thin films were synthesized by co-feeding titanium tetra 

isopropoxide (TTIP, Sigma-Aldrich) and iron pentacarbonyl (IPC, Sigma-Aldrich) at 

controlled feed rates.    Argon was fed through the bubblers, maintained at a controlled 

temperature (TTTIP = 45 oC, TIPC = 1.5 oC).  For TTIP and IPC, the feed rates were 

calculated from the vapor pressure41, 42 and the argon flow rate through the bubbler.  A 

summary of the feed rates and measured chemical compositions of the various 

experimental thin films is given in Table 1.  The feed rates were tuned to deposit films 

with chemical compositions to match the calculations for the TiO2, Fe-doped TiO2, 

TiFeO3 and α-Fe2O3 cases.   

 
Table 6-1:  Summary of the atomic concentrations and crystalline phases of the various 
experimental films, and the precursor feed rates used to synthesize them.  The column 
ArTTIP and ArICP correspond to the flow rate of argon through the TTIP bubbler (43 oC) 
and IPC bubbler (1.5 oC) .   

 Target Material 
ArTTIP 
(lpm) 

ArIPC 
(ccm) 

Ti feed 
Rate 

(mmol/hr) 

Fe feed 
rate 

(mmol/hr) 

Measured Ti 
conc. 

(atom %) 

Measured Fe 
conc. 

(atom %) 

Crystal 
phase 
from 
XRD 

1 TiO2 1.0 0.0 0.90 0.00 100% 0% 
anatase 

TiO2 

2 Ti0.9375Fe0.0625Ox 2.0 3.3 1.80 0.12 93.3 ± 1.5 % 6.7 ± 1.5 % 
anatase 

TiO2 

3 TiFeOx 0.5 13.0 0.45 0.49 48 ± 1.0 % 52 ± 1.0 % -- 

4 Fe2O3 0.0 18.0 0.00 0.67 0% 100% α-Fe2O3 

 

The nanostructured thin films were characterized by several techniques.  The 

atomic composition was measured by quantitative x-ray energy dispersion spectroscopy 
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(EDS) using a Hitachi model S-4500 field emission electron microscope operating at 15 

kV equipped with an EDS spectrometer (Noran Instruments).  The atomic fraction was 

measured at 10 locations on the surface of the film, each with an approximate area of 50 

μm2.  The crystal structure of the thin films was characterized with x-ray diffraction using 

a Rigaku DMax x-ray diffractometer. All of the films were highly scattering, and thus 

diffuse reflectance spectroscopy was employed to measure the UV-visible light 

absorption characteristics using a Cary 100 spectrophotometer equipped with an 

integrating sphere and internal detector for the reference and sample beam (Labsphere, 

DRA-CA-30I).  For diffuse reflectance measurements, the sample was mounted to a 

certified reflectance standard (Labsphere) before measurements to mitigate errors 

induced by photon transmission through the sample.    All spectra were taken using a 

certified reflectance standard as the zero-absorbance reference, baseline-subtracted, and 

normalized.  All spectroscopic measurements were performed at room temperature.  The 

absorption edge was taken as the photon energy where the absorbance was 30 % of the 

maximum.  This value corresponds to the energy point where 50 % of the incident 

photons are absorbed.  This approach was taken instead of the conventional approach due 

to difficulties in assigning the linear region near the absorption edge for the modified 

absorption cross section plots43. 

 

6.4 Results and Discussion 

The predictions of the MMOBS analysis were corroborated by the DFT 

calculations and experimental results.  All three techniques show a decrease in band gap 
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with increasing Fe content in the Ti-Fe-O compounds until the Fe concentration reaches 

50 %, after which the band gap remains constant with increasing Fe content.   

 

6.4.1 MMOBS Analysis 

The MMOBS procedure was first used to predict the band structure of the various 

Fe-Ti-O compounds (Figure 6-2).  The term band position in this context refers to the 

position of the band edge.  Thus there are four possible band positions depending on the 

concentration of Fe and Ti atoms in the compound: two from the valence and conduction 

bands of TiO2, and two from the valence and conduction bands of Fe2O3.  For TiO2, the 

valence band is the O 2p level, while the conduction band is the Ti 3d level.  For Fe2O3, 

the valence and conduction bands arise from crystal field splitting of the Fe 3d levels due 

to the octahedral coordination of oxygen around Fe44.  These levels are given the 

designation Fe 3dL (lower) and Fe 3dU (upper).   

 The band positions and gaps for 5 Ti-Fe-O compounds are presented in Figure    

6-2. For Fe-doped TiO2, the valence band lies at the O 2p level, the same as TiO2.  There 

are two conduction bands, one at the Fe 3dU level, and another at the Ti3d level.  The 

result is a narrowing of the band gap from 3.2 eV for pristine TiO2, to 2.7 eV for Fe-

doped TiO2.  It should be noted that this could be a mid-gap state, or a true conduction 

band, depending on the mixing with the Ti 3d level.   

Mixed Ti-Fe-O compounds with roughly the same amount of Fe and Ti have 

valence bands at the O 2p and Fe 3dL levels, and conduction bands at the Fe 3dU and Ti 

3d levels.  In these compounds, since the O 2p level is below the Fe 3dL level, and the Ti 

3d level is above the Fe 3dU level, the band gap is between the Fe 3dL and Fe 3dU levels, 
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with a value identical to that of pristine α-Fe2O3 (2.1 eV).  The result for Ti-doped α-

Fe2O3 is similar to that of the mixed Ti-Fe-O.   

The MMOBS predictions have implications for the use of materials in the Ti-Fe-

O system for photocatalytic water splitting. As soon as there is enough Fe in the 

semiconductor to red-shift the light absorption, the conduction band edge falls to a 

slightly lower energy (more positive reduction potential) than the H2/H2O potential (see 

Figure 6-2).  To efficiently drive photocatalytic watersplitting, iron-containing oxide 

semiconductors should be incorporated as thin films into tandem cells32, 45, so a small 

external voltage can be applied to raise the conduction band edge above the H2/H2O 

redox potential.   

 

6.4.2 DFT Calculations 

 The DFT results qualitatively agree with the MMOBS analysis (Figure 6-4 and 6-

7).  The density of states plots for the various compounds is presented in Figure 6-4.  For 

pristine TiO2, the band gap was between the O 2p band and the Ti 3d band, with a value 

of 2.2 eV.  This value agrees well with published DFT calculations on anatase TiO2 using 

the PBE functional16, 17.  For the Fe-doped anatase TiO2, a mid gap state was introduced 

into the band gap that corresponded to the Fe 3dU level.  Thus the lowest energy band gap 

for the Fe-doped TiO2 was between the O 2p and Fe 3dU level, with a value of 1.3 eV, 

while another band gap between the O 2p level and Ti 3d level had a value of 2.3 eV.  

For the remaining compounds, the band gap was between the Fe 3dL and Fe 3dU levels.  

The calculated band gaps for TiFeO3 (0.78 eV), Ti-doped α-Fe2O3 (0.68 eV) and α-Fe2O3 

(0.73 eV), were all approximately the same.  The value for pristine α-Fe2O3 is slightly 
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larger than that reported by Rollmann and others46.  However, Rollmann and others used 

the functional of Perdew and Wang (PW91), and it is known that band gap values can 

change with the functional employed in calculations47.   

  

 
Figure 6-4: Density of state plots generated from DFT calculations for the various Ti-Fe-
O compounds.  The band gap is indicated by the dashed lines.  The Fermi level is 
indicated by the ball-arrow on the right of each plot.  For Fe-doped anatase, the lowest 
energy band gap is between the O2p band and the midgap state (Fe3dU), while another 
band gap exists between the O2p and Ti3d levels.  Digital images for the experimental 
films that correspond to each calculation are presented above the respective plot. 

 

All of the band gap values calculated by DFT are systematically underestimated.  

The underestimation of band gap values calculated by DFT is a result of a well-known 

error stemming from the failure of most exchange correlation functionals to cancel out 

the electronic self-interaction energy48, and has been observed many times for the PBE 

functional16, 17, 19, 47. There are methods to overcome this error, such as the addition of 

Hubbard correction factors (DFT+U)49, 50, the use of exact Hartree exchange as 
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implemented in hybrid functionals47 and the direct cancellation of the self-interaction 

error48.  However, these corrections can introduce an additional level of complexity, 

difficulty and computational expense to the DFT calculations, and thus were not 

performed for this study although they could be the focus of future work.    

 
6.4.3 Nanostructured Thin Films 

 A summary of the experimental results on the nanostructured synthetic thin films 

is presented in Table 1.  The chemical composition, measured by EDS, matched the 

compositions used in the MMOBS analysis and DFT calculations to within the 

experimental error.  For the Fe-doped TiO2 film (film 2), the Fe concentration was 6.7 ± 

1.5 % based on Ti.  For the mixed Ti-Fe-O compound (film 3), the Fe concentration was 

52 ± 1.0 % based on Ti.  The oxygen concentration in these films could not be 

determined by EDS, and was not directly measured.  Thus these compounds were given 

the stoichiometric formulas Ti0.933Fe0.067Ox  (film 2) and Ti0.96Fe1.04Oy (film 3), where x is 

in the range from 1.5 to 2 for film 2, and in the range from 3 to 4 for film 3.   

 The crystal structure of each film was characterized by XRD, as presented in 

Figure 6-5.  Film 1 showed strong XRD peaks that correspond to anatase TiO2, which is 

the expected crystal phase for the FLAR synthesis conditions used in this study34.  The 

6.7 % doped TiO2 sample (film 2) showed primarily anatase peaks in the XRD pattern, 

with a small amount of rutile.    The rutile is likely a result of the presence of the Fe 

dopant, which is known to affect the crystallinity of doped TiO2
20.  The mixed oxide, 

Ti0.96Fe1.04Ox, showed virtually no peaks in the XRD pattern over the measured angular 

range.  While it is possible that the film is entirely amorphous, the evidence from the 

XRD pattern does not necessarily support that conclusion. Rather,  it is more reasonable 
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to assume that the film would not be pure crystalline illmenite; the   highly oxidative 

flame environment51, which oxidized the Ti to Ti4+ and Fe to Fe3+, naturally prevents the 

formation of crystalline ilmenite TiFeO3 with its slightly lower average oxidation state.  

Film 4 had the α-Fe2O3 crystal structure with a preferred orientation along the (104) 

direction.  Film 3 did not match the presumed ilmenite crystal structure.  However, as 

will be discussed in the upcoming sections, crystal structure appears to play only a minor 

role in determining band structure.   

 
 
Figure 6-5:  X-ray diffraction (XRD) patterns for the 4 experimental films.  The two 
large peaks that were present in all samples correspond to the indium-tin-oxide (ITO) 
deposition substrate. 

 

The dominant factor affecting the band gap and light absorption characteristics 

seems to be the atomic composition, which can be seen by examining the UV-visible 



                                                   Chapter 6: Band Structure of Mixed Oxides  

Metal Oxide Semiconductors for Solar Energy Harvesting 137

absorption spectra in Figure 6-6. As the Fe content of the films was varied from pristine 

TiO2 (film 1) to pristine Fe2O3 (film 4), the light absorption progressively red-shifted.    

 
Figure 6-6:  Normalized UV-visible absorption spectra measured by diffuse reflectance 
spectroscopy.  The band gap was determined by finding the photon energy at which the 
normalized absorbance edge reached 30% of its maximum value.  

 
6.4.4 Confirmation of Predictions 

The MMOBS predictions were confirmed by the DFT and the experimental 

results.  To illustrate, the band gaps of the various mixed Ti-Fe-O compounds are plotted 

as a function of Fe concentration in Figure 6-7.  As previously mentioned, quantitative 

agreement with the DFT calculations is not expected due to self-interaction errors that 

result in the underestimation of band gaps.  However, if one uses the DFT band positions 

for TiO2 and Fe2O3 as the basis values for the MMOBS analysis, the two methods agree 

at all points except for the Fe-doped TiO2, where the DFT calculations predict a narrower 

band gap than do the MMOBS analysis.  This result could stem from the self-interaction 
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error in the DFT calculations, or could suggest that the MMOBS analysis does not predict 

the band structure of doped compounds as accurately as mixed compounds.  The 

experimental results also confirmed the MMOBS prediction, as seen in Figure 6-7.   

 

Figure 6-7:  Band gaps predicted by MMOBS using experimental and DFT basis values 
compared to the band gap, as measured experimentally and predicted by DFT. 

 

The atomic composition of semiconductors appears to play a dominant role in 

determining electronic band structure.  The effect of atomic composition on the electronic 

structure of semiconductors can be illustrated by examining the band gaps of various III-

V and II-VI compounds.  For instance, the zinc-blende III-V semiconductors InN (1.89 

eV), InP (1.34 eV), InAs (0.354 eV) and InSb (0.23 eV) have band gaps that become 

progressively narrower as the anion increases in atomic number52.  The same trend in the 
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band gap can be seen as the atomic number of the cation increases52 – 2.15 eV (AlAs) 

1.42 eV (GaAs), 0.35 eV (InAs).  Again, the same trend is observed in the II-VI 

semiconductors for the anion52 – 3.68 eV (ZnS) 2.70 eV (ZnSe) 2.28 eV (ZnTe), and 

cation – 2.70 eV (ZnSe) 1.75 eV (CdSe).   

By contrast, the crystal structure plays a lesser role than atomic composition in 

determining the electronic band positions in mixed metal-oxide semiconductors.  This is 

reasonable if one examines other types of semiconductors and compares the effect of 

atomic composition to the effect of crystal structure.  For instance, in the TiO2 system, the 

anatase and rutile crystal structures have roughly the same band gaps, 3.2 eV (anatase) 

and 3.0 eV (rutile), despite the fact that they have different lattice parameters and bulk 

densities10; they do both contain octahedral-coordinated Ti atoms. The band-gaps of the 

hexagonal and cubic polymorphs of II-VI semiconductors typically differ by less than 10 

%.   For example, the band gap of hexagonal-CdS is 2.49 eV, while cubic-CdS is 2.52 

eV52. The more important effect of atomic composition relative to crystal structure 

explains why the Ti0.96Fe1.04Ox compound (Film 3) had the same band gap as that 

predicted by MMOBS, despite its apparent amorphous structure. 

It should be noted that significant differences in crystal structure can in some 

cases lead to large differences in the electronic energy band structure.  This can be 

illustrated by examining the carbon system.  Graphite, which consists of parallel planes 

of aromatic rings of carbon, is a conductor.  By contrast, diamond, which has a face-

centered cubic crystal structure, is an insulator with a band gap of 5.4 eV53.  In addition, 

it should also be noted that crystal structure plays a critical role in determining other 

important properties such as electron transport characteristics and catalytic activity.  For 
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instance, parameters such as crystal defect density can significantly affect electron-hole 

recombination rates, which in turn can affect the performance of the photocatalyst.   

 

6.4.5 Photocatalyst Design for Water Splitting 

The MMOBS procedure is a simple tool that can be used to design new mixed 

oxide semiconductors that have tailored band gaps and band positions to suit the needs of 

the application.  While this study focused on the Ti-Fe-O system, preliminary DFT 

calculations we have performed on the Ti-V-O and Ti-Ni-O systems suggest that 

MMOBS is applicable to those materials as well, indicating that the procedure may be 

general.   

To design a mixed metal-oxide photocatalyst for water splitting with an optimum 

band gap, several criteria must be met.  A general mixed metal-oxide compound 

containing the transition metal atoms M1 and M2 has the basis compounds (M1)Oxide 

and (M2)Oxide.  The basis compounds must meet the following criteria for 

(M1)(M2)Oxide to be an efficient photo catalyst for water splitting driven by sunlight.   

1) At least one of (M1)Oxide and (M2)Oxide must have a conduction band edge 

at a higher energy (more negative reduction potential) than the H2/H2O 

potential.   

2) Both (M1)Oxide and (M2)Oxide must have valence band edges at a lower 

energy (more positive reduction potential) than the H2O/O2 potential. 

3) If a band gap lower than either basis compound is desired, then (M1)Oxide 

and (M2) Oxide must have a staggered, type-II band offset.  Otherwise, the 

mixed oxide photocatalyst has roughly the same band positions and band gap 
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as the semiconductor with the narrower band gap (e.g. Fe2O3 in the Ti-Fe-O 

system). 

4) Between (M1)Oxide and (M2)Oxide, the difference between the highest 

valence band and lowest conduction band, which is the band gap in the mixed 

compound, should be approximately 2 eV. 

In addition to water splitting, photocatalysts could be designed for arbitrary reduction-

oxidation reactions using the above criteria, by simply replacing the H2/H2O potential 

with the potential of the reduction half reaction and the H2O/O2 potential by the potential 

of the oxidation half reaction, and adjusting the photocatalytic composition to meet the 

criteria.  To do this, high quality data about the basis compounds must first be obtained 

from the literature, experimental measurements or quantum mechanical calculations.  If 

this data were compiled, potential combinations could be rapidly screened in a rational 

fashion. 

6.5 Conclusions 

 A simple Mixed Metal-oxide Band Structure (MMOBS) procedure to predict the 

electronic energy band structure of mixed metal-oxides was developed.  This procedure 

was applied to the Ti-Fe-O system to determine the band gap and band positions of the 

compounds representing the range of composition and crystal structures: anatase TiO2, 

Fe-doped TiO2, TiFeOx, Ti-doped α-Fe2O3 and hematite α-Fe2O3.  The predictions of the 

MMOBS procedure were compared to first principles DFT calculations on TiO2, 

Ti0.9375Fe0.0625O2 (Fe-doped anatase TiO2), ilmenite TiFeO3, α-Fe1.84Ti0.16O3 (Fe-doped 

hematite α-Fe2O3) and α-Fe2O3.  The trend in band gap and band position calculated by 

DFT was qualitatively the same as that predicted by MMOBS.  A well-controlled, robust 
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flame aerosol reactor (FLAR) was then used to fabricate metal-oxide semiconductor thin 

films with matched composition to compare to the MMOBS analysis and DFT results.  

The experimental thin films showed the same trend in band gap as that predicted by the 

MMOBS analysis and DFT calculations.  Assuming it can be generally applied, the 

MMOBS procedure can be used to predict the band structure of mixed metal-oxides, 

allowing the chemical composition of novel materials to be strategically designed to meet 

photocatalytic criteria.   
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7.1 Abstract:    
 

Transition metal oxides are attractive materials for harvesting sunlight because 

they are low cost.  While there have been some exciting early discoveries, such as the 

dye-sensitized solar cell, new device configurations should be explored to further 

increase efficiencies.  The concept of the nanostructured bulk-heterojunction from the 

polymer solar cell community is applied to transition metal oxide devices.  Bulk 

heterojunctions were synthesized by filling in the spaces between n-TiO2 columns with p-

Cu2O, where both layers were synthesized by two different industrially relevant 

processes: a flame aerosol reactor for the n-TiO2 and electrodeposition for the p-Cu2O.  

While the overall thickness of the active layer was roughly constant for each device 

(between 5.5 and 6.2 μm), the thickness of the bulk heterojunction was varied between 

0.2 and 4.6 μm, with the column aspect ratio and volume fraction of p-Cu2O in the inter-

penetrating region remaining constant for each device.  Increasing the thickness of the 

bulk heterojunction increased the efficiency of charge collection, resulting in 4.6 times 

higher power conversion efficiency relative to the thin case.  The effect saturated when 

the bulk heterojunction had roughly the same thickness as the light absorption depth.  

Increasing the thickness of the bulk heterojunction beyond the light absorption depth 

resulted in no further efficiency gains.  The presence of the n-TiO2 columns in the p-

Cu2O allows excitons deep in the bulk to be collected, which would normally recombine 

if the columns were not present.  
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7.2 Introduction 

 There is no fundamental scientific limitation preventing the widespread use of 

solar panels to produce energy.  The resource is plentiful, widely distributed, and there 

are efficient ways of harvesting it.  Multijunction cells based on GaInP/GaInAs/Ge with 

efficiencies of 40 % have been fabricated1, and silicon solar cells with efficiencies on the 

order of 15-20 % are routinely manufactured for terrestrial light harvesting.  To overcome 

the temporal and spatial mismatch between energy supply and demand, solar fuels can 

also be produced2-6. Photoelectrochemical cells based on GaAs/GaInP2 have been 

fabricated that split water into hydrogen and oxygen spontaneously upon illumination by 

simulated sunlight with power conversion efficiencies of 12%7.  All of the concepts have 

been proven.  Currently, the issue is that the cost of energy produced by solar panels is 

roughly 5-10 times higher than that produced by conventional fossil fuels.  To surmount 

the cost issue, extensive work has been done to develop thin film photovoltaics based on 

CdTe8, amorphous silicon9 and Cu(Inx,Ga(1-x))Se2
10, and the technologies will 

undoubtedly have commercial success.  However, there are emerging concerns over the 

costly (In, Ga, Te, Si) and highly toxic (Cd,Pb) materials in these devices.  The challenge 

is now achieving similar efficiencies with low-cost materials that are non-toxic and 

stable. 

 Polymer solar cells have been extensively explored as a low-cost alternative 

material for photovoltaics11-15. These cells have enjoyed significant efficiency gains, 

mainly brought about by the use of nanostructured bulk-heterojunctions (BHJ) which 

consist of interpenetrating networks of the p-type and n-type polymers12, 16, 17.  The BHJ 

allows excitons to diffuse to the interface and dissociate into electrons and holes, despite 
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short exciton diffusion distances on the order of 10-50 nm14.  In essence, the 

nanostructured BHJ allows one to decouple the light absorption from charge transport.  

By carefully selecting processing conditions13, 18, 19, nanostructured interfaces can be 

achieved that increase the conversion efficiency from 3 to 6 times that of a planar 

junction20, achieving conversion efficiencies of approximately 5% for the best devices13.  

The effect of the nanostructured junction is remarkable, but the power conversion 

efficiencies still leave room for improvement, and there are also stability issues with 

polymer-based devices.  In addition, because the BHJ is typically synthesized in a single 

step, relying on internal self-assembly, the detailed structure of the BHJ interface and its 

effect on performance is not well-understood. 

 Transition metal oxides are an attractive alternative material.  They are highly 

stable.  In addition, so long as earth-abundant materials, such as Ti, Cu and Sn are used, 

they can be made low cost.  Titanium dioxide (TiO2) has been widely employed in 

photovoltaic dye-sensitized solar cells3, 4, 21, achieving conversion efficiencies on the 

order of 11%22.  There have been interesting advances in sensitizer development through 

the use of quantum dots23, 24.  However, dye-sensitized solar cells typically contain a 

liquid electrolyte, which is volatile and can cause stability issues25.  There has been some 

recent work on replacing the electrolyte with polymers22 and less volatile electrolytes26, 

but the efficiencies still remain below that of the liquid electrolyte.  Hybrid inorganic-

organic cells have also been explored27, but met with limited success.  Amidst the 

excitement over the successes of the dye-sensitized solar cell, new configurations for 

transition metal oxide solar cells should be explored to fully realize this technology. 
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 As we move forward towards more efficient and less expensive solar cells, it is 

necessary to integrate the key concepts from different communities.  Some work has been 

done on solid state BHJs from traditional semiconductor materials28-30. To achieve a well-

defined material architecture, guest-host synthesis approaches are attractive30.  The 

concept is illustrated in Figure 7-1.  Here a well-defined host structure is synthesized, 

followed by deposition of the guest material to fill the void spaces in the host.  This 

approach has been attempted in other solid-state material systems, such as nanotube TiO2 

host with CdTe guest29, nanotube TiO2 host  with CuInSe2 guest30, with varying degrees 

of success.  It is typically difficult to completely fill the pores in the host material.  The 

degree of filling depends strongly on the characteristic size of the void spaces and 

diffusion of the depositing species30.  Smaller voids and higher diffusion result in less 

complete filling.   

 

Figure 7-1:  Diagram of an inorganic solid state bulk-heterojunction (BHJ) photovoltaic 
device. 
 

Moving beyond conventional semiconductors to low cost all-oxide devices, the 

first step in the design/build process is selecting the materials.  The p-type and n-type 

materials must have a type-II band offset, such that the conduction and valence bands of 

the p-type material are at higher energy than the n-type material, so electrons are 

segregated into the n-type semiconductor where they are mobile, and holes are segregated 
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into the p-type semiconductor where they are mobile.  Second, the band gap of one of the 

components must be in the visible region of the spectrum, and should be no greater than 

2.4 eV and no less than 0.7 eV if reasonable solar power conversion efficiencies are 

desired31.  Third, if one wishes to promote the water splitting reaction, then the 

conduction and valence bands of both semiconductors must straddle the water reduction-

oxidation potentials5, and the band gap of the photoactive material should be on the order 

of 2.0 eV to provide enough energy to split a water molecule (1.23 eV) and overcome 

potential losses in the system32.  The n-TiO2/p-Cu2O system meets these criteria (Figure 

7-2).  The band positions in Figure 7-2 were taken from the literature3, 33.  Titanium 

dioxide (n-TiO2) is an n-type semiconductor with a wide band gap of 3.2 eV.  Cuprous 

oxide (p-Cu2O) is a p-type semiconductor with a band gap of 2.0 eV.  Based on the band 

gap, Cu2O has a theoretical maximum photovoltaic conversion efficiency of about 23 

%31. 

 

Figure 7-2: Energy level diagram of the TiO2/Cu2O system illustrating the conduction 
band (CB) and valence band (VB) positions.  The devices synthesized for this study were 
used as photovoltaics.  The water oxidation and proton oxidation potentials are shown 
simply to demonstrate that Cu2O is thermodynamically capable of splitting water, and in 
particular is attractive for the proton reduction (cathodic) half reaction.  
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Integrating the concept of the BHJ into transition metal oxide solar cells, this 

paper presents a systematic study of the effect of BHJ structure on the performance of all-

oxide photovoltaic p/n junctions.  To the knowledge of the authors, systematic studies on 

the effect of BHJ thickness and feature size on photovoltaic performance for transition 

metal oxides, and generally for solid-state inorganic systems, have not yet been 

conducted.  In this paper, we describe results of such as study due to the availability of 

well-controlled synthesis methods. 

 

7.3 Results and Discsussion  

7.3.1 Synthesis 

 For this work, columnar n-TiO2 films were synthesized on ITO substrates as the 

host.  A dense layer of TiO2 was deposited on the substrate prior to the columnar n-TiO2 

deposition by spin coating to serve as a hole-blocking layer.  The hole-blocking layer is 

important34 and photovoltaic cells fabricated without it were short-circuited due to the 

porous nature of the columnar layer which allowed the electrodeposited p-Cu2O layer to 

contact the ITO substrate.   The columnar n-TiO2 films were synthesized by a flame 

aerosol reactor (FLAR), the details of which can be found in our earlier papers4, 5, 35.  The 

FLAR is a rapid, single-step, atmospheric pressure process that affords rational control 

over film morphology.  Typical deposition rates are on the order of 1 nm s-1, allowing 

micrometer-thick films to be deposited rapidly.  It is similar to reactors that are used to 

make millions of metric tons of materials such as carbon black and TiO2 pigments.  In 

this process, nanoparticles (less than 10 nm in diameter) were deposited onto a warm 

substrate where they sintered to form oriented columnar structures, which typically have 
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long-range crystalline order and in many cases are single crystal4.  The structures 

spontaneously self-assemble as a result of the nanoparticle deposition process, no 

substrate seeding or pretreatment is necessary.    Columnar n-TiO2 films of varying 

thickness, in the rage from 0.2 μm to 4.6 μm were deposited and incorporated into the n-

TiO2/p-Cu2O BHJ cells. 

 The guest material was p-Cu2O.  This is the active layer where the photoexcited 

electrons and holes are generated.  The p-Cu2O was deposited by electrodeposition36 at a 

temperature of 55 oC in the voids between the n-TiO2 columns.  Electrodeposition is also 

an attractive synthesis process and is used industrially to produce metallic copper.  For all 

cases in this study, the p-Cu2O layer was cathodically deposited at a constant current 

density of 1.0 mA cm-2 for 60 minutes; corresponding to total charge of 3.6 C cm-2 and an 

equivalent dense p-Cu2O film thickness of 5.4 μm36.  In other words, all cells reported in 

this paper had the same amount of p-Cu2O, and therefore it is assumed that light 

absorption and electron-hole pair generation rates were the same in all cells, since n-TiO2 

is transparent in the visible region of the spectrum.  However, as will be discussed later, 

the thickness of the BHJ layer affects the degree to which these electrons and holes are 

collected. 

 The BHJ structure consists of interpenetrating layers of n-TiO2 and p-Cu2O, as 

illustrated by the cross-sectional scanning electron microscope (SEM) image in Figure   

7-3, along with a schematic illustrating the relevant characteristic dimensions in the 

device.  There were no issues encountered with penetration of the electrodeposited p-

Cu2O into the n-TiO2 column matrix.  This is likely due to the wide spacing between 

columns (100-400 nm) relative to the diffusion length of the semiconductor precursors in 
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the electrolyte30.  X-ray diffraction measurements confirm that the host is crystalline 

anatase n-TiO2 and the guest is crystalline p-Cu2O (Figure 7-4).  The n-TiO2 columnar 

host appears to have a random crystallographic orientation, while the p-Cu2O guest has a 

(001) orientation.  The BHJ structure had a deep red color, and exhibited strong 

absorption in the visible region of the spectrum.  The absorption edge was about 650 nm, 

in good agreement with the band gap value of 2.0 eV (Figure 7-4).  It should be noted for 

the UV-visible absorption data in Figure 7-4, the area of specimen that contained p-Cu2O 

was approximately 50 % of the sample beam, thus the actual absorbance values in the 

visible region of the spectrum is likely twice the values plotted.   
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Figure 7-3:  a) Side-view schematic showing the important physical dimensions in the 
device: Column spacing (Ls), light absorption depth (LABS), bulk heterojunction thickness 
(LBHJ) and overall thickness (Loverall).  b) Side view SEM image of a BHJ structure 
synthesized from a 2.5 μm columnar TiO2 film, illustrating from bottom to top: the ITO 
TCO layer, dense hole blocking layer, bulk-heterojunction region, pure Cu2O region, and 
Pt back contact. 
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Figure 7-4: X-ray diffraction pattern (a) and UV-visible absorption spectra (b) for 2.3 
μm TiO2 columns with and without Cu2O.   In the XRD pattern, the * correspond to 
peaks from the Sn-doped In2O3 substrate (PDF# 01-088-2160, RDB).  The remaining 
peaks correspond to anatase TiO2 (PDF# 00-021-1272, RDB) or Cu2O (PDF# 01-078-
2076, RDB).  The Cu2O showed partial orientation along the (100) direction. 
 
 Moving to analyze the BHJ in detail, there are several important characteristic 

dimensions to identify (Figure 7-3a), as they will influence the performance of the 

device. The first is the light absorption depth LABS.  This is intrinsic to the light-absorbing 

material, in this case p-Cu2O.  Based on results presented later in this paper, we estimate 

this depth to be more on the order of 2.0 μm in our system, which is similar to other 

values reported in the literature37.    The second important dimension to identify is the 

thickness of the BHJ  (LBHJ) which is controlled in this study and can be measured from 

SEM images of the n-TiO2 columns before p-Cu2O deposition.  The third dimension is 

the overall thickness of the active layer, Loverall.  This thickness is important in 

determining whether the optically active layer is thick enough to absorb all of the light 

(i.e. Loverall > LABS).  All of the cells used in the present study had overall thicknesses 

greater than the estimated absorption depth.  The last important dimension is the column 

spacing (Ls) which determines the width of the filaments of p-Cu2O extending into the 
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BHJ.  The spacing is difficult to measure directly.  It is easier to measure the column 

diameter.  For the purposes of this paper, the column spacing is assumed to be the same 

as the column diameter, which agrees with the SEM results. 

 Bulk heterojunctions with four different n-TiO2 column thicknesses (LBHJ) were 

synthesized by controlling the deposition time in the FLAR4, 35.  Cross-sectional SEM 

images of the n-TiO2 films before and after p-Cu2O deposition are presented in Figure   

7-5.  Elemental maps constructed by EDS using Ti-Kα and Cu-Kα X-rays in the SEM 

clearly reveal the inter-penetrating nature of the interface (Figure 7-6).  The thickness of 

the n-TiO2 film before p-Cu2O deposition was measured approximately 75 times at 

various positions on the film at various magnifications by hand.  The width of the 

columns for each film was measured at the thickest point on 75 different columns by 

hand.  The overall thickness of the n-TiO2/p-Cu2O structure was measured in the same 

way.  The average values along with the standard deviations of the measurements are 

presented in Table 7-1.   
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Figure 7-5: Side view SEM images of TiO2 columns for cells 1-4 before (a1-4) and after 
(b1-4) Cu2O deposition.   
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Figure 7-6:  Side view SEM images (a) and elemental maps (b) taken by X-EDS for cell 
3 (a1,b1) and cell 4 (a2,b2) illustrating the inter-penetrating nature of the n-TiO2/p-Cu2O 
interface.   
 

Table 7-1:  Summary of the relevant physical dimensions of each BHJ device.  For 
comparison, the light absorption depth is approximately 2.0 μm. 

Cell LBHJ (μm) 

Column 
Diameter 
(Ls, μm) 

Column 
Aspect 
Ratio Loverall (μm) ∅Cu2O 

1 0.21 ± 0.02 - - 5.46 ± 0.17 71 ± 5 % 
2 1.17 ± 0.08 0.15 ± 0.04 8.1 ± 1.3 5.67 ± 0.26 77 ± 4 % 
3 2.27 ± 0.31 0.24 ± 0.08 9.5 ± 2.2 5.84 ±0.26 81 ± 7 % 
4 4.56 ± 0.62 0.44 ± 0.19 10 ± 2.8 6.62 ± 0.42 73 ± 7 % 

 

There are several notable trends in the dimensions of the various bulk 

heterojunctions, such as the column width.  As the thickness of the columnar film (LBHJ) 

increases, so does the column width (Ls).  Indeed, it appears as though the resulting 
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column aspect ratio (LBHJ / Ls) is roughly constant for the deposition conditions used in 

this study.    Assuming that the p-Cu2O completely fills the inter-column spaces, the 

volume fraction of p-Cu2O in the BHJ can be derived from geometric arguments based on 

volume conservation, and calculated using the following expression: ∅௨మை ൌ 1 െ ೡೝೌିబ,ೠమೀಳಹ                                                  (7-1) 

Where ∅௨మை is the volume fraction of p-Cu2O in the BHJ region and ܮ,௨మை is the 

equivalent thickness of the p-Cu2O layer if it were homogenous and dense, which can be 

calculated from the total charge passed during electrodeposition (3.6 C cm-2) to be 

approximately 5.4 μm.  From Table 7-1, it can be seen that the volume fraction of p-Cu2O 

in the BHJ region remains constant, despite the increase in BHJ thickness.  This is likely 

a result of the column aspect ratio remaining constant.   

 

7.3.2 Photovoltaic Characteristics 

 The thickness of the BHJ region had a strong influence on the photovoltaic 

performance of the cells.  The I-V curves generated under simulated AM1.5G 

illumination are presented in Figure 7-7, with the performance metrics tabulated in Table 

7-2.  The short circuit current increased from 0.42 to 1.07 mA cm-2 as LBHJ went from 0.2 

μm to 2.3 μm, and then remained constant for the 4.6 μm case.  These currents were 

much higher than the current expected from n-TiO2 only, which is approximately 0.1 mA 

cm-2.38  The I-V curves in the dark of cells with LBHJ values of 0.2 μm and 4.6 μm are 

presented in Figure 7-7.  The cells exhibited rectifying behavior in the expected direction.  

While the overall conversion efficiency of these cells was relatively low, likely from the 

poor quality of the spin-coated hole-blocking layer39 and unoptimized p-Cu2O deposition 
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conditions36, significant performance gains were achieved by increasing the BHJ 

thickness.  Indeed, the short-circuit current went up by a factor of 2.6, and the overall 

conversion efficiency went up by a factor of 4.3 (Table 7-2).  Since the light absorption in 

all of the cells was similar, the performance gains achieved with increasing LBHJ are a 

result of improved charge collection. 

 

Figure 7-7:  I-V curves measured as a function of BHJ thickness (LBHJ) under simulated 
AM1.5 G illumination (a) and rectifying characteristics of cells 1 and 4 in the dark (b).    
 
Table 7-2:  Summary of the photovoltaic characteristics of each cell measured under 
simulated AM1.5G illumination. 

Cell 
Isc        

(mA cm-2) Voc (V) FF 
Power Conversion 

Efficiency (%) 
1 0.42 0.26 0.24 0.03 
2 0.73 0.27 0.26 0.05 
3 1.07 0.42 0.29 0.13 
4 1.02 0.40 0.28 0.11 

 

 There are several fundamental events that occur in p/n junction-based devices that 

lead to charge separation and generation of the electron motive force. The first is light 

absorption.  Photons are absorbed over the entire depth of the material, with an 

exponentially decreasing intensity as the beam passes through the sample.  Most of the 
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photons are absorbed within the absorption depth (~62%, if LABS = α-1).  Each absorbed 

photon leads to the generation of an exciton, which is an electrostatically neutral particle 

consisting of an excited bound electron-hole pair.  This exciton can then recombine or 

separate, depending on the where it is generated, its diffusion length and lifetime. 

 At the interface between the n-type (n-TiO2) and p-type (p-Cu2O) materials, there 

exists a region of strong electric field caused by depletion of electrons and holes relative 

to the bulk to obtain equilibrium, called the depletion region.  If an exciton finds itself in 

the depletion region, it will separate. The electrons flow towards the n-type material and 

the holes flow in the p-type material.  Once electrons are segregated into the n-type 

material, and holes in the p-type material, the charge transport to the electrical contact is 

a majority-carrier process, very efficient, and charge collection is relatively easy.  

However, exciton diffusion to the depletion region is not efficient, as it is completely 

random process due to the electrical neutrality of the particle.  It is much more efficient to 

generate the exciton directly in the depletion layer.  Since p-Cu2O is the photoactive 

species in the cells synthesized for this study, we will focus on the p-type material.  The 

width of the depletion region in the p-type material of a p/n heterojunction can be 

estimated by the following equation40: 

ܹ ൌ  ଶேವఌఌఌబಳேಲ൫ఌேವାఌேಲ൯൨ଵ/ଶ
                                             (7-2) 

Where ߝ is the vacuum permittivity (5.526 x 105 e V-1 cm-1), ܰ and ܰ and the donor 

and accepter concentrations in the n-type and p-type semiconductors respectively, ߝ and ߝ are the relative dielectric constants of the n-type and p-type semiconductors, ݍ is the 

elementary unit charge and ܸ is the built-in potential at the interface.  The dielectric 

constants are taken to be 7.11 and 45 for p-Cu2O41 and n-TiO2
42 respectively.  The 
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accepter and donor concentrations depend strongly on the doping concentration, but the 

intrinsic values are reported to be approximately 1015 cm-3 and 1018 cm-3 for p-Cu2O43 

and n-TiO2
44 respectively. Since the photovoltaic effect under simulated sunlight 

primarily arises from visible-wavelength excitons created in the p-Cu2O, the built-in 

potential is estimated to be the difference between the conduction band of p-Cu2O and the 

conduction band of n-TiO2, which is approximately 0.61 V (Figure 7-2).  Entering these 

values into equation (7-2) yields a depletion layer thickness of 0.69 μm. 

 In the BHJ structures, the depletion region emanates from the columns, in contrast 

to a planar junction where it can be thought of as a slab at the interface (Figure 7-8).  If it 

is assumed that only excitons generated in the depletion region result in collected current, 

in the planar case only excitons generated in the 0.69 μm depletion region result in 

photocurrent while many excitons generated over the ~ 2 μm absorption depth are 

wasted.   

 

Figure 7-8: Schematic illustrating the proposed difference between the depletion region 
in a BHJ device and a planar device. 
 
 In the case of the BHJ, the situation is different.  The average inter-column 

spacing is less than the depletion region width.  Since it emanates from columns, the 

effective depletion region assumes the same thickness as the BHJ, which can be 
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controlled through the thickness of the TiO2 columns (LBHJ).  Thus, excitons over the 

entire absorption depth can be harvested by setting LBHJ = LABS, resulting in significantly 

improved photocurrent generation.  Increasing LBHJ beyond this point offers no 

advantages in terms of charge collection (Figure 7-9).  Thus, assuming the column 

spacing is less than the depletion region width, the optically active material is thick 

enough to absorb the incident photons, and charge carrier transport is sluggish (which 

looks like the case for polymer and oxide solar cells), devices with LBHJ < LABS are 

charge carrier transport-limited, and devices with LBHJ > LABS are recombination-limited 

(Figure 7-9). 

 
Figure 7-9: Short circuit photocurrent density as a function of BHJ thickness (LBHJ) 
under simulated AM1.5 G illumination showing the saturation of the photocurrent when 
LBHJ ~ LABS. 
 
 It was observed that this guest/host nanostructuring approach can be used to 

improve the performance of these devices by over a factor of 4, which is similar to the 

improvements reported by the polymer solar cell community.  The present devices could 

be further improved by depositing a higher quality hole-blocking layer by spray 

pyrolysis45, carefully controlling the p-Cu2O deposition conditions30, 36, and post-

processing such as annealing the junctions to improve interfacial contact, charge transport 
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and reduce defect concentrations in the structure.  Also, interfacial layers between the p-

type and n-type materials would likely help28.  Simple steps like these can lead to 

performance gains of several orders of magnitude4.  Since the present devices are among 

the first of their kind, this result is promising and significant improvements in 

performance are expected in the future.     

7.4 Conclusions 

 It is important to explore new device configurations, particularly for transition 

metal-oxides to fully their potential to harvest sunlight.  However, it is not only important 

to explore new configurations, but also to conduct systematic studies to understand how 

the relevant parameters influence performance.  Towards these ends, bulk heterojunctions 

between columnar n-TiO2 and p-Cu2O were successfully synthesized.  The p-Cu2O was 

electrodeposited to fill in the spaces between the n-TiO2 columns, which were deposited 

by a flame aerosol reactor (FLAR).  The important characteristic dimensions of the BHJ 

were identified: the BHJ thickness (LBHJ), inter-column spacing (Ls), guest volume 

fraction (∅௨మை) and absorption depth (LABS).  The columnar film thickness (LBHJ) was 

varied between 0.2 μm to 4.6 μm; with the column radius (Ls) varied between < 0.15 μm 

and 0.44 μm.  The p/n junction exhibited rectifying characteristics and the devices 

behaved as photovoltaics under simulated AM1.5G illumination.  The photocurrent 

developed by the cells increased with n-TiO2 column thickness until the bulk 

heterojunection thickness (LBHJ) was the same as the light absorption depth (LABS), 

resulting in a 2.6 times more photocurrent and 4.3 times higher conversion efficiency 

than  the thin case. Increasing LBHJ beyond the absorption depth (LABS) resulted in no 

further performance gains.  It is proposed that in the present devices the depletion region 
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occupies the entire inter-column spacing (Ls).  Since the absorption depth in p-Cu2O is 

much larger than the depletion region of a planar junction, increasing the BHJ thickness 

provides access to excitons deep in the bulk that would normally recombine if the n-TiO2 

columns were not there, improving the device performance. 

 

7.5 Methods 

 This section summarizes details for synthesis of the n-TiO2 layer, p-Cu2O layer 

and back contact; as well as the details of materials characterization and photovoltaic 

characterization. 

 The base substrates used in this study consisted of a 180 nm ITO film deposited 

on 25.4 mm X 25.4 mm X 0.7 mm Corning 1737 glass (Delta Technologies, Stillwater 

MN) and were used as-received with no further treatment.   

 A dense, nanocrystalline TiO2 layer was deposited onto the ITO as a hole-

blocking layer by spin-coating.  The solution was 0.4 ml of titanium tetra-isopropoxide 

(TTIP) dissolved in 4 ml of toluene.  Spin coating solutions more concentrated than this 

resulted in significant cracking upon annealing, and concentrations less than this resulted 

in incomplete coverage.  Before spin coating, a small portion of the substrate was masked 

to ensure that electrical contact could be made to the ITO after dense TiO2 deposition.  A 

drop of 0.1 ml of this solution was applied to the substrate while it was spinning at 1000 

RPM for 4 seconds, followed by high-speed spinning at 5200 RPM for 30 seconds.  The 

resulting thin film was annealed at 450 oC for 3 min, to give a partially-annealed 

nanocrystalline39 layer 80 nm in thickness.  The spin coating process was repeated 3 

times to yield a 240 nm dense layer, which was finally annealed at 450 oC for 40 min. 
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 The columnar n-TiO2 was deposited on the dense n-TiO2 using a flame aerosol 

reactor, the experimental details of which can be found in our earlier papers4, 35.  The 

substrate (ITO/dense TiO2) was positioned 2.7 cm away from the burner outlet.  The 

substrate was fixed to the copper substrate holder using a small amount of thermal paste 

(Arctic Silver 5, Arctic Silver, Visalia CA).  A copper mask was applied to restrict the 

deposition of the columnar TiO2 to a 15 mm circle in the center of the substrate.  A 1/4 " 

stainless steel insert was placed between the copper substrate holder and copper heat sink 

to increase the thermal resistance and therefore substrate temperature4, 35.  The stainless 

steel insert was fixed to the substrate holder using thermal paste.  The process gas flow 

rates, controlled by digital mass flow controllers (MKS, Wilmington MA) were methane 

= 2.0 liters per minute at standard temperature and pressure (lpm), oxygen = 8.0 lpm and 

Ar(dilution) = 9.5 lpm.  The titanium precursor was TTIP and it was fed into the flame 

using a homemade bubbler.  The bubbler temperature was maintained at 47 oC, and the 

argon flow rate through it was 0.5 lpm, corresponding to a TTIP feed rate of 0.60 mmol 

h-1.  The substrate holder temperature (which is much lower than the substrate surface 

temperature) was 165 oC for these deposition conditions.  The thickness of the columnar 

films was controlled through the deposition time, with film 1, 2, 3 and 4 (Table 7-1) 

corresponding to deposition times of 4 min, 16 min, 32 min and 64 min respectively.   

 The p-Cu2O layer was deposited by electrodeposition from a high pH solution 

containing chelated Cu(II) ions36.  Before deposition, the substrates (ITO/dense 

TiO2/columnar TiO2) were masked using a medium viscosity clear multipurpose adhesive 

(E6000, Eclectic Products, Pineville LA).  An area ~0.7 cm2 in the center of the columnar 

region of the substrate was exposed, with the rest of the substrate covered with sealant.  
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The precise exposed area of n-TiO2 was measured from calibrated digital images using 

the ImageJ software package.  If this adhesive was not applied than the p-Cu2O 

preferentially deposited on the regions of the substrate that contained no columnar TiO2, 

creating a highly non-uniform sample.  A solution of 3 M lactic acid and 0.2 M copper 

sulfate in deionoized (DI) water was prepared for the electrolyte.  The pH of this solution 

was adjusted to 12.4 (measured by an in-situ pH probe) through the addition of a solution 

of 1M NaOH in DI water. The total volume of the 1M NaOH solution added was 

approximately 80 ml.  As the NaOH solution is added, the color goes from light blue (low 

pH) to dark brown/black (neutral pH) to a deep rich blue (high pH).  This solution was 

then heated in a 250 ml beaker to 55 oC, where it was maintained for the duration of 

deposition.  A two-electrode configuration was used for deposition, with a Pt counter 

electrode (anode) and the masked columnar n-TiO2 substrate as the working electrode 

(cathode).  Deposition was carried out at a constant current density of 1.0 mA cm-2 

controlled by a digital source/meter (model 2400, Keithly Instruments, Cleveland OH).  

During deposition the applied voltage (automatically controlled) fluctuated between 1.0 

and 1.2 V.  In a select experiment, the potential of the working electrode was measured 

with respect to a saturated calomel reference electrode (SCE) and found to be 

approximately -0.6 V/SCE.  Deposition was carried out for 60 min, corresponding to a 

total charge of 3.6 C cm-2.  After deposition, the sample was removed from the 

electrolyte, rinsed thoroughly with DI water and dried in the ambient. 

 The back electrical contact to the p-Cu2O layer was accomplished by sputter 

coating Pt and then forming a final connection with electrically conductive paste.  Before 

sputter coating the Pt, a 0.2 cm2 region of the center of the p-Cu2O was exposed, with the 
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rest of the sample being masked by electrical tape.  A 70 nm Pt layer was then deposited 

on the exposed region by sputter coating.  Contact to the thin Pt layer was established by 

apply a small amount of electrically conductive paste (SPI, Westchester PA), which was 

then easy to connect to the external measurement circuit. 

 The active layer of the device, before and after p-Cu2O deposition, was 

characterized by side-view scanning electron micropscopy (SEM), spatially resolved X-

ray energy dispersion spectroscopy (X-EDS elemental mapping), X-ray diffraction 

(XRD) and UV-visible diffuse reflectance spectroscopy.  Specimens for SEM and X-EDS 

mapping were prepared by mechanically cleaving the sample down the center of the 

active area followed by imaging in a JEOL 7001LVF FE-SEM operating at 15 kV.  

Distance measurements were performed by hand using ImageJ.  Specimens for XRD 

characterization were measured before back contact deposition, with and without p-Cu2O 

in a Rigaku DMAX/A diffractometer using Cu-Kα radiation.  UV-visible diffuse 

reflectance measurements were performed in a Cary 300 (Varian, Palo Alto CA) 

equipped with an integrating sphere (DRA-CA-30I, Labsphere, North Sutton NH) by 

illuminating the sample through the transparent substrate at an incidence angle of 0o.    

For UV-visible measurement, the sample was mounted to a certified reflectance standard 

to mitigate errors induced by photon transmission through the sample.  The spectra are 

corrected for the profile of the certified reflectance standard and baseline-subtracted.   

Only half of the sample beam was taken up by the p-Cu2O region, while the TiO2 

occupied the entire beam.  Thus, the actual absorption in the visible region of the 

spectrum is much higher than what is plotted in Figure 7-4. 
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 The I-V curves for the various cells were measured under illumination from a 

solar simulator operating at 190 W (Oriel Light Sources, Stratford CT).  The output was 

calibrated using a spectoradiometer to achieve the same integrated power density over the 

wavelength range from 220 nm to 950 nm as the AM 1.5 G spectra, which is 72 mW cm-

2.  The active area was masked using electrical tape to be 0.2 cm2.  The cell was 

illuminated through the transparent conducting substrate. The current was measured as a 

function of applied voltage using a digital source meter (2400, Keithley).  The global 

efficiency was calculated using the following equation:  ߟ ൌ ூೞிிூబ כ 100 where I0 is the 

total incident intensity (100 mW cm-2) and ܨܨ ൌ ௪ூೞ where wmp is the maximum power 

developed by the cell.  The results presented are representative of approximately 13 cells 

that were tested.   
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8.1 Conclusions   

While this thesis did not find the "holy grail" solution to the energy problem, which 

would be a low cost material capable of directly producing solar fuels with a sunlight-to-

fuel energy conversion efficiency of 10%, several important strides were made in that 

direction.  These conclusions are likely to have a lasting impact on the fields of aerosol 

film deposition, solar energy harvesting by metal-oxide semiconductors and others.  

Below are the major conclusions drawn by this work: 

i. Human development increases with per capita primary energy consumption.  

However, there is an energy consumption level after which little gain in 

development is achieved by increasing primary energy consumption, a point of 

diminishing return, or saturation energy.  If every nation in the world had a 

primary energy consumption equal to the saturation energy, it would require a 

more than doubling of global primary energy consumption.  In light of climate 

change, solar energy harvesting is an attractive source to meet the growing 

demand, and utilizing new technology based on metal oxide semiconductors has 

the potential to break through the cost barriers currently preventing widespread 

adoption. 

ii. A robust system consisting of a flame aerosol reactor (FLAR) for the deposition 

of nanostructured TiO2 films with controlled morphology was developed.  The 

FLAR can be used to synthesize nanocrystalline granular films with high surface 

area or single-crystal columnar films with slightly lower surface area, but superior 

electron transport characteristics.  The process is rapid, single step, operates at 
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atmospheric pressure and is industrially scalable.  The FLAR affords rational 

control over many important materials properties such as  thickness, surface area, 

grain size and electron transport characteristics. 

iii. Controlling morphology, which includes nanostructure, is a conceptual tool that 

can be used to improve device performance, in some cases by factors as large as 

10 to 50.  Despite having a lower surface area, single-crystal columnar TiO2 films 

have superior performance in dye-sensitized solar cells and photo water splitting 

cells relative to unsintered granular structures, mainly due to superior electron 

transport characteristics and lower recombination rates, which lead to a simulated 

sunlight-to-electricity conversion efficiency of approximately 6.0 % for dye-

sensitized solar cells and a UV-light-to-hydrogen conversion efficiency of 11% 

for photocatalytic water splitting. 

iv. A reaction mechanism for photo oxidation of water on the surface of TiO2 was 

proposed.  At acidic and neutral pH values, water molecule oxidation dominates, 

while at basic pH values, hydroxide ion (OH-) oxidation dominates.  Hydroxide 

ion oxidation is more rapid then the oxidation of water molecules, likely due to 

the electrostatic interaction between positive holes in the TiO2 and the negative 

hydroxide ions on the surface.  It appears as though seawater can be used as a 

resource for water splitting, so long as the pH of the water is sufficiently high. 

Although, accumulation of ions in the electrolyte could eventually lead to 

precipitation, potentially leading to catalyst deactivation. 
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v. The role of chemical composition in determining the electronic band structure of 

mixed metal oxides in the Ti-Fe-O system was studied.  It was found that the 

conduction and valence bands in the mixed compounds were at the same energy 

levels as the pristine, basis compounds.  A simple mixed metal oxide band 

structure (MMOBS) was proposed as a simple design tool for mixed compounds. 

vi. Bulk-heterojunctions (BHJ) between columnar n-TiO2 and p-Cu2O were 

successfully synthesized.  The important characteristic dimensions of the BHJ 

were identified: the BHJ thickness (LBHJ), inter-column spacing (Ls), guest volume 

fraction ( ) and absorption depth (LABS).  The p/n junction exhibited 

rectifying characteristics and the devices behaved as photovoltaics under 

simulated AM1.5G illumination.  The photocurrent developed by the cells 

increased with n-TiO2 column thickness until the bulk heterojunection thickness 

(LBHJ) was the same as the light absorption depth (LABS), resulting in a 2.6 times 

higher photocurrent and 4.3 times higher conversion efficiency than  the thin case. 

Increasing LBHJ beyond the absorption depth (LABS) resulted in no further 

performance gains.    Increasing the BHJ thickness provides access to excitons 

deep in the bulk that would normally recombine if the n-TiO2 columns were not 

there, improving the device performance.  The result provides design concepts 

and lays the foundation for the development of a monolithic all-oxide self-biased 

water splitting device. 
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8.2 Future Directions 

8.2.1  Columnar Film Synthesis Mechanism 

 It would be rather straightforward, but important to do a detailed study of the 

deposition mechanism for the columnar films.  Indeed, it appears as though the 

mechanism is a physical mechanism and the columnar morphology should be achievable 

with many different materials, although the necessary time-temperature history would be 

material dependent.  In addition, by controlling the Péclet number of the depositing 

particles (by changing the strength of the thermophoretic force driving deposition, for 

instance), the column width and spacing could probably be controlled, to some extent.  

 An integrated theory-experiment approach would likely yield the best results.  On 

the experimental side, films could be deposited using different metal-organic precursors, 

empirically tuning the deposition conditions (temperature, particle size) to achieve the 

columnar morphology for different metal oxide materials.  The critical temperature and 

particle size would likely be related to the melting point of the material, lower melting 

point materials forming the columnar structure at milder sintering conditions (larger 

particles and lower temperatures), and higher melting point materials achieving the 

columnar morphology at more intense sintering conditions (smaller particles and higher 

temperatures).   

 Simple sequential Brownian dynamics could be performed on large numbers of 

particles to observe preferential deposition on the protruding structures (unsintered 

columns).  Column size could be defined based on a radial distribution function, allowing 
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the effect of the incoming particle Péclet number on the characteristic size and spacing of 

the columns to be systematically studied.   

8.2.2 Dye-Sensitized Solar Cells 

 It was found that the columnar nanostructure yielded a higher photocurrent than 

the unsintered granular structure in Chapter 4.  However, it is likely that there is an 

optimum morphology between the columnar structure and the unsintered granular 

structure, which has higher surface area and therefore light absorption in dye-sensitized 

solar cells.  A more detailed study of the effect of morphology could be performed by 

depositing films with morphologies intermediate between the columnar and granular, or 

by post-annealing the granular structures to improve inter-particle electrical contact.  

8.2.3 Electrolyte Saturation Effects 

 If one wishes to use seawater as a source of water for photo water splitting, as the 

water is consumed the concentrations of various ionic species in the electrolyte will 

accumulate.  The accumulation will lead at some point to saturation and precipitation.  It 

would be interesting to systematically study the effect of electrolyte saturation on water 

splitting device performance.  It is expected that strategies developed by the reverse 

osmosis water purification community, who experience similar issues with saturation and 

precipitation of ionic species in aqueous electrolytes, could be applied in this case to 

overcome the saturation issue. 
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8.2.4 Extension of MMOBS  

 One could perform DFT calculations on more materials to determine the specific 

classes of materials for which the MMOBS procedure is valid. 

8.2.5  Improvement of n-TiO2/p-Cu2O BHJ Cells 

 The n-TiO2/p-Cu2O cells are the first of their kind to be synthesized.  Thus there 

is much work that could be done to improve performance.  Below are recommended 

places to first attack the problem.  The devices could be further improved by depositing a 

higher quality hole-blocking layer by spray pyrolysis, carefully controlling the p-Cu2O 

deposition conditions, and post-processing such as annealing the junctions to improve 

interfacial contact, charge transport and reduce defect concentrations in the structure.  

Also, interfacial layers between the p-type and n-type materials would likely help.  

Simple steps like these could lead to performance gains over several orders of magnitude.  

In addition, these cells could also be applied to self-biased water splitting. 
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Figure I-1: Schematic of the premixed flame aerosol reactor (FLAR). 
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Figure I-2: Digital image of the premixed flame aerosol reactor (FLAR). 
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Figure I-4:  Digital image of the water splitting photocell. 
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Figure I-5: Digital image of the solar simulator used for photovoltaic testing in Chapter 
7. 
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Figure I-6:  Comparison of the spectral output of the solar simulator to the AM1.5G 
standard. 
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 In Chapter 5 the thermodynamics of water splitting were discussed in the context 

of various standard reduction-oxidation potentials at pH 0.  However, it should be noted 

that changing the pH can affect these thermodynamics.  The effects of pH on the 

thermodynamics of TiO2-based photocatalysis have been addressed by Bard et al1.  The 

key findings are presented here.  First, in an aqueous solution at room temperature, the 

valence and conduction band positions of TiO2 shift with pH according to the following 

equations1: 

ܧ ൌ ܧ
 െ  (II.1)                                              ܪ0.059

ܧ ൌ ܧ
 െ  (II.2)                                             ܪ0.059

where the superscript 0 denotes the potential of the valence and conduction bands at 

standard conditions (pH 0).  At room temperature, the potentials of water oxidation and 

proton reduction shift by the same amount as a function of pH according to the Nernst 

equation2: 

ுܧ ൎ ுܧ
 െ  (II.3)                                              ܪ0.059

where EH
0 is the standard reduction potential for the water oxidation and proton reduction 

half reactions, +1.23 volts and 0.00 volts respectively.  Since the band positions of the 

TiO2 and water oxidation half reactions have the same pH dependence, the pH has no net 

effect of the thermodynamics of these reactions with respect to reduction or oxidation by 

photo-excited TiO2.   

 However, if a given reduction-oxidation reaction is pH-independent, then the 

thermodynamic driving force for photocatalytic reduction or oxidation of this species will 
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change as a function of pH (Figure II.1).  These considerations should be taken into 

account in analyzing complex electrolytes. 

 

Figure II.1: Trend in potential with pH for the band positions of TiO2, proton reduction, 
water oxidation, and an arbitrary pH-independent reduction-oxidation half reaction 
labeled as Ox/Red.  This figure was adapted from Bard et al1. 
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